Off Course

Page 1

OFF COURSE Chamber Concerto for piano and ten instruments 1996-8 Julian Grant



Off Course (1996-8) Chamber concerto for piano and ten instruments programme note This work was started in 1996 as a piano concerto, intended to be in four movements: a study in rhythm and harmony, a programmatic scherzo, a static slow movement, and a brilliant finale that was to depict my first impressions of Hong Kong (where I had just moved) - complete with evocations of street theatre and Cantonese opera. The first two movements almost seemed to write themselves; and though I had imagined what should happen in the last two, my inspiration deserted me, as I had proscribed the destination too clearly. I had lost interest in continuing this particular journey. The two completed movements were performed in May 1997 and it was apparent to me that they neither stood together, nor had I a notion of how to proceed. Not until I looked over the piece in the summer of 1998 did I find a way to rework and complete it. The original two movements had been (1) an almost constructivist passacaglia on nine shifting chords that were varied ten times and (2) a scherzo movement that depicted the scene of a hunt from one of the extraordinary painted Buddhist caves at Dunhuang (in the far reaches of the Gobi desert). These two movements are still heard consecutively - but fragmented, part of a continuous structure, and the very different material of both old movements have now melded. The constructivist passacaglia is still discernible, but the once brutally efficient machine is now rusting, overgrown with foliage, and the mechanism is decidedly out of kilter. Instead of an external travelogue, the piece now charts an internal progress, a discursive and subjective journey that has no fixed destination, with an outcome that is unforeseen from the start. The subtitle Chamber Concerto indicates that, though the piano dominates, the argument is carried forwards by all the instruments, which are showcased at various points; thus the trumpet and trombone dominate the ruined passacaglia, the cor anglais, bass clarinet and piccolo feature in the central scherzo - and dotted through the piece are little moments where the piano, harp and guitar form a sort of composite keyboard. Finally, in an Epilogue, the horn takes over with a simple shanty-like melody and the journey, unlike the piece, has no end. Off Course is dedicated to a lost child, abandoned somewhere in central China, with the hope that somebody will find her, soon. The score is transposed. Duration 23 minutes. Š Julian Grant 1999



OFF COURSE

 Flute 

Clarinet in Bb

Horn in F



Guitar

Violoncello

Contrabass

q = 120

repeat each set of pitches rapidly in the time specified.



pp

   pp

 

 



   

  



 



     

 

 

     







pp

 

  

  

 

 

 





G#/A#

 

pp

Piano

to a lost child

repeat each set of pitches rapidly in the time specified.

Harp

JULIAN GRANT

chamber concerto for piano and ten instruments

 

Trumpet in Bb

Trombone

 

 



pp

  pp



p

 

 






2

  





     

6

Fl.

Cl.

Gtr.

Pno.

Vc.

Cb.



 

  

      

    

 

    

      

A§/G§/Eb

 

     



 

    

     

    

Hp.

   

 



   

    



 



 

 

  

       





 



   3

Gb/Ab

 

3





   



  

    

 

12

Fl.

Cl.

Gtr.

     

Hp.

Pno.

Vc.

Cb.



 

   



 



  

 

 

  

Db

   

    



 

  



 

   

    

     D§

     

  

      

 



 

 

     

    

   

 

    

  

    



 

G§/Bb

    

  



    

 

 

  



  

 



    

  

 

  


3

   

 

17

Fl.

   Hn.  Cl.

Tpt.

Tbn.

Gtr.

Hp.

Vc.

Cb.

Cl.

Hn.

 

  

  

 

Tbn.

Gtr.

Hp.

Pno.

 

Gb

       

   

 

 

Tpt.

   





   





                



 

23

Fl.



Pno.

      





pp pp

 

 

   

  

 

    



con sord p











con sord

p

         

   



  



  

  

   

      3

         Vc.  pp    Cb.    pp



    

3

3

     

3

             

   

 



        

p



  

   



   

3 3 3         

G#/A#

 

   

 



3

E§/A§/B§



 







pp



pp

 

p

   

 



   

   

con sord





 

  

 

3 3       



3

3

           


4

 Fl.  27

Cl.

Hn.



Gtr.

Hp.

    

Cb.

    

 

      



 p

 p

 

 

 

 

 

 



      

 

 

 

Vc.

 

Pno.

 

  

Tpt.

Tbn.



  

 



3

3

   



 G§/A§/Eb



       

   



3       



     

3

      

           

 





3          

3    

3

3

                

     



 




5

   31

Fl.

Hn.

Tbn.

  

Gtr.

Hp.

   

 

 

  

 

 

  



 

  

 

     

 

  

 

  

  Gb/Ab 

3 3        

3

 3   

                 

3

3

3        

                                   Vc.  Cb.

  



 f

   

     f

senza sord

   

 

   3

f

f

    

   D§ 

 f

   

 

 

          6                 

 

        

    



  

6

3

3

3

 f

  

f

    

         

f

Db

  

f

 

  

 

Pno.

 

 

Tpt.

 

C. A.

Cl.

 

    

6

f

 

f

   

6

 

pizz



f

f

  C. A.    36

   

        Hn. 

Tpt.

Gtr.

Pno.



mf

 

   Cb. 

   

p

3            





f

 



  



   

  

        

          

 

    

 

   

             

3

 

mf marcato

  

   

3



      

 

                    


6

  40

Fl.

C. A.

Cl.

Hn.

Gtr.

Hp.

Pno.

Vc.

    

  

 3

 

   

  

 







pp

  

3

3

 



  f







   Cb.  

pp

   

   

pp

 

   

 E§/Bb

 

  

     

pp



pp

  

  

 

      

  

   

3

 

     3   p

        



      

 

 

f

 C. A.   

3

43

Hn.

Gtr.

 



    

3

 

 

  Cb. 

 



  

   

  



p



Pno.



   

3

   f



   

  3     3

f

3      

mf

3



mf

f

3

                              

 



  

 



3       

 3      3

 


7

  46

Fl.

C. A.

Cl.



Hp.

Pno.

Vc.



    

f

 

     3

  

pp

      

 

      



3

  

 Hn.   Gtr.

 

   

pp



f

pp

 

 

pp

  Eb  

  

3



               mf

     



          

  



3   

p

   

     3   

3

  Cb. 

