HEX - full score

Page 1

HEX for ensemble 1997 Julian Grant



Hex (1997) programme note Hex: a sorceress/shaman – to Hex: bewitch – to put a curse on. The catalyst for this piece came from an unlikely source: a Central Asian rock concert. I had been lured there, like a virgin, intrigued by the promise of hearing “The Madonna of Uzbekistan”. As it happens, she was eclipsed by another act on the bill, a group from Yakutsk, in Siberia. Their lead singer was a shaman, who apparently revived old songs and spells that had been largely stamped out by the Soviet regime. Her vocal style was intriguing, a declamatory and obsessive meandering on a few cracked notes, coloured by the local technique of “Kalykhan”, a sort of fluttery yodel. But it was her presence that was mesmerizing. She was large, with waist length raven tresses; and her imprecating, yowling, baying and pleading cast quite a chill over an audience who I imagined had thought themselves in for a frivolous time. I sat well back in my seat, torn with conflicting emotions as the antics were sometimes risible, sometimes disturbing, wondering if her song was protecting me from evil spirits or conjuring them up. I found myself intrigued by the idea of a song as a charm or spell, and two contrasting examples came to mind: Orpheus wooing Charon to cross the Styx, particularly as realized by Monteverdi, and an obscure Georgian opera I had happened upon, “Abesalom and Eteri” by Paliashvili, in which a song causes the heroine to age prematurely and die. This piece does homage to my Shaman-muse; a double-bass solo imitates her song, and an oscillating figure suggests the “Kalykhan”, but my hex is cast far and wide. This is a transposing score. Duration 11 minutes. © Julian Grant 1997



HEX for ensemble

  

JULIAN GRANT (1997)

q = 50

Alto Flute

Cor Anglais

  

 

                

                

 

  

                  

 

 

 

     ff       

Bass Clarinet in Bb Bassoon

Horn in F

  

ff

ff

  

Harp

Violin I

 fff

     

  

q = 50

  

Contrabass

Vln. II

fff

    

Vla.

    

     

 

     



               

    

     

   



 

   



            ad. lib.

arco



ppp

 

 

sul E

 

pp

 

    fff        fff     

    

     

 

sul A      pp

        

fff



  pizz        arco

p

© JULIAN GRANT 1997. ALL RIGHTS RESERVED

pp

pizz arco       

pizz arco

     

pizz arco



 

   



 

          



 



      



arco pp

Cb.

   

fff

  

 

           pizz     

 8   

 

pizz

Violoncello

 



     fff   pizz    

Viola

          

 

(let vibrate)

  

Violin II

Vln. I

 

mf


2

17

Cb.

*          pp * fast oscillation of a

 

    

 

     

p molto espress.

 

   

ppp

p

3

5

    

    

mf

semitone, played as harmonics.

 

25

B. Cl.

Bsn.

Hn.

Hp.

Vln. II

Vla.

Vc.



 

             



pp

    pp





 

pp



    

 

Cb

pp tremolo

 

   

 

 

ppp

 

  



 



   

   

 p

Cb.

  

   pp

    

  




3

   

3

30

A. Fl.

pp flutt.

B. Cl.

Bsn.

Hn.

     

 

     

 





 

3

pp

 

3     

 

3

Vc.

Cb.



 

 

3   

 



  

arco

 

   

 

  



 

 

3

 

 

3     

 

3

   

 

 



 









   

pp



 





p molto espressivo

     

 

3

 

 

3

   

  

 

3

          

 

3



   



3    

   

3

 



pp trem.sul pont.

Vla.

3

 

Vln. II

3

 

Hp.

3



  

3

mf

p molto espressivo *

 

as at bar 16

   

 

 


4

        3

33

A. Fl.

3

C. A.

3

     

3

 

3

 

3

  

             3

 

    



        

3

3

 

mf

p

B. Cl.

Bsn.

Hn.





 



3      

Hp.

Vln. I

Vln. II

3

 

   

3  

Vc.

    

       



   

3

 p







 





 

3



 

p

 

f

4

 

  

 

mf trem. sul pont.

  

 

  

mf

 





   



 

 



fp

      





  

E/F/G#/Ab/B/Cb/D

p

 

 

    

    

   

 

3

 

  

 

  



  



    

 



p

Vla.

Cb.

 3     



 

3

           



 

  

 


5

A. Fl.

C. A.

B. Cl.

Bsn.

Hn.

