Atmospheric.Thermodynamics - .NE

Page 1


This page intentionally left blank

ATMOSPHERICTHERMODYNAMICS

ElementaryPhysicsandChemistry

Thistextbookpresentsauniquelyintegratedapproachinlinkingbothphysicsand chemistrytothestudyofatmosphericthermodynamics.

Thebookbeginsbyexplainingtheclassicallawsofthermodynamics,and discussesGibbsenergyandtheelementarykinetictheoryofgaseswithspecial applicationstotheatmosphere.Individualchaptersfocusonvariousfluidsystems, includingvaporpressureoverflatandcurvedsurfacesofpureliquidsandsolutions, andexaminetheverticaldependenceoftemperatureandpressureforenvironmental soundingandmovingairparcels.Recognizingtheincreasingimportanceof chemistryinthemeteorologicalandclimatesciences,achapterisdevotedto chemicalthermodynamicsandcontainsanoverviewofphotochemistry.

Althoughstudentsareexpectedtohavesomebackgroundknowledgeofcalculus, generalchemistryandclassicalphysics,thebookprovidesset-asiderefresherboxes asusefulreminders.Itcontainsover100diagramsandgraphstosupplementthe discussions.Italsocontainsasimilarnumberofworkedexamplesandexercises, withsolutionsincludedattheendofthebook.Itisidealforasingle-semester advancedcourseonatmosphericthermodynamics,andwillpreparestudentsfor higher-levelsynopticanddynamicscourses.

geraldr.north receivedaPh.D.inPhysicsfromtheUniversityofWisconsin in1966,andhasbeenaDistinguishedProfessorofAtmosphericSciencesatTexas A&MUniversityforover20years.Hisnotableresearchcareerincludesreceiving theOutstandingPublicationAward,NationalCenterforAtmosphericResearchin 1975,theExceptionalScientificAchievementMedalforNASAin1983,andthe JuleG.CharneyAwardfromtheAmericanMeteorologicalSocietyin2008.

tatianal.erukhimova receivedaPh.D.inPhysicsfromtheInstituteof AppliedPhysics,RussianAcademyofSciences,in1999,andisnowaLecturerin theDepartmentofPhysicsatTexasA&MUniversity.Herareasofresearchinclude large-scaleandmesoscaleatmospherictransportandmixing,atmosphericwave dynamics,atmosphericozone,andremotesensing.

ATMOSPHERICTHERMODYNAMICS

ElementaryPhysicsandChemistry

GERALDR.NORTHANDTATIANAL.ERUKHIMOVA

TexasA&MUniversity,USA

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521899635

© G. North and T. Erukhimova 2009

This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published in print format

2009

ISBN-13 978-0-511-51677-1

ISBN-13 978-0-521-89963-5

eBook (EBL) hardback

Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Webothwishtodedicatethisbooktoourfamilies,whohave kindlyenduredourlongpreoccupationwiththeproject.

Preface

Thisbookisintendedasatextforundergraduatesintheatmosphericsciences.The studentsareexpectedtohavesomecalculus,generalchemistryandclassicalphysics backgroundalthoughweprovideanumberofrefreshersforthosewhomighthave lessexperienceorneedreminders.Ourstudentshavealsohadasurveyofthe atmosphericsciencesinaqualitativecourseatfreshmanlevel.Theprimaryaimof thebookistopreparethestudentforthesynopticanddynamicscoursesthatfollow. Weintendthatthestudentgainsomeunderstandingofthermodynamicsasitapplies totheelementarysystemsofinterestintheatmosphericsciences.Amajorgoalis forthestudentstogainsomefacilityinmakingstraightforwardcalculations.We havetaughtthematerialinasemestercourse,butinashortercoursesomematerial canbeomittedwithoutregretslaterinthebook.Thebookendswithtwochapters thatareindependentofoneanother:Chapter 8 onthermochemistryandChapter 9 onthethermodynamicequation.

Thisbookistheresultofteachinganintroductoryatmosphericthermodynamics coursetosophomoresandjuniorsatTexasA&MUniversity.Severalcolleagues havetaughtthecourseusingearlierversionsofthenotesandwegratefully acknowledgeProfessorsR.L.Panetta,PingYang,andDonCollinsaswellas thestudentsfortheirmanyhelpfulcomments.Inaddition,wehavereceiveduseful commentsonthechemistrychapterfromProfessorsSarahBrooks,GunnarSchade, andRenyiZhang.WealsothankProfessorKennethBowmanformanyfruitful discussions.WearegratefulforfinancialsupportprovidedbytheHaroldJ.Haynes EndowedChairinGeosciences.

Introductoryconcepts

Theatmosphereisacompressiblefluid,andthedescriptionofsuchaform ofmatterisusuallyunfamiliartostudentswhoarejustcompletingcalculus andclassicalmechanicsaspartofastandarduniversityphysicscourse.To complicatematterstheatmosphereiscomposedofnotjustasingleingredient,but severalingredients,includingdifferent(mostlynonreactive)gasesandparticlesin suspension(aerosols).Someoftheingredientschangephase(primarilywater) andthereisanaccompanyingexchangeofenergywiththeenvironment.The atmospherealsointeractswithitslowerboundarywhichactsasasource(and sink)offriction,thermalenergy,watervapor,andvariouschemicalspecies. Electromagneticradiationentersandleavestheatmosphereandinsodoingit warmsandcoolslayersofair,interactingselectivelywithdifferentconstituents indifferentwavelengthbands.

