
2 minute read
2.3.3 The causality problem
LIST OF FIGURES AND TABLES
Fig. 2.1 Changes in Earth's orbit as the basis for Milankovitch theory 6 Fig. 2.2 The Mid-Pleistocene Transition 8 Fig. 2.3 Spectral differences between eccentricity and global ice-volume 8 Fig. 2.4 The 100-kyr problem 9 Fig. 2.5 The causality problem 10 Fig. 2.6 The 100-kyr Myth 11 Fig. 2.7 Pleistocene temperature proxy record 12 Fig. 2.8 Annual insolation changes at high latitudes and the symmetry problem 12 Fig. 2.9 Interglacial alignment with obliquity 13 Fig. 2.10 Interglacial alignment with 65°N summer insolation 13 Fig. 2.11 Temperature changes due to axial tilt changes 14 Fig. 2.12 Cycles of ice – cycles of warmth 15 Fig. 2.13 Elements participating in interglacial determination 16 Fig. 2.14 Interglacial flow chart 17 Fig. 2.15 The timing of Pleistocene glaciations as a function of summer energy, ice-volume and eccentricity 19 Fig. 2.16 Comparison of atypical interglacials to the average interglacial 20 Fig. 2.17 Changes in the summer latitudinal insolation gradient depend on obliquity 21 Fig. 2.18 No role for CO2 at glacial inceptions 22 Fig. 3.1 The Dansgaard–Oeschger cycle 27 Fig. 3.2 Widespread effects of Dansgaard–Oeschger cycle 28 Fig. 3.3 Chronology of climatic events for the Last Glacial Period 29 Fig. 3.4 Time evolution of recent D–O oscillations 30 Fig. 3.5 Cartoon of the D–O interpolar phasing of temperatures 30 Fig. 3.6 Methane changes and origin during D–O events 31 Fig. 3.7 CO2 and Antarctic temperature relationship during Greenland stadials 31 Fig. 3.8 D–O events periodicity 33 Fig. 3.9 The D–O cycle 34 Fig. 3.10 D–O oscillations and changes in sea levels 35 Fig. 3.11 The salt oscillator hypothesis 36 Fig. 3.12 Mechanism of the salt oscillator hypothesis 37 Fig. 3.13 Mechanism of the D–O cycle 38 Fig. 3.14 Subsurface temperature abrupt changes in the Norwegian Sea 39 Fig. 3.15 North Atlantic–Nordic Seas vertical reorganization model 39 Fig. 3.16 Timing of lunisolar tidal forcing from AD 1600 40 Fig. 3.17 Ice age tidal amplitude 41 Fig. 3.18 Fluctuations in the temperature signal during stadials display lunisolar frequencies 42 Fig. 4.1 Pollen diagram at Roskilde Fjord 45 Fig. 4.2 Insolation changes due to orbital variations of the Earth 46 Fig. 4.3 Holocene temperature profile 47 Fig. 4.4 Holocene global temperature reconstruction 48 Fig. 4.5 Temperature and greenhouse gases during the Holocene 49 Fig. 4.6 Model characterization of the Holocene Climatic Optimum 50 Fig. 4.7 Climate pattern change at the Mid-Holocene Transition 51 Fig. 4.8 The African Humid Period 52 Fig. 4.9 Holocene climate shift at the Mid-Holocene Transition 53 Fig. 4.10 El Niño/Southern Oscillation (ENSO) Holocene activity 54 Fig. 4.11 Climate commitment at the Mid-Holocene Transition 54 Fig. 4.12 Global glacier advances during the Holocene 55 Fig. 4.13 Evidence for an abrupt global cold and arid event at 5.2 kyr BP 56 Fig. 4.14 Nature of climatic oscillations during the Ice Age 57 Fig. 4.15 Northern Hemisphere paleoclimate records showing main Holocene abrupt climatic change events 57 Fig. 4.16 Major periods of the Holocene set by obliquity and the c. 2500-yr Bray cycle 58 Fig. 4.17 Bond events constitute a record of cold events during the Holocene 59 Fig. 4.18 Abrupt Climatic Events during the Holocene 60 Fig. 4.19 Climate cycles and periodicities dominate climate change at all temporal scales 62