36        

     

3

5



 



  

Vln. II



 

3

3       

     

   







 

  

  

 

Vc.

   

 



  



  

   

 



    



    

 

 

 





  



 

p

   p

mf pizz

mf pizz

 

     

3

3              

                     

 



3

3



Vla.

Cb.

    



 

Vln. I

     

3

                    

Hp.

     

 




6

          38

A. Fl.

 

Bsn.

 

 

pp

arco nat.3       p

Vla.

Vc.





 



   

 

3

3





 

     

3

 

Vln. II

         

3

 



Hp.

 

     

 

       

3

3

pp

B. Cl.

          

     

3

 

3

  

 





 

3

   

 

3

  

 

3



arco

p

  


7

           

A. Fl.

B. Cl.

Bsn.

Hn.

     



 



 

 

 

p





   

Vla.

Vc.

Cb.



3

  

3 



 

   

 





 

5

3

  

 3 



 



 

  

3

  







  

 



   

3



     

3

 

Vln. II

 

         

3

    



    

3

 

Hp.

         

3

3

40

 3 

 



 mf

arco

 

 

 

 

 

 


8

           

A. Fl.

    

3

42

pp

B. Cl.

Bsn.

Hn.

 

 



   

3

  

Vla.

Vc.

 



   

 

Cb.

       

p



 



 

 3 



    

     

    





 p

 

 

3

           

  

3

      

 

Vln. II



 

3



Hp.

3

C. A.

         

3

 

 

3

  





 

 3 



 



 

 

 

3





fp

f



4

3  

sul pont.

 


9

A. Fl.

44 3           

 

C. A.

Bsn.

Hn.

Hp.

Vln. I

Vln. II

Vla.

Vc.

     

 

 

B. Cl.

3       

  



3

3

  

  

  

  

 p

 

 

mf









 

      

 

   

 

C#

  

 

  



   

pp

  

 

3      

             



3

   

sempre pp

  

     

5

mf

 

3       

       

mf sul pont.

   



         

     

 

           

3



     

 

   



  

 

  

 





 





 

mf pizz

Cb.

  

  



 

pizz pizz mf




10

  46

Picc.

     

   

p

B. Cl.

Bsn.

Hn.

Vln. I

Vln. II

 



  

3

   

Hp.

 

         

  

 

3

 

 



 



 

 

3   

 3  3  3           

3

          3

3   

 

Vc.

Cb.

 

3          3

3

3   

 3  

  

 mf

pizz

3                    3

3

3

3



 

 



 

      3

 3

   

3

pizz                        

3

 

p

arco

   

      

3

p

mf

   

3

 

arco nat.

3

p non arpegg.

p

Vla.

 

        3



    

3

 





   

3

3

     

 mf


11

   49

Picc.

 

Vln. I

Vln. II





             

   



  3

  

3

   

  

    

3

Vla.

 

Vc.

  

3

3

 3  

          

3

   

3

 

  

 



pizz



 

     3



     3

 3  3         

  3

   



        3

3

3

                 



  

p

   

    



              



3

     

3           3

3

3





     3



 

  



   

3



 

   

 

         

3

Cb.

         

B. Cl.

Hp.

   



C. A.

Bsn.



 p

    

 

 

    

 3    

3  

 3    

 

3

3

       3

    

  



p

3

3

 

  3    3

  

3

      

  

     3


12

       52

Picc.

C. A.

B. Cl.

Hn.

 

   

    

p

Vln. II

Vla.

   

Vc.

 

Cb.

  



 

    

             

  

  

3

3



    

 

 

3

  

 

      



3

3

3

  

    

  

pizz

3

 

 

3  

 

3    

 

3

  

3



 

  

  

3

  

3

 

  





   

3

   

 

p

     



 

3

 

5

      

mf

     

f

     

 

 

Vln. I



3

3

 

 

fp

      

 

  

Hp.

 

mf

Bsn.

 

3

  

  

3

  

  

3

 

 

 

 

 

 

 

 

mf

mf


   54

Picc.

 

 

           

p

B. Cl.

Hn.

Hp.

Vln. I

Vln. II

Vla.

Vc.

Cb.

      

              

  



 

  

3

3

   

 

   

3

 



 



 

  

 

       5

5

mf

3



          

f

Bsn.

take ALTO FLUTE

p

f

C. A.

13

    

3

3

  

  

      3

  

3

        3

 

3

  

3

  

 

 

 

3 3              

3

       

   

  



 

trem.