 

pp

  

   

  

f

 Fl.  49

C. A.

Cl.

Hn.

Gtr.

    

    

 

Cb.

 





3



3



3

 

           

  

3

3



pp

      3

sf

 



Pno.

   

         

  

  

                                   

3

 

  

               3



3



3




8

fluttertongue

 Fl.   

6

6

6

                                                 

52

p Cl.

 

 Tpt.  

pp

Tbn.

Gtr.

Hp.

senza sord

 

Cb.

p

 

  

 

 

senza sord



    

 

   f  



 p

 





pp

f

pp





mf

pp

f

       

f

 

 

  

pp

   Vc.  

Pno.

6

6

3





f

3



p

f

  Fl.  54

Cl.



 Hn.  Tpt.

Tbn.

Pno.

Vc.

Cb.

   

   

f

 f  

  f

 

f

pizz ff



pp

   



    

  

    

pp

 

  

  

   

nat.

 p

 



 

 



arco

 

pp

pp


6

6

6

                                  Fl.           3 f p           C. A.     ff                      Cl.   57

flutt.

6

 Hn.   p

Tbn.

Gtr.

 

       

 

  f

          3        3

Gb/B§

3

     

           

      

   

   

  

   

   

  

ff

    

 



3

           

f

 3

 

pp

f

  Vc.

   

  



pp

 Cb. 

   

f

 

p

    

pp

 

Pno.

f

mf

 

Hp.

  

 3

f

f

Tpt.

    

9

6

f

 3

p

pizz

3

 3   

   

  

    

ff

      

 3  

arco

 

ff

 

    

            

arco

     

  

   

ff

f

    60

Fl.

C. A.

Cl.

Hp.

Vc.

 

 





pp

G#/A§/F#

         

 pp





pp p.d.l.t

          



 

pp

pp



pp

    

    



  

3

    3     




10

  Fl.  67

Hn.

Tpt.

Hp.

Vc.



 



 

C. A.

Cl.





  

 



3

    3   

  

pp

3     



  





    

 3      

5  3          

 

  

    

3      

p

 

pp

pp

   

 

      

  





p

                      Fl.   mf                       Cl.    72

Tpt.

Tbn.

Gtr.

Hp.

Vc.

Cb.

    

  

  

5

   

   

p

 

     



            

 

f

mf

p

C#/ all §

  



  p

mf



 

 

  

   

    



      

p

 

   

mf



  

mf

  

 

 

  

3    3               

3

                mf       

p.d.l.t.



    

  

 

 



  



   

   

       

       

   

 

  


11

 75      Fl. 

  f

C. A.

6 6 6                                                                  6

flutt:



3

   

f

       Cl.  

      

Tbn.

Gtr.

 

 



      

3

  

   

3

   

3

3  

 

 

3

 

sim.

  

 

sim.

           

   

   

    

 

3

3 

 

 

3

f

 

 

              f

Cb.

f

mf

       

   

Vc.



       

Hp.

 

3

3

                            

 

 

  

mf

 Hn. 

Tpt.

6

6

  

 

  f

 








12

6                             Fl. 

3

   

 

C. A.



   

6

77

 

ff

   

       

3

3



  

  



    

                                    3

3

3

3

3

3

ff

Cl.

Hn.



Gtr.

Hp.

Pno.

Vc.

Cb.

3

 

 

   

3

        3

ff

   

3

3

 

ff

         

  

   

 

3

 

     

     

ff

3

   

ff

 

     

3

3

3

                                          

  

    

     

        

     

      

  

      



3

3

ff



      



 

 

ff

  

Tpt.

Tbn.

            

  





ff

 

  

   

   

  

                

        

 

 

 

 

  

ff con forza

            ff

 

  

  


   80

Fl.

  

    

3

C. A.

Cl.



     

   

   

 

Tpt.

       

   3

3

       

3

   

   

    3

       3

  

3

  

 

      

    

 

3

    

   

3

   

     

3

  

       3

       3

      

                    3

        ff           

 

       

3

3

     

  

3

  

                  Gtr.                     Pno.                       Cb.  

Tbn.

ff

3

Hn.

13



      3

     

   

  

         

   

    

 

   83

C. A.

Cl.

Hn.



    

Tpt.

Tbn.

Pno.

Vc.

Cb.

       

  

       

  

          

                

  

3

      

   

      

  

3

      

   

3

                

        

 

       

3

    

3

3

       

3

   

 

3

      

3

   

   

          

     sim.    

   

3

 

 

3

       3

     

  

      

                       

       

   

3

3

   

  

3

  

  

   

3

      

  

   

     

 

                   

  

3

    

    3

      

  

                 


14

 Fl.  86

 

C. A.

Cl.

Hn.



  

       

3

Tpt.

  

 

Pno.

Vc.

   

 

  Cb. 

      

3

  

       

                 3

3

      

                

                

   

 Tbn.   Gtr.

  

3

3        

 

           

                    

             

   

     

 f

   

  

   

   



   



  



   

f

 

       

 

  

      

        

   

      

                        ff f                                              pizz                     f pizz                

           

f

 

        



  

f

   

f



  



  

  

          

        

 



           

   

    

f



      

  

 

       

  

 Fl.   90

Cl.

Hn.



Tbn.

  

 

Tpt.

 

 

    

 

         

  

         

  

      



   Cb.       

Vc.

           

 

   

   

Gtr.

   

   



  



       

    

 

 



  

  

  

  

   

   

  

         

 

   

      

                   

          

    

 



     

  

   

       

  

               

    

       





        

        

        

 

  

     







   

  

    

       

    

       


  94

Fl.

  

       

  

  

  

     Hn.            Tpt.          Tbn.  Cl.

Gtr.

Hp.

Pno.



  

  

  

   

      

 

             

 

                              

     

  

                                                         

 

 

          

           

p



 

                     



 

       

   

      

   p



   

    

   

     

   

15

     

                    Cb.  Vc.

   

  

                                   

               

 

 

  

  Fl.  98

  Hn. 

 

Cl.

Tpt.

Tbn.

Gtr.

Hp.

Pno.

Vc.

Cb.

