![](https://assets.isu.pub/document-structure/230308183615-df515c5b8a51753c319cb1b4ddc552a2/v1/62b1de3695ed7dd00a34211516d9b939.jpeg?width=720&quality=85%2C50)
1 minute read
parameterization
Bayesiandeeplearningcanimprovestatisticaldownscaling(anddeepemulationfordynamical?)
Heavens, N. G., Ward, D. S. & Mahowald, N. M. (2013) : Studying and Projecting Climate Change with Earth System Models. Nature Education
Knowledge 4(5):4
Expeditions in Experiential AI Seminar Series. March 8, 2023, 1 PM Eastern
Vandal, T., E. Kodra, S. Ganguly, A. Michaelis, R. Nemani, A.R. Ganguly. DeepSD: Generating high resolution climate change projections through single image super-resolution. In Proc. 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1663-1672. ACM KDD, 2017.
![](https://assets.isu.pub/document-structure/230308183615-df515c5b8a51753c319cb1b4ddc552a2/v1/c529a7d165c9dd0e61786db816e754f1.jpeg?width=720&quality=85%2C50)
Reichstein, M., Camps-Valls, G., Stevens, B. et al. (2019): Deep learning and process understanding for datadriven Earth system science.
Nature 566, 195–204 (2019)
(SDS
![](https://assets.isu.pub/document-structure/230308183615-df515c5b8a51753c319cb1b4ddc552a2/v1/8b9f8aeb30b07d3a3e29bbaa0a5b00fa.jpeg?width=720&quality=85%2C50)
![](https://assets.isu.pub/document-structure/230308183615-df515c5b8a51753c319cb1b4ddc552a2/v1/fc36a45b3c8d898b988e8da01c3bf8e2.jpeg?width=720&quality=85%2C50)
![](https://assets.isu.pub/document-structure/230308183615-df515c5b8a51753c319cb1b4ddc552a2/v1/5a5a0ba549a36bd355c92ca684e8a3dd.jpeg?width=720&quality=85%2C50)
![](https://assets.isu.pub/document-structure/230308183615-df515c5b8a51753c319cb1b4ddc552a2/v1/1e88afa7dab9960b6191486ceaf1a04f.jpeg?width=720&quality=85%2C50)
![](https://assets.isu.pub/document-structure/230308183615-df515c5b8a51753c319cb1b4ddc552a2/v1/674faaa3288c6e8091a44e3ccf74da85.jpeg?width=720&quality=85%2C50)
Comprehensive climate risk and resilience frameworks can help decisions despite uncertainties