Meteorologyisconcernedwithdescribingthepresentstateoftheatmosphere (temperature,pressure,winds,humidity,precipitation,cloudcover,etc.)andin predictingtheevolutionoftheseprimaryvariablesovertimeintervalsofafew days.Thebroaderfieldofatmosphericscienceisconcernedwithadditionalthemes suchasclimate(statisticalsummariesofweather),airchemistry(itspresent,future, andhistory),atmosphericelectricity,atmosphericoptics(acrossallwavelengths), aerosolsandcloudphysics.Boththepresentstateofthebulkatmosphereand itsevolutionaredeterminedbyNewton’slawsofmechanicsastheyapplyto suchacompressiblefluid. Dynamics isconcernedprimarilywiththemotionof theatmosphereundertheinfluenceofvariousnaturalforces.Butbeforeonecan undertakethestudyofatmosphericdynamics,onemustbeableto describe the atmosphereintermsofitsprimaryvariables.Anessentialtoolneededinthis descriptionisthermodynamics,whichhelpsrelatethefundamentalquantitiesof pressure,temperatureanddensityasatmosphericparcelsmovefromplacetoplace. Suchparcelscontractandexpand,theirtemperaturesriseandfall;waterchanges phase,backandforthfromvaportoliquidtoice;chemicalconstituentsreact,

Introductoryconcepts

etc.Thekeytounderstandingthesechangesliesinapplicationsofthelawsof thermodynamicswhichrelatethesechangestofluxesofenergyandotherless familiarfunctionswhichwillbeintroducedasneeded.

1.1Units

Theunitsusedinatmosphericsciencearethe StandardInternational (SI)units. TheseareessentiallytheMKSunitsfamiliarfromintroductoryphysicsand chemistrycourses.Theunitoflengthisthe meter,abbreviatedm;thatformass isthe kilogram,abbreviatedkg;andfortimetheunitisthe second,abbreviateds. Theunitsforvelocitythenarems 1 .Theunitofforceisthe newton (1kgms 2 , abbreviatedN).Tables 1.1–1.2 showtheSIunitsforsomebasicphysicalquantities commonlyusedinatmosphericscience.

Theunitofpressure,the pascal (1Nm 2 = 1Pa),isofspecialimportancein meteorology.Inparticular,atmosphericscientistslikethe millibar (abbreviated mb),butinkeepingwithSIunitsmoreandmoremeteorologistsusethe hectopascal (abbreviatedhPa,100Pa = 1mb).The kilopascal (1kPa = 10hPa)istheformalSI unitandsomeauthorspreferit. Oneatmosphere (abbreviated1atm)ofpressureis

1atm = 1.013bar

= 1013.25mb

= 1013.25hPa

= 101.325kPa

= 101325Pa

= 1.01325 × 105 Pa(1.1)

and1mb = 1hectopascal = 100Pa.Insomeoperationalcontextsandoftenin thepopularmediaonestillencounterspressureininchesofmercury(inHg)or millimetersofmercury(mmHg);1atm = 760.000mmHg = 29.9213inHg.

The dimensions ofaquantitysuchasdensity, ρ ,canbeconstructedfrom thefundamentaldimensionsoflength,mass,timeandtemperature,denotedby L, M , T, Temp respectively.Thedimensionsofdensity,indicatedwithsquare brackets [ρ ],are ML 3 .IntheSIsystemthe units arekgm 3 .Manyquantitiesare purenumbersandhavenodimension;examplesincludeargumentsoffunctions suchassineorlog.Theradianisaratiooflengthsandisconsideredheretobe dimensionless.

TemperatureinSIunitsisexpressedindegreesCelsius,e.g.20 ◦ C;orKelvin, e.g.285K.Wesay“285kelvins”andomitwritingthesuperscript“◦”when

Table1.1 Usefulnumericalvalues

Universal gravitationalconstant6.673×10 11 Nm2 kg 2

universalgasconstant(R∗ )8.3145JK 1 mol 1

Avogadro’snumber(NA )[grammole]6.022 ×1023 moleculesmol 1

Boltzmann’sconstant(kB )1.381 ×10 23 JK 1 molecule 1

protonrestmass1.673 ×10 27 kg

electronrestmass9.109 ×10 31 kg

Planck’sconstant6.626 ×10 34 Js speedoflightinvacuum3.00 × 108 ms 1

PlanetEarth

equatorialradius6378km polarradius6357km massofEarth5.983 × 1024 kg

rotationperiod(24h)8.640 × 104 s accelerationofgravity(atabout45◦ N)9.8067ms 2

solarconstant1370Wm 2

Dryair

gasconstant(Rd )287.0JK 1 kg 1 molecularweight(Md )28.97gmol 1 speedofsoundat0 ◦ C,1000hPa331.3ms 1 densityat0 ◦ Cand1000hPa1.276kgm 3

specificheatatconstantpressure(cp )1004JK 1 kg 1

specificheatatconstantvolume(cv )717JK 1 kg 1

Watersubstance

molecularweight(Mw )18.015gmol 1

gasconstantforwatervapor(Rw )461.5JK 1 kg 1

densityofliquidwaterat0 ◦ C1.000×103 kgm 3 standardenthalpyofvaporizationat0 ◦ C2.500×106 Jkg 1 standardenthalpyoffusionat0 ◦ C332.7kJkg 1 specificheatofliquidwater4179kJkg 1 K 1

STP T = 273.16K, p = 1013.25hPa

usingdegreeskelvin.Inoperationalmeteorologywesometimesfindtemperature expressedindegreesFahrenheit,e.g.70 ◦ F.

Eachsideofanequationmusthavethesamedimensions.Thisprinciplecan oftenbeusedtofinderrorsinaproblemsolution.Theargumentoffunctionssuch astheexponentialhastobedimensionless.

