Contents 1 Introduction to Hi-Fi
1
2 Waves
14
3 Decibels
63
4 Loudspeakers
67
5 Electricity
112
6 Ampli ers
138
7 Electromagnetism
153
8 Electromagnetic Waves and Tuners
173
9 Analog Recording and Playback
202
10 Digital Optical Recording & Playback
226
11 Digital Magnetic Recording & Playback
247
12 Heat
260
13 Mechanics
273
i
List of Figures 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13
Stereo process in recording and playback. : : : : : : : : : : : Surround sound reproduction of audio information. : : : : : : Storage or transmission of sound in stereo. : : : : : : : : : : : Playback process in stereo. : : : : : : : : : : : : : : : : : : : Elements of a receiver. : : : : : : : : : : : : : : : : : : : : : : Example of basic connections to a receiver. : : : : : : : : : : Elements of an integrated ampli er. : : : : : : : : : : : : : : Connections to an integrated ampli er. : : : : : : : : : : : : : All separate approach. : : : : : : : : : : : : : : : : : : : : : : Connections in all-separate approach. : : : : : : : : : : : : : Basic A/V System. : : : : : : : : : : : : : : : : : : : : : : : : A/V receiver driving a surround-sound system. : : : : : : : : Details of the tape monitor switch when listening to a sound source with available tape recording. : : : : : : : : : : : : : : 1.14 Listening to a tape; tape switch in. : : : : : : : : : : : : : : : 1.15 A/V receiver with Dolby Pro Logic processor. : : : : : : : : : 1.16 Various wave forms. : : : : : : : : : : : : : : : : : : : : : : : 2.1 Phono record and an enlarged groove showing engraved wave representing sound. : : : : : : : : : : : : : : : : : : : : : : : : 2.2 Simpli ed picture of a water wave; displaced water as a function of position. : : : : : : : : : : : : : : : : : : : : : : : : : : 2.3 Details of one wave as a function of position. : : : : : : : : : 2.4 Large and small amplitude waves. : : : : : : : : : : : : : : : : 2.5 Time dependence of displacement of a point on a water wave. 2.6 Displacement as a function of time; time required to complete one wave. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2.7 Transverse wave on a string. : : : : : : : : : : : : : : : : : : : 2.8 Longitudinal waves along a solid bar. : : : : : : : : : : : : : : ii
2 3 3 4 4 5 5 6 6 7 8 9 10 11 12 13 15 15 16 16 17 17 18 18
2.9 Addition of two waves. : : : : : : : : : : : : : : : : : : : : : : 2.10 Sound requires a medium in which to propagate; in a vacuum there is no sound propagation. : : : : : : : : : : : : : : : : : 2.11 Direct radiator speaker can move air like a drumhead. : : : : 2.12 Generation of sound by loudspeaker. : : : : : : : : : : : : : : 2.13 Disturbances created by loudspeaker; pressure changes cause sound. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2.14 Representation of sound created by a loudspeaker. : : : : : : 2.15 Wave Y has 4 times the power of wave X, but their amplitudes di er only by a factor of 2. : : : : : : : : : : : : : : : : 2.16 Re ection of a wave by an obstacle or a di erent medium. : : 2.17 Speaker producing a pulse of sound in a hall. : : : : : : : : : 2.18 Paths of direct and re ected sound in a hall. : : : : : : : : : : 2.19 Direct and reverberant sound in a hall. : : : : : : : : : : : : : 2.20 Direct and reverberant sound contributions to sound in a hall. 2.21 Sound radiated by a speaker; as one moves away the intensity decreases. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2.22 Sound intensity through surface 2 is di erent from that of 1. : 2.23 Observer and source at rest and in relative motion. : : : : : : 2.24 Doppler E ect produced by speaker producing simultaneously 100 Hz and 1,000 Hz sound waves. : : : : : : : : : : : : 2.25 Sound wave in cold air entering hot air. : : : : : : : : : : : : 2.26 Refraction of a sound wave. : : : : : : : : : : : : : : : : : : : 2.27 Above a critical angle of incidence there is only re ection. : : 2.28 Sound travels in a curved hollow plastic tube by multiple re ections. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2.29 Sound wave produced by a musical group; a complex wave. : 2.30 Simple sine waveform. : : : : : : : : : : : : : : : : : : : : : : 2.31 Comparison between one full wave and one rotation of a circle. 2.32 Addition of two waves. : : : : : : : : : : : : : : : : : : : : : : 2.33 Addition of two waves out of phase by 180 degrees. : : : : : : 2.34 Constructive interference. : : : : : : : : : : : : : : : : : : : : 2.35 Destructive interference. : : : : : : : : : : : : : : : : : : : : : 2.36 Obstacle with aperture receiving high frequency waves. : : : : 2.37 Low frequency behavior of obstacle and aperture. : : : : : : : 2.38 Comparison of di raction behavior of a room with opening and a loudspeaker. : : : : : : : : : : : : : : : : : : : : : : : : 2.39 Dispersion characteristics of a speaker. : : : : : : : : : : : : : 2.40 Standing wave produced by incident and re ected waves. : : : iii
18 19 19 20 21 21 22 22 23 24 25 26 27 28 29 30 31 31 32 33 34 34 35 35 35 36 37 38 39 40 41 41
2.41 Simplest possible standing wave on a string. : : : : : : : : : : 2.42 Simplest standing wave on a string during one cycle. : : : : : 2.43 Second harmonic on a string showing position of nodes and antinodes. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2.44 Third harmonic on a string clamped at both ends. : : : : : : 2.45 Setting up a standing wave in a tube. : : : : : : : : : : : : : 2.46 Simplest standing wave in a tube open at both ends. : : : : : 2.47 Second harmonic in tube open at both ends. : : : : : : : : : : 2.48 Fundamental in a tube. : : : : : : : : : : : : : : : : : : : : : 2.49 Tube open at one end excited by a tuning fork. : : : : : : : : 2.50 Fundamental in tube open at one end. : : : : : : : : : : : : : 2.51 Next more complicated standing wave; the third harmonic. : 2.52 Fifth harmonic. : : : : : : : : : : : : : : : : : : : : : : : : : : 2.53 Standing wave in a tube 1 meter long; fundamental. : : : : : 2.54 Tube closed at both ends. : : : : : : : : : : : : : : : : : : : : 2.55 Fundamental of a tube closed at both ends. : : : : : : : : : : 2.56 Room where independent standing waves can be set up in the x, y, and z directions. : : : : : : : : : : : : : : : : : : : : : : 2.57 A drumhead xed at its edges and its fundamental mode of vibration. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2.58 Overtone on a drumhead. : : : : : : : : : : : : : : : : : : : : 2.59 Standing wave pattern on a Chladni plate. : : : : : : : : : : : 2.60 Complex wave created by the superposition of a 100 Hz fundamental and its fourth harmonic. : : : : : : : : : : : : : : : 2.61 Violin string plucked by a nger and producing all sorts of harmonics. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2.62 Complex wave generated by plucking string. : : : : : : : : : : 2.63 Square wave; it is made up of many harmonics. : : : : : : : : 2.64 Spectrum of a square wave. : : : : : : : : : : : : : : : : : : : 2.65 Sawtooth wave and its harmonic content. : : : : : : : : : : : 2.66 Spectrum of a sawtooth wave. : : : : : : : : : : : : : : : : : : 2.67 A string bowed at its middle and harmonics which are excited. 2.68 String on a piano struck by hammer at a distance 1/10 the string length from one end. : : : : : : : : : : : : : : : : : : : 2.69 Vibrations of an object at di erent excitation frequencies. : : 2.70 Oscillations of a mass on a spring, undamped and damped when submersed in oil. : : : : : : : : : : : : : : : : : : : : : : 2.71 Resonance of wine glass excited by sound. : : : : : : : : : : : iv
42 43 43 43 44 45 45 45 46 46 47 47 47 48 48 49 50 51 51 52 53 54 55 56 57 58 59 60 60 61 61
2.72 Beats caused by the combination of two waves with slightly di erent frequencies. : : : : : : : : : : : : : : : : : : : : : : : 62 3.1 3.2 3.3 3.4
Decibel meter. : : : : : : : : : : : : : : : : : : : : : : : : : : Receiver with volume control marked in dB. : : : : : : : : : : Response of human ears at the threshold of hearing. : : : : : Response of human ears for various sound levels: FletcherMunson curves. : : : : : : : : : : : : : : : : : : : : : : : : : : 3.5 Outer ear approximated by a tube closed at one end. : : : : : 3.6 Measuring the frequency response of a speaker. : : : : : : : : 3.7 Frequency response of a speaker. : : : : : : : : : : : : : : : : 4.1 Role of loudspeaker. : : : : : : : : : : : : : : : : : : : : : : : 4.2 Distortion of spectrum of original waveform by non- at frequency response of speaker. : : : : : : : : : : : : : : : : : : : 4.3 Dispersion properties of speakers. : : : : : : : : : : : : : : : : 4.4 Two low frequency waves from speaker arriving at O. : : : : : 4.5 Two high frequency waves from speaker arriving at O. : : : : 4.6 Details of waves 2 and 1 at high frequencies. : : : : : : : : : : 4.7 Sound dispersion of a driver as the frequency is increased. : : 4.8 Division of audio spectrum for a three-way loudspeaker. : : : 4.9 Net e ect of subdividing the whole audio range into three sections. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.10 Subdivision of audio spectrum in a two-way system. : : : : : 4.11 Amount of sound produced depends on volume displacement. A is louder than B. : : : : : : : : : : : : : : : : : : : : : : : : 4.12 To produce same amount of sound by both drivers at the same frequency, the small one has to move through a larger distance than the big one. : : : : : : : : : : : : : : : : : : : : 4.13 Volume of air moved by loudspeaker as a function of frequency to produce same loudness of sound. : : : : : : : : : : : : : : : 4.14 Low frequency and high frequency simple pendulums doing di erent amounts of work per second for same amplitude of displacement. : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.15 Balance between electrical power going to driver and the production of sound power and heat dissipation by driver. : : : : 4.16 Example of a loudspeaker whose e ciency is less than 100%. 4.17 Basic cone speaker. : : : : : : : : : : : : : : : : : : : : : : : :
v
64 64 64 65 65 66 66 68 69 70 71 72 73 74 75 76 76 77 78 79 80 80 81 82
4.18 Comparison of cone-shape over at shape for mechanical strength when thin material is used. : : : : : : : : : : : : : : : : : : : 83 4.19 Modeling of diaphragm action by mass-spring oscillating system. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 84 4.20 Standing wave on diaphragm of driver. : : : : : : : : : : : : : 85 4.21 Standing wave around rim of diaphragm. : : : : : : : : : : : 85 4.22 Typical frequency response of a cone speaker. : : : : : : : : : 86 4.23 Ba e problem in cone driver. : : : : : : : : : : : : : : : : : : 86 4.24 Front and rear of cone speakers are 180 out of phase. : : : : 87 4.25 Ba e action. : : : : : : : : : : : : : : : : : : : : : : : : : : : 88 4.26 Two possible approaches for trapping rear sound in a speaker by means of an enclosure. : : : : : : : : : : : : : : : : : : : : 88 4.27 E ect of enclosure on frequency response of speaker. : : : : : 89 4.28 Reducing standing waves inside speaker enclosure. : : : : : : 90 4.29 Basic bass-re ex enclosure. : : : : : : : : : : : : : : : : : : : 91 4.30 Oscillating components of bass-re ex speaker. : : : : : : : : : 92 4.31 Splitting of original resonance into two new resonances in bass-re ex system. : : : : : : : : : : : : : : : : : : : : : : : : 93 4.32 Resonant behavior, in-phase and out-of-phase, motion of strongly coupled components of bass-re ex system. : : : : : : : : : : : 94 4.33 Coupled components of a bass-re ex speaker. : : : : : : : : : 95 4.34 Bass-re ex speaker using a passive radiator over the port. : : 96 4.35 Helmholtz resonator behaves like mass-spring system. : : : : 97 4.36 Bass-re ex speaker using a port or a duct. : : : : : : : : : : : 98 4.37 Acoustic labyrinth enclosure. : : : : : : : : : : : : : : : : : : 99 4.38 Change of frequency response of speaker when a small enclosure is used. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 100 4.39 E ect of small enclosure on frequency response of driver. : : : 101 4.40 Transfer of energy from a bob to one of equal mass, and to one of di erent mass. : : : : : : : : : : : : : : : : : : : : : : : 102 4.41 A horn for matching vibrations of a light diaphragm to a large volume of air. : : : : : : : : : : : : : : : : : : : : : : : : : : : 103 4.42 Low frequency response of a horn. : : : : : : : : : : : : : : : 103 4.43 Some common horn shapes. : : : : : : : : : : : : : : : : : : : 104 4.44 Folded horn. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 105 4.45 Two-way horn loudspeaker with bass-re ex enclosure. : : : : 106 4.46 Standing wave set up in a room with maxima and minima in sound pressure. : : : : : : : : : : : : : : : : : : : : : : : : : : 107 vi
4.47 Re ected waves by a wall appear to come from behind the wall since it acts like a mirror. : : : : : : : : : : : : : : : : : 4.48 Stereo coverage in a room. : : : : : : : : : : : : : : : : : : : : 4.49 Speaker phasing: speakers are in phase. : : : : : : : : : : : : 4.50 Speaker phasing: speakers are out of phase. : : : : : : : : : : 4.51 Geometry of a Bose 901 speaker. : : : : : : : : : : : : : : : : 4.52 E ect of equalizer on frequency response of Bose speakers. : : 4.53 Bass horn in Klipsch horn speaker. : : : : : : : : : : : : : : : 4.54 Graphic equalizer. : : : : : : : : : : : : : : : : : : : : : : : :