3

 

  

 3

p



  

3

   

mf

  

  



    

    

pp (sempre pizz)

3

  

pp (sempre pizz)

   

pp (sempre pizz)

 

  

4

 

  

f



arco

p

  

 f

 


14

       58

C. A.

p

Hn.

Hp.

Vln. I

Vln. II

Vla.

Vc.

Cb.

pp

5      

p



p



    

  

 

        3

3

p

   

   

f



  

  



   

  

  

  

  

  

  

  

  

  

  

  

   

   

   

   

   

   

 



   p

     

    f

 

5              

    

p



 


15

 

64

A. Fl.

Cl.

 

 

  



 

pp

Bsn.

Hn.

 

 

Hp.

Vln. II

Vla.

Vc.

Cb.

  



 



 

  

  

 

   

  

    

   

  

f

 

 



5



 

 

      5

 

  

3



    p

    

   





4



f molto espress.

    

3

  mf

pp

   

  

pp

 



    

  

mf

  

     



p

   

    

  

   

Vln. I

3

 

 arco




16

   69

A. Fl.

Cl.



  



  

Vln. II

Vla.

Vc.

  

pp

 

          

pp



  

           



pp

 

   

 





p

   

                                  p

p

Vln. I

3        

Hp.

  

Ob.

Bsn.

                         p         pizz



3





p arco

3  3        

         

p arco


 

17

75

A. Fl.

        5

Ob.

p

Bsn.

Hn.

p



p

p



3

 









f





  

f

Vla.

       mf

  

                      3

3

5 5                   

 pp

p





 



 

mf

3 3        





f



f



 3

3

f

3

3

  



mf



f

     

   



 

      

    

3

Vln. II



Vln. I

  

 

Hp.



   

Cl.

           

          

 p

    


18

   78

A. Fl.

Ob.

  



                     

Cl.

Hn.

Hp.

Vln. I

 



 

 

 

 

 

 

 

 



  

3

3



               

 

3

 



 

 



 f

3



 



 

3

  3 

 

3

f

f

Vc.

 

 3           

 

Vla.



 



             



  



3

3

4

 

Vln. II



3

Bsn.

  


19

  80

A. Fl.

Ob.

Cl.

Bsn.

   ff

  

Vln. I

 

Vla.

Vc.

Vln. II

     

Vln. II

Vla.

Vc.

mf

  

   

ff

ff

    ff

 



pp non vib.

                        f 5

5

    

   

         f arco



pizz p

     





 

 

 







mf

 

  

mf

  

  

    

            

  

   

      

     p

     

  

     pp

non vib.

   

                

   

87

Vln. I



f

A. Fl.

  

ff

 

         

p flutt.

f

Hn.

   





pp

  

non vib.



   

 

     

      

           

     

   

    

  


20

               5

91

A. Fl.

Ob.

Hp.

Vln. I



   

p

   

     



    p

 

 

              

  

 

     

 

 

   







 

p





  

vibrato



p vibrato

  

Vla.

 

 5

    

              5

5

 

Vln. II

Vc.

5

  

       

   





  

 

p vibrato

3

94

A. Fl.

Ob.

Bsn.

Hn.

Hp.

Vln. I

Vln. II

 

  

Vla.

 

Vc.

  

5

      

  

 

  

mf

 

 

3

3



 

3

 

3



 

 

3

  

  

   

 

 

mf

       





      

  

  



3

          3

5 5            

f



 

mf

3

   

  

 

mf

take PICCOLO

        

5

 

mf

 




  

  3    

 

 

98

Ob.

Cl.

Bsn.

Hn.

Hp.

Vln. I

Vln. II

Vla.

Vc.

    

3





3

3

   

3

 

    



  

 3



3





f

3

3

           



3

3

 

5        

 

 



 

    f

 



     

 

    

p

3

21



 





mf



 

mf

  

  

 



 



 

mf

arco

  mf

  



 


22

Ob.

101    

                 

 3





  

3 

f

Cl.

                   6

6

 

 

3

  3  

f

Bsn.

Hn.

Hp.

Vln. I

Vln. II

Vla.

     5



 

    

f

 

                

f

  



f



f

   



    

f

  

  



f

Vc.

  

 f

    

 



   

   

   





   

     

  

  

f

f

f

p

p

p

    f

p

 

   



 

   

   


  105

Ob.