1.2Earth,weightandmass

TheEarthisanoblatespheroid,withslightlylargerdiameterintheequatorialplane thaninameridional(pole-to-pole)plane.Thedistancefromthecentertothepoles

Table1.2 Selectedphysicalquantitiesandtheir units

QuantityUnitAbbreviation masskilogramkg lengthmeterm timeseconds forcenewtonN

pressurepascalPa = Nm 2 = 0.01hPa energyjouleJ

temperaturedegreeCelsius ◦ C

temperaturedegreeKelvinK speedms 1 densitykgm 3

specificheatJkg 1 K 1

Table1.3 GreekprefixesappliedtoSIunits

PrefixNumericalmeaningExampleAbbreviation nano10 9 nanometernm micro10 6 micrometer µm milli10 3 millimetermm centi10 2 centimetercm hecto102 hectopascalhPa kilo103 kilogramkg mega106 megawattMW giga109 gigawattGW tera1012 terawatttW

Table1.4 SelectedconversionstoSIunits

QuantityConversion

energy4.186J = 1cal 1kWh = 3.6×106 J

pressure1atm = 760mmHg 1atm = 29.9213inHg distance1m = 3.281ft

temperature T (K) = T (◦ C) + 273.16

T (◦ F) = 9 5 T (◦ C) + 32 T (◦ C) = 5 9 (T (◦ F) 32)

Table1.5 Somerelationships betweenSIunits

QuantityEquivalent 1N1kgms 2 1J1kgm2 s 2 1Pa1Nm 2

is6356.91kmandtheradiusintheequatorialplaneis6378.39km.Abouttwothirds oftheEarth’satmosphereliesbelow10kmabovethesurface,hencetheatmosphere andtheoceans(depthaveraging4–5km)onlyformaverythinskinofabout1/60 theradiusofthesphere.

The weight ofamassistheforceappliedtothatmassbytheforceofgravity.It maybeexpressedasthemassinkilogramstimestheaccelerationduetogravity, g = 9.81ms 2 : W = Mg [weightandmass].(1.2)

Weightisexpressedin newtons,abbreviatedN;N = kgms 2 .Theacceleration duetogravityvariesslightlywithaltitudeabovesealevel gz = g0 (1 3.14 × 10 7 z ) z inmeters.(1.3)

Thereisalsoaslightvariation(< 0.3%)withlatitudeduetotheellipsoidal shapeoftheEarth(duetobothcentrifugalforceandtheequatorialbulge).In mostmeteorologicalapplicationsthesevariationsarenegligible.However,in calculationsofsatelliteorbitssuchvariationsareextremelyimportant.

Example1.1 Thedensityofwaterinoldfashionedunits(cgs)is

ρwater = 1gram cm3 .

ToexpressthisinSIunits,wecanmultiplyby

1 = 1kg 103 gram = unity(nodimension).

Weobtain:

ρwater = 1 kg 103 cm3 = 1 kg liter

Introductoryconcepts

Thisgivesusanintuitivemeasureofthekilogram.Nowwecanmultiplyby

Thefinalresultis

ρwater = 103 kgm 3 .

Physicsrefresher:verticalmotionofaparticle Theaccelerationduetogravityis g = 9.81ms 2 .Aparticlefallingfromaheight z0 withnoinitialvelocity,hasa velocity gt aftertime t .Afterthesametimeintervalitwillhavefallen 1 2 gt 2 meters. Thesearebothobtainedbysimpleintegration:

,since

=constant(1.4) and

Moreverticalmotionmechanics Theminimum work necessarytoliftaparticlea verticaldistance z againsttheforceofgravityisforce × distance = Mgz (Mg isthe weightorverticalforcenecessarytoliftthemasswithoutacceleratingit).Thiswork doneinliftingtheparticleisequaltothechangeinits potentialenergy Mgz .Ifthe particleisreleased,workwillbedonebythegravitationalforceappliedtothe particle.The kineticenergy oftheparticleduringitsfallis 1 2 Mv 2 .Theconservation ofmechanicalenergysaysthesumofthesetwoformsofenergyisconserved: E = PE + KE = constant,ormoreexplicitly

wherethesubscript0denotestheinitialtimeandthesubscript t denotesevaluationat alatertime.

TheconservationlawisderivedbyfirstwritingNewton’sSecondLaw:

Nowmultiplythroughby v d t andintegratewithrespectto t .Theleft-handside becomes

OntheothersideofNewton’sequationwehave

Equatingtheseexpressionsgivesouranswer(1.6).

1.3Systemsandequilibrium

Thermodynamicsisthestudyof macroscopic or bulk systemsofmassesand theirinterrelationsunderconditionsofsteadystate(nodependenceontime).By macroscopicwemeanthesystemcontainslargenumbersofindividualmolecules (withinafewordersofmagnitudeofa mole1 whichcontains6.02×1023 molecules). Wecallthesestates equilibriumstates iftheyarenotonlytimeindependentbut alsostableundersmallperturbations.Thermodynamicstatesaredescribablebya setofdimensionalquantitieswhichwerefertoas coordinates.Thermodynamicsis concernedwiththechangesinenergy-relatedquantities(certainofthecoordinates) whenthesystemundergoesatransitionfromonestatetoanother.A thermodynamic system isaregionofspacecontainingmatterwithcertain internallyuniform properties suchaspressureandtemperature.Wewillbeconcernedwiththeinterior ofthesystemandthevariables(coordinates)thatcharacterizeit.Forexample, amassofpuregas(onlyonechemicalspecies)containedinavesselmaybe characterizedbythepressureitexertsonthewallsofthevessel,thevolume ofthevesselandthetemperature( p, V , T ).Thesecomprisethecompletesetof thermodynamiccoordinates forthisparticularsystem.Formoregeneralsituations suchasmixturesofspeciesorphases,thecoordinatesnecessarytodescribethe statehavetobedeterminedexperimentally.Itisimportanttonotethatanindividual thermodynamicsystemisuniforminitsinterior.Therearenogradientsofpressure ortemperature,forexample,insidethesystem.2

1 ThemoleisanSIunitdefinedasthenumberofcarbonatomsinamassof0.012kgofpurecarbon.The numberofmolesofasubstanceisthenumberofmultiplesofthisnumber(knownasAvogadro’snumber: NA = 6.02 × 1023 ).Informulastheunitisdesignatedas“mol.”

2 Notethatacolumnofairintheatmosphereisnotasimplethermodynamicsystembecauseitspressureand temperaturevarywithaltitude.However,itisconvenienttoconsiderthecolumnascomposedofthinslabs, eachofwhichcontainssubstancewithapproximatelyuniformtemperature,pressureandcomposition.Then eachindividualslabmaybeconsideredasasimplethermodynamicsystemformanypurposes.