107 108 108 109 109 110 111 111
5.1 Example of an atom: a Helium atom. : : : : : : : : : : : : : 113 5.2 Forces between charged objects; like charges repel and unlike charges attract. : : : : : : : : : : : : : : : : : : : : : : : : : : 114 5.3 Charged ping-pong balls repelling each other. : : : : : : : : : 115 5.4 Electric eld produced by a charged object. : : : : : : : : : : 115 5.5 Electric eld between two charged plates. : : : : : : : : : : : 116 5.6 Examples of voltage sources: a battery, the output of a receiver.116 5.7 Electrostatic speaker: basic principle and actual speaker. : : : 117 5.8 Simpli ed version of an electrostatic speaker at equilibrium. : 117 5.9 Push-pull action by two plates on charged sheet. : : : : : : : 118 5.10 An electrostatic speaker. : : : : : : : : : : : : : : : : : : : : : 118 5.11 Some crystals under pressure produce positive and negative charges on surface. : : : : : : : : : : : : : : : : : : : : : : : : 119 5.12 Dimensional changes of a piezoelectric ceramic when a voltage is applied. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 119 5.13 Bending action of a double piezoelectric driver. : : : : : : : : 120 5.14 Pumping action of cone caused by bending of bimorph. : : : 120 5.15 Typical piezo horn. : : : : : : : : : : : : : : : : : : : : : : : : 121 5.16 Wire connected between two charged objects allows charges to be transferred. : : : : : : : : : : : : : : : : : : : : : : : : : 121 5.17 Flow of electric current from ampli er to speaker. : : : : : : : 122 5.18 Solid with atoms where electrons are tightly bound and which does not conduct electricity under normal circumstances. : : 122 5.19 Motion of one electron in a conductor in the presence of an electric eld. Changes of direction are due to scattering. : : : 123 5.20 Temperature dependence of the electrical resistance in a conductor. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 124 5.21 Superconductivity at Tc below which the resistance is zero. : 124 vii
5.22 The resistance to current or to water ow increases as the length of a conductor or pipe increases. Resistance of 2 is double that of 1. : : : : : : : : : : : : : : : : : : : : : : : : : 5.23 By increasing the cross-sectional area of a conductor, resistance to current or water ow decreases. : : : : : : : : : : : : 5.24 Resistor with colored bands to specify its resistance value. : : 5.25 Pure silicon, silicon doped with arsenic, and silicon doped with gallium. : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.26 Example of simple circuit. : : : : : : : : : : : : : : : : : : : : 5.27 Model using water for electric circuit. : : : : : : : : : : : : : 5.28 Comparison between DC and AC current. : : : : : : : : : : : 5.29 Representation of a sound wave by an AC electrical signal. : 5.30 Variable resistance between X and Y. : : : : : : : : : : : : : 5.31 Fuse to protect speaker. : : : : : : : : : : : : : : : : : : : : : 5.32 Two speakers connected in series to one channel of ampli er. 5.33 Model of series circuit. : : : : : : : : : : : : : : : : : : : : : : 5.34 Parallel connection of two speakers to an ampli er. : : : : : : 5.35 Model of parallel connections. : : : : : : : : : : : : : : : : : : 5.36 Parallel connections of hi- components to house electrical outlet. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.37 Response of cone speaker to a force. : : : : : : : : : : : : : : 5.38 Coil used to produce a magnetic eld when a current ows through it. It has inductance. : : : : : : : : : : : : : : : : : : 5.39 Frequency dependence of impedance associated with inductance. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.40 Charging of a capacitor. : : : : : : : : : : : : : : : : : : : : : 5.41 Charging of a capacitor when polarity of voltage source is reversed. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.42 Frequency dependence of impedance due to capacitance. : : : 5.43 Inductance in series with woofer prevents high frequencies from reaching it. : : : : : : : : : : : : : : : : : : : : : : : : : 5.44 Capacitance in series with tweeter. It prevents low frequencies from reaching it. : : : : : : : : : : : : : : : : : : : : : : : : : 5.45 Capacitance and inductance in series with mid-range speaker to prevent the high and low frequencies from reaching it. : : : 5.46 Impedance curve of driver. : : : : : : : : : : : : : : : : : : : : 6.1 Importance of ampli er in hi- system. : 6.2 Basic ampli er. : : : : : : : : : : : : : : viii
: : : : : : : : : : : : : : : : : : : : : : : :
125 125 126 126 126 127 128 128 129 129 129 130 130 131 131 132 133 134 134 135 135 136 136 137 137 139 139
6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 6.29
Ampli er command for more current. : : : : : : : : : : : : : 140 Ampli er command for less current. : : : : : : : : : : : : : : 140 Semiconductor junction. : : : : : : : : : : : : : : : : : : : : : 141 Reverse-biased semiconductor junction. : : : : : : : : : : : : 141 Forward-biased semiconductor junction. : : : : : : : : : : : : 142 Symbol for diodes and its characteristics. : : : : : : : : : : : 142 Recti er action of a diode when an AC voltage is applied. : : 142 Diagram of transistor and its circuit symbol for two possibilities.143 Ampli er action of transistor in a circuit compared to control of water ow. : : : : : : : : : : : : : : : : : : : : : : : : : : : 143 Function of an ampli er. : : : : : : : : : : : : : : : : : : : : : 144 Ampli er integrated on a chip. : : : : : : : : : : : : : : : : : 144 Operational ampli er with negative feedback. : : : : : : : : : 144 Negative feedback corrects uctuations in gain. : : : : : : : : 145 Positive feedback in large hall with a mike and a loudspeaker system driven by mike. : : : : : : : : : : : : : : : : : : : : : : 145 Volume control. : : : : : : : : : : : : : : : : : : : : : : : : : : 146 Comparison of potentiometer action with energy of a ball on a ladder. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 146 Bass and Treble controls. : : : : : : : : : : : : : : : : : : : : 147 E ect on signal spectrum of Bass and Treble controls. : : : : 148 Action of LOW and HIGH lters with 6 dB/octave attenuation, and also with 18 db/octave attenuation. : : : : : : : : : 148 Harmonic distortion by ampli er. : : : : : : : : : : : : : : : : 149 Non-linear gain of ampli er. : : : : : : : : : : : : : : : : : : : 149 IM distortion in ampli er. : : : : : : : : : : : : : : : : : : : : 150 Distortion increases sharply about power rating of ampli er. : 150 Clipping of waveform by ampli er at high output levels beyond the rated value. : : : : : : : : : : : : : : : : : : : : : : : 151 E ect of noise from ampli er. : : : : : : : : : : : : : : : : : : 151 Comparing 2 ampli ers with the same specs. Even though their specs are the same, the ampli ers will sound di erent. : 152 A-weighted method of measuring noise. : : : : : : : : : : : : 152
7.1 E ect of current in a wire on compasses around it. : : : : : : 7.2 Bar magnet has a north pole and a south pole. : : : : : : : : 7.3 Cutting a bar magnet produces shorter magnets each with its own respective north and south poles. : : : : : : : : : : : : : 7.4 Magnetic dipole is the basic unit of magnetism. : : : : : : : : ix
154 154 154 155
7.5 Unmagnetized piece of iron. : : : : : : : : : : : : : : : : : : : 155 7.6 Alignment of domains in a piece of iron by a bar magnet. Iron becomes magnetized. : : : : : : : : : : : : : : : : : : : : : : : 156 7.7 Magnetic eld around a bar magnet and a wire carrying a current. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 156 7.8 Increasing the magnetic eld produced by a current in a wire: by forming a loop, and by using many loops. : : : : : : : : : 157 7.9 An electromagnet. : : : : : : : : : : : : : : : : : : : : : : : : 157 7.10 Determination of direction of magnetic eld using rst lefthand rule. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 158 7.11 Rule for determining direction of magnetic eld in an electromagnet. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 158 7.12 First left-hand rule and how a cone speaker works. : : : : : : 159 7.13 Force on wire carrying a current in a magnetic eld. : : : : : 159 7.14 The second left-hand rule showing direction of force on wire carrying a current in a magnetic eld. : : : : : : : : : : : : : 160 7.15 Direction of force depends on orientation of current with respect to magnetic eld. : : : : : : : : : : : : : : : : : : : : : 161 7.16 A Heil Speaker. : : : : : : : : : : : : : : : : : : : : : : : : : : 162 7.17 One set of folds in Heil speaker. : : : : : : : : : : : : : : : : : 163 7.18 Magnetic Planar Speaker. : : : : : : : : : : : : : : : : : : : : 164 7.19 Forces on diaphragm when current direction is as indicated. : 165 7.20 A bar magnet moving into a coil induces an electric current in that coil. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 165 7.21 Induced current in coil by moving magnet. : : : : : : : : : : : 166 7.22 Signi cance of relative motion between magnet and coil. : : : 167 7.23 Direction of induced current (wrong). : : : : : : : : : : : : : 167 7.24 Direction of induced current (correct). : : : : : : : : : : : : : 168 7.25 Schematic of a transformer and its circuit symbol. : : : : : : 169 7.26 Step-up transformer. : : : : : : : : : : : : : : : : : : : : : : : 170 7.27 Step-down transformer. : : : : : : : : : : : : : : : : : : : : : 170 7.28 Schematic of microphone based on Faraday's law of induction. 171 7.29 Exercise 7.14. : : : : : : : : : : : : : : : : : : : : : : : : : : : 171 7.30 Exercise 7.15. : : : : : : : : : : : : : : : : : : : : : : : : : : : 172 7.31 Exercise 7.18. : : : : : : : : : : : : : : : : : : : : : : : : : : : 172 8.1 Electric Field around charged ping-pong ball. 8.2 Oscillating charged ball. : : : : : : : : : : : : x
: : : : : : : : : : : : : : : : : :
174 174
8.3 Generation of electromagnetic waves at two di erent frequencies. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 175 8.4 Spectrum of electromagnetic waves. : : : : : : : : : : : : : : : 175 8.5 Electromagnetic waves are transverse waves with oscillating electric and magnetic elds. : : : : : : : : : : : : : : : : : : : 176 8.6 Production of electromagnetic waves by oscillating electrons in antenna. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 176 8.7 Generation of electric and magnetic elds by antenna. : : : : 177 8.8 Production of electromagnetic waves by antenna. : : : : : : : 177 8.9 Some examples of modulation. : : : : : : : : : : : : : : : : : 178 8.10 Amplitude modulation. : : : : : : : : : : : : : : : : : : : : : 178 8.11 Carrier and audio signals broadcast by two stations. : : : : : 179 8.12 Spectrum of an AM carrier at frequency f when modulated by audio signal. : : : : : : : : : : : : : : : : : : : : : : : : : : 179 8.13 Audio frequencies modulating carrier. : : : : : : : : : : : : : 180 8.14 Spectrum of frequencies on carrier for audio frequencies up to 5 kHz. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 180 8.15 Spectrum of frequencies due to modulation of carrier. : : : : 181 8.16 Frequency modulation (FM). : : : : : : : : : : : : : : : : : : 181 8.17 A low frequency and a high frequency audio signal frequency modulating a carrier. : : : : : : : : : : : : : : : : : : : : : : : 182 8.18 A loud and a quiet audio signal frequency modulating a carrier.183 8.19 Action of limiter in FM. : : : : : : : : : : : : : : : : : : : : : 184 8.20 Pre-emphasis in FM broadcasting. : : : : : : : : : : : : : : : 184 8.21 Information brought to tuner on carrier. : : : : : : : : : : : : 185 8.22 De-emphasis of audio information to reduce high frequency noise. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 185 8.23 Elements of radio communications. : : : : : : : : : : : : : : : 186 8.24 Superheterodyne receiver. : : : : : : : : : : : : : : : : : : : : 186 8.25 Processing part of AM signal with a simple diode and lters. 186 8.26 Audio information which will modulate carrier in stereo broadcasting. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 187 8.27 Alternating current in antenna produces electromagnetic wave.188 8.28 Electric eld around charged antenna wires is similar to that between charged capacitor plates. : : : : : : : : : : : : : : : : 189 8.29 Magnetic elds around a wire and antenna with current. : : : 189 8.30 Development of a standing wave on antenna. : : : : : : : : : 190 8.31 Comparison of standing wave on antenna to that of a string. 191 xi
