Using pool-based evolutionary algorithms for scalable and asynchronous distributed computing
J. J. Merelo, A. M. Mora, C. M. Fernandes, M. G. Arenas, Anna I. Esparcia-Alcรกzar U. Granada + S2 Grupo http://geneura.wordpress.com
What are the ingredients for a massively parallel evolutionary algorithm?
#sofea via @jjmerelo @aiesparcia
2
How can you use a server/backoffice that does (almost) all the work?
#sofea via @jjmerelo @aiesparcia
3
Can you achieve fault-tolerance and asynchrony?
#sofea via @jjmerelo @aiesparcia
4
Pool CRUD Pools allow create, read, update and delete operations.
Fault-tolerant
Pool == conveyor belt
Pool == population
#sofea via @jjmerelo @aiesparcia
Scalable
5
Implementation matters Object stores: RDMBS or
Which frameworks can be used to implement pools?
NoSQL
- Latency + Concurrency
- Lack of control + Locality of writes
File synchronization systems #sofea via @jjmerelo @aiesparcia
6
Conclusions ●Tradeoff fault-tolerance/scalability. ●Difficulty of non-centralized non-asynchronous operation. ●Advantages: ● Availability of frameworks. ● Optimal CRUD operations. ● Availability of clients. ● Choice of languages.
●Paradigm mix! #sofea via @jjmerelo @aiesparcia
7
Thanks!
Any question? See you at EvoPar 2013 http://goo.gl/LtTCL @geneura
#sofea via @jjmerelo @aiesparcia
8