 

 

  

     

  

  

  

      

  

  

     

  

  

  

5

 

          

  

   

f

  

    

f

 f

f

   

   3

arco

 arco f  f

  

  

     

   

      

   

       

 

    

  

 

   

f

     

 f

 



  



      





 

 p sempre

           

   

      


16

 Fl. 

102

C. A.

Cl.

Hn.

  

Tpt.

Tbn.

Gtr.

Hp.

Pno.

Vc.

Cb.

 

 

  

p sempre

 

  

     



  

      

 

106

Cl.

Hn.

Tbn.

Gtr.

 

Hp.

Pno.

Vc.

Cb.

 

 

  

 

  

     

  

  

  

5





p

     

          

   



  

  

f

  

f



  

f



            f       f

       f

                  

 

    

   

        5                   

  

  

  

  



   

 

Tpt.

  

 





     

 

f

   

f

 Fl. 

C. A.

  

  

      



   

   

  

      



 

 



     

  

                 

 

     

 

      

 

  

  

        

  



  

                   

   

  

                      

        

   

  

      

  

 

 

   

 

                   

 

  

    

 

  

 

      

   

  

                  


  110

Fl.

  Hn.  Cl.

  

       

          Tbn. 

Hp.

Pno.

Vc.

 

   

 

 

  

  Cb. 

 

 

Tpt.

Gtr.



      

  

     

  

   

  

  



 



        

      

                                  

  

 

  

                          

      



       

              

  

   



 

   

       

  

17



                                             

            

 

 

                      

   114

Fl.

   

C. A.

       

  Hn.   Cl.

Tbn.

Gtr.

Hp.

Pno.

Vc.

Cb.

 

      

    

 p

f

p

         

         

 

   

  

  

 

   

         

Tpt.

  

  

               

  

  

     

  

  

  

  

   5

                     

        

  

     

  

       3

f

  

 

5        


18

 Fl.  118

    

C. A.

  Hn. 

  f 

 

Cl.

Tpt.

Tbn.

Gtr.

Hp.

Pno.

Vc.

Cb.

 

 

  

     

  

  

3               







f

   

f

 

f

 

  

             3     f

               

                                   

f

   mf

mf

f

               

    

  

        

 

 

 

   

     

                                    

      

  

 p

 

 

   (take PICCOLO)    

      

 

   

 

p

       

 

       

 122

Hn.

   f

Tbn.

Gtr.

Hp.

 

Pno.

Vc.

Cb.

  

f

 

  

 

      

 

        pp

ff

 

ff

         p

  

          ff

  

       f       

Tpt.

 

   

      p

p.d.l.t.

   

  

  

                

                      

             

    

  

 

   


19

 

126

Hn.

Tpt.

Tbn.

Gtr.



f

 f

   

  

  

       

 

    

ff

Pno.

Vc.



 

  

  



  

      

G#/Bb

    

       

    



   



    



    



    

     

 

 

 

 

 

 

 

         

 6 3               

      





   

 

3

  

     

 

6          3           

f



 

 



  

   

    



     3 6    3                                

 Cb. 

  

       

f



 

  

    

 

f

f

     

                

Hp.

  



     

 

    

3                    6

f

      

  

130

Hn.

Tpt.

Tbn.

Gtr.

Hp.

               

  

     

Pno.

 

    

  

D#

     

        

     

     

      

   

3

                     

   

3

      

 

  

  

      

    

Gb/Ab

     

    

        



  

 

  

   

3   3           

    

       

  

                 

   

       

    

                          

   

6        

6

     

  

  

Db

        

               

   


20

   133

Hn.

      Tbn.  

Tpt.

Gtr.

Hp.

Pno.

             

     



 

  

                  

  

    3



 

B§/D§

      

3        

 

3

              3

           

   

  

     

        

 Hn.    

Tpt.

Tbn.

Gtr.

Hp.

 

   

   

      Gb/A§

     ff

  

ff

  

 

   

  





 

  

    

  

    

 

    

 

 

ff

ff

  

ff





   

 



     

 

             

sim.

ff              

  

    

 

  

        

   

  

  

 

           

ff

 

6           6               6                                                                 ff Pno. 6 6 6                                                                Vc.    

Cb.

  

          

   



 

  

   

6  3               6  6 6    3                            6

  

       

  

      

 

G§/Bb/Eb



 

6

Cl.

  



C. A.

  

 Picc.  136

 



           

 

   

  

   

 

  

   

 



 

ff

ff

        

          

         

              


          Picc.   139

          

C. A.



                Hn.          Cl.

Tbn.

Gtr.

Pno.

     gliss.   

 

Tpt.

 

                 

                 

 

   

           

             Cb.        Vc.



     

                                    

                                          

                          

                    

                      

    

  

 

       

    

  



   



 

     



  

           

          

    

 

  

           

   

                                                 

21

             

 





          

                                                           

    

  Picc.  143

C. A.



  

     

 

  



      Hn.   Tpt.   Cl.

 

                                     

                                  gliss.     Tbn.                         Gtr.                                                 Pno.                                                   Vc.                  Cb.        

  

 

                 

       

 

   

  

 

    

                        

     

(to FLUTE)

 

     

     

 

  

  

      

      

                                       

      

         

    

      

                    gliss.                                                                              


22

 Fl.   147

 

C. A.

   Hn.    Tpt.  Cl.

Tbn.

Gtr.

Hp.



      

Vc.

Cb.

   

p

   

   

 

p

                   

 

 

    

   p  

 

      



 



3

mf

    

Pno.

           

   

   

 



  

p

        

         

        

      

          

     6

   

5



   



p

5

p

         





 

6      



  Fl.  

   

149

Cl.    Gtr.

Hp.

Pno.

Vc.

Cb.

  

       

3

     

  

 

  

 

  

  

    

   



       

 

3

  

 



 

 

     

           5

5

  

6               

  

  

 6



   


23

 Fl.  151

Cl.

Gtr.

Hp.

Pno.

Vc.

Cb.



 

 



3

       

       



3

         

       

    

 

 

5

5

  

 

5

 

5

       

       



           

       





  

            

    



          

6



 153     Fl.       Cl.    Gtr.

Hp.

  

Vc.

Cb.