8.32 Radiation pattern of electric eld around half-wave dipole antenna. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8.33 Polar graph representation of radiation pattern around halfwave dipolar antenna. : : : : : : : : : : : : : : : : : : : : : : 8.34 Basic elements of a grounded vertical antenna. : : : : : : : : 8.35 Quarter-wave antenna. : : : : : : : : : : : : : : : : : : : : : : 8.36 Total antenna length is made shorter by inserting a coil in series. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8.37 When the electric eld of radio wave is vertical, the receiving antenna should also be vertical. : : : : : : : : : : : : : : : : : 8.38 Loop antenna detects the magnetic eld part of radio wave. : 8.39 Two common loop antennas. : : : : : : : : : : : : : : : : : : 8.40 Vertically polarized radio wave. : : : : : : : : : : : : : : : : : 8.41 Horizontally polarized radio wave. : : : : : : : : : : : : : : : 8.42 Broadcasting with circular polarization. : : : : : : : : : : : : 8.43 Low frequency ground wave follows curvature of earth. : : : : 8.44 Direct (line-of-sight) mode of propagation. : : : : : : : : : : : 8.45 Earth's ionosphere layers. : : : : : : : : : : : : : : : : : : : : 8.46 Sky wave world communications. : : : : : : : : : : : : : : : : 8.47 Two-hop transmission of radio wave using ionosphere. : : : : 8.48 Communication using a satellite. : : : : : : : : : : : : : : : : 8.49 Selectivity relates to how well alternate channels are rejected. 8.50 Direct and re ected waves from a broadcasting station. : : : 8.51 Capture ratio in tuner. : : : : : : : : : : : : : : : : : : : : : : 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12
192 192 193 193 194 195 195 196 196 197 197 198 198 199 199 200 200 201 201 201
Record with grooves representing mechanically engraved waves.203 Phono playback systems. : : : : : : : : : : : : : : : : : : : : : 204 Stereo with only one stylus. : : : : : : : : : : : : : : : : : : : 205 A stereo moving magnet phono cartridge. : : : : : : : : : : : 206 Unmagnetized and magnetized magnetic material. : : : : : : 206 Magnetic eld produced by a coil when current ows through it. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 207 Alignment of domains in a magnetic material. : : : : : : : : : 208 Behavior of magnetic material in a coil whose current is increased and decreased to zero. : : : : : : : : : : : : : : : : : : 209 Memory is destroyed by reversed current in coil. : : : : : : : 210 Hysteresis curve of magnetic material. : : : : : : : : : : : : : 211 Groups of magnetic materials. : : : : : : : : : : : : : : : : : : 212 Side and top views of magnetic tape. : : : : : : : : : : : : : : 213 xii
9.13 9.14 9.15 9.16 9.17 9.18 9.19 9.20 9.21 9.22 9.23 9.24 9.25 9.26 9.27 9.28 9.29 9.30 9.31 9.32
Magnetic particle of gamma { Iron (III) Oxide as used on tapes.213 Recording head aligning magnetic domains on tape. : : : : : 214 Analog recording on a magnetic tape. : : : : : : : : : : : : : 215 Recorded information on magnetic tape. : : : : : : : : : : : : 216 Playback head for reading information on a tape. : : : : : : : 216 Playback head reading signals. : : : : : : : : : : : : : : : : : 216 Order of heads on a tape deck. : : : : : : : : : : : : : : : : : 217 Recording on material with magnetic hysteresis. : : : : : : : 217 Recording a signal on a tape. : : : : : : : : : : : : : : : : : : 218 Ideal magnetic characteristics for tape | linear behavior. : : 219 Useful region on hysteresis curve for magnetic recording. : : : 220 Recording on magnetic tape with bias. : : : : : : : : : : : : : 221 Details of heads for magnetic recording. : : : : : : : : : : : : 222 Frequency dependence of output from playback head. : : : : 222 Output from playback head as a function of frequency for various gap sizes and tape speeds. : : : : : : : : : : : : : : : 223 Equalization in playback. : : : : : : : : : : : : : : : : : : : : 223 Equalization in recording. : : : : : : : : : : : : : : : : : : : : 224 Typical musical spectrum. : : : : : : : : : : : : : : : : : : : : 224 Frequency response at di erent recording levels. : : : : : : : : 225 Exercise 9.4. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 225
10.1 Sound wave and its analog representation as a voltage. : : : : 227 10.2 Grooves on a record representing analog signals. : : : : : : : 228 10.3 Distortion of analog signal by dirt stuck between playback head and tape. : : : : : : : : : : : : : : : : : : : : : : : : : : 229 10.4 Original number 2 and worn out number 2; basic information is not lost when number is worn out. : : : : : : : : : : : : : : 229 10.5 (a) Analog signal, decimal scale (b) Analog signal, binary scale.230 10.6 20 Hz wave will get more samples per wave than a 200 Hz wave.230 10.7 Aliasing due to inadequate sampling rate. : : : : : : : : : : : 231 10.8 Audio spectrum and sideband frequencies due to sampling. : 232 10.9 Sample and hold of a signal for digitizing. : : : : : : : : : : : 233 10.10 Multiplexing of left and right channels. : : : : : : : : : : : : 233 10.11 Digitizing a signal. : : : : : : : : : : : : : : : : : : : : : : : : 234 10.12 Output of D-A converter. : : : : : : : : : : : : : : : : : : : : 234 10.13 Output of low-pass lter. : : : : : : : : : : : : : : : : : : : : 235 10.14 Main features of playback of digital signal. : : : : : : : : : : 235 10.15 Details of information on a CD. : : : : : : : : : : : : : : : : 236 xiii
10.16 Interference between light beam re ected from pit and from at. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10.17 Focusing action of a laser beam by lens. : : : : : : : : : : : : 10.18 Reduced e ect of surface defect on CD. : : : : : : : : : : : : 10.19 Laser spot focused on disc data. : : : : : : : : : : : : : : : : 10.20 Three-beam detection; one for read-out and two beams for tracking. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10.21 Randomly polarized beam and plane-polarized beam. : : : : 10.22 Path of laser beam and role of its polarization. : : : : : : : : 10.23 Coherent and incoherent beams of light. : : : : : : : : : : : : 10.24 Semiconductor laser. : : : : : : : : : : : : : : : : : : : : : : : 10.25 E ect of 2-times and 4-times oversampling. : : : : : : : : : : 10.26 Shock-proof memory in mini-disc. : : : : : : : : : : : : : : :
237 237 238 239 240 241 242 243 244 245 246
11.1 Magnetic digital signals recorded vertically on a mini disc. : : 248 11.2 Recording digital signals on a mini disc. : : : : : : : : : : : : 248 11.3 Kerr e ect: plane of polarization of light beam rotates upon re ection from a magnetized surface. : : : : : : : : : : : : : : 249 11.4 Read-out of digital information using Kerr e ect. Magnetic
eld direction a ects plane of polarization of re ected laser beam. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 249 11.5 Di erence in read-out between pre-recorded and recordable mini-discs. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 250 11.6 Section of a recordable mini disc. : : : : : : : : : : : : : : : : 251 11.7 Layered structure of recordable mini disc. : : : : : : : : : : : 251 11.8 Track pattern in DCC tape. : : : : : : : : : : : : : : : : : : : 252 11.9 The playback head reads only a portion of the recorded track. 252 11.10 Threshold of hearing curve. : : : : : : : : : : : : : : : : : : : 252 11.11 Sounds which will be recorded by PASC and masking of quiet passages. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 253 11.12 Representation of digital signal on magnetic tape. : : : : : : 253 11.13 Helical recording with rotating heads. : : : : : : : : : : : : : 254 11.14 Tape contact to rotating head. : : : : : : : : : : : : : : : : : 255 11.15 Time compression to reduce wrap angle. : : : : : : : : : : : 256 11.16 Guard band between tracks on analog tape reduces cross-talk.257 11.17 Azimuthal recording. : : : : : : : : : : : : : : : : : : : : : : 257 11.18 Digital information on magnetic tape recorded longitudinally. 258 11.19 Arrangement of signals on a tape. : : : : : : : : : : : : : : : 259 11.20 Exercise 11.7. : : : : : : : : : : : : : : : : : : : : : : : : : : 259 xiv
12.1 Sources of heating in hi- due to mechanical friction and electrical \friction". : : : : : : : : : : : : : : : : : : : : : : : : : : 12.2 Electrical \friction" causes heating in ampli er components and voice coil. : : : : : : : : : : : : : : : : : : : : : : : : : : : 12.3 Two types of thermometers: alcohol expansion thermometer and gas thermometer. : : : : : : : : : : : : : : : : : : : : : : 12.4 Temperature dependence of electric resistance of a semiconductor. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12.5 Basic circuit for resistance thermometer. : : : : : : : : : : : : 12.6 Heating of spot on mini-disc for recording. : : : : : : : : : : : 12.7 Heat conduction along a bar between a hot body and a cold one. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12.8 Thermal resistance depends on length of heat conductor. : : : 12.9 Thermal resistance depends inversely on cross-sectional area of heat conductor. : : : : : : : : : : : : : : : : : : : : : : : : 12.10 Transfer of heat in air by convection. : : : : : : : : : : : : : 12.11 Object at temperature T emits electromagnetic waves. : : : 12.12 Thermal expansion of an object when heated. : : : : : : : : 12.13 Bimetallic strip and its behavior when heated or cooled. : : : 12.14 Mounting of transistor and diode on heat sink to transfer heat away from devices by heat conduction. : : : : : : : : : : 12.15 Heat removal by convection and radiation. : : : : : : : : : : 12.16 Action of circuit-breaker when too hot. : : : : : : : : : : : : 12.17 Thermo-magnetic recording on mini-Disc. : : : : : : : : : : : 13.1 Speed of tape past recording head. : : : : : : : : : : : : : : : 13.2 Time for a radio wave to go around the Earth at the equator. 13.3 Speed of a recorded signal is the same at X and at Y; their velocities are di erent. : : : : : : : : : : : : : : : : : : : : : : 13.4 Force on voice coil giving it a push or a pull depending on direction of current in voice coil. : : : : : : : : : : : : : : : : 13.5 Force on tape by capstan-pinch roller. : : : : : : : : : : : : : 13.6 Static friction-force pulling on tape. : : : : : : : : : : : : : : 13.7 Releasing a CD from its case by applying a pressure on the clips with a nger. : : : : : : : : : : : : : : : : : : : : : : : : 13.8 Inertia of a tweeter is less than that of a woofer. : : : : : : : 13.9 Outer ear; ear drum's inertia limits response at frequencies above 20 kHz. : : : : : : : : : : : : : : : : : : : : : : : : : : : xv
261 262 263 264 264 265 265 266 267 268 268 269 269 270 271 271 272 274 274 275 276 277 277 278 279 280
13.10 Adjusted weight in cartridge for helping the stylus to track the groove in phono record. : : : : : : : : : : : : : : : : : : : 280 13.11 Force of clamped magnet on a voice coil accelerates diaphragm in loudspeaker. Force of clamped magnet on focus coil accelerates focus lens in CD player. : : : : : : : : : : : : : : : : : 281 13.12 Re ection of a pulse on a string clamped at wall and its inversion. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 282 13.13 Force on voice coil and force on magnet. : : : : : : : : : : : 283 13.14 Waves recorded on a phono record and a CD. : : : : : : : : : 284 13.15 Distances covered along outer track and inner track on a phono record. : : : : : : : : : : : : : : : : : : : : : : : : : : : 285 13.16 Frequency of rotation of a CD is made higher near the inner edge and lower near the outer edge to maintain constant linear speed on a tracks. : : : : : : : : : : : : : : : : : : : : : : : : 286 13.17 Rotation of drum head relative to magnetic tape in DAT. : : 286 13.18 When same force is applied to the CD case lid, it is easier to open the lid near the edge because torque is larger there. : : 287 13.19 For the same force exerted on lid, the torque is larger in B than in A. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 288 13.20 Moment of inertia of a CD is larger than that of a mini-Disc. 288
xvi
Chapter 1
Introduction to Hi-Fi
1
CHAPTER 1. INTRODUCTION TO HI-FI
2
Microphone
R
Record
L R Microphone
Playback
Speakers
L
Figure 1.1: Stereo process in recording and playback.
CHAPTER 1. INTRODUCTION TO HI-FI
3
Stereo Right Surround Right
Center Speaker
Surround Left Stereo Left
Figure 1.2: Surround sound reproduction of audio information.
Left Left Sources of Sound
Stereo
Store (Record) or Transmit
Stereo
Right
Figure 1.3: Storage or transmission of sound in stereo.
Right
CHAPTER 1. INTRODUCTION TO HI-FI
4
Right Right Sources of Sound
Playback Left Left
Figure 1.4: Playback process in stereo.
Tuner
+ Pre-Amplifier
=
Receiver
+ Power Amplifier
Figure 1.5: Elements of a receiver.
CHAPTER 1. INTRODUCTION TO HI-FI
5
Antenna
Phono
Receiver
Tape Deck
CD
DAT
Figure 1.6: Example of basic connections to a receiver.
Pre-Amplifier
+
=
Integrated Amplifier
Power Amplifier
Figure 1.7: Elements of an integrated ampli er.
CHAPTER 1. INTRODUCTION TO HI-FI
6
Antenna
Tuner
CD
Integrated Amplifier
Phono
Tape Deck
DAT
Figure 1.8: Connections to an integrated ampli er.
Pre-Amp
+
Power Amplifier
Separate components
Figure 1.9: All separate approach.
CHAPTER 1. INTRODUCTION TO HI-FI
7
Antenna
Tuner
CD
Phono
Pre-Amp
Power Amplifier
Tape Deck
DAT
Figure 1.10: Connections in all-separate approach.
CHAPTER 1. INTRODUCTION TO HI-FI
8
Audio Input Audio Output
A/V Receiver
Stereo Speaker L Output
VCR VCR
R
Video Monitor
Figure 1.11: Basic A/V System.
Video
CHAPTER 1. INTRODUCTION TO HI-FI
L
9
R
Surround Speaker Output Audio Input Audio Output
A/V Receiver
Stereo Speaker L Output
VCR VCR
Video
R
Video Monitor
Figure 1.12: A/V receiver driving a surround-sound system.
CHAPTER 1. INTRODUCTION TO HI-FI
10
Tape Deck In
Out
Out for Recording
In from Tape Deck
Inputs Out
In Out
Selector Switch
Tape Monitor Switch
Tone Controls
Figure 1.13: Details of the tape monitor switch when listening to a sound source with available tape recording.