Cl.

Bsn.

Hn.

Hp.

 



3

 

   

  

3

 

Vln. II

Vla.

Vc.



 

   



Vln. I

  



         

      

 

   

   

  



 

3

     

 

  

3

3

 

 

  

    

 

 

23

3         

      

 

  

 



p

3



p



 



3

 

 

3

   



  

 

 



f

 



 





f

 

   

 

 



 

f

 

         f




24

   108

Ob.

Hn.

 

Vln. II

Vla.

Vc.

   

 

ff

  

6

       

ff wild

       

mf

 



    

 sfz

f

Vln. I

    

 

Hp.

  



ff

Cl.

Bsn.



3



 



  

 

  ff





 ff

  





  ff

5

 

 

   

  

    

ff


25

   111

Ob.

Cl.

Hn.



f

Hp.

   

 

         7

  

  



 

3

  

   

nat.

f

    

Vln. I

Vln. II

Vla.

  

 

f

       

 

5



   

  

 

 

 

5

   

  

  

  

 

  

      



    

  



  



       f



    

  



  



arco     

 



 

arco

pizz

Cb.

  

f

   

f

Vc.

       

   

       

     f


26

   114

Ob.

Cl.

  

Hn.

Vln. I

5            

    

             

Vla.

Vc.

    

 

      

                 

 

 



  

             

  

Vln. II

Cb.

5             

 



 





  

  



 

 



ff

ff

      

       



 



 



  

ff pizz

      

    

     

 

         

  

 





 



 

 

  

117

Ob.

Cl.

Bsn.

Hn.

 ff

Vla.

Vc.

Cb.

            

3

3

                              

  

  

3



3

   

3

3

              3 3 3 3                                  

ff



3

3



fff

ff brassy

      

ff



 

  

* ff

 

* ff

 

 

3

3

    

        3

*

 

3

 3

 3

ff arco * short and rhythmic glissando upwards

 

   

 

3

sim

3

3



3

3

 3

3

         3

                  sim       3

                         3

sim

3

3


27

 

3

120

Ob.

Cl.

Bsn.

Hn.

Vln. I

3

Vln. I

Vln. II

Vla.

Vc.

Cb.

3

3

3

3

 



3

     

3

      

 



      3

      

 fff

Cl.

Hn.

                     

                                                         3 3 3 3 3                                                   

122

Bsn.

       

3

Vc.

Ob.

3

Vla.

      

   

3

 

Vln. II

Cb.

3

3

3

 

 

3

 

 

3

   

       

   

3

3



     

ff

   

3

    



ff

   

3

3



   

  

  

3

     3

     

3

 

3

3

3

3

3

3

3

3

                                                          3 3 3               3                             



quasi glissando

   

   

         

  

        



   

  

 

3



3



 

  



3

 

   

 

 

3

3

    

       

        3

3

 3   

3

 

 

3

3

            3 3

            

              3

3


28

3

3

3

                              124

Ob.

3

3

Bsn.

Hn.

Vln. I

Vln. II

Vla.

Vc.

3

3

 

       3

3

                   

3

3

3

                                 

3



  

 f

3



   

3

    

       3

Cb.

3

                   

3

3

                            

Cl.

3

3

3

                3

3

                

 3

           3

3

3

3

  

3

  

   

 

   

 

 



              

               



               


29

  

 

126

Ob.

Cl.

 ff



ff

Bsn.

Hn.

Vln. I

 



ff



   

           



   

           

 

   

           

  

 

 



 

 

   

    



*

sim.

sempre sul G

* Vln. II

Vla.

  

  







                        

sim.

sempre sul G

sempre sul D

Vc.

               

sempre sul D

Cb.

                         

* short and rhythmic glissando upwards


30

  

12

128

Ob.

     

12

     



 

12

 

Cl.

     

12

Bsn.

Hn.

 

     

12

     

 

      

  

    





12





    



   

12

        

12

       

12

        



 

 

Vln. II

Vla.

 

Vln. I

Vc.

Cb.


31

   129

Ob.

12

     

12

 

Cl.

     

12

Bsn.

Hn.

 

    

     

12



 

             

 

             

 

              

12

     

   

 

12



 



 

12



12

12

 

 

Vln. II

Vla.

 

Vln. I

Vc.

Cb.


32

  

 

130

Picc.

ff

   

 

  

  

  

12

 

Ob.

  



 

   

12

 

Cl.