1.3.1Examplesofthermodynamicsystems

Gasinavessel Supposeacontainerholdsagasofuniformchemicalcomposition.Let thewallsofthecontainerbethermallyinsulatingandletthevolumebefixed.Inavery shorttimeafterfixingtheseconditionsthegaswillcometovaluesoftemperatureand pressurethatareuniformthroughoutandindependentoftheshapeofthecontainer. Thisisthesimplestthermodynamicsysteminastateofequilibrium.

Asecondcaseiswherethecontainer’swallsareheldatafixedtemperatureandthe pressureisallowedtovary.Equilibriumwillbeestablishedsuchthatthetemperature ofthegasbecomesequaltothatofthesurroundingwalls,thevolumeisgivenand thepressurecomestosomevaluethatwecanestimate.

Athirdcaseiswherethecontainerhasafrictionlessmovablepistonthatispushed uponexternallybyafixedpressure(suchastheatmosphericpressure).Thismeans thatthepressureinthevesselisheldfixedalongwiththatofthetemperature.The pistonwillshiftinsuchawaytomakethepressureinsideequaltothatoutside,and thevolumewillchangeuntilalltheseconditionsaremet.

Ourgasmightnotbehomogeneous,butinsteaditmightbecomposedofamixture ofchemicallynoninteractinggases,suchasthoseinouratmosphere:nitrogen,oxygen andargon.Westillhaveathermodynamicsystemaslongasthecompositiondoes notvaryfromlocationtolocationorfromtimetotime.Ineachoftheabovecaseslet twoofthefollowingbefixed:volume,temperature,orpressure.Thentheremaining variableisallowedtofinditsequilibriumvalue.Notethatonceinequilibrium,the variablesorcoordinatesareuniformthroughoutthevessel.

Two-phasesystem Supposewehavealiquidofuniformchemicalcompositionsuch aswaterinourvesselandvacuumabovetheliquidsurface.Letthetemperatureand volumebefixed.Afterasufficientadjustmenttimesomeliquidwillhaveevaporated intothevolumeaboveitssurfaceandanequilibriumwillbeestablished(thefluxof watermoleculesleavingthesurfacebecomesequaltothefluxenteringandsticking tothesurface).Therewillbeagaspressureexertedonthewallsbythevaporthat evaporatedfromtheliquidsurface.Thisisatwo-phasesystemwithliquidandgaseous phases,butonlyone component (water)whichdepictsthenumberofdistinctchemical species.Thepressurethroughoutwillbeuniform(ignorethepressureincreaseas afunctionofdepthduetogravityintheliquid).Thetemperaturewillalsobe uniformthroughoutbothphasesofthesystem.Thistwo-phaseconfigurationisalsoa thermodynamicsystem.Thesystemcanbemadetopassthroughchangesinvolume, temperature,etc.,toestablishnewthermodynamicstatesofequilibrium.Notethat thetemperatureandpressureareuniformthroughoutbutthedensityvariesfromone phasetotheother.Asweshallseeinalaterchapterthereisanotherquantitythat isalsouniforminthetwo-phasesystemcalledthespecificGibbsenergy(chemical potentialinthechemicalliteraturewhenexpressedasmolarGibbsenergy).Itactsas anintensivevariable(seeSection 1.5)insuchmulticomponentsystemssimilarlyto pressureortemperature.

Aqueoussolutions Imagineavesselfilledwithwater(atafixedtemperatureand pressure)andsomesaltisplacedintheliquid.Ifwecontinuetoputmoresaltinto thewatereventuallysomesaltwillremainincrystalformsinkingtothebottom (butignoregravityotherwise).Wewillhaveestablishedanequilibriumbetweenthe saturated salinesolutionandtheprecipitatedcrystallinesalt.Achangeintemperature willresultinanewequilibriumstatewithadifferentconcentrationofsaltinsolution (concentrationofaspeciesinsolutionisanotherthermodynamiccoordinate).Thisis anexampleofathermodynamicsystem.Variationsonthisincludeallowingthewater vaporabovetheliquidtobeinequilibriumwiththesalinesolution.Thepresence ofsaltinsolutionwillalterthevaporpressureovertheliquidsurface(aswell asthefreezingtemperature).Asthetemperaturechangesthevaporpressurewill change,etc.

Chemicalequilibrium Imagineagaseousmixtureinourvesselatfixedtemperature andpressurecomposedofOandO2 .Therewillbeareaction

whereMisabackgroundmoleculeusedtocarryawaymomentum(e.g.,O2 ,N2 or Arintheatmosphere).3 Someozonewilldecayandafterawhiletherewillbean equilibriumestablishedandthereactioncanbewritten:

O + O2 + M O3 + M.(1.11)

Theamountof reactants (theleft-handside)maybemorethantheamountof products (right-handside)foragiventemperature.Butasthetemperatureischangedthe balancemayshift.Thisisathermodynamicsystem.TheratioofO2 toO3 isnowa thermodynamiccoordinatealongwith T , p, V , Mtotal . Ofcourse,therearemanyothertypesofthermodynamicsystems,andwewill encounterseveraloftheminduecourse.

Everythingoutsidethesystemwhichmayaffectthesystem’sbehavioris calledthe surroundings.Inatmosphericscience,wecanoftenapproximatean infinitesimalvolumeofgasembeddedinthenaturalatmosphereashavinguniform interiorproperties.Whenappropriate,suchaninfinitesimalvolumeelementcanbe consideredasathermodynamicsystem.Inmanycasesthe“infinitesimalvolume element”mightbeasbigasaclassroomorsometimesassmallasacubiccentimeter dependingontheapplication.

Athermodynamicsystemcomposedofaverylargemassiscalleda reservoir andischaracterizedbyatemperature, TR .Ifafinitesystemisbroughtintocontact withthereservoirthrougha diathermal membrane(onewhichallowsthepassage

3 Energyandmomentumcannotbeconservedsimultaneouslywhentwobodiesgotoonewithareleaseofenergy. Athirdbodyinthecollisioncanprovidethemeansofconservingboth.