CHAPTER 1. INTRODUCTION TO HI-FI
11
Tape Deck In
Out
Out for Recording
In from Tape Deck
Inputs In Out Selector Switch
Out
Tape Monitor Switch
Tone Controls
Figure 1.14: Listening to a tape; tape switch in.
CHAPTER 1. INTRODUCTION TO HI-FI
12
Center Channel Speaker
R Left Front Speaker
Right Front Speaker
TV
Video
A/V Receiver
Video
Audio
VCR
Left Surround Speaker
Right Surround Speaker
Figure 1.15: A/V receiver with Dolby Pro Logic processor.
CHAPTER 1. INTRODUCTION TO HI-FI
A
13
B
C
Amplitude of Signal
Time
D
Time
E
Time
F
Amplitude of Signal
Time
Time
G Amplitude of Signal
Time
Figure 1.16: Various wave forms.
Time
Chapter 2
Waves
14
CHAPTER 2. WAVES
15
Figure 2.1: Phono record and an enlarged groove showing engraved wave representing sound. Displacement up
Equilibrium Position Distance No Waves
Waves
Displacement down
Figure 2.2: Simpli ed picture of a water wave; displaced water as a function of position.
CHAPTER 2. WAVES
16
Displacement up
Distance
1 Wave Displacement down
Figure 2.3: Details of one wave as a function of position.
Displacement
Distance
Large Amplitude
Small Amplitude
Figure 2.4: Large and small amplitude waves.
CHAPTER 2. WAVES
17
+
Displacement from Equilibrium
Time
Figure 2.5: Time dependence of displacement of a point on a water wave.
+
Displacement
Time
1 Period
Figure 2.6: Displacement as a function of time; time required to complete one wave.
CHAPTER 2. WAVES
18
String
Clamp
Clamp
Figure 2.7: Transverse wave on a string.
Figure 2.8: Longitudinal waves along a solid bar.
Wave 1
Position
Wave 2
+
Position
Result
=
Figure 2.9: Addition of two waves.
Position
CHAPTER 2. WAVES
19
Sound
No Sound
Air
Vacuum Bell Jar
Figure 2.10: Sound requires a medium in which to propagate; in a vacuum there is no sound propagation.
Diaphragm Diaphragm
Direct Radiator Speaker
Drum
Figure 2.11: Direct radiator speaker can move air like a drumhead.
CHAPTER 2. WAVES
20
Air at Atmospheric Pressure
Speaker
≈ 14.7 lbs./sq.in.
Increase in Pressure = Condensation
Speaker
Motion
Figure 2.12: Generation of sound by loudspeaker.
CHAPTER 2. WAVES
21
Rarefaction
Condensation
Motion
Motion
Speaker
Pressure Change Equilibrium Pressure at ≈ 14.7 lbs./sq.in.
1 Wave
Figure 2.13: Disturbances created by loudspeaker; pressure changes cause sound.
Air Pressure Increase
Equilibrium Air Pressure
Vibrating Speaker
Air Pressure Decrease
Distance
Louder Sound
Figure 2.14: Representation of sound created by a loudspeaker.
CHAPTER 2. WAVES
22
Amplitude 2
Amplitude Wave Y
Wave X
2
1
1
0 -1
0 Distance
-2
Distance
-1 -2
Figure 2.15: Wave Y has 4 times the power of wave X, but their amplitudes di er only by a factor of 2.
al m r o N Obstacle Incoming Wave Angle of Incidence
Angle of Reflection
Reflected Wave
Figure 2.16: Re ection of a wave by an obstacle or a di erent medium.
CHAPTER 2. WAVES
23
Sound Produced Sound Power
Time 0
Speaker produces a Pulse of Sound
Figure 2.17: Speaker producing a pulse of sound in a hall.
CHAPTER 2. WAVES
24
Reflected
Direct
Sound Produced Direct
Amount of Sound
Reflected
Time 0
Reverberant Sound
Figure 2.18: Paths of direct and re ected sound in a hall.
CHAPTER 2. WAVES
25
Reflected Sound (Reverberant)
Direct Sound
Figure 2.19: Direct and reverberant sound in a hall.
CHAPTER 2. WAVES
26
Amount of Sound
Reverberant
Direct Source
Distance from Source
About 6 meters from Stage
Figure 2.20: Direct and reverberant sound contributions to sound in a hall.
CHAPTER 2. WAVES
27
1
2
3
4
Figure 2.21: Sound radiated by a speaker; as one moves away the intensity decreases.
CHAPTER 2. WAVES
28
1
2
Figure 2.22: Sound intensity through surface 2 is di erent from that of 1.
CHAPTER 2. WAVES
29
At Rest
Relative Motion
Figure 2.23: Observer and source at rest and in relative motion.
CHAPTER 2. WAVES
Speaker moving toward Listener
30
Speaker moving away from Listener
100 Hz Signal
1000 Hz Signal
Increase in Frequency heard by Listener
Decrease in Frequency heard by Listener
Figure 2.24: Doppler E ect produced by speaker producing simultaneously 100 Hz and 1,000 Hz sound waves.
CHAPTER 2. WAVES
31
Hot Air
Incoming Sound Wave
Cold Air
Figure 2.25: Sound wave in cold air entering hot air.
Hot Air
Normal
Cold Air
Figure 2.26: Refraction of a sound wave.
CHAPTER 2. WAVES
32
Hot Air
Normal
Critical Angle Cold Air
Figure 2.27: Above a critical angle of incidence there is only re ection.
CHAPTER 2. WAVES
33
Plastic
Sound Waves
Air
Figure 2.28: Sound travels in a curved hollow plastic tube by multiple re ections.
CHAPTER 2. WAVES
34
Displacement
Time
Figure 2.29: Sound wave produced by a musical group; a complex wave.
Displacement
Time
0
Figure 2.30: Simple sine waveform.
CHAPTER 2. WAVES
35
90˚ 90˚ 360˚ 180˚
Time or Position
180˚
360˚
270˚ 270˚
Figure 2.31: Comparison between one full wave and one rotation of a circle.
Disturbance
Disturbance
0 Time or Position
+
Disturbance
0 Time or Position
=
0 Time or Position
Figure 2.32: Addition of two waves.
Displacement
Displacement
0 Position
+
Displacement
0 Position
=
0 Position
Figure 2.33: Addition of two waves out of phase by 180 degrees.
CHAPTER 2. WAVES
36
In Phase
Figure 2.34: Constructive interference.
CHAPTER 2. WAVES
Out of Phase
Figure 2.35: Destructive interference.
37
CHAPTER 2. WAVES
Figure 2.36: Obstacle with aperture receiving high frequency waves.
38
CHAPTER 2. WAVES
Figure 2.37: Low frequency behavior of obstacle and aperture.
39
CHAPTER 2. WAVES
40
Figure 2.38: Comparison of di raction behavior of a room with opening and a loudspeaker.
CHAPTER 2. WAVES
41
High Frequencies
Low Frequencies
Figure 2.39: Dispersion characteristics of a speaker.
Incident Wave
Reflected Wave
Result
Figure 2.40: Standing wave produced by incident and re ected waves.
CHAPTER 2. WAVES
Figure 2.41: Simplest possible standing wave on a string.
42
CHAPTER 2. WAVES
43
1/2 Wave
Figure 2.42: Simplest standing wave on a string during one cycle.
Displacement:
Node
Antinode
Node
Antinode
Node
Figure 2.43: Second harmonic on a string showing position of nodes and antinodes. Third Harmonic
Figure 2.44: Third harmonic on a string clamped at both ends.
CHAPTER 2. WAVES
Or
Figure 2.45: Setting up a standing wave in a tube.
44
CHAPTER 2. WAVES
45
1/2 Wave
Displacement Antinode
Node
Displacement Antinode
Figure 2.46: Simplest standing wave in a tube open at both ends. Second Harmonic
Figure 2.47: Second harmonic in tube open at both ends. 1/2 Wave
1 Meter
Figure 2.48: Fundamental in a tube.
CHAPTER 2. WAVES
46
Figure 2.49: Tube open at one end excited by a tuning fork.
1/4 Wave
Displacement Antinode
Displacement Node
Figure 2.50: Fundamental in tube open at one end.
CHAPTER 2. WAVES
47
3/4 Wave
1/4 Wave
1/4 Wave
1/4 Wave
Figure 2.51: Next more complicated standing wave; the third harmonic. Fifth Harmonic
Figure 2.52: Fifth harmonic. 1/4 Wave
1 Meter
Figure 2.53: Standing wave in a tube 1 meter long; fundamental.
CHAPTER 2. WAVES
48
Figure 2.54: Tube closed at both ends.
1/2 Wave
Displacement Node
Antinode
Displacement Node
Figure 2.55: Fundamental of a tube closed at both ends.
CHAPTER 2. WAVES
49
z
2 1/
e av W
1/2 Wave y 1/2 Wave x
Figure 2.56: Room where independent standing waves can be set up in the x, y, and z directions.
CHAPTER 2. WAVES
50
Figure 2.57: A drumhead xed at its edges and its fundamental mode of vibration.
CHAPTER 2. WAVES
Figure 2.58: Overtone on a drumhead.
Figure 2.59: Standing wave pattern on a Chladni plate.
51
CHAPTER 2. WAVES
52
Complex Wave
=
+ 100 Hz
400 Hz
Figure 2.60: Complex wave created by the superposition of a 100 Hz fundamental and its fourth harmonic.
CHAPTER 2. WAVES
53
Figure 2.61: Violin string plucked by a nger and producing all sorts of harmonics.
CHAPTER 2. WAVES
Displacement
Figure 2.62: Complex wave generated by plucking string.
54
Time
CHAPTER 2. WAVES
55
Amplitude Time
Frequency
Relative Amplitude
f
1
3f
1/3
5f
1/5
...
...
...
nf
1/n
n = odd integer
Figure 2.63: Square wave; it is made up of many harmonics.
CHAPTER 2. WAVES
56
1.0 Relative Amplitude 0.5
0
Harmonics
1
2
3
4
5
6
7
Figure 2.64: Spectrum of a square wave.
CHAPTER 2. WAVES
57
Amplitude Time
Frequency
Relative Amplitude
f
1
2f
1/2
3f
1/3
4f
1/4
5f
1/5
...
...
...
nf
1/n
n = integer
Figure 2.65: Sawtooth wave and its harmonic content.
CHAPTER 2. WAVES
58
1.0 Relative Amplitude 0.5
0
Harmonics 1
2
3
4
5
6
7
8
Figure 2.66: Spectrum of a sawtooth wave.
CHAPTER 2. WAVES
59
Figure 2.67: A string bowed at its middle and harmonics which are excited.
CHAPTER 2. WAVES
60
Hammer
Figure 2.68: String on a piano struck by hammer at a distance 1/10 the string length from one end.
Amplitude
Frequency
Natural Frequency
Figure 2.69: Vibrations of an object at di erent excitation frequencies.
CHAPTER 2. WAVES
61
Oil
Undamped
Damped
Figure 2.70: Oscillations of a mass on a spring, undamped and damped when submersed in oil.
Ping Pong Ball
Figure 2.71: Resonance of wine glass excited by sound.
CHAPTER 2. WAVES
62
F1
Time
F2
Time
Time
Resultant
Figure 2.72: Beats caused by the combination of two waves with slightly di erent frequencies.
Chapter 3
Decibels
63
CHAPTER 3. DECIBELS dB
64
Figure 3.1: Decibel meter.
0 dB
-70 dB Volume
Receiver
Sound Pressure Level (dB)
Figure 3.2: Receiver with volume control marked in dB.
140
Threshold of Pain
120 100 80
Range of Human Hearing
60 40 20 0
Threshold of Hearing
20
100
1,000
10,000
Frequency (Hz)
Figure 3.3: Response of human ears at the threshold of hearing.
Sound Pressure Level (dB)
CHAPTER 3. DECIBELS
65
140 130 dB
120
120 dB
100
100 dB
110 dB 90 dB
80
80 dB 70 dB
60
60 dB 50 dB
40
40 dB
20
20 dB
0
30 dB 10 dB
Threshold of Hearing 20 31.5
63
125
250
500
1000
2000
4000
8000 16000 20000
Frequency (Hz)
Figure 3.4: Response of human ears for various sound levels: FletcherMunson curves.
Outer Ear
Tube closed at one End
Figure 3.5: Outer ear approximated by a tube closed at one end.
CHAPTER 3. DECIBELS
Aux
dB
Audio Signal
66
Receiver
Generator Sound Level Meter (dB Meter)
Speaker
Figure 3.6: Measuring the frequency response of a speaker.
Sound Level (dB)
Ideal
90
70
Real
Frequency 20 Hz
1,000 Hz
20,000 Hz
Figure 3.7: Frequency response of a speaker.
Chapter 4
Loudspeakers
67
CHAPTER 4. LOUDSPEAKERS
Electrical Signal Input
68
Sound Output
Loudspeaker
Figure 4.1: Role of loudspeaker.
CHAPTER 4. LOUDSPEAKERS
69
Spectrum of an Input Tone
Amplitude
Frequency
+
1
2
3
4
5
6
7
Harmonics
Frequency Response of Speaker
Amplitude
Frequency
Resultant Amplitude
Sound from Speaker
Frequency 1
2
3
4
5
6
7
Harmonics
Figure 4.2: Distortion of spectrum of original waveform by non- at frequency response of speaker.
CHAPTER 4. LOUDSPEAKERS
70
High Frequencies
Low Frequencies
Figure 4.3: Dispersion properties of speakers.
CHAPTER 4. LOUDSPEAKERS
71
2
O 1
Figure 4.4: Two low frequency waves from speaker arriving at O.
CHAPTER 4. LOUDSPEAKERS
72
2
O
1
Figure 4.5: Two high frequency waves from speaker arriving at O.
CHAPTER 4. LOUDSPEAKERS
73
2 1/2 W aves
2
O
1
Figure 4.6: Details of waves 2 and 1 at high frequencies.
CHAPTER 4. LOUDSPEAKERS
74
"On Axis" All Frequencies are heard. Highs
Speaker
Middles
Lows
"Off Axis" High Frequencies are almost not heard.
Figure 4.7: Sound dispersion of a driver as the frequency is increased.
CHAPTER 4. LOUDSPEAKERS
Total Sound Output
75
Woofer
Frequency
Total Sound Output
Midrange
Frequency
Total Sound Output
Tweeter
Frequency Cross-over Frequencies
Figure 4.8: Division of audio spectrum for a three-way loudspeaker.
CHAPTER 4. LOUDSPEAKERS
76
3-Way Speaker Woofer
Midrange
Tweeter
Total Sound Output
500 Hz
5000 Hz
Frequency
Figure 4.9: Net e ect of subdividing the whole audio range into three sections.
Woofer
Tweeter
Sound Output
Frequency Cross-over Frequency
Figure 4.10: Subdivision of audio spectrum in a two-way system.
CHAPTER 4. LOUDSPEAKERS
77
Displacement
A
Displacement
B
Figure 4.11: Amount of sound produced depends on volume displacement. A is louder than B.
CHAPTER 4. LOUDSPEAKERS
78
Displacement
Displacement
Figure 4.12: To produce same amount of sound by both drivers at the same frequency, the small one has to move through a larger distance than the big one.
CHAPTER 4. LOUDSPEAKERS
79
Volume of Air moved (cm 3) 500
0.5
0.0005
Frequency 20
200
2000
20,000
Figure 4.13: Volume of air moved by loudspeaker as a function of frequency to produce same loudness of sound.
CHAPTER 4. LOUDSPEAKERS
80
High Frequency
Low Frequency
Figure 4.14: Low frequency and high frequency simple pendulums doing di erent amounts of work per second for same amplitude of displacement.
Electrical Power In
Sound Power and Heat Dissipation
IN
OUT
Figure 4.15: Balance between electrical power going to driver and the production of sound power and heat dissipation by driver.
CHAPTER 4. LOUDSPEAKERS
Electrical Power Input from Receiver (80 Watts)
81
Sound Output (2 Watts)
Loudspeaker
Figure 4.16: Example of a loudspeaker whose e ciency is less than 100%.
CHAPTER 4. LOUDSPEAKERS
Basket
82
Suspension
Spider
Magnet Cone
Voice Coil
Figure 4.17: Basic cone speaker.
CHAPTER 4. LOUDSPEAKERS
Cone-shaped Diaphragm
83
Flat Diaphragm
Figure 4.18: Comparison of cone-shape over at shape for mechanical strength when thin material is used.
CHAPTER 4. LOUDSPEAKERS
84
Flexible Edge
Diaphragm
Figure 4.19: Modeling of diaphragm action by mass-spring oscillating system.
CHAPTER 4. LOUDSPEAKERS
85
1
1
2
2
3 3
Side View
Front View
Figure 4.20: Standing wave on diaphragm of driver. N
N
A
A
A Up
Down N
N
N Up
Up
A
Down
A
A N
Up
Down
N Down
A
N = Node A = Antinode
A N
Figure 4.21: Standing wave around rim of diaphragm.
CHAPTER 4. LOUDSPEAKERS
86
Main Resonance
Standing Wave Resonances Sound Pressure (dB)
Frequency
Figure 4.22: Typical frequency response of a cone speaker.
Rear Sound (Out of Phase)
Front Sound (In Phase)
Rear Sound (Out of Phase)
Figure 4.23: Ba e problem in cone driver.
CHAPTER 4. LOUDSPEAKERS
Figure 4.24: Front and rear of cone speakers are 180 out of phase.
87
CHAPTER 4. LOUDSPEAKERS
88
Path = 1/2 Wave
Baffle
Figure 4.25: Ba e action.
Figure 4.26: Two possible approaches for trapping rear sound in a speaker by means of an enclosure.
CHAPTER 4. LOUDSPEAKERS
89
Without Enclosure
With Enclosure Amplitude
Frequency
Resonant Frequency of Driver + Enclosure Resonant Frequency of Driver OR Without Enclosure With Enclosure Amplitude
Frequency
Resonant Frequency of Driver + Enclosure Resonant Frequency of Driver
Figure 4.27: E ect of enclosure on frequency response of speaker.
CHAPTER 4. LOUDSPEAKERS
Cotton Wool
Figure 4.28: Reducing standing waves inside speaker enclosure.
90
CHAPTER 4. LOUDSPEAKERS
91
Driver
Port
Figure 4.29: Basic bass-re ex enclosure.
CHAPTER 4. LOUDSPEAKERS
Figure 4.30: Oscillating components of bass-re ex speaker.
92
CHAPTER 4. LOUDSPEAKERS
Amplitude
93
Driver
+ Amplitude
Frequency
Enclosure
Frequency
Resultant Amplitude
Result
Frequency
Figure 4.31: Splitting of original resonance into two new resonances in bassre ex system.
CHAPTER 4. LOUDSPEAKERS
Air in Enclosure
94
Driver
Air in Enclosure In-Phase Motion Air in Enclosure
Air in Enclosure Out-of-Phase Motion Air in Enclosure
Figure 4.32: Resonant behavior, in-phase and out-of-phase, motion of strongly coupled components of bass-re ex system.
CHAPTER 4. LOUDSPEAKERS
95
Driver
Air in Enclosure
Port
Figure 4.33: Coupled components of a bass-re ex speaker.
CHAPTER 4. LOUDSPEAKERS
96
Driver
Passive Radiator
Figure 4.34: Bass-re ex speaker using a passive radiator over the port.
CHAPTER 4. LOUDSPEAKERS
97
Mass
Spring
Figure 4.35: Helmholtz resonator behaves like mass-spring system.
CHAPTER 4. LOUDSPEAKERS
Port
98
Duct
Figure 4.36: Bass-re ex speaker using a port or a duct.
CHAPTER 4. LOUDSPEAKERS
Figure 4.37: Acoustic labyrinth enclosure.
99
CHAPTER 4. LOUDSPEAKERS
100
Driver alone Driver + Small Enclosure
Amplitude
Frequency
Very Low Resonant Frequency
Figure 4.38: Change of frequency response of speaker when a small enclosure is used.
CHAPTER 4. LOUDSPEAKERS
101
Driver alone
Amplitude
Frequency 15 Hz Large Compliance
+
= Small Enlosure
Driver + Small Enclosure Amplitude
Frequency 30 Hz
Figure 4.39: E ect of small enclosure on frequency response of driver.
CHAPTER 4. LOUDSPEAKERS
102
Figure 4.40: Transfer of energy from a bob to one of equal mass, and to one of di erent mass.
CHAPTER 4. LOUDSPEAKERS
103
Diaphragm
Air Chamber
Mouth
Throat
Figure 4.41: A horn for matching vibrations of a light diaphragm to a large volume of air.
Amplitude
Frequency Cut-off Frequency
Figure 4.42: Low frequency response of a horn.
CHAPTER 4. LOUDSPEAKERS
104
Conical Parabolic
Exponential
Hyperbolic
Figure 4.43: Some common horn shapes.
CHAPTER 4. LOUDSPEAKERS
105
Diaphragm
Figure 4.44: Folded horn.
CHAPTER 4. LOUDSPEAKERS
Figure 4.45: Two-way horn loudspeaker with bass-re ex enclosure.
106
CHAPTER 4. LOUDSPEAKERS
107
1/2 Wavelength
Loudspeaker
Figure 4.46: Standing wave set up in a room with maxima and minima in sound pressure.
Loudspeaker Direct
Figure 4.47: Re ected waves by a wall appear to come from behind the wall since it acts like a mirror.
CHAPTER 4. LOUDSPEAKERS
108
Lows Middles
Middles
Highs
Highs
Lows
Lows
Figure 4.48: Stereo coverage in a room.
L
+ _
R
+ _
+ _
+ _
Figure 4.49: Speaker phasing: speakers are in phase.
CHAPTER 4. LOUDSPEAKERS
L
+ _
R
+ _
109
+ _
+ _
Figure 4.50: Speaker phasing: speakers are out of phase.
Wall
Reflected
Reflected
Direct
Figure 4.51: Geometry of a Bose 901 speaker.
CHAPTER 4. LOUDSPEAKERS
110
Speaker Amplitude
Frequency
Amplitude
Equalizer
Frequency
Speaker Resultant Amplitude
Frequency
Figure 4.52: E ect of equalizer on frequency response of Bose speakers.
CHAPTER 4. LOUDSPEAKERS
111
Wall
Figure 4.53: Bass horn in Klipsch horn speaker.
Left Channel +12 dB
0 dB
-12 dB
62Hz 250Hz 1kHz 4kHz 8kHz
Figure 4.54: Graphic equalizer.
Chapter 5
Electricity
112
CHAPTER 5. ELECTRICITY
113
Electron
Proton
N N
Neutron
Electron
Figure 5.1: Example of an atom: a Helium atom.
CHAPTER 5. ELECTRICITY
114
Figure 5.2: Forces between charged objects; like charges repel and unlike charges attract.
CHAPTER 5. ELECTRICITY
Figure 5.3: Charged ping-pong balls repelling each other.
Figure 5.4: Electric eld produced by a charged object.
115
CHAPTER 5. ELECTRICITY
116
Figure 5.5: Electric eld between two charged plates.
Output
Left
Battery
Right
Receiver
Figure 5.6: Examples of voltage sources: a battery, the output of a receiver.
CHAPTER 5. ELECTRICITY
117
Plates
Sheet
Figure 5.7: Electrostatic speaker: basic principle and actual speaker.
Plates
Sheet
Figure 5.8: Simpli ed version of an electrostatic speaker at equilibrium.
CHAPTER 5. ELECTRICITY
118
Figure 5.9: Push-pull action by two plates on charged sheet.
Spacers
Diaphragm (Vibrating Sheet)
Plates
Figure 5.10: An electrostatic speaker.
CHAPTER 5. ELECTRICITY
119
Stress
Si Ion
O2 Ion
Quartz Stress
Figure 5.11: Some crystals under pressure produce positive and negative charges on surface.
V=0
V
V
Figure 5.12: Dimensional changes of a piezoelectric ceramic when a voltage is applied.
CHAPTER 5. ELECTRICITY
120
V
V
Figure 5.13: Bending action of a double piezoelectric driver.
Bimorph
Cone
Figure 5.14: Pumping action of cone caused by bending of bimorph.
CHAPTER 5. ELECTRICITY
121
Diaphragm
Figure 5.15: Typical piezo horn.
Wire
Figure 5.16: Wire connected between two charged objects allows charges to be transferred.
CHAPTER 5. ELECTRICITY
122
L
+ _
R
+ _
Figure 5.17: Flow of electric current from ampli er to speaker.
Atom
Bound Electrons
Figure 5.18: Solid with atoms where electrons are tightly bound and which does not conduct electricity under normal circumstances.
CHAPTER 5. ELECTRICITY
123
Electron
Figure 5.19: Motion of one electron in a conductor in the presence of an electric eld. Changes of direction are due to scattering.
CHAPTER 5. ELECTRICITY
124
Metal Electrical Resistance
Temperature (ËšK) 0
100
200
300
Figure 5.20: Temperature dependence of the electrical resistance in a conductor.
Superconductor Electrical Resistance
Temperature (ËšK) 0
100
200
300
Tc
Figure 5.21: Superconductivity at Tc below which the resistance is zero.
CHAPTER 5. ELECTRICITY
125
1 Wire of Conductor 2
1
Water flowing in Pipe
2
Figure 5.22: The resistance to current or to water ow increases as the length of a conductor or pipe increases. Resistance of 2 is double that of 1.
Wire of Conductor
Water flowing in Pipe
Figure 5.23: By increasing the cross-sectional area of a conductor, resistance to current or water ow decreases.
CHAPTER 5. ELECTRICITY
126
Figure 5.24: Resistor with colored bands to specify its resistance value.
Extra Electron
Bonding
Missing Electron = Hole
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
As
Si
Si
Ga
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Figure 5.25: Pure silicon, silicon doped with arsenic, and silicon doped with gallium.
+ Voltage Source
Amplifier
Resistance
_ Simple Model
Figure 5.26: Example of simple circuit.
CHAPTER 5. ELECTRICITY
127
Water Flow
Pump
Resistance to Water Flow
Figure 5.27: Model using water for electric circuit.
CHAPTER 5. ELECTRICITY
128
DC Current Time
AC
Current
Time
Figure 5.28: Comparison between DC and AC current.
Pressure
Voltage
Sound
Time
AC Signal
Time
Figure 5.29: Representation of a sound wave by an AC electrical signal.
CHAPTER 5. ELECTRICITY
129
Y
X
Z
Figure 5.30: Variable resistance between X and Y. Fine Wire
Voltage Source
Fuse
Figure 5.31: Fuse to protect speaker. Speaker 1
L
+ _
R
+ _
Speaker 2
Figure 5.32: Two speakers connected in series to one channel of ampli er.
CHAPTER 5. ELECTRICITY
130
Speaker 1
Speaker 2
Effective Resistor
Voltage Source
Figure 5.33: Model of series circuit.
L
+ _
R
+ _
Figure 5.34: Parallel connection of two speakers to an ampli er.