Bsn.

Hn.

Vln. I

Vln. II

Vla.

Vc.

Cb.







 

   

12

   

 

 

12

12

12

 



   

 

  

 

  

 



  

 

12



 

  



 

  



 

12

12

 

4

 

 

 

 


33

   131

Picc.

  

          12

Ob.

12

Cl.

        

12

Bsn.

Hn.

        

ff

 

 

Vln. I

fff

                                







   

fff

 

fff p.d.l.t. C major

 



3

3

3

molto marcato

3 3 3  3           

3

fff

molto marcato

3  3   3 3     

3

                                 

3

              3

                                

Hp.

   

fff

molto marcato

 3 3 3    3 3      fff

molto marcato

 

  

 

pizz

 

 

fff

pizz Vln. II

fff

Vla.

 

pizz

 

ff

Vc.

 

 

pizz

ff

  fff

    

fff pizz

Cb.

  

  

fff

 


34

 

Picc.

3

3

3

3

3

3

3

3

  

 

Ob.

3

 

Hn.

Hp.

Vln. I

    3      3

   

  

   

3

3

3

 

 

3



 

  

Vln. II

Vla.

 

 

 

    

 

    

Vc.

Cb.

 

  

3

3

3 3 3 3 3                             

 

 

3

3 3 3 3 3 3                          

3

 

3



3

3 3 3 3 3 3                           

3



3

                          

                        3

Bsn.

       

3

3

Cl.

3

                      

133

  

 

 


35

 

3

Picc.

3

    3

3

Ob.

Bsn.

Hn.

Hp.

Vla.

Vc.

Cb.

3

3

3

 3

3

3

   3

3



 

   

 3



3

 



 

 

   ff 

ff

ff

  

3

3

3

3

3 3 3                

 

 

3

3

 

f

 

3

3 3 3 3                 

         3

3

              

3

3

3

3

3

3

3

                        

3

3 3                         



3



3

         

3

Cl.

3

                        

135



 

 

 

   f 

f

f

  

3     3  

       3

3

  

      

mf

 

 


36

        3

137

Picc.

3

  

 

3

3



3

3

3

3

p

3

3

3

                 3

Cl.

3

3

Vla.

Vc.

Cb.

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

p

mf

Hp.

3

3

3

                                         

Ob.

Bsn.

3

                                   mf

3

3



3

3



3

p

mf

3

3

3

    

3

3

                          

          

 

                           p

mf

  

3



p

 



   mf 

 

    mf 

    

    

mf

  

 

 


37

            

  3   3    3      

6

139

Picc.

             

 3               

pp

pp

take COR ANGLAIS

               3

Ob.

6

3

3

3

3

pp

3

Cl.

take BASS CLARINET

pp

3

3

Bsn.

Hp.

pp



 

Vln. I

Vln. II

Vla.

 

  

   

    p





arco



 

 

pp

pp



  

 



      

arco          



 

pp

pp

 

pp

p

Cb.

 

p

Vc.



 

 

 

 




38

                     6

143

Picc.

6

          6

pp

B. Cl.

Hp.

Vln. I

Vln. II

Vla.

Vc.

Cb.

  

B. Cl.

Hn.

Hp.



Vln. I

Vln. II

Vla.

 

Vc.

 

 

 



 

 3       3      

    

  

  

 

4      



 



 



       

 





 arco



 



 

      



 



                  3 ppp         3          



    

 

     



 

      

       

 



4      



pp









    

  

pp molto espressivo







pp       pp

 

  



pp

                      6

6

 





     

  

  p

pizz

 



Cb.

     

       



arco

 



           pp vib.  



pp

150

Picc.



pp



6



arco


39

 



157

Picc.

C. A.

Hn.

Hp.

Vln. I

 

    





5

    

  

  



 

pp

             

 



arco

 

 



 

pp

 5

   

6

p



  



 

pp



 

pizz

5         







arco

pizz

Cb.



   

p

 

Vc.

p

 

ad. lib.

  

Vla.

  

 

Vln. II

          



pp



         6

162

Picc.

C. A.

Hp.

Vln. I



 

Vla.

Vc.

3



p



 

Vln. II

     

 

 

       

        

 

 

              

 

3

                     6

6

pp

    

 

                  pp 



© JULIAN GRANT 1997. ALL RIGHTS RESERVED

 

5

FINE: Hong Kong 14 April 1997


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.