O + O2 + M → O3 + M,(1.10)

Figure1.1Isothermsfor1kgofdryairtakenasanidealgas.Thevertical coordinateispressureinhPa,theabscissaisvolumeinm3 .Uppercurve,300K; lowercurve,200K.

ofthermalenergy,4 butnotmass),thesmallersystemwilladjustthevaluesofits coordinates(foragas, p, V , T )tonewvalues,whilethereservoirdoesnotchange itsstateappreciably(thisactuallydefineshowmassivethereservoirhastobe).The systemissaidtocomeintothermalequilibriumwiththereservoir(itstemperature approachesthatofthereservoir).Inthecaseofagaseoussystem,experiments haveshownthatthereisalocusofpairsofvalues(V , p)forwhichthesystemis inequilibriumwithagivenreservoir–inotherwords,acurve p = pT (V ) inthe V –p plane.Toputitanotherway,ifoursystemhasacertainfixedvolume,then whenitisbroughtintocontactwiththereservoiroftemperature T ,thepressurewill alwayscometothesamevalue, p = pT (V ).Aswedotheexperimentwithdifferent controlvolumeswecansweepoutthelocusofpointsinthe V –p plane.Thiscurve iscalledthe isotherm ofthesystemforthatreservoirtemperature(Figure 1.1).The isothermrepresentsaseriesofequilibriumstatesthatcanoccurwhilethesystem isincontactwiththereservoir(offixedtemperature).Forexample,thevolume mightbeforcedtoalterbyachangeinthewalldimension(e.g.,apistoncanhave differentpositionsinacylinderwhichcontainsthesysteminquestion).Inthiscase thepressurewillchangeasafunctionofvolumealongtheisotherm.Whilewecould inventanalgorithmbaseduponaseriesofreservoirsofdifferenttemperaturesto buildatemperaturescale,itwillsufficeforourpresentpurposessimplytousethe familiarthermometer.

4 Thermalenergyreferstothemicroscopicmotionofmoleculesinthesystem.Whenindiathermalcontact,the thermalenergyofmoleculesfromonesystemcanpassfromthesystemtoitsneighborthroughcollisions.In timethethermalenergiesofthetwosystemswillequalize.Moreonthisinlaterchapters.Thetransferofthermal energyislooselyreferredtoas heattransfer

Figure1.2Isothermandadiabatfor1kgofdryairtakenasanidealgas.Theupper curve(solidline)isthe300Kisothermandthedashedcurveistheadiabatpassing throughthe300Kisothermat V = 1m3 .Theverticalcoordinateispressurein hPa,theabscissaisvolumeinm3

Asystemcanalsobeinequilibriumwhenisolated(nomassorthermalenergy flowsintooroutofthesystem)fromothersystems.Wecallthisan isolatedsystem. Itcanhavecoordinatesjustasinthecaseofasystemincontactwithareservoir. Wecallthelocusofvaluesofpressureintheisolatedsystemfordifferentvolumes ofthesystem adiabats (Figure 1.2).Wecouldfindthetemperatureoftheisolated systematfixedvaluesof p and V bybringingitintocontactwithdifferentreservoirs untilwefindonewhichdoesnotcausethecoordinatesofthesystemtochange. Thesystemhasthesametemperatureasthisreservoir.Inthiswaywecouldmap outthelocusofpointsdefiningtheisothermwhichcrossestheadiabatatthepoint inquestion.Asasimpleralternative,wecouldinsertathermometer,whosemass issosmallthatitwillcometoequilibriumwiththesystem(whichnowactsasa reservoirwithrespecttothetinythermometer)withoutdisturbingthestateofthe systemappreciably.

Statesofthermodynamicequilibriummustnotinvolvetime.Theyaresteadyand onlyrequireaknowledgeofthethermodynamiccoordinatessuchastemperature, pressureandvolume.Whenthe“states”traversedbyasysteminvolvethetime wecannotusethermodynamicequilibriumstatestodescribethem.Conventional thermodynamicscannotbeusedtodescribewhatgoesoninstatesthatarenotin equilibrium.

Certainchangesofasystemcanbemadetooccurthroughasequenceof infinitesimallynearbyequilibriumstates.Forexample,wemightbringthesystem intocontactoneatatimewithaseriesofreservoirsofinfinitesimallydiffering temperatures,andateachstepwewaitforequilibriumtobeestablished.Wecall

thisa quasi-staticprocess.Suchquasi-staticprocessescanbeapproximatedinthe laboratory.Fromamolecularpointofviewthegasintheinteriorofthesystem hastohavetimeduringeachinfinitesimalshiftoftheconstraintstoadjustto anewequilibriumwithitssurroundings.Inagasthisisroughlythetimefora typicalmoleculetomakeafewhundredcollisions,butoverafinitesizedvolumeit mightbemoreappropriatetousethetimeforsoundwavestotraversethevolume severalhundredtimes.Thismultiplepasstraversaltimeworksforpressure,but otherpropertiesmighttakeconsiderablylonger.Forexample,temperatureand speciesconcentrationssmoothoutmuchmoreslowlybecausethesedifferences aresmoothedoutbydiffusiveprocessessuchasthermalconduction.Stirringdue toturbulencecanspeedupthehomogenizationbuteventhentheadjustmentis slowerthanforpressuredifferences.Ateachinfinitesimalstep(waitingforthese adjustments)alongsuchasystempath,wecouldreversedirectionandretracethe samesteps.Thisisa reversibleprocess.

Notethatasystemmaygofromonethermodynamicstatetoanotherbyapath whichdoesnotinvolvesuchasequenceofthermodynamicstates.Wecallthisan irreversible changeinstate.Anexampleofanirreversibleprocessisthecaseof asystemwhichgoesfromstateAtostateBspontaneously,butnotfromBtoA. Aconcreteexampleisiftwobricks,onehotandonecold,arebroughtintocontact, theresultistwowarmbricks.Thisisanirreversibleprocess.Notethatitnever happensthatwhenwebringtwowarmbricksintocontactweendupwithawarm brickandacoldbrick(eventhoughenergyisconserved).