CHAPTER 5. ELECTRICITY
131
Speaker 1
Speaker 2
Voltage Source
Effective Resistor
Figure 5.35: Model of parallel connections.
House Outlet Receiver 120 V 60 Hz
CD Player
Equalizer
Etc.
Figure 5.36: Parallel connections of hi- components to house electrical outlet.
CHAPTER 5. ELECTRICITY
132
Mass • Mass of Cone
• Compliance of Suspension
• Friction
Suspension
Figure 5.37: Response of cone speaker to a force.
CHAPTER 5. ELECTRICITY
133
Figure 5.38: Coil used to produce a magnetic eld when a current ows through it. It has inductance.
CHAPTER 5. ELECTRICITY
134
Impedance due to Inductance
Frequency 20 Hz
20,000 Hz
Figure 5.39: Frequency dependence of impedance associated with inductance.
Voltage Source
Voltage Source
Figure 5.40: Charging of a capacitor.
CHAPTER 5. ELECTRICITY
Voltage Source
135
Voltage Source
Figure 5.41: Charging of a capacitor when polarity of voltage source is reversed.
Impedance due to Capacitance
Frequency 20 Hz
20,000 Hz
Figure 5.42: Frequency dependence of impedance due to capacitance.
CHAPTER 5. ELECTRICITY
136
Inductance Sound Output In from Amplifier
Woofer Woofer
Frequency
Figure 5.43: Inductance in series with woofer prevents high frequencies from reaching it.
Capacitance Sound Output In from Amplifier
Tweeter Tweeter
Frequency
Figure 5.44: Capacitance in series with tweeter. It prevents low frequencies from reaching it.
CHAPTER 5. ELECTRICITY
137
In from Amplifier
Mid-range
Sound Output Mid-range Frequency
Figure 5.45: Capacitance and inductance in series with mid-range speaker to prevent the high and low frequencies from reaching it.
Impedance
Frequency Resonant Frequency
Figure 5.46: Impedance curve of driver.
Chapter 6
Ampli ers
138
CHAPTER 6. AMPLIFIERS
Sources of Audio Signals (CD, Tape, etc.)
139
Amplifier Weak Signals
Large Signals
Figure 6.1: Importance of ampli er in hi- system.
Source Command from Audio Signals Sound Output
Power Supply
Figure 6.2: Basic ampli er.
CHAPTER 6. AMPLIFIERS
140
Source Command: More Current Sound Output
Power Supply
Figure 6.3: Ampli er command for more current.
Source Command: Less Current Sound Output
Power Supply
Figure 6.4: Ampli er command for less current.
CHAPTER 6. AMPLIFIERS
Holes
p-Type
141
Electrons
n-Type
Figure 6.5: Semiconductor junction.
No Current flow
p-type
n-type
Battery
p-type
n-type
Battery
Figure 6.6: Reverse-biased semiconductor junction.
CHAPTER 6. AMPLIFIERS
142
Current flows
p-type
n-type
p-type
Battery
n-type
Battery
Figure 6.7: Forward-biased semiconductor junction. Current
-Voltage
+Voltage
Figure 6.8: Symbol for diodes and its characteristics. Diode
Input Voltage
Voltage across Resistor
Figure 6.9: Recti er action of a diode when an AC voltage is applied.
CHAPTER 6. AMPLIFIERS
n
p
143
n
Emitter
p
Collector
Base
n
p
Emitter
Collector
Base
Figure 6.10: Diagram of transistor and its circuit symbol for two possibilities.
Water Tank Current Flow
Command goes in as Current
Control
(Control) Power Supply
Water Flow
Figure 6.11: Ampli er action of transistor in a circuit compared to control of water ow.
CHAPTER 6. AMPLIFIERS
144
Signal Out Signal In Amplifier
Figure 6.12: Function of an ampli er.
Input
Input
+ Battery
Inverting
Non-Inverting
Output
Amplifier - Battery
Ground
Figure 6.13: Ampli er integrated on a chip.
Rf Input R input
Amplifier
Figure 6.14: Operational ampli er with negative feedback.
Output
CHAPTER 6. AMPLIFIERS
145
Rf Input R input
Output
Amplifier
Figure 6.15: Negative feedback corrects uctuations in gain.
Microphone
Speaker
Amplifier
Figure 6.16: Positive feedback in large hall with a mike and a loudspeaker system driven by mike.
CHAPTER 6. AMPLIFIERS
146
Input
Output
Ground
Figure 6.17: Volume control. Input Output is Maximum Voltage
Ball at Maximum Energy due to its Position
Ground
Input
Output is Minimum Voltage
Ball at Minimum Energy due to its Position
Ground
Figure 6.18: Comparison of potentiometer action with energy of a ball on a ladder.
CHAPTER 6. AMPLIFIERS
147
Bass
Min
Treble
Max
Min
Max
Figure 6.19: Bass and Treble controls.
CHAPTER 6. AMPLIFIERS
+ 13
Relative Output (dB)
-13
148
Max. bass
Max. Treble Middle Position
20 Hz
1000 Hz
Min. Bass
20,000 Hz
Frequency
Min. Treble
Figure 6.20: E ect on signal spectrum of Bass and Treble controls.
Low, 6 dB/Octave
High, 6 dB/Octave
Relative Amplitude (dB)
Ideal Case with no Filter
Low, 18 dB/Octave 20 Hz
High, 18 dB/Octave Frequency 20,000 Hz
Figure 6.21: Action of LOW and HIGH lters with 6 dB/octave attenuation, and also with 18 db/octave attenuation.
CHAPTER 6. AMPLIFIERS
149
Signal Out Signal In Amplifier f
Extra Harmonics
+ ... =
+
+ 2f
3f Signal Out
f
Figure 6.22: Harmonic distortion by ampli er.
Non-linear Output
Linear Input
Figure 6.23: Non-linear gain of ampli er.
CHAPTER 6. AMPLIFIERS
150
Signal Out Signal In
f1 f2
Frequency f1 Amplifier
Frequency f2
f1- f2 f1+ f2
Figure 6.24: IM distortion in ampli er.
IM Distortion (%)
THD
Power Output Power Rating of Amplifier
Figure 6.25: Distortion increases sharply about power rating of ampli er.
CHAPTER 6. AMPLIFIERS
151
Signal Out
Signal In Amplifier
Large THD due to Clipping
Figure 6.26: Clipping of waveform by ampli er at high output levels beyond the rated value.
Signal Out
Signal In Amplifier
Noise
Figure 6.27: E ect of noise from ampli er.
CHAPTER 6. AMPLIFIERS
152
A Relative Output (dB)
20 Hz
20,000 Hz
Frequency
B Relative Output (dB)
20 Hz
20,000 Hz
Frequency
Figure 6.28: Comparing 2 ampli ers with the same specs. Even though their specs are the same, the ampli ers will sound di erent.
0 dB
Noise Level A - weighted 20 Hz
20,000 Hz
Measured Noise Level Frequency
Figure 6.29: A-weighted method of measuring noise.
Chapter 7
Electromagnetism
153
CHAPTER 7. ELECTROMAGNETISM
154
Current
Figure 7.1: E ect of current in a wire on compasses around it.
North
South
Figure 7.2: Bar magnet has a north pole and a south pole.
North
South
N
S
N
S
Figure 7.3: Cutting a bar magnet produces shorter magnets each with its own respective north and south poles.
CHAPTER 7. ELECTROMAGNETISM
155
Current
N
S
Magnetic Field
N
S
Magnetic Field
Figure 7.4: Magnetic dipole is the basic unit of magnetism.
Magnetic Domain
Figure 7.5: Unmagnetized piece of iron.
Iron Atom
CHAPTER 7. ELECTROMAGNETISM
North
156
South
N
S Magnet
Magnetized Iron
Figure 7.6: Alignment of domains in a piece of iron by a bar magnet. Iron becomes magnetized.
Current
North
South
Figure 7.7: Magnetic eld around a bar magnet and a wire carrying a current.
CHAPTER 7. ELECTROMAGNETISM
157
Battery
Many Loops = Coil Single Loop
Figure 7.8: Increasing the magnetic eld produced by a current in a wire: by forming a loop, and by using many loops.
N
S
-
+
Power Supply
Figure 7.9: An electromagnet.
CHAPTER 7. ELECTROMAGNETISM
158
N
S
-
+
Power Supply
Figure 7.10: Determination of direction of magnetic eld using rst left-hand rule.
Current
S
N
-
North Pole
+ Left Hand
Figure 7.11: Rule for determining direction of magnetic eld in an electromagnet.
CHAPTER 7. ELECTROMAGNETISM
159
Direction of Motion Fixed Magnet
N
S
N
S
Amplifier
Figure 7.12: First left-hand rule and how a cone speaker works.
Force
Current
N
S
Figure 7.13: Force on wire carrying a current in a magnetic eld.
CHAPTER 7. ELECTROMAGNETISM
160
Force Current (Negative to Positive)
Magnetic Field (North to South)
Left Hand
Figure 7.14: The second left-hand rule showing direction of force on wire carrying a current in a magnetic eld.
CHAPTER 7. ELECTROMAGNETISM
161
Current Magnetic Field
Magnetic Field
Current
Maximum Force
Zero Force
Figure 7.15: Direction of force depends on orientation of current with respect to magnetic eld.
CHAPTER 7. ELECTROMAGNETISM
162
Magnet Poles
S
S
S
N
N
N
+
Magnet Poles
Figure 7.16: A Heil Speaker.
CHAPTER 7. ELECTROMAGNETISM
S
Force
163
Magnet Pole
Force
Wire with Current
N Magnet Pole
Figure 7.17: One set of folds in Heil speaker.
CHAPTER 7. ELECTROMAGNETISM
164
Wire
Sheet
Magnet
N
S S
N
S
N
+ N
S
N
S
Figure 7.18: Magnetic Planar Speaker.
CHAPTER 7. ELECTROMAGNETISM
S
N
165
S
N
Wire
S
N
S
N
Figure 7.19: Forces on diaphragm when current direction is as indicated.
N
S
Figure 7.20: A bar magnet moving into a coil induces an electric current in that coil.
CHAPTER 7. ELECTROMAGNETISM
N
S
N
N
S
S
Figure 7.21: Induced current in coil by moving magnet.
166
CHAPTER 7. ELECTROMAGNETISM
N
167
S
N
S
Figure 7.22: Signi cance of relative motion between magnet and coil.
WRONG!!
N
S
Figure 7.23: Direction of induced current (wrong).
CHAPTER 7. ELECTROMAGNETISM
168
CORRECT!!
N
S
Figure 7.24: Direction of induced current (correct).
CHAPTER 7. ELECTROMAGNETISM
169
Primary Coil
Secondary Coil
Core
Figure 7.25: Schematic of a transformer and its circuit symbol.
CHAPTER 7. ELECTROMAGNETISM
170
Secondary Coil
Primary Coil
Figure 7.26: Step-up transformer.
Primary Coil
Secondary Coil
Figure 7.27: Step-down transformer.
CHAPTER 7. ELECTROMAGNETISM
N
171
S
Figure 7.28: Schematic of microphone based on Faraday's law of induction.
S
N
Figure 7.29: Exercise 7.14.
CHAPTER 7. ELECTROMAGNETISM
172
S
N Stationary
+ Figure 7.30: Exercise 7.15.
N S
Figure 7.31: Exercise 7.18.
Chapter 8
Electromagnetic Waves and Tuners
173
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
Figure 8.1: Electric Field around charged ping-pong ball.
Figure 8.2: Oscillating charged ball.
174
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
175
High-frequency Oscillating Electron
Oscillating Charged Comb
Figure 8.3: Generation of electromagnetic waves at two di erent frequencies.
Radio
6
10 Hz
Microwave
10 8 Hz
Infrared Light Ultra-violet
10 12 Hz
10 14 Hz
10 15 Hz
X-rays
Gamma-rays
10 16 Hz
10 18 Hz
Figure 8.4: Spectrum of electromagnetic waves.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
176
Electric Field
Magnetic Field
Direction of Travel
Figure 8.5: Electromagnetic waves are transverse waves with oscillating electric and magnetic elds.
eWaveform
eWaveform
eVoltage Source
eVoltage Source
Antenna
Antenna
Figure 8.6: Production of electromagnetic waves by oscillating electrons in antenna.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
Electric Field
177
Magnetic Field
Figure 8.7: Generation of electric and magnetic elds by antenna.
Antenna
Broadcasted Wave
Figure 8.8: Production of electromagnetic waves by antenna.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
178
Modulation: Pressure Increase Ambient Pressure Test Writing Pressure Decrease Painting a Picture
Sound
Figure 8.9: Some examples of modulation.
Audio Signal
Carrier
Amplitude Modulated Carrier Wave
Figure 8.10: Amplitude modulation.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
179
Station 1,000 kHz Modulated Carrier Wave Carrier
Audio Signal
Station 1,400 kHz Modulated Carrier Wave Carrier
Audio Signal
Figure 8.11: Carrier and audio signals broadcast by two stations.
Carrier
Amplitude
Frequency f - Audio Frequency
f
f + Audio Frequency
Figure 8.12: Spectrum of an AM carrier at frequency f when modulated by audio signal.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
180
AM Waves Amplitude Carrier
Frequency
f
Figure 8.13: Audio frequencies modulating carrier.
