3 minute read

Does My Invention Solve Real World Problems?

ket. The short answer was that products and services were being created that the market did not value. The NSF grantees were developing products, tools, and/or solutions without learning who their potential customers might be, or how they might best be adopted in the real world by users. To address this issue, the NSF created the Innovation-Corps (I-Corps) program to get researchers out of their labs to discover more about potential customers and potential uses for their technology.

JHU fully embraced the I-Corps program and now serves as a regional hub for the nation

Advertisement

al program. The regional program is based on the same principals as the national program, but it is shorter in length. The goal of this shorter course is to validate a specific problem or need and to determine what products or services could address this need, while longer courses include further steps to develop a business model around solving that specific problem. The regional I-Corps program is one of the first programs we encourage our students and faculty to participate in once they start thinking about commercializing their research.

By Chris Yankaskas, PhD

After publishing a paper on the development of a microfluidic assay to predict breast cancer patients’ risk of developing metastasis and to identify effective therapeutics, I asked, “what next?” (Go to page 10 to learn more about this research). Having spent years working on a translational project, I was excited by what had been achieved and daunted by the path ahead towards clinical development and implementation, which is why I enrolled in the JHTV I-Corps course.

The course’s main goal is to ensure that the problem of interest is real and solvable. Elizabeth Good Mazhari was my instructor and has a long resume of working with and for tech startup companies and ventures, and is a National Faculty I-Corps Instructor for NSF and NIH. To obtain wide and objective views on my problem of interest, she covered how to conduct interviews to test hypotheses about market problems and conditions with the people I think are experiencing the problem—in my case, chiefly oncologists.

I admittedly have not spent a lot of time talking to clinicians who experience the problem that my research works to solve, and did

not have a list of oncologists I could interview. Fortunately, being an INBT researcher gave me a head start. My first few interviews were with physician-scientists I had worked with in the past, and through introductions made by Luke Thorstenson, the INBT Director of Corporate Partnerships. From there I gained momentum. In each interview I asked for names of people in the field who might be useful to contact, and used those referrals to get in touch with new people.

After four-weeks, I had a better understanding of how clinicians diagnose cancer, how the oncology, pathology, and surgical teams involved in the problem I was addressing work together, and what factors make a physician willing to order a diagnostic test. I also realized that there was a lot more to learn. I was working on a very valid and real problem, but one that was very complex. I was able to refine my research and development steps to fill in the knowledge gaps.

It was helpful to learn how an engineering research project transfers into a business model. Talking directly to potential end-users of a product I was developing gave helpful guidance and future milestones to achieve. In addition to project planning, the program had many ancillary benefits. The 20 to 30-minute conversations I had with clinicians were invaluable compared to reading on my own in advancing my understanding of the clinical environment and decision making. I made connections with practitioners who I can contact in the future with questions, and identified some potential research collaborations.

Translational Achievements by INBT Faculty (2015–2019)

168 Invention Disclosures

8New Companies Formed

41 Patents Granted

24 Patents Licensed

This article is from: