The Epstein Zeta Function Johar M. Ashfaque The Epstein zeta function Z(s) is defined for <(s) > 1 by Z(s) =
â&#x2C6;&#x17E; X m,n=â&#x2C6;&#x2019;â&#x2C6;&#x17E; (m,n)6=(0,0)
1 (am2 + bmn + cn2 )s
where a, b and c are real numbers with a > 0 and b2 â&#x2C6;&#x2019; 4ac < 0. Z(s) can be continued analytically to the whole complex plane except for the simple pole at s = 1. The value of Z(k) for k = 2, 3, ... is determined in terms of the infinite series of the form â&#x2C6;&#x17E; X cotr (nĎ&#x20AC;Ď&#x201E; ) , (r = 1, 2, ..., k) n2kâ&#x2C6;&#x2019;1 n=1
where Ď&#x201E;=
1
b+
â&#x2C6;&#x161;
b2 â&#x2C6;&#x2019; 4ac . 2a
Introduction
Let a, b and c be real numbers with a > 0 and D = 4ac â&#x2C6;&#x2019; b2 > 0 so that Q(u, v) = au2 + buv + cv 2 is a positive-definite binary quadratic form of discriminant D. The Epstein zeta function Z(s) is then defined by the double series â&#x2C6;&#x17E; X
Z(s) =
m,n=â&#x2C6;&#x2019;â&#x2C6;&#x17E; (m,n)6=(0,0)
1 Q(m, n)s
where s = Ď&#x192; + it with Ď&#x192;, t â&#x2C6;&#x2C6; R and Ď&#x192; > 1. Since Q(u, v) â&#x2030;Ľ Îť(u2 + v 2 ) with Îť=
p 1 a + c â&#x2C6;&#x2019; (a â&#x2C6;&#x2019; c)2 + b2 > 0 2
for all real numbers u and v, the double series converges absolutely for Ď&#x192; > 1 and uniformly in every half plane Ď&#x192; â&#x2030;Ľ 1 + ( > 0). Thus Z(s) is analytic function of s for Ď&#x192; > 1. Furthermore, it can be continued analytically to the whole complex plane except for the simple pole at s = 1 and satisfies the functional equation â&#x2C6;&#x161; s â&#x2C6;&#x161; 1â&#x2C6;&#x2019;s D D Î&#x201C;(s)Z(s) = Î&#x201C;(1 â&#x2C6;&#x2019; s)Z(1 â&#x2C6;&#x2019; s). 2Ď&#x20AC; 2Ď&#x20AC;
1
2
The Functional Equation
Recall 2.1 τ= Setting
b+
√
b2 − 4ac 2a
√ √ b b+i D D x= , y= , τ = x + iy = 2a 2a 2a
we have τ +τ
=
ττ
=
b a c a
so that = am2 + bmn + cn2
Q(m, n)
= a(m + nτ )(m + nτ ) = a|m + nτ |2
and
∞ X
Z(s) =
m,n=−∞ (m,n)6=(0,0)
1 , σ > 1. as |m + nτ |2s
Separating the term with n = 0, we have Z(s) =
∞ ∞ ∞ 2 X 1 1 2 X X + , σ > 1. as m=1 m2s as n=1 m=−∞ |m + nτ |2s
We wish to evaluate the second term in and therefore apply the Poisson summation formula Z ∞ ∞ ∞ X X f (m) = f (u) cos 2mπu du m=−∞
−∞
m=−∞
to the function f (t) =
1 |t + τ |2s
to obtain ∞ X
1 |m + τ |2s m=−∞
= =
Z ∞ X
∞
m=−∞ −∞ Z ∞ ∞ X m=−∞ −∞ Z ∞ ∞ X
cos 2mπu du |u + τ |2s cos 2mπu du {(u + x)2 + y 2 }s
cos 2mπ(t − x) dt (t2 + y 2 )s m=−∞ −∞ Z ∞ ∞ X cos 2mπt = cos 2mπx dt 2 2 s −∞ (t + y ) m=−∞ =
since the integrals involving the sine function vanish which yields Z ∞ Z ∞ ∞ ∞ X 1 2 1 22 X cos 2mπyt = dt + cos 2mπx dt, σ > 1. 2s 2s−1 2 s 2s−1 2 s |m + τ | y (1 + t ) y 0 −∞ (1 + t ) m=−∞ m=1 2
Now, we wish to evaluate the two integrals by first making the substitution u=
t2 1 + t2
which gives 1 3 2tdt 1 = 1 − u, du = = 2u 2 (1 − u) 2 dt 2 2 2 1+t (1 + t )
and therefore Z
∞
0
dt 1 = 2 s (1 + t ) 2
1
Z
(1 − u)
s− 23
− 12
u
0
√ Γ(s − 21 ) π 1 1 1 du = B s − , = . 2 2 2 2Γ(s)
From an integral representation of the Bessel function Z ∞ ν 1 cos yt 1 2 1 Γ ν+ Kν (y) = √ y > 0, <(v) > − , 1 dt, ν+ 2 2 2 π y (1 + t ) 2 0 we have
∞
Z 0
cos 2mπyt dt = (1 + t2 )s
√
1
π(mπy)s− 2 1 Ks− 21 (2mπy), σ > . Γ(s) 2
Thus ∞ X
1 = |m + τ |2s m=−∞
√ Γ s − 21 π
√ ∞ X 1 4 π + 2s−1 (mπy)s− 2 cos(2mπx)Ks− 12 (2mπy), σ > 1 y Γ(s) m=1
y 2s−1 Γ(s)
such that for n ≥ 1 1 √ Γ s− 2 π
√ ∞ X 1 1 4 π = + (mnπy)s− 2 cos(2mnπx)Ks− 21 (2mnπy). 2s 2s−1 2s−1 2s−1 2s−1 |m + nτ | n y Γ(s) n y Γ(s) m=1 m=−∞ ∞ X
Hence
Z(s) = 2a−s ζ(2s)+2a−s y 1−2s
√ Γ s − 12 π ζ(2s−1)+
Γ(s)
1 ∞ ∞ 1 8a−s y 2 −s π s X 1−2s X n (mn)s− 2 cos(2mnπx)Ks− 12 (2mnπy). Γ(s) n=1 m=1
Collecting the terms with mn = k, we obtain
Γ s− Z(s) = 2a−s ζ(2s)+2a−s y 1−2s
1 2
Γ(s)
√
π ζ(2s−1)+
k=1
that is
Γ s− Z(s) = 2a−s ζ(2s) + 2a−s y 1−2s
where H(s) = 4
∞ X
1 ∞ 1 8a−s y 2 −s π s X X 1−2s n (k)s− 2 cos(2kπx)Ks− 12 (2kπy) Γ(s)
1 2
√
π
1
ζ(2s − 1) +
Γ(s)
n|k
1
2a−s y 2 −s π s H(s) Γ(s)
σ1−2s (k)(k)s− 2 cos(2kπx)Ks− 12 (2kπy)
k=1
and σν denotes the ν-th powers of the divisors of k σν (k) =
X
ν
d =
d|k
X k ν d|k
3
d
.
We can now express Z(s) in another form s s 1 1 ay y 1 Γ(s)Z(s) = 2 Γ(s)ζ(2s) + 2y 1−s π 2 −s Γ s − ζ(2s − 1) + 2y 2 H(s). π π 2 By the functional equation of the Riemann zeta function 1 ζ(2s − 1) = 2(2π)2s−2 sin s − πΓ(2 − 2s)ζ(2 − 2s) 2 and the basic properties of the gamma function √ Γ(2 − 2s) = we have
π Γ(1 − s) − 12 ) sin(s − 21 )π
22s−1 Γ(s
1 1 π 2 −s Γ s − ζ(2s − 1) = π s−1 Γ(1 − s)ζ(2 − 2s) 2
and
ay π
s
s 1−s 1 y y Γ(s)Z(s) = 2 Γ(s)ζ(2s) + 2 Γ(1 − s)ζ(2 − 2s) + 2y 2 H(s). π π
Recall 2.2 K−ν (y) = Kν (y) and
ν
ν
k − 2 σν (k) = k 2 σ−ν (k) leading to H(s) = H(1 − s). For
φ(s) =
ay π
s Γ(s)Z(s)
we have φ(s) = φ(1 − s). Since
√ ay =
we have
D 2
√ s √ 1−s D D Γ(s)Z(s) = Γ(1 − s)Z(1 − s) 2π 2π
which is the functional equation of Z(s).
4