Sideband Frequencies Carrier
Relative Amplitude
Frequency f - 5 kHz
f
f + 5 kHz
Figure 8.14: Spectrum of frequencies on carrier for audio frequencies up to 5 kHz.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS 1 Station Relative Amplitude
Next Station
Carrier 1
995 kHz
1000 kHz
181
Carrier 2
1005 kHz
Frequency
Figure 8.15: Spectrum of frequencies due to modulation of carrier.
Carrier Signal
Audio Signal
Amplitude does not change
Frequency changes Frequency Modulated Carrier Wave
Figure 8.16: Frequency modulation (FM).
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
182
Low Frequency Audio
High Frequency Audio
Carrier
Carrier
Figure 8.17: A low frequency and a high frequency audio signal frequency modulating a carrier.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
183
Quiet Audio
Carrier
Loud Audio
Carrier
Figure 8.18: A loud and a quiet audio signal frequency modulating a carrier.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
184
Spikes
Limiter
Figure 8.19: Action of limiter in FM.
Audio Information
17 Relative Amplitude (dB) 0 20 Hz
1 kHz
15 kHz
Figure 8.20: Pre-emphasis in FM broadcasting.
Frequency
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
185
Audio Information
17 Relative Amplitude (dB)
Noise picked up in Atmosphere 0 Frequency 20 Hz
1 kHz
15 kHz
Figure 8.21: Information brought to tuner on carrier.
Audio Information 0 Relative Amplitude (dB)
Noise
-17 Frequency 20 Hz
1 kHz
15 kHz
Figure 8.22: De-emphasis of audio information to reduce high frequency noise.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS Antenna
186
Antenna
Transmitter
Amp
Tuner
In
Out
Figure 8.23: Elements of radio communications.
rf Amplifier
Mixer
Rectifier and Filter
IF Amplifier
Out
Local Oscillator
Figure 8.24: Superheterodyne receiver. I-F Signal
A-F Signal
Rectifier Filter
Figure 8.25: Processing part of AM signal with a simple diode and lters.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
187
Amplitude Pilot Frequency
L+R 50
L-R 15,000 19,000 23,000
L-R 38,000
53,000
Hz
Frequency
Figure 8.26: Audio information which will modulate carrier in stereo broadcasting.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
188
Antenna
Electric Field
At the same time ...
Magnetic Field
Figure 8.27: Alternating current in antenna produces electromagnetic wave.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
189
Electric Field
Electric Field
Capacitor Plates
Antenna Wires
Figure 8.28: Electric eld around charged antenna wires is similar to that between charged capacitor plates.
Current
Current
Magnetic Field
Wire with Current
Current
Antenna with Current
Figure 8.29: Magnetic elds around a wire and antenna with current.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
190
Incident Current Wave
Reflected Current Wave
Resultant Wave Current
Figure 8.30: Development of a standing wave on antenna.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
191
Current
Standing Wave on an Antenna
Displacement
Standing Wave on a String
Figure 8.31: Comparison of standing wave on antenna to that of a string.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
192
Antenna Axis
Figure 8.32: Radiation pattern of electric eld around half-wave dipole antenna.
270˚
0˚
180˚
Antenna Radiation Lobe 90˚
Figure 8.33: Polar graph representation of radiation pattern around halfwave dipolar antenna.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
193
Antenna
1/4 Wave
1/4 Wave Current
Co-axial Cable to Electronics
1/4 Wave
Reflection
Electric Conductor
Earth
Figure 8.34: Basic elements of a grounded vertical antenna.
1/4 Wave
Ground Plane
Figure 8.35: Quarter-wave antenna.
Earth
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
194
Reflected Part
Earth
Figure 8.36: Total antenna length is made shorter by inserting a coil in series.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
Electric Field of Radio Wave
195
Receiving Antenna
Figure 8.37: When the electric eld of radio wave is vertical, the receiving antenna should also be vertical.
Loop Antenna
Magnetic Field of Radio Wave
Tuner
Figure 8.38: Loop antenna detects the magnetic eld part of radio wave.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
196
Magnetic Core (Ferrite)
Loop Antenna with many turns
Loop Antenna with many turns and Ferrite Core
Figure 8.39: Two common loop antennas.
Broadcast Antenna
Vertical Polarization
Electric Field
Earth
Receiving Antenna
Figure 8.40: Vertically polarized radio wave.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
197
Broadcast Antenna
Horizontal Polarization
Earth Receiving Antenna
Electric Field
Figure 8.41: Horizontally polarized radio wave.
2 Mutually Perpendicular Antennas
Circularly Polarized Wave
Figure 8.42: Broadcasting with circular polarization.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
Broadcast Antenna
Ground Wave
Earth
Figure 8.43: Low frequency ground wave follows curvature of earth.
Broadcast Antenna
Straight Line Path
Earth
Figure 8.44: Direct (line-of-sight) mode of propagation.
198
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
199
F1 F2
150 Miles
300 Miles
Ionosphere 70 miles D
30 Miles
50 Miles
Earth
Figure 8.45: Earth's ionosphere layers.
Ionosphere
Broadcast Antenna
Reflected Sky Wave
Earth
Figure 8.46: Sky wave world communications.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
200
Ionosphere
Broadcast Antenna
Earth
Figure 8.47: Two-hop transmission of radio wave using ionosphere.
Earth Geostationary Satellite
Figure 8.48: Communication using a satellite.
CHAPTER 8. ELECTROMAGNETIC WAVES AND TUNERS
99.6
100
100.4 MHz
99.8
201
Dial on Tuner
100.2
Figure 8.49: Selectivity relates to how well alternate channels are rejected. Reflected
Broadcast Antenna
Receiver
Direct
Figure 8.50: Direct and re ected waves from a broadcasting station. 100 Mhz 100 Mhz Receiver
Should be suppressed
Figure 8.51: Capture ratio in tuner.
Chapter 9
Analog Recording and Playback
202
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
203
Top View
Left Channel
Right Channel
Side View
Figure 9.1: Record with grooves representing mechanically engraved waves.
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
Output
Piezoelectric Element
Piezoelectric Pick-up
Magnet
SN Moving Magnet Pick-up
Figure 9.2: Phono playback systems.
204
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
Left
Right
90˚
Figure 9.3: Stereo with only one stylus.
205
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
SN Figure 9.4: A stereo moving magnet phono cartridge.
Magnetic Domain
Unmagnetized Magnetic Material Magnetization is Zero
Magnetized Magnetic Material Magnetization is Non-Zero
Figure 9.5: Unmagnetized and magnetized magnetic material.
206
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
207
Magnetic Field
Current
Magnetic Field in Coil
Current in Coil
Figure 9.6: Magnetic eld produced by a coil when current ows through it.
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
208
Total Magnetization
Saturation
Current in Coil
Figure 9.7: Alignment of domains in a magnetic material.
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
209
Total Magnetization
Saturation
Rententivity
Current in Coil
Figure 9.8: Behavior of magnetic material in a coil whose current is increased and decreased to zero.
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
210
Magnetization
Current in Coil
Coercivity
Current in Coil
Figure 9.9: Memory is destroyed by reversed current in coil.
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
211
Magnetization
Magnetic Field of Coil
Magnetic Field of Coil
Magnetization
Figure 9.10: Hysteresis curve of magnetic material.
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
Hard
Soft
Figure 9.11: Groups of magnetic materials.
212
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
213
Side View
Magnetic Particles
Polyester Film Stereo L1
1
R1
2
L2
3
R2
4
Heads
Top View
Figure 9.12: Side and top views of magnetic tape.
Figure 9.13: Magnetic particle of gamma { Iron (III) Oxide as used on tapes.
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
Audio Input
N
S
S
N
N
S
Tape Motion
Figure 9.14: Recording head aligning magnetic domains on tape.
214
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
Audio Signal:
Top View of Tape Domain Alignment N S
Domain Alignment S N
1 Wave
Audio Signal:
Top View of Tape
1 Wave
Figure 9.15: Analog recording on a magnetic tape.
215
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
N
S
S
N
N
S
S
1 Wave
1 Wave
High Frequency
Low Frequency
N
Figure 9.16: Recorded information on magnetic tape.
Output
S
N
N
S Tape Motion
Gap (Exaggerated)
216
Figure 9.17: Playback head for reading information on a tape.
Output
S N N S 1 Wave Tape Motion
Figure 9.18: Playback head reading signals.
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
Erase
Record
217
Playback
Tape
Figure 9.19: Order of heads on a tape deck.
Magnetization
Recording Current in Coil
Recording Current in Coil
Magnetization
Figure 9.20: Recording on material with magnetic hysteresis.
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
218
Magnetization Recorded Information Recording Current in Coil Input Current to Coil
Figure 9.21: Recording a signal on a tape.
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
219
Magnetization Recorded Information
Current in Input Coil
Input Information Linear Characteristic of Tape
Figure 9.22: Ideal magnetic characteristics for tape | linear behavior.
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
220
Magnetization Region to be avoided
Current in Coil Almost Linear Regions
Figure 9.23: Useful region on hysteresis curve for magnetic recording.
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
Audio Output
0
Audio + Bias on Tape
+
A-C Bias Input
Audio Input
Audio + Bias Input
Figure 9.24: Recording on magnetic tape with bias.
221
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
222
Audio Signal
Recording Amplifier
Bias Oscillator
Playback Amplifier
Erase
Record
Playback
Figure 9.25: Details of heads for magnetic recording.
Output from Playback Head
Frequency 20 Hz
20,000 Hz
Figure 9.26: Frequency dependence of output from playback head.
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
223
1 µm Gap
Output from Playback Head
2 µm Gap 4 µm Gap
Frequency 10 kHz
20 Hz
20 kHz
15 i.p.s.
Output from Playback Head
71/2 i.p.s. 1 7/8 i.p.s.
Frequency 10 kHz
20 Hz
20 kHz
Figure 9.27: Output from playback head as a function of frequency for various gap sizes and tape speeds. 70 µ sec Equalization
Output (dB)
120 µ sec Equalization
Frequency 20 Hz
100 Hz
1000 Hz
10 kHz
20 kHz
Figure 9.28: Equalization in playback.
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
224
Output (dB)
Frequency 20 Hz
5000 Hz
20 kHz
Figure 9.29: Equalization in recording.
Transients Amplitude Average Sound Levels
Time
Figure 9.30: Typical musical spectrum.
CHAPTER 9. ANALOG RECORDING AND PLAYBACK
225
Recording Level (dB) 0 -10 -20
Frequency 10 Hz
1 kHz
10 kHz
20 kHz
Figure 9.31: Frequency response at di erent recording levels.
X Y Figure 9.32: Exercise 9.4.
Chapter 10
Digital Optical Recording & Playback
226
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
Pressure
227
Voltage
Time
Time Continuous Representation
Figure 10.1: Sound wave and its analog representation as a voltage.
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK High Frequency Signal
Scratch
Groove
Very Large Amplitude Signal
Figure 10.2: Grooves on a record representing analog signals.
228
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
229
Playback
Tape
Dirt
Recorded Signal
Tape Motion
Played Back Signal
Figure 10.3: Distortion of analog signal by dirt stuck between playback head and tape.
2
Original Number 2
Worn out Number 2
Figure 10.4: Original number 2 and worn out number 2; basic information is not lost when number is worn out.
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
Amplitude (Decimal)
230
Amplitude (Binary)
8
1000
4 2 0
0100 0010 0000 Time
Time
Figure 10.5: (a) Analog signal, decimal scale (b) Analog signal, binary scale.
20 Hz Time
200 Hz Time
Figure 10.6: 20 Hz wave will get more samples per wave than a 200 Hz wave.
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK Aliased Signal
Signal
Samples (not enough!)
Signal No Aliasing
Samples (good!)
Figure 10.7: Aliasing due to inadequate sampling rate.
231
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
232
Sampling Frequency
Signal
Good, No Aliasing, Maximum Signal Frequency F = FS / 2
F = FS / 2
Frequency FS
FS + FS / 2
Poor, Aliasing, Maximum Signal Frequency F > FS / 2
Alias Zone
Frequency F > FS / 2
FS
FS + FS / 2
Figure 10.8: Audio spectrum and sideband frequencies due to sampling.
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
233
Sample and Hold of Analog Signal Amplitude
Holds
Time
Sampling Points
Figure 10.9: Sample and hold of a signal for digitizing.
In
Left Multiplexer
In
Right
2 Channels
1 Channel
Figure 10.10: Multiplexing of left and right channels.
Out
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
0110 0100 0011
1000
0010 0001
Analog Signal
Sampled Analog Signal
0111 0101 0011 0010 0001
Digital Signal
Left Channel Low-Pass Filter
Sample & Hold
A/D Converter First Multiplexer
Right Channel Low-Pass Filter
Sample & Hold
A/D Converter
Figure 10.11: Digitizing a signal.
Output from D/A Converter
Figure 10.12: Output of D-A converter.
234
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
Smoothing by Low-pass Filter
Output from D/A Converter
Figure 10.13: Output of low-pass lter.
Left Channel In
Left Channel Analog Out
D/A Converter Digital
Low-Pass Filter
0100 1000 1101 1001
Figure 10.14: Main features of playback of digital signal.
235
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
236
Disc Travels Slower To keep constant Laser Beam to Disc Speed Disc Travels Faster
Pits and Lands
Figure 10.15: Details of information on a CD.
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
237
Land 1/4 Wave
Pit
Laser Beam
Out of Phase by 1/2 Wave
Figure 10.16: Interference between light beam re ected from pit and from at.
Pits
Label
Protective Layer Metal Film Layer Compact Disc Transparent Substrate
Lens In Out Laser Beam
Figure 10.17: Focusing action of a laser beam by lens.