Reversibleprocessesdonotactuallyoccurinnature.Sowhystudythem?The reasonsareprettysimple.Firstofall,irreversibleprocessesarenearlyimpossibleto treattheoretically.Secondly,experiencehasshownthatapproximatingthenearly quasi-staticprocessesthatdooccurinnatureworksreasonablywellinmanycases whenwetreatthemasexactlyquasi-static.Weproceedthentoadoptthephilosophy usedbypractitionersformanyyears:wewillfreelyapproximatemanyprocessesin therealatmospherebyidealizedreversibleanalogiesinordertoobtainnumerical resultsthatcanbeusedinpracticalsituations.

1.4Constraints

Animportantconceptinthestudyofthermodynamicsystemsisthatofconstraints. Thisnotionisbestillustratedbyexample.Considerthegasinacylinderwhose volumeisdeterminedbythepositionofapistonasinFigure 1.3.Several constraintsareoperativeinthiscase.Mostobviousisthepositionofthepiston. Itconstrainsthevolumetohaveacertainvalue.Ifthepistonisremovedbya smallamounttheconstraintissaidtoberelaxed.Notethataforcemustbeapplied

GAS

ADIABATIC WALLS PISTON

Figure1.3Schematicdiagramofagasfilledcylinderwithadiabaticwallsanda movablepiston.

(actuallyrelaxed,thengraduallyreapplied)externallytoimplementthischangein theconstraint.Ifthepistonisremovedbyasmallamount,someagentmustperform work torestoreittoitsoriginalposition.Similarly,thewallsthatareimperviousto thetransferofthermalenergyformaconstraint.Ifaleakofthermalenergywereto occur,suchasonbringingthesystemintocontactwithatemperaturereservoirata slightlydifferenttemperature,thisconstraintwouldbesaidtohavebeenrelaxedand thethermodynamiccoordinatesofthesystemwillhavetobechangedtorestore theoriginaltemperature.Thermodynamicsystemsarealwayssubjecttocertain constraintsandtheirnatureandnumberareessentialingredientsinthedescription ofthesystemanditsstate.

Considertwothermallyisolatedchambersadjacenttooneanotherseparatedby apartition.OnonesideisgasAandontheotherisgasB.Letthechambershave thesametemperatureandpressure.Thepartitionformsaconstraintrestrictingthe twogasesfrommixing.Ifthepartitionisremoved,theconstraintisrelaxedand thetwosystemswillpassthroughnonequilibriumstatestotheirfinalwell-mixed equilibriumstate.Theirreversibleprocessfollowingremovaloftheconstraint representsonewhichforidealgasesinvolvesnochangesinpressureortemperature, butexternalworkmustbeperformedtorestoretheoriginalconditions.

1.5Intensiveandextensivequantities

Considerathermodynamicsystem.Theinteriorpropertiesofthesystemare uniform.Now,imaginesubdividingthesystemintotwoequalparts(say,two warmbricksincontact).Ifavariableisthesameforthetwoindividualparts (e.g.,pressure,temperature,chemicalcomposition,density,etc.),thevariableis an intensivevariable.Ontheotherhand,ifthethermodynamicvariableforeach subsystemisproportionaltothemassoftheconstituentsinthatsubsystem(e.g., volume,mass),wecallitan extensivevariable.

Figure1.4Schematicdiagramofagaseouspressurereservoirincontactwitha smallsystem.Themembranebetweenthesystemandthepressurereservoiris movablesothatthetwosystemscanadjusttheirvolumesinsuchawaythatthe pressuresequalize.

Example1.2 Anexampleofanisolatedsystemisa1kgmassofgaseousO2 , confinedinaboxwiththermallyinsulatingwalls.Supposethevolumeis1m3 . Thismeansthedensityofthegasis1kgm 3 .Ifthetemperatureofthegasisgiven, say300K,thenthepressurewillbedetermined(thisisanexperimentalfact).The thermodynamiccoordinatesofthis(pure)systemare: V ,thevolume; M,themass; T ,thetemperature;and p,thepressure.

Example1.3 Athermodynamicsystemmightbeinthermalequilibriumwitha reservoir.InthecaseofthemassofO2 gasinafixedvolumeof1m3 ,takethe gastobeinthermalcontactwithareservoirat350K.Thepressurewillbequite differentfromthelastexample.

Example1.4 Wemighthaveapressurereservoir.Considertheboxofgastobein contactwithareservoirwithaslidableinterface,suchthatthepressurescanequalize betweenthetwosystems.Letthesystemotherwisebeinsulatedthermallyfromthe reservoirandtherestoftheuniverse.Ifthegashasagiventemperatureinitially,it willexpandorcontractuntilitspressureequalsthatofthereservoir(pleaseletit happengradually).Thevolumeandtemperatureofthegasmaychangeinorderto establishequilibriumwiththepressurereservoir(seeFigure 1.4).

1.6Systemboundaries

Beforesettingupaprobleminthermodynamicsitisextremelyimportanttochoose thepartoftheuniverseyouwanttocallyoursystem.Itmightbeamassofmatteror itmightbeacertainvolumeinspace.Asintheatmosphericexamplesthemassor

volumemightbeinmotion.Ifweareconsideringamassinspacewithnoadditional matterallowedtoenterorleavethisfixedmasswesayitisa closedsystem.Inthe fixedvolumecasemassmightenterorleave.Wecallthisanopensystem.