3

3

     

 

  

   

 

    

   

 

  5

       5

6

  

     

   

 

   

   

   

Pno.

   

 

    

    

  

         6

  

 

  

       

   

        

     


24

      

 Fl.   155

Cl.

Gtr.

Hp.

Vc.

Cb.

 



 

 

157

pp





Pno.

  

  

 

pp

 



   





 

 



 



 

 



 

5

 

 

   

 



 

 

 

 

   

   

     

 

pp

     

  

   

 

    p.d.l.t 

 

   

p marcato

 Gb

 

 

   

  

5

5 5 5 5 5 5       5   5                                5

  

5 5     5    5              5   5 5 5           

molto legato

  Vc.





 

  

 Cb. 

  

 





3



     

pp

Hp.

                                      5 5 5    6  6                                       

    pp  Tpt.  

Gtr.

        

Hn.

 

  

  

C. A.

Tbn.

3



 Fl. 

Cl.

  

 

Pno.

       

 

       

pizz

pizz

  pp   pp

 

arco [bow freely]

 

 

pp

 


     Fl.   159

pp

 

C. A.

Cl.

 

Hp.

6



pp

 

pp

 

 

 3



    

3

 

  

     

   

 

6



 

 

 

 

 



 



 

      

 



 





 

 

   

3

  

25



 



3

   



 

pp



 

   

   

 

 



pp

      

       

    pp    

Tpt.

Gtr.



 Hn. 

Tbn.

     

 

 

 

 

 

                   Pno. p marcato                  Vc.    Cb.

 

  

p

 

   

       

 

161

Fl.

C. A.

Cl.

Gtr.

Hp.

Pno.



     

 

   

  

  

 











       

3

6

   

 

3

     

 6





 3

    

 3

           

   



 

  

 

 

 

 



 

 

   

 

 

 



 

     



 



3

p

 

  

 

             Vc.    Cb.

  

6

  

3

    

 



   


26

  

    

 

163

Fl.

C. A.

3

   Cl.      3

Gtr.

Hp.

Pno.

    

  



     

 

6

3

3

     

      

  

        

   

3



 

     

 

  

 

 

 

 

  

 



   

   

 

 

 



 

   

 



   



 



 

3

     

 



   

 

 

 6

    

3

       



  

 

                

 





                                       Vc.    

   165

Fl.

Cl.

Gtr.

 

 

Pno.

6

         

       3

3

 

      

       6

 

   

  

 

 

 



   

 



 



    

  

  

  

3

3

         

 

  

    

     

 

    

Vc.

      

 

Hp.

     3

3

    



3

   6

      

 

 

    

 

   

 

    

 

     

                        


       167

Fl.

                    

C. A.

Cl.



Hn.

  

 

Tpt.

Tbn.

  

 

con sord

pp con sord



con sord

 

 

Pno.

Vc.





 

 

 

    

     

 

    

    

    

     

 

 

 

 

 

 pp

pp

pp

 

 

 

                                                

 

  

pp nat.

 



pp

pp

Hp.

27

      

    171

Fl.

C. A.

Cl.

Gtr.

Hp.

 



Vc.

Cb.

 

   

 

4:3

        

 

6

          

 

      

Pno.

5

 

6

  

5

    

    

    

4:3

 

  

    

   

pp







pp

pp

  p

   

 

                                                 

4:3

  

           

pp arco

pp


 

28

             C. A.  5

175

5

Fl.

6

                 Hn.  

Tbn.

Gtr.

Hp.

Pno.

Vc.

Cb.



  

     

(to BASS CLARINET.)

 

 

 



 

    

 

  

  

            

  



   



     

                





pp



pp

q.=q

 

pp

   

 



q = 80

pp

6

Cl.

Tpt.

  

3

p

            3               

 

  

 piu sostenuto, con rubato q = 72 3 3  5                     p         F#/C#/G§  

180

Gtr.

Hp.

Pno.

Vc.

Cb.

3

   



  

     

A#

  

 



    

3

 

  

       

p

3

  

3

   

 

3



     3

 

    

           5

7

3

A§/G#

 

 

     



 

3

3


186

Gtr.

Hp.

Pno.

 

  

 

  



mf

 

4:3

      

 

    

Pno.

Hp.

Pno.

  

  

  

   

  

      

 

  

  



f



p



   5 3   3                    mf

7

            

5

 

 

   

3

 

  



5

        



 

             







 

 

       

3 3  3  3            

  

3

p

p

 

G#/A§/B§/ F§/C§

  

A#/Eb

       3

 

   

p

 



 



 

           3 3         3            mf

      

  

3

 

5

  

pp

mf

   

 

 

3

f

 





E#/F#/ G§/Ab/Bb

a piacere

  



pp

   f     



 



pp

193

Gtr.



  

 

 

    

Hp.

 

  

189

Gtr.

 

   

mf

 

mf

 

29

         5

    

   

  

p

E§/G§/Ab



 

3

 

 

         


30

  

 

198

Fl.

C. A.

B. Cl.

Hn.

Tbn.

Gtr.

Hp.

Pno.

Vc.

Cb.

pp

  

 

 A§

 

Tpt.

   





 

 

     p

 3

  

      



 



 



 



 

  

   

  

  

3  3            

   

p

pp pp

pp

 

 

pp

 

pp nat

 

  

  

 

  

 

ppp

ppp

 



    



  

 

 



pizz p vibrato

 Fl.  206

C. A.

B. Cl.

Gtr.

Vc.

  

  

 

  

  

  

 Cb.  

3

 



poco rallentando

   

 

 

  3   

p

 

 

  

       

  

p



  



  

  

3

       p

 

3

 

  



 

3

    

3

  

  

q = 50

p

3

 

 

 

 

 

pizz p


31

3 3  3   3  3        Fl.                   p f non legato                C. A.   

213

B. Cl.

Vc.

Cb.

Fl.

   

    

      

  



mf

C. A.





f 9

B. Cl.

Gtr.

Pno.

Vc.

Cb.

Fl.



     

  

  



Gtr.

Vc.

Cb.