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
238
Dirt out of Focus
Compact Disc Dirt Lens
Laser Beam
Figure 10.18: Reduced e ect of surface defect on CD.
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
239
Land Length Pit Length
Land
Pit
Track Pitch 1.6 µm
Track Width 0.5 µm
Laser Beam 0.8 µ m
Figure 10.19: Laser spot focused on disc data.
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
240
Laser Beam to Track Disc Direction Laser Beam to Read
Laser Beam to Track Pit
Figure 10.20: Three-beam detection; one for read-out and two beams for tracking.
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
Wave
Wave Randomly Polarized
Plane Polarized
Figure 10.21: Randomly polarized beam and plane-polarized beam.
241
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
242
Compact Disc Objective Lens
Circularly Polarized Light
1/4 Wave Plate
Vertically Polarized Light Beam Splitter
To Detector
Out Cylindrical Lens Converging Lens Horizontally Polarized Light In from Laser
Figure 10.22: Path of laser beam and role of its polarization.
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
Coherent Beam of Light
Incoherent Beam of Light
Figure 10.23: Coherent and incoherent beams of light.
243
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
244
Current Front Mirror Rear Mirror
pn Junction
Laser Beam
Current
Figure 10.24: Semiconductor laser.
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
Sampled Signal
2 × Oversampled
4 × Oversampled
Figure 10.25: E ect of 2-times and 4-times oversampling.
245
CHAPTER 10. DIGITAL OPTICAL RECORDING & PLAYBACK
Mini Disc
Optical Readout
In: 1.4 MBit / Second
Memory
Out: 0.3 MBit / Second
Figure 10.26: Shock-proof memory in mini-disc.
246
Chapter 11
Digital Magnetic Recording & Playback
247
CHAPTER 11. DIGITAL MAGNETIC RECORDING & PLAYBACK248 Track
Magnetic Domains
Figure 11.1: Magnetic digital signals recorded vertically on a mini disc.
Recording Magnetic Head
Signal In
Protective Layer
Magnetic Recording Layer Substrate
Mini Disc
Lens
Laser Beam
Figure 11.2: Recording digital signals on a mini disc.
CHAPTER 11. DIGITAL MAGNETIC RECORDING & PLAYBACK249 S
Magnet N Polarization Rotation of Polarization Plane
Laser Beam In
Reflected
Figure 11.3: Kerr e ect: plane of polarization of light beam rotates upon re ection from a magnetized surface.
Record Head
Record Head
In Lens
Out Lens
Polarization Plane
Figure 11.4: Read-out of digital information using Kerr e ect. Magnetic
eld direction a ects plane of polarization of re ected laser beam.
CHAPTER 11. DIGITAL MAGNETIC RECORDING & PLAYBACK250
Prerecorded Disc
In
Out Lens
Lens Interference Effect
Change in Intensity Bright
Less Bright
Recordable Disc
In
Out Lens
Lens
Change in Polarization Plane
Kerr Effect
Figure 11.5: Di erence in read-out between pre-recorded and recordable mini-discs.
CHAPTER 11. DIGITAL MAGNETIC RECORDING & PLAYBACK251
Pre-grooved for Tracking Laser Spot Pre-groove SiN
SiN Reflective Layer Magneto-optic Layer
Figure 11.6: Section of a recordable mini disc.
Lead-in Area
Program Area
Lead-out Area
Figure 11.7: Layered structure of recordable mini disc.
CHAPTER 11. DIGITAL MAGNETIC RECORDING & PLAYBACK252
Upper Sector
Lower Sector
Figure 11.8: Track pattern in DCC tape. DCC Head
Record
Record
Playback
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
Upper Sector
Read
Digital Right Left
Analog Playback Only
Figure 11.9: The playback head reads only a portion of the recorded track. SPL-dB
Treshold of Hearing
Frequency .02 .05 .1
.2
.5
1
2
5
10
20
Figure 11.10: Threshold of hearing curve.
kHz
CHAPTER 11. DIGITAL MAGNETIC RECORDING & PLAYBACK253
SPL-dB Record
New Treshold
Ignore Frequency .02 .05 .1
.2
.5
1
2
5
10
20 kHz
Figure 11.11: Sounds which will be recorded by PASC and masking of quiet passages.
1
1
0 Audio Signal:
Tape
Figure 11.12: Representation of digital signal on magnetic tape.
CHAPTER 11. DIGITAL MAGNETIC RECORDING & PLAYBACK254
Head Drum Tape
Audio Tracks Slanted Tape Path
Record / Play Head
Figure 11.13: Helical recording with rotating heads.
CHAPTER 11. DIGITAL MAGNETIC RECORDING & PLAYBACK255
Record / Play Head A
90˚ Tape Record / Play Head B
Figure 11.14: Tape contact to rotating head.
CHAPTER 11. DIGITAL MAGNETIC RECORDING & PLAYBACK256
Head A Head B 90Ëš Wrap Angle
1/4 Revolution Head A Signal
Head B Signal One Revolution
Figure 11.15: Time compression to reduce wrap angle.
CHAPTER 11. DIGITAL MAGNETIC RECORDING & PLAYBACK257
Analog Cassette Track Pattern
Right Side B
Side A
Left Left
Guard Band
Right
Figure 11.16: Guard band between tracks on analog tape reduces cross-talk.
Guard Band not necessary
Tape Head A
Head B
Figure 11.17: Azimuthal recording.
CHAPTER 11. DIGITAL MAGNETIC RECORDING & PLAYBACK258
B
A
Tape - 20˚ Azimuth
+ 20˚ Azimuth
Figure 11.18: Digital information on magnetic tape recorded longitudinally.
CHAPTER 11. DIGITAL MAGNETIC RECORDING & PLAYBACK259
B
A
Subcode
Tape Au d
ATF
io
Subcode
ATF
Figure 11.19: Arrangement of signals on a tape.
+
X Y
Figure 11.20: Exercise 11.7.
Chapter 12
Heat
260
CHAPTER 12. HEAT
261
Mechanical Friction Friction causes Heating
Friction causes Heating
Stylus
Groove Motion
Friction causes Heating
Friction causes Heating
Metallic Wire Electrical "Resistance" due to Collisions of Electrons and Vibrating Ions
+ +
+
+ +
Vibrating Ions
+
Moving Electrons
Figure 12.1: Sources of heating in hi- due to mechanical friction and electrical \friction".
CHAPTER 12. HEAT
262
Heat
Heat
Current
Current
Resistor
Diode
Heat Heat
Voice Coil Current
Current
Speaker Transistor
Figure 12.2: Electrical \friction" causes heating in ampli er components and voice coil.
CHAPTER 12. HEAT
263
100 째C Pressure
0 째C
Gas Alcohol
Figure 12.3: Two types of thermometers: alcohol expansion thermometer and gas thermometer.
CHAPTER 12. HEAT
264
Electrical Resistance in arbitrary units
-50 째C
0 째C
50 째C
Cold
100 째C
Temperature
Hot
Figure 12.4: Temperature dependence of electric resistance of a semiconductor.
Battery
Current Meter
Resistance Thermometer Element
Figure 12.5: Basic circuit for resistance thermometer.
CHAPTER 12. HEAT
265
T at Room Temperature Laser Beam
TbFeCo
≈ 1000 Å
Aluminum
Section of Mini-Disc
T above Curie Temperature
Section of Mini-Disc
To Record
Figure 12.6: Heating of spot on mini-disc for recording.
Heat Flow
Hot
Cold
Large Amplitude
Small Amplitude
Figure 12.7: Heat conduction along a bar between a hot body and a cold one.
CHAPTER 12. HEAT
266
Hot
Heat
Cold
Smaller Thermal Resistance
Hot
Heat
Cold
Larger Thermal Resistance
Figure 12.8: Thermal resistance depends on length of heat conductor.
CHAPTER 12. HEAT
267
Heat Smaller Thermal Resistance
Hot
Cold
Cross-sectional Area
Larger Thermal Resistance
Hot
Cold Heat
Figure 12.9: Thermal resistance depends inversely on cross-sectional area of heat conductor.
CHAPTER 12. HEAT
268
Warm Air
Cold Air
Source of Heat
Figure 12.10: Transfer of heat in air by convection.
Object Temperature = T
Vibrating Charges
+
Electromagnetic Wave
+
Figure 12.11: Object at temperature T emits electromagnetic waves.
CHAPTER 12. HEAT
269
Vibration of Atoms
At some Temperature
Vibration of Atoms
When Temperature has Increased
Figure 12.12: Thermal expansion of an object when heated.
Brass Hot Cool
Steel Flame
Ice
Figure 12.13: Bimetallic strip and its behavior when heated or cooled.
CHAPTER 12. HEAT
270
Unmounted
Diode
Transistor
Mounted
Heat Sink with Large Area
Heat Sink with Large Area
Figure 12.14: Mounting of transistor and diode on heat sink to transfer heat away from devices by heat conduction.
CHAPTER 12. HEAT
Hot Air
271
Radiation
Convection Holes
Cold Air
Holes
Figure 12.15: Heat removal by convection and radiation.
Materials with different Expansion Amounts
Reset Button
Too Hot
Current In
Open Circuit Current Out
Figure 12.16: Action of circuit-breaker when too hot.
CHAPTER 12. HEAT
272
Signal In
Signal In Write Head
Write Head
Magnetic Film
Motion Laser Off
Spot Heated above Curie Temperature
Spot Cools in Field of Write Head Heat to Record
Recorded
Figure 12.17: Thermo-magnetic recording on mini-Disc.
Chapter 13
Mechanics
273
CHAPTER 13. MECHANICS
274
Recording Head
Tape
Direction of Travel Distance travelled in Elapsed Time
Figure 13.1: Speed of tape past recording head.
Earth
Figure 13.2: Time for a radio wave to go around the Earth at the equator.
CHAPTER 13. MECHANICS
275
Rotation
X Velocity is 0.4 m/sec, down
Y Velocity is 0.4 m/sec, left
Phono Record
Figure 13.3: Speed of a recorded signal is the same at X and at Y; their velocities are di erent.
CHAPTER 13. MECHANICS
276
Fixed Magnet
S
N Force
+ Fixed Magnet
S
N Force
+ Figure 13.4: Force on voice coil giving it a push or a pull depending on direction of current in voice coil.
CHAPTER 13. MECHANICS
277
Pinch-Roller Tape
Capstan
Tape Direction Force
Figure 13.5: Force on tape by capstan-pinch roller.
Pinch-Roller
Tape
Force of Static Friction Tape Direction Capstan No Motion between Tape and Pinch-Roller and Capstan
Figure 13.6: Static friction-force pulling on tape.
CHAPTER 13. MECHANICS
278
CD
Clips
Figure 13.7: Releasing a CD from its case by applying a pressure on the clips with a nger.
CHAPTER 13. MECHANICS
279
Tweeter has Small Inertia
Woofer has Large Inertia
Figure 13.8: Inertia of a tweeter is less than that of a woofer.
CHAPTER 13. MECHANICS
280
Outer Ear
Eardrum
Sound Figure 13.9: Outer ear; ear drum's inertia limits response at frequencies above 20 kHz. Tone Arm Cartridge
Stylus
Weight of Cartridge for Tracking Groove in Phono Record
Figure 13.10: Adjusted weight in cartridge for helping the stylus to track the groove in phono record.
CHAPTER 13. MECHANICS
281
Speaker Mechanism
Fixed Magnet
S
N
Current (Audio)
Information Tracks on CD
Focus Coil Lens Moving Coil to Focus
S
N
N
S
Laser Beam for CD
Figure 13.11: Force of clamped magnet on a voice coil accelerates diaphragm in loudspeaker. Force of clamped magnet on focus coil accelerates focus lens in CD player.
CHAPTER 13. MECHANICS
282
Wall Pulse on String Pulls on Wall
Wall Pulls on String causing Pulse
Wall
Figure 13.12: Re ection of a pulse on a string clamped at wall and its inversion.
CHAPTER 13. MECHANICS
283
Force on Voice Coil Bar Magnet
N
S
Force on Bar Magnet Current
Because of this, Magnet must be clamped
Figure 13.13: Force on voice coil and force on magnet.
CHAPTER 13. MECHANICS
284
Phono Record
Constant Frequency of Rotation
Both at same Frequency
CD
Variable Frequency of Rotation Both at same Frequency
Figure 13.14: Waves recorded on a phono record and a CD.
CHAPTER 13. MECHANICS
285
Phono Record r inner router
Circumference at r inner 2 π r inner
Circumference at router 2 π router
Figure 13.15: Distances covered along outer track and inner track on a phono record.
CHAPTER 13. MECHANICS
286
CD
Rotation Rate increased to 500 rpm Rotation Rate at 200 rpm
Figure 13.16: Frequency of rotation of a CD is made higher near the inner edge and lower near the outer edge to maintain constant linear speed on a tracks.
2000 rpm
Record / Play Heads
Drum
Tape Guide
Tape
Figure 13.17: Rotation of drum head relative to magnetic tape in DAT.
CHAPTER 13. MECHANICS
287
CD
CD
Ca
se
Li
d
A. Harder to Open
CD
CD
Ca
se
Li
d
B. Easier to Open
Figure 13.18: When same force is applied to the CD case lid, it is easier to open the lid near the edge because torque is larger there.
CHAPTER 13. MECHANICS
288
Large Torque Small Torque Force Force
Distance Distance Lid
Lid
Hinge Point
Hinge Point
B
A
Figure 13.19: For the same force exerted on lid, the torque is larger in B than in A.
CD
MD
Figure 13.20: Moment of inertia of a CD is larger than that of a mini-Disc.