Calculusrefresher:theexponentialfunction Thefunction y (x ) whosederivative isitselfiscalledtheexponentialfunction:

Supposewetry y = a x .Then

Thefactorontherightmusttendtounityas x → 0.Itwillbemoreeasilyseenifwe let x = 1/N where N isaninteger.Alittlerearrangementyields

andthenumber a∞ isgiventhesymbolewhosenumericalvalueturnsouttobe 2.718281....Toseehowthelimitcomesaboutcalltheapproximatevalueof a∞ = eN .Simplecomputationgives, e5 = 2.48832, e10 = 2.59374, e100 = 2.70481, e1000 = 2.71692,and e10000 = 2.71815

Notethate0 = 1,e 1 = 0.367879 ...,andex iscalledtheexponentialfunction.We caneasilyderiveafewpropertiesof y = ex .Fromitsdefinition,dex /d x = ex ,andwe canusethechainruletoshowthatdeα x /d x = α eα x .

Thefunctione α x decreases exponentially fromavalueofunityat x = 0toavalue

Figure1.5Theexponentialfunctionex asafunctionof x .

Figure1.6Thedecayingexponentialfunctione x asafunctionof x . ofe 1 = 0.367879 at x = 1/α ,whichiscalledthee-foldingdistance if x isa distanceorthee-foldingtime or timescale if x isatime,seeFigures 1.5 and 1.6.

1.7Thermodynamicsandatmosphericscience

Theplanofthisbookistopresentthesubjectofthermodynamicsinsucha wayastohelpusbetterunderstandtheatmosphere,butalsotogiveussome rulesandmethodsthatcanbeusedinthepracticalapplicationofatmospheric science.Thermodynamicsisahugesubjectmorethanacenturyold,treated byexcellenttextbooksinphysics,physicalchemistry,chemicalengineering, mechanicalengineering,etc.Wecannotpossiblycoverallthematerialinthese fields.Wecannotevencoverallthebasictheoryofthermodynamicsinashort courseintendedforstudentsmajoringinatmosphericsciences–especiallyat thesophomore/junioryearlevelforundergraduates,wherenotmuchscienceand mathematicscanberequiredprerequisites.Somecompromiseswillhavetobe made.Thismeansthosewhowanttodelvedeeperintosomeofthederivationswill havetocheckelsewhereamongthemanysourceslistedattheendsofchapters. Sometimeswewilllimitderivationsorjustificationstothepointthatitisclear thatenoughinformationistheretodeterminethatsuchandsuchaformulacanbe derivedbythemethodsalreadydiscussed.

Sowhatproblemsinatmosphericsciencecanbeaddressedbythermodynamics? Afterallwehaveseenalreadythatthermodynamicsconsistsofasetoflaws applicableunderconditionsthataresoidealizedthattheyarerarelyattainable eveninthelaboratoryletaloneinnature.Theprocessesthatoccurinnature arespontaneousandvirtuallyneverdowefindasystem(perhapsourleading applicationconsistingofaparcelofair)intruethermodynamicequilibrium.The

answertothesequestionsisthatthermodynamicsaffordsusausefulframework inwhichsomeapproximatecalculationscanbeconducted.Overtheyearsthese approximateresultshaveproventobeuseful.

Thefollowingisalistofapplicationsthatwewillworkoninthisbook.

Gaseousmixtures Theseoccurinnaturesincetheatmosphereiscomposedmainly ofseveralrelativelyinertgases(attypicalatmospherictemperaturesanyway)and severalothergaseswhichoccurintraceamounts(i.e.,ozone,methane,carbondioxide, evenwatervapor).Wewillbeconcernedwithhowthepressuresoftheseindividual gasesadduptothetotalpressureandhowthedensityofalocalblob(orparcel)of thegasmightdifferfromthatofitssurroundings,whichmightgiverisetoparcels liftingthemselvesfromtheirpresentaltitudestosomewhereabove,justhowhigh andhowfastdependingontheparcel’sthermodynamicpropertiesandthoseofthe surroundings.

Liquid–vaporequilibria Waterexistsinallthreephasesintheatmosphere.We wouldliketoknowhowthepressureofwatervaporaboveliquidsurfacesvaries withtemperature.Wewouldliketohaveusefulwaysofdescribingtheamountof watervaporintheair(humidity)andhowthisaffectstheair’sbuoyancyandhow condensationleadstoreleaseofthermalenergyandthereforechangesinbuoyancy. Otherrelatedissuestreatableinthermodynamicsincludehowliquidwaterdroplets growinhumidenvironments.Doesthepresenceofairaffectthevaporpressureabove aliquidsurface?Doestheairdissolveappreciablyintheliquid?Doesthepresenceof saltdissolvedintheliquidaffectthevaporpressure?Doesthesizeofadropletaffect itsvaporpressure?

Dynamicsofairparcels Howcanwetellwhetheragivenenvironmentaltemperature profile(functionofaltitude)leadstostableconditionsorunstableones(doestheair starttoturnoverspontaneously)?Whatistheroleofmoistureandcloudformation inthisprocess?Asparcelsrise,theyexpandandtheirtemperaturedrops(why?). Doesthismeantheyaredenserandtheymightreturn?Whataretheconditionsfor continuedrising?Whattemperatureprofilesarelikelytoleadtosevereweather?

Atmosphericchemistry Mostchemicalreactionsintheatmospherearebetweentrace gasessuchasozoneandso-calledairpollutants,butmanyoccurbetweennatural constituents.Whatarethecriteriaforareactiontoproceedonewayoranother?How arechemicalequilibriabetweenreactantsandproductsestablishedandhowdothese equilibriumconcentrationsvaryasthetemperaturevaries?

Notes

Acompletebibliographyisgivenattheendofthebook.Alluniversitylevelphysics bookscontainafewchaptersonthermodynamics;thenumerouseditionsofSears andZemanskiaswellasthoseofHallidayandResnickandtheonebyGiancoli aregoodexamples.Manygeneralchemistrybooksalsocontainagooddescription

Introductoryconcepts ofthesubject,forexample,Whitten,DavisandPeck(1996).Thelittlepaperback titledsimply Thermodynamics byEnricoFermihassomemarvelousdescriptions ofthermodynamicstates,equilibria,etc.

