PhD Thesis 2012
Offshore wind energy and birds: Integrating assessment tools in space and time Isadora Christel JimĂŠnez
Offshore wind energy and birds: integrating assessment tools in space and time Energia eòlica marina i aus: integració de les eines d’avaluació a l’espai i el temps
Energía eólica marina y aves: integración de herramientas de evaluación en el espacio y en el tiempo
Isadora Christel Jiménez García
Barcelona, Octubre 2012
ICH
cover and Book design: isadora christel
Facultat de Biologia - Departament de Biologia animal Programa de doctorat de Biodiversitat Bieni 2005-2007
Offshore wind energy and birds: integrating assessment tools in space and time Energia eòlica marina i aus: integració de les eines d’avaluació a l’espai i el temps
Energía eólica marina y aves: integración de herramientas de evaluación en el espacio y en el tiempo Memòria presentada per
Isadora Christel Jiménez García per a optar al títol de Doctora per la Universitat de Barcelona
Barcelona, Octubre 2012 Directors de Tesis
Dr. Xavier Ferrer Animal Biology Department Universitat de Barcelona (UB) Barcelona, Spain
Dr. David Vieites
Dr. Grégoire Certain
Museo Nacional de Ciencias Naturales Havforskningsinstituttet Consejo Superior de Investigaciones Institute of Marine Research (IMR) científicas (CSIC) Tromsø, Norway Madrid, Spain
The preparation of this thesis has been financially supported by a doctoral grant (APIF/2008) by the University of Barcelona
“Herzog dijo que hay más de un Anapurna en la vida de cada hombre y no siempre se alcanza la cumbre… pero si el esfuerzo nos permite vislumbrar algo de aquello que hay más allá del azul infinito, ya vale la pena. Al menos ayuda a vivir.” (1980, carta de Enric Benavente i Mata a mis abuelos)
TABLE OF CONTENTS ix xii
Acknowledgments How it all began
GENERAL INTRODUCTION 3 3 7 7 12 13 15 15 18 21
Introduction Offshore wind energy Environmental assessment Seabirds as indicators Objectives Supervisors’ report Methodological approach Seabirds surveys Study areas Modelling tools
RESEARCH PAPERS 27
Chapter 1: A refined methodology to estimate the vulnerability of seabird community to the establishment of offshore wind farms
45
Chapter 2: Wind farm Sensitivity Index for seabirds - A ssessing offshore wind energy development on the coasts of the Iberian Peninsula
61
Chapter 3: Seabird aggregative patterns: a new tool for offshore wind energy risk assessment
79
Chapter 4: Foraging movements of Audouin’s gull (Larus audouinii) in the Ebro Delta, NW Mediterranean: A preliminary satellite-tracking study
DISCUSSION & CONCLUSIONS 91 91 93 94 95 100 102
Discussion Vulnerability Index Aggregative Patterns Individual tracking Integrating tools in SEA and EIA Conclusions References
CATALAN SUMMARY APPENDIX
|
vii
ACKNOWLEDGMENTS
ACKNOWLEDGMENTS Agraïments, Agradecimientos, Remerciements
Estas líneas abren la tesis pero son las
però crec que podem sentir-nos orgullosos.
últimas que escribo. Es el final del camino.
Gràcies per la oportunitat d’arribar fins aquí,
Un camino largo, no siempre fácil, pero des-
per entendre i donar suport a la noia pràcti-
de luego lleno de gente que me ha ayudado,
ca que sóc i per confiar en mi tot i els dalta-
apoyado, animado y que de una forma u
baixos inevitables en tants anys.
otra ha estado a mi lado mientras este proyecto iba madurando.
Gracias a todos
Els principis van ser solitaris, lluny de la universitat i amb trasllats de despatx en despatx. Per sort els vaig poder compartir amb tu, Albert. També recordo el nostre primer té/cervesa a la UPC. No sempre ha estat fàcil
Mis primeros pasos por el departamento
treballar plegats. Tots dos som d’idees cla-
de Biología Animal empezaron mucho antes
res i tossuts per defensar-les, però crec que
de acabar la carrera, era 2001 y después de
hem superat prou bé les nostres diferències.
hablar con Domingo acabé haciendo cam-
Em quedo amb les reunions al bar que han
pañas de campo capturando codornices
solucionat més d’un problema metodològic,
y “descuartizando” tejones. Aún hoy soy
d’anàlisi o de com enfocar les nostres tesis.
hipersensible al canto de Coturnix cotur-
I bé, també amb unes quantes sessions de
nix. Domingo, eres un magnífico profesor
radar al Delta en companyia de Xesco.
de campo. El tiempo que colaboré contigo,
Xescuu! De ti me quedo con los intentos
Manel y con todos tus entonces doctorandos
por iniciarme en el mundo de la ornitología,
fue lo que me hizo decidirme a dar el paso
pero sobre todo, con tu buena música para
hacia la ciencia, así que para ser justos, ese
pasar las horas delante de un monitor de
es el principio del camino.
radar en medio de la nada.
Xavier, encara recordo entrar al teu des-
El traslado al departamento fue un cam-
patx per parlar del treball de Zoogeografia,
bio agradable. La tesis pasó de ser una lucha
l’últim treball de la carrera. Ha plogut molt
solitaria a una montaña rusa compartida
des de la idea per aquell treball fins arri-
con otros sufridos becarios. En compañía,
bar a aquesta tesi, el tema ha donat voltes
todo se hace más llevadero sobre todo si va
|
ix
x
| servida por Jose Luis y Miguel, sois mis bio-
metodológica y si salió a flote, fue gracias a
barmans preferidos. En esta montaña rusa y
Marcos del Castillo y a Joan Navarro. Marcos,
desfile de compañeros de bar, pasillos y des-
gracias por todas esas horas de teléfono (y
pachos hay muchos nombres. Eloy, gracias
son muchísimas) hablando de como anali-
por entender a la perfección esos días en
zar una muestra que no daba para casi nada.
los que voy dando saltos por los pasillos
Joan, gracias por ayudar a desencallar el
y por darme ese abrazo siempre que lo he
tema y acompañarme en el proceso de pu
necesitado. Gemmmma, gràcies per donar
blicar mi primer artículo, se dice rápido pero
geni i figura als dies grisos de la facultat.
no fue un paso trivial en esta tesis.
Cotín, por descubrir mi wild side. Blanca,
Si hay algo a destacar, es el cambio de
por ser el eslabón que une a todos los de-
inflexión que supuso para mí ir a Noruega.
partamentos. Mari Carmen, por dar color
Norway... Norgue. In Trondheim I found my
a la facultad con tus viajes y experiencias.
third co-supervisor and the focus of the the-
Alberto, por ser el perfecto asesor estratega.
sis that I had been unconsciously looking
Olatz, por ese trabajo de campo en bikini en
for. Grégoire, merci de ton soutien. The first
el principio de los principios. Edu, por re-
day we met at the airport I already had the
cordarme que la ciencia al más puro estilo
feeling that we were going to get on well. I
“Konrad Lorenz” aún es posible, por hacerme
love your scientific stubbornness, your freak
sentir no tan R-freaky y por todas esas char-
side and your quality as supervisor, mentor,
las entre mis cafés y tus cigarros. Pero es in-
advisor… You helped me to jump without
justo que haya tan poco espacio, porque son
doubts to the world of R programming, and
muchos nombres y de todos podría decir
gave me such a quantity of useful tips and
algo: Manolo, Debs, Victor, Irene, Mario, los
comments for my future as a researcher that
(no tan)”nuevos”: Jose Manuel, Jaime, Fav, T,
I had professionally changed by the time I
Nicole, Urtzi… y los que ya dejasteis el nido:
went back to Barcelona. You have the mak-
Oriol, Laura “arpella”, Inés, Luigi, Rubén,
ings of a wonderful supervisor. Take more
Josep Lluis, Eva. Dejo muchos nombres por
students! Tusen takk also to Tycho, Inga,
poner… no me lo tengáis en cuenta porque
Duncan, Signe, Camilla and all and each of
hoy me acuerdo de todos vosotros.
the NINA colleagues that opened my mind
La tesis hizo un salto cualitativo cuando
and gave me so much to bring back home.
una llamada me informó de que, cuando ya
And well, the experience was wonderful,
había perdido toda esperanza de obtenerla,
but it was also possible thanks to you, Vidar.
me daban la ansiada beca predoctoral. Con
With you at home I didn’t feel the Norwe-
la beca también llegó mi primer co-director,
gian cold. You adopted the Spansk roommate
Vieites. Nos hemos visto muy poco (aún te
and immersed me completely into Norway
llamo por tu apellido!) pero ha sido tiempo
with our afternoons of talking, watching
altamente productivo. Ese retiro en la sierra
football, movies and partying. My second
madrileña fue una experiencia genial y sien-
stay in Norway was a really short one, but
to que el espacio-tiempo no se haya alinea-
those few weeks at the IMR in Tromsø (al-
do para poder interaccionar más. Aún con
most 70ºN) were also a very intense experi-
todo, me alegro de tenerte como “co-dire”.
ence full of new colleagues for science: Ben-
El primer artículo que publiqué (aunque
jamin, Alf Harbitz, Ulf and leisure: Maria,
último de la tesis) fue una pesadilla
Marina, Atal, Keka, Rune, Trond, Virginie,
ACKNOWLEDGMENTS Roland, Bas… thank you for everything and more.
Como ya he dicho, para mí una tesis es una montaña rusa. Tiene subidas y bajadas.
Una tesis avanza no sólo en el despacho.
Mis estancias en Noruega y el Máster en Co-
Mucha gente te ayuda incluso sin saberlo:
municación Científica están en las cimas,
mis compis bajo el agua (Olga, Laura, Núria,
pero también ha habido unas cuantas ba-
Patri, Silvia y Carlos); mis niñas, con nuestro
jadas vertiginosas y en esos momentos he
primer viernes de cada mes; y todos los ami-
tenido la fortuna de contar con tres refugios,
gos que pacientemente han visto pasar los
remansos de paz, fuentes de consejos y áni-
años sin preguntar cuando la acabaría y que
mos. Tres lugares en los que tal cual cruzar
tímidamente cada cierto tiempo se atrevían
la puerta se me ha permitido descargar de
a volver a preguntar de qué iba exactamente
mis hombros el peso del doctorado, los mie-
la tesis.
dos y todas las dudas. Uno está en Palamós-
Ya hacia el final descubrí toda una vo-
Gràcia-Centelles... allá dónde sea que Laura
cación, la comunicación científica. 2011 fue
prepare una infusión y Joan improvise una
un año intenso, pero junto a mis compis
cena. Vuestra casa siempre ha sido un refu-
de Máster pasó volando. MCC16 forever!
gio de calma y consejos en los momentos
No pongo vuestros nombres porque sois
más críticos. Otro está en Amsterdam. Alicia,
muchos, pero de verdad que esta tesis llega
gracias por todos estos años de amistad y
a buen puerto gracias a esa transfusión de
vuelos de ida y vuelta, que no es poco. Pero
energía, ganas y motivación que comparti-
independientemente del lugar, los brazos de
mos de 7 a 10 de la noche cada día.
Ivan han sido mi mejor refugio.
Y como no… padrins, tiets, primos, abue-
Ja són molts anys i tu has viscut al
los y padres, propios y políticos: Familia.
meu costat tots i cadascun dels moments
Gracias por acompañarme aún sin acabar de
d’aquest doctorat. La meva lògica de biòloga,
entender demasiado qué hacía o por cuánto
s’ha resistit a les teves pràctiques solucions
tiempo iba a “seguir estudiando”. Está cla-
d’enginyer, però anys i ioga ens han portat
ro que por más que lo he intentado no he
fins el dia que aquesta tesi s’acaba. Pensaves
conseguido convenceros de que esto ES UN
que la vida seria senzilla quan per fi acabés
TRABAJO así que: Abuelos, por fin la nieta
amb el doctorat? …doncs bé: Ara comença la
“ha dejado de estudiar”!
nostra aventura.
|
xi
xii
|
HOW IT ALL BEGAN “What do you think? Will it have an impact?” “Oooh, so you moved to the dark side… you will say yes to the wind farm, won’t you?”
Those were the two most asked ques-
institutions and the offshore wind industry.
tions at the beginning of my research expe-
Some reports were helpful as they gave re-
rience. In August 2004 Dr. Xavier Ferrer was
commendations on survey methodologies
commissioned the Environmental Impact
but all their conclusions seemed a sequence
Assessment for an offshore wind farm. A
of “too many” descriptive distribution maps
project in front of the Ebro Delta area. The
summarized at the end with a few paragra-
developer company, Capital Energy Offsho-
phs according to the previous ornithological
re, paid for an exhaustive EIA and Albert
knowledge of the authors.
Cama and I suddenly found ourselves in the
As I see it, in this topic, our role as scien-
middle of a huge, potentially conflictive pro-
tists is to evaluate, in the most impartial and
ject. No complaints! In some countries, paid
objective way, the potential impacts of such
science is a luxury.
installations; and more importantly to do
People from Capital Energy, my family,
our best to quantify them. With this infor-
friends... all used to ask me the first ques-
mation, we have to inform decision-makers
tion. My biologist colleagues would look at
in the most clear synthetic way. A French
me with terrified faces and go for the second
supervisor of mine would argue that not
comment/question. My answers:
even scientists can reach real impartiality and objectivity, but I am satisfied if we make
“Yes, there will be an impact; we don’t need the study to say this”
a sincere effort to reach them. During these years, I have been somewhere in-between ornithologists, ecolo-
“No, it is not my job to decide that”
gists, conservationists, managers and business people. It is not easy when you do not
This situation was the seed of this the-
fit in a particular label, but at least it gives
sis because there was not much scientific
you a different point of view. After 8 years
literature on the topic. After some months
working at the University, I have learnt a few
of bibliographic search, all I could find was
things about myself: 1) I am definitively not
grey literature from governments, research
a passionate ornithologist (although now I
HOW IT ALL BEGAN can even follow their conversations); 2) I de-
or at least move them to the appendix of
finitively like methods and programming;
any Impact Assessment. There is a huge
and 3) I love visual communication of con-
part of fruitless work that has no space in
cepts because I have a taste for simplicity.
this dissertation and there is still a great
This thesis is the result of this.
part of work to be done. I know. But I got to
I wanted to bring some integrative tools
the end of the fourth year of my University
to summarize results in as fewer maps as
PhD grant and I took an unpaid extra half
possible. I wanted to transcend plain des-
year. Luckily for a scientist, what is still to
criptive distribution maps, “eradicate� them
be done is just an opportunity for the future.
|
xiii
General introduction
INTRODUCTION
INTRODUCTION Offshore wind energy development and seabirds’ conservation: A management challenge
The world’s growing energy demand and
depending on the scenario (EC 2011b). One
climate change are two of the great challen-
of the policy measures to achieve this goal is
ges of this century. A trade-off between cli-
the Renewables Directive, which sets a tar-
mate change policies and competitiveness
get of 20% of energy consumption to come
is needed to find an economically viable low
from renewable sources in 2020.
carbon future. In this context, the European
In Europe, renewable energy sources re-
Commission defined the ‘Energy roadmap
present the 18% of all the energy production
2050’ that explores the possibilities to achie-
(Eurostat, 2009; Fig. 1a). Within Renewable
ve a low-carbon economy that at the same
electricity production, hydropower is the
time ensures a competitive, sustainable and
main source (54.5%) followed by wind power
secure energy supply (EC 2011a). The Euro-
(22.5%) (Observ’ER, 2011; Fig. 1b). By 2050,
pean Union is committed to reducing gre-
wind power is expected to provide more
enhouse gas emissions up to 80-95% below
electricity than any other technology (EC
1990 levels by 2050 (EC 2011b). It is impossible
2011b) and hence the potential contribu-
to forecast Europe’s long-term evolution but
tion of the marine environment for offshore
some of the possible low-carbon scenarios
wind energy development has received high
are (i) a highly energy efficient system, (ii) a
attention in the last decades.
system with a diversified supply of technologies including carbon capture and storage
Offshore wind Energy
facilities and/or nuclear power, and (iii) an scenario with a strong support to renewable
The first offshore wind farm was installed
energy sources. All the predictions for these
in Denmark in 1991. Since then, the sector
decarbonized Europe scenarios show that
had a rapid expansion (Fig. 2), particularly
electricity will have to play a greater role
in the north of Europe. So far, Europe has
than fossil fuels and the share of renewable
become the world leader in offshore wind
energy sources will rise substantially achie-
power with a total of 1371 offshore turbines
ving at least the 55% of the gross final ener-
spread across 53 wind farms in 10 countries
gy consumption in 2050 up to 64% or 97%
by the end of 2011 (EWEA 2012). The UK is
|
3
4
|
General introduction the country with the largest installed off-
Fig.1 a) EU energy
shore wind capacity, followed by Denmark,
production by source in 2009 (Eurostat 2009) RES=Renewable Energy Sources. b) Share of each resource in Renewable electricity generation in 2010 (Observ’ER 2011).
Netherlands and Germany (Table 1). Interest in offshore wind energy is spreading beyond Europe. China, Japan, South Korea, USA and Israel have companies actively developing offshore wind turbines, although only China has three operational offshore wind farms. Most of the installed turbines have foundation structures. Floating models are being developed, and Norway and Portugal are the first countries that have a full-scale floating turbine installed. As the technology matures, offshore wind farms are expected to grow in size but also to be deployed further from the coast and in deeper waters, particularly if floating technology is further tested and its economic viability demonstrated. Current projects under construction have an average depth of 25 m and a distance to the shore of 33 km (EWEA 2012). This is possible because many of the actual OWF have been built in the North Sea that has a large part that lies on the European continental shelf (Fig. 3). This provides relatively large flat and shallow regions suitable for development (Henderson et al. 2003). In comparison with Northern Europe, the West coast of France,
Box 1 List of commonly used abbreviations.
abbreviations
the Iberian Peninsula and the Mediterranean Sea remain a challenge for OWF devel-
OWF: Offshore Wind Farm
opment. Although there are planned proj-
SEA: Strategic Environmental Assessment
ects for these areas, the available turbines
EIA: Environmental Impact Assessment
and foundation methods would require the construction of the wind farms much closer to the shore with a consequent increment of the conflicts to find optimal locations in terms of social acceptance, environmental impacts, conflicts of interest and national marine spatial planning. All these factors, together with a lack of funding, are slowing the offshore development of wind energy in West and South Europe. Indeed, the offshore wind energy is by no means free of conflicts. At a global scale, the
INTRODUCTION
4500
2500 2000 1500 1000
Cumulative capacity (MW)
3000
5
Fig.2
4000 3500
|
Cumulative offshore wind installations (MW) (EWEA, 2012).
500
Country
UK
DK
NL
DE
BE
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
0
SE
FI
IE
NO
PT
Total
No. of farms
18
13
4
6
2
5
2
1
1
1
53
No. of turbines
636
401
128
52
61
75
9
7
1
1
1371
Capacity installed (MW)
2094
857
247
200
195
164
26
25
2
2
3813
Table 1 European Operational Offshore wind farms by country (EWEA 2012). UK: United Kingdom; DK: Denmark; NL: Netherlands; DE: Germany; BE: Belgium; SE: Sweden; FI: Finland; IE: Ireland; NO: Norway; PT: Portugal.
Fig.3
Operational and planned offshore wind farms in Europe (EWEA 2011).
6
|
General introduction shift to renewable energies is widely accept-
bance of the seabed and fauna during OWF
ed as a necessary step to mitigate the ef-
construction and operation (Whitehouse et
fects of anthropogenically induced climate
al. 2010; Burkhard et al. 2011), the impacts on
change (King 2004; Rosenzweig et al. 2008).
fish larvae (Perrow et al. 2011), the unknown
At the local scale, however, the environmen-
effects of underwater noise on fish life and
tal impacts of wind energy development
sea mammals (Madsen et al. 2006; Bailey et
must be carefully considered (Gill 2005). In
al. 2010) and the effects at population-level
the field of marine management, there is
of collisions of birds with turbines (Fox et al.
a growing concern on the development of
2006; Desholm 2009) and disturbance (Dre-
offshore wind energy and its potential im-
witt and Langston 2006; Masden, Haydon, et
pacts on the marine ecosystem. Some of the
al. 2010).
aspects that are being studied are the distur-
Box 2 State of Offshore Wind Energy development in Spain
OFFSHORE WIND ENERGY IN SPAIN Spain has no operational offshore wind farms so far. Since the beginning of the offshore wind energy expansion in Northern Europe, different developer companies showed their interest on constructing offshore wind farms in the Spanish coasts. Despite the early private sector initiatives to promote its development, the Spanish government took the first legislative step forward in 2007. That year the Real Decreto 1028/2007 was published setting the compulsory administrative procedure that developers should follow to have the concession to construct an offshore wind farm in the Spanish coasts. As part of the necessary procedure a Strategic Environmental Assessment (SEA) for the Spanish coastline was commissioned. This study was published in 2009 (MARM and MITYC 2009) and included the definitive zonation map for offshore wind development areas. This map divided the Spanish coasts in 72 marine eolian areas (defined by one decimal degree squares). Within each area, the 24 first nautical miles were assessed according to multiple criteria and classified as suitable areas (in green), suitable areas with constraints (in yellow) and exclusion areas (in red).
The administrative concessions process is long and complex and has suffered several delays. To the date, the start of the application process is on hold, hence there is no official number of planned wind farms in Spain.
INTRODUCTION Environmental assessment
hore wind farms (Camphuysen et al. 2004). In the last years, as the sector has grown,
The European Union has a regulatory fra-
more reports have been published as well
mework (Directive 2001/42/EC) to standardi-
as research papers on the assessment of
ze the evaluation and monitoring of human
environment-OWF interaction of particular
activities in the ecosystem and to guarantee
wind farms (e.g. Desholm and Kahlert 2005;
a rational development of such activities
Perrow et al. 2011; Skeate et al. 2012) as well
including
considerations.
as reviews and general papers regarding
On a large scale, countries must develop a
SEAs (Elliott 2002; Fox et al. 2006; Punt et al.
Strategic Environmental Assessment (SEA)
2009; Masden, Fox, et al. 2010).
environmental
to plan their offshore wind farms network minimizing their ecological impact on the
Seabirds as indicators
coastal environment. At a local scale, each wind farm project requires an Environmen-
Ecological systems are highly diverse
tal Impact Assessment (EIA) of the possible
and complex. While ecological studies focus
negative impacts of the proposed project in
on this complexity, applied ecology requires
the marine environment.
methods that synthesize this complexity
The EIA concept was first introduced in a
in order to take actions that may have eco-
European Directive in 1985 (Directive 85/337/
nomic consequences (Piatt and Sydeman
EEC) but it was restricted to certain types of
2007). Such is the case of using indicator
projects. Years later, the need to deal with
species to simplify the monitoring and ma-
environmentally damaging decisions at na-
nagement processes for EIAs and SEAs. Ma-
tional levels developed into the Strategic
rine top predators are a key component of
Environmental Impact Assessment that was
marine ecosystem management (Boyd et
finally included in a European Directive in
al. 2006) and within top predators, seabirds
2001. Although all countries of the EU are
have become widespread indicators to eva-
implementing SEAs since 2004, EIAs have
luate potential effects of human activities
a longer tradition and clearer implementa-
at sea as well as ecosystem health (Cairns
tion procedures. This is also reflected in the
1987; Nettleship and Duffy 1993; Mallory et
environmental assessment of offshore wind
al. 2006).
energy.
Seabirds offer many advantages com-
For many years, the only available infor-
pared to other species. Considering an en-
mation on offshore wind farms assessments
vironment where most species are under
were reports focused on how to perform
water, seabirds are conspicuous animals,
EIAs of particular projects. The Danish expe-
they are easily surveyed during their move-
rience with the first wind farms was exten-
ments and in resting areas; and some spe-
sively reported by the National Environmen-
cies are easy to capture allowing individual
tal Research Institute (NERI) and their aerial
tracking and demographic studies (Piatt and
surveying methodology has become a stan-
Sydeman 2007). Moreover, most seabirds
dard for many EIAs (Noer et al. 2000). Later,
have specific legal protection frameworks
the COWRIE (Collaborative Offshore Wind
(e.g. Birds directive and Habitats directive
Research Into the Environment) from UK
in Europe) and are flagship species for the
commissioned a report to standardize the
public (Fox et al. 2006) which is reflected in
seabird surveys techniques for EIA of offs-
the abundance of comprehensive long-term
|
7
8
|
General introduction studies of their distribution at sea and popu-
des, the stationary structure or being caught
lation trends.
and injured in the pressure vortices created
Because of all this, the distribution and
by the rotor blades (Fox et al. 2006). Collision
abundance of seabirds are usually provided
risk depends on a range of factors related
as key information to support the establis-
to bird species (manoeuvrability, wing span,
hment of marine protected areas (Garthe
etc.), behaviour (e.g. nocturnal activity), pre-
et al. 2011; Arcos et al. 2012), to implement
sence in large numbers and weather condi-
fisheries’ management measures (Boyd et
tions reducing visibility. Collision mortality
al. 2006), to monitor the impact of oil and
is the most important hazard since direct
gas platforms at sea (Wiese et al. 2001), or to
mortality can potentially have rapid conse-
assess the impact of environmental disas-
quences at population levels. Nevertheless,
ters such as oil spills (Bretagnolle et al. 2004;
there is still limited information on the ac-
Moreno 2010). Thus, seabirds are suitable
tual numbers of bird collisions with offshore
indicators of the marine environment, and
wind farms, largely as a consequence of the
have become one of the keystones of the
technical difficulties to detect these colli-
decision-making process for the selection
sions at sea (Drewitt and Langston 2006).
of optimal areas for national offshore wind
Gradually, more remote technologies are
development and the impact assessment of
being included in the study of bird-turbine
particular OWF projects.
collisions at offshore wind farms. One of the most extended tools are S-band Radars,
Potential impacts on seabirds
although they cannot quantify collisions directly and depending on the study cannot
At the time of selecting development
provide species specific information (Chris-
areas, or when the location for a project is
tensen et al. 2004; Desholm et al. 2006). Yet,
settled, we can differentiate the effect of
radars are a useful tool to implement co-
OWF on two types of seabirds: migrant spe-
llision models (Desholm and Kahlert 2005;
cies that may encounter the wind farms on
Chamberlain et al. 2006). Thermal Animal
their migratory routes and breeding and
Detection Systems (TADS) are also an alter-
wintering species that have to interact with
native to gather information on actual co-
wind farms in their foraging grounds. Both
llision rates. This infrared based technology,
types of seabirds are susceptible to mul-
however, has been seldom applied and there
tiple anthropogenic impacts (e.g. Anderson
are few published studies on its performan-
et al. 2003; HĂźppop et al. 2006; Louzao et al.
ce (see Desholm et al. 2006 for a review).
2006), but the potential impacts of offshore wind farms on seabird communities can be
Habitat change
classified in three types; (i) direct mortality through collision, (ii) modification of their
This impact comprises the loss of habitat
physical habitat and (iii) avoidance due to
that would result from the presence of the
disturbance and barrier effects.
turbine bases, grid connection cabling and any other associated construction. The scale
Collision risk
of habitat loss is not generally perceived as a major concern whenever this is not produ-
Birds flying within a wind farm area are
ced in areas of high biodiversity or ecologi-
clearly at some risk of colliding with the bla-
cal importance (BirdLife International 2003).
INTRODUCTION
Resident species foraging flight paths
Flight path obstacles COLLISION RISK Injuries and casualties by collision with the turbine or by air turbulence
Reduced survival
Feeding habitat
Attraction
Migrant species migration flight paths
Habitat loss
HABITAT CHANGE
Barrier effect DISTURBANCE
‘Physical’ habitat gain with increased collision risk
‘Effective’ habitat loss
‘Physical’ habitat loss
Increased flight distance
Changes to annual breeding output and survival
New feeding habitat
Lost feeding habitat
|
9
Fig.4 The three major potential impacts of offshore wind farms on seabirds and their physical and ecological effects.
10
|
General introduction However, indirect habitat loss might also
factors depend, for instance, on the offshore
occur because of the turbine foundations
wind farm location with respect to impor-
on the seabed, or changes in habitat use by
tant habitats, design of the turbine array
humans. For instance, construction activi-
and distance between turbines. Moreover
ty and turbine’s distribution may affect the
seabirds may show different disturbance le-
site’s hydrology and have an impact over
vel depending on their diurnal and noctur-
greater areas (Percival 2003). There is uncer-
nal activity patterns (Desholm and Kahlert
tainty about the magnitude of such changes,
2005) or different weather conditions. Be-
but the damage may be significant especia-
havioural responses to the wind farms may
lly on feeding areas such as sandbanks in
vary between species but also between in-
shallow waters (Drewitt and Langston 2006).
dividuals of the same species according to
Turbine bases tend to have a ‘reef effect’
factors such as stage of life cycle (wintering,
that increases biodiversity through habitat
moulting and breeding), flock size or ten-
creation (Linley et al. 2007), but this may
dency to habituation.
influence floral and faunal communities
Even if disturbance and displacement
in complex ways generating both positive
occur, it may actually be inconsequential
and negative effects depending on the site
if there are abundant alternative habitats.
and the species (Perrow et al. 2011). Seabirds
However, offshore wind farms located in
might also be differently affected by these
migratory flyways or in local flight paths
changes in the habitat. While some specia-
might alter birds’ movements increasing
list species may lose important food sou-
their energy expenditure (Masden, Haydon,
rces, other opportunist species (e.g. gulls)
et al. 2010), this particular type of distur-
may increase their presence in the area to
bance is called the ‘barrier effect’. In fact,
exploit the new food source or, as it happens
observations in operational wind farms
with cormorants, seabirds may simply be at-
show that many birds chose to fly outside
tracted to turbine maintenance platforms to
the wind farm rather than fly between the
use them as perching structures (Kahlert et
turbines (Desholm and Kahlert 2005; Larsen
al. 2004). Nevertheless, this gain of habitat
and Guillemette 2007). Unfortunately, there
might be counterbalanced by higher colli-
is a lack of complete before-and-after con-
sion risk.
trol-impact studies (BACI) in many operational wind farms to properly quantify the
Disturbance
barrier and disturbance effects compared to baseline behaviour of seabirds (Drewitt and
The presence of turbines, as well as ves-
Langston 2006).
sels and people movements related to site construction and maintenance, can poten-
Gap of knowledge
tially deter some seabirds from using areas within and surrounding wind farms. These
The internationally agreed guidelines re-
displacements result in actual habitat loss
commend the assessment of collision risk
not because physical changes of the area but
with radar studies in strongly migratory
as a consequence of a behavioural respon-
areas (Desholm et al. 2006; Fox et al. 2006;
se. The scale of disturbance effects varies
Kunz et al. 2007) and density maps as a pro-
greatly depending on a wide range of factors
xy to assess the loss of foraging habitats by
(Drewitt and Langston 2006). Site-specific
avoidance or physical habitat modification
INTRODUCTION (Camphuysen et al. 2004; Fox and Petersen
garding seabird distribution and abundance,
2006).
data is usually reported as simple locations
Regarding collision risk assessment, ra-
or density grids. After a review of more than
dar technology is a powerful tool to improve
200 published studies, Tremblay et al. (2009)
our knowledge on spatio-temporal patterns
remarked that “the simple display of distri-
of some seabird groups. Data gathering from
bution data has been much more commonly
radars and the analysis of the outputs requi-
used than quantitative indices�. Indeed, few
re comprehensive studies that already have
studies have attempted to address analyti-
been addressed in several works (Desholm
cal and synthetic methods to extract ade-
2006; Brookes 2009; Mateos 2009). In con-
quate decisions at strategic (SEA) or local
trast, the use of density maps has fallen
(EIA) levels from seabird distribution data.
behind in the integration of the spatio-tem-
This thesis aims to contribute to fill in this
poral dimension of seabird patterns despite
gap in the methodological approach to the
seabird distribution maps play a prominent
use of seabird distribution data for Offshore
role in most EIA and SEAs assessments. Re-
Wind Energy Assessments.
|
11
12
|
General introduction
OBJECTIVES Only when you reach the end of the path, your footsteps become meaningful
Main objective The major objective of this thesis was to gain insight into analytical tools in space and time for offshore wind energy environmental assessment in order to provide practitioners with guidelines on how and when to apply them.
Specific objectives To achieve this objective, this thesis has been structured in four chapters and a global discussion that address the following specific objectives: 1.
Design and test a vulnerability index to assess the potential effects of offshore wind energy development on seabirds. (Chapter 1 and 2)
2.
Develop a tool to integrate the spatial and temporal variability of seabirds’ abun-
3.
Investigate the discrepancies between distribution and abundance maps and indivi-
4.
dance at sea to quantify the potential impacts of offshore wind farms on seabirds. (Chapter 3) dual-based tracking of a flagship species. (Chapter 4) Provide practical guidelines on how to integrate the presented analytical tools in the design of SEAs and EIAs. (Discussion)
SUPERVISORS’ REPORT
SUPERVISORS’ REPORT
Dr. Xavier Ferrer, Dr. David Vieites and Dr. Grégoire Certain co-supervisors of the PhD thesis entitled “Offshore wind energy and birds: integrating assessment tools in space and time” certify that the dissertation presented here has been carried out by Isadora Christel Jiménez García in its totality and grants her the right to defend her thesis in front of a scientific committee. As supervisors, we have participated in designing, guiding and correcting earlier drafts of the chapters and manuscripts written by the PhD candidate. The contribution of the PhD candidate to each manuscript is detailed below:
CHAPTER 1: A refined methodology to estimate the vulnerability of seabird community to the establishment of offshore wind farms G. Certain, I. Christel, B. Planque and V. Bretagnolle Journal of Applied Ecology. Impact Factor: 5 (In prep.) IC: Data analysis and writing.
CHAPTER 2: Wind farm Sensitivity Index for seabirds - Assessing offshore wind energy development on the coasts of the Iberian Peninsula I. Christel, A. Cama,G. Certain, J.M. Arcos, J. Bécares, B. Rodriguez, I. Ramirez, A. Meirinho, J. Andrade, D.R. Vieites and X. Ferrer Ecological applications. Impact Factor: 5.1 (In prep.) IC: Analytical study design, data analysis and writing
|
13
14
|
General introduction
CHAPTER 3: Seabird aggregative patterns: a new tool for offshore wind energy risk assessment I. Christel, G. Certain, A. Cama, D. R. Vieites and X. Ferrer Marine Pollution Bulletin. Impact Factor: 2.5 (Accepted) DOI: 10.1016/j.marpolbul.2012.11.005 IC: Study design, raw observational data processing, data analysis and writing
CHAPTER 4: Foraging movements of Audouin’s gull (Larus audouinii) in the Ebro Delta, NW Mediterranean: A preliminary satellite-tracking study I. Christel, J. Navarro, M. del Castillo, A. Cama and X. Ferrer Estuarine, Coastal and Shelf Science (2012) 96: 257-261. Impact Factor: 2.3 IC: Data collection and processing, analytical study design, data analysis and writing
We also certify that none of the manuscripts included in this PhD thesis has been used as a part of another PhD thesis.
Barcelona, 24th October 2012
Dr. Xavier Ferrer Animal Biology Department Universitat de Barcelona (UB) Barcelona, Spain
Dr. David Vieites
Dr. Grégoire Certain
Museo Nacional de Ciencias Naturales Havforskningsinstituttet Consejo Superior de Investigaciones Institute of Marine Research (IMR) científicas (CSIC) Tromsø, Norway Madrid, Spain
METHODOLOGICAL APPROACH
METHODOLOGICAL APPROACH Integrative tools: Simplifying ecological complexity
Seabird surveys
they do not provide food- have an attraction
From the existing census techniques, the
effect on birds which modifies at some de-
best available methods for obtaining bird
gree the original distribution of the seabirds
distribution and abundance at sea are air-
(Spear et al. 2004). Secondly, this method
craft and ship-based surveys. Boat surveys
requires longer times at sea to cover large
have been largely used following a standar-
areas. Aerial surveys, on the other hand, are
dised methodology (Tasker et al. 1984) with
particularly effective in a simultaneous co-
adaptations according to each particular
verage of large areas providing a snapshot
project. Aerial surveys of seabirds at sea has
of distribution and abundance (Camphuy-
had a rapid expansion in the last decade
sen et al. 2004) with a minimum attraction
and it has been highly influenced by the
or repulsion bias (Certain and Bretagnolle
Danish experience related to the EIA of offs-
2008). Furthermore, aerial surveys can reach
hore wind farms (Camphuysen et al. 2004).
distant inaccessible areas (e.g. shallow areas
So far, the methodology explained in their
or sandbanks) in short time spans with low
reports (e.g. Noer et al. 2000) has become an
per-kilometre costs (Camphuysen et al. 2004;
standard.
Garthe et al. 2011). This is possible due to
The choice between either surveying
the speed of aircrafts, but this speed is also
method depends on the specific research
the main disadvantage of the method. Ae-
objectives since each method has both ad-
rial surveys are performed at the minimum
vantages and disadvantages (see Camphuy-
flight speed that ensures flight safety and
sen et al. 2004 for a review). Boat surveys
provides enough observation time (usually
are especially adequate to make exhaustive
185 km/h). At this speed, there is a short ob-
counts, enabling better species identifica-
servation time that leads to some identifica-
tion with enough time to collect additio-
tion problems for a few species and reduced
nal information as age, behaviour or flight
count accuracy and miscounts of rare and
height. However, this method has two main
small species which are difficult to detect
disadvantages. Firstly, vessels at sea -even if
from the aircraft (Camphuysen et al. 2004;
|
15
16
|
General introduction Henkel et al. 2007). Moreover, additional in-
in the first and third chapter. Boat surveys
formation is not always easy to collect and
require more time but maximize the detec-
bird flight height cannot be calculated.
ted species richness (number of individual
In this thesis, both boat and aerial sur-
species or taxa identified on each survey)
veys have been used as source datasets of
(Henkel et al. 2007), a key feature to captu-
seabird distributions. Seabirds present dy-
re detailed biodiversity patterns. In the se-
namic and scale dependent distribution
cond chapter, which covers the coasts of the
patterns hence the surveys to tackle this
Iberian Peninsula, simultaneous and syste-
variability must be easily repeated in simi-
matically repeated surveys were not econo-
lar conditions. Aerial surveys outperform
mically viable. Therefore, a maximization of
for these spatio-temporal analyses as a par-
species detection through boat surveys was
ticular area can be surveyed several times
particularly important.
within a year, and therefore, have been used
Fig.5 The Cornide de Saavedra, one of the vessels used for boat surveys in Chapter 2. (Photo by J. Arcos)
Fig.6
Partenavia P68, airplane model used in the aerial surveys of Chapter 3. (Photo by A. Cama)
Both types of surveys aim to monitor a
METHODOLOGICAL APPROACH given area to see if seabirds use it, while it
and temporal dimension of the distribution
seems more intuitive to monitor seabirds
patterns of seabirds. Nevertheless, there are
to study how they are using an area (Perrow
some drawbacks for this methodology. Some
et al. 2006). This move from survey data to
of these devices have high costs, data usua-
tracking data requires a change from po-
lly depend on a small sample size and they
pulation-based studies to individual-based
require a large amount of analytical time. Fi-
studies and has become possible thanks to
nally only a limited number of seabird spe-
the use of electronic-based methodologies,
cies can be captured to attach the tagging
such as satellite tracking transmitters, GPS
methods and there are legal and conserva-
receivers or radio telemetry. Since the early
tion limits to capture protected bird species
1990s, telemetry utilization has constantly
(Perrow et al. 2006). This approach, however,
increased due to the advances in the minia-
provides fine-scale behavioural studies and
turization of the electronic devices (Trem-
could be especially useful if used together
blay et al. 2009).
with surveying methods such as boat or ae-
In the assessment of seabirds interaction
rial surveys (Tremblay et al. 2009) and there-
with offshore wind energy, telemetry is an
fore it was used in the fourth chapter of the
efficient approach to integrate the spatial
thesis.
|
17
Fig.7 Satellite tracking device attached to an Audouin’s Gull (Larus audouinii) (Photo by I. Christel)
18
|
General introduction and applicability for decision-making and
Study areas
management. The three study areas belong to French, Portuguese and Spanish waters
This Ph.D. tackles the issue of offshore
and have a potential for future offshore
wind energy development and birds inte-
wind energy development. Except for the
ractions from a methodological perspective
experimental floating turbine in Portugal,
with no focus on a particular area. However,
so far there is no constructed OWF in any
in order to present an analytical tool, real
of the study areas, which makes them rele-
data is far better than simulated datasets
vant examples on how to apply the analyti-
to understand the tool, its implementation
cal tools for future decision-making. A brief
Fig.8 Study areas: (a) the French continental shelf of the Bay of Biscay, (b) the coasts of the Iberian Peninsula and (c) the Ebro Delta continental shelf
Box 3 Glossary and diagram of the Continental margin and its domains. (Definitions by Maestro et al. 2012; Illustration by EncyclopĂŚdia Britannica, Inc.)
GLOSSARY The continental margin: Submerged prolongation of the continental crust up to the edge of the oceanic crust. The continental shelf: Flat surface with low depth gradient that extends up to the shelf break The continental slope / shelf break: Seaward zone where the seafloor depth gradient increases sharply.
METHODOLOGICAL APPROACH description of the three areas is given below.
Portuguese Society for the Study of Birds) and SEO/Birdlife (the Spanish Ornithologi-
Bay of Biscay
cal Society) in different stages between 1999 and 2011.
The Bay of Biscay is a gulf of the Atlan-
The location of the Iberian Peninsula,
tic Ocean that lies between Cape Ortegal in
surrounded by the Atlantic Ocean and the
Galicia, Spain (43.77ยบN, 7.89ยบW) and the is-
Mediterranean Sea, and the geomorpholo-
land of Ushant in Brittany, France (48.43ยบN,
gical and oceanographical diversity of its
5.18ยบW). Within this area, a region of 100000
continental margins, has significant im-
km2 of French territorial waters (Fig. 8a) was
plications regarding its climate and water
surveyed with 5000 lineal km of aerial tran-
mass circulation (Maestro et al. 2012 for a
sects on a monthly basis from October 2001
detailed revision). The continental margin of
to March 2002 and 4000 lineal km of boat
the Iberian Peninsula has well differentiated
transects in spring from 2003 to 2006.
regions conditioned by many oceanographi-
The study area covered the French con-
cal aspects like the Eastern North Atlantic
tinental shelf of the Bay of Biscay between
Upwelling Region and the Iberian Poleward
Penmarch in the north (47.75ยบN, 4.28ยบW) and
Current that have a strong influence in the
Bayonne in the south (43.497ยบN, 1.64ยบW).
Portuguese, Galician and the Bay of Biscay
Coastal and shelf break areas are the most
continental margins (Peliz et al. 2005; Llope
productive systems of the region (Lavin et al.
et al. 2006); the Mediterranean Outflow
2006; Certain et al. 2008). The Loire and Gi-
Water that flows from the Strait of Gibral-
ronde river run-offs are a source of nutrient-
tar along the continental slope of the Gulf of
rich fresh water (Planque et al. 2004) and the
Cรกdiz (Ribas-Ribas et al. 2011); the Modified
shelf break is an area of enhanced primary
Atlantic Water that affects the Alboran Sea;
production as the deep cooler waters reach
and other Mediterranean water masses that
the euphotic layer due to internal tides and
influence the Valencia, Catalan and Balearic
waves (Gerkema et al. 2004), particularly in
continental margins (Salat 1996). This ocea-
the southern area that is characterized by a
nographic settings affect the composition
deep canyon (Laborde et al. 1999).
and structure of plankton and all the com-
The community of seabirds recorded
ponents of the food web (Santos et al. 2007;
in this area during either aerial and boat
Cabal et al. 2008) up to the highest trophic
transects belong to eight families totaling
levels and therefore, seabirds. Indeed, the
30 species (see Table 2 for details) although
Iberian Peninsula hosts the highest diversi-
both surveys aimed the continental shelf
ty of seabirds in Europe. The community of
therefore, there might be unrecorded spe-
seabirds in this area has up to 39 usual spe-
cies near the coast, which wasnโ t surveyed
cies from ten different families (Table2) in
in detail.
addition to rare species that can eventually be found.
Iberian Peninsula coasts Ebro Delta This area of ca. 230000 km covers the 2
Spanish and Portuguese continental shelf
At a more local scale, the third area was
and spans over 7800 km of coastline (Fig. 8b).
located on the surroundings of the Ebro Del-
Boat surveys were carried out by SPEA (the
ta (40.7ยบ N, 0.75ยบ E; Fig. 8c). The study area co-
|
19
20
|
General introduction
Table 2 List of species detected in the three study areas. For each study area (BB= Bay of Biscay; IP= Iberian Peninsula; ED= Ebro Delta) a dot indicates the presence of the species in the boat surveys (B) or the aerial surveys (A). In the Ebro Delta aerial surveys the Razorbill and the Atlantic Puffin (Alcidae) could not be differentiated and therefore the species were recorded as a unique group.
METHODOLOGICAL APPROACH vered 1435 km2 of the continental shelf from
of its multiple hydrological and hydrographi-
l’Ametlla de Mar (24 km North; 40.86º N, 0.8º
cal characteristics and the patchy distribu-
E) to Peñíscola (51 km South; 40.35º N, 0.4º E).
tion of its biota (Steele 1989; González-Solís
It could be covered in a single day with an
and Shaffer 2009). The spatial and temporal
aircraft and the aerial surveys were carried
distribution of animals is the result from the
out monthly from April 2005 to March 2006.
combination of extrinsic processes, related
This area has a permanent upwelling due
to the influence of biotic and abiotic envi-
to the combination of the influence of the
ronmental factors, and intrinsic processes,
Liguro-Provençal-Catalan front, the sudden
related to population dynamics and intra-
broadening of the continental shelf and the
specific interactions (Bellier et al. 2010). Mo-
source of nutrients from the Ebro river ru-
reover, the spatial and temporal distribution
noff (Palomera 1992; Arcos 2001). The high
of seabirds is scale-dependent and patchy
productivity of the area supports an impor-
over a range of spatial and temporal sca-
tant fishing fleet which is a key feeding sou-
les (Hunt and Schneider 1987; Kotliar and
rce for breeding and wintering seabirds in
Wiens 1990; Fauchald et al. 2000), which is
the Ebro Delta (Arcos 2001; Arcos et al. 2008;
explained under the hierarchical patch dy-
Cama 2010). Moreover, the Ebro Delta is a
namic theory (Kotliar and Wiens 1990; Allen
wetland of international importance inclu-
and Hoekstra 1991; Wu and David 2002).
ded in the Ramsar Convention since 1993.
In a hierarchical patch dynamic system,
With 320 km2, it is the second most impor-
one would expect large-scale patterns to
tant wetland of the Western Mediterranean
be more stable and predictable because of
after the Camargue in France and the second
a high correlation with environmental va-
most important from the Iberian Penin-
riables that define a potential habitat (Hunt
sula after Doñana. The rice fields, lagoons,
and Schneider 1987; Bellier et al. 2010). At
saltpans and beaches of the Ebro Delta pro-
smaller spatial scales one might expect less
vide a variety of habitats for breeding and
predictable spatial patterns because smaller
wintering birds but also a stopover point for
patches with high densities of organisms
large numbers of migratory birds. In global,
are the result of a particular combination of
ca. 400 species of birds can be found in the
circumstantial variables that create a tem-
area (Bigas 2012); 18 of which could be de-
poral preferential habitat within the poten-
tected at sea from the aircraft (Table 2).
tial habitat (Bellier et al. 2010). Translating these theoretical concepts
Modelling tools
to applied ecology, the optimal assessment tools for seabirds-OWF interactions must
Data on the distribution of seabirds at
take into account this differential effect of
sea can be a useful tool for conservation and
spatial and temporal scales. At large-scale
environmental assessment whenever the
assessments, the observed distribution pat-
spatial data from seabird surveys represent
terns can be considered stable in time and a
a general pattern and not only a punctual
proxy to potential habitats and thus optimal
‘snapshot’ of a highly dynamic system (Fau-
for the demarcation of key areas of protec-
chald et al. 2002).
tion (e.g. Important Bird Areas, IBAs) and key
Despite its superficial homogeneity, the
areas for offshore wind energy development.
sea is a heterogeneous environment because
At regional or local-scale assessments, the
|
21
22
|
General introduction observed clustering of seabirds must be
dely applicable. Hence, instead of develo-
evaluated in its full temporal and spatial
ping a new index, this thesis examines the
variability as a preferential habitat and,
method in depth and suggests a refinement
consequently used to quantify -in terms of
on the mathematical formulation (Chap-
probability- the risk exposure to OWF.
ter 1) and makes recommendations on the optimal application of the index for its uti-
Large scale: Vulnerability Index
lization in any Strategic Environmental Assessment (Chapter 2).
The Strategic Environmental Assessment integrates data at broad scales; therefore,
Regional and local scale
we can assume that the temporal scale is not a priority whenever data from diffe-
At smaller scales, ornithological Environ-
rent years or periods can be pooled. Seabird
mental Impact Assessments usually focus
distributions might have different patterns
in migratory corridors and seabird habitat-
depending on the stage of life cycle (winte-
use strategies and the processes that are
ring, migrating and breeding) but in global
expected to influence seabird occurrence
their distribution is expected to be spatia-
or the availability of their prey. As in large
lly and temporally predictable (Fauchald et
scales, bird densities are used as a proxy of
al. 2002). In other words, at strategic levels
bird habitat to assess risk exposure to ha-
the main concern regarding seabirds-OWF
bitat loss or disturbance. Despite this is a
assessment is the spatial overlap of seabird
common practice, the effectiveness of this
distribution with key developing areas of
method is compromised by the assumption
OWF. This overlap is usually evaluated with
that at these scales the observed data fo-
the selection of presence/absence maps of
llows a normal distribution. In fact, animal
a few flagship species expected to be highly
count data are seldom normal. Seabird ae-
vulnerable to OWFs and general density
rial and boat surveys data are zero-inflated
maps with the global numbers of seabird
(Broek 1995; Pearce and Ferrier 2001; Barry
counts at sea. In this context, it becomes
and Welsh 2002) with a positive skew of
appropriate to apply an index to integrate
non-zero values, i.e. many counts of low to
all these information layers into a summari-
intermediate density and very few counts of
zing one.
high density (Fauchald et al. 2002; Mcsorley
Garthe and Hüppop (2004) proposed the
et al. 2005; Certain et al. 2007). For this rea-
Wind Farm Sensitivity Index (WSI) to map
son, the explicit consideration of temporal
the vulnerability of seabirds to offshore
and spatial variability of seabird occurrence
wind farms in a sea region. This index esti-
and density is necessary in any EIA to de-
mates the vulnerability of each species ac-
sign ecologically sound management strate-
cording to their sensitivity to collision risk,
gies at regional and local scales (Tobin 2004;
disturbance and their demographical and
Certain et al. 2007).
conservation status. This value is later com-
The third and fourth chapter of this
bined with the spatial abundance of each
thesis tackle this spatio-temporal varia-
species to obtain a vulnerability map.
bility through the application of Taylor’s
This method is general, simple and wi-
power law and the analysis of individual’s
METHODOLOGICAL APPROACH movements respectively.
Aggregative patterns
Individual tracking The second approach deals with spatiotemporal variability from an individual-ba-
Taylor’s power law is based on an em-
sed perspective. Seabird surveys are cons-
pirical relationship that expresses the de-
trained in space by the arrangement of the
pendency between the average measured
survey transects, and constrained in time by
in one point and the variance of the mea-
the moment of the day at which each transect
sures in this point (Taylor 1961). Although
is surveyed and the necessity of daylight for
its mathematical foundations have been
the counts. Individual tracking of seabirds,
widely discussed (Kendal 2004), this rela-
instead, is not restricted in either space or
tionship has been demonstrated for more
time. When applying multivariate mode-
than 400 species in taxa ranging from pro-
lling, temporal patterns in space use can be
tists to vertebrates (Kilpatrick and Ives 2003)
described not only monthly or seasonally
and it is true for both spatial data (repeated
but also within a circadian cycle. Moreover,
measures adjacent in space) and temporal
if a transmitter provides frequent locations,
data (repeated measures in a point over
it is possible to quantify the geometric pro-
time) (Taylor and Woiwod 1980, 1982; Taylor
perties of the path of a tagged animal (e.g.
et al. 1980). When calculated through spa-
speed, heading, turning angles)(Patterson et
ce, Taylor’s Power Law provides a measure
al. 2008). A particular combination of values
of the strength of the aggregative response
for these properties can be interpreted as a
of organisms (Jiménez et al. 2001; Östman,
behavioural mode (feeding, travelling bet-
2002). When calculated through time, it can
ween foraging patches, resting, etc.). Under
be used as an index of the temporal variabi-
this assumption, State-Space Models (SSM;
lity of the spatial distribution of organisms,
Jonsen et al. 2003) can be applied to calcu-
highlighting recurrent and occasional pre-
late the probability of an animal being in a
sence areas (Certain et al. 2007). Therefore
particular behavioural mode and later indi-
this method provides a useful framework
vidual decisions can be linked to population
to study the spatio-temporal variability in
distribution and applied to risk assessments
seabird surveys.
(Turchin 1998).
|
23
Research papers
26
|
Research papers resum L’energia eòlica marina és una de les fonts d’energia renovable més prometedores per al futur. No obstant això, l’establiment d’aquestes instal·lacions requereix una avaluació d’impacte detallada, en particular pel que fa a les poblacions d’aus marines. Fins on sabem, l’únic marc de treball disponible a gran escala que permet aquesta avaluació és el plantejament desenvolupat al 2004 per Garthe i Hüppop. Conceptualment es tracta d’un treball molt sòlid, però el tractament matemàtic dels conceptes no es correcte i cal que sigui actualitzat. L’estudi que es presenta en aquest capítol revisa el treball de Garthe i Hüppop destacant els supòsits en els que es fonamenta i els problemes d’interpretació associats als mateixos. Fet això, fem una reestructuració exhaustiva del marc matemàtic fent que sigui correcte tant en el seu aspecte formal (matemàtic) com en la seva interpretació ecològica. D’aquesta forma l’índex, ja de per sí molt últil es torna més adaptable i pràctic. La revisió que es presenta en aquest treball diferencia explícitament el risc de col·lisió i el risc de pertorbació; es basa en els desenvolupaments teòrics més recents d’ecologia de comunitats; i proposa una integració seqüencial dels efectes des d’un nivell d’espècie fins al de comunitat. Mitjançant el cas d’estudi de les aus marines del Golf de Biscaia (França) il·lustrem les limitacions del plantejament anterior i la utilitat de la nostra revisió de l’índex. En general, el marc refinat proporciona informació clara, complementària i sense ambigüitats que ha d’ajudar als gestors de l’àmbit marí en la pressa de decisió sobre les localitzacions òptimes per als parcs eòlics marins i l’avaluació dels possibles impactes que es pot esperar en determinades zones. A més, el mètode a través del qual integrem la vulnerabilitat de les espècies a nivell de la comunitat és de caire general, i podria ser fàcilment adaptat a qualsevol tipus d’impacte i comunitat animal més enllà del cas particular de les aus i l’energia eòlica marina
JOURNAL REFERENCE Paper to be submitted to the Journal of Applied Ecology
A refined methodology to estimate the vulnerability of seabird community to the establishment of offshore wind farms Grégoire Certain1, Isadora Christel2,3, Benjamin Planque 1 and Vincent Bretagnolle 4 1
Institute of Marine Research (IMR). PO box 6404, 9294 Tromsø,
Norway 2
Institute for Research on Biodiversity (IRBio) and Departament de Biologia Animal, Universitat de Barcelona (UB). Diagonal 645, E-08028 Barcelona, Spain.
3
Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas. C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain. 4 Centre national de la recherche scientifique (CNRS). FR–15 79360 Villiers en Bois, France. A bstract 1. Offshore wind energy is amongst the most promising renewable energy sources. However, the proper establishment of wind farms requires thorough impact assessment, in particular with regard to seabird populations. The only available framework for such assessment is the approach developed in 2004 by Garthe & Hüppop. Although conceptually sound, the approach is mathematically incorrect and needs to be updated. 2. This study Garthe & Hüppop’s approach, highlighting the hidden assumptions and interpretation problems associated to it. Our refined framework explicitly disentangles collision and disturbance risk, draws upon recent theoretical development in community ecology and proposes a sequential integration of the impact at the species and community level. To illustrate the pitfalls of the previous approach and the usefulness of our refined framework we use the study case of the seabird populations in the continental shelf of the Bay of Biscay, France. 3. The proposed diagnostic panel disentangles vulnerability in four components that provide managers with the pieces of information they would need to take informed decisions without implicitly masking some components of the impact. 4. Synthesis and applications: Overall, the refined framework provides clear, complementary and unambiguous information to managers about offshore wind farms location and the kind of impact to be expected. Furthermore, the method, which integrates vulnerability from species to community level, is general and has a potential application to any discipline where vulnerability assessments are needed.
1
28
|
Research papers INTRODUCTION
and the vulnerability index is weighted by population abundance.
The development of marine offsho-
In this study, we briefly review the origi-
re wind farms has increased significantly
nal approach (Garthe and Hüppop 2004) and
worldwide in the last decades following the
point towards its weaknesses. Then, we at-
need of decreasing carbon footprint through
tempt to solve the problems by proposing a
the exploitation of renewable energy sour-
new methodological approach that (1) expli-
ces (Punt et al. 2009; EWEA 2012). Ecological
citly distinguishes between risk factor and
effects of locating wind farms offshore can
aggravation factor, (2) allows the separation
be both detrimental and beneficial (Punt et
between collision risk and disturbance risk,
al. 2009; Snyder and Kaiser 2009). Among the
and (3) draws on recent development in
detrimental effects, wind farms are potential
functional diversity (Leinster and Cobbold
treats to marine seabirds in two different as-
2012) to produce and map a community vul-
pects: increased mortalities due to collision
nerability index based on the local relative
risk (Desholm and Kahlert 2005; Chamber-
frequencies of species within the seabird
lain et al. 2006; Fox et al. 2006), and increased
community. Finally, to compare the perfor-
energy expenditure and habitat loss through
mance of the refined approach with the ori-
disturbance (Exo et al. 2003; Garthe and Hüp-
ginal index, we apply the refined methodo-
pop 2004; Drewitt and Langston 2006; Mas-
logy to the Bay of Biscay by using data
den et al. 2010).
collected during an extensive seabird aerial
Spatial planning of wind farms requires
survey in the Bay of Biscay, France (Bretag-
quantitative assessment of these threats.
nolle et al. 2004; Certain et al. 2007; Certain
Garthe & Hüppop (2004) proposed the Wind
and Bretagnolle 2008).
Farm Sensitivity Index (WSI), the first index that mapped seabird community vulne-
METHODS
rability to win farms to inform on marine spatial planning of offshore wind energy.
Reviewing the Wind farm Sensitivity Index
The methodological framework combines two sources of information. The first sour-
The WSI proposed by Garthe & Hüppop
ce is an estimate of the vulnerability of each
(2004) has been successfully implemented
seabird population in a study area, based on
to detect areas where the seabird commu-
behavioural and demographical traits and
nity would be most vulnerable to the es-
conservation status. The second source is
tablishment of a wind farms (Garthe and
the spatial distribution of each population,
Hüppop 2004; Leopold and Dijkman 2010;
based on extensive at-sea surveys. Although
Christensen-dalsgaard et al. 2011). It is based
the method is general, simple, and widely
on a Seabird Sensitivity Index (SSI), designed
applicable, its mathematical formulation
to reflect the vulnerability of each seabird
contains hidden assumptions that might be
species to the establishment of offshore
problematic and lead to incorrect estimates
wind farms, and the at-sea abundances of
of vulnerability as well as biased identifica-
each seabird species (A). Let us consider an
tion of key concern areas. In particular, di-
area discretized in a succession of j = 1…L
fferent risks factors are given equal weight,
locations and populated by a set of i = 1…S
the index combines collision and disturban-
seabird populations. We can write:
ce risk with a multiplicative relationship
CHAPTER 1
(Eq.1)
|
29
These assumptions might be difficult to hold in a number of cases. First, for a given risk type, risk factors might not be independent, nor additive. We can distinguish two categories of risk factors: those that are di-
(Eq. 2)
rectly associated to the risk itself (i.e. time spent flying and flight altitude in the case of
Where the set of fri represent r = 1‌9 risk (Eq. 3) factors for the ith seabird species. These risk
the collision risk) and those that are aggra-
factors can be grouped into three risk types:
vrability and nocturnal activity). This con-
risk related to collision (r = 1, 2, 3, 4), risk (Eq.re4)
ceptual difference is important: aggravation
lated to disturbance (r = 5, 6) and risk related
factors are not important in themselves, but
to the overall sensitivity of species (r = 7, 8,
they can increase a risk that already exists.
9). Table 1 synthesizes the different risk fac-
Following this reasoning, disturbance by
tors, each being measured on a relative scale (Eq. 5) ranging from 1 (minimum risk) to 5 (maxi-
ship and helicopter traffic (f5) can be viewed
mum risk). As it is formulated, the current
ty (f6) only matters if the species is disturbed
estimate of SSI and WSI makes the following
in the first instance. Finally, biogeographical
vation factors of the risk (i.e. flight manoeu-
as the real risk factor, while habitat flexibili-
assumptions:
population size (f7) and European conserva-
A1: All the risk factors associated to a gi(Eq.the 6) ven risk type are equally weighted, and
tion status (f9) both determine the overall
relationship between the risk factors of a gi-
while adult survival rate (f8) correlates to its
ven risk type is additive.
capacity to replenish the population if some
sensitivity of a species to any kind of impact,
A2: Each risk type is equally weighted,
increased mortality is experienced, hence f8
and the relationship between risk types is
can be defined as an aggravation factor. If we
multiplicative.
recognize that risk factors are not equal and
A3: The local importance of a given
they are subject to some hierarchy between
seabird species in the local measure of the
primary risk factors and aggravation factors,
vulnerability of the seabird community is
then the mathematical formulation of SSI
proportional to its local log abundance.
should be adapted to take into account the
Table 1 Risk factors according to which species vulnerability to wind farms is assessed. Detailed definitions for each risk factor can be found in Garthe & HĂźppop (2004).
30
|
Research papers potential caveats from assumption A1.
weight at the species level, and using the
Assumption A2 is conflictive as it sets
log-abundance of seabirds instead of their
that the three risk types (collision risk, dis-
abundance can be criticized. Applying the
turbance risk and overall species sensitivity)
weight at the species level introduces con-
are equally important and, furthermore, it
tradictions within the framework, because
assumes that they interact multiplicatively.
rare species are first up-weighted in the SSI
It is difficult to measure the relative impor-
through the factors f7 and f9, and then down-
tance of collision risk over disturbance risk,
weighted in the WSI because rare species
which justifies considering them as equal by
are usually the less abundant species. Con-
default despite collision mortality is often
versely, the importance of abundant species
considered to be the most important hazard
will be first down-weighted in the SSI, and
(Fox et al. 2006; Desholm 2009; Christel et al.
then up-weighted in the WSI. With the cu-
2012). Having a multiplicative relationship
rrent formulation, there is no control on the
between species overall vulnerability and
magnitude of up-weight / down-weight that
both collision and disturbance risk is also
each species will experience, which hinders
correct because the multiplication ensures
any interpretation of the spatio-temporal
that both risks are weighted by the overall
variations of the WSI. Finally, the use of log
sensitivity of each species. However, having
abundance assumes that the importance of
a multiplicative relationship between colli-
a single seabird in a location decreases ex-
sion and disturbance is arguable. Both risks
ponentially as the total number of seabird in
do not really depend on each other but are,
that location increases. A single individual
in fact, two independent aspects of the im-
in the middle of nowhere will have more
pact of offshore wind farms on seabirds.
weight, in proportion, than an individual
They have different ecological consequen-
located in a flock of one hundred seabirds.
ces (Drewitt and Langston 2006; Fox et al.
This assumption has neither ecological nor
2006) and might lead to very different ma-
management support.
nagement measures. By using a multiplica-
To take into account the potential ca-
tive relationship, if collision risk is high and
veats associated to assumptions A1, A2 and
disturbance risk is low, the resulting risk will
A3, we propose the refinement of the WSI
be much more lowered than it would with
framework in the following sections.
a simple additive relationship. Despite an additive relationship could be a solution,
Definitions
we question its usefulness. So far, there are no quantitative studies on the relative im-
Before presenting the mathematical re-
portance of the two risks, thus, we recom-
finement, it is useful to provide some clear
mend a sound option: the independent exa-
definitions and point toward the level of or-
mination of each collision and disturbance
ganisation at which they apply. Measures of
risk maps for decision-making until we can
risk and vulnerability will successively cross
measure their relative importance.
three levels of organisation: individuals, spe-
Assumption A3 gives more weight to
cies, and community. In this work, the word
species locally abundant. The intuitive no-
species is fairly equivalent to the word po-
tion behind this assumption is to prevent
pulation because most impact assessment
the installation of wind farms in areas whe-
are concerned with a delimited area and fo-
re seabirds aggregate. However, applying the
cus on the population of species within that
CHAPTER 1 area, not on the whole biogeographical distribution of the species.
Refining the Wind Farm Sensitivity Index
We will refer to a risk as a measure of the probability that an individual of a given
Combining factors with a power function
species suffers a given impact. For example, individual of a given species collides with a
Let us denote r the relative estimate of (Eq.1) a given risk, and let us assume that r is the
wind farm. We will use the term sensitivity to
combination of two factor: a primary risk
refer to the overall sensitivity of a given spe-
factor, a, and an aggravation factor, g. We
cies to any impact. We will use vulnerability
propose to link r to a and g through the fo(Eq. 2) llowing relationship:
collision risk refers to the probability that an
when the individual risk of suffering a given impact is integrated at a higher organisation level, distinguishing two levels: species vul-
(Eq. 3)
nerability and community vulnerability. Individual risks and population sensitivity will be estimated as a function of factors,
(Eq.g=0, 4) Under this formulation, r=a when
i.e. quantitative or semi-quantitative ele-
and then progressively increases as g in-
ments selected to measure a particular risk
creases. The parameter c is a measure of the
or the overall population sensitivity. We will
influence of g over r: the smaller the c, the
make the distinction between primary factors, i.e. factors directly controlling a risk or
more influence g will have on r (Fig.1). We (Eq. 5) suggest to use c=0.5 as a default and stron-
sensitivity, and aggravation factors, i.e. factors
gly recommend avoiding too small c values
that contribute to increase an already exis-
(i.e. <0.1, Fig.1). Under this formulation, r re-
ting risk or sensitivity.
mains bounded between 0 and 1.
All factors, risks, sensitivity and vulnerability measures will be expressed as relative probabilities, ranging between 0 and 1. A va-
6) Collision risk (ci ), disturbance risk (di ) and(Eq. species sensitivity (si )
lue of 0 indicates no risk, sensitivity or vulnerability, and a value of 1 is interpreted as
Let us denote the collision risk for the ith
maximum risk, sensitivity or vulnerability.
species ci , the disturbance risk di, and the
As these elements are all expressed on the
species sensitivity si. To obtain an estimate
same scale, they can be conveniently combi-
for each one, we rely on the set of estima-
ned through either averaging or multiplica-
ted risk factors for each species ff=(1...9)i, . The-
tion. We will use averaging when the values
se factors are produced following Garthe &
to be combined do not interact. We will use
H端ppop (2004) work and therefore their va-
multiplication when the values to be combi-
lues range from 1 to 5. As Eq.3 requires fac-
ned interact.
tors comprised between 0 and 1 they need to be rescaled (i.e. divided by 5) Collision risk results of the combination of the 4 first factors f1i to f4i (Table 1). Percentage of time spent flying (f1i) and percentage of time spent at the wind farm altitude when flying (f2i) can be seen as primary risk factors. Flight manoeuvrability (f3i) and noc-
|
31
32
|
Research papers
Fig.1 Theoretical effect of an aggravation factor (g) on a risk estimate (r) for different values of parameter c. Parameter c modulates the influence of the aggravation factor on the primary risk factor (a). In these figures, r = a when g = 0. (a,b) If c is low, then r is strongly dependent on the aggravation factor, whatever value takes a at the starting point of the curve. (c,d) If c is high, g has a lower effect on r.
turnal activity (f4i), on the other hand, can be seen as aggravation factor. ci is therefore obtained by applying Eq.3 with ai=f1i f2i and
and gi=f8i
Species vulnerability (vi )
gi=(f3i + f4i )/2. We use a multiplicative relationship between f1i and f2i because we as-
Once ci, di and si have been defined, they
sume they interact and we use an additive
can be combined to get an estimate of the
relationship between f3i and f4i because we
overall species vulnerability vi to wind farm.
assume they do not interact.
What we propose is to calculate the spe-
The disturbance risk di is the combination of a primary risk factor, the intensity of
cies vulnerability to a particular risk as the (Eq.1) product of the individual risk and species
the behavioural response to anthropic acti-
sensitivity. Then, calculate the overall spe-
vity (f5i), and an aggravation factor, the flexi-
cies vulnerability as a weighted mean of the
bility of habitat use (f6i). Therefore, di is ob-
risk-specific species vulnerabilities. In the (Eq. 2) context of seabird-wind farms interactions,
tained by applying Eq.3 with ai=f5i and gi=f6i. The species sensitivity si results from the combination of the 3 last factors f7i to f9i. The
this leads to the following expression: (Eq. 3)
biogeographical population size (f7i) and the species conservation status (f9i) can be seen as non-interacting primary risk factors. The
(Eq. 4)
natural survival rate of the species (f8i) can be seen as an aggravation factor. Therefore, si is obtained by applying Eq.3 with ai=f7i+f9i (Eq. 5)
CHAPTER 1 αc and αd are risk-specific weights contro-
weight to the most vulnerable species. Both
lling the influence of each risk. Setting αc = αd = 0.5 would mean that collision and dis-
the formulations of Hill (1973) and of Leins(Eq.1) ter & Cobbold (2012) contain a parameter, q,
turbance vulnerability are equally weighted.
which controls the sensitivity of the diver-
In our framework, vi is the direct equivalent
sity metric to the weighting parameter, i.e.
to the SSIi (Eq. 2).
in the case of Leinster & Cobbold (2012). The 2) greater is q, the higher is the weight of(Eq. simi-
Community vulnerability (Vj )
(Eq.1)
lar species over dissimilar ones. By adapting the diversity formulation to the vulnerability (Eq. 3)
The final step is to integrate the vulne-
context, the quantity (1-vi ) will be close to
rability of several species into a measure of
zero when the species are highly vulnera(Eq. 4) ble. As we precisely wish to give maximum
the vulnerability of a whole community, as (Eq. 2) it was originally attempted through the WSIj (Eq.1).
weight to the most vulnerable species, we set q=0. After replacing these parameters in
3) To do so, we build upon the recent (Eq. deve-
the original formulation and setting a spatial
lopment of Leinster & Cobbold (2012) that
context where community data are available (Eq. 5)
modifies the classical estimate of Hill’s di(Eq. 4) versity (Hill 1973) to take into account species similarity:
over j = 1…L locations, the overall community vulnerability to wind farms is written as follows:
(Eq. 6)
(Eq. 5)
Where pi is the relative frequency of the
Vj provides an estimate of the overall
ith species, and is a measure of the simila-
vulnerability of a community to offshore
rity between an individual of the ith species (Eq. 6) and an individual taken at random in the
wind farms in effective species number. It
community. is expressed between 0 (com-
lly abundant and fully vulnerable species
pletely dissimilar) and 1 (identical) and it is
that composes the community in a particu-
usually measured through a set of traits for
lar location. This formula can also be used
each species, as in classical functional di-
to measure the community vulnerability
can be interpreted as the number of equa-
versity studies (Leinster and Cobbold 2012).
to a given risk. Substituting vi for ci gives a
This index produces a diversity measure in
measure of the community vulnerability to
effective species number, i.e. the number of
collision, and substituting vi for di gives a
equally abundant species required to obtain
measure of the community vulnerability to
the same diversity measure. This is a re-
disturbance. This way, the overall communi-
commended practice as it greatly eases the
ty vulnerability map can be partitioned into
interpretation of the index (Tuomisto 2010;
each risk component.
Leinster and Cobbold 2012). The introduction of the term gives more weight to the
Seabird abundance at each location (Aj)
highly dissimilar species. In our framework, replacing by (1-vi ) will
In the original framework, the SSIi was
produce a diversity measure that gives more
multiplied by log(Aij) where Aij stands for
|
33
34
|
Research papers the abundance of each seabird species at
scheme was systematic with perpendicu-
each location, and summed over the spe-
lar transects separated by ca. 20km of each
cies (Eq.1). This unfortunately leads to mi-
other. Seabird observations were collected
sinterpretations the information concer-
continuously along the transect, including
ning abundance and species composition
species identification and number of indivi-
are mixed together. On the contrary, Vj fully
duals. The sampling design covered homo-
account for species composition and leaves
geneously the entire study area (ca. 100 000
abundance aside. The total seabird abun-
km2). For data processing, the transects were
dance at each location A.j is therefore a na-
sliced into segments of 20km, and the relati-
tural complement to Vj. It can be computed
ve abundance of each species, i.e. number of
from survey data and should be systemati-
counted individuals, was reported. To ease
cally presented together with Vj.
the comparison with previous studies, we use the whole ROMER dataset and the PEL-
Case study: Seabird populations in the Bay of Biscay.
GAS dataset from 2003 to 2008. Based on ROMER and PELGAS records, we first established the list of the 30 seabird
We applied both the original and refined
species identified in the surveys of the
framework to seabird populations on the
Bay of Biscay (Table S1). We also defined 7
French continental shelf of the Bay of Biscay,
groups for unidentified observations, assu-
which has been extensively sampled though
ming a species composition based on the
a series of aerial (‘ROMER’) and ship-based
species proportions of identified sightings
(‘PELGAS’) surveys (Bretagnolle et al. 2004;
(Table S1). For each species, the risk factors
Certain and Bretagnolle 2008; Certain et al.
ff=(1...9)i identified by Garthe & Hüppop (2004)
2011). These surveys resulted in a series of
were documented (Table S1). If possible, we
studies focusing on the spatial structure,
used the original values of Garthe & Hüppop
variability, and prey-predator relationships
(2004), otherwise we scored the species ac-
(Certain et al. 2007, 2011; Bellier et al. 2010,
cording to discussion carried out during
2012; Chadœuf et al. 2011). Details on both
expert meetings. For groups of unidentified
survey methodologies can be found in Cer-
seabirds, we used average values, weighted
tain et al. (2007), Certain and Bretagnolle
by species proportions in each group (Ta-
(2008) and Certain et al. (2011).
ble S1). Based on the risk factors, ci, di and
During ROMER surveys, strip-transect
si were computed for the 30 species and the
aerial surveys covered repeatedly the Bay of
7 groups. Then, overall species vulnerability
Biscay in winter, from October 2001-to March
vi was computed, as well as the original SSIi.
2002, offering a first exhaustive snapshot of
To reveal how vi differs from SSIi, we looked
the extent and abundance of the wintering
at the difference between the species rank
population of seabirds in the Bay of Biscay.
according to SSIi and the species rank ac-
From 2003 onward, observers recorded top
cording to vi. We computed correlations bet-
predator data on board of the RV-THALASSA
ween differences in rank and ci, di and si to
during the PELGAS cruises that are carried
search which risk was responsible for the
out each spring in the Bay of Biscay. In the
observed differences.
aerial and the boat surveys, the sampling
CHAPTER 1
|
35
the four maps, geostatistical interpolation
Diagnostic panels for the Bay of Biscay
(Cressie 1993; Pebesma and Wesseling 1998) and kriging were carried out to ease the re-
The refined framework we have develo-
presentation and interpretation of the spa-
ped is not supposed to produce one single
tial patterns. We interpret these maps in the
map, but rather to produce a few interpre-
context of wind farm impact assessment,
table maps, each capturing one key element
and point to the location on the continental
to be considered to assess the impact of
shelf where the impact on seabird popula-
offshore wind farms on seabird populations.
tions would be minimised.
We propose to use a diagnostic panel composed of 4 maps, each related to a specific component of the potential impact of offs-
Comparing the refined diagnostic maps with the previous WSI
hore wind farms. The two first maps present the two distinct and fundamental elements
To illustrate the differences between the
of the impact assessment: the overall vulne-
original and refined approach, we also com-
rability of seabird community (Vj ) and the
puted the original WSIj maps, together with
total seabird abundance map (A.j). Then, to
simple summed log abundance maps (i.e.
further inform management, we show the
removing SSIi in Eq.1). Showing both maps
two risk-specific components of Vj , namely,
illustrates how taking into account the com-
the vulnerability to collision and the vul-
munity vulnerability in effective species
nerability to disturbance. These two maps
number differs from the final vulnerability
highlight how both risks contribute to the
map in the original framework.
overall community vulnerability. To present
Fig.2 Comparison between the original Species Sensitivity Index (SSI) and the proposed overall Species Vulnerability Index (vi )
36
|
Research papers RESULTS Some species were more affected than
Comparison between SSIi and vi
others by the change of indices. For example, Skuas are considered more vulnerable
Fig.3 ROMER-based diagnostic panel. The grey rectangle points to the area that has lower impact in both ROMER and PELGAS diagnostic panels
For the sake of comparison, both SSIi and
with vi than with SSIi, with a difference in
vi were scaled between 0 and 1. When plot-
rank between -2 and -10, depending on the
ting these scaled values against each other,
species. On the contrary, auks are conside-
it is clear that the two indexes generally
red less vulnerable with vi, with a difference
agree on the classification of species (Fig.2a),
in rank between 2 and 9 (Table S1, last co-
even though nearly all species are located
lumn). The correlation between the diffe-
above the 1:1 line, suggesting that on avera-
rences in the ranking of species according to
ge, a seabird species is considered more vul-
both metrics and the components of vi was
nerable by the vi than by the SSIi. This is evi-
positive with collision risk ci (0.45, p=0.005,
dent in Fig.2b, where we see that the scaled
df=35), negative with disturbance risk di
distribution of the two indices differs, with
(-0.42, p=0.009), and not significant with spe-
the distribution of scaled vi being closer to 1.
cies sensitivity si (p=0.38).
CHAPTER 1
|
37
the coast than disturbance-vulnerable com-
Diagnostic Maps for Seabirds in the Bay of Biscay
munities. The inspection of PELGAS-based panel
Figure 3 and 4 present diagnostic pa-
offers a slightly different picture. The loca-
nels for seabirds in the Bay of Biscay based
tion of high and low vulnerability areas are
on aerial (ROMER) and boat surveys (PEL-
roughly the same (Fig.3a and Fig.4a), except
GAS), respectively. The ROMER-based panel
for a localised patch of high vulnerability in
highlights two main areas where the seabird
the North East, around Belle-Ile en Mer that
community is the most vulnerable, the nor-
was not visible from the ROMER-based pa-
thwest area and the south-eastern area
nel. The abundance map differs more clearly
(Fig.3a). In addition, the wintering popula-
(Fig.4b), with high abundances restricted to
tion of birds is widely spread in the Bay of
the Northernmost and coastal areas. Finally,
Biscay, leaving only few areas where seabird
vulnerability to collision (Fig.4c) and distur-
abundance is low (Fig.3b). Furthermore, the
bance (Fig.4d) present a rather similar pat-
ROMER panel clearly shows that vulnerabi-
tern, even though vulnerability to collision
lity to collision and disturbance differs in
is much more spread than vulnerability to
space, highlighting that collision-vulnerable
disturbance.
communities are distributed further from
Fig.4 PELGAS-based diagnostic panel. The grey rectangle points to the area that has lower impact in both ROMER and PELGAS diagnostic panels
38
|
Research papers
Fig.5 (a,b) Original Wind Farm Sensitivity Index maps calculated according to Garthe & H端ppop (2004) (c,d) total seabird log abundance maps.
The examination of ROMER and PELGAS
Comparing Diagnostic panels with WSIj maps
diagnostic maps reveal some differences between the wintering and spring situa-
Figure 5 (a, b) displays WSI maps as pro-
tions, however, in each case, the central part
posed by the original framework. They glo-
of the Bay of Biscay, identified in Figure 3
bally provide consistent information with
and 4 as a grey rectangle, is characterised by
the refined framework, but with more simi-
low abundances, and low to moderate vul-
larities to the disturbance risk maps than
nerability. As a synthetic result of this im-
the collision ones. Furthermore, the spatial
pact assessment, we suggest this area as an
patterns displayed by the WSIj (Fig.5a, b) are
informed choice for the location of offshore
extremely similar to the one displayed by
wind farms, as it seems to minimize the im-
the simple sum of log abundances (Fig.5c,
pact in both ROMER and PELGAS scenarios.
d), indicating that SSIi has in fact a negligible effect on the impact assessment according to the original framework.
CHAPTER 1 DISCUSSION
assessment method. Indeed, the method can be easily modified if, for example, addi-
Usefulness of the refined framework
tional studies appear concerning the way risk factors interact, or the relative impor-
The approach originally developed by
tance of collision over disturbance.
Garthe & H端ppop (2004) to assess the poten-
A relevant characteristic of our approach
tial impact of offshore wind farms on seabird
is that we do not attempt to synthesize the
populations has several interesting aspects.
information into one single map. Rather, we
The clear identification of species-specific
try to disentangle the different components
risk factors and the method for scaling them
of the information to present it in an inte-
is undoubtedly useful to synthesize quanti-
grated way to the managers. This is a key
tative and qualitative ecological information
aspect of communication between scien-
for impact assessment. It allows identifying
tists and managers. While scientists usually
which species are subject to which risks, it
try to identify all the aspects of a problem,
is a catalyst for expert meeting groups and
managers seek simple answers and synthe-
it is a major methodological tool to reach a
tic visualizations. This is one of the reasons
consensus between scientists and mana-
for the proliferation of indicator-based ap-
gers. However, the way this information is
proaches (Niemi and McDonald 2004; Piatt et
integrated later on and combined with sur-
al. 2007; Einoder 2009). Our case study illus-
vey data is not optimal. Relevant informa-
trates well that indeed, complex informa-
tion is lost in this integration, for example
tion related to the spatial distribution of 30
collision risk, and the original mathematical
seabird species can be synthesized in a few
formulation would, in fact, result in taking a
set of maps. However, information reduc-
decision based only on summed log-abun-
tion has to be carefully designed and firmly
dance patterns instead of accounting for the
theoretically grounded. Reducing complex
additional information provided by the tho-
problems to a single scale or a big formula
rough documentation of all the risk factors
may result in an intractable mixing of in-
and the computation of the SSIi. The refined
formation that either becomes difficult to
framework solves these issues by explicitly
interpret or strongly underestimates crucial
defining primary risk factor and aggravation
aspects of a problem.
factors, by treating each risk separately, by integrating them sequentially first at spe-
Wind farm impact assessment in the Bay of Biscay
cies level and then at population level, and finally, by explicitly differentiating community composition from abundance.
Our study clearly identifies areas of high and low expected impact on seabirds for the
With the proposed diagnostic panel, we
establishment of offshore wind farms, and it
provide managers with all the pieces of in-
provides as well a qualitative assessment of
formation they would need to take informed
the kind of impact to be expected. However,
decision without implicitly masking some
the reader should be aware that the quality
components of the impact. Because the fra-
of such an evaluation depends on the quali-
mework is clearly mathematically defined
ty of the data. We have no doubt that ROMER
and all the assumptions are stated and writ-
and PELGAS surveys provided state-of-the-
ten, we provide scientist with a transparent
art data on seabird populations. However,
and tractable method to improve the impact
these surveys have spatio-temporal limi-
|
39
40
|
Research papers tations that need to be clearly stated. First,
plicit link between an identified impact and
both surveys focused on the continental
a biodiversity-related metric at community
shelf and therefore, they do not document
level we aim to contribute not only to the
with detail the coastal community, which is
field of offshore wind energy assessment
the reason why we do not map abundance
but also to numerous disciplines where vul-
or vulnerabilities near the coast. Second, the
nerability assessments are needed.
timing of the surveys also limits the interpretation of our results. The ROMER surveys
REFERENCES
focused on the wintering period, which is the period during which the seabird com-
Bellier E, Certain G, Planque B, Monestiez B, Bre-
munity reaches the largest numbers in the
tagnolle V (2010) Modelling habitat selection
Bay of Biscay (Certain et al. 2007). PELGAS
at multiple scales with multivariate geosta-
surveys offer the spring perspective, when
tistics: an application to seabirds in open sea.
some of the main seabird taxa present in
Oikos 119:988–999
winter have left the area for breeding (e.g.
Bellier E, Monestiez P, Certain G, Chadoeuf J, Bre-
auks). Therefore, we stress that the maps
tagnolle V (2012) Decomposing the heteroge-
presented in this study can only serve for
neity of species distributions into multiple
risk assessment during these time periods,
scales: a hierarchical framework for large-sca-
but further surveys should be carried out and analysed to provide a better picture of the impact for the whole year.
le count surveys. Ecography 35:839–854 Bretagnolle V, Certain G, Houte S, Métais M (2004) Distribution maps and minimum abundance estimates for wintering auks in the Bay of Bis-
Potential for generality
cay , based on aerial surveys. Aquatic Living Resources 17:353–360
The refined approach proposed in this
Certain G, Bellier E, Planque B, Bretagnolle V (2007)
paper has potential applications in a wide
Characterising the temporal variability of the
range of disciplines beyond offshore wind
spatial distribution of animals: an application
energy impact assessment. The adaptation
to seabirds at sea. Ecography 30:695–708
of the work of Leinster & Cobbold (2012) that
Certain G, Bretagnolle V (2008) Monitoring seabirds
we introduce (Eq.6) can in fact be applied
population in marine ecosystem: The use of
to estimate the vulnerability of any kind of
strip-transect aerial surveys. Remote Sensing
community to any kind of impact. If a spe-
of Environment 112:3314–3322
cies-specific vulnerability parameter (such
Certain G, Skarpaas O, Bjerke J, Framstad E, Lind-
as vi) is available and community distribu-
holm M, Nilsen J-E, Norderhaug A, Oug E, Pe-
tion and abundance data has been collec-
dersen H-C, Schartau A-K, van der Meeren G.,
ted, the application of Eq.6 is then straight-
Aslaksen I, Engen S, Garnasjordet P-A, Kvaloy
forward.
P, Lillegard M, Yoccoz N, Nybo S (2011) The Na-
Garthe & Hüppop’s method has already
ture Index: A general framework for synthe-
been adapted to evaluate other types of ha-
sizing knowledge on the state of biodiversity.
zards in different taxa (e.g. Noguera et al.,
PloS one 6:e18930
2010; Stelzenmüller et al., 2010; Sonntag et
Chadœuf J, Certain G, Bellier E, Bar-Hen a., Cou-
al., 2012), particularly the species-specific
teron P, Monestiez P, Bretagnolle V (2011) Es-
vulnerability calculation. By improving the
timating inter-group interaction radius for
method formulation and including the ex-
point processes with nested spatial structu-
CHAPTER 1 res. Computational Statistics & Data Analysis
the effects of European marine offshore wind
55:627–640
farms on birds. Ibis 148:129–144
Chamberlain D, Rehfisch M, Fox AD, Desholm M,
Garthe S, Hüppop O (2004) Scaling possible adver-
Anthony S (2006) The effect of avoidance rates
se effects of marine wind farms on seabirds:
on bird mortality predictions made by wind
developing and applying a vulnerabiblity in-
turbine collision risk models. Ibis 148:198–202
dex. Journal of Applied Ecology 41:724–734
Christel I, Certain G, Cama A, Vieites DR, Ferrer
Hill MO (1973) Diversity and Evenness : A Unifying
X (2012) Seabird aggregative response: a new
Notation and Its Consequences. 54:427–432
tool for offshore wind energy risk assessment.
Leinster T, Cobbold C (2012) Measuring diversity:
Marine Pollution Bulletin. DOI: 10.1016/j.mar-
the importance of species similarity. Ecology
polbul.2012.11.005 (In press)
93:477–489
Christensen-dalsgaard S, Lorentsen S, Hanssen
Leopold MFL, Dijkman EM (2010) Offshore wind
F, Systad GH (2011) Marine wind farms and
farms and seabirds in the Dutch Sector of
seabirds. Updated screening of potential con-
the North Sea: What are the best and the
flict areas on a national scale. NINA Report
worst locations for future develpment? Ins-
616. <http://mhk.pnnl.gov/wiki/images/8/83/
titute for Marine Resources & Ecosystem
Visual_and_Radar_Observations_of_Birds.
Studies.<http://www.we-at-sea.org/leden/
pdf> (accessed 24.10.12)
docs/reports/RL2-2%202007-003%20Effect%20
Cressie N (1993) Statistics for spatial data. J. Wiley, USA Desholm M (2009) Avian sensitivity to mortali-
of%20offshore%20wind%20farms%20on%20 seabirds%20in%20the%20Dutch%20Nord%20 Sea.pdf> (accessed 24.10.12)
ty: prioritising migratory bird species for as-
Masden E a, Haydon DT, Fox AD, Furness RW
sessment at proposed wind farms. Journal of
(2010) Barriers to movement: Modelling ener-
Environmental Management 90:2672–9
getic costs of avoiding marine wind farms
Desholm M, Kahlert J (2005) Avian collision risk at an offshore wind farm. Biology Letters 1:296– 298 Drewitt A, Langston RW (2006) Assessing the impacts of wind farms on birds. Ibis 148:29–42
amongst breeding seabirds. Marine Pollution Bulletin 60:1085–91 Niemi G, McDonald ME (2004) Application of Ecological Indicators. Annual Review of Ecology, Evolution, and Systematics 35:89–111
Einoder L (2009) A review of the use of seabirds as
Noguera JC, Pérez I, Mínguez E (2010) Impact of te-
indicators in fisheries and ecosystem mana-
rrestrial wind farms on diurnal raptors: deve-
gement. Fisheries Research 95:6–13
loping a spatial vulnerability index and poten-
EWEA (2012) The European offshore wind indus-
tial vulnerability maps. Ardeola 57:41–53
try key 2011 trends and statistics. European
Pebesma E, Wesseling CG (1998) Gstat: A program
Wind Energy Association. <http://www.ewea.
for geostatistical modelling, prediction and si-
org/fileadmin/ewea_documents/images/gra-
mulation. Computers & Geosciences 24:17–31
phs_maps_tables/EuOffwind2011.pdf> (accessed 24.10.12) Exo KM, Hüppop O, Garthe S (2003) Birds and offshore wind farms: a hot topic in marine ecology. Wader Study Group Bulletin 100:50–53
Piatt JF, Harding A, Shultz M, Speckman S, van Pelt T, Drew GS, Kettle A (2007) Seabirds as indicators of marine food supplies: Cairns revisited. Marine Ecology Progress Series 352:221–234 Punt MJ, Groeneveld R a., van Ierland EC, Stel
Fox AD, Desholm M, Kahlert J, Christensen TK,
JH (2009) Spatial planning of offshore wind
Petersen IK (2006) Information needs to sup-
farms: A windfall to marine environmental
port environmental impact assessment of
protection? Ecological Economics 69:93–103
|
41
42
|
Research papers Snyder B, Kaiser MJ (2009) Ecological and econo-
Stelzenmüller V, Ellis JR, Rogers SI (2010) Towards
mic cost-benefit analysis of offshore wind
a spatially explicit risk assessment for marine
energy. Renewable Energy 34:1567–1578
management: Assessing the vulnerability of
Sonntag N, Schwemmer H, Fock HO, Bellebaum J, Garthe S (2012) Seabirds, set-nets, and conser-
fish to aggregate extraction. Biological Conservation 143:230–238
vation management: assessment of conflict
Tuomisto H (2010) A diversity of beta diversities:
potential and vulnerability of birds to bycatch
straightening up a concept gone awry. Part 1.
in gillnets. ICES Journal of Marine Science
Defining beta diversity as a function of alpha
69:578–589
and gamma diversity. Ecography 33:2–22
CHAPTER 1
|
43
Table S1 Supplementary data with the list of the 30 detected seabird species and their proportion (Prop), the score of the nine vulnerability factors (f1...9), the Species Sensitivity Index (SSI) Collision risk (ci), disturbance risk (di), species sensitivity (si), Species vulnerability (vi) and species rank differences between SSI and vi (â&#x2C6;&#x2020;). See the text for details.
44
|
Research papers
resum L’Índex de Sensibilitat als parcs eòlics (WSI) de les aus marines és una eina feta en el context dels sectors alemanys del mar Bàltic i del Nord. Va ser creat amb la finalitat de proporcionar una eina de decisió a escales grans per a l’avaluació ambiental estratègica de l’energia eòlica marina. A continuació, es mostra com es pot millorar l’índex d’una Avaluació Ambiental Estratègica (AAE) per al desenvolupament d’energia eòlica marina en un context de gran escala. El WSI integra la informació basada en les densitats d’aus marines a la zona d’estudi amb un Índex de Sensibilitat Espècies (SSI) als parcs eòlics. Aquest índex es calcula tenint en compte nou factors, que es deriven dels atributs de les espècies que semblen definir la sensibilitat de l’ocell amb els parcs eòlics. Es van dur a terme censos des de barca. Després de calcular el SSI per a cada espècie que es troba en l’àrea d’estudi, s’aplica l’índex als mapes de densitats locals obtinguts mitjançant els censos des de vaixell. Per prendre una decisió interessa treballar amb el mínim nombre de mapes que sintetitzin completament la realitat ecològica d’un àrea. Aquest index disposa d’aquesta característica integradora i el fa especialment interessant en l’avaluació ambiental estratègica d’un àrea determinada. Atès que hi ha una manca d’informació per conèixer l’abast de l’impacte real dels parcs eòlics en alta mar, es recomana aquest índex com un mètode molt útil en la majoria d’estudis d’avaluació ambiental estratègica mentre no es desenvolupi una eina millor per aquest tipus d’avaluació.
JOURNAL REFERENCE Paper to be submitted to Ecological Applications
Wind farm Sensitivity Index for seabirds Assessing offshore wind energy development on the coasts of the Iberian Peninsula Isadora Christel1,2, Albert Cama3, Grégoire Certain4, J. M. Arcos3, J. Bécares3, B. Rodriguez3, I. Ramirez5, A. Meirinho5, J. Andrade5, David R. Vieites2,6 and Xavier Ferrer1 Institute for Research on Biodiversity (IRBio) and Departament de Biologia Animal, Universitat de Barcelona (UB). Diagonal 645, E-08028 Barcelona, Spain. 2 Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas. C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain. 3 SEO/BirdLife, Delegació de Catalunya, C/Murcia 2-8, Local 13, 08026 Barcelona, Spain. 4 Institute of Marine Research (IMR). PO box 6404, 9294 Tromsø, Norway 5 Sociedade Portuguesa para o Estudo das Aves. Avenida João Crisóstomo N18 4D | 1000-179 Lisboa – Portugal. 6 REFER Biodiversity Chair, University of Porto, CIBIO, Campus Agrário de Vairão, R. Padre Armando Quintas, 4485-661 Vairão, Portugal. 1
A bstract The Windfarm Sensitivity Index (WSI) for seabirds is a tool made in the context of the German sectors at the Baltic and North Seas. It was created in order to provide a tool of decision for a broad-scale Strategic Environmental Assessment for offshore wind energy. Here, it is showed how this Index can improve an Strategic Environmental Assessment (SEA) for offshore wind energy development in a large scale context. The WSI integrates the information based on the seabirds densities in the study area with a Species Sensitivity Index (SSI) to windfarms. Such Index was calculated taking into account nine factors, which derive from the species attributes that seem to define the bird sensitivity to windfarms. Boat surveys were carried out. After calculating the SSI for each species found in our surveys, we applied it to the maps of local densities obtained by means of boat surveys. When making a decision, the fewer number of fully explicative maps are always desirable. This integrative characteristic of the index makes it especially interesting in the environmental assessment of a proposed offshore windfarm. Since there is a lack of information to know the extent of the real impact of offshore windfarms, we recommend this index as a very useful method in most SEA until the moment we will have a better tool for assessment.
2
46
|
Research papers INTRODUCTION
Thus, seabirds seem a suitable indicator of the marine environment, and have become
Renewable energies are viewed as an en-
one of the keystones of the decision-making
vironmental benign alternative to the energy
process for the selection of optimal areas for
production based on fossil fuels (Inger et al.
national offshore wind development.
2009). The potential of the marine environ-
The Wind Farm Sensitivity Index (WSI)
ment, and particularly the offshore wind en-
was the first index that used seabirds to as-
ergy development, has received high atten-
sess at large scale the suitability or unsuit-
tion in the last years. Europe has become the
ability of a sea region for the construction of
world leader in offshore wind power with
offshore wind farms. The index, developed
a total of 1,371 offshore turbines totalling
by Garthe and H端ppop (2004), takes into
3,812.6 MW spread across 53 wind farms in
account two crucial points in the evalua-
10 countries by the end of 2011 (EWEA 2012).
tion of future impacts. First, it takes into
At a global scale, the shift to renewable ener-
account seabirds abundances and areas of
gies is widely accepted as a step to mitigate
high density which is the information com-
the effects of anthropogenically induced cli-
monly used to inform SEAs and EIAs on off-
mate change (King 2004; Rosenzweig et al.
shore wind energy. Second, the abundance
2008). At the local scale, however, the envi-
of seabirds is corrected by a specific value
ronmental impacts of wind energy develop-
(SSI, Species Sensitivity Index) that quanti-
ment must be carefully considered. Indeed,
fies the sensitivity of each seabird species to
the European legislation requires Strategic
the presence of an offshore wind farm or its
Environmental Assessments (SEAs) of na-
construction. This way the presence of few
tional wind energy plans impacts on wildlife
individuals of flagship species can be ac-
(Directive 2001/42/EC).
counted as well as the massive presence of
Among the different topics that SEAs must address, wind farms and birds interac-
common species, with no conservation concern but relevant because their numbers.
tions are an issue of great concern (Garthe
Despite the WSI relevance as a practical
and H端ppop 2004; Fox et al. 2006). Seabirds
assessment tool, the peer-reviewed papers
are susceptible to multiple anthropogenic
that have actually used it are adaptations
impacts in their migratory routes and forag-
of the index to evaluate other types of haz-
ing grounds (Anderson et al. 2003; H端ppop
ards (e.g. Noguera et al., 2010; Stelzenm端ller
et al. 2006; Louzao et al. 2006). In the case of
et al., 2010; Sonntag et al., 2012) and so far
offshore wind farms these potential impacts
there is no paper showing its application in
are direct mortality through collision, bar-
a different geographic area and only some
rier effects and foraging habitat loss (Fox et
reports (e.g. Leopold and Dijkman, 2010;
al. 2006).
Christensen-dalsgaard et al., 2011). A recent
Beyond conservation concerns, seabirds
revision on the mathematical formulation
have also become useful indicators to evalu-
of the WSI has presented a new calculation
ate the potential effects of human activi-
of the Index (Certain et al. en prep.) In this
ties in marine ecosystems (Piatt et al. 2007).
paper, we present the refined Wind farm
Compared to other marine species, seabirds
Vulnerability Index applied to the coasts of
are highly visible species with specific legal
the Iberian Peninsula, a study area that su-
protection frameworks and comprehensive
rrounds more than 7000 km and covers the
long-term studies of their distribution at sea.
continental coasts of Portugal and Spain.
CHAPTER 2 The Iberian Peninsula hosts the high-
order to make the Index more general and
est diversity of seabirds in Europe, mainly
applicable to other biogegraphic areas in Eu-
because its waters cover different biogeo-
rope and other continents; (ii) provide new
graphical regions. Among these species
Species vulnerability values to expand and
some have their breeding stronghold in the
improve the original SSI table by including
Iberian Peninsula (e.g. the Balearic Shear-
the diversity of Atlantic and Mediterranean
water Puffinus mauretanicus and Audouinâ&#x20AC;&#x2122;s
species detected in the area and (iii) make
Gull Larus audouinii) and are flag species be-
recommendations for the future develop-
cause their conservations status. Many of
ment of offshore wind energy in the Iberian
the species are listed in the Annex I of the
coasts with full awareness of ecological im-
European Community Birds Directive and
pacts.
|
47
are main targets of conservation projects (Ramirez et al. 2008; Arcos et al. 2009). So far,
METHOD
in the whole Iberian Peninsula there is only one experimental floating turbine installed
Study area & vessel-based data
in Portugal in June 2012. Therefore this is an opportunity to inform policy-makers and
At-sea seabird surveys were conducted
practitioners on how to design the optimal
in different vessel expeditions coordinated
zonation to allow a rational offshore wind
by the Spanish Ornithological Society (SEO/
energy development respectful with the
Birdlife) and the Portuguese Society for the
marine ecosystem.
Study of Birds (SPEA). The surveys were ca-
The main aims of this paper are to: (i) ap-
rried out from 1999 to 2011 covering the Spa-
ply the index refinement developed by Cer-
nish and Portuguese continental coasts (up
tain et al. (in prep.) and suggest some changes
to 100 nautical miles offshore) (Fig 1a). The
in the factors used to calculate the SSI in
total surveyed area covered more than 25000
Fig. 1 a) Situation Map. b) Study regions marked by solid lines; I: Spanish North Atlantic Ocean, II: Portuguese North Atlantic Ocean, III: Gulf of Cadiz and Alboran Sea and IV: Mediterranean Sea. b) Grid location
48
|
Research papers
Table 1 Total surveyed area (Km2) by year and month
Km2 (Table 1). Seabird counts followed stan-
farms using nine factors: flight manoeu-
dardized strip-transect techniques (Tasker
vrability, flight altitude, percentage of time
et al. 1984) adapted to the study area charac-
flying, nocturnal flight activity, sensitivity
teristics (Louzao et al. 2006). The observers
towards disturbance by ship and helicop-
covered a 300 m strip transect band at each
ter traffic, flexibility in habitat use, biogeo-
side of the boat when visibility and wind
graphical population size, adult survival
conditions were adequate. All seabirds ob-
rate, and conservation status (Garthe and
served within the survey transect were re-
Hüppop 2004). Each factor was scored on a
corded and summed into 10 minutes survey
5-point scale where 1 indicated low vulne-
bins.
rability and 5 indicated high vulnerability.
The study area had a latitudinal span of
Following Garthe and Hüppop methodology,
10 decimal degrees (from 35º N to 45º N) and
when no empirical data was available, the
a longitudinal span of 15 decimal degrees
factors (5 out of 9) were given a subjective
(from 11º W to 4º E). It was divided in a re-
value partially based on bibliography -when
gular grid at four different scales (2º, 1º, 0.5º
available- and the authors experience on
and 0.25º) (Fig.1c). Four main regions have
the species. These scores where then sub-
been considered for local discussion accor-
mitted for assessment to 10 independent
ding to their oceanographic features and po-
experts with at-sea experience. After the
litical boundaries: the Bay of Biscay and the
independent
Galician Atlantic coast (Region I), the Portu-
where revised. When close species with si-
guese Atlantic coast (Region II), the Gulf of
milar characteristics had different values
Cádiz and Alboran Sea (Region III) and the
the experts where consulted again, and the
Mediterranean Sea (Region IV) (Fig.1b).
values were corrected if a consensus was
evaluation,
species
scores
reached. The nine factors are shortly descri-
Species vulnerability calculation
bed below, with emphasis on those factors with changes from its original definition. A
The original WSI is derived from distri-
more detailed description of the factors can
butional data of seabirds’ counts at sea and
be found in the original paper (Garthe and
a Species-specific Sensitivity index (SSI). SSI
Hüppop 2004).
evaluates the species’ vulnerability to wind
CHAPTER 2 (f1) Percentage of time flying This factor aims to assess how much
evaluated by the experts.
(f5) Disturbance by ship and helicopter traffic
time a species present in a wind farm area is susceptible to collision. This factor was
The ship and helicopter traffic during
obtained from the behavioural data collec-
construction and maintenance of wind
ted during the surveys. Species were scored:
farms is expected to have some disturbance
1, if 0-20% of the individuals were flying; 2,
effect on species provoking escape, avoidan-
21-40%; 3, 41-60%; 4, 61-80% and 5, 81-100%.
ce or fleeing behaviours. There is almost no
After collecting and ranking behavioural
information on the issue; hence the factor
data for each species, some discrepancies
was evaluated subjectively from hardly any
where found between similar species. The-
behavioural response (score 1) to strong be-
se differences were artefacts of data related
havioural reactions (score 5).
to differential detection. In these cases the scores where equalized for the group using
(f6) Flexibility in habitat use
the better sampled species. This factor takes into account the ha-
(f2) Flight altitude
bitat preferences of species. Those species occupying large sea areas and no specific
This factor estimates how often a spe-
habitat preferences (e.g. gulls) are expected
cies flies within the range of the blades of
to be less sensitive to offshore wind farms
the turbines. The altitudes were classified
than those species relying on specific habi-
as follows: 1, 0-5m; 2, 5-10m; 3, 10-20m; 4,
tat features (e.g. sea ducks feeding on banks
20-50m and 5, 50-100m. The original factor
on shallow grounds). Therefore species were
was based on real data from flight altitude
classified from very flexible in habitat use
assessments. Since this information was
(score 1) to reliant on specific habitat cha-
not available in our surveys the experts were
racteristics (score 5) and again evaluated by
asked for the most frequent altitude class.
the experts.
(f3) Flight manoeuvrability
(f7) Biogeographical population size
This factor takes into account the flight
Population sizes were obtained for each
ability of a species to avoid collision with
species from Birdlife publications (Bird-
wind farms at sea. Species were classified
Life International 2004, 2012). Species were
from very high flight manoeuvrability (sco-
scored: 1 for populations exceeding 3 mi-
re 1) to low flight manoeuvrability (score 5),
llion individuals; 2 for 1-3 million indivi-
and this classification was sent for evalua-
duals; 3 for 500000-1 million individuals; 4
tion to the experts.
for 100000-500000 individuals and 5 for less than 100000 individuals.
(f4) Nocturnal flight activity
(f8) Adult survival rate
Nocturnal flight activity was classified from hardly any flight activity at night (score
Additional mortality due to collisions is
1) to high flight activity at night (score 5) and
likely to affect species with high annual sur-
|
49
50
|
Research papers vival rates rather than species with low sur-
cell and plotted.
vival rates. The factor was classified as fo-
The count data of all the years was poo-
llows: 1, ≤ 0.75; 2, >0.75-0.80; 3, >0.80-0.85; 4,
led and summarized in four temporal scena-
> 0.85-0.90; 5, > 0.90. The survival rates were
rios: the whole year, breeding season (March
obtained from Garthe and Hüppop (2004),
to June), post-breeding season (July to Octo-
Schreiber and Burger (2002) and Álvarez and
ber) and wintering season (November to Fe-
Velando (2007). When the rate was not avai-
bruary). Following the recommendations of
lable the values from closely related species
the WSI revision (Certain et al. in prep.), for
were taken.
each temporal scenario we used a diagnostic panel showing the overall vulnerability,
(f9) Conservation status
abundance and collision and disturbance vulnerability maps to inform on the strate-
The original factor reflected the European threat and conservation status using
gic assessment of the offshore wind energy development in the Iberian Peninsula.
part of the SPEC (Species of European Con-
Instead of using different legends for
cern) categories. For a more general index
each map, the vulnerability values and
with applicability to any part of the world
seabird density were plotted in a colour gra-
we used the IUCN conservation criteria. Ac-
dient where each colour indicates a particu-
cording to their conservation status species
lar percentile. For the local discussion, the
where scored: 1 for Least Concern; 2, Near
collision and disturbance vulnerability at
threatened; 3, Vulnerable; 4, Endangered
the 0.25º scale were split in the four defined
and 5, Critically Endangered.
regions and plotted with independent co-
With all the species scores, instead of
lour gradient scales.
calculating the SSI value, we calculated the overall species vulnerability (vi), the species
RESULTS
vulnerability to collision (vci) and the species vulnerability to disturbance (vdi) for each
A total of 41 different species were coun-
species according to the formulas described
ted in the surveys. The most abundant spe-
in Certain et al. (in prep.) that differentiated
cies were the Northern gannet Morus bas-
risk factors in primary risk factors (f1, f2, f5, f7,
sanus (32807 individuals), the Yellow-legged
f9) and aggravation factors (f3, f4, f6, f8).
gull Larus michahellis (20449 individuals) and the Balearic shearwater Puffinus mauretani-
Distributional data and community vulnerability maps
cus (12621 individuals). The species showed
Once the species vulnerability score
the Balearic shearwater were the species
is calculated for each species, the index is
with the highest sensitivity while the Black-
applied to the distributional data to calcula-
headed gull Larus ridibundus and the Atlantic
te the overall community vulnerability (Vj),
puffin Fratercula arctica ranked the lowest.
a wide range of vulnerability values (Table 2). The Audouin’s gull Larus audouinii and
the community vulnerability to collision (Vcj)
The overall community vulnerability
and the community vulnerability to distur-
(Vj) had a similar pattern across grid scales
bance (Vdj). The total seabird abundance per
(Fig.2). Nevertheless, at the broader scale
grid cell was obtained by dividing the sum of
(Fig.2a) coastal cells could not be differentia-
individuals by the total surveyed area in the
ted from offshore cells. This leads to a biased
CHAPTER 2
|
51
Table 2 Species scores for each risk factor (f1-9). Overall species vulnerability scores (vi), species vulnerability to collision (vci) and vulnerability to disturbance (vdi) for Atlantic and Mediterranean species detected.
52
|
Research papers
OVERALL VULNERABILITY ( Vj )
Fig. 2 Overall community vulnerability for all the year at different scales
a)
0
1º
2º
b)
interpretation of the vulnerability patterns.
Percentile
Low 25
50
0.5 º
c)
75
High 100
0.25 º
d)
In the wintering months (November to Fe-
For the whole year, the areas of highest
bruary) the southern coasts of the Iberian
vulnerability, i.e. with Vj values over the
Peninsula showed the higher vulnerability
50th percentile, were in the Portuguese At-
levels (East and West, between 36º-40º). The
lantic coast and the Mediterranean coasts
eastern part of region I, corresponding to the
(Fig.3ia,c,d). The vulnerability values near
Bay of Biscay, was only surveyed during the
the coast were generally higher than tho-
post-breeding months hence no informa-
se further offshore in the Atlantic coasts,
tion is available for the breeding and winte-
while the Mediterranean coasts had high
ring season.
vulnerability in almost all grid cells. Seabird
The regional vulnerability maps at 0.25º
abundance was higher in the coastal cells of
scale (Fig.4 and 5) highlight that regions as-
Portugal, the Gulf of Cadiz and the Northern
sessed in detail have areas with constant
part of the Mediterranean region (Fig.3ib).
high vulnerability and other areas that tend
The abundance pattern was not similar to
to be either vulnerable to collision or dis-
any of the vulnerability maps of the diag-
turbance. Within Region I and II, areas with
nostic panel.
high collision vulnerability tend to be more
Regarding the temporal evolution of ove-
offshore than areas with high disturbance
rall vulnerable areas, the coastal southern
vulnerability. In general vulnerable areas fit
part of the Portuguese region (between 37-
well with the already defined Marine Impor-
39º N) and the area between the Ebro Delta
tant Bird Areas (IBAs)
and Cape Nao (between 39-41º N) remained vulnerable through the three different pe-
DISCUSSION
riods, whereas other areas increased their vulnerability only in particular periods of
SSI and WSI modifications
the year (Fig.3a). In the breeding months (March to June), the northern half of the
The technological advances in remote
Mediterranean region and the Alboran Sea
sensing has fostered the study of seabird
showed the higher levels of vulnerability to
movements at sea (Ropert-Coudert and
collision and disturbance (Fig.3iic,d). In the
Wilson 2005; Louzao et al. 2009; Christel et
post-breeding months (July to October), the
al. 2012). Nevertheless there is still a lack of
Mediterranean region showed moderate to
information about seabirds’ behaviour in
low levels of vulnerability to disturbance
offshore areas and how this behaviour can
while it increased in all the western coast
be affected by the presence of offshore wind
of the Iberian Peninsula (between 37-44º N).
farms (Desholm and Kahlert 2005; Perrow
a) Overall Vulnerability (Vj)
b) Total seabird abundance (Aj) c) Vulnerability to Collision (Vc j)
d) Vulnerability to Disturbance (Vd j)
CHAPTER 2 | 53
fig. 3 Diagnostic panels at large scale (1ยบ grid scale) in four temporal scenarios.
All year
(i)
Breeding
(Mar-Jun)
(ii)
Post-breeding
(Jul-Oct)
(iii)
Wintering
(Nov-Feb)
(iv)
54
|
Research papers et al. 2011). Thus, the SSI methodology that
values over the 60th percentile were defined
merges real data with expert-based scores is
as ‘concern’ areas and those over the 80th
a useful tool to evaluate species sensitivity
percentile were defined as ‘major concern’
to wind farms when no quantitative data is
areas. In the reports that have applied this
available.
methodology these thresholds have been
The scoring method of the SSI is flexible
retained. In the papers that have adapted
and can easily be adapted to data availabili-
the methodology a similar system has been
ty and circumstances of a particular study,
used except in one case (Stelzenmüller et al.
however, we found necessary to make an
2010) where the results were rescaled to a 1
important change in the conservation sta-
to 10 qualitative scale. Although three levels
tus factor. We suggest using the IUCN Red
seems an intuitive output for decision-ma-
list categories by default instead of the SPEC
king, the selection of the threshold percen-
(Species of European Concern) categories
tiles that divides concern areas from low/no
and only choose other conservation classi-
concern areas is subjective. Besides, the 60th
fications if all the study species fall in the
and 80th percentiles might not be the ade-
same category which was the case of Garthe
quate cut-off values for all biogeographic re-
and Hüppop’s study. The SPEC categories are
gions. Instead of generalizing these values,
not as widely recognized as the IUCN cate-
we propose to plot the community vulnera-
gories. Moreover, this classification criterion
bility maps ranking the cells from the lowest
is only useful in a European framework and
value to the highest. Plotting a ranking
offshore wind energy development and any
(which is equivalent to plot the percentiles)
recommended tool should aim to use inter-
allows a comparative analysis between high
national standards.
and low concern areas, retains the percenti-
Concerning the WSI graphical output,
le information and, at the same time, avoids
the original methodology suggested three
the subjective definition of a threshold.
levels of categorization where cells with WSI
Community Vulnerability maps and Offshore
Vulnerability to Collision (Vc j)
Fig. 4 Community vulnerability to collision by regions (0.25º grid scale; All year). Each region is plotted with an independent colour scale. Spanish and Portuguese Marine IBAs overlaid in black.
Percentile
Low 0
25
50
75
High 100
Region I
Region II
Region IV
Region III
CHAPTER 2
|
55
Despite the data set limitations the gen-
Wind Energy planning
eral pattern indicates that offshore areas in the Atlantic regions have lower vulnerabil-
The 2ยบ grid is too coarse to capture the
ity, while the coastal Atlantic areas and the
vulnerability patterns. With this scale, off-
Mediterranean regions have the highest vul-
shore areas with very low vulnerability
nerability. This pattern can be explained by
would be assessed as high concern areas.
the characteristics of the continental mar-
Therefore, we suggest using the 1ยบ or 0.50ยบ
gin. Surveys in the Atlantic coast cover the
scales instead. Since the Spanish SEA for
continental shelf and the shelf break. In the
offshore wind energy already defined ma-
Mediterranean coast the continental shelf is
rine zones of 1ยบ (MARM and MITYC 2009) we
wider, particularly in the area between the
chose to use this grid for large scale assess-
Ebro delta and Cape Nao, thus most of the
ment of the vulnerability.
surveys only cover the continental shelf. If
The discrepancies between abundance
offshore wind farms were to be planned in
maps and the vulnerability maps (Fig.3b)
the Mediterranean region the vulnerability
highlights the limitations of using only
index can be applied at a lower scale (e.g.
abundance maps for decision-making and
Fig.4,5). At this scale, the area North to the
the advantage of using also vulnerability in-
Ebro Delta and the area between Cape of
dexes. With the diagnostic panels at large
Gata and Cape Palos are the areas with lower
scale, different areas can be compared in
vulnerability which is consistent with areas
order to demarcate areas with low expected
with a narrow continental shelf. According
impact on seabirds as optimal development
to this, the best advice for the future devel-
areas. In the study area, region I is the area
opment of the offshore energy in the coasts
with the lower expected impact. However,
of the Iberian Peninsula is to avoid the con-
this is probably biased by the lack of surveys
tinental shelf and promote the development
in the breeding and wintering seasons.
of floating offshore wind farms which would
Vulnerability to Disturbance (Vd j)
Percentile
Low 0
25
50
75
High 100
Region I
Region II
Region IV
Region III
Fig. 5 Community vulnerability to disturbance by regions (0.25ยบ grid scale; All year). Each region is plotted with an independent colour scale. Spanish and Portuguese Marine IBAs overlaid in black.
56
|
Research papers be the optimal option to minimize the im-
spatial patterns than density maps. This is
pact on the seabird community.
because vulnerability indexes are able to
By assessing independently collision
integrate different layers of information.
and disturbance vulnerability further stud-
This is particularly useful for policy makers
ies may be suggested accordingly for the
and conservation practitioners that need
selected areas for offshore wind energy
analytical tools to take informed decision
development. In areas with high collision
on offshore wind energy spatial planning at
vulnerability during migration season radar
large and regional scales.
studies should be performed, while in areas with high species abundance and high
REFERENCES
disturbance vulnerability habitat modelling and satellite tracking methods could be per-
Anderson DJ, Huyvaert KP, Wood DR (2003) At-sea
formed to improve the knowledge of the off-
distribution of waved albatrosses and the Ga-
shore distribution of seabirds.
lapagos Marine Reserve. Biological Conservation 110:367–373
CONCLUSION
Arcos J, Bécares J, Rodríguez B, Ruiz A (2009) Áreas Importantes para la Conservación de las Aves
The species vulnerability table presented
marinas en España. LIFE04NAT/ES/000049-So-
in this paper could be of major interest in
ciedad Española de Ornitología (SEO/Birdlife),
the future if offshore wind energy is to be
Madrid
developed in Spain, Portugal or any other
BirdLife International (2004) Birds in Europe: po-
country with similar diversity of seabirds.
pulation estimates, trends and conservation
Besides the application of the revised for-
status (I Burfield and F Van Bommel, Eds.). Bir-
mulation of the Index (Certain et al. in prep.)
dLife International, Cambridge <http://www.
we suggest avoiding the percentile threshold
birdlife.org/eu/pdfs/BirdLife_Bern_windfarms.
criterion used by Garthe and Hüppop (2004)
pdf> (accessed 24.10.12)
and using a ranking instead that would keep
BirdLife International (2012) IUCN Red List for
the percentile information of the original
birds. BirdLife International. Available: http://
work without setting a subjective threshold
www.birdlife.org (accessed 17 July 2012), Cam-
that may lead to biased interpretations of
bridge
the outputs.
Certain G, Christel I, Planque B, Bretagnolle V. A
With this study we show the utility of the
refined methodology to estimate the vulnera-
vulnerability indexes as comparative tools
bility of seabird community to the establish-
at large scales but also applicable at smaller
ment of offshore wind farms. (in prep.)
scales when detailed assessment is requi-
Christel I, Navarro J, del Castillo M, Cama A, Ferrer
red. Applying the refined WSI to the Iberian
X (2012) Foraging movements of Audouin’s
coasts we show how the index is useful to
gull (Larus audouinii) in the Ebro Delta, NW
highlight key development regions for offs-
Mediterranean: A preliminary satellite-trac-
hore wind energy as well as exclusion areas
king study. Estuarine, Coastal and Shelf Scien-
due to high vulnerability for seabirds.
ce 96:257–261
Vulnerability maps, which are partly
Christensen-dalsgaard S, Lorentsen S, Hanssen
based on abundance maps, show different
F, Systad GH (2011) Marine wind farms and
CHAPTER 2 seabirds. Updated screening of potential con-
of%20offshore%20wind%20farms%20on%20
flict areas on a national scale. NINA Report
seabirds%20in%20the%20Dutch%20Nord%20
616. <http://mhk.pnnl.gov/wiki/images/8/83/ Visual_and_Radar_Observations_of_Birds. pdf>(accessed 24.10.12)
Sea.pdf> (accessed 24.10.12) Louzao M, Bécares J, Rodríguez B, Hyrenbach K, Ruiz a, Arcos J (2009) Combining vessel-based
Desholm M, Kahlert J (2005) Avian collision risk at
surveys and tracking data to identify key ma-
an offshore wind farm. Biology Letters 1:296–
rine areas for seabirds. Marine Ecology Pro-
298
gress Series 391:183–197
EWEA (2012) The European offshore wind indus-
Louzao M, Hyrenbach KD, Arcos J, Abelló P, de Sola
try key 2011 trends and statistics. European
LG, Oro D (2006) Oceanographic habitat of an
Wind Energy Association. <http://www.ewea.
endangered Mediterranean procellariiform:
org/fileadmin/ewea_documents/images/gra-
Implications for marine protected areas. Eco-
phs_maps_tables/EuOffwind2011.pdf> (accessed 24.10.12)
logical Applications 16:1683–1695 MARM, MITYC (2009) Estudio estratégico am-
Fox AD, Desholm M, Kahlert J, Christensen TK,
biental del litoral español para la instalación
Petersen IK (2006) Information needs to sup-
de parques eólicos marinos. <http://www.
port environmental impact assessment of
aeeolica.org/uploads/documents/562-estudio-
the effects of European marine offshore wind
estrategico-ambiental-del-litoral-espanol-
farms on birds. Ibis 148:129–144
para-la-instalacion-de-parques-eolicos-mari-
Garthe S, Hüppop O (2004) Scaling possible adver-
nos_mityc.pdf> (accessed 24.10.12)
se effects of marine wind farms on seabirds:
Noguera JC, Pérez I, Mínguez E (2010) Impact of te-
developing and applying a vulnerabiblity in-
rrestrial wind farms on diurnal raptors: deve-
dex. Journal of Applied Ecology 41:724–734
loping a spatial vulnerability index and poten-
Hüppop O, Dierschke J, Exo KM, Fredrich E, Hill
tial vulnerability maps. Ardeola 57:41–53
R (2006) Bird migration studies and potential
Perrow MR, Gilroy JJ, Skeate ER, Tomlinson ML
collision risk with offshore wind turbines. Ibis
(2011) Effects of the construction of Scroby
148:90–109
Sands offshore wind farm on the prey base of
Inger R, Attrill MJ, Bearhop S, Broderick AC, Ja-
Little tern Sternula albifrons at its most im-
mes Grecian W, Hodgson DJ, Mills C, Sheehan
portant UK colony. Marine Pollution Bulletin
E, Votier SC, Witt MJ, Godley BJ (2009) Marine
62:1661–70
renewable energy: potential benefits to biodi-
Piatt JF, Harding A, Shultz M, Speckman S, van Pelt
versity? An urgent call for research. Journal of
T, Drew GS, Kettle A (2007) Seabirds as indica-
Applied Ecology 46:1145–1153
tors of marine food supplies: Cairns revisited.
King DA (2004) Climate Change Science : Adapt, Mitigate, or Ignore? Science 303:176–177
Marine Ecology Progress Series 352:221–234 Ramirez I, Geraldes P, Meirinho A, Amorim P, Paiva
Leopold MFL, Dijkman EM (2010) Offshore wind
VH (2008) Important Areas for Seabirds in Por-
farms and seabirds in the Dutch Sector of
tugal. Project LIFE04NAT/PT/000213. Socieda-
the North Sea: What are the best and the
de Portuguesa Para o Estudo das Aves, Lisboa
worst locations for future develpment? Ins-
Ropert-Coudert Y, Wilson RP (2005) Trends and
titute for Marine Resources & Ecosystem
perspectives in animal-attached remote sen-
Studies.
sing. Frontiers in Ecology and the Environ-
<http://www.we-at-sea.org/leden/
docs/reports/RL2-2%202007-003%20Effect%20
ment 3:437–444
|
57
58
|
Research papers Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu
a spatially explicit risk assessment for marine
Q, Casassa G, Menzel A, Root TL, Estrella N, Se-
management: Assessing the vulnerability of
guin B, Tryjanowski P, Liu C, Rawlins S, Imeson
fish to aggregate extraction. Biological Con-
A (2008) Attributing physical and biological
servation 143:230–238
impacts to anthropogenic climate change. Nature 453:353–357 Schreiber EA, Burger J (Eds) (2002) Biology of Marine Birds. CRC Press, Boca Raton
Tasker ML, Jones PH, Dixon T m, Blake BF (1984) Counting seabirds at sea from ships: a review of methods employed and a suggestion for a standardized approach. The Auk 101:567–577
Sonntag N, Schwemmer H, Fock HO, Bellebaum J,
Álvarez D, Velando A (2007) El cormorán moñudo
Garthe S (2012) Seabirds, set-nets, and conser-
en España. Población en 2006-2007 y método
vation management: assessment of conflict
de censo. Madrid
potential and vulnerability of birds to bycatch in gillnets. ICES Journal of Marine Science 69:578–589 Stelzenmüller V, Ellis JR, Rogers SI (2010) Towards
CHAPTER 2
|
59
60
|
Research papers
resu M El desenvolupament de l’energia eòlica marina ha fomentat el debat sobre l’impacte potencial d’aquestes infraestructures sobre les aus marines. En aquest context apareix la necessitat de trobar indicadors que determinin l’efecte i extensió d’aquests impactes. La majoria d’Estudis d’Impacte Ambiental (EIA) presenten mapes de distribució i densitat d’aus, però molt pocs intenten representar de manera explícita els impactes potencials en l’espai i el temps. Mitjançant la relació entre mitjana i variància descrita per Taylor (Taylor ‘s power law) i models lineals mixtos es pot modelar la variabilitat espai-temporal dels patrons de distribució de les aus marines. Els models resultants descriuen el grau d’agregació de les aus al mar el que permet diferenciar zones de transició d’àrees d’alimentació. Aquesta distinció, al seu torn, es pot utilitzar per definir zones amb un alt risc de col · lisió i zones de potencial pèrdua d’hàbitat en el cas de construir un parc eòlic marí. Amb el Delta de l’Ebre com a cas d’estudi il · lustrem la utilitat d’aquest mètode i comentem els avantatges dels mapes d’impacte potencial respecte als mapes d’abundància.
JOURNAL REFERENCE Christel I, Certain G, Cama A, Vieites DR, Ferrer X (2012) Seabird aggregative response: a new tool for offshore wind energy risk assessment. Marine Pollution Bulletin. DOI: 10.1016/j. marpolbul.2012.11.005 (In press)
Seabird aggregative patterns: a new tool for offshore wind energy risk assessment Isadora Christel1,2, Grégoire Certain3,4, Albert Cama1,2, David R. Vieites2,5 and Xavier Ferrer1 1
Institute for Research on Biodiversity (IRBio) and Departament de Biologia Animal, Universitat de Barcelona (UB). Diagonal 645, E-08028 Barcelona, Spain.
2
Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas. C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain. 3 Norwegian Institute for Nature Research (NINA). Tungasletta 2, NO-7047 Trondheim, Norway. 4 Institute of Marine Research (IMR). PO box 6404, 9294 Tromsø, Norway 5 REFER Biodiversity Chair, University of Porto, CIBIO, Campus Agrário de Vairão, R. Padre Armando Quintas, 4485-661 Vairão, Portugal. A bstract The emerging development of offshore wind energy has raised public concern over its impact on seabird communities. There is a need for an adequate methodology to determine its potential impacts on seabirds. Environmental Impact Assessments (EIA) are mostly relying on a succession of plain density maps without integrated interpretation of seabird spatio-temporal variability. Using Taylor’s power law coupled with mixed effect models, the spatio-temporal variability of species’ distributions can be synthesized in a measure of the aggregation levels of individuals over time and space. Applying the method to a seabird aerial survey in the Ebro Delta, NW Mediterranean Sea, we were able to make an explicit distinction between transitional and feeding areas to define and map the potential impacts of an offshore wind farm project. We use the Ebro Delta study case to discuss the advantages of potential impacts maps over density maps, as well as to illustrate how these potential impact maps can be applied to inform on concern levels, optimal EIA design and monitoring in the assessment of local offshore wind energy projects.
3
62
|
Research papers INTRODUCTION
Assessment (EIA) of its potential impact in the marine environment, including the risk
Studies on marine top predators are today considered as a key component of ma-
imposed on avian populations (Bright et al., 2008; Masden et al., 2010).
rine ecosystem management (Boyd et al.,
The potential impacts of offshore wind
2006). Within top predators, seabirds are
farms on seabird communities are complex.
good indicators of ecosystem health (Cairns,
Fox et al. (2006) provided a conceptual clas-
1987; Mallory et al., 2006; Nettleship and
sification of these impacts, distinguishing
Duffy, 1993) and are useful indicators to
between (1) avoidance, (2) modification of
evaluate potential effects of human activi-
the physical habitats, and (3) direct mor-
ties at sea. Most seabirds are flagship species
tality trough collision. Most EIA guidelines
for the public (Fox et al., 2006) and have clear
suggest radar studies to assess collision risk
protection criteria collected in protection di-
in strongly migratory areas (Desholm et al.,
rectives like the Birds directive (79/409/EEC)
2006; Fox et al., 2006; Kunz et al., 2007) and
and Habitats directive (92/43/EEC) in Europe.
density maps as a proxy to loss of foraging
Their distribution and abundance are usu-
habitats by avoidance and physical habitat
ally provided as key information to support
modification (Camphuysen et al., 2004; Fox
the establishment of marine protected ar-
and Petersen, 2006). However, density maps
eas, to implement fisheries’ management
do not provide a full understanding of the
measures (Boyd et al., 2006), to assess the
underlying behavioral patterns related to
impact of environmental disasters such as
their movements. Seabirds often present dy-
oil spills (Bretagnolle et al., 2004; Moreno,
namic and complex spatial patterns at sea
2011) or to monitor the impact of oil and gas
which are far from being understood. When
platforms at sea (Wiese et al., 2001).
foraging, many species of seabirds are usu-
In the last years, offshore wind energy
ally characterized by an important aggre-
has emerged as a priority field in many
gative behavior (Buckley, 1997; Grünbaum
European countries to meet Europe’s 2020
and Veit, 2003), with birds forming flocks of
agenda that promotes renewable energies
hundreds of individuals. On the contrary, a
to mitigate the effects of climate change;
lower aggregative behavior is expected in
hence offshore wind farms will likely ex-
transitional areas solely used as flight paths
perience an important increase in the near
between feeding areas and their resting or
future. However, in the field of marine man-
breeding areas. While density maps focus
agement there is a growing concern on the
on high concentrations of seabirds as po-
development of offshore wind energy and
tential risk areas, we propose the explicit
its potential impacts on coastal seabird
distinction between transitional and forag-
populations, mainly because of possible col-
ing areas as a key step to better predict and
lisions with windmills (Fox et al., 2006). On
classify the risk of wind farm establishment
a large scale, countries might develop “Stra-
on seabird populations. In transitional ar-
tegic Environmental Assessments” (SEA) to
eas, the main risk will be direct collision and
plan their offshore wind farms network in
mortality (Desholm and Kahlert, 2005; Hüp-
a way that minimizes their ecological im-
pop et al., 2006). In foraging areas, the risk of
pact on the coastal environment (Directive
direct collisions is increased and potentially
2001/42/EC). At a local scale, each wind farm
associated with a displacement from their
project requires an Environmental Impact
preferred feeding areas, resulting in habitat
CHAPTER 3 loss (Masden et al., 2010; Perrow et al., 2011).
farms. Finally, we discuss how the resulting
In 2004, the proposal of an offshore
potential impacts maps provide a frame to
wind farm project in front of the Ebro Delta
inform on EIA design and monitoring in the
(North-Western Mediterranean, Fig. 1a) em-
context of an offshore wind farm proposal.
|
63
phasized the necessity for adequate indicators to determine the extent and effect of
METHOD
potential impacts on its seabird community. Here, we use the slope of the Taylor’s power
Study area & survey method
law as a measure of the aggregative patterns of seabirds to identify transitional and feed-
The Ebro Delta (NW Mediterranean, Fig.
ing areas, and map the risk accordingly. The
1) is a very productive area because of a
slope of the Taylor’s power law (Taylor, 1961;
permanent upwelling, result of the sudden
Taylor and Woiwod, 1982) provides a conve-
broadening of the shelf (up to 70km) in com-
nient measure of the aggregation levels of
bination with the influence of the Liguro-
animals (see Kendal, 2004 for a review). It
Provençal-Catalán front and nutrients car-
has already been used in a spatio-temporal
ried by the Ebro river runoff (Arcos et al.,
context with seabirds (Certain et al., 2007)
2001; Palomera, 1992). This high productiv-
and has proved to be useful to describe the
ity supports an important fishing fleet with
temporal variability associated to the spatial
a high trawling activity (Arcos et al., 2001;
distribution of seabirds at multiple scales.
Louzao et al., 2006; Palomera, 1992) which
Here, using the Ebro Delta as a case study,
in turn has been pointed as a key resource
we first show how to take into account the
for seabirds (Arcos, 2001; Arcos et al., 2008).
aggregative properties of seabird distribu-
However, the trawling activity is regulated
tions together with abundance maps. Sec-
with temporal moratoria in the area. Fish-
ond, we point the advantages of this method
ing moratoria affects the northern area (B1-
as an integrative tool to summarize in few
2 and B14-16, Fig. 1) in May and June and
maps the spatial and temporal variability
the southern area (B3-B13) during July and
of the potential impacts of offshore wind
August, and influences the distribution of
Fig.1 (a) Situation map. (b) Survey design of aerial transects and projected offshore wind farm location. (c) Block design of the study area showing inner and outer classification and block Id. The main breeding colonies location, harbours and the Ebro River are shown.
64
|
Research papers some species.
Table 1. Descriptive data
aircraft, Partenavia P68, and the aircraft GPS
Seven monthly aerial surveys were car-
was used for navigation along the transect
ried out from March 2005 to September 2005
tracks. The cruising speed was set at c. 100
on the continental shelf around the Ebro
knots (185 km/h) with respect to the air
Delta (40.7º N, 0.75º E). The surveys covered a
speed and average flying height was 300 feet
total area of 1435 km2 from L’Ametlla de Mar
(100 m). Along the transects, all observed
harbour (24 km North; 40.86º N, 0.8º E) to Pe-
bird flocks were recorded with a voice re-
ñíscola (51 km South; 40.35º N, 0.4º E) (Fig. 1).
corder, stating information on species (or
The entire shelf area can be covered in a sin-
the lowest taxonomical level determinable),
gle day using this approach, and availabil-
number of individuals, behaviour (e.g. flying,
ity biases due to attraction and avoidance
flushing, sitting on water, feeding on trawler
movements of seabirds were minimized. In
discards), age whenever possible, transect
this study, we used the standard seabird aer-
strip, date and time. The presence of trawl-
ial survey methodology described by Noer et
ers was also recorded. These recordings
al. (2000).
were geo-referenced later with the transect
The survey area was covered by 45 tran-
track information provided by a GPS and a
sects systematically arranged in parallel
Turbo Pascal application (Ib Krag Petersen
lines running perpendicular to the coast,
pers. com.). In the moments of maximum
to follow the dominant sea depth gradient,
glare or any other adverse light situation,
and flown at 2 km intervals. During the sur-
the counting was interrupted. Since counts
veys, two observers, one at each side of the
results are highly sensitive to meteorology,
aircraft, covered 1 km strip at each side. The
no surveys were conducted when Beaufort
surveys were conducted from a twin-engine
Sea state was greater than one.
CHAPTER 3
|
65
Fig.2 Data preparation and selected scales.
as well as the Common Tern population.
Study model
Both species are present in the area between March and September. The species arrive to
We focused the study on the three most
the breeding grounds in March and April,
abundant seabird species in the area, the
being the peak of the breeding season be-
Yellow-legged Gull (Larus michahellis), the
tween May and June, after which there is a
Audouin’s Gull (Larus auouinii) and the Com-
variable post-fledging period with dispersive
mon Tern (Sterna hirundo). These three spe-
behaviour until they start their migration
cies represented the 93% of all detected in-
from late August to October (Cama, 2010). In
dividuals at sea. Moreover, they can be used
2005, the main colony for the Common Tern
as model species for their different foraging
was in the north of the Ebro Delta with 3361
and feeding strategies. The Yellow-legged
breeding pairs, and the main colony for the
Gull is a scavenger that makes extensive
Yellow-legged and the Audouin’s gulls was
use of trawler’s discards (Oro et al., 1995),
in the South of the Ebro Delta having 9850
and their foraging habits are strongly influ-
and 13850 breeding pairs respectively (Fig. 1)
enced by trawlers predictability (Cama et al.,
(Cama, 2010).
2012). The Audouin’s Gull is an opportunist species that exploits small pelagic fish (Oro,
Data preparation
1998 and references therein), but also makes use of trawler’s discards and terrestrial
First, transects were sliced into segments
food sources (Christel et al., 2012; Navarro
of 0.5 km length, each segment containing
et al., 2010; Oro and Ruiz, 1997). The Com-
the number of birds counted for each spe-
mon Tern, conversely, only preys actively on
cies (Fig. 2). This length corresponds to the
shoals of small pelagic fish (Cramp and Sim-
minimum scale at which the information
mons, 2004).
could be located, according to the survey
The Yellow-legged Gull population in the
protocol (Noer et al., 2000). Second, mean
Ebro Delta is sedentary. The species breeds
and variance of bird abundance of the seg-
from mid-March to April at the Punta de la
ments were computed within grid cells of 3.5
Banya peninsula (Fig.1). Some individuals of
km wide. Only grid cells containing a mini-
Audouin’s Gull are in the area all over the
mum of 10 segments and at least two non-
year, but the main population is migratory
zero abundance values were included in the
66
|
Research papers analyses. Finally, the study area was further
of organisms (Jiménez et al., 2001; Östman,
divided in blocks of 11km. These 11km cor-
2002). Usually, slope values range between
respond to the scale at which management
1 and 2 when estimated in space (Engen
information is extracted, and was set as a
et al., 2008; Kendal, 2004). When calculated
trade-off for sample size. We searched the
through time, it can be used as an index of
finer scale that had at least N=8 grid cells
the temporal variability of the spatial distri-
into each block so that to fit a power law and
bution of organisms, highlighting recurrent
provide detailed information for manage-
and occasional presence areas (Certain et
ment. At this selected block size, the pure
al., 2007).
coastal areas could be distinguished from
Coupling Taylor’s power law with linear
areas located more offshore, where bird ac-
mixed effect models (LME) allows the inves-
tivity might differ in abundance and behav-
tigation of the spatio-temporal variability of
ior.
TPL slope and consequently the variability of the aggregative patterns of organisms,
Modeling of seabird aggregative pattern
avoiding confusing effects of changes in animal abundances (Certain et al., 2007).
Pioneered work of Taylor (1961) on the spatial and temporal variability of animal
The simplest model within this framework is:
abundance provides an useful framework to study the spatio-temporal heterogeneity
log (Vbmsj) = A × log (Mbmsj) + B + εbmsj
of a population within its habitat (Kendal,
j= 1,…,nbms
(Eq. 3)
2004; Kilpatrick and Ives, 2003; Taylor and Woiwod, 1980, 1982). Taylor’s power law (re-
Where the slope and the intercept are
ferred as TPL from here onwards) states that
supposed constant through space (b), time
the variance in abundance (V) is proportion-
(m) and the three species (s). However, the
al to a power of the mean abundance (M):
slope might vary according to one or several of these factors. The effect of these factors
V=b×Ma
(Eq. 1)
and all the possible combinations can be introduced in the model as a grouping factor
Which in the logarithmic scale becomes
with a random effect on the slope (Pinheiro
a linear regression, where a is the slope and
and Bates, 2000). Starting from the simplest
log b is the intercept:
possible model (Eq. 3), different models were developed by the sequential addition of ran-
log (V) = a × log (M) + log (b)
(Eq. 2)
dom effects on the slope. The most complete model could be written as the following:
In this context, the slope a is considered an aggregation index. If individuals are ran-
log (Vbmsj) = (A + abms) × log (Mbmsj) + B + εbmsj
domly distributed the slope equals 1, if in-
j= 1,…,nbms
(Eq. 4)
dividuals show some degree of aggregation the slope increases accordingly (Engen et
Where A is the fixed slope, abms is the
al., 2008; Kendal, 2004; Kilpatrick and Ives,
random effect on the slope of block, month
2003). When calculated through space, the
and species together, B is the fixed intercept,
TPL slope can be interpreted as a measure
nbms is the number of observations on a bms
of the strength of the aggregative response
combination, and the εbmsj are independent
CHAPTER 3 N(0,σ2) error terms. Forward stepwise mod-
sels) or sitting on water; and used to calcu-
el selection was applied. Each model was
late the proportion of birds flying. The GAM
compared with the null model with a likeli-
analysis was carried out with the mgcv
hood ratio test to check whether or not the
package (Wood, 2006) following a forward
inclusion of a new grouping factor was out-
stepwise model selection based on the min-
performing the previous one (Pinheiro and
imization of AIC and the analysis of devi-
Bates, 2000). We retained the simplest model
ance between models. The number of knots
for which the inclusion of any new group-
in the smooth functions was minimized to
ing factor did not result in a significant im-
five to avoid overfitting.
|
67
provement of the model. All data processing and model developments were performed in R (R Development Core Team, 2008) with package lme4 (Bates et al., 2011).
Fig.3 Monthly ave-
To visualize the slope variation across
rage and standard error of TPL slope values for all blocks. The general mean slope for the full area and months is showed in grey dotted line.
months, the predicted slope values of the optimal mixed effect model were averaged by month (Fig. 3). Spatial variation of the slope was summarized for the breeding (March to June) and post-breeding (July to September) seasons, and was calculated with the average of the slope values for the corresponding months and plotted together with the density map of the number of individuals per month and block area (Fig. 4).
Behavioral interpretation of the aggregative pattern
RESULTS
We employed a generalized additive model (GAM) to test if the resulting slope
The result of the model-selection pro-
values of the mixed effect model had any
cess for the mixed-effect model is presen-
significant linear or non-linear correlation
ted in table 1. The optimal model retained
with the density of seabirds, the recorded
block and month as the grouping factor
behavior, the flock size or the presence of
with a random effect on the slope. Species
trawlers. For each block in a given month,
had no significant effect on the slope. The
we extracted the density of seabirds (total
fixed estimated slope for all the area was
observed individuals divided by block area),
1.923 and the predicted slope values ranged
mean and variance of the size of the ob-
between 1.712 and 2.049.
served flocks and the number of trawlers.
The monthly evolution of Taylor’s pow-
The behavioral information recorded with
er law slope (Fig. 3) can be summarized in
the observations was classified in two cat-
two sequences. First, from March to June
egories: i) Flying, ii) fishing (on shoals or ves-
(Mean±SE = 1.89±0.02), and especially in
68
|
Research papers
AIC is the Akaike information criterion, and Dev indicates the percentage of deviance explained by each model. Abbreviations for the formula terms are: Var, Logarithm of the variance (Dependent variable); Mean, logarithm of the mean; B, Block; M, month; S, Species. The model emboldened was selected as the optimal one.
Table 2. Forward-selection procedure used to find the best set of predictors of Taylor’s power law slope in the mixed effects model.
May and June, slope values are low, suggest-
According to the optimal selected GAM -135, deviance explained=
ing low aggregation levels of the seabirds
model (AIC=
populations at sea. Then, TPL slope increases
29.3%), the predicted slope values show a
markedly from July to September (Mean±SE
linear negative correlation with the pro-
= 1.97±0.01), suggesting strong aggregations
portion of flying birds (Estimate=-0.12826,
of seabirds at sea.
p=0.006) and a non-linear correlation with
As two time periods (March-June and
the interaction of mean flock size and den-
July-September) were clearly distinguished
sity (p=0.005, 3.734 estimated degrees of
in the temporal evolution of the TPL slope
freedom). When factors were examined one
in the area, spatial maps of TPL slope were
by one, mean flock size was the main driver
drawn for these two periods (Fig. 4). From
of slope changes (p<0.0001, 22.8% deviance
March to June, blocks near the colonies (B4-
explained) followed by proportion of flying
5, B10 and B1-2) had slope values under the
birds (p<0.0001, 14.8%). Density had no sig-
average, suggesting a lower aggregative be-
nificant effect (p=0.216, 1.73%).
havior, while areas in the outer blocks near
Thus, an increase in the mean flock size
the river mouth (B13-12) had higher slopes.
in a block increases TPL slope, but blocks
From July to September, the slope values
with high numbers of flying birds are more
around the colonies increased switching to
likely to have lower slopes. The main effect
a more aggregated pattern (except B4). The
of density is on its interaction with flock size.
outer blocks north and south to the river
For low density values, an increase on the
mouth (B11-16) retained and intensified
mean flock size has a logarithmic increase
their aggregated pattern. Southern blocks
in TPL slope. For densities greater than five
(B6-9) did not show any constant pattern in
individuals per km2 the increase becomes
slope values between seasons.
linear (Fig. 5).
CHAPTER 3
|
69
Fig.4 Spatial structure of TPL slope values for the two seasons. Only values with intervals (MeanÂąSE) significantly different to the general average (1.923) are plotted. In the background density values (average ind/km2) are shown in grey scale.
suggesting strong aggregations of birds at
DISCUSSION
sea. The seasonal pattern of TPL slope suggests that these two periods can be used to
Aggregative patterns in time and space
summarize and highlight the main behavioural and aggregative patterns of the popu-
The species of seabirds observed in the
lation. Indeed, seasonal scenarios are easier
continental shelf were mainly gulls and
to communicate than a detailed sequence
terns in high numbers. Despite the select-
of monthly representations and are useful,
ed species have different feeding sources
for instance, to recommend mitigation mea-
and foraging behaviors, the species of both
sures. Regarding the spatial structure of the
groups are central place foragers (Orians
aggregative patterns at both seasons (Fig. 4),
and Pearson, 1979) and use the presence of
the differences between the blocks near the
conspecifics as a cue to find food patches
breeding colonies, the blocks in the outer
at sea (Paiva et al., 2007; Ward and Zahavi,
side of the study area and the southern-
1973). This common behavior probably ex-
most blocks can be explained respectively
plains the similarity in the aggregative pat-
by the vital cycle requirements, the feeding
terns between species.
sources distribution, and trawling moratoria
The temporal evolution of the aggrega-
influence.
tive patterns (Fig. 3) is strongly correlated
The area near the colonies has low aggre-
to the life cycle of the species. The marked
gative levels during the breeding season. At
decrease in TPL slope in May and June co-
this moment of the year the species perform
incides with the chick-rearing period, when
frequent and shorter foraging trips than the
most of the pairs of the three species already
rest of the year (Paiva et al., 2007). This re-
have chicks and perform short and frequent
sults in a constant transit of individuals fly-
foraging trips resulting in low aggregation
ing from and to the colony minimizing the
levels at sea. After the breeding season in
time spent foraging. Once the chick-rear-
June, TPL slope increases markedly as birds
ing period ends, the aggregative patterns
are freed from chick-rearing constraints,
around colonies increase; although the area
70
|
Research papers might still be a highly transited area, it is
1992; Sierra et al., 2002) characterized by the
probably combined with some groups of in-
abundance of clupeoids (mainly sardine Sar-
dividuals feeding or spending time resting
dine pilchardus and snchovy Engraulis encrasi-
in these areas.
cholus). The presence of fish shoals and the
The aggregated pattern of the outer
proximity of the common tern colony make
blocks is likely to be driven by the presence of
this area an optimal feeding ground for the
feeding sources. Previous studies in the area
Common tern (Hernández-Matías, 2003). Be-
have reported the extensive use of trawlers
sides, the presence of trawlers makes the
discards by gulls (Arcos et al., 2001; Cama et
northern area attractive for Audouin’s gull
al., 2012; Navarro et al., 2010; Pedrocchi et al.,
and Yellow-legged gull during the trawling
2002) and the diet preferences of common
moratoria in the southern blocks (Cama,
terns (Arcos et al., 2002; Hernández-Matías,
2010).
2003), but no work so far had characterized
The southern area has two main har-
the spatio-temporal distribution of their ag-
bours (Vinarós and Benicarló) and an im-
gregation at sea. The aggregation in the out-
portant daily discarding activity from 15 to
er blocks south of the river mouth is due to
16 h which attracts large flocks of seabirds
a higher presence of trawlers and big flocks
(Cama, 2010). However, southernmost blocks
of birds associated (see trawlers’ distribu-
show a less consistent pattern between sea-
tion in Cama et al., 2012). The area north
sons and none differentiates significantly
of the river mouth is a highly productive
from the average aggregation level. This is
area due to the Ebro river runoff (Palomera,
most likely an effect of trawling moratoria on seabirds’ presence in the area.
Fig.5 Contour plots of the predicted TPL slope according to density of birds and mean flock size, (a) for a fixed 20% of birds flying and (b) for an 80%. The average TPL slope for the whole study area indicated with dashed line. Results based on the semiparametric GAM model of TPL slope with a linear estimator for proportion of birds flying and a smooth term for the interaction of mean flock size and density.
Behavioral interpretation of the aggregative pattern Taylor’s power law slope is widely accepted as an aggregation index, which is corroborated by its correlation with mean flock size. The GAM analysis allows us to be more precise in the interpretation of TPL slope in the case of seabird populations in the Ebro Delta. Low TPL slopes are related to areas with high percentages of birds flying, usually individually or forming small flocks (Fig. 5b). Hence, areas with weak aggregative patterns can be considered transitional or flight path areas. High TPL slopes are found in areas with high percentages of birds feeding and –to a lesser extent– sitting on water, mainly forming big flocks (Fig. 5a). This indicates that areas with strong aggregative patterns are mostly feeding areas
CHAPTER 3
|
71
Fig.6 Potential risk map (according to transitional and feeding areas) and concern levels for offshore wind farm placement.
where the presence of birdsâ&#x20AC;&#x2122; aggregations is
areas will eventually have big groups of sea-
driven by the availability of punctual feeding
birds feeding. The presence of offshore tur-
opportunities (fish shoals near the surface
bines in these areas would result in habitat
or discarding trawlers in this study case).
loss threat for species with a strong avoidance response or an increased collision risk
Density maps and Potential impact maps
for the species that venture between the wind turbines (Fig. 6).
Density maps define areas with high
This is particularly true for the assess-
numbers of birds but they do not provide in-
ment of areas of known importance for
formation on the dynamic and complex spa-
breeding populations. However, we suggest
tial patterns of seabirds. At the Ebro Delta, if
the necessity of applying this methodol-
a key protection area had to be selected ac-
ogy to flyway corridors or areas with a dif-
cording to density maps (Fig. 4 background)
ferent composition of species (e.g. plunge-
the northern area would be the one of high-
divers like gannets or surface-divers like sea
est concern, mainly based on high abun-
ducks) to investigate any possible difference
dances during the post-breeding season.
in the interpretation of the potential risks
Despite the intense pattern of movements
associated to the observed aggregative pat-
near the colonies, during the breeding peri-
terns. Nevertheless, to consider the infor-
od the pattern would be masked by low den-
mation on the second order properties of
sity values. Since the aggregative pattern is
speciesâ&#x20AC;&#x2122; distributions (i.e. social aggregation)
a reflection of behavior, it has a direct ap-
provides further information to managers in
plication in the demarcation of areas of high
terms of potential impacts of offshore wind
potential risk for seabirds. Areas revealed as
farms than solely focusing on the first order
main travelling areas are highly susceptible
properties (i.e. density).
to collision threat. Areas pointed as foraging
72
|
Research papers ence and abundance is crucial to describe
Concern levels and monitoring protocol
the factors driving the aggregative patterns which in turn can be used to evalu-
The placement of an offshore wind farm
ate barrier effects and the energetic costs of
is a management decision that takes into
avoidance (Masden et al., 2010). In the Ebro
account many socio-economic and environ-
Delta study case, the movement of trawlers
mental factors. To facilitate the inclusion
through time likely changes the distribu-
of seabirds in the decision-making process
tion patterns of gulls at sea as the birds fol-
we propose a ranking of the areas according
low them (e.g. Cama et al. 2012), hence an
to their potential impacts on the seabirdsâ&#x20AC;&#x2122;
offshore wind farm would only change the
populations. Based on recommendations in
distribution of this feeding source, having
the available literature, each level of concern
little impact on gulls. By contrast, the distri-
should be associated to a set of required
bution of terns is driven by productivity and
types of surveys for the EIA and the compul-
fish shoals availability (Paiva et al., 2007). If
sory monitoring for pre- and post-construc-
high numbers of the species were observed
tion of accepted wind farms.
in the area selected for the wind farm, the
Collision mortality is often considered
expected habitat loss could have harmful ef-
to be the most important hazard (Fox et al.,
fects on the population and should be taken
2006). Accordingly, those areas with both
into account in the EIA.
Collision and Habitat loss risk would have
For any project placed in L2 areas, be-
the higher concern level (L3); areas with col-
sides L1 and L0 monitoring, collision risk
lision risk would have the next concern level
models should be calculated. This requires
(L2) followed by areas with habitat loss risk
-depending on the particular case- point
(L1).
transect surveys of flight height and direc-
Any project placed in L0 areas would re-
tion (Camphuysen et al., 2004), surveillance
quire the monitoring of the nearest colonies
radars (vertical and/or horizontal) or infra-
to obtain estimates of demographic and
red camera systems (Desholm et al., 2006).
population sizes to assess how the popu-
In these cases it is especially important an
lations respond to the offshore wind farm
adequate monitoring in pre- and post-cons-
(Kunz et al., 2007).
truction to evaluate predictions made in EIA,
Any project placed in L1 areas, besides
to allow adaptive management of the wind
the previous recommended monitoring,
farm but also to quantify the cumulative im-
should in addition include distribution and
pacts on migratory species (Fox et al., 2006).
habitat modeling (Drewitt and Langston,
Finally, for any project placed too near or
2006; Fox and Petersen, 2006). Part of the
inside Level 3 areas, satellite-tracking stud-
modeling can be based on the already avail-
ies should be also carried out in order to as-
able aerial surveys. However, species with
sess quantitatively the intensity of tracks in
limited numbers or the very small species
the transitional areas and the recurrence of
(e.g. storm petrels, shearwaters, alcids) are
feeding areas. The selected species should
likely missed by aerial surveys and only
be preferentially a flagship or keystone spe-
found in boat surveys (Camphuysen et al.,
cies, because of their conservation status or
2004). Hence, L1 areas with planned wind
relevance in the community. In the Ebro Del-
turbines should be assessed with detailed
ta, for instance, the near threatened Audou-
boat-based surveys. Modeling species pres-
inâ&#x20AC;&#x2122;s gull (Larus audouinii) would be the target
CHAPTER 3 of the study since the colony holds 12000-
ve the decision-making process. To know
13000 breeding pairs, ca. 65% of the world’s
the compulsory monitoring in a selected
total population of this species (Christel et
site might help to decide the optimal loca-
al., 2012; Oro et al., 2009).
tion of offshore wind farms minimizing not only the impact on the seabird community
CONCLUSION
but also the future monitoring costs. Once the placement is decided, the same results
The design of EIA and monitoring sur-
could be used to inform the EIA.
veys is not always an easy, straightforward decision. This is particularly true in areas
ACKNOWLEDGEMENTS
where there is scarce knowledge on the distribution and abundance of the seabirds’
The Offshore wind farm project in front
community at sea. Unlike boat surveys,
of the Ebro Delta was rejected in 2009 be-
aerial surveys provide an extensive covera-
cause it was within an exclusion area in the
ge in a short period of time that offers an
final zonation for the offshore wind energy
image of the presence of seabirds at sea in
in Spain published that year (SEA according
a particular moment (Certain and Bretagno-
to the Real Decreto 1028/2007).
lle, 2008; Drewitt and Langston, 2006). This
We are grateful to T. Anker-Nilssen and
characteristic feature of aerial surveys can
E. Bellier for their useful comments in the
unveil distribution patterns that differ with
first steps of this paper. We appreciate the
the previous knowledge, which is often ba-
work of X. Macià as dedicated observer in
sed in observations from land or ship-based
all the aerial surveys. Special thanks to I.
surveys with more limited area coverage
Bruteig (NINA, Trondheim), O.T. Albert and
per survey than flights. Taylor’s power law
B. Planque (IMR, Tromsø) for welcoming IC
applied on aerial surveys provides a con-
into their groups during the development of
venient analysis tool to ensure the optimal
this paper. Capital Energy Offshore funded
allocation in time and space of resources in
the aerial surveys through agreement with
order to obtain the most detailed knowledge
Fundació Bosch i Gimpera (Contract 304683).
for the EIA of future offshore wind farms on
IC was funded by a PhWD fellowship of the
seabirds.
University of Barcelona. AC was funded by a
Although presented for a local scale, we think that this methodology would be very
PhD fellowship of the Government of Catalonia (2009FIC75).
useful in the four steps of offshore wind energy development: the SEA of offshore
REFERENCES
wind energy development, the decision-making on wind farm projects placement, the
Arcos, J., 2001. Foraging ecology of seabirds at sea:
EIA design and the monitoring planning of
Significance of commercial fisheries in the NW
accepted projects. At a broader scale than
Mediterranean. Thesis, University of Barcelo-
the one presented here, this tool could be
na.
used in the marine spatial planning to select
(accessed 28.02.12)
<http://www.tdx.cat/handle/10803/775>
development regions that avoid the areas
Arcos, J., Louzao, M., Oro, D., 2008. Fisheries ecosys-
identified with potential impacts. Within a
tem impacts and management in the Medite-
selected region, stating a clear monitoring
rranean: seabirds point of view. American Fis-
protocol prior to placement would impro-
heries Society Symposium 49, 1471-1479.
|
73
74
|
Research papers Arcos, J., Oro, D., Sol, D., 2001. Competition bet-
10.1111/j.1600-0587.2011.06756.x.
ween the yellow-legged gull Larus cachinnans
Camphuysen, C.J., Fox, A.D., Leopold, M.F., Peter-
and Audouin’s gull Larus audouinii associated
sen, I.K., 2004. Towards standardised seabirds
with commercial fishing vessels: the influence
at sea census techniques in connection with
of season and fishing fleet. Marine Biology 139,
environmental impact assessments for offs-
807-816.
hore wind farms in the U.K., Cowrie Report.
Arcos, J., Ruiz, X., Bearhop, S., Furness, R.W., 2002.
London.
Mercury levels in seabirds and their fish prey
Certain, G., Bellier, E., Planque, B., Bretagnolle, V.,
at the Ebro delta (NW Mediterranean): the role
2007. Characterising the temporal variabili-
of trawler discards as source of contamina-
ty of the spatial distribution of animals: an
tion. Marine Ecology Progress Series 232, 281-
application to seabirds at sea. Ecography 30,
290.
695-708.
Bates, D.M., Maechler, M., Bolker, B., 2011. lme4:
Certain, G., Bretagnolle, V., 2008. Monitoring
Linear mixed-effect models using S4 classes.
seabirds population in marine ecosystem: The
R package version 0.999375-42.
use of strip-transect aerial surveys. Remote
Boyd, I.L., Wanless, S., Camphuysen, C.J., 2006. Top
Sensing of Environment 112, 3314-3322.
predators in marine ecosystems: their role
Christel, I., Navarro, J., del Castillo, M., Cama,
in monitoring and management. Cambridge
A., Ferrer, X., 2012. Foraging movements of
University Press.
Audouin’s gull (Larus audouinii) in the Ebro
Bretagnolle, V., Certain, G., Houte, S., Métais, M.,
Delta, NW Mediterranean: A preliminary sa-
2004. Distribution maps and minimum abun-
tellite-tracking study. Estuarine, Coastal and
dance estimates for wintering auks in the Bay
Shelf Science 96, 257-261.
of Biscay, based on aerial surveys. Aquatic Living Resources 353-360.
Cramp, S., Simmons, K.E.L., 2004. BWPi. Birds of the Western Paleartic on Interactive DVD-
Bright, J., Langston, R.W., Bullman, R., Evans, R., Gardner, S., Pearcehiggins, J., 2008. Map of bird
ROM. Birdguides, Oxford University Press, Oxford, U.K.
sensitivities to wind farms in Scotland: A tool
Desholm, M., Fox, A.D., Beasley, P.D.L., Kahlert, J.,
to aid planning and conservation. Biological
2006. Remote techniques for counting and es-
Conservation 141, 2342-2356.
timating the number of bird-wind turbine co-
Buckley, N.J., 1997. Spatial-concentration effects
llisions at sea: a review. Ibis 148, 76-89.
and the importance of local enhancement in
Desholm, M., Kahlert, J., 2005. Avian collision risk
the evolution of colonial breeding in seabirds.
at an offshore wind farm. Biology Letters 1,
American Naturalist 149, 1091–1112.
296-298.
Cairns, D., 1987. Seabirds as indicators of marine food supplies. Biological Oceanography 5, 261271.
Drewitt, A., Langston, R.W., 2006. Assessing the impacts of wind farms on birds. Ibis 148, 29-42. Engen, S., Lande, R., Sæther, B.-E., 2008. A general
Cama, A., 2010. Seabird distribution patterns and ecological factors driving larid presence at the Ebro delta shelf (NW Mediterranean). Thesis, University of Barcelona.
model for analyzing Taylor’s apatial acaling laws. Ecology 89, 2612-2622. Fox, A.D., Desholm, M., Kahlert, J., Christensen, T.K., Petersen, I.K., 2006. Information needs to
Cama, A., Abellana, R., Christel, I., Ferrer, X.,
support environmental impact assessment of
Vieites, D.R., 2012. Living on predictability:
the effects of European marine offshore wind
modeling the density distribution of efficient
foraging
seabirds.
Ecography.
DOI:
farms on birds. Ibis 148, 129-144. Fox, A.D., Petersen, I.K., 2006. Assessing the de-
CHAPTER 3 gree of habitat loss to marine birds from
studies. Environmental Monitoring and As-
the development of offshore wind farms, in:
sessment 113, 31-48.
Boere, G.C., Galbaraith, C.A., Stroud, D.A. (Eds.),
Masden, E. a, Haydon, D.T., Fox, A.D., Furness, R.W.,
Waterbirds Around the World. The Stationery
2010. Barriers to movement: Modelling ener-
Office, Edimburg, UK, pp. 801-804.
getic costs of avoiding marine wind farms
Grünbaum, D., Veit, R.R., 2003. Black-browed albatrosses foraging on antarctic krill: Density-dependence through local enhancement? Ecology 84, 3265–3275.
amongst breeding seabirds. Marine Pollution Bulletin 60, 1085-91. Moreno, R., Jover, L., Diez, C., Sanpera, C., 2011. Seabird feathers as monitors of the levels and
Hernández-Matías, A., 2003. An approach to colo-
persistence of heavy metal pollution after the
niality in seabirds: The common tern Sterna
Prestige oil spill. Environmental Pollution 159,
hirundo as a case study. Thesis, University of
2454-60.
Barcelona.
Navarro, J., Oro, D., Bertolero, A., Genovart, M.,
Hüppop, O., Dierschke, J., Exo, K.-michael, Fre-
Delgado, A., Forero, M.G., 2010. Age and sexual
drich, E., Hill, R., 2006. Bird migration studies
differences in the exploitation of two anthro-
and potential collision risk with offshore wind
pogenic food resources for an opportunistic
turbines. Ibis 148, 90-109. Jiménez, J., Rossi, J.P., Lavelle, P., 2001. Spatial distribution of earthworms in acid-soil savannas of the eastern plains of Colombia. Applied Soil Ecology 17, 267-278.
seabird. Marine Biology 157, 2453–2459. Nettleship, D.N., Duffy, D.C., 1993. Seabird populations. Elsevier Applied Science, London. Noer, H., Christensen, T.K., Clausager, I., Petersen, I.K., 2000. Effects on birds of an offshore wind
Kendal, W.S., 2004. Taylor’s ecological power law
park at Horns Rev: Environmental impact
as a consequence of scale invariant exponen-
assessment. NERI report, MEE-NERI. <http://
tial dispersion models. Ecological Complexity
www.hornsrev.dk/miljoeforhold/miljoerap-
1, 193–209.
porter/Baggrundsrapport_18.pdf>
Kilpatrick, A., Ives, A., 2003. Species interactions can explain Taylor’s power law for ecological time series. Nature 422, 65–68.
(accessed
28.02. 12) Orians, G.H., Pearson, N.E., 1979. On the theory of central place foraging, in: Horn, D.J., Mitchell,
Kunz, T.H., Arnett, E.B., Cooper, B.M., Erickson,
R.D., Stairs, G.R. (eds) (Eds.), Analysis of Ecolo-
W.P., Larkin, R.P., Mabee, T., Morrison, M.L.,
gical Ecosystems. Colombus: Ohio State Uni-
Strickland, M.D., Szewczak, J.M., 2007. Assessing Impacts of Wind-Energy Development on
versity Press, pp. 155-177. Oro, D., 1998. Larus audouinii Audouin’s Gull, BWP
Nocturnally Active Birds and Bats: A Guidance
Update (pp. 47-61). Oxford University Press.
Document. Journal of Wildlife Management
Oro, D., Bosch, M., Ruiz, X., 1995. Effects of trawl
71, 2449-2486. Louzao, M., Hyrenbach, K.D., Arcos, J., Abelló, P., de Sola, L.G., Oro, D., 2006. Oceanographic habitat
moratorium on the breeding paramenters of the Yellow-legged Gull Larus cachinnans. Ibis 137, 547-549
of an endangered Mediterranean procellarii-
Oro, D., Pérez-Rodríguez, A., Martínez-Vilalta, A.,
form: Implications for marine protected areas.
Bertolero, A., Vidal, F., 2009. Interference com-
Ecological Applications 16, 1683-1695.
petition in a threatened seabird community: A
Mallory, M.L., Gilchrist, H.G., Braune, B.M., Gaston, A.J., 2006. Marine birds as indicators of
paradox for a successful conservation. Biological Conservation 142, 1830-1835.
Arctic marine ecosystem health: linking the
Oro, D., Ruiz, X., 1997. Exploitation of trawler dis-
Northern Ecosystem Initiative to long-term
cards by breeding seabirds in the north-wes-
|
75
76
|
Research papers tern Mediterranean: differences between the
Sierra, J., Sánchez-Arcilla, A., GonzálezDelRio, J.,
Ebro Delta and the Balearic Islands areas. ICES
Flos, J., Movellán, E., Mösso, C., Martínez, R.,
Journal of Marine Science: Journal du Conseil
Rodilla, M., Falco, S., Romero, I., 2002. Spatial
54, 695-707.
distribution of nutrients in the Ebro estuary
Paiva, V.H., Ramos, J. a., Martins, J., Almeida, A., Carvalho, A., 2007. Foraging habitat selection by Little Terns Sternula albifrons in an estuarine lagoon system of southern Portugal. Ibis 150, 18-31. Palomera, I., 1992. Spawning of anchovy Engraulis
and plume. Continental Shelf Research 22, 361-378. Taylor, L.R., 1961. Aggregation, Variance and the Mean. Nature 189, 732-735. Taylor, L.R., Woiwod, I.P., 1980. Temporal Stability as a Density-Dependent Species Characteris-
encrasicolus in the Northwestern Mediterra-
tic. The Journal of Animal Ecology 49, 209-224.
nean relative to hydrographic features in the
Taylor, L.R., Woiwod, I.P., 1982. Comparative Sy-
region. Marine Ecology Progress Series 79, 215-
noptic Dynamics. I. Relationships between
223.
Inter- and Intra-specific spatial and temporal
Pedrocchi, V., Oro, D., González-solís, J., Ruiz, X., Jover, L., 2002. Differences in diet between the
variance/mean population parameters. The Journal of Animal Ecology 51, 879-906.
two largest breeding colonies of Audouin’s
Ward, P., Zahavi, A., 1973. The importance of cer-
gulls: the effects of fishery activities. Scientia
tain assemblages of birds as “information-
Marina 66, 313-320.
centres” for food-finding. Ibis 115, 517-534.
Perrow, M.R., Gilroy, J.J., Skeate, E.R., Tomlinson,
Wiese, F.K., Montevecchi, W.., Davoren, G.., Huett-
M.L., 2011. Effects of the construction of Scroby
mann, F., Diamond, A.., Linke, J., 2001. Seabirds
Sands offshore wind farm on the prey base of
at risk around offshore oil platforms in the
Little tern Sternula albifrons at its most im-
North-west Atlantic. Marine Pollution Bulletin
portant UK colony. Marine Pollution Bulletin
42, 1285-1290.
62, 1661-70. Pinheiro, J.., Bates, D.M., 2000. Mixed-Effects Models in S and S-PLUS, Front matter. SpringerVerlag, New York.
Wood, S., 2006. Generalized additive models: an introduction with R. Chapman and Hall/CRC, Boca Raton. Östman, O., 2002. Distribution of bird cherry-oat
R Development Core Team, 2008. R: A Language
aphids (Rhopalosiphum padi (L.)) in relation to
and Environment for Statistical Computing.
landscape and farming practices. Agriculture,
Vienna Austria R Foundation for Statistical
Ecosystems & Environment 93, 67-71.
Computing.
CHAPTER 3
|
77
78
|
Research papers resum Conèixer les estratègies d’alimentació dels depredadors marins és essencial per comprendre els factors intrínsecs que controlen la seva distribució, abundància i la seva funció ecològica en l’ecosistema marí. En el següent capítol, es va investigar per primera vegada els moviments de cerca d’aliment i els patrons d’activitat de la gavina corsa Larus audouinii mitjançant l’ús de dades de localització per satèl·l it a partir de vuit adults reproductors a la colònia principal de l’espècie a tot el món (el Delta de l’Ebre, Mediterrània NO). Les gavines marcades s’alimentaven a la zona marina propera a la colònia de cria (62% dels llocs d’alimentació) i a l’àrea terrestre del Delta de l’Ebre (principalment els camps d’arròs, el 38% dels llocs d’alimentació). Els patrons d’activitat de cerca d’aliment va canviant significativament al llarg del dia; El seu mínim va del capvespre fins a la primera meitat de la nit (19-1 h, el 32% dels llocs actius) i és més alt durant la resta del dia (1-19 h; 75,5 ± 4,3% ubicacions d’actives). Aquests resultats confirmen la plasticitat alimentària d’aquesta au marina i, en base a la informació anterior sobre els hàbits alimentaris d’aquesta espècie, hipotetitzem sobre com els seus patrons d’activitat temporal i l’ús que fa de l’hàbitat podrien estar associats amb variacions en la disponibilitat de recursos alimentaris marins (per exemple, les migracions verticals diàries dels peixos pelàgics) i de l’explotació dels recursos terrestres (per exemple, crancs de riu americà Procambarus clarkii).
JOURNAL REFERENCE Christel I, Navarro J, del Castillo M, Cama A, Ferrer X (2012) Foraging movements of Audouin’s gull (Larus audouinii) in the Ebro Delta, NW Mediterranean: A preliminary satellite-tracking study. Estuarine, Coastal and Shelf Science 96:257–261 PDF available in the Appendix, page 134
Foraging movements of Audouin’s gull (Larus audouinii) in the Ebro Delta, NW Mediterranean: A preliminary satellite-tracking study Isadora Christel1,2, Joan Navarro3, Marcos del Castillo4, Albert Cama1,2 and Xavier Ferrer1 1
Institute for Research on Biodiversity (IRBio) and Departament de Biologia Animal, Universitat de Barcelona (UB). Diagonal 645, E-08028 Barcelona, Spain.
2
Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas. C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain. 3 Institut de Ciències del Mar (ICM-CSIC), P. Marítim de la Barceloneta 37-49, 08002 Barcelona, Spain. 4 C/ Vilanova 8A, 07002 Palma de Mallorca, Mallorca, Illes Balears, Spain.
A bstract Knowing the foraging strategies of marine predators is essential to understand the intrinsic factors controlling their distribution, abundance and their ecological function within the marine ecosystem. Here, we investigated for the first time the foraging movements and activity patterns of Audouin’s gull Larus audouinii by using satellite-tracking data from eight breeding adults in the main colony of the species worldwide (Ebro Delta, NW Mediterranean). Tagged gulls foraged in the marine area close to the breeding colony (62% of foraging locations) and in the terrestrial area of the Ebro Delta (mainly rice fields; 38% of foraging locations). The foraging activity patterns changed significantly throughout the day; lower from dusk through the first half of the night (19-1 h; 32% of active locations) and higher during the rest of the day (1-19 h; 75.5±4.3% of active locations). These results confirm the foraging plasticity of this seabird and, based on previous information about the dietary habits of this species, we hypothesize how its time-dependent activity patterns and habitat use could be associated with variations in the availability of marine food resources (e.g. diel vertical migrations of pelagic fish) and the exploitation of terrestrial resources (e.g. American crayfish Procambarus clarkii).
4
80
|
Research papers Introduction
cially relevant in breeding populations located in areas where diverse trophic resources
An important issue in the feeding ecolo-
are highly available (e.g. Oro and Ruiz, 1997;
gy of marine predators is the degree of plas-
Oro et al., 1999; Navarro et al., 2010), which is
ticity of their foraging behaviour. In general,
the case of the breeding population located
specialist predators are constrained to fora-
in the Ebro Delta (Fig.1. NW Mediterranean).
ge on a specific habitat and time of day de-
This colony holds around 12000-13000 bree-
termined by a specific prey availability (Fu-
ding pairs of Audouin’s gull, ca. 65% of the
tuyma and Moreno, 1988; Krebs and Davies,
total world population (Oro et al., 2009). The
1993; Julliard et al., 2006). Under changing
marine ecosystem of the Ebro Delta is one of
conditions of prey availability, specialists
the most important fishing grounds in the
are able to dapt their foraging strategy by
Mediterranean Sea, resulting in one of the
extending foraging range or time spent fo-
largest fishing fleets in this region, which
raging (e.g. Oro et al., 1997; Lewis et al., 2001;
generates a high quantity of fisheries dis-
Schwemmer and Garthe, 2008). By contrast,
cards (Coll et al., 2008). Moreover, freshwater
generalist predators have the ability to ex-
resources such as the invasive American
ploit different trophic resources and, con-
crayfish Procambarus clarkii in the rice fields
sequently, they present higher plasticity in
of the Ebro Delta are abundant and easily
their foraging strategies (Krebs and Davies,
available (Gutierrez-Yurrita et al., 1999), pro-
1993; Boyd et al., 2006; Julliard et al., 2006).
viding an alternative and proficient trophic
This opportunistic behaviour allows genera-
resource for the species (Oro et al., 1996b;
lists to modify their foraging strategies (i.e.
Longoni, 2010; Navarro et al., 2010).
exploited habitat, range or temporal pat-
Although the diet habits of the Audouin’s
terns) according, for instance, to the varying
gull are well known (e.g. Oro et al., 1997; Pe-
degree of competition for food. Indeed, the
drocchi et al., 2002; Sanpera et al., 2007; Na-
foraging plasticity of marine predators has
varro et al. 2010), detailed information on
allowed these organisms to benefit from
the foraging movements is biased toward
anthropogenic food resources (e.g. fisheries
studies based on ship surveys (e.g. Abelló
discards, refuse dumps or introduced prey
and Oro,1998; Arcos et al., 2001; Abelló et al.,
species; Tablado et al., 2010; Ramos et al.,
2003), which are strongly biased by the in-
2011; Wagner and Boersma, 2011).
fluenceof fishery discards and underestima-
Amongst
marine
predators,
the
te the importance of land habitat utilization.
Audouin’s gull Larus audouinii is a good
The only previous telemetric study (radio-
example of an opportunist species that ex-
tracking) already pointed to the apparent
hibits clear plasticity in its diet habits. This
importance of the terrestrial habitat for the
Mediterranean endemic species exploits
breeding population of the Ebro Delta colony
small pelagic fish (their main prey, see Oro
(Mañosa et al., 2004).
1998 and references therein), but also al-
Here, we present preliminary results of
ternative anthropogenic resources such as
the first satellite-tracking study of Audouin’s
demersal or benthonic fish from fisheries
gull during the breeding season in its lar-
discards or invasive freshwater crabs from
gest breeding colony (Ebro Delta). This pa-
terrestrial habitat (Oro et al., 1996a; Oro and
per aims to quantify the foraging range of
Ruiz, 1997; Oro et al., 1999; Navarro et al.,
Audouin’s gull, evaluate the habitat utili-
2010). This opportunistic behaviour is espe-
zation of marine and terrestrial areas and
CHAPTER 4
|
81
Fig.1 (a) Breeding
identify the temporal patterns of the fora-
battery powered “Platform Transmitter Ter-
ging activity of the species. Based on pre-
minals” (PTTs; North Star Science and Tech-
vious information about the dietary habits
nology, LLC) during the chick-rearing period
of this species, we also hypothesize how the
(May) of 2006 (Table 1). We captured all birds
observed foraging movements could be at-
on the nest by using a drop trap (Mills and
tributed to the exploitation of different tro-
Ryder, 1979) during late incubation to redu-
phic resources in the Ebro Delta marine and
ce the risk of desertion. Once trapped, each
terrestrial ecosystems.
individual was sexed, weighed, ringed and tagged with a PTT. The attached PTTs weig-
Material and methods
hed 20 g and were programmed to be active in a 6 h on/5 h off duty cycle to get infor-
Fieldwork procedures
mation on the foraging locations during one month. The PTT was fixed to the mid-dorsal
The study was carried out at the natural
feathers of the mantle using Tesa tape (Wil-
reserve of Punta de la Banya in the Ebro Del-
son et al., 1997). With this method the PTT
ta Natural Park, North Western Mediterra-
falls off after one month without the neces-
nean Sea (Fig. 1, 40º33’N, 0º39’E). Punta de la
sity to recapture the instrumented bird. The
Banya is a flat sandy peninsula of 2,514 ha,
entire transmitter equipment represented
partially occupied by saltworks and connec-
between 3 and 4% of the Audouin’s gull’s
ted to extensive rice field areas (20,000 ha)
body mass, so the potential effects of an
by a 5 km-long narrow sand bar. To examine
additional weight on the gull’s movement
the foraging activity, we satellite-tracked 8
were minimized (e.g. Phillips et al., 2003;
breeding birds (4 males and 4 females) using
Passos et al., 2010).
areas of the Mediterranean endemic Audouin’s gull Larus audouinii and study area: Ebro Delta, NW Mediterranean. (BirdLife International, 2011) (b) Map of the Ebro Delta area indicating the Audouin’s gull colony position with an asterisk and 1 km buffer area around la “Punta de la Banya” peninsula, the rice fields and wetlands shaded in dark gray and the location of the main harbours. (c) Foraging locations of 7 satellite-tracked Audouin’s gulls during the breeding period of 2006. To better visualize the foraging locations’ range the Minimum Convex polygon (short dashed line) is shown beside the 95% (solid line) and 50% (long dashed line) kernel polygons.
82
|
Research papers
Table.1 Summary information of PTTs performance
and the first kilometer around it were “fora-
Satellite-tracking data and statistical analyses
ging locations” (we assumed that the birds were feeding to recover the body condition
Data on the position of each PTT were
lost during the incubation bout). Finally, we
obtained from ARGOS system (CLS, Tou-
calculated the 95% fixed-kernel estimates of
louse, France) and imported to ArcView 3.2
the foraging area and the maximum fora-
(ESRI) using the Argos Tool extension (Pota-
ging distance from the colony.
pov and Dubinin, 2005). Each position was
We employed logistic regression – a ge-
classified according to its estimated error:
neralized linear model (GLM) – to test the fo-
Type 0 (>1000 m), Type 1 (350-1000 m), Type
raging activity and habitat use. First, we tes-
2 (150-350 m), Type 3 (0-150 m), and Types A
ted a model with the proportion of foraging
and B (without an estimated error) (ARGOS,
locations as the dependent variable, and
2006). Initial data filtering involved calcula-
we selected as the explanatory variable the
ting velocities between successive satellite
“time of day” -categorized in 6-hour inter-
locations, and rejecting those for which the
vals (1-7 h; 7-13 h; 13-19 h; 19-1 h)- with the
velocity exceeded a threshold of 50 m·s-1,
7-13 h interval as the reference level. Then,
the maximum velocity described for this
we analyzed habitat use by testing the effect
species (Rosén and Hedenström, 2001). By
of the explanatory variable “time of day” on
this procedure, up to 8 % of the locations
the dependent variable “terrestrial vs. ma-
were filtered; all of them from the low-qua-
rine proportion of foraging locations”. The
lity accuracy class “B”.
analyses were carried out using R software
To gain insight into the foraging activi-
(R Development Core Team, 2008), calling
ty of the tagged Audouin’s gulls we sorted
the “glm” function with binomial error dis-
the locations into three classes, according
tribution and its default logit link function.
to their spatial position. PTT locations in-
A likelihood ratio test was used to compa-
side the “Punta de la Banya” peninsula or
re the resulting model with the null model
within the first kilometer around it were
(without any variable) and to assess the sig-
classified into the “colony locations” group.
nificance of the explanatory variable “time
In contrast, the locations outside the colony
of day”.
CHAPTER 4
Results
83
Fig.2 Example of foraging trajectories for the individual “58980” (see Table 1 for more information)
We obtained a total of 89 filtered PTT locations spanning a period of 13 consecutive days. One of the eight PTTs failed to give any location probably due to a battery failure, and the performance of the remaining PTTs was heterogeneous (see Table 1). Due to sample size limitations individual variability was not included in the analysis, but the movements of one of the tracked individuals is shown in Figure 2 to illustrate the
day, they foraged mainly in marine rather
general pattern of the foraging movements.
than terrestrial habitat (1-7h: 50% marine,
The
|
the
28% terrestrial habitat; 7-13h: 59% marine,
Audouin’s gulls was 5400 km2 (95% fixed-
foraging
area
covered
by
19% terrestrial habitat; 19-1h: 23% marine,
kernel density estimate), covering both the
9% terrestrial habitat)(Fig. 3a).
marine area of the Ebro Delta (ca. 3300 km2) and the terrestrial area (ca. 2100 km2) (Fig.
Discussion
1c). The maximum foraging distance covered ranged from 20.5 to 81.7 km (mean ± sd
Satellite-tracked Audouin’s gulls covered
= 51.5 ± 24.3 km) and was similar for both
a foraging area that ranges 80 km, span-
marine and terrestrial locations (T-Student
ning both marine and terrestrial habitats. It
test, T = 1.44, df = 56, p = 0.15).
has been widely described previously that
The foraging activity changed signifi-
breeding Audouin’s gulls cover large ran-
cantly over the course of the day (Likelihood
ges when foraging. There are records of in-
Ratio Test, χ =13.79, df =3, p=0.003). Tagged
dividuals foraging at 70 to 150 km from the
gulls were more active at 7-13 h (78.1%), at
breeding colony during the breeding season
1-7 h (77.8% of the total locations in this pe-
(Baccetti et al., 2000; Mañosa et al., 2004),
riod, p = 0.65), and 13-19h (70.6%, p = 0.56),
and data from vessel counts suggest that
all of them significantly different from the
individuals forage during the day and night
19-1 h interval (31.8%, p= 0.001), i.e., the fora-
even further offshore (Abelló and Oro, 1998;
ging activity diminished during the first half
Arcos and Oro, 1996). However, the species’
of the night (Fig. 3b). Moreover, we found
terrestrial foraging movements had been
that the proportion of foraging locations in
scarcely described (Ruiz et al., 1996; Mañosa
marine vs. terrestrial habitats changed du-
et al., 2004).
2
ring the day. Although the time of day was
It is well documented that Audouin’s
not significant as a global explanatory va-
gulls forage during the night in marine
riable, the model indicated a significant di-
habitats preying on small pelagic fish and
fference between the 13-19 h interval and
exploiting discards provided by nocturnal
the reference level 7-13 h (p= 0.04) (Fig. 3c).
fisheries (e.g. Witt et al. 1981; Mañosa et al.
Between 13h and 19 h, Audouin’s gulls fora-
2004; Arcos et al., 2008). However, our re-
ged mainly in terrestrial (41%) rather than in
sults highlight that the species’ nocturnal
marine habitat (29%); during the rest of the
activity is not homogeneous throughout
84
|
Research papers the night (see Fig.3). Satellite-tracked gulls were mainly located in the breeding colony during the hours before and after dusk (19-
Fig.3 (a) Activity (foraging in marine or terrestrial habitat; or located in the colony) during a 24h cycle of 7 satellite-tracked Audouin’s gulls during the breeding period in Ebro Delta colony. (b,c) Mean and 95% confidence interval, of the foraging probability and foraging in marine habitat probability respectively, according to the GLM models. * indicates a significant difference of the time block probability compared to the reference level 7-13 h.
1 h). In the period after midnight to dawn (1-7 h) they increased their foraging activity, which then remained constant and high during the day. These results, coupled with the nocturnal arrival and departure times from the breeding colony described in Mañosa et al. (2004), confirm a peak of activity between midnight and dawn. Attendance to purse seiners during the night is considered a strategy that is only significant during trawling moratorium and winter periods (Arcos and Oro, 2002), neither of which were covered during our study; therefore, the individuals located at sea during the night were probably feeding on small pelagic fish. Accordingly, the nocturnal foraging habits of the Audouin’s gull would still rely on the capture of small pelagic fish (Witt et al., 1981; Oro, 1998), a resource that might not be available throughout the night, but only in the hours before dawn due to the diel vertical migration of the shoals (Blaxter and Hunter, 1982; Oro, 1998). With regard to diurnal activity, tagged birds showed a high foraging activity with an unexpected constant presence in terrestrial habitats (generally rice fields or wetlands) in addition to the expected presence in marine habitat (Oro, 1998). The fact that all tagged individuals could be found in both habitats suggests that the use of terrestrial habitat was not due to the casual behaviour of a single individual. This result supports previous studies that describe the use of the rice fields of the Ebro Delta by the Audouin’s gull (Ruiz et al., 1996; Mañosa et al., 2004; Longoni, 2010), probably related to the exploitation of the exotic American crayfish (Navarro et al., 2010), which is very abundant in the rice fields of the Ebro Delta (Gutierrez-Yurrita et al., 1999). Although
CHAPTER 4 many studies have demonstrated that the
Park team (T.Curcó, C. Vidal and F. Blanch).
Audouin’s gull exploits trawler discards (Oro
S. Young revised the English. Research funds
et al., 1997; Arcos, 2001; Cama, 2010), the fo-
were provided by a project funded by Capi-
raging activity of our satellite-tracked indi-
tal Energy through agreement with Funda-
viduals was higher inland than at sea in a
ció Bosch i Gimpera (Contract 304683). I. C.
period of time that includes the discarding
was funded by a PhD fellowship of the Uni-
peak of the trawling fleet (from 15 to 16 h;
versity of Barcelona. J. N. was supported by
Cama, 2010). This result suggests that te-
a postdoctoral contract of Juan de la Cierva
rrestrial foraging has become an alternative
program (MICINN-JDC, Spanish Ministry of
food source to trawling discards (Navarro et
Science and Innovation). A. C. was funded
al., 2010), probably prompted by the inter-
by a PhD fellowship of the Government of
ference competition for fisheries discards:
Catalonia (2009FIC75).
namely, intraspecific competition (due to an increasing population density), and inters-
References
pecific competition with the sympatric and dominant Yellow legged gull Larus michahellis (e.g. Arcos et al., 2001). In conclusion, the present study
Abelló, P., Oro D., 1998. Offshore distribution of seabirds in the northwestern Mediterranean in June 1995. Colonial Waterbirds 21, 422-426.
shows that Audouin’s gull foraged in both
Abelló, P., Arcos, J., Gil Sola, L., 2003. Geographical
marine and terrestrial habitats and showed
patterns of seabird attendance to a research
activity during both night and day. These re-
trawler along the Iberian Mediterranean coast.
sults confirm the high foraging plasticity of
Scientia Marina 67, 69–75.
Audouin’s gull, a species once defined as a
Arcos, J., 2001. Foraging ecology of seabirds at sea:
specialist nocturnal forager that has beco-
significance of commercial fisheries in the
me an opportunist on fisheries discards and
NW Mediterranean. PhD Thesis, University of
terrestrial resources. However, due the limi-
Barcelona.
ted sample size we suggest the necessity of
Arcos, J., Oro, D., 1996. Changes in foraging range
conducting more studies using biologging
of Audouin’s gulls Larus audouinii in relation to
methodologies (such as PTTs or GPS) to con-
a trawler moratorium in the western Medite-
firm the observed patterns and to gain new
rranean. Colonial Waterbirds 1, 128-131.
insight into the foraging ecology of this endangered seabird.
Arcos, J., Oro, D., Sol, D., 2001. Competition between the yellow-legged gull Larus cachinnans and Audouin’s gull Larus audouinii associated
Acknowledgments
with commercial fishing vessels: the influence of season and fishing fleet. Marine Biology 139,
The birds were tagged with a permit
807-816.
from the Environmental Department of the
Arcos, J., Oro, D., 2002. Significance of nocturnal
Catalonian Government. We are grateful to
purse seine fisheries for seabirds: a case study
D. Oro, L. Cardador and J. M. Arcos for their
off the Ebro Delta (NW Mediterranean). Marine
comments to improve this manuscript. F.
Biology 141, 277–286.
Zino, C. Carboneras and J. González-Solís for
Arcos, J., Louzao, M., Oro, D., 2008. Fishery ecosys-
their comments about attachment methods.
tem impacts and management in the medite-
We also appreciate the help of X. Macià, R.
rranean: seabirds point of view. American Fis-
Loras, S. Mañosa and the Ebro Delta Natural
heries Society Symposium 49, 1471-1479.
|
85
86
|
Research papers ARGOS, 2006. Argos User’s Manual. ARGOS CLS, Toulouse, France. http://www.argos- system. org/manual/link. Last accessed 24 November 2011. Baccetti, N., Dall’Antonia, L., Magnani, A., Serra, L., 2000. Foraging routes of Audouin’s Gulls
the best of a bad situation?. Crustacean Issues, Balkema, Rotterdam, pp. 161–192. Julliard, R., Clavel, J., Devictor, V., Jiguet, F., Couvet, D., 2006. Spatial segregation of specialists and generalists in bird communities. Ecology letters 9, 1237-44.
Larus audouinii from two Sardinian colonies.
Krebs, J.R., Davies, N.B., 1993. An introduction to
In: Sultana, J., Yésou, P. (Eds.), Monitoring and
behavioural ecology. Wiley-Blackwell publis-
conservation of birds, mammals and sea turt-
hing, Oxford, 420 pp.
les of the Mediterranean and Black Seas. En-
Lewis, S., Sherratt, T.N., Hamer, K.C., Wanless, S.,
vironment Protection Department, Malta, pp.
2001. Evidence of intra-specific competition
150-158.
for food in a pelagic seabird. Nature 412, 816-
BirdLife Iternational, 2011. Distribution maps of Birds of the World. BridLife International, Cambridge, UK. Blaxter, J.H.S., Hunter, J.R., 1982. The biology of clupeoid fishes. Advances in Marine Biology 20, 1-223. Boyd, I.L., Wanless, S., Camphuysen, C.J. (Eds.), 2006. Top predators in marine ecosystems:
819. Longoni, V., 2010. Rice Fields and Waterbirds in the Mediterranean Region and the Middle East. Waterbirds 33, 83-96. Mañosa, S., Oro, D., Ruiz, X., 2004. Activity patterns and foraging behaviour of Audouin’s gulls in the Ebro Delta, NW Mediterranean. Scientia Marina 68, 605-614.
their role in monitoring and management.
Mills, J.A., Ryder, J.P., 1979. Trap for Capturing Sho-
Cambridge University Press, Cambridge, 378
re and Seabirds. Bird-Banding, 50, 121-123.
pp.
Navarro, J., Oro, D., Bertolero, A., Genovart, M., Del-
Cama, A., 2010. Seabird distribution patterns and
gado, A., Forero, M.G., 2010. Age and sexual
ecological factors driving larid presence at
differences in the exploitation of two anthro-
the Ebro delta shelf (NW Mediterranean). PhD
pogenic food resources for an opportunistic
Thesis, University of Barcelona.
seabird. Marine Biology 157, 2453-2459.
Coll, M., Palomera, I., Tudela, S., Dowd, M., 2008.
Orians, G.H., Pearson, N.E., 1979. On the theory
Food-web dynamics in the South Catalan Sea
of central place foraging. In: Horn, D.J., Stairs,
ecosystem (NW Mediterranean) for 1978–2003.
G.R., Mitchell, R.D. (Eds.), Analysis of Ecological
Ecological Modelling 217, 95-116.
Ecosystems. Ohio State University Press, Co-
Futuyma, D.J., Moreno, G., 1988. The evolution of ecological specialization. Annual Review of Ecology and Systematics 19, 207–233. Garthe, S., Camphuysen, C.J., Furness, R.W., 1996.
lombus, pp. 155-177. Oro, D., 1998. Larus audouinii Audouin’s Gull. BWP Update. Oxford University Press, Oxford, pp. 47-61
Amounts discarded by commercial fisheries
Oro, D., Jover, L., Ruiz, X., 1996a. Influence of
and their significance as food for seabirds in
trawling activity on the breeding ecology of
the North Sea. Marine Ecology Progress Series
a threatened seabird, Audouin’s gull Larus
136, 1-11.
audouinii. Marine Ecology Progress Series 139,
Gutierrez-Yurrita, P., Martínez, J., Ilhéu, M., Bravo-
19-29.
Utrera, M., Bernardo, J., Montes, C., 1999. The
Oro, D., Genovart, M., Ruiz, X., Jiménez, J., García-
status of crayfish populations in Spain and
Gans, J., 1996b. Differences in diet, population
Portugal. In: Gerardi, F., Holdich, D. (Eds.), Cra-
increase and breeding performance between
yfish in Europe as alien species: How to make
two colonies of Audouin’s gulls Larus audouinii
CHAPTER 4 during breeding seasons affected by a trawling
conservation management sciences. Diversity
moratorium. Journal of Avian Biology 27, 245-
and Distributions 17, 1-12.
251.
R Development Core Team, 2008. R: A Language
Oro, D., Ruiz, X., 1997. Exploitation of trawler dis-
and Environment for Statistical Computing.
cards by breeding seabirds in the north-wes-
R Foundation for Statistical Computing, Vien-
tern Mediterranean: differences between the
na, Austria. ISBN 3-900051-07-0, URL http://
Ebro Delta and the Balearic Islands areas. ICES Journal of Marine Science 54, 695-707.
www.R-project.org/. Rosén, M., Hedenström, A., 2001. Testing predic-
Oro, D., Ruiz, X., Jover, L., Pedrocchi, V., González-
tions from flight mechanical theory : a case
Solís, J., 1997. Diet and adult time budgets of
study of Cory’s shearwater and Audouin’s gull.
Audouin’s gull Larus audouinii in response to changes in commercial fisheries. Ibis 139, 631637. Oro, D., Pradel, R., Lebreton, J.D., 1999. Food availability and nest predation influence life history traits in Audouin’s gull, Larus audouinii. Oecologia 118, 438-445.
Acta ethologica 3, 135-140. Ruiz, X., Oro, D., Martínez-Vilalta, A., Jover, L., 1996. Feeding ecology of Audouin’s gull Larus audouinii in the Ebro Delta. Colonial Waterbirds 19, 68-74. Sanpera, C., Ruiz, X., Moreno, R., Jover, L., Waldron, S., 2007. Mercury and stable isotopes
Oro, D., Cam, E., Pradel, R., Martínez-Abraín, A.,
in feathers of Audouin’s gulls as indicators
2004. Influence of food availability on demo-
of feeding habits and migratory connectivity.
graphy and local population dynamics in a
The Condor 109, 268-275.
long-lived seabird. Proceedings of the Royal Society of London 271, 387-396.
Schwemmer, P., Garthe, S., 2008. Regular habitat switch as an important feeding strategy of an
Oro, D., Pérez-Rodríguez, A., Martínez-Vilalta, A.,
opportunistic seabird species at the interface
Bertolero, A., Vidal, F., 2009. Interference com-
between land and sea. Estuarine, Coastal and
petition in a threatened seabird community: A paradox for a successful conservation. Biological Conservation 142, 1830-1835.
Shelf Science. 77, 12-22. Tablado, Z., Tella, J.L., Sánchez-Zapata, J.A., Hiraldo, F., 2010. The paradox of the long-term posi-
Passos, C., Navarro, J., Giudici, A., González-Solís,
tive effects of a North American Crayfish on a
J., 2010. Effects of Extra Mass on the Pelagic
European community of predators. Conserva-
Behaviour of a Seabird. The Auk 127, 100-107.
tion biology 24, 1230-1238.
Pedrocchi, V., Oro, D., González-Solís, J., Ruiz, X.,
Wagner, E.L., Boersma, PD., 2011. Effects of fishe-
Jover, L., 2002. Differences in diet between the
ries on seabird community ecology. Reviews in
two largest breeding colonies of Audouin’s gulls: the effects of fishery activities. Scientia Marina 66, 313-320.
Fisheries Science 19, 157-163. Wilson, R.P., Pütz, K., Peters, G., Culik, B., Scolaro, J.A., Charrassin, J.B., Ropert-Coudert, Y.,
Phillips, R., Xavier, J.C., Croxall, J.P., Burger, A.E.,
1997. Long-term attachment of transmitting
2003. Effects of satellite transmitters on alba-
and recording devices to penguins and other
trosses and petrels. The Auk 120, 1082-1090.
seabirds. Wildlife Society Bulletin 25, 101-106.
Potapov, E., Dubinin, M., 2005. Argos-tools manual.
Witt, H.H., Crespo, J., de Juana, E., Varela, J.M., 1981.
The Falcon Research Institute, National Avian
Comparative feeding ecology of Audouin’s Gull
Research Center, Carmarthen, UK.
Larus audouinii and the Herring Gull L. argenta-
Ramos, R., Ramírez, F., Carrasco, J.P., Jover, L., 2011. Insights into the spatiotemporal component of feeding ecology: an isotopic approach for
tus in the Mediterranean. Ibis 123, 519-526.
|
87
Discussion & Conclusions
DISCUSSION
DISCUSSION Gaining insight: What I learned from the experience
Vulnerability Index
not important in themselves, but as an aggravation factor that can increase a risk if it
The work of Garthe and HĂźppop (2004)
already exists (e.g. flight manoeuvrability).
proposed the quantitative assessment of
In other words, if a seabird species never
the vulnerability of a seabird community
flies within a height with risk of collision, it
to wind farms. The index framework calcu-
is irrelevant the manoeuvrability of the spe-
lated this vulnerability through the Species
cies since it will never have to avoid a turbi-
Sensitivity Index (SSI) that focuses on the
ne. This means that factors have a hierarchi-
species vulnerability (at individual and po-
cal structure between primary risk factors
pulation levels) and the Wind Farm Sensiti-
and aggravation factors that cannot be dealt
vity Index (WSI) that applies the SSI to esti-
with an additive formulation. Therefore, an
mate the community vulnerability. However,
alternative power function is suggested to
as I show in Chapter 1, the mathematical
improve the estimate of collision and dis-
formulation of the original index contains
turbance risk.
hidden assumptions at both speciesâ&#x20AC;&#x2122; and
The second assumption was that each
community levels that might lead to inco-
type of risk (collision, disturbance and po-
rrect estimates of vulnerability and a biased
pulation sensitivity) was equally important
identification of key areas.
and had a multiplicative relationship. It is
The first assumption was that all risk
difficult to measure the relative importan-
factors associated to a given type of risk had
ce of collision risk over disturbance risk,
equal importance and had an additive rela-
which justifies considering them as equal
tionship. Nevertheless, there is a conceptual
by default despite collision mortality is of-
difference between the factors included in a
ten considered to be the most important
particular type of risk. Taking collision risk
hazard (Fox et al. 2006; Christel, Certain, et
as an example, we find two types of risk
al. 2012). Having a multiplicative relations-
factors: those directly associated to the risk
hip between collision and disturbance risk
itself (e.g. percentage of time spent at high
is conflictive because these two types of risk
altitude when flying) and factors that are
do not depend on each other. They are two
|
91
92
|
Discussion & Conclusions independent aspects of the potential impact
larity of these species.
of an OWF on seabirds and thus, collision
After incorporating the changes in the
and disturbance impact have different eco-
index formulation and applying the index to
logical consequences. By linking them with
a large study area (the coasts of the Iberian
a multiplicative relationship might result in
Peninsula), there are some conclusions and
the underestimation of a risk effect, only be-
recommendations that can be drawn from
cause the other risk is very low. In fact, this is
the experience.
the case in Garthe and Hüppop’s calculation
This type of index is eminently compa-
of the SSI which is more correlated to the
rative therefore, it is better to apply it in the
disturbance risk than to the collision risk. If
broader scale possible. Iberian Peninsula is a
the two types of risks have to be combined
geographical unit and regardless the borders
in a single map I would rather use an additi-
it is interesting to see how it is in the con-
ve relationship. However, our results suggest
junct. Based on boat surveys means maxi-
against such combination but rather the in-
mum probabilities of detecting all species,
dividual examination of both collision risk
which ensures the reliability of the index.
maps and disturbance risk maps to reach an informed decision for management.
Placement decision is a trade-off between impact and benefits and it is not
The final step of the index is to integrate
scientists but managers decision. Although
the species vulnerability into a measure of
Garthe and Hüppop (2004) set a percenti-
vulnerability of a whole community. To do
le criterion for defining concern and major
so, the third assumption was that the con-
concern areas, I think that it is better to rank
tribution to the community vulnerability of
the output accordingly to their WSI avoiding
a given seabird species is proportional to the
the delimitation of a subjective value.
log abundance of that species in a particular
By applying the index at different sca-
location. The rationale for this approach was
les we find consistent patterns that remain
to prevent the installation of wind farms in
constant through the scales although loo-
areas with high aggregations of seabirds.
sing detail with larger scales. However, it
However, abundant species are usually tho-
shows that different scales can be used to
se with lower SSI values while rare species
different management purposes. The uti-
are those with higher SSI values. For a given
lization of a large scale WSI grid, with grid
location, SSI and abundance affect the final
cells between 1º and 0.5º, seems more appro-
WSI value in opposite directions, which hin-
priate for the definition of optimal develop-
ders the interpretation of the variations of
ment areas, while small scale WSI grids, e.g.
the index. Moreover, the use of log abundan-
0.25º, are better for the demarcation of areas
ce instead of plain abundance assumes that
of high vulnerability or areas of high con-
a single individual has more weight, in pro-
cern if there was a project to install an OWF
portion, than an individual located in a flock
within them. Small-scale application of the
of one hundred seabirds, which has neither
WSI seems optimal for hazard location and
ecological nor environmental support. To
the definition of high risk areas that must
solve these inconsistencies, a major chan-
be specifically excluded for the construction
ge in the formulation is suggested based on
of any OWF and the indirect influence of the
the work of Leinster and Cobbold (2012) that
cumulative impact of OWF.
presents a diversity measure based not only
Although this method is an integrati-
on species abundance but also on the simi-
ve tool and the example of the study area
DISCUSSION shows its utility, any technique based on
‘barrier effect’ (Masden, Haydon, et al. 2010;
boat or aerial surveys has some methodo-
Perrow et al. 2011). Therefore, after quanti-
logical limitations that have been described
fying the aggregative pattern in a given area,
in the methodological approach section.
the potential risk can be evaluated and used
Because of this, it is advisable to comple-
to rank regions within this area according to
ment these indexes with new methods like
different levels of concern. Areas with both
satellite tracking to complement the infor-
collision and habitat loss risk would have
mation with the offshore distribution of
the higher concern level (L3); areas with co-
flagship species, or add additional decision
llision risk would have the next concern le-
layers, e.g. Important Bird Areas.
vel (L2) followed by areas with habitat loss risk (L1). This classification can be used later
Aggregative patterns
to choose the optimal location of an OWF (by choosing areas with minimum concern)
Abundance maps define areas with high
or to define a required monitoring protocol
numbers of birds, which is relevant infor-
for an accepted OWF location according to
mation in the assessment of offshore wind
the concern level of this location. Moreover,
farms locations, but they do not provide
there is a temporal evolution of the aggrega-
information on the dynamic and complex
tive patterns and it is correlated to the life
spatial patterns of seabirds at sea. Whi-
cycle of the species. Whether we use seaso-
le density maps focus on the detection of
nal scenarios (e.g. breeding, post-breeding,
high concentrations of seabirds as potential
migration, wintering) or a set of critical
risk areas, the application of Taylor’s power
months, temporal scenarios are easier to
law allows the explicit distinction between
communicate.
transitional and foraging areas over time.
marize key information that can highlight
Taylor’s power law is widely accepted as an
the potential impact of an OWF in a sensi-
aggregation index in time and space, which
tive moment in a seabird life cycle or can be
is corroborated in Chapter 3 by its correla-
used to recommend mitigation measures
tion with mean flock size. Areas with weak
during critical months.
Temporal scenarios sum-
aggregative patterns can be considered tran-
The application of this tool and the in-
sitional or flight path areas while high ag-
terpretation of its results are particularly
gregative patterns are mostly feeding areas
useful for the assessment of areas with lar-
determined by the punctual availability of a
ge breeding populations. However, it would
feeding opportunity.
be advisable to apply this method in other
By linking the aggregative patterns with
scenarios to investigate any possible diffe-
a particular behaviour, we can better predict
rences in the interpretation of the potential
and classify the risk of wind farm establish-
risks associated to the observed aggregati-
ment on a seabird population or community.
ve patterns. For instance, areas with a di-
In transitional areas, the main risk will be
fferent composition of species like plunge-
direct collision and mortality (Desholm and
divers (e.g. gannets) or surface-divers (e.g.
Kahlert 2005; Hüppop et al. 2006). In foraging
sea ducks) might show different spatial and
areas, the presence of turbines would result
temporal patterns. It would also be desirable
in habitat loss for species with a strong avoi-
to study the outputs of the tool in a migra-
dance response or an increased collision
tory corridor. Finally, although the method
risk for the species that experience a low
results are consistent with the ornithologi-
|
93
94
|
Discussion & Conclusions cal observations and behavioural data in the
distances, diving patterns) Chapter 4 draws
Ebro Delta, I would encourage the applica-
attention to the plasticity on the temporal
tion of telemetry data to test with an inde-
activity patterns and the habitat use and
pendent data set the behavioural interpreta-
this plasticity has to be addressed in the as-
tion of the Taylor’s power law.
sessment of any offshore wind farm.
Nevertheless, the study presented in
Many studies have shown that the activi-
Chapter 3 demonstrates that considering
ty pattern of seabirds is not constant throug-
the information on the second order proper-
hout the day (e.g. Garthe et al. 2003; Cama,
ties of species’ distributions (i.e. the social
2010; Cama et al. 2012; Christel, Navarro, et
aggregation) provides further information
al. 2012). Some seabirds, for instance, re-
for the assessment of potential impacts of
lay on small pelagic fish, but this resource
offshore wind farms than solely focusing on
might only be available in the hours before
the first order properties (i.e. density).
dawn when the shoals perform their vertical migration (Blaxter and Hunter 1982). In this
Individual tracking
case, an area with recurrent aggregations of seabirds foraging on these shoals would
Seabird locations and seabird behaviour
not be detected by surveys which usually
are distinct, and the latter is an important
start after dawn. Therefore, seabird surveys,
component that can be extracted from in-
which must be performed with daylight and
dividual tracking data types (Tremblay et al.
usually following a constant schedule, are
2009). One of the aims of Chapter 4 was to
not always sufficient to capture the variabi-
analyse the behavioural component with
lity of seabird circadian cycles.
State-Space Models (SSM; Jonsen et al. 2003)
The foraging plasticity of seabirds, regar-
on satellite tracking data as a final alterna-
ding their habitat use and prey selection, is
tive on spatio-temporal assessment tools.
sometimes underestimated. In conditions of
However, the performance of the Platform
reduced prey availability, specialised seabird
Transmitter Terminals (PTTs) was poor and
species usually modify their feeding strate-
heterogeneous among devices, probably due
gy by extending their foraging area, the time
to battery problems. The final sample size
spent at sea or reducing the time between
was very low and the time span between lo-
trips (e.g. Lewis et al. 2001; Schwemmer and
cations too long to perform State-Space Mo-
Garthe, 2008). Generalist species may chan-
dels or to test the conclusions of Chapter 3.
ge their foraging habitats or shift their diet
Despite the technical problems and limi-
(e.g. González-Solís et al. 1997; Schwemmer
ted sample size, some general conclusions
and Garthe, 2008; Navarro et al. 2010). In
can be drawn from the results of the spatial
Chapter 4, satellite tracking data shows that
and temporal analysis of the movements of
Audouin’s Gull has large foraging areas and
the Audouin’s Gull (Larus audouinii). When
makes an extensive use of both terrestrial
foraging, seabirds have to overcome the va-
and marine habitats, despite the terrestrial
riability on the distribution, abundance, mo-
movements had been scarcely described
bility and predictability of their food sources
before. Large numbers of Audouin’s Gulls
(Bell 1991). To do so, seabird species show a
were detected in the continental platform
certain degree of plasticity on their at-sea
of the Ebro Delta (Chapter 3, Table 1), but
behaviour. Among many possible behaviou-
aerial and boat surveys are limited in time
ral responses (e.g. trip duration, travelling
and extension and hence unable to capture
DISCUSSION the individual’s variations in habitat use or the temporal activity patterns during dusk,
(1) Key development regions
night and dawn. To produce a proper estimation of the
To design a rational development of offs-
potential effects of an OWF on seabirds it is
hore wind energy regarding seabirds, there
necessary to complement distribution and
is a need for a large-scale strategy defined
abundance maps based on surveys with
at least at national level. At this scale it is
individual tracking. Since it is impractical
optimal to apply the refined Wind Farm Sen-
to apply this technique to all species in a
sitivity Index described in Chapters 1 and 2.
seabird community I suggest to carry out
The main limitation is the availability of ex-
telemetry studies to high concern or highly
tensive surveys to cover the whole strategic
vulnerable species present in areas with a
area. This is usually possible through boat
potential interaction with offshore wind
surveys that in many cases are performed
farms (see also Perrow et al. 2006; Wilson
within the frame of multidisciplinary ves-
et al. 2009; Burger et al. 2011). In the study
sels that record oceanographic, large marine
case of the Ebro Delta, Audouin’s Gull was
mammals’ biogeography and other ecolo-
a good candidate because ca. 65% of the
gical information in the same surveys. This
total world population breeds in the area
constrains the availability of replications of
(Oro et al. 2009). Nevertheless, the Balea-
the surveys in different temporal scenarios,
ric Shearwater Puffinus mauretanicus would
but it is countered by the high seabird bio-
have been also highly relevant since it is
diversity detection in boat surveys. In some
Critically Endangered according to the IUCN
cases, there are aerial surveys available for
red list and the species makes an extensive
all the strategic area. When this is possible,
use of the Ebro Delta continental platform
temporal scenarios can also be included in
as foraging grounds despite not breeding in
the Strategic Environmental Assessments.
the area.
With the surveys’ results, the Vulnerability Index produces four diagnostic panels
Integrating tools in SEA and EIA
that capture the key elements to be considered in the strategic assessment: colli-
Based on the tools presented in this the-
sion and disturbance vulnerability, the ove-
sis, the reviewed literature and the acquired
rall community vulnerability and the total
experience, I present a suggested integration
abundance map. With this information it is
of the methods in the sequential decision-
possible to detect the areas with the lowest
making process for offshore wind energy
vulnerability and hence the environmenta-
development regarding seabirds. This inte-
lly optimal regions for offshore wind energy
gration, summarized in Figure 9 and explai-
development.
ned below, starts at large scale in Strategic
The focus of this thesis is on seabirds
Environmental Assessments until the final
as marine ecosystem indicators; however,
Environmental Impact Assessments at local
many other layers of information can be
scale.
overlapped to select these key development regions. Concerning seabirds, cumulative
|
95
96
|
DISCUSSION & CONCLUSIONS
fig.9 Suggested integration of the analytical tools presented in this thesis in the decision-making process for Offshore Wind Energy development.
Boat Surveys N E
W S
Aerial Surveys Individual tracking Radar studies N
E
W S
N E
W
Flight height N
S
E
W S
Flight direction
DISCUSSION impact assessments or main migratory rou-
conservation concern or highly vulnerable
tes are relevant information, but also infor-
species it might be advisable to strengthen
mation concerning large marine animals
the assessment decision with individual
(turtles, cetaceans, etc.), fish distribution,
tracking information of flagship species.
|
97
benthos, etc. Moreover, there are many socio-economical parameters to be taken into
(3) Optimal OWF location
account. All these parameters fall outside the scope of this thesis and hence they are
Within the selected region, aerial sur-
not commented in the presented decision-
veys allow temporal repetitions that provi-
making process although the framework
de an idea of the seasonal patterns, which
could be expanded for a more general ma-
we usually lack at large-scale surveys (e.g.
rine spatial planning that would include all
surveys with one coverage per year). The
of them.
aggregative patterns analysis presented in Chapter 3 takes into account this seasona-
(2) Key exclusion areas
lity and allows the mapping of the potential impacts of offshore wind farms by defining
Once a development region is selec-
transitional areas (with high collision risk)
ted, the Vulnerability Index can be applied
and feeding areas (with high disturbance
within the region. Since it is a comparative
and habitat loss risk). Associated to this po-
index, even in low vulnerability areas it will
tential risk map I suggest a classification of
be able to detect areas of higher vulnerabi-
sectors of the region according to three con-
lity. Applied at regional scale, I recommend
cern levels (L0, L1, L2 and L3).
the evaluation of the areas with higher vul-
These concern levels are directly related
nerability in order to decide if those areas
to the ecological impact of the presence of
should be excluded for OWF locations.
wind turbines in a sector, but instead of only
At this scale, the decision may be based
pointing to the potential impact, our su-
on the same surveys used at large scale. Ne-
ggestion is to link this concern levels with a
vertheless, if aerial surveys can be carried
predefined compulsory monitoring protocol,
out for the particular region it would be op-
should the OWF project be accepted (Table
timal to include the temporal scale in the
3). Each concern level should require its own
definition of key exclusion areas. Although
monitoring methods besides the recom-
not strictly necessary, if the assessed region
mended monitoring of the previous levels.
is also renowned by the presence of a high
By doing this, the selection of the optimal
Table 3 Recommended monitoring according to the concern level defined with the aggregative pattern analysis
98
|
Discussion & Conclusions location of a wind farm, which is usually
If the assessed area has both high collision
carried out by a developer company, would
and habitat loss risk and there are flagship
be based not only on a technical cost/benefit
species near, it might be advisable to carry
analysis, but also on the evaluation of the
out individual tracking information to better
increasing costs associated to the selection
define the temporal and spatial patterns of
of a less ecological favourable location. This
this species near the wind farm location.
decision system could promote the selection of low concern sectors, and would, in
(5) Monitoring
any case, provide the exploiting company with the required monitoring tools for pro-
Regardless of the concern level of the
per management. Nevertheless, even if a
selected location, when a wind farm is ope-
wind farm was planned in a high concern
rational there is a need for studies that mo-
area (L3) and accepted, this area would have
nitor the unpredictable effects of the insta-
been selected among the less vulnerable
llation in the environment. The availability
areas defined in the previous steps at large
of this monitoring is crucial to carry out any
scale.
adaptive management action once the wind
This analysis is recommended for aerial
farm is functional. The developer company
survey data sets. Boat surveys are unable to
is given, in advance, a clear picture of the
provide a â&#x20AC;&#x2DC;snapshotâ&#x20AC;&#x2122; of seabird distribution
minimum monitoring costs that are going
patterns since they require a long period
to be associated to the location of the cons-
of time to cover a large region which also
tructed OWF, being able to include them in
makes unpractical the replication of surveys
the annual budget for the wind farm main-
through the months to capture the temporal
tenance. However, the monitoring plan gi-
dimension of the aggregative patterns.
ven in Table 3 can always be adjusted or expanded according to the results of each EIA.
(4) Offshore Wind Farm EIA Once a site for an offshore wind farm is selected, it is compulsory to carry out an EIA. In this case, the potential risk map generated in Step 3 helps to identify the necessary studies to assess collision and disturbance risk, and the optimal location of sampling sites. If a project falls within an area with habitat loss risk, the project should be assessed by modelling species presence and abundance with, for instance, detailed boatbased surveys in small areas that cover the wind farm location and its surroundings. Areas with collision risk should be assessed with collision risk models that could require point transect surveys of flight height and direction, surveillance radars (vertical and/ or horizontal) or infrared camera systems.
DISCUSSION
FURTHER WORK Taylorâ&#x20AC;&#x2122;s power law applied to the Vulnerability Index: If the vulnerability index was applied to an aerial data set with enough temporal repetitions, Taylorâ&#x20AC;&#x2122;s power law methodology could be applied to a better assessment of the temporal variability of the vulnerability patterns. For instance, it could be used to define recurrent high vulnerable areas from occasional vulnerable areas. Geostatistics: The objective of this thesis was to provide new analytical tools that improved the assessment of Offshore Wind Energy development based on distribution and abundance maps. Although this thesis emphasizes the necessity to supersede plain density maps with more integrative methodologies, distribution maps are key layers of information and sometimes essential in any SEA or EIA. The most common visualization of these maps is on a grid. However, this visualization is often noisy which may obscure the underlying spatial patterns and their interpretation. To complement the tools described in this thesis the use of geostatistical interpolation and kriging should be promoted to ease the visualization of abundance maps and its ecological interpretation. Besides the simple representation of raw abundance data, distribution models are also becoming a common tool in many studies to predict density at a given point in time and space. To do so, quite often models are fit assuming independence of the data, but these models should take into account the spatial autocorrelation (SAC). When the values of a variable (e.g. seabird counts) are sampled at nearby locations, the values at each location are not completely independent from each other. In other words, if a grid cell has a thousand gulls because there is a feeding source available, neighbouring cells will also have high numbers of gulls because of the influence of that grid cell. Geostatistical interpolation methods (e.g.Variograms and Kriging) account for this spatial pattern and counteract this bias (Cressie 1993; Pebesma and Wesseling 1998). I am already working in the application of spatio-temporal variogram models (FernĂĄndez-Casal et al. 2003) to quantify not only the spatial but also the the spatio-temporal autocorrelation of survey data. The application of this technique would improve our knowledge of seabird surveys limitations and optimal survey design to reduce this bias. Other taxa and environmental assessment contexts: The Vulnerability index and the aggregative pattern analysis have been developed and assessed for seabirds. Nevertheless, these analytical tools can be adapted to any organism whenever distribution or abundance maps are available. Widening the scope of the tools would lead to a better integration of different taxa in the Environmental Assessments of offshore wind farms instead of presenting them as independent sections of SEAs or EIAs. Furthermore, these tools are not necessarily restricted to the assessment of Offshore Wind Energy and could be fitted for other environmental assessment purposes.
|
99
Box 4 Further work
100
|
Discussion & Conclusions
CONCLUSIONS â&#x20AC;&#x153;It always takes awfully long time to understand unbelievably simple thingsâ&#x20AC;? Joe Chung
1 2
The mathematical formulation of Garthe and HĂźppop (2004) WSI contains hidden assumptions at both species and community levels that might lead to incorrect estimates of vulnerability and a biased identification of key areas. The original WSI can be improved by (i) the explicit distinction between direct and aggravation factors (ii) the independent identification of collision and disturbance risk areas, and (iii) the incorporation of recent developments in functional diversity to produce a vulnerability map based on local relative frequencies of species. The use of our refined methodology allows a much more balanced assessment of the vulnerability.
3
The refined approach can be applied to estimate the vulnerability of any kind of community to any kind of impact, provided that a measure of the speciesspecific vulnerability to that impact is defined and community distribution data has been collected.
4
The application of the refined Vulnerability Index to the coasts of the Iberian Peninsula shows that the index calculated at different grid scales can be used to different management purposes: the definition of optimal development regions at large scale and the demarcation of areas of high vulnerability at regional scales.
CONCLUSIONS
5 6 7 8
Taylor’s power law slope can measure seabirds’ aggregative pattern in time and space that can be used to define recurrent transitional and feeding areas in areas for the potential location of an OWF. By demarcating transitional areas, potential collision risk may be assessed, while demarcating foraging areas defines areas with potential habitat loss. The resulting potential impacts map can be employed to inform on concern levels, optimal EIA design and defining the required monitoring of accepted projects.
The telemetric study of the Audouin’s Gull (Larus audouinii) highlights that individual-based studies may show individual differences in habitat use, the exploitation of alternative food sources and the potential capability of species to switch their foraging grounds, should the individuals find a barrier in their preferential habitats.
9 10 11
Seabird surveys are constrained in space and time. Any assessment study based on aerial or boat surveys should be complemented with telemetry data to account for seabirds’ plasticity and the limitations of any systematic survey method. It is advisable to identify flagship or high concern species as target species to perform telemetric studies.
The decision making process for offshore wind energy development can be improved with the implementation of a sequential action protocol that includes the presented tools of this thesis: 1st) Application of the vulnerability index at large scales to define key development regions; 2nd) Application of the vulnerability index at regional scales to define key exclusion areas; 3rd) Application of the aggregative patterns analysis (Taylor’s power Law) at regional scales to define the potential risk map and inform on optimal OWF locations; 4th) Application of the potential risk map to design and implement the EIA at local scale; 5th) Application of the potential risk map to define the compulsory monitoring program if a project is accepted.
|
101
102
|
Discussion & Conclusions
REFERENCES
Allen T, Hoekstra T (1991) Role of heterogeneity
Thompson PM (2010) Assessing underwater
in scaling of ecological systems under analy-
noise levels during pile-driving at an offshore
sis. In: Koalsa J, Pichett STA (eds) Ecological
windfarm and its potential effects on marine
heterogeneity. Springer-Verlag, New York, pp
mammals. Marine Pollution Bulletin 60:888–
47–67
897
Anderson DJ, Huyvaert KP, Wood DR (2003) At-
Barry S, Welsh AH (2002) Generalized additive
sea distribution of waved albatrosses and the
modelling and zero inflated count data. Eco-
Galapagos Marine Reserve. Biological Conser-
logical Modelling 157:179–188
vation 110:367–373 Arcos J (2001) Foraging ecology of seabirds at sea:
Bell WJ (1991) Searching behaviour. Chapman & Hall, London
Significance of commercial fisheries in the
Bellier E, Certain G, Planque B, Monestiez B, Bret-
NW Mediterranean. Thesis. Universitat de
agnolle V (2010) Modelling habitat selection
Barcelona.
<http://www.tdx.cat/bitstream/
at multiple scales with multivariate geosta-
handle/10803/775/TOL38.pdf?sequence=1>
tistics: an application to seabirds in open sea.
(accessed 24.10.12)
Oikos 119:988–999
Arcos J, Bécares J, Villero D, Brotons L, Rodríguez B,
Bigas D (2012) Llista Patró dels ocells del delta
Ruiz A (2012) Assessing the location and sta-
de l’Ebre. Categories A, B i C. Categories D i E.
bility of foraging hotspots for pelagic seabirds:
Parc Natural del Delta de l’Ebre, Departament
An approach to identify marine Important Bird
d’Agricultura, Ramaderia, Pesca, Alimentación
Areas (IBAs) in Spain. Biological Conservation
i Medi Natural, Generalitat de Catalunya
(In Press) DOI: 10.1016/j.biocon.2011.12.011
BirdLife International (2003) Windfarms and
Arcos J, Louzao M, Oro D (2008) Fisheries ecosys-
Birds: An analysis of the effects of windfarms
tem impacts and management in the Medi-
on birds, and guidance environmental assess-
terranean: seabirds point of view (J Nielsen, J
ment criteria and site selection issues. Report
Dodson, K Friedland, T Harmon, N Hughes, J
written by BirdLife International on behalf
Musick, and E Verspoor, Eds.). American Fish-
of the Bern Covention. <http://www.birdlife.
eries Society Symposium 49:1471–1479
org/eu/pdfs/BirdLife_Bern_windfarms.pdf>
Bailey H, Senior B, Simmons D, Rusin J, Picken G,
(accessed 24.10.12)
REFERENCES Blaxter JHS, Hunter JR (1982) The biology of clupeoid fishes. Advances in Marine Biology 20:1– 223
birds. Ecography 35:912–921 Camphuysen CJ, Fox AD, Leopold MF, Petersen IK (2004) Towards standardised seabirds at
Boyd IL, Wanless S, Camphuysen CJ (2006) Top
sea census techniques in connection with
predators in marine ecosystems: their role
environmental impact assessments for off-
in monitoring and management. Cambridge
shore wind farms in the U.K. COWRIE Report
University Press
No. BAM02-2002. London. <http://jncc.defra.
Bretagnolle V, Certain G, Houte S, Métais M (2004) Distribution maps and minimum abundance
gov.uk/pdf/Camphuysenetal2004_COWRIEmethods.PDF> (accessed 24.10.12)
estimates for wintering auks in the Bay of Bis-
Certain G, Bellier E, Planque B, Bretagnolle V (2007)
cay, based on aerial surveys. Aquatic Living
Characterising the temporal variability of the
Resources 17:353–360
spatial distribution of animals: an application
Broek JV den (1995) A score test for zero inflation in a Poisson distribution. Biometrics 51:738– 743 Brookes K (2009) Assessment of methods used to investigate the impact of offshore wind farms on seabirds. Thesis. University of Aberdeen
to seabirds at sea. Ecography 30:695–708 Certain G, Bretagnolle V (2008) Monitoring seabirds population in marine ecosystem: The use of strip-transect aerial surveys. Remote Sensing of Environment 112:3314–3322 Certain G, Ridoux V, Canneyt O van, Bretagnolle
Burger J, Niles LJ, Porter RR, Dey AD, Koch S, Gor-
V (2008) Delphinid spatial distribution and
don C (2012) Using a shore bird (red knot) fit-
abundance estimates over the shelf of the
ted with geolocators to evaluate a conceptual
Bay of Biscay. ICES Journal of Marine Science
risk model focusing on offshore wind. Renew-
65:656–666
able Energy 43:370–377
Chamberlain D, Rehfisch M, Fox AD, Desholm M,
Burkhard B, Opitz S, Lenhart H, Ahrendt K, Garthe
Anthony S (2006) The effect of avoidance rates
S, Mendel B, Windhorst W (2011) Ecosystem
on bird mortality predictions made by wind
based modeling and indication of ecologi-
turbine collision risk models. Ibis 148:198–202
cal integrity in the German North Sea—Case
Christel I, Certain G, Cama A, Vieites DR, Ferrer
study offshore wind parks. Ecological Indica-
X (2012) Seabird aggregative response: a new
tors 11:168–174
tool for offshore wind energy risk assessment.
Cabal J, González-Nuevo G, Nogueira E (2008) Mesozooplankton species distribution in the NW
Marine Pollution Bulletin (In press). DOI: 10.1016/j.marpolbul.2012.11.005
and N Iberian shelf during spring 2004: Rela-
Christel I, Navarro J, del Castillo M, Cama A, Fer-
tionship with frontal structures. Journal of
rer X (2012) Foraging movements of Audouin’s
Marine Systems 72:282–297
gull (Larus audouinii) in the Ebro Delta, NW
Cairns DK (1987) Seabirds as indicators of ma-
Mediterranean: A preliminary satellite-track-
rine food supplies. Biological Oceanography
ing study. Estuarine, Coastal and Shelf Science
5:261–271
96:257–261
Cama A (2010) Seabird distribution patterns and
Christensen TK, Hounisen JP, Clausager I, Peters-
ecological factors driving larid presence at the
en IK (2004) Visual and radar observations of
Ebro delta shelf (NW Mediterranean). Thesis.
birds in relation to collision risk at the Horns
Universitat de Barcelona.
Rev Offshore Wind Farm. NERI Report. <http://
Cama A, Abellana R, Christel I, Ferrer X, Vieites DR
mhk.pnnl.gov/wiki/images/8/83/Visual_and_
(2012) Living on predictability: modeling the
Radar_Observations_of_Birds.pdf>
density distribution of efficient foraging sea-
24.10.12)
(accessed
|
103
104
|
Discussion & Conclusions Cressie N (1993) Statistics for spatial data. J. Wiley, USA
Eurostat (2009) Panorama of energy. Energy statistics to support EU policies and solutions (2009
Desholm M (2006) Wind farm related mortality among avian migrants. Thesis. University of Copenhagen
Edition).
<http://epp.eurostat.ec.europa.eu/
cache/ITY_OFFPUB/KS-GH-09-001/EN/KS-GH09-001-EN.PDF> (accessed 24.10.12)
Desholm M (2009) Avian sensitivity to mortali-
Fauchald P, Erikstad KE, Skarsfjord H (2000) Scale-
ty: prioritising migratory bird species for as-
Dependent Predator-Prey Interactions: The
sessment at proposed wind farms. Journal of
Hierarchical Spatial Distribution of Seabirds
Environmental Management 90:2672–9
and Prey. Ecology 81:773
Desholm M, Fox AD, Beasley PDL, Kahlert J (2006)
Fauchald P, Erikstad KE, Systad GH (2002) Seabirds
Remote techniques for counting and estima-
and marine oil incidents: is it possible to
ting the number of bird-wind turbine colli-
predict the spatial distribution of pelagic
sions at sea: a review. Ibis 148:76–89
seabirds? Journal of Applied Ecology 39:349–
Desholm M, Kahlert J (2005) Avian collision risk at an offshore wind farm. Biology Letters 1:296– 298
360 Fernández-Casal R, Gonzalez-Manteiga W, Febrero-Bande M (2003) Flexible spatio-temporal
Drewitt A, Langston RW (2006) Assessing the impacts of wind farms on birds. Ibis 148:29–42
stationary variogram models. Statistics and Computing 13:127–136
EC (2011a) A Roadmap for moving to a competi-
Fox AD, Desholm M, Kahlert J, Christensen TK,
tive low carbon economy in 2050. COM (2011)
Petersen IK (2006) Information needs to sup-
112 of 8 March 2011. European Commission.
port environmental impact assessment of
<http://eur-lex.europa.eu/LexUriServ/Lex-
the effects of European marine offshore wind
UriServ.do?uri=CELEX:52011DC0112:EN:NOT> (accessed 24.10.12)
farms on birds. Ibis 148:129–144 Fox AD, Petersen IK (2006) Assessing the degree
EC (2011b) Energy roadmap 2050. COM (2011) 885
of habitat loss to marine birds from the de-
of 15 December 2011. European Commission.
velopment of offshore wind farms. In: Boere
DOI:
<http://ec.europa.eu/
GC, Galbaraith CA, Stroud DA (eds) Waterbirds
energy/publications/doc/2012_energy_road-
around the world. The Stationery Office, Edim-
10.2833/10759
map_2050_en.pdf> (accessed 24.10.12)
burg, UK, pp 801–804
EWEA (2011) European offshore wind projects
Garthe S, Benvenuti S, Montevecchi WA (2003)
map. 3rd Edition. November 2011. EWEA.
Temporal patterns of foraging activities of
<http://www.ewea.org/fileadmin/ewea_docu-
northern gannets, Morus bassanus, in the
ments/images/graphs_maps_tables/EuOff-
northwest Atlantic Ocean. Canadian journal
wind2011.pdf> (accessed 24.10.12)
of Zoology 81:453–461
EWEA (2012) The European offshore wind indus-
Garthe S, Hüppop O (2004) Scaling possible adverse
try key 2011 trends and statistics. European
effects of marine wind farms on seabirds: de-
Wind Energy Association. <http://www.ewea.
veloping and applying a vulnerabiblity index.
org/fileadmin/ewea_documents/documents/
Journal of Applied Ecology 41:724–734
publications/statistics/EWEA_stats_offshore_2011_01.pdf> (accessed 24.10.12)
Garthe S, Markones N, Mendel B, Sonntag N, Krause JC (2011) Protected areas for seabirds
Elliott M (2002) The role of the DPSIR approach and
in German offshore waters: Designation, ret-
conceptual models in marine environmental
rospective consideration and current perspec-
management: an example for offshore wind
tives. Biological Conservation (In Press). DOI:
power. Marine Pollution Bulletin 44:iii–vii
10.1016/j.biocon.2011.12.002
REFERENCES Gerkema T, Lam F a., Maas LRM (2004) Internal tides in the Bay of Biscay: conversion rates and seasonal effects. Deep-Sea Research II 51:2995–3008 Gill AB (2005) Offshore renewable energy: ecological implications of generating electricity in the coastal zone. Journal of Applied Ecology 42:605–615 González-Solís J, Oro D, Jover L, Ruiz X, Pedrocchi V (1997) Trophic niche width and overlap of two sympatric gulls in the southwestern mediterranean. Oecologia 112:75–80
shore_Wind_Farm_at_Rodsand.pdf> (accessed 24.10.12) Kendal WS (2004) Taylor’s ecological power law as a consequence of scale invariant exponential dispersion models. Ecological Complexity 1:193–209 Kilpatrick A, Ives A (2003) Species interactions can explain Taylor’s power law for ecological time series. Nature 422:65–68 King DA (2004) Climate Change Science : Adapt, Mitigate, or Ignore? Science 303:176–177 Kotliar N, Wiens J (1990) Multiples scales of
González-Solís J, Shaffer S (2009) Spatiotemporal
patchiness and patch structure: a hierarchi-
dynamics of seabirds in the marine environ-
cal framework for the study of heterogeneity.
ment. Marine Ecology Progress Series 391:117– 120
Oikos 59:253–260 Kunz TH, Arnett EB, Cooper BM, Erickson WP,
Henderson AR, Morgan C, Smith B, Sorensen HC,
Larkin RP, Mabee T, Morrison ML, Strickland
Barthelmie RJ, Boesmans B (2003) Offshore
MD, Szewczak JM (2007) Assessing Impacts
Wind Energy in Europe? A Review of the State-
of Wind-Energy Development on Nocturnally
of-the-Art. Wind Energy 6:35–52
Active Birds and Bats: A Guidance Document.
Henkel LA, Ford RG, Tyler WB, Davis JN (2007)
Journal of Wildlife Management 71:2449–2486
Comparison of aerial and boat-based survey
Laborde P, Urrutia J, Valencia V (1999) Seasonal
methods for Marbled murrelets Brachyramphus
variability of primary production in the Cap-
marmoratus and other marine birds. Marine
Ferret Canyon area (Bay of Biscay) during the
Ornithology 35:145–151
ECOFER cruises. Deep-Sea Research II 46:2057–
Hunt GL, Schneider DC (1987) Scale-dependent
2079
processes in the physical and biological en-
Larsen JK, Guillemette M (2007) Effects of wind
vironment of marine birds. In: Croxall JP (ed)
turbines on flight behaviour of wintering
Seabirds: Feeding Ecology and Role in Marine
common eiders: implications for habitat use
Ecosystems. Cambridge Univ Press
and collision risk. Journal of Applied Ecology
Hüppop O, Dierschke J, Exo KM, Fredrich E, Hill
44:516–522
R (2006) Bird migration studies and potential
Lavin A, Valdes L, Sanchez F, Abaunza P, Forest A,
collision risk with offshore wind turbines. Ibis
Boucher J, Lazure P, Jegou AM (2006) The Bay of
148:90–109
Biscay: the encountering of the ocean and the
Jonsen I, Myers R, Flemming J (2003) Meta-analysis
shelf. In: Robinson AP, Brink K (eds) The Sea
of animal movement using state-space mod-
Volume 14B: The Global Coastal Ocean. Inter-
els. Ecology 84:3055–3063
disciplinary Regional Studies and Syntheses.
Kahlert J, Petersen IK, Fox AD, Desholm M, Clau-
Harvard University Press, pp 935–1001
sager I (2004) Investigations of Birds During
Leinster T, Cobbold C (2012) Measuring diversity:
Construction and Operation of Nysted Off-
the importance of species similarity. Ecology
shore Wind Farm at Rødsand. Annual Status
93:477–489
Report 2003. NERI. <http://mhk.pnnl.gov/wiki/
Lewis S, Sherratt TN, Hamer KC, Wanless S (2001)
images/5/58/Investigations_of_Birds_during_
Evidence of intra-specific competition for food
Construction_and_Operation_of_Nysted_Off-
in a pelagic seabird. Nature 412:816–819
|
105
106
|
Discussion & Conclusions Linley EAS, Wilding TA, Black K, Hawkins AJS,
113:31–48
Mangi S (2007) Review of reef effects of off-
Masden E a, Fox AD, Furness RW, Bullman R, Hay-
shore wind farm structures and potential for
don DT (2010) Cumulative impact assessments
enhancement and mitigation. Report from
and bird/wind farm interactions: Developing a
PML Applications Ltd. and the Scottish Asso-
conceptual framework. Environmental Impact
ciation for Marine Science to the Department
Assessment Review 30:1–7
for Business, Enterprise and Regulatory Re-
Masden E a, Haydon DT, Fox AD, Furness RW
form (BERR). <http://webarchive.nationalar-
(2010) Barriers to movement: Modelling ener-
chives.gov.uk/+/http://www.berr.gov.uk/files/
getic costs of avoiding marine wind farms
file43528.pdf> (accessed 24.10.12)
amongst breeding seabirds. Marine Pollution
Llope M, Anadón R, Viesca L, Quevedo M, González-
Bulletin 60:1085–91
Quirós R, Stenseth NC (2006) Hydrography
Mateos M (2009) Radar technology applied to the
of the southern Bay of Biscay shelf-break
study of seabird migration across the Strait of
region: Integrating the multiscale physical
Gibraltar. Thesis. Universidad de Cadiz
variability over the period 1993–2003. Jour-
Mcsorley CA, Webb A, Dean BJ, Reid JB (2005) UK
nal of Geophysical Research 111:C09021. DOI:
inshore marine Special Protection Areas: a
10.1029/2005JC002963
methodological evaluation of site selection
Louzao M, Hyrenbach KD, Arcos J, Abelló P, de Sola
and definition of an interest feature using line
LG, Oro D (2006) Oceanographic habitat of an
transect data. JNCC Report No 344. <http://jncc.
endangered Mediterranean procellariiform:
defra.gov.uk/page-3512> (accessed 24.10.12)
Implications for marine protected areas. Eco-
Moreno R (2010) Seabirds as bioindicators of coas-
logical Applications 16:1683–1695 MARM, MITYC (2009) Estudio estratégico am-
tal ecosystem recovery following the Prestige oil spill. Thesis. Universitat de Barcelona
biental del litoral español para la instalación
Navarro J, Oro D, Bertolero A, Genovart M, Delgado
de parques eólicos marinos. <http://www.
A, Forero MG (2010) Age and sexual differences
aeeolica.org/uploads/documents/562-estudio-
in the exploitation of two anthropogenic food
estrategico-ambiental-del-litoral-espanol-
resources for an opportunistic seabird. Marine
para-la-instalacion-de-parques-eolicos-mari-
Biology 157:2453–2459
nos_mityc.pdf> (accessed 24.10.12) Madsen P, Wahlberg M, Tougaard J (2006) Wind
Nettleship DN, Duffy DC (1993) Seabird populations. Elsevier Applied Science, London
turbine underwater noise and marine mam-
Noer H, Christensen TK, Clausager I, Petersen IK
mals: implications of current knowledge and
(2000) Effects on birds of an offshore wind
data needs. Marine Ecology Progress Series
park at Horns Rev: Environmental impact
309:279–295
assessment. NERI Report. NERI report, MEE-
Maestro A, López-Martínez J, Llave E, Bohoyo F,
NERI. <http://www.hornsrev.dk/Miljoeforhold/
Acosta J, Hernández-Molina FJ, Muñoz A, Jané
miljoerapporter/Baggrundsrapport_18.pdf>
G (2012) Geomorphology of the Iberian Continental Margin. Geomorphology (In Press). DOI: 10.1016/j.geomorph.2012.08.022 Mallory ML, Gilchrist HG, Braune BM, Gaston AJ (2006) Marine birds as indicators of Arctic
(accessed 24.10.12) Observ’ER (2011) The state of renewable energies in Europe (11th EurObserv’ER Report, 2011). <http://www.eurobserv-er.org/pdf/barobilan11.pdf> (accessed 24.10.12)
marine ecosystem health: linking the North-
Oro D, Pérez-Rodríguez A, Martínez-Vilalta A, Ber-
ern Ecosystem Initiative to long-term studies.
tolero A, Vidal F (2009) Interference competi-
Environmental monitoring and assessment
tion in a threatened seabird community: A pa-
REFERENCES radox for a successful conservation. Biological Conservation 142:1830–1835
ress Series 352:199–204 Planque B, Lazure P, Jégou A (2004) Detecting hy-
Palomera I (1992) Spawning of anchovy Engraulis
drological landscapes over the Bay of Biscay
encrasicolus in the Northwestern Mediterra-
continental shelf in spring. Climate research
nean relative to hydrographic features in the region. Marine Ecology Progress Series 79:215– 223 Patterson T a, Thomas L, Wilcox C, Ovaskainen O,
28:41–52 Punt MJ, Groeneveld R a., van Ierland EC, Stel JH (2009) Spatial planning of offshore wind farms: A windfall to marine environmental
Matthiopoulos J (2008) State-space models of
protection? Ecological Economics 69:93–103
individual animal movement. Trends in Ecol-
Ribas-Ribas M, Gómez-Parra A, Forja JM (2011)
ogy & Evolution 23:87–94
Spatio-temporal variability of the dissolved
Pearce J, Ferrier S (2001) The practical value of
organic carbon and nitrogen in a coastal area
modelling relative abundance of species for
affected by river input: The north eastern
regional conservation planning: a case study.
shelf of the Gulf of Cádiz (SW Iberian Penin-
Biological Conservation 98:33–43
sula). Marine Chemistry 126:295–308
Pebesma E, Wesseling CG (1998) Gstat: A program
Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu
for geostatistical modelling, prediction and
Q, Casassa G, Menzel A, Root TL, Estrella N, Se-
simulation. Computers & Geosciences 24:17–
guin B, Tryjanowski P, Liu C, Rawlins S, Imeson
31
A (2008) Attributing physical and biological
Peliz A, Dubert J, Santos a. MP, Oliveira PB, Le Cann B (2005) Winter upper ocean circulation in the
impacts to anthropogenic climate change. Nature 453:353–357
Western Iberian Basin—Fronts, Eddies and
Salat J (1996) Review of hydrographic environmen-
Poleward Flows: an overview. Deep Sea Re-
tal factors that may influence anchovy habi-
search Part I 52:621–646
tats in northwestern Mediterranean. Scientia
Percival SM (2003) Birds and wind farms in Ire-
Marina 60:21–32
land: A review of potential issues and impact
Santos AMP, Chícharo A, Dos Santos A, Moita T,
assessment. Report comissioned by the Sus-
Oliveira PB, Peliz Á, Ré P (2007) Physical–bio-
tainable Energy Authority of Ireland. <http://
logical interactions in the life history of small
www.seai.ie/Archive1/Files_Misc/Assess-
pelagic fish in the Western Iberia Upwelling
mentMethodologyBirdsIreland.pdf> (accessed
Ecosystem. Progress In Oceanography 74:192–
24.10.12)
209
Perrow MR, Gilroy JJ, Skeate ER, Tomlinson ML
Schwemmer P, Garthe S (2008) Regular habitat
(2011) Effects of the construction of Scroby
switch as an important feeding strategy of an
Sands offshore wind farm on the prey base
opportunistic seabird species at the interface
of Little tern Sternula albifrons at its most im-
between land and sea. Estuarine, Coastal and
portant UK colony. Marine Pollution Bulletin
Shelf Science 77:12–22
62:1661–70
Skeate ER, Perrow MR, Gilroy JJ (2012) Likely ef-
Perrow MR, Skeate ER, Lines P, Brown D, Tomlinson
fects of construction of Scroby Sands offshore
ML (2006) Radio telemetry as a tool for impact
wind farm on a mixed population of harbour
assessment of wind farms: the case of Little
Phoca vitulina and grey Halichoerus grypus
Terns Sterna albifrons at Scroby Sands, Norfolk,
seals. Marine pollution bulletin (In Press) DOI:
UK. Ibis 148:57–75
10.1016/j.marpolbul.2012.01.029
Piatt JF, Sydeman WJ (2007) Seabirds as indicators
Spear L, Ainley D, Hardesty B (2004) Reducing bi-
of marine ecosystems. Marine Ecology Prog-
ases affecting at-sea surveys of seabirds: use
|
107
108
|
Discussion & Conclusions of multiple observer teams. Marine Ornithology 157:147–157 Steele JH (1989) The ocean “landscape.” Landscape Ecology 3:185–192
Turchin P (1998) Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants. Sinauer Whitehouse RJS, Harris JM, Sutherland J, Rees J
Tasker ML, Jones PH, Dixon T m, Blake BF (1984)
(2010) The nature of scour development and
Counting seabirds at sea from ships: a review
scour protection at offshore windfarm foun-
of methods employed and a suggestion for a standardized approach. The Auk 101:567–577 Taylor LR (1961) Aggregation, Variance and the Mean. Nature 189:732–735 Taylor LR, Woiwod IP (1980) Temporal Stability as a Density-Dependent Species Characteristic. The Journal of Animal Ecology 49:209–224
dations. Marine Pollution Bulletin 62:73–88 Wiese FK, Montevecchi W., Davoren G., Huettmann F, Diamond A., Linke J (2001) Seabirds at risk around offshore oil platforms in the North-west Atlantic. Marine Pollution Bulletin 42:1285–1290 Wilson LJ, Mcsorley CA, Gray CM, Dean BJ, Dunn
Taylor LR, Woiwod IP (1982) Comparative Synoptic
TE, Webb A, Reid JB (2009) Radio-telemetry as
Dynamics. I. Relationships between Inter- and
a tool to define protected areas for seabirds in
Intra-specific spatial and temporal variance/
the marine environment. Biological Conserva-
mean population parameters. The Journal of Animal Ecology 51:879–906
tion 142:1808–1817 Wu J, David JL (2002) A spatially explicit hierarchi-
Taylor LR, Woiwod IP, Perry JN (1980) Variance and
cal approach to modeling complex ecological
the Large Scale Spatial Stability of Aphids,
systems: theory and applications. Ecological
Moths and Birds. The Journal of Animal Ecol-
Modelling 153:7–26
ogy 49:831–854 Tobin PC (2004) Estimation of the spatial autocorrelation function: consequences of sampling dynamic populations in space and time. Ecography 27:767–775 Tremblay Y, Bertrand S, Henry R, Kappes M, Costa D, Shaffer S (2009) Analytical approaches to investigating seabird–environment interactions: a review. Marine Ecology Progress Series 391:153–163
REFERENCES
|
109
Catalan summary
INTRODUCCIÓ
INTRODUCCIÓ
La creixent demanda mundial d’energia
la participació de les fonts d’energia renova-
i el canvi climàtic són dos dels grans reptes
bles s’incrementarà substancialment, fins a
d’aquest segle. En aquest escenari és neces-
assolir un 55%, 64 o 97% del consum d’ener-
sari trobar un equilibri entre les polítiques
gia final bruta el 2050, segons l’escenari (CE
de canvi climàtic i la competitivitat, per tal
2011b). Una de les mesures polítiques per
que la reducció de les emissions de carboni
aconseguir aquest objectiu és la Directiva
sigui econòmicament viable. En aquest con-
sobre energies renovables, que fixa com a
text, la Comissió Europea va definir el «full
objectiu que el 20% del consum energètic
de ruta Energia 2050», que explora les possi-
provingui de fonts renovables el 2020.
bilitats d’aconseguir una economia baixa en
A Europa, les energies renovables repre-
carboni alhora que s’assegura un subminis-
senten el 18% de tota la producció energè-
trament d’energia competitiva, sostenible i
tica (Eurostat 2009; Fig 1a, pàg.4). L’energia
segura (CE 2011). La Unió Europea s’ha com-
hidroelèctrica és la font principal de produc-
promès per al 2050 a reduir les emissions de
ció d’energies renovables (54,5%), seguida de
gasos d’efecte hivernacle fins a un 80-95%
l’energia eòlica (22,5%) (Observ’ER 2011, Fig
per sota dels nivells de 1990 (CE 2011b). És
1b, pàg.4). L’any 2050 s’espera que l’energia
impossible predir els canvis que es produi-
eòlica proporcioni més electricitat que qual-
ran a Europa a llarg termini, però alguns dels
sevol altra tecnologia (CE 2011b) i per tant la
possibles escenaris són: (i) un sistema d’alta
contribució potencial del medi marí per al
eficiència energètica, (ii) un sistema amb
desenvolupament de l’energia eòlica ha re-
una oferta diversificada de tecnologia, com
but una gran atenció a les últimes dècades.
ara la captura de carboni i les instal·lacions d’emmagatzematge o l’energia nuclear, i
Energia eòlica marina
(iii) un fort suport a les fonts d’energia renovables. Tots els pronòstics per reduir les
El primer parc eòlic marí es va instal·lar
emissions de carboni a Europa mostren que
a Dinamarca el 1991. Des de llavors, el sec-
l’electricitat haurà de tenir un paper més
tor s’ha expandit ràpidament i en particular
important que els combustibles fòssils i que
al nord d’Europa (Fig 2, pàg.5). Avui en dia,
|
113
114
|
Quadre
Catalan Summary
Estat de desenvolupament de l’energia eòlica marina a Espanya
Europa és el líder mundial en energia eòlica
turbines eòliques al mar, encara que només
marina, amb un total de 1.371 turbines a alta
la Xina té tres parcs eòlics marins operatius.
mar distribuïdes en 53 parcs eòlics en 10 pa-
La majoria de les turbines instal·lades
ïsos a finals del 2011 (EWEA 2012). El Regne
tenen fonaments al fons marí. S’estan de-
Unit és el país amb la major potència instal·
senvolupant models flotants, i Noruega i
lada d’energia eòlica marina, seguit per Di-
Portugal són els primers països que tenen
namarca, Països Baixos i Alemanya (Taula 1,
instal·lada una turbina flotant a gran esca-
pàg.5). L’interès per l’energia eòlica marina
la. A mesura que la tecnologia es desenvo-
s’està estenent més enllà d’Europa. A Xina,
lupi, s’espera que els parcs eòlics marins
Japó, Corea del Sud, EUA i Israel hi ha empre-
creixin en grandària i que es despleguin més
ses que treballen en el desenvolupament de
lluny de la costa i en aigües més profundes,
ENERGIA EÒLICA MARINA A ESPANYA Actualment Espanya no disposa de parcs eòlics marins operatius. Des del començament de l’expansió de l’energia eòlica en alta mar a l’Europa Septentrional, diferents empreses han mostrat el seu interès en la construcció de parcs eòlics marins a les costes espanyoles. Malgrat les iniciatives del sector privat per promoure el seu desenvolupament, el govern espanyol va establir l’any 2007 el procediment administratiu obligatori per aconseguir la concessió per construir un parc eòlic marí a les costes espanyoles (Reial Decret 1028/2007). El procediment establia com a necessari una Avaluació Ambiental Estratègica (AAE) de la costa espanyola. Aquest estudi va ser publicat el 2009 (MARM i el MITYC, 2009) i va incloure el mapa de zonificació definitiva per a les àrees de desenvolupament de l’energia eòlica marina. Aquest mapa divideix les costes espanyoles en 72 àrees (definits per quadrats d’un grau decimal). Les primeres 24 milles nàutiques de cada àrea es van avaluar d’acord a múltiples criteris per a classificar les zones en tres categories: aptes (en verd), àrees adients amb restriccions (en groc) i les zones d’exclusió (en vermell).
El procés de concessió administrativa llarg i complex ha patit diversos retards. Avui en dia a Espanya no hi ha un nombre oficial de parcs eòlics previstos.
INTRODUCCIÓ sobretot si se’n demostra la viabilitat econò-
durant la construcció i operació OWF (Whi-
mica dels models flotants. Els projectes ac-
tehouse et al. 2010; Burkhard et al.,2011) i els
tuals en construcció es troben a una fondà-
efectes sobre les larves de peixos (Perrow et
ria mitjana de 25 metres i a una distància de
al. 2011). A més, es desconeixen els efectes
la costa de 33 km (EWEA 2012), ja que molts
del soroll submarí sobre la vida dels peixos,
dels OWF (Parcs Eòlics Marins; sigles de
tortugues i mamífers marins (Madsen et al.
Offshore Wind Farms) s’han construït al Mar
2006; Bailey et al. 2010), els efectes a nivell
del Nord, que té una gran part a la platafor-
de la població de les col·lisions d’aus amb
ma continental europea (Fig 3, pàg.5). Això
les turbines (Fox et al. 2006; Desholm 2009)
proporciona regions planes i superfícies re-
i els efectes de la pertorbació sobre diversos
lativament grans adequades per al desenvo-
grups animals (Drewitt & Langston 2006;
lupament d’OWF (Henderson et al. 2003). A
Masden, Haydon, et al. 2010).
diferència del nord d’Europa, la costa occidental de França, de la Península Ibèrica i la
L’avaluació ambiental
Mediterrània segueixen sent un desafiament per al desenvolupament de l’energia eòlica
La Unió Europea compta amb un marc
marina. Encara que hi ha projectes previstos
normatiu (Directiva 2001/42/CE) per es-
per a aquestes zones, les turbines disponi-
tandarditzar l’avaluació i el seguiment de
bles i els mètodes de fonamentació requeri-
les activitats humanes en els ecosistemes
rien la construcció de parcs eòlics molt més
i garantir un desenvolupament racional
a prop de la línia de costa, amb un conse-
d’aquestes activitats, incloent considera-
güent increment dels conflictes per trobar
cions ambientals. A gran escala, els països
llocs òptims, ja sigui per l’acceptació social,
han de desenvolupar una Avaluació Ambi-
els impactes ambientals, els conflictes de in-
ental Estratègica (AAE) per planificar la seva
terès nacional o la planificació espacial ma-
xarxa de parcs eòlics marins i minimitzar
rina. Tots aquests factors, juntament amb
el seu impacte ecològic sobre el medi am-
la manca de finançament, estan frenant el
bient costaner. A nivell local, cada projecte
desenvolupament de l’energia eòlica en alta
de parc eòlic requereix una Estudi d’Impacte
mar a l’Europa occidental i meridional.
Ambiental (EIA) dels possibles impactes ne-
L’energia eòlica marina, de fet, no està
gatius en el medi marí del projecte proposat.
exempta de conflictes. A escala global, el
Durant molts anys, l’única informació
canvi cap a les energies renovables és ac-
disponible sobre els parcs eòlics en alta mar
ceptat àmpliament com un pas necessari
eren informes centrats en la forma de rea-
per mitigar els efectes del canvi climàtic
litzar els EIA de projectes particulars. L’ex-
antropogènic (King 2004; Rosenzweig et al.
periència danesa amb els primers parcs eò-
2008). A escala local, però, cal considerar
lics i la seva metodologia de mostreig aeri
acuradament els impactes ambientals del
s’ha convertit en un referent per a molts
desenvolupament de l’energia eòlica (Gill
EIA (Noer et al. 2000). Més tard, el COWRIE
2005). En el camp de la gestió del medi marí,
(Collaborative Offshore Wind Research Into
hi ha una creixent preocupació sobre el des-
the Environment) del Regne Unit va encar-
envolupament de l’energia eòlica al mar i
regar un informe per estandarditzar les tèc-
els seus possibles impactes en l’ecosistema
niques de censos d’aus marines per l’EIA de
marí. Alguns dels aspectes que s’estan estu-
parcs eòlics a alta mar (Camphuysen et al.
diant són l’alteració del fons i fauna marines
2004). En els últims anys, i com que el sec-
|
115
116
|
Catalan Summary tor ha crescut, s’han publicat reportatges i
ara la Directiva Aus i la Directiva Hàbitats a
treballs d’investigació sobre l’avaluació de
Europa) i són espècies emblemàtiques per al
la interacció amb el medi ambient de parcs
públic (Fox et al. 2006). Per aquests motius
eòlics particulars (p. ex. Desholm & Kahlert
abunden els estudis a llarg termini de la dis-
2005; Perrow et al. 2011; Skeate et al. 2012),
tribució en el mar i les tendències poblacio-
i també revisions i treballs generals relacio-
nals dels ocells marins.
nades amb l’AAE (Elliott 2002; Fox et al. 2006; Punt et al. 2009; Masden, Fox, et al. 2010).
Per tot això, la distribució i abundància de les aus marines esdevé informació clau per donar suport a les àrees marines protegides
Les aus marines com indicadors
(Garthe et al. 2011; Arcos et al. 2012), per aplicar les mesures de gestió pesquera (Boyd et
Els ecosistemes marins tenen nivells de
al. 2006), per monitoritzar l’impacte de les
biodiversitat elevats i a la vegada són molt
plataformes de petroli i gas al mar (Wiese
complexos ecològicament. Mentre que els
et al. 2001), o per avaluar l’impacte dels de-
estudis ecològics es centren en aquesta
sastres ambientals com ara vessaments de
complexitat, l’ecologia aplicada requereix
petroli (Bretagnolle et al. 2004; Moreno 2010)
de mètodes que sintetitzen aquesta comple-
. Per tant, les aus marines són indicadors
xitat per tal de prendre mesures que poden
adequats del medi marí, i s’han convertit
tenir conseqüències econòmiques (Piatt &
en una de les pedres angulars del procés de
Sydeman 2007). Aquest és el cas de la uti-
presa de decisions per a la selecció d’àrees
lització d’espècies indicadores per simpli-
òptimes per al desenvolupament nacional
ficar els processos de supervisió i de gestió
d’energia eòlica marina i l’avaluació d’im-
per als EIA i AAE. Els principals depredadors
pacte dels projectes concrets de parcs eòlics
marins són un component clau de la gestió
marins.
dels ecosistemes marins (Boyd et al. 2006.), i dins dels principals depredadors, les aus
Els impactes potencials sobre les aus marines
marines han esdevingut els indicadors generalitzats per avaluar els efectes potencials
A l’hora de seleccionar les àrees de des-
de les activitats humanes al mar, així com la
envolupament, o quan la ubicació d’un pro-
salut de l’ecosistema (Cairns 1987; Nettles-
jecte es resol, podem diferenciar l’efecte de
hip & Duffy 1993; Mallory et al. 2006).
OWF en dos tipus d’aus: i) espècies migratò-
Les aus marines ofereixen molts avan-
ries que poden ensopegar amb els parcs eò-
tatges en comparació amb altres espèci-
lics en les seves rutes migratòries i ii) espèci-
es. Considerant un entorn on la majoria de
es que tenen els quarters de cria i hivernada
les espècies estan sota l’aigua, les aus ma-
prop d’un parc eòlic marí. Tots dos tipus
rines són animals visibles que es poden es-
d’aus són susceptibles a múltiples impactes
tudiar fàcilment. A més, com que algunes
antropogènics (Anderson et al. 2003; Hüppop
espècies tenen facilitat de captura, es poden
et al. 2006; Louzao et al. 2006). Els impactes
realitzar seguiments individuals i estudis
potencials dels parcs eòlics marins sobre les
demogràfics (Piatt & Sydeman 2007). D’altra
comunitats d’aus marines es poden classifi-
banda, la majoria de les aus marines tenen
car en tres tipus (Fig 4, pàg.9), (i) mortalitat
determinats marcs legals de protecció (com
directa per col·lisió, (ii) modificació del seu
INTRODUCCIÓ hàbitat físic i (iii) efectes de pertorbació i de
turbines pot afectar la hidrologia del lloc i
barrera.
impactar grans àrees (Percival 2003). Hi ha incertesa sobre la magnitud d’aquests can-
Risc de col·lisió
vis, però el dany pot ser significatiu, especialment a àrees d’alimentació, com ara bancs
Els ocells que volen per la zona del parc eòlic tenen clarament un cert risc de col·
de sorra en aigües poc profundes (Drewitt & Langston 2006).
lisió amb les aspes i l’estructura estacionà-
Les bases de les turbines tendeixen a te-
ria, o de ser atrapats i ferits en els vòrtex de
nir un «efecte escull» que augmenta la bi-
pressió creats per les pales del rotor (Fox et
odiversitat mitjançant la creació d’hàbitat
al. 2006). El risc de col·lisió depèn d’una sè-
(Linley et al. 2007), però això pot influir en
rie de factors relacionats amb les espècies
les comunitats de flora i fauna de manera
d’aus (maniobrabilitat, envergadura, etc.),
complexa generant efectes tant positius
comportament (per exemple, activitat noc-
com negatius, depenent del lloc i de l’es-
turna), la presència en grans estols i les
pècie (Perrow et al. 2011). Les aus marines
condicions meteorològiques que redueixen
també poden veure’s afectades de manera
la visibilitat. La mortalitat per col·lisió és el
diferent pels canvis en l’hàbitat. Mentre que
perill més important, ja que la mortalitat
algunes espècies especialistes poden perdre
directa pot tenir potencialment conseqüèn-
importants fonts d’aliment, altres espècies
cies ràpides en els nivells de població. No
oportunistes (com ara les gavines) poden
obstant això, encara hi ha poca informació
augmentar la seva presència a la zona per
sobre el nombre real de col·lisions d’aus
explotar la nova font d’aliment. D’altres aus
amb parcs eòlics en alta mar, en gran part
marines (com succeeix amb els corbmarins)
com a conseqüència de les dificultats tèc-
poden veure’s atretes per les plataformes
niques per a detectar les col·lisions al mar
de manteniment de turbines que utilitzen
(Drewitt & Langston 2006).
com estructures de descans (Kahlert et al. 2004). No obstant això, aquest guany d’hà-
Modificació de l’hàbitat
bitat podria ser contrarestat per un risc de col·lisió superior.
Aquest impacte comprèn la pèrdua d’hàbitat resultat de la presència de les ba-
Pertorbació
ses de turbina, els cables de connexió a la xarxa i qualsevol altra construcció associa-
La presència de les turbines, així com
da. La magnitud de la pèrdua d’hàbitat no
els moviments dels vaixells i de les perso-
es considera generalment com una de les
nes relacionades amb la construcció i man-
principals preocupacions sempre que no es
teniment del lloc, pot dissuadir algunes
produeixi en zones d’alta biodiversitat o im-
aus marines de l’ús de zones del parc eòlic
portància ecològica (BirdLife International
i els seus voltants. L’escala dels efectes de
2003). No obstant això, també pot haver-hi
pertorbació varia molt en funció d’una àm-
una pèrdua d’hàbitat indirecta a causa dels
plia gamma de factors (Drewitt & Langston
fonaments de la turbina sobre el fons del
2006), com ara el disseny de la matriu de la
mar, o pel canvi en l’ús de l’hàbitat que en
turbina, la distància entre les turbines, els
fan els humans. Per exemple, l’activitat de
patrons d’activitat (nocturna o diürna) de
la construcció i la distribució espacial de les
les aus marines (Desholm & Kahlert 2005)
|
117
118
|
Catalan Summary o les condicions climàtiques. Les respostes
densitat per avaluar la pèrdua de hàbitats
comportamentals als parcs eòlics no només
d’alimentació i la modificació de l’hàbitat fí-
poden variar entre les espècies, sinó tam-
sic (Camphuysen et al. 2004; Fox & Petersen
bé entre individus de la mateixa espècie en
2006).
funció de factors com ara l’etapa del cicle de
Per a avaluar el risc de col·lisió la tecno-
vida (hivernada, muda i de cria), la mida o la
logia de radar és una eina poderosa, ja que
tendència a l’habituació.
permet millorar el nostre coneixement sobre
Encara que es produeixi pertorbació i
patrons en l’espai i el temps d’alguns grups
desplaçament, el seu efecte pot ser intrans-
d’aus marines. La recopilació de dades de
cendent si abunden els hàbitats alterna-
radars i l’anàlisi dels resultats requereixen
tius. No obstant això, els parcs eòlics marins
estudis integrals que ja s’han abordat (Des-
situats a les rutes migratòries o en trajectò-
holm 2006; Brookes 2009; Mateos 2009). Per
ries de vol locals podrien alterar els movi-
contra, l’ús de mapes de densitat s’ha que-
ments de les aus i augmentar la seva des-
dat enrere en la integració de la dimensió
pesa d’energia (Masden, Haydon, et al. 2010).
espai-temporal dels patrons de les aus ma-
Aquest tipus de trastorn s’anomena “efecte
rines, tot i que els mapes de distribució de
barrera”. De fet, les observacions en parcs
les aus marines tenen un paper prominent
eòlics operatius mostren que molts ocells
en la majoria d’EIA i les AAE. Respecte a la
decideixen volar fora del parc eòlic en lloc
distribució d’aus marines i la seva abun-
de volar entre les turbines (Desholm & Kah-
dància, generalment es representa com a
lert 2005; Larsen & Guillemette 2007). Desa-
simples localitzacions o quadrícules de den-
fortunadament, hi ha una manca d’informa-
sitat. Després d’una revisió de més de 200
ció completa abans i després de l’impacte en
estudis publicats, Tremblay et al. (2009) van
molts parcs eòlics operatius per quantificar
assenyalar que «la visualització senzilla de
adequadament l’efecte barrera i els efectes
les dades de distribució ha estat molt més
de les pertorbacions en comparació amb
freqüent que els índexs quantitatius». De
el comportament bàsic de les aus marines
fet, pocs estudis han tractat d’abordar els
(Drewitt & Langston 2006).
mètodes analítics i sintètics per extreure les decisions adequades estratègiques (AAE) o
Noves línies de recerca
locals (EIA) dels nivells de les dades de distribució d’aus marines. Aquesta tesi pretén
Les directrius acordades internacional-
contribuir a omplir aquest buit en l’enfoca-
ment recomanen l’avaluació del risc de
ment metodològic per a l’ús de les dades de
col·lisió amb estudis de radar en àrees for-
distribució d’aus marines en alta mar per les
tament migratòries (Desholm et al. 2006;
Avaluacions d’Energia Eòlica.
Fox et al. 2006; Kunz et al. 2007) i mapes de
OBJECTIUS
OBJECTIUS
Objectiu principal L’objectiu principal d’aquesta tesi és aprofundir en les eines analítiques en l’espai i el temps per a l’avaluació ambiental de l’energia eòlica marina a fi de proporcionar als professionals les directrius sobre com i quan aplicar-les.
Objectius específics Per aconseguir aquest objectiu, la present tesi s’ha estructurat en quatre capítols i una anàlisi global que aborden els següents objectius específics:
1.
Dissenyar i posar a prova un índex de vulnerabilitat per avaluar els efectes potencials de desenvolupament d’energia eòlica marina a les aus marines. (Capítols 1 i 2)
2.
Desenvolupar una eina per integrar la variabilitat espaial i temporal de l’abundància
3.
Investigar les discrepàncies entre els mapes de distribució i abundància i el segui-
4.
d’aus marines al mar per quantificar els impactes potencials dels parcs eòlics marins sobre les aus marines. (Capítol 3) ment basat en individus d’una espècie emblemàtica. (Capítol 4) Proporcionar directrius pràctiques sobre la manera d’integrar les eines analítiques presentades en el disseny d’AAE i EIA. (Discussió)
|
119
120
|
Catalan Summary
PLANTEJAMENT METODOLÒGIC
Censos d’aus marines
vol. No obstant això, aquest mètode té dos
De les tècniques de cens existents, els
inconvenients principals. En primer lloc, els
millors mètodes disponibles per a la ob-
vaixells al mar, encara que no proporcionin
tenció de la distribució i abundància d’aus
aliments, tenen un efecte d’atracció sobre
al mar són els censos des d’avioneta i des
les aus que modifica en algun grau la dis-
d’embarcació. Els censos en vaixell han
tribució original de les aus marines (Spear
estat àmpliament utilitzats seguint una
et al. 2004). En segon lloc, aquest mètode
metodologia estandarditzada (Tasker et al.
requereix un temps més llarg al mar per
1984), amb adaptacions d’acord a cada pro-
cobrir grans àrees. Els estudis aeris, d’altra
jecte en particular. Els censos aeris d’aus
banda, són particularment eficaços en una
marines al mar han tingut una ràpida ex-
cobertura simultània de grans àrees que
pansió en l’última dècada. Han estat forta-
proporcionen una instantània de distribu-
ment influenciats per l’experiència danesa
ció i abundància (Camphuysen et al. 2004)
en relació amb l’avaluació de l’impacte am-
amb un mínim d’atracció o repulsió (Certain
biental dels parcs eòlics a alta mar (Cam-
& Bretagnolle 2008). D’altra banda, els reco-
phuysen et al. 2004). Fins ara, el mètode ex-
neixements aeris permeten estudiar zones
posat en els seus informes (p. ex. Noer et al.
llunyanes de difícil accés (com ara, zones
2000) s’ha convertit en un referent.
poc profundes o bancs de sorra) en intervals
L’elecció entre un o altre mètode depèn
de temps curts i de manera poc costosa
dels objectius específics de la investigació,
(Camphuysen et al. 2004; Garthe et al.
ja que cada mètode té els seus avantatges i
2011). Això és possible gràcies a la velocitat
desavantatges (Camphuysen et al. 2004 per a
dels avions, però aquesta velocitat és també
una revisió completa). Els censos en vaixell
el principal inconvenient del mètode. Els es-
són especialment adequats per fer recompt-
tudis aeris es duen a terme a una velocitat
es exhaustius, el que permet una millor
mínima que garanteix la seguretat de vol i
identificació de les espècies amb el temps
proporciona suficient temps d’observació
suficient per recollir informació addicional
(en general 185 km/h). A aquesta velocitat,
com l’edat, el comportament o l’alçada de
el temps d’observació és curt i genera prob-
PLANTEJAMENT METODOLÒGIC lemes d’identificació d’algunes espècies i
l’energia eòlica en alta mar amb les aus ma-
redueix la capacitat de detecció d’espècies
rines, la telemetria esdevé un mètode eficaç
rares i petites que són difícils de detectar
per integrar la dimensió espacial i temporal
des d’avioneta (Camphuysen et al. 2004;
dels patrons de distribució de les aus ma-
Henkel et al. 2007). A més, la informació ad-
rines. No obstant això, hi ha alguns incon-
dicional no sempre és fàcil de recollir i no es
venients per a aquesta metodologia. Alguns
pot calcular l’alçada de vol.
d’aquests dispositius tenen alts costos; la
En aquesta tesi s’han utilitzat censos des
mida mostral és petita, i per tant els anàlisis
de vaixell i reconeixements aeris com a font
són molt costosos en temps. A més només
de dades de distribució d’aus marines. Les
un nombre limitat d’espècies d’aus marines
aus marines presenten patrons dinàmics de-
poden ser capturades per fixar els mètodes
pendents de l’escala de distribució, per això
de marcatge (Perrow et al. 2006.). Finalment
calen conjunts de dades que permetin fer
també hi ha problemes legals i de conser-
front a aquesta variabilitat i que es puguin
vació a l’hora de capturar espècies prote-
repetir fàcilment en condicions similars. Els
gides. Aquest enfocament, que s’ha utilitzat
estudis aeris permeten obtenir dades d’una
en el quart capítol de la tesi, proporciona
àrea en particular diverses vegades dins
estudis de comportament a escala fina i
d’un any (capítol primer i tercer). Els censos
resulta especialment útil si s’utilitza junta-
des de vaixells requereixen més temps però
ment amb mètodes com censos aeris i des
maximitzen la riquesa d’espècies detecta-
de vaixell (Tremblay et al. 2009).
des (nombre d’espècies o tàxons identificats en cada enquesta) (Henkel et al. 2007), una
Les àrees d’estudi
característica clau per capturar els patrons detallats de biodiversitat. En el segon capí-
Aquesta tesi doctoral aborda la qüestió
tol, l’àrea d’estudi abasta les costes de la
del desenvolupament d’energia eòlica ma-
Península Ibèrica. Censos repetits simultà-
rina i les interaccions amb les aus, des d’una
niament i sistemàticament eren econòmica-
perspectiva metodològica, sense centrar-se
ment inviables. Per tant, la maximització de
en una àrea particular. No obstant això, per
la detecció de les espècies a través de censos
tal de presentar un instrument d’anàlisi,
amb vaixell era particularment important.
entendre l’eina, la seva aplicació i aplica-
Tots dos tipus de censos en una àrea
bilitat per a la presa de decisions i la gestió,
determinada permeten veure si les aus
les dades reals són preferibles als conjunts
l’utilitzen. El que sembla més intuïtiu però,
de dades simulades. Les tres àrees d’estudi
és controlar les aus marines per estudiar
pertanyen a les aigües franceses, portugue-
com estan explotant una àrea (Perrow et al.
ses i espanyoles i tenen un gran potencial
2006). Per això s’han utilitzat mitjans elec-
per al futur desenvolupament d’energia
trònics de seguiment, com ara transmissors
eòlica marina. A excepció de la turbina ex-
de localització per satèl·lit, receptors GPS o
perimental flotant a Portugal, fins ara no hi
ràdio telemetria. Des de principis de 1990,
ha cap OWF construït a les àrees d’estudi, el
ha augmentat molt l’ús de la telemetria a
que les converteix en exemples rellevants de
causa dels avenços en la miniaturització
com aplicar les eines d’anàlisi per a la futura
dels dispositius electrònics (Tremblay et al.
presa de decisions. A continuació s’exposa
2009).
una breu descripció de les tres àrees.
En
l’avaluació
de
la
interacció
de
|
121
122
|
Catalan Summary Golf de Biscaia
voltada per l’Oceà Atlàntic i el Mar Mediterrani, i la diversitat geomorfològica i ocean-
El Golf de Biscaia és un golf de l’Oceà
ogràfica dels seus marges continentals, té
Atlàntic que s’estén entre el cap Ortegal a
implicacions significatives sobre el seu clima
Galícia, Espanya (43.77 º N, 7.89 º W) i l’illa
i la circulació de masses d’aigua (Maestro et
d’Ouessant, a Bretanya, França (48.43 º N,
al. 2012 per a una revisió detallada). El marge
18/05 º W). Dins d’aquesta zona, una regió de
continental de la Península Ibèrica té divers-
100.000 km 2 (Fig.8a, pàg 18) es va cobrir amb
es regions ben diferenciades: i) la regió est
5000 km lineals de transsectes aeris mensu-
de l’Atlàntic Nord i l’aflorament ibèric cap al
als des d’octubre de 2001 a març de 2002 i
pol actual, que tenen una forta influència en
amb 4000 km lineals de transsectes des de
els marges continentals portuguès, gallec i
vaixell a la primavera del 2003 al 2006.
del Golf de Biscaia (Peliz et al. 2005; Llope et
L’àrea d’estudi cobreix la plataforma
al. 2006); ii) la sortida de l’aigua del Mediter-
continental francesa del Golf de Biscaia en-
rani que flueix des de l’estret de Gibraltar al
tre Penmarch al nord (47.75 º N, 28/04 º W)
llarg del talús continental del Golf de Cadis
i Baiona al sud (43.497 º N, 1.64 º W). Les
(Ribas-Ribas et al. 2011); iii) els corrents de
àrees de descans costaneres i de la plata-
l’Atlàntic que afecten el Mar d’Alborán , i iv)
forma són els sistemes més productius de
altres masses d’aigua mediterrànies que in-
la regió (Certain et al. 2008). Les desembo-
flueixen en els marges continentals valèn-
cadures dels rius Loira i Gironde són una
cia, català i balear (Salat 1996). Aquesta con-
font d’aigua rica en nutrients provinents de
figuració oceanogràfica afecta la composició
l’aigua dolça (Planque et al. 2004) i la vora de
i l’estructura del plàncton i de tots els com-
la plataforma és una àrea d’elevada produc-
ponents de la cadena alimentària (Santos et
ció primària, on les aigües profundes més
al. 2007; Cabal et al. 2008) fins als nivells tròf-
fredes arriben a la capa eufòtica, a causa de
ics més alts i, per tant, les aus marines. De
les marees internes i les onades (Gerkema et
fet, la Península Ibèrica acull la major diver-
al. 2004), especialment a la zona sud, carac-
sitat d’aus marines d’Europa. La comunitat
teritzada per un profund canó, el Cap Ferret
d’aus marines en aquesta zona manté fins a
(Laborde et al. 1999).
39 espècies habituals (Taula 2, pàg 20), a més
La comunitat d’aus marines d’aquesta
de diverses espècies rares.
àrea es pot agrupar en vuit famílies i un total de 30 espècies (Taula 2, pàg 20).
Costes de la Península Ibèrica
Delta de l’Ebre La tercera àrea, d’escala més local, es troba al voltant del delta de l’Ebre (40,7 º N, 0.75
Aquesta àrea, d’aproximadament 230.000
ºE) (Fig.8a, pàg 18). L’àrea d’estudi cobreix
km , cobreix la plataforma continental espa-
1.435 km 2 de la plataforma continental des
nyola i portuguesa i s’estén sobre 7.800 km
del port de l’Ametlla de Mar (24 km al nord;
de costa (Fig.8b, pàg 18). Els censos es van
40,86 º N, 0,8 º E) fins a Peníscola (51 km al
dur a terme en vaixell per l’SPEA (Societat
sud; 40,35 º N, 0,4 º E). D’aquest àrea, que pot
Portuguesa per a l’Estudi de les Aus) i SEO
ser coberta en un sol dia amb avioneta, se’n
/ Birdlife (Societat Espanyola d’Ornitologia)
van fer reconeixements aeris un cop al mes,
en diferents etapes entre 1999 i 2011.
des de l’abril de 2005 a març del 2006.
2
La ubicació de la Península Ibèrica, en-
Aquesta zona compta amb un aflora-
PLANTEJAMENT METODOLÒGIC ment permanent gràcies a la combinació
bució espacial i temporal dels animals és
de la influència del front liguro-provençal-
el resultat de la combinació de processos
català, la sobtada ampliació de la plata-
extrínsecs, relacionats amb la influència
forma continental i la font de nutrients del
dels factors ambientals biòtics i abiòtics,
riu Ebre (Palomera 1992; Arcos 2001). L’alta
i processos intrínsecs, relacionats amb la
productivitat de la zona acull una important
dinàmica de la població i de les interaccions
flota pesquera, font d’alimentació clau per a
intraespecífiques (Bellier et al. 2010). A mes,
la cria i hivernada d’aus marines al Delta de
les distribucions també depenen de l’escala
l’Ebre (Arcos 2001; Arcos et al. 2008). D’altra
d’estudi.
banda, el delta de l’Ebre és una zona humi-
Així,
en
un
sistema
d’agrupacions
da d’importància internacional inclosa en
jeràrquiques dinàmiques (Kotliar & Wiens
el Conveni de Ramsar des de 1993. Amb 320
1990; Allen i Hoekstra 1991; Wu & David
km , el Delta és la segona zona humida més
2002), els patrons a gran escala seran més
important de la Mediterrània occidental
estables i predictibles a causa d’una alta
després de la Camarga a França i la segona
correlació amb les variables ambientals que
més important de la Península Ibèrica
defineixen els hàbitats potencials (Hunt &
després de Doñana. Els arrossars, llacunes,
Schneider 1987; Bellier et al. 2010). En canvi,
salines i platges del delta de l’Ebre ofereixen
a escales espacials més petites, els patrons
una varietat d’hàbitats de cria i hivernada
són menys predictibles ja que depenen de
de les aus, però també parada una escala
combinacions particulars de variables cir-
d’aturada per a un gran nombre d’aus mi-
cumstancials que creen un hàbitat temporal
gratòries. En global, s’hi poden trobar al
preferencial dins l’hàbitat potencial (Bellier
voltant de 400 espècies d’aus (Bigas 2012),
et al. 2010).
2
18 de les quals es van poder detectar al mar des d’avioneta (Taula 2, pàg 20).
Per traduir aquests conceptes teòrics de l’ecologia aplicada calen els instruments que permetin avaluar de forma òptima les
Eines de modelització
interaccions entre aus marines i els parcs eòlics marins. Aquests hauran de tenir en
L’eficàcia de la utilització de dades so-
compte l’efecte diferencial de les escales
bre la distribució de les aus marines al mar
espacials i temporals. En avaluacions a gran
com a eina per a la conservació i valoració
escala, es pot considerar que els patrons
del medi ambient depèn de si les dades es-
de distribució observats són estables en el
pacials a partir dels censos d’aus marines
temps i representen els hàbitats potencials.
representen un patró general o només una
Per tant, permeten delimitar de forma òpti-
’instantània’ puntual d’un sistema altament
ma les àrees clau de protecció (p. ex. Impor-
dinàmic (Fauchald et al. 2002).
tant Bird Areas; IBAs) i les àrees clau per al
Malgrat la seva homogeneïtat superfi-
desenvolupament d’energia eòlica marina.
cial, el mar és un entorn heterogeni a causa
En les avaluacions a escala regionals o lo-
de les seves múltiples característiques hi-
cal, cal avaluar l’agrupació observada d’aus
drològiques, hidrogràfiques i la distribu-
marines en la seva variabilitat temporal i es-
ció desigual de la seva biota (Steele 1989;
pacial per quantificar (amb probabilitats) el
González-Solís & Shaffer 2009). La distri-
risc d’exposició a a l’OWF.
|
123
124
|
Catalan Summary desenvolupar un nou índex, en aquesta
Gran escala: Índex de Vulnerabilitat
tesi s’analitza el mètode en profunditat i es suggereix un refinament de la seva
L’Avaluació Ambiental Estratègica integ-
formulació matemàtica (capítol 1). A més, es
ra dades a escales molt grans, de forma que
formulen recomanacions sobre l’aplicació
podem assumir que l’escala temporal no és
òptima de l’índex per a la seva utilització en
una prioritat i podem combinar les dades de
qualsevol avaluació ambiental estratègica
diferents anys o períodes. Les distribucions
(capítol 2).
d’aus marines poden tenir patrons diferents depenent de l’etapa del cicle de vida (hiver-
Escala regional i local
nada, migració i reproducció), però s’espera que en conjunt, la seva distribució sigui es-
A
escales
més
petites,
els
estudis
pacial i temporalment predictible (Fauchald
d’impacte ambiental es centren general-
et al. 2002). En altres paraules, a nivell es-
ment en l’ús de l’hàbitat per part de les aus
tratègic la principal preocupació referent
marines, així com en les estratègies i els
a l’avaluació de la interacció entre les aus
processos que poden influir en la presència
marines i els OWF és la superposició espa-
d’aus marines o la disponibilitat de les seves
cial de la distribució de les aus marines amb
preses. A mesura que s’augmenta l’escala, la
el desenvolupament d’àrees clau d’OWF.
densitat d’aus s’utilitza com a estimador de
Aquest tema generalment es tracta amb la
l’hàbitat potencial ornitològic per avaluar
selecció de mapes de presència/absència
l’exposició al risc de pèrdua d’hàbitat o per-
d’una espècie emblemàtica o altament vul-
torbació. Malgrat ser una pràctica comuna,
nerable als OWFs i mapes generals de den-
l’eficàcia d’aquest mètode es veu compro-
sitat amb les xifres globals dels recomptes
mesa si les dades observades no segueixen
d’aus marines al mar. En aquest context, és
una distribució normal. De fet, les dades de
convenient aplicar un índex per integrar i
comptatge d’animals rarament són normals
resumir totes aquestes capes d’informació.
(hi ha molts sectors sense individus i la dis-
Garthe i Hüppop (2004) van proposar
tribució és contagiosa). Per tant, per al dis-
l’Índex de Sensibilitat de parcs eòlics (WSI)
seny d’estratègies de gestió ecològicament
per cartografiar la vulnerabilitat de les aus
racionals a escala regional i local de qual-
marines als parcs eòlics marins. Aquest ín-
sevol EIA cal considerar explícitament la
dex estima primer la vulnerabilitat de cada
densitat i la variabilitat temporal i espacial
espècie en funció de la seva sensibilitat als
dels ocells marins (Tobin 2004; Certain et al.
riscos de col·lisió i pertorbacions, i després
2007.).
en funció de la seva demografia i el seu es-
Els capítols tercer i quart d’aquesta tesi
tat de conservació. Aquest valor es combina
se centren en aquesta variabilitat espacial
amb l’abundància espacial de cada espècie
i temporal mitjançant l’aplicació de la Llei
per obtenir un mapa de vulnerabilitat.
Exponencial de Taylor i l’anàlisi dels movi-
Aquest mètode és general, simple i d’aplicació àmplia. Per tant, en lloc de
ments a nivell individual, respectivament.
DISCUSSIÓ
DISCUSSIÓ
Índex de vulnerabilitat
de vol dedicat a gran altitud) i els factors que
El treball de Garthe i Hüppop (2004) va
no són importants en si mateixos, sinó com
proposar l’avaluació quantitativa de la vul-
a agreujants que poden augmentar el risc
nerabilitat de les comunitats d’aus marines
preexistent (per exemple la maniobra de
als parcs eòlics. Aquesta vulnerabilitat es
vol). En altres paraules, si una espècie marina
calcula mitjançant de l’índex de Sensibilitat
mai vola en una altura amb risc de col·lisió,
de les Espècies (SSI, Species Sensitivity In-
és irrellevant la seva maniobrabilitat, ja que
dex) que centrat en la vulnerabilitat de les
no li caldrà evitar una turbina. Això significa
espècies (a nivell individual i poblacional) i
que els factors jeràrquica estan estructurats
l’Índex de Sensibilitat als Parcs Eòlics (WSI,
entre els factors de risc primaris i els factors
Windfarm Sensitivity Index). No obstant
de agreujament. Per tant, els factors de risc
això, com s’ha demostrat en el capítol 1, la
no poden ser tractats amb una formulació
formulació matemàtica de l’índex principal
additiva. Per això es suggereix una funció al-
té supòsits implícits, tant a nivell d’espècies
ternativa que permeti millorar l’estima del
com de la comunitat, que podrien conduir a
risc de col·lisió i pertorbació.
estimacions incorrectes de la vulnerabilitat i
La segona premissa diu que tots els ti-
a una identificació parcial de les àrees clau.
pus de risc (de col·lisió, de sensibilitat a les
La primera suposició és que tots els fac-
pertorbació i sensibilitat poblacional) tenen
tors de risc associats a un determinat ti-
la mateixa importància, i una relació multi-
pus de risc tenen la mateixa importància i
plicativa. La dificultat de mesurar la impor-
mantenen una relació additiva. No obstant
tància relativa del risc de col·lisió sobre el
això, hi ha una diferència conceptual entre
risc de pertorbació justifica considerar-los
els factors inclosos en un tipus particular de
similars, tot i que sovint es considera que el
risc. Prenent el risc de col·lisió com exemple,
perill més important és la mortalitat per xoc
ens trobem amb dos tipus de factors de risc:
(Fox et al. 2006; Christel, Certain et al. 2012).
els que estan directament associats al propi
Relacionar multiplicativament la col·lisió i
risc (per exemple, el percentatge de temps
el risc de pertorbació és conflictiu, perquè
|
125
126
|
Catalan Summary aquests dos tipus de riscos no depenen l’un
també en la similitud d’aquestes espècies.
de l’altre. Són dos aspectes independents relatius al impacte potencial d’un OWF sobre
Patrons d’agregació
les aus marines i, per tant, presenten conseqüències ecològiques diferents. Al vincular-
Els mapes d’abundància permeten defi-
los de manera multiplicativa es pot subesti-
nir àrees riques en ocells (informació relle-
mar l’efecte d’un dels riscos, només perquè
vant en l’avaluació de les ubicacions dels
l’altre risc és molt baix. Per això, si els dos
parcs eòlics en alta mar), però no proporcio-
tipus de riscos han de ser combinats en un
nen informació sobre els patrons espacials
únic mapa és recomanable utilitzar una re-
dinàmics i complexos de les aus marines al
lació additiva. Malgrat això, considerem que
mar. Si bé els mapes de densitat permeten
per arribar a una decisió informada per a la
centrar-se en la detecció d’altes concentra-
gestió és preferible examinar ambdues cate-
cions d’aus marines com àrees de risc po-
gories, la del risc de col·lisió més la del risc
tencial, l’aplicació de la llei exponencial de
de pertorbació.
Taylor permet distingir explícitament en
El pas final de l’índex és la integració de la
el temps entre les zones de transició i les
vulnerabilitat de les espècies en una mesura
d’alimentació. En el capítol 3 hem corro-
de la vulnerabilitat de tota la comunitat. Per
borat la Llei exponencial de Taylor com a
això, el tercer supòsit és que la contribució
índex d’agregació en el temps i l’espai. Les
d’una determina espècie a la vulnerabilitat
àrees amb patrons d’agregació febles po-
de la comunitat és proporcional al logaritme
den ser considerades com àrees de transició
de l’abundància d’exemplars d’aquesta es-
o corredors de vol mentre que els patrons
pècie en un lloc determinat. Aquest enfoca-
d’agregació elevats són majoritàriament zo-
ment volia impedir la instal·lació de parcs
nes d’alimentació determinades per la dis-
eòlics en zones de grans concentracions
ponibilitat puntual de recursos alimentaris.
d’ocells marins. No obstant això, les espè-
La vinculació dels patrons d’agregació
cies abundants generalment tenen valors
amb un comportament particular pot pre-
més baixos de SSI mentre, al contrari, les
dir i classificar millor el risc que representa
espècies rares presenten valors més alts. Per
per a les aus marines (a nivell poblacional o
a un indret donat, SSI i abundància poden
de comunitat) l’establiment de parcs eòlics
afectar el valor final de WSI en direccions
marins. A les zones de transició, el princi-
oposades, fet que dificulta la interpretació
pal risc serà la col·lisió directa i la mortali-
de les variacions en l’índex. A més, l’ús del
tat (Desholm & Kahlert 2005; Hüppop et al.
logaritme de l’abundància en comptes de
2006.). En canvi, a les zones d’alimentació,
l’abundància simple assumeix que un indi-
la presència de les turbines es traduiria en
vidu solitari té més pes, en proporció, que
la pèrdua d’hàbitat per a les espècies amb
un individu situat en un estol d’un centenar
una forta resposta d’evitació o d’un aug-
d’aus, i aquest supòsit no té cap suport ni
ment de risc de col·lisió per a les espècies
ecològic ni ambiental. Per resoldre aques-
que experimenten un suau “efecte barrera”
tes inconsistències, es suggereix un canvi
(Masden, Haydon, et al. 2010; Perrow et al.
important en la formulació basant-se en
2011). Per tant, després de la quantificació
el treball de Leinster i Cobbold (2012) que
del patró d’agregació donada en un deter-
presenta una mesura de diversitat basada
minat sector, es pot avaluar el risc potencial
no només en l’abundància d’espècies, sinó
per les regions dins d’aquesta àrea d’acord
DISCUSSIÓ amb diferents nivells de gravetat o perill. Les
llei exponencial de Taylor.