 

3

3

3

     

p

  

 



 

3 3     

 

 3  3        p

 

 

 

mf

3   3  3  3                 

3      

3



 3

     

  

3

 3    

 

3





3

3

  

3 3  3 3  3   3                    

  

arco

 

p

p

.

gliss

3

 

 

 

 3   3          3

3          

 

 

3

3 3 3  3 3   3          

 

  

  

3

3





 

3

      3

3 3     

3         3   3  3   3   3 3          3

3 3 3    3   3    3   3  3   3                                  

3

   

 

   3

3

3 3      

 

3       3  3   3  3   3  3   3        

3



3     3 

3

mf

3

p

3

3 3 3 3                    

222 3 3 3 3 3 3 3  3                                   

3

            

p

 

3

3

     

 

 

 

  

    



 

p

 

3

 

 

Pno.

 

          

f

B. Cl.

3

 

3

3

f

    

p

     

3         3



3

  

3

 

3

3

 3



p

218 3 3          



mf

p

 



 

 

  

  p

mf

3

ss.

 gli

 

 

  3

 

s. glis

 

 

3

 

 


32

poco a poco accelerando 3 3 3 3 226 3 3  3            Fl.                   3

B. Cl.

Gtr.

3

     

 



f

   

 3   

 f

f

               

3 3 3 3 3 3 3 3 3 3 3   3                                         

Pno.

3

3

3

3

3

3

     Vc.

Cb.

3

3

3

                                        3

3

3

3

3

3

  

arco



3

  

3



3

  

p

mf

3

3

3

3

f

  

  

arco

f

             229

Fl.

C. A.

 p

B. Cl.





 

 

 

  

Cb.

 

 



3

3

                

  Vc.

4 4           

 

3      3 3   3   3     

Pno.

Vivace q. = 80

3

3    

pizz

3

3

 

3



 



mf





 







  





 

  



f

       

sf

7                                   

 

mf

          7                             

  

f

p

4 4 4 4                  

  

mf

pizz

 

f

 


 

 

236

Fl.

C. A.

B. Cl.

Pno.



mf



 

 

    

 

 







f



 

p

        mf

                            

 

mf

  

  

  

   7                f

   

7

f

f



     

   

                



 

  



p





    



              

        f

    

     

   



f

246                               C. A.                

   

Fl.

B. Cl.



33

                                           

                           

    Vc. Cb.

 

flutt.

                                    

Pno.

Vc.

Cb.

     

256

Gtr.

Hp.

          

  

             

  

 



  



F#/Gb



 



                                



  



                    pp

pp

                          4   

                      

Pno.

  

 ff                                                     4


34

  266

C. A.

Gtr.

Hp.



p

 

 

                                

p senza espressione

 Fl. 

C. A.

Gtr.

Hp.

Pno.

Vc.

275

  



 4  

Gtr.

Hp.

Pno.

 



  

 

 

  p  

                          

 

 



flutt.

                                



 

 

        

                                           

 

    283

  

 4                     

  

  



  

    

        

        

 

                    

  Vc. 

  





  

 

  





  



 

  

 

 

7     



         

    

 

 

 

 

  



                   

   

  



  

   4                       

                        

  Fl.    

C. A.

 



           

                                                 Vc.  arco pp

                                              

Pno.



                                                                  

7                                    

  



  



  



  



  



  


35

   



  



290

Fl.

C. A.

B. Cl.

Gtr.

 

Vc.

 

 

p

 





 



p

 

 

 



p

  





  

 



                                      

                                             

Pno.

 

 

Hp.

 

                    

  

  

     

   

  



  

  



  



   sul A

  

  

  

  

sul D

         

                                  

299

Fl.

C. A.

B. Cl.

Gtr.

 

 

p

f

 



 



 

 



                                  

                                        

 Vc.   Cb.

           

   

Hp.

 

 

  

  

arco        

 f

   



   

pizz

f



   


36 Fl.

C. A.

B. Cl.

Gtr.

307              

 

Vc.

Cb.

 



 

   

 

            p

 

 



 



 





f

                                  

Hp.

 

                         

                                        

  



       

   f 

   





   

f

Fl.

C. A.

B. Cl.

Gtr.

315                        

     

Vc.

Cb.

  

  



 

 

 

     

               

f

                                      

Hp.

 

                                             

  

       f                    

f





   


Fl.

C. A.

B. Cl.

Gtr.

 

Pno.

Vc.

p



 

 

 p

                          

p

 



 



 



 

 





                                  

Hp.

37

  324

                                        

 

                             

p solo

  

arco p

 

  

 

  

  

 

  

 

  

  

                                       

332

Fl.

C. A.

B. Cl.

Gtr.

   

Pno.

 

 

 



 







 

 

 





                                  

Hp.

                                         

                                  

 Vc.   

   

 

  



   

   

pizz

f



         

 



 


38 Fl.

C. A.

B. Cl.

Gtr.

Hp.

Pno.

Vc.

340           

 

    

 



                               

 

 

       

         

 



 

 



p

 







 



f

                                          

                                         

                                            





       

arco









 



 

   

       



pizz

f

Cb.

    



 

    







 

 





348 to PICCOLO                     

f

Fl.

C. A.

B. Cl.

   

 Hn.   Gtr.

Hp.

Pno.

 

  

 

        f

 

  

  

    

      senza sord

                  pp

                                          

                                            

                                                                                  

 Vc.

arco        

f

Cb.

 

       

f

  

 

   

    

  

 

   

    

 pizz

  

ff

   

pizz

ff

   

   


39

  356

C. A.

   Hn. 

B. Cl.

Tbn.

Gtr.

Hp.

Cb.



    





    

                   

       

 

   

 

   

arco p

 

  

   



      

                             

               



                     

pp

   

   

   

senza sord

Vc.

   

             

Pno.



           



                       



 

  

   

   

    

4

  4 

 

  4

 

 

  

 

4

    

 

  Picc.  364

C. A.

    

     

   

                 Hn.                   Tbn.  

B. Cl.

Pno.

Vc.

Cb.

    

    

  

   

  

   

f

    

              



p

        

  

 

   

                            

 

                                                  

              

p

 

    

   

    

     

     

                        



             arco

mf


40

                                              372

Picc.

C. A.

   

 

        



   

    

   

   

                   

                                                                                 Tbn.                 Pno. f                 Hn. 

B. Cl.

Vc.

Cb.