Anolderadvancedbookwhichcontainsspecificapplicationstometeorology andespeciallyapplicationstocloudphysicsisthatofIrebarneandGodson(1981). Twonewerbooksonapplicationsofthermodynamicstoatmosphericscienceand oceanographyarethosebyBohrenandAlbrecht(1998)andCurryandWebster (1999).Botharepitchedatahigherlevelthanthepresenttextandbothdelvemore deeplyintomanyaspectsofthesubject.

NotationandabbreviationsforChapter1 atmpressureunit,oneatmosphere

g , gz , g0 accelerationduetogravity,itsvalueasafunctionof altitude,itsvalueatthesurface(ms 2 )

G gravitationalconstant(Table 1.1)

h height

kB Boltzmann’sconstant(Table 1.1)

L dimensionlength mb,pressureunit,onemillibar(1mb = 1hPa)

M dimensionmass

M massofamacroscopicobjectorsystem(kg)

ME massoftheEarth(kg)

NA Avogadro’snumber(Table 1.1)

p pressure(Pa,hPa)

Paunitofpressure,1Pa = 1Nm 2

R, RG , Rd , Rw , R∗ gasconstants:nosubscriptindicatesforanunnamedgas, sometimesexplicitlyforaspecificgas,G;thesubscriptd fordryair,wforwatervapor,andthesuperscript*for theuniversalgasconstant(Table 1.1)

SIStandardInternationalsystemofunits

T dimensiontime,alsoperiodofarepeatingprocess,and temperature

Temp dimensiontemperature

v speed(ms 1 ),sometimeswithasubscriptindicating velocitycomponentalongacoordinateaxis(e.g., vx )

V volumeofasystem(m3 )

Problems

1.1Ausefulmathematicalmodeloftheverticaldependenceofpressureis p(z ) = p0 e z /H

where H iscalledthe scaleheight H isusuallybetween8and9km.Whatisthisin thousandsoffeet?Comparetothealtitudeoftypicaljetairflights.

1.2Whatistheratiooftheatmosphericscaleheight(Problem1.1)totheEarth’sradius?

1.3If p0 is1000hPa,whatisatypicalpressureinDenver(milehighcity)?Usethe expressioninProblem1.1with H = 8kmwith1mile = 1.6km.

1.4(a)ComputethecircumferenceoftheEarthattheEquatorinkm.(b)Howmanykm arethereperdegreeoflongitudeattheEquator?(c)Howmanykmarethereperdegree oflongitudeat30◦ N?

1.5Anumericalmodeloftheatmospherehashorizontalresolution(gridboxes)2◦ × 2◦ . WhatistheareaofoneoftheseboxesattheEquator,andat30◦ N?

1.6Usetheconservationofenergytoshowthatforaparticlefallingundergravityfrom restataheight z0 ,atheight z itsvelocityisgivenby

2 = 2g (z0 z )

where g istheaccelerationduetogravity(9.81ms 2 ).

1.7Newton’sLawofGravitysaysthattheforceonaparticleofmass M is

Usethefactthattheaccelerationofgravityatthesurfaceis g = 9.81ms 2 alongwith themassoftheEarth ME = 5.983 × 1024 kgandtheradiusoftheEarthof6365km tocomputethegravitationalconstant G (seeTable 1.1).

1.8AparticlefallsfromouterspacetotheEarth’ssurface.Farawayitspotentialenergyis zero.AttheEarth’ssurfacethepotentialenergyis GME M/RE =−MgRE (relative to r =∞)where ME istheEarth’smass, RE itsradiusand M isthemassinquestion (seeTable 1.1).WhatisthevelocityofthemasswhenitstrikestheEarth’ssurface? (Thisisexactlytheverticalvelocityitwouldhavetohaveifitweretoescapethe Earth’sgravityfieldafterbeingprojectedupwardsfromthesurface.Itiscalledthe escapevelocity.)

1.9Supposeaparticleisdroppedfromaheight h anditbounceselastically(i.e.,nokinetic energyislostinthecollision: vafter =−vbefore ).Howlongdoestheroundtriptake?

Gases

2.1Idealgasbasics

Gasesareaformofmatterinwhichtheindividualmoleculesarefreetomove independentlyofoneanotherexceptforoccasionalcollisions.Mostofthetimethe individualmoleculesareinfreeflightoutoftherangeofinfluenceoftheirneighbors. Gasesdifferfromliquidsandsolidsinthattheforcebetweenneighbors(onthe averageovertime)isveryweak,sincetheintermolecularforceisofshortrange comparedtothetypicalintermoleculardistancesfortheindividualgasmolecules. IfanimaginaryplateisheldverticallyinagasasshowninFigure 2.1,therewill beaforceexertedonthethinplatefromeachside.Theforcesonoppositesidesofthe insertedplaneareequal;otherwise,ifforcesontheopposingsideswereunbalanced, theplatewouldexperienceanacceleration.Theforceontheleftsideoftheplate iscausedbythereflectionofmoleculesastheyhittheleftfaceoftheplateand rebound.Theseimpulsiveforcesaresofrequentthattheresultingmacroscaleforce iseffectivelysteady.Theforceisperpendiculartothefaceandhasthesamevalue nomatterhowthefaceisoriented.Thiscanbeseenbyconsideringthecollisions withthewallandthetendencyfornomomentumtobetransferredparallelto theplanesurface.Theperpendicularcomponentoftheforceperunitareaonthe planeiscalledthe pressure.Tangentialcomponentsoftheforcecancelout(when averagedovermanycollisionswiththewall)andthereforevanishwhenaverages aretakenoveralargenumberofcollisionswiththesurface.Thepressurehasunits ofnewtonspermetersquaredorNm 2 ;1Nm 2 iscalledapascal,abbreviated Pa.AtmosphericscientistsusehPa(hectopascals1hPa = 100Pa)ortheequivalent mb(millibars).ThemoreappropriateunitwouldbethekPa,butthisisnotused muchinpractice.Anewtonistheforcenecessarytomaintainanaccelerationof 1ms 2 ona1kgmass.Theunitsofforcemaybedecomposedtokgms 2 .