àrees amb risc de col·lisió i pèrdua d’hàbitat
No obstant això, l’estudi presentat en el
obtindrien el nivell major de gravetat (L3),
capítol 3 demostra que la informació sobre
les àrees amb risc de col·lisió tindrien el se-
les propietats de segon ordre de distribució
güent nivell de preocupació (L2), seguida de
de les espècies (és a dir, l’agregació social)
les àrees amb risc de pèrdua d’hàbitat (L1).
proporciona informació addicional a les
Aquesta classificació es pot utilitzar després
propietats de primer ordre (densitat) per a
per triar la ubicació òptima d’un OWF (se-
l’avaluació dels impactes potencials dels
leccionant zones amb mínim perill) o per
parcs eòlics marins.
definir un protocol de monitoratge requerit per a una ubicació OWF. A més, hi ha una
Seguiment individual
evolució temporal dels patrons d’agregació que es correlaciona amb el cicle de vida de
El comportament dels ocells marins és un
l’espècie. Si s’utilitza escenaris estacionals
component important que es pot extreure
(p. ex. cria, dispersió post-nupcial, migració
del monitoratge d’ocells marcats individual-
o hivernada) o un conjunt de mesos crítics,
ment (Tremblay et al. 2009). Un dels objec-
els escenaris temporals són més fàcils de
tius del capítol 4 era estudiar el comporta-
comunicar perquè resumeixen la informa-
ment mitjançant models SSM (State-Space
ció clau que pot posar de relleu l’impacte
Models) (Jonsen et al. 2003) sobre dades de
potencial d’un OWF en un moment delicat
rastreig per satèl·lit com una alternativa fi-
de la vida dels ocells marins o es pot utilit-
nal a les eines d’avaluació espai-temporals.
zar per recomanar mesures de mitigació du-
No obstant això, el rendiment dels transmis-
rant els mesos crítics.
sors (PTT) va ser molt limitat i heterogeni
L’aplicació d’aquesta eina i la interpreta-
entre dispositius, probablement a causa de
ció dels seus resultats són particularment
problemes de bateria. La mida mostral molt
útils per a l’avaluació d’àrees amb grans
baixa i l’interval de temps entre geolocalit-
poblacions reproductores. No obstant això,
zacions successives va ser massa llarg per
seria aconsellable aplicar aquest mèto-
aplicar els State-Space Models o per posar a
de en altres escenaris per investigar pos-
prova les conclusions del capítol 3.
sibles diferències en la interpretació dels
Malgrat els problemes tècnics i la mida
riscos potencials associats amb els patrons
limitada de la mostra, podem extreure al-
d’agregació observats. També seria inte-
gunes conclusions generals dels resultats
ressant aplicar aquesta eina a sectors amb
de l’anàlisi espacial i temporal dels movi-
composició d’espècies diverses tal com ca-
ments de la gavina corsa (Larus audouinii).
bussadors (p.ex. mascarells) o cabussadors
Per alimentar-se, les aus marines han de
superficials (p. ex. ànecs marins) o en zones
compensar la variabilitat en la distribució,
amb un important corredor migratori. Final-
l’abundància, la mobilitat i la predictibili-
ment, tot i que els resultats del mètode són
tat de les seves fonts d’aliment (Bell, 1991).
consistents amb les observacions ornitolò-
marines Aquesta variabilitat implica que
giques i dades de comportament al Delta de
els ocells marins mostrin un cert grau de
l’Ebre, seria molt recomanable l’aplicació de
plasticitat en el seu comportament al mar.
les dades de telemetria per testar amb un
Entre les moltes possibles respostes com-
conjunt de dades independents la interpre-
portamentals (p. ex. temps de vol, distàncies
tació del comportament animal en base a la
sobrevolades, patrons de capbussament), el
|
127
128
|
Catalan Summary capítol 4 destaca la plasticitat en els patrons
es detecta un gran nombre de gavines cor-
d’activitat temporal i l’ús de l’hàbitat i en
ses (capítol 3, Taula 1), però els censos aeris
conseqüència cal abordar la plasticitat en
i de barca tenen una limitació en el temps
l’avaluació de qualsevol parc eòlic marí.
i en l’extensió que poden cobrir, i per tant
Molts estudis han demostrat que el patró
no permeten captar les variacions a nivell
d’activitat de les aus marines no és constant
individual en l’ús de l’hàbitat o els patrons
al llarg del dia (p. ex. Garthe et al. 2003; Cama
d’activitat temporal durant el capvespre, la
2010; Cama et al. 2012; Christel, Navarro, et
nit i l’albada.
al. 2012). Per tant, els censos d’aus marines,
Per estimar de forma adient els efectes
que han de ser efectuats amb la llum del
potencials d’un parc eòlic sobre les aus ma-
dia i generalment seguint un horari cons-
rines, cal complementar els mapes de distri-
tant, no sempre són suficients per capturar
bució i abundància amb dades de seguiment
la variabilitat de les aus marines en funció
individual. Com que és impossible aplicar
dels cicles circadians. Alguns ocells marins,
aquesta tècnica a totes les espècies d’una
per exemple, s’alimenten de petits peixos
comunitat d’aus marines aconsello que els
pelàgics, però aquest recurs només és dis-
estudis telemètrics es duguin a terme esco-
ponible a les hores prèvies a l’alba, quan
llint espècies altament vulnerables o ame-
els bancs realitzen la seva migració vertical
naçades presents a zones una amb poten-
(Blaxter & Hunter 1982). En aquest cas, els
cial interacció amb els parcs eòlics marins
censos, que generalment comencen després
(vegeu també Perrow et al. 2006; Wilson et al.
de l’alba, no permetrien detectar una zona
2009; Burger et al. 2011). En el cas d’estudi del
amb agregacions recurrents d’aus marines
Delta de l’Ebre, la gavina corsa era una bona
en aquests bancs.
candidata perquè gairebé el 65% de la po-
De vegades se subestima la plasticitat de
blació mundial cria a l’àrea (Oró et al. 2009).
l’alimentació de les aus marines, tant en re-
No obstant això, la baldriga balear (Puffinus
ferència al seu ús de l’hàbitat com a la selec-
mauretanicus) hauria estat també molt relle-
ció de preses. Quan la disponibilitat de les
vant, ja que està en perill greu (CR) segons la
preses és reduïda, les espècies especialistes
llista vermella de la UICN i , encara que no
solen modificar la seva estratègia alimen-
cria a la zona, l’espècie explota extensiva-
tària mitjançant l’extensió de la seva zona
ment la plataforma continental del Delta de
d’alimentació, el temps que passen al mar
l’Ebre com a zona d’alimentació.
o la reducció del temps entre viatges (Lewis et al. 2001; Schwemmer & Garthe 2008). Per contra, les espècies generalistes poden can-
Integració de les eines d’avaluació ambiental
viar els seus hàbitats d’alimentació o variar la seva dieta (p. ex. González-Solís et al. 1997;
En base a les eines presentades en
Schwemmer & Garthe 2008; Navarro et al.
aquesta tesi, la bibliografia consultada i
2010). En el capítol 4, les dades de seguiment
l’experiència adquirida, presento una possi-
per satèl·lit mostren que la gavina corsa té
ble integració dels mètodes descrits al llarg
àmplies àrees d’alimentació i explota in-
de la seqüència de presa de decisions per al
tensivament ambdós hàbitats (el terrestre i
desenvolupament d’energia eòlica marina
el marí), tot i que els moviments terrestres
en referència a la problemàtica ornitològi-
data gairebé no havien estat descrits. A la
ca. Aquesta integració s’inicia a gran esca-
plataforma continental del Delta de l’Ebre
la a les Avaluacions Ambientals Estratègi-
DISCUSSIÓ ques, finalitzant a escala local en els Estudis d’Impacte Ambiental (Fig. 9, pàg. 92).
Aquesta tesi es centra en els ocells marins com indicadors dels ecosistemes marins, però a aquesta informació es poden su-
(1) Regions de desenvolupament òptimes
perposar moltes altres capes d’informació a l’hora de seleccionar les regions òptimes de
Per dissenyar un desenvolupament ra-
desenvolupament. En el tema ornitològic,
cional de l’energia eòlica marina compati-
les avaluacions d’impactes acumulats o les
ble amb la conservació ornitològica cal una
dades sobre les principals rutes migratòries
estratègia prèvia a gran escala definida al-
són rellevants, però també la informació re-
menys, a nivell nacional. A aquesta escala és
lativa als grans animals marins (tortugues,
òptim aplicar l’Índex de vulnerabilitat des-
cetacis, etc.), la distribució dels peixos, el
crit als capítols 1 i 2. El factor limitant és la
bentos, etc. D’altra banda, hi ha molts parà-
disponibilitat de censos que hagin mostrejat
metres socioeconòmics a tenir en compte,
el conjunt de l’àrea estratègica. Això sol ser
els quals queden fora de l’àmbit d’aquesta
possible mitjançant censos des de vaixell
tesi i per tant no s’inclouen en la seqüència
que en molts casos es duen a terme dins el
de presa de decisions.Les eines analítiques
marc de projectes multidisciplinaris que en
presentades podrien però aplicar-se també
una mateixa campanya registren, per exem-
a una avaluació més global de l’espai marí
ple, dades oceanogràfiques, biogeogràfiques
que inclogui també tots els paràmetres bio-
de mamífers marins, i altres paràmetres
geogràfics i socioeconòmics.
ecològics. Això limita la disponibilitat de rèpliques d’aquests censos per a diferents
(2) Àrees d’exclusió
escenaris temporals, però és contrarestat per la acurada aproximació a la biodiversi-
Un cop seleccionada una regió potencial,
tat dels ocells marins que dóna els mostre-
l’Índex de vulnerabilitat també es pot aplicar
jos de vaixell. En alguns casos, però, hi ha
a dita regió. Com que és un índex compara-
disponibles censos aeris per al conjunt de
tiu, fins i tot en zones de baixa vulnerabilitat
l’àrea estratègica. Quan això és possible, els
pot detectar zones més sensibles. Aplicat a
escenaris temporals també poden ser inclo-
escala regional, recomano l’avaluació de les
sos en les Avaluacions Ambientals Estratè-
àrees de major vulnerabilitat per tal de deci-
giques.
dir si aquestes àrees han de ser excloses per
Amb els resultats dels censos, l’índex
a les futures opción d’ ubicació de OWF.
de vulnerabilitat produeix quatre panells
A aquesta escala, la decisió pot basar-
diagnòstics que capturen els elements clau
se en els mateixos censos utilitzats a gran
a tenir en compte per a l’avaluació estratè-
escala. No obstant, si es poden fer censos
gica: la vulnerabilitat a les col·lisions i les
aeris a la regió, seria òptim incloure l’escala
pertorbacions, la vulnerabilitat general de
temporal en la definició d’aquestes àrees
la comunitat i el mapa d’abundància total.
d’exclusió. Encara que no és estrictament
Amb aquesta informació, és possible detec-
necessari, si se sap que la regió avaluada té
tar les àrees amb la menor vulnerabilitat i
una forta presència d’espècies amenaçades
per tant les regions ambientalment òptimes
podria ser aconsellable reforçar l’avaluació
per al desenvolupament de l’energia eòlica
amb informació de seguiment individual de
marina.
les espècies bandera.
|
129
130
|
Catalan Summary una regió gran el que també impossibilita la
(3) Selecció d’una ubicació òptima
rèplica dels censos al llarg dels mesos per capturar la dimensió temporal dels patrons
Dins de la regió seleccionada, l’anàlisi
d’agregació.
dels patrons d’agregació presentat al capítol 3, permet cartografiar els impactes poten-
(4) Estudi d’Impacte Ambiental
cials dels parcs eòlics marins mitjançant la
definició de zones de transició (amb alt risc
Quan la localització d’un parc eòlic marí
de col·lisió) i d’alimentació (amb alt risc de
ja s’ha seleccionat, és obligatori dur a terme
pertorbació i pèrdua d’hàbitat). Associat a
un EIA. En aquest cas, el mapa de risc po-
aquest mapa de risc potencial es suggereix
tencial generat a l’etapa 3 ajuda a identifi-
una classificació dels diferents sectors de la
car els estudis necessaris per avaluar el risc
regió en funció de tres nivells de preocupa-
de col·lisió i pertorbació, i la ubicació òpti-
ció (L0, L1, L2 i L3).
ma dels punts de mostreig. Si un projecte
Aquests nivells estan directament rela-
es troba dins d’una àrea amb risc de pèrdua
cionats amb l’impacte ecològic de la presèn-
d’hàbitat, s’hauria d’estudiar la presència i
cia de les turbines en un sector, però en lloc
abundància d’espècies mitjançant una mo-
d’apuntar simplement a l’impacte potencial,
delització de l’hàbitat, per exemple, realit-
la proposta és vincular aquests nivells amb
zant censos de barca en àrees petites que
un protocol obligatori de monitoratge si un
cobreixen la ubicació del parc eòlic i els
projecte de parc eòlic és acceptat (Taula 3,
seus voltants. Les zones amb risc de col·lisió
pàg. 93). Cada nivell de perill exigeix els seus
s’haurien d’avaluar amb models de risc de
propis mètodes de seguiment, a més dels
col·lisió que podrien requerir mostrejos
punts recomanats als nivells inferiors. En fer
puntuals o transsectes per determinar alça-
això, la selecció de la ubicació òptima d’un
da i direccions de vol, radars de vigilància
parc eòlic (que usualment porta a terme una
(vertical i/o horitzontal) o sistemes amb cà-
empresa promotora) es basaria no només en
meres d’infrarojos. Si l’àrea avaluada té una
l’anàlisi tècnic del cost/benefici sino també
alt risc de col·lisió i de pèrdua d’hàbitats i
en l’increment dels costos de monitoratge
a més hi ha espècies emblemàtiques al vol-
associats a la selecció d’una ubicació menys
tant, seria convenient dur a terme estudis
favorable ecològicament. Aquest sistema de
de seguiment individual per definir millor
decisió podria promoure la selecció dels sec-
els patrons temporals i espacials d’aquesta
tors de baix perill. No obstant, fins i tot si
espècie en els entorns del futur parc eòlic.
es decideix ubicar un parc eòlic en una àrea de gran perill (L3), cal recordar que aquesta
(5) Estudis de seguiment
localització haurà estat seleccionada entre les àrees menys vulnerables definides a les etapes anteriors.
Independentment del nivell de perill de la ubicació seleccionada, quan un parc eòlic
Es recomanable fer aquesta anàlisi so-
ja està operatiu calen estudis de seguiment
bre dades de censos aeris, donat que els
per detectar qualsevol efecte imprevisible
censos de barca no permeten captar una
de la instal·lació en el medi ambient. La dis-
“instantània” dels patrons de distribució de
ponibilitat d’aquest monitoratge és crucial
les aus marines. Els censos de barca reque-
per dur a terme qualsevol acció de gestió
reixen un llarg període de temps per cobrir
adaptativa una vegada el parc eòlic funcio-
DISCUSSIÓ ni. En definir previament el monitoratge que
seu pressupost anual pel manteniment del
caldrà fer, l’empresa promotora pot tenir
parc eòlic. Cal remarcar que el pla de vigi-
una idea clara dels costos mínims de control
lància proposat a la Taula 3 sempre es pot
que estaran associats a la ubicació del parc
ajustar o expandir d’acord amb els resultats
eòlic construït, i per tant incloure’ls en el
de cada EIA.
|
131
Appendix
134
|
Appendix
Estuarine, Coastal and Shelf Science 96 (2012) 257e261
Contents lists available at SciVerse ScienceDirect
Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss
Foraging movements of Audouin’s gull (Larus audouinii) in the Ebro Delta, NW Mediterranean: A preliminary satellite-tracking study Isadora Christel a, b, *, Joan Navarro c, Marcos del Castillo d, Albert Cama a, b, Xavier Ferrer a a
Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain Institut de Ciències del Mar (ICM-CSIC), P. Marítim de la Barceloneta 37-49, 08002 Barcelona, Spain d C/Vilanova 8A, 07002 Palma de Mallorca, Mallorca, Illes Balears, Spain b c
a r t i c l e i n f o
a b s t r a c t
Article history: Received 27 April 2011 Accepted 8 November 2011 Available online 18 November 2011
A knowledge of the foraging strategies of marine predators is essential to understand the intrinsic factors controlling their distribution, abundance and their ecological function within the marine ecosystem. Here, we investigated for the first time the foraging movements and activity patterns of Audouin’s gull Larus audouinii by using satellite-tracking data from eight breeding adults in the main colony of the species worldwide (Ebro Delta, NW Mediterranean). Tagged gulls foraged in the marine area close to the breeding colony (62% of foraging locations) and in the terrestrial area of the Ebro Delta (mainly rice fields; 38% of foraging locations). The foraging activity patterns changed significantly throughout the day; lower from dusk through the first half of the night (19-1 h; 32% of active locations) and higher during the rest of the day (1e19 h; 75.5 4.3% of active locations). These results confirm the foraging plasticity of this seabird and, based on previous information about the dietary habits of this species, we hypothesize how its time-dependent activity patterns and habitat use could be associated with variations in the availability of marine food resources (e.g. diel vertical migrations of pelagic fish) and the exploitation of terrestrial resources (e.g. American crayfish Procambarus clarkii). 2011 Elsevier Ltd. All rights reserved.
Keywords: Ebro Delta foraging activity foraging distribution habitat use marine birds marine habitat Mediterranean Sea rice fields
1. Introduction An important issue in the feeding ecology of marine predators is the degree of plasticity of their foraging behavior. In general, specialist predators are constrained to forage on a specific habitat and time of day determined by a specific prey availability (Futuyma and Moreno, 1988; Krebs and Davies, 1993; Julliard et al., 2006). Under changing conditions of prey availability, specialists are able to adapt their foraging strategy by extending foraging range or time spent foraging (e.g. Oro et al., 1997; Lewis et al., 2001; Schwemmer and Garthe, 2008). By contrast, generalist predators have the ability to exploit different trophic resources and, consequently, they present higher plasticity in their foraging strategies (Krebs and Davies, 1993; Boyd et al., 2006; Julliard et al., 2006). This opportunistic behavior allows generalists to modify their foraging strategies (i.e. exploited habitat, range or temporal patterns) according, for instance, to the varying degree of competition for food. Indeed, * Corresponding author. Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain. E-mail addresses: isadora.jimenez@gmail.com, isadora.jimenez@ub.edu (I. Christel). 0272-7714/$ e see front matter 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.ecss.2011.11.019
the foraging plasticity of marine predators has allowed these organisms to benefit from anthropogenic food resources (e.g. fisheries discards, refuse dumps or introduced prey species; Tablado et al., 2010; Ramos et al., 2011; Wagner and Boersma, 2011). Amongst marine predators, the Audouin’s gull Larus audouinii is a good example of an opportunist species that exhibits clear plasticity in its diet habits. This Mediterranean endemic species exploits small pelagic fish (their main prey, see Oro, 1998 and references therein), but also alternative anthropogenic resources such as demersal or benthonic fish from fisheries discards or invasive freshwater crabs from terrestrial habitat (Oro et al., 1996a, 1999; Oro and Ruiz, 1997; Navarro et al., 2010). This opportunistic behavior is especially relevant in breeding populations located in areas where diverse trophic resources are highly available (e.g. Oro and Ruiz, 1997; Oro et al., 1999; Navarro et al., 2010), which is the case of the breeding population located in the Ebro Delta (Fig. 1. NW Mediterranean). This colony supports ca. 12000e13000 breeding pairs of Audouin’s gull, ca. 65% of the total world population (Oro et al., 2009). The marine ecosystem of the Ebro Delta is one of the most important fishing grounds in the Mediterranean Sea, resulting in one of the largest fishing fleets in this region, which generates a high quantity of fisheries discards (Coll et al., 2008).
|
258
I. Christel et al. / Estuarine, Coastal and Shelf Science 96 (2012) 257e261
Moreover, freshwater resources such as the invasive American crayfish Procambarus clarkii in the rice fields of the Ebro Delta are abundant and easily available (Gutierrez-Yurrita et al., 1999), providing an alternative and proficient trophic resource for the species (Oro et al., 1996b; Longoni, 2010; Navarro et al., 2010). Although the diet habits of the Audouin’s gull are well known (e.g. Oro et al., 1997; Pedrocchi et al., 2002; Sanpera et al., 2007; Navarro et al., 2010), detailed information on the foraging movements is biased toward studies based on ship surveys (e.g. Abelló and Oro, 1998; Arcos et al., 2001; Abelló et al., 2003), which are strongly biased by the influence of fishery discards and underestimate the importance of land habitat utilization. The only previous telemetric study (radio-tracking) already pointed to the apparent importance of the terrestrial habitat for the breeding population of the Ebro Delta colony (Mañosa et al., 2004). Here, we present preliminary results of the first satellitetracking study of Audouin’s gull during the breeding season in its largest breeding colony (Ebro Delta). This paper aims to quantify the foraging range of Audouin’s gull, evaluate the habitat utilization of marine and terrestrial areas and identify the temporal patterns of the foraging activity of the species. Based on previous information about the dietary habits of this species, we also hypothesize how the observed foraging movements could be attributed to the exploitation of different trophic resources in the Ebro Delta marine and terrestrial ecosystems. 2. Material and methods 2.1. Fieldwork procedures The study was carried out at the natural reserve of Punta de la Banya in the Ebro Delta Natural Park, North Western Mediterranean Sea (Fig. 1, 40� 330 N, 0� 39’E). Punta de la Banya is a flat sandy peninsula of 2514 ha, partially occupied by saltworks and
connected to extensive rice field areas (20,000 ha) by a 5 km-long narrow sand bar. To examine the foraging activity, we satellitetracked 8 breeding birds (4 males and 4 females) using battery powered “Platform Transmitter Terminals” (PTTs; North Star Science and Technology, LLC) during the chick-rearing period (May) of 2006 (Table 1). We captured all birds on the nest by using a drop trap (Mills and Ryder, 1979) during late incubation to reduce the risk of desertion. Once trapped, each individual was sexed, weighed, ringed and tagged with a PTT. The attached PTTs weighed 20 g and were programmed to be active in a 6 h on/5 h off duty cycle to get information on the foraging locations during one month. The PTT was fixed to the mid-dorsal feathers of the mantle using Tesa tape (Wilson et al., 1997). With this method the PTT falls off after one month without the necessity to recapture the instrumented bird. The entire transmitter equipment represented between 3 and 4% of the Audouin’s gull’s body mass, so the potential effects of an additional weight on the gull’s movement were minimized (e.g. Phillips et al., 2003; Passos et al., 2010).
2.2. Satellite-tracking data and statistical analyses Data on the position of each PTT were obtained from ARGOS system (CLS, Toulouse, France) and imported to ArcView 3.2 (ESRI) using the Argos Tool extension (Potapov and Dubinin, 2005). Each position was classified according to its estimated error: Type 0 (>1000 m), Type 1 (350e1000 m), Type 2 (150e350 m), Type 3 (0e150 m), and Types A and B (without an estimated error) (ARGOS, 2006). Initial data filtering involved calculating velocities between successive satellite locations, and rejecting those for which the velocity exceeded a threshold of 50 m s�1, the maximum velocity described for this species (Rosén and Hedenström, 2001). By this procedure, up to 8% of the locations were filtered; all of them from the low-quality accuracy class “B”.
Fig. 1. (a) Breeding areas of the Mediterranean endemic Audouin’s gull Larus audouinii and study area: Ebro Delta, NW Mediterranean. (BirdLife International, 2011) (b) Map of the Ebro Delta area indicating the Audouin’s gull colony position with an asterisk and 1 km buffer area around la "Punta de la Banya" peninsula, the rice fields and wetlands shaded in dark gray and the location of the main harbors. (c) Foraging locations of 7 satellite-tracked Audouin’s gulls during the breeding period of 2006. To better visualize the foraging locations’ range the Minimum Convex polygon (short dashed line) is shown beside the 95% (solid line) and 50% (long dashed line) kernel polygons.
135
136
|
Appendix
I. Christel et al. / Estuarine, Coastal and Shelf Science 96 (2012) 257e261 Table 1 Summary information of PTTs performance. PTT Id
Sex
Tracking days
First location
Last location
Total locations
58978 58979 58980 58981 58982 58983 58984 58985 Total
_ _ _ _ \ \ \ \
2 1 10 2 7 0 10 3 13
15/05/2006 19/05/2006 18/05/2006 15/05/2006 15/05/2006 e 15/05/2006 18/05/2006 15/05/2006
16/05/2006 19/05/2006 27/05/2006 16/05/2006 21/05/2006 e 24/05/2006 20/05/2006 27/05/2006
6 2 31 4 6 e 32 8 89
To gain an insight into the foraging activity of the tagged Audouin’s gulls we sorted the locations into three classes, according to their spatial position. PTT locations inside the “Punta de la Banya” peninsula or within the first kilometer around it were classified into the “colony locations” group. In contrast, the locations outside the colony and the first kilometer around it were “foraging locations” (we assumed that the birds were feeding to recover the body condition lost during the incubation bout). Finally, we calculated the 95% fixed-kernel estimates of the foraging area and the maximum foraging distance from the colony. We employed logistic regression e a generalized linear model (GLM) e to test the foraging activity and habitat use. First, we tested a model with the proportion of foraging locations as the dependent variable, and we selected as the explanatory variable the “time of day” -categorized in 6-h intervals (1e7 h; 7e13 h; 13e19 h; 19-1 h)with the 7e13 h interval as the reference level. Then we analyzed habitat use by testing the effect of the explanatory variable “time of day” on the dependent variable “terrestrial vs. marine proportion of foraging locations”. The analyses were carried out using R software (R Development Core Team, 2008), calling the “glm” function with binomial error distribution and its default logit link function. A likelihood ratio test was used to compare the resulting model with the null model (without any variable) and to assess the significance of the explanatory variable “time of day”. 3. Results We obtained a total of 89 filtered PTT locations spanning a period of 13 consecutive days. One of the eight PTTs failed to give any location probably due to a battery failure, and the performance of the remaining PTTs was heterogeneous (see Table 1). Due to sample size limitations individual variability was not included in the
Fig. 2. Example of foraging trajectories for the individual “58980” (see Table 1 for more information).
259
analysis, but the movements of one of the tracked individuals is shown in Fig. 2 to illustrate the general pattern of the foraging movements. The foraging area covered by the Audouin’s gulls was 5400 km2 (95% fixed-kernel density estimate), covering both the marine area of the Ebro Delta (ca. 3300 km2) and the terrestrial area (ca. 2100 km2) (Fig. 1c). The maximum foraging distance covered ranged from 20.5 to 81.7 km (mean � sd ¼ 51.5 � 24.3 km) and was similar for both marine and terrestrial locations (T-Student test, T ¼ 1.44, df ¼ 56, p ¼ 0.15). The foraging activity changed significantly over the course of the day (Likelihood Ratio Test, c2 ¼ 13.79, df ¼ 3, p ¼ 0.003). Tagged gulls were more active at 7e13 h (78.1%), at 1e7 h (77.8% of the total locations in this period, p ¼ 0.65), and 13e19 h (70.6%, p ¼ 0.56), all of them significantly different from the 19-1 h interval (31.8%, p ¼ 0.001), i.e., the foraging activity diminished during the first half of the night (Fig. 3b). Moreover, we found that the proportion of foraging locations in marine vs. terrestrial habitats changed during the day. Although the time of day was not significant as a global explanatory variable, the model indicated a significant difference between the 13e19 h interval and the reference level 7e13 h (p ¼ 0.04) (Fig. 3c). Between 13 h and 19 h, Audouin’s gulls foraged mainly in terrestrial (41%) rather than in marine habitat (29%); during the rest of the day, they foraged mainly in marine rather than terrestrial habitat (1e7 h: 50% marine, 28% terrestrial habitat; 7e13 h: 59% marine, 19% terrestrial habitat; 19-1 h: 23% marine, 9% terrestrial habitat) (Fig. 3a). 4. Discussion Satellite-tracked Audouin’s gulls covered a foraging area that ranges 80 km, spanning both marine and terrestrial habitats. It has been widely described previously that breeding Audouin’s gulls cover large ranges when foraging. There are records of individuals foraging at 70e150 km from the breeding colony during the breeding season (Baccetti et al., 2000; Mañosa et al., 2004), and data from vessel counts suggest that individuals forage during the day and night even further offshore (Arcos and Oro, 1996; Abelló and Oro, 1998). However, the species’ terrestrial foraging movements had been scarcely described (Ruiz et al., 1996; Mañosa et al., 2004). It is well documented that Audouin’s gulls forage during the night in marine habitats preying on small pelagic fish and exploiting discards provided by nocturnal fisheries (e.g. Witt et al., 1981; Mañosa et al., 2004; Arcos et al., 2008). However, our results highlight that the species’ nocturnal activity is not homogeneous throughout the night (see Fig. 3). Satellite-tracked gulls were mainly located in the breeding colony during the hours before and after dusk (19-1 h). In the period after midnight to dawn (1e7 h) they increased their foraging activity, which then remained constant and high during the day. These results, coupled with the nocturnal arrival and departure times from the breeding colony described in Mañosa et al. (2004), confirm a peak of activity between midnight and dawn. Attendance to purse seiners during the night is considered a strategy that is only significant during trawling moratorium and winter periods (Arcos and Oro, 2002), neither of which were covered during our study; therefore, the individuals located at sea during the night were probably feeding on small pelagic fish. Accordingly, the nocturnal foraging habits of the Audouin’s gull would still rely on the capture of small pelagic fish (Witt et al., 1981; Oro, 1998), a resource that might not be available throughout the night, but only in the hours before dawn due to the diel vertical migration of the shoals (Blaxter and Hunter, 1982; Oro, 1998). With regard to diurnal activity, tagged birds showed a high foraging activity with an unexpected constant presence in
|
260
I. Christel et al. / Estuarine, Coastal and Shelf Science 96 (2012) 257e261
terrestrial habitats (generally rice fields or wetlands) in addition to the expected presence in marine habitat (Oro, 1998). The fact that all tagged individuals could be found in both habitats suggests that the use of terrestrial habitat was not due to the casual behavior of a single individual. This result supports previous studies that describe the use of the rice fields of the Ebro Delta by the Audouin’s gull (Ruiz et al., 1996; Mañosa et al., 2004; Longoni, 2010), probably related to the exploitation of the exotic American crayfish (Navarro et al., 2010), which is very abundant in the rice fields of the Ebro Delta (Gutierrez-Yurrita et al., 1999). Although many studies have demonstrated that the Audouin’s gull exploits trawler discards (Oro et al., 1997; Arcos, 2001; Cama, 2010), the foraging activity of our satellite-tracked individuals was higher inland than at sea in a period of time that includes the discarding peak of the trawling fleet (from 15 to 16 h; Cama, 2010). This result suggests that terrestrial foraging has become an alternative food source to trawling discards (Navarro et al., 2010), probably prompted by the interference competition for fisheries discards: namely, intraspecific competition (due to an increasing population density), and interspecific competition with the sympatric and dominant Yellow legged gull Larus michahellis (e.g. Arcos et al., 2001). In conclusion, the present study shows that Audouin’s gull foraged in both marine and terrestrial habitats and showed activity during both night and day. These results confirm the high foraging plasticity of Audouin’s gull, a species once defined as a specialist nocturnal forager that has become an opportunist on fisheries discards and terrestrial resources. However, due the limited sample size we suggest the necessity of conducting more studies using biologging methodologies (such as PTTs or GPS) to confirm the observed patterns and to gain new insight into the foraging ecology of this endangered seabird. Acknowledgments The birds were tagged with a permit from the Environmental Department of the Catalonian Government. We are grateful to D. Oro, L. Cardador and J. M. Arcos for their comments to improve this manuscript. F. Zino, C. Carboneras and J. González-Solís for their comments about attachment methods. We also appreciate the help of X. Macià, R. Loras, S. Mañosa and the Ebro Delta Natural Park team (T.Curcó, C. Vidal and F. Blanch). S. Young revised the English. Research funds were provided by a project funded by Capital Energy through agreement with Fundació Bosch i Gimpera (Contract 304683). I. C. was funded by a PhD fellowship of the University of Barcelona. J. N. was supported by a postdoctoral contract of Juan de la Cierva program (MICINN-JDC, Spanish Ministry of Science and Innovation). A. C. was funded by a PhD fellowship of the Government of Catalonia (2009FIC75). References
Fig. 3. (a) Activity (foraging in marine or terrestrial habitat; or located in the colony) during a 24 h cycle of 7 satellite-tracked Audouin’s gulls during the breeding period in Ebro Delta colony. (b), (c) Mean and 95% confidence interval, of the foraging probability and foraging in marine habitat probability respectively, according to the GLM models. * indicates a significant difference of the time block probability compared to the reference level 7e13 h.
Abelló, P., Oro, D., 1998. Offshore distribution of seabirds in the northwestern Mediterranean in June 1995. Colonial Waterbirds 21, 422e426. Abelló, P., Arcos, J., Gil de Sola, L., 2003. Geographical patterns of seabird attendance to a research trawler along the Iberian Mediterranean coast. Scientia Marina 67, 69e75. Arcos, J., 2001. Foraging ecology of seabirds at sea: significance of commercial fisheries in the NW Mediterranean. PhD thesis, University of Barcelona. Arcos, J., Oro, D., 1996. Changes in foraging range of Audouin’s gulls Larus audouinii in relation to a trawler moratorium in the western Mediterranean. Colonial Waterbirds 1, 128e131. Arcos, J., Oro, D., Sol, D., 2001. Competition between the yellow-legged gull Larus cachinnans and Audouin’s gull Larus audouinii associated with commercial fishing vessels: the influence of season and fishing fleet. Marine Biology 139, 807e816. Arcos, J., Oro, D., 2002. Significance of nocturnal purse seine fisheries for seabirds: a case study off the Ebro Delta (NW Mediterranean). Marine Biology 141, 277e286.
137
138
|
Appendix
I. Christel et al. / Estuarine, Coastal and Shelf Science 96 (2012) 257e261 ARGOS, 2006. Argos User’s Manual. ARGOS CLS, Toulouse, France. http://www.argossystem.org/manual/link. Last accessed 24 November 2011. Arcos, J., Louzao, M., Oro, D., 2008. Fishery ecosystem impacts and management in the mediterranean: seabirds point of view. American Fisheries Society Symposium 49, 1471e1479. Baccetti, N., Dall’Antonia, L., Magnani, A., Serra, L., 2000. Foraging routes of Audouin’s Gulls Larus audouinii from two Sardinian colonies. In: Sultana, J., Yésou, P. (Eds.), Monitoring and Conservation of Birds, Mammals and Sea Turtles of the Mediterranean and Black Seas. Environment Protection Department, Malta, pp. 150e158. BirdLife International, 2011. Distribution Maps of Birds of the World. BridLife International, Cambridge, UK. Blaxter, J.H.S., Hunter, J.R., 1982. The biology of clupeoid fishes. Advances in Marine Biology 20, 1e223. Boyd, I.L., Wanless, S., Camphuysen, C.J. (Eds.), 2006. Top Predators in Marine Ecosystems: Their Role in Monitoring and Management. Cambridge University Press, Cambridge, p. 378. Cama, A., 2010. Seabird distribution patterns and ecological factors driving larid presence at the Ebro delta shelf (NW Mediterranean). PhD thesis, University of Barcelona. Coll, M., Palomera, I., Tudela, S., Dowd, M., 2008. Food-web dynamics in the South Catalan Sea ecosystem (NW Mediterranean) for 1978e2003. Ecological Modelling 217, 95e116. Futuyma, D.J., Moreno, G., 1988. The evolution of ecological specialization. Annual Review of Ecology and Systematics 19, 207e233. Gutierrez-Yurrita, P., Martínez, J., Ilhéu, M., Bravo-Utrera, M., Bernardo, J., Montes, C., 1999. The status of crayfish populations in Spain and Portugal. In: Gerardi, F., Holdich, D. (Eds.), Crayfish in Europe as Alien Species: How to Make the Best of a Bad Situation? Crustacean Issues, Balkema, Rotterdam, pp. 161e192. Julliard, R., Clavel, J., Devictor, V., Jiguet, F., Couvet, D., 2006. Spatial segregation of specialists and generalists in bird communities. Ecology Letters 9, 1237e1244. Krebs, J.R., Davies, N.B., 1993. An Introduction to Behavioural Ecology. WileyBlackwell publishing, Oxford, p. 420. Lewis, S., Sherratt, T.N., Hamer, K.C., Wanless, S., 2001. Evidence of intra-specific competition for food in a pelagic seabird. Nature 412, 816e819. Longoni, V., 2010. Rice fields and waterbirds in the Mediterranean region and the Middle East. Waterbirds 33, 83e96. Mañosa, S., Oro, D., Ruiz, X., 2004. Activity patterns and foraging behaviour of Audouin’s gulls in the Ebro Delta, NW Mediterranean. Scientia Marina 68, 605e614. Mills, J.A., Ryder, J.P., 1979. Trap for capturing shore and seabirds. Bird-Banding 50, 121e123. Navarro, J., Oro, D., Bertolero, A., Genovart, M., Delgado, A., Forero, M.G., 2010. Age and sexual differences in the exploitation of two anthropogenic food resources for an opportunistic seabird. Marine Biology 157, 2453e2459. Oro, D., 1998. Larus audouinii Audouin’s Gull. BWP Update. Oxford University Press, Oxford, pp. 47e61. Oro, D., Jover, L., Ruiz, X., 1996a. Influence of trawling activity on the breeding ecology of a threatened seabird, Audouin’s gull Larus audouinii. Marine Ecology Progress Series 139, 19e29. Oro, D., Genovart, M., Ruiz, X., Jiménez, J., García-Gans, J., 1996b. Differences in diet, population increase and breeding performance between two colonies of
261
Audouin’s gulls Larus audouinii during breeding seasons affected by a trawling moratorium. Journal of Avian Biology 27, 245e251. Oro, D., Ruiz, X., 1997. Exploitation of trawler discards by breeding seabirds in the north-western Mediterranean: differences between the Ebro Delta and the Balearic Islands areas. ICES Journal of Marine Science 54, 695e707. Oro, D., Ruiz, X., Jover, L., Pedrocchi, V., González-Solís, J., 1997. Diet and adult time budgets of Audouin’s gull Larus audouinii in response to changes in commercial fisheries. Ibis 139, 631e637. Oro, D., Pradel, R., Lebreton, J.D., 1999. Food availability and nest predation influence life history traits in Audouin’s gull, Larus audouinii. Oecologia 118, 438e445. Oro, D., Pérez-Rodríguez, A., Martínez-Vilalta, A., Bertolero, A., Vidal, F., 2009. Interference competition in a threatened seabird community: a paradox for a successful conservation. Biological Conservation 142, 1830e1835. Passos, C., Navarro, J., Giudici, A., González-Solís, J., 2010. Effects of extra mass on the pelagic behavior of a seabird. The Auk 127, 100e107. Pedrocchi, V., Oro, D., González-Solís, J., Ruiz, X., Jover, L., 2002. Differences in diet between the two largest breeding colonies of Audouin’s gulls: the effects of fishery activities. Scientia Marina 66, 313e320. Phillips, R., Xavier, J.C., Croxall, J.P., Burger, A.E., 2003. Effects of satellite transmitters on albatrosses and petrels. The Auk 120, 1082e1090. Potapov, E., Dubinin, M., 2005. Argos-tools Manual. The Falcon Research Institute. National Avian Research Center, Carmarthen, UK. Ramos, R., Ramírez, F., Carrasco, J.P., Jover, L., 2011. Insights into the spatiotemporal component of feeding ecology: an isotopic approach for conservation management sciences. Diversity and Distributions 17, 1e12. R Development Core Team, 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3900051-07-0. URL. http://www.R-project.org/. Rosén, M., Hedenström, A., 2001. Testing predictions from flight mechanical theory: a case study of Cory’s shearwater and Audouin’s gull. Acta ethologica 3, 135e140. Ruiz, X., Oro, D., Martínez-Vilalta, A., Jover, L., 1996. Feeding ecology of Audouin’s gull Larus audouinii in the Ebro Delta. Colonial Waterbirds 19, 68e74. Sanpera, C., Ruiz, X., Moreno, R., Jover, L., Waldron, S., 2007. Mercury and stable isotopes in feathers of Audouin’s gulls as indicators of feeding habits and migratory connectivity. The Condor 109, 268e275. Schwemmer, P., Garthe, S., 2008. Regular habitat switch as an important feeding strategy of an opportunistic seabird species at the interface between land and sea. Estuarine, Coastal and Shelf Science 77, 12e22. Tablado, Z., Tella, J.L., Sánchez-Zapata, J.A., Hiraldo, F., 2010. The paradox of the longterm positive effects of a North American Crayfish on a European community of predators. Conservation Biology 24, 1230e1238. Wagner, E.L., Boersma, P.D., 2011. Effects of fisheries on seabird community ecology. Reviews in Fisheries Science 19, 157e163. Wilson, R.P., Pütz, K., Peters, G., Culik, B., Scolaro, J.A., Charrassin, J.B., RopertCoudert, Y., 1997. Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildlife Society Bulletin 25, 101e106. Witt, H.H., Crespo, J., de Juana, E., Varela, J.M., 1981. Comparative feeding ecology of Audouin’s gull Larus audouinii and the Herring gull L. argentatus in the Mediterranean. Ibis 123, 519e526.
Offshore wind energy and birds: Integrating assessment tools in space and time:
Chapter 1: A refined methodology to estimate the vulnerability of seabird community to the establishment of offshore wind farms
· Chapter 2: Wind farm Sensitivity Index for seabirds - Assessing offshore wind energy development on the coasts of the Iberian Peninsula
· Chapter 3: Seabird aggregative patterns: a new tool for offshore wind energy risk assessment
· Chapter 4: Foraging movements of Audouin’s gull (Larus audouinii) in the Ebro Delta, NW Mediterranean: A preliminary satellitetracking study