                                        

                                                 

380                                                     Picc.  

crescendo poco a poco

C. A.

    

   

   

   

       

    

crescendo poco a poco

                                                     B. Cl.     crescendo poco a poco   Hn.                                            Tbn.

Pno.

Vc.



      

    



   

 

  

  

 

 

  

  

 

        

crescendo poco a poco

 

  

  

 

 

 



crescendo poco a poco

 

 



 



  









ff

                                               

           Cb.  

crescendo poco a poco

                                   crescendo poco a poco


4                                  4                   Picc. 

41

388

   Hn. 

B. Cl.

Tbn.

Pno.

Vc.

Cb.

C. A.

   



  

   

f

   

                                  

          

4

4

f

     

      

                                  



    







     

 

 



  ff furioso   

 

 

                                                               

     

  







 

  

B. Cl.

Hn.

Tpt.

Tbn.

Hp.



senza sord

p





 

                    

f



 

    

 

 

ff marcato

   



   

   

ff marcato

                      

          

ff marcato

                     

                     Vc.      

Pno.

                             

      

  

ff marcato

   

 

         

C. A.

 



 Picc.  395

         

                         Cb. 

  

 

           

      



     

  F major

             

                     

           

   

                           


403       Picc. 

42

   

C. A.

 

 

   

       

              Hn.                   

B. Cl.

Tpt.

Tbn.

Hp.

Pno.

 

 

  

 

          Vc.           Cb. 

f



  

411        Picc. 

   

C. A.

          Hn.       

B. Cl.

Tpt.

Tbn.

Hp.

              

        Vc.   

Pno.

Cb.

 

   







                        

 

   

     

 

   

 

   

 

     

    

 

 

 

 

 

 

  

 

 

 

 

  

  

 

     

             

   



      



 

    



 

     

   

     



     

 



     

         

     

         

  





  

              

         

   

                   

                                                        

 

   

                                  

 

      

 



 

 

   



   

                                             

     

p

             



 

 

 

 

      

 

  

          



     

mf

     

         

     

       

   

                                         


   

  

   

Hn.

 

   

   

             

ff

ff

   

         

Tpt.

Tbn.

 

Pno.

      

   

   

 



 

   

      

  

 

 

   

 

    

  

 

  Vc. 

     

        

 

     

 



   

   

  

   







 

   

 



f

 



ff

      

     



 



 

      



 



   

    





4

   



fff

 

            



    

ff

                       

fff

s. glis



  

.

ff

gliss

Hp.

   

       

 

f

mf

 

  

                             

43 to FLUTE

 

s.

B. Cl.

glis

C. A.

4

4          4               ff

gliss .

   Picc.  419

 4

 

  

4

  loco 4

  

4



 

4

  

        





 



   



                   Cb.               





 



   



ff

ff


44

 

   427

C. A.

   

Tpt.

 

 



p

4



4

       

4



    

 

3

   

  

  

p

p

    3

p

 



   

 





 3

 

   

 

 

(non dim.)

 

  

fff

 

 

pizz

 

 

ff

 

a niente

   

  

fff

ff

Cb.

p

  

fff (non dim.)

 

pizz

 

fff

fff (non dim.)

 3  

 

fff

a niente

    

fff

4

      fff

mf

fff

       

 3      

fff

mf

fff

  





F#/Gb/A#/Bb

3

fff

fff

        

 Vc.

3          

fff

Pno.

3

fff

 

  

  



 

3

        fff

fff

Hp.

   

 



f

Tbn.

   

   

B. Cl.     

Hn.

q = 50

p

p

 3

 

a niente

 a niente


45

 

437

Fl.

C. A.

   Hn.   

Pno.

Vc.

 

 

Gtr.

Hp.

 6

pp

  

             

p

   

 

 

    

3

3

3

3

      p

      

6

   

 Cb.  

 

  

pp

  

pp





 

 







    

 

3

   

          3

3



 

  

  



 

3

    

  

pp

pp

 

3

 



3

        p

3



p

5        

pp

pp

pp







con sord

3





ppp

       

3

ppp



 

3

 3

 arco

3

 

  Vc.

   

3

 

pp

   

     

con sord

pp con sord

      

 



   

 

    

F# major

  

pp

9



 

    pp   

6



       

 

Pno.

6

  Cb.   443   C. A.     Hn.  

Tbn.

 



Tpt.



Hp.



 Tbn.   Gtr.

pp

pp

B. Cl.

Tpt.

 

  

3

   p 3   

       3



3

    

       5


46

 

  

   

  

   

 

  

   

449

Fl.

C. A.

B. Cl.

Hn.

Tbn.

Gtr.

Hp.

Pno.

pp

 

Tpt.



pp

p





  

   

   



3      

 E§

   Vc.

 Cb. 

mp

 pp

 

3

   





     

  

p

5

        

3 3        

3 3       

3

 

3

 

  

3

pp

3

 

        

mf

  

5

  

p

 

 3  3       

3

3

  

pp

3

    

3



3       

 pp

 

pp

p

pp

       

p

pp

3



pp

  

5             

p

  


47

   455

Fl.



p

mf

pp

 

 B. Cl.    p

C. A.

3

Tpt.

Tbn.

Gtr.

 

p

 

  Vc.   

p





 

p

5

3

 gliss.

p

3



   

   

3

3

 



mf

sub. pp

5    

  9   



mf

3    

3

3

A§/C§/D§



3

 

     



pp





 

 Cb. 

   

Pno.

 

 

   

pp

Hp.

3

pp

    

9

p

 

p

    

p

Hn.

      

9

  

 

3





3

   

 p


48

  

 

  

  

459

Fl.

C. A.

B. Cl.

Hn.

  

Tpt.

Tbn.

Gtr.

Hp.

3

3

p

          

3

3

3

   

p

  

 



 



 





 



  

 

 Vc.

5

         

mf

    

    

 

3

p

3

3

p

pp

3

pp

 3  p

3

6

       

     3

mf



pp

 

3

 

3

3



p

    



3

3

3

     

Pno.

3

3  

3 3          3 3          

        3

3

3

3

p

    3



 Cb.  



   

 



5        

 mf

     3

p

  

p

mf

      

3

3     

p

 

3

3

       3





5

   


 9  Fl.          464

mf

 

C. A.

B. Cl.

    

 

 

Tpt.

p

Tbn.

Gtr.

p

3      

3

 







3

6

 

49

6

6

              

3

3

 

      

3

 p

3

p

3

p

    9  

    9            9

3

 

  

 

  

3

 

  

3

6 6 6  6       9                     

f

3

        3

mf

Cb.



Vc.

  

3

Pno.

3

 



p

3

3

Hp.

 

 

 Hn.   p

3

               

     6

9

9

9

  

   

3



   

 

 3



mf

  

  mf

3

3

 



3



3

 

3

  3

 

 

3  3       

A#/D#



3

 

  

 

 

3

p

3

  

3

 

 

  



p

 

3  3      

p


50 Fl.

467 3  3                

    3  

3

   

C. A.

B. Cl.

Hn.

    

 

 

3

3

3

      

p

Tbn.

Gtr.

Hp.

3

3

  

  

   p

3

3

3   3                

p

   

3

9





3

3

3

   

       

    

3

 mf

 3

mf

 3

mf

       

     

  

3

 

 

3

 p



 



 

3



 

mf p

 

  Vc.

p

  

3

   

     

  

      

 

Pno.

        

p

p

3

p

Tpt.

3

 

3

 

 

 3 mf

mf

 3 

3   

3

     

    

 

3      Cb. 

3

   

  

 



 

3

     

 f

3

 

 

  

 

     5

f

3

   

 f


 

472

Fl.

  

mf

f

       3

C. A.

 

mf

mf

B. Cl.

Hn.

 

 

 

Gtr.

Hp.









 mf



 mf

p



p

       

       3

3 3             3



 



 



3

f

 

f

  f

  

3

mf

C major

 

 



  

3



3

3

  

mf

Vc.

                   12

p

Pno.

mf

  

Tpt.

Tbn.

51

3 3     3 3             

 

 5

      

   3      Cb.  



3

p

 

 



3    

f

  

 

3

3





 3

 arco

mf


52

3   Fl.     

 

476

 

3    

3 3 3 3 3 3          

3

mf

C. A.

B. Cl.

Hn.



  

3

9

    

 

3

   

 

 

 

3

3



3

f

3

   



 

 

 

 

 

 

f



f

pp

 3   3 

3     

3                   f

3

3    

3

   3

 

  3

     3

3

3

    

 

f

pp



ff 3

3

mf

senza sord

           

pp

    

3              3

3

f

3  3   3        

 

  3

 

mf

  Cb. 

3



senza sord

3

  Vc.

 

     

mf

senza sord

3

     

 

Pno.

    

 

Hp.

3

Gtr.

3

 

Tpt.

Tbn.

      

3

 

 

 

 

flutt.

3

     3

 

 



 

3

     

  

  ff

 f

 3

 

3

 



3

  





f

 mf

 3


   

 

480

Fl.

B. Cl.

mf

 

3

 

 

mf

Tbn.

Gtr.

   

 

Pno.

f

Vc.

Cb.

3

 

 3

  

  

3

 

 

 

 mf

f

3



   



9

9



      

 

53

 

3

 

3

3

9

9

9

                   

                                       9

9

9

9

9

9

f

  

mf

      9

9

 

 

9 9 9 9                     

f

3

    

3     

 

f

 

 

f

    

mf

 

3

f

  f

3

 

 3

3

 

  

 

3

3

3

3

   

  

3



 

f

f

 

  

3

  

  

  

  

Hp.

    

  

   

f

     Hn. 

Tpt.

      3

3

C. A.

 

3

3

   

  mf

3     

3

   

 

  

 

f

 

 

 

  

 

 

f

3

3

   

   

  

  

 

   

f

mf

3

 

  3

f

3

3



 f

   



f

3

 

 

 

3


54

   484

Fl.

3

f

C. A.

 

pp

3

 

B. Cl.

  

 

      

 p

f

3

 

ff

             

3

 

 

  

mf



pp

ff

f

              

  Hn.    

3

3

f brassy

Tpt.

 

9       

9       

9            



f

ff

 3  9         ff

9

Tbn.

Gtr.

           

  

Hp.

 

Pno.

   

Vc.

Cb.

 3

  

  

       

    

 3   

3

3

3

3

     

3

    

  

3

   

       9

9         

9

3

             ff

3

3

3

3         

3



      

 3  3   

3

3

 

3

       

3

     

3

    

   pp

3

3

            f

 ff

 


  487

Fl.

 

 

55

 

flutt.

ff

3

C. A.

B. Cl.

Hn.

 

     



3

Tpt.

 

 

3

    3

ff

 

 

3



ff ped.

3

Gtr.

Hp.

 

ff

ss.

 

Bb

  

 

3

 

p

3               3

gli

ss.

 

fff

3              3

f



gli

ss.

 

3   3        

p

gli

ss.



  

3

  3

   

gli

ss.

3



  

  3

   

gli

ss.

3



  





gl

.  

iss

f

    

3 3           

3 3          f

         

         

        

3

3

3

3

3

f



  



p

3 3           

ff

   3

MOVE OFFSTAGE

3 3 3 3                                            

 

3

p

    

3





ff sempre

ff

Cb.

3  

3

 

 

 

3

fff

ff

.

 Vc.

gli

iss



p

 



ff

Pno.

f

3

 

gl

   

     

3

3              

3

pp

Tbn.

 

p

      3

3

 f



ff

 

 



 pizz

3

3

3

3

       

p pizz

3

  

       

p


56

  

 

492

Fl.

C. A.

B. Cl.

Gtr.

Hp.

3

3

s.  

s.  

 

  Gtr.   

3

3

3

3

     

      

 3

   



3

 



     



3

    3

   

3

3

3

 

  

       

          

3

3

    

3

3

  

3

 

3

3

3

3

    

 

  



 3     

3

3

3

3

     

     

     3

3

 3      

  

      



3      

3

3

     

   

         3

 3          





          

3

3

3

3

           

3

3

3

3

      

     

3

    3

   

 

 

 

 

 

      

3

3

3

3

3

3

     

3

  3

 

          

  

p espressivo

3

    3

3

                  



3

   

3

  

 3   

3

  

3 3                          3

 

3

3

     

   3           

3

(to PICCOLO)

 

                            3

     

3

      

3

3

   

 

3

3 3 3 3 3 3                      

  

3

      

3 3 3 3 3 3  3                           3

      

 

p

 

 Cb.  

3

    p   



     

 

      



3

3    

 

3

p

3

3

   



B. Cl.

 

s.  

 3          

ss.

          







3

3

            gl  is

.

3

3



      

3

            gl  is

       

3

 

3

      

   

gli

 

  

3

3

ss.



3

498

Vc.

3

 

   

gli

 

3

3

 

 Fl.  

Pno.

  3

  Cb.  

Hp.

 

              gl  is

 

3

  

  Vc.

C. A.

  

 

iss gl

Pno.



3

3

3

3

              

 3          3

   3

3

        

3

    3

   


 Picc.  503

B. Cl.

Pno.

        

  

 Vc.

  





 

3

        

 

3

       

  3

  Cb.       510   Picc.   C. A.  pp

    pp  Hn. 

B. Cl.

3

  

 3

3

  

   

 

Gtr.

Hp.

C. A.

3

 

    3

 

3

                 mf                      3

   

   

3        



3

3

 







Pno.

Vc.





arco sul G    pp arco

Cb.

   pp

       

     

p dolce

3

3

3

      

        3

3

EPILOGUE senza misura

       

   

        

 

sul C



     

3

3

pp

pp

      

3

      

3         3

 

(OFFSTAGE)

  

3

3        



Tbn.

 

     

     3      

(to CLARINET)



Hp.

3



3

 

  

 

Gtr.

       

 

pp

Tpt.

pp

     

3

3



      

 3

      pp     

 

 3

3

3

3

pp

        

     

3

3

  

  

3

3

     

    

     

3

57



Lento

 p

   

 

 

   

  



 


58 Hn.

    

Hp.

Pno.

 Eb

   

 



pp

  

Vc.

Cb.

       



 



 

 

gliss.



 



                                            *

pp

      



  

   

      

          

 

    

516   Hn.   

Gtr.

pp

*

 

   

       

pp

   

pizz *

 

515

Hp.

*

 

  Cb. 

Gtr.

 

  

  

pizz

Hn.

      

    

 Vc.

  

 

pp *



* A strumming effect in all parts. Change patterns only approximately where indicated, and choose speed of strum independent of each other. very free, like an old sea-shanty

514











            

       

Hp.

Vc.

Cb.





     

                        

gliss.     




         

   Picc.   517

C. A.

 Cl.    Hn.

Gtr.

 

 

 

                Vc. gliss.      

        

 

        

  Cb. 

59

p





ppp

 

   



      

   

Hp.

e = 120

  

Andante (piu mosso)

pp

 

 

 

     

     

   

arco

      



pp

C. A.

Cl.

Hn.

Pno.

Vc.

      

                  senza misura

 Picc.  521





          





 





  

p

  

 

 

 

        

     



   

6

6

 

  

       



 

    

  

   

 

  


60

   526

Hn.

Gtr.

Hp.

Pno.

Vc.

Cb.

Picc.

Cl.

e = 88



  

 

pp

 D#

pp

                                 



 



 

C. A.

 

pp

Cl.

 

 

  

Pno.

Vc.

 

 

 

     

 

  

         

pp

   

  

   

     

 



   

 

    

   

 

 

 







 D§/B§

 

  



 



6

 

6

       

           

 

 

p

   





   pp

  





 

pp

 



   

         

 

6

  



  

    

         6

p

 

   



p

 

        

 arco

     

   

      

     

   

piu mosso e = 120



                

   

 



 

p

 

    

 

  



 



Gtr.

 

 



    

    

 

 

 

 

         

 



 



      

pp





  

 

  

   

 Picc. 

 

pizz

532

536

 



 





Pno.



 

Hp.

       

 



Gtr.

Very slow



 



   

  

   


Cadenza - in tempo

 Picc.   

6

540

Pno.

Vc.

 

        

  

       

6

p

            6

6

 

poco rallentando

 

6

     

 

 

 

6

 



 

e = 88

     3

pp



 

                 p 

 

 

 

 



 



  Cl.   544

Hp.

Pno.

                





 Vc.  



p

     





p

     

 





            

   

   

      

 

 

mp

poco rall

                          

Cb.

      

 



     

 

            



 

slower - very free

    

pp

   Vc. 

Gtr.

6



Pno.

6

6

6

 

6

Gtr.

6

            

6

6

 6            Picc.    Hn.

6

       

61

                 

 

 

     mf

pizz     mf

    mf


 Picc. 

62

548

Andante e = 120





  

          

           6



p

C. A.

Cl.

Hn.

Tpt.





   



 



  f

  



   



con sord

  

Vc.

   

pp

 

 



pp



mf





p





p

   

   

   

p

  



  

     





 

 





 

          

        

6



3

 

p





   arco

  



arco

 

mf

 

3

3

mf

Cb.



glissando leggiero e prestissimo

  





 

pp

  

 



pp

  

Pno.

     



pp sempre

A§/Bb/C§ D§/Eb /F§/Gb

 



mf

p

con sord

Hp.



p

 

  Tbn.  

Gtr.

p

 

 

mf

 

6


 Picc.  552

 

Fast - as before q. = 80

 

  

 

C. A.

                   

pp

63

p

Cl.

p

Tpt.

Tbn.

Gtr.

   

     p

Pno.

pp

 

                            pp

Hp.

pp



p

pp

 F#            3

  

p

 

 Vc.

3

3

 



 







                                  

3

 

 



 

 



Fast - as before q. = 80



   

pp

   



      

p

   





   



 



  



  



pp

Cb.

  



pp

 560

Gtr.

Hp.

Pno.

                                               

                                             

                                     

  Vc. 

   



pp

   



  



   



   



   



a niente

  



  

 

  


64

569

Gtr.

      

Hp.

Vc.

   

   

   

   

   

    

                                             

   



  

  





  

 Hn.    576

Gtr.

 



    

(sempre in tempo) a niente        

Hp.

(Further away: almost inaudible:) slow:





 

   

(sempre in tempo)

 a niente        

  FINE: Hong Kong 8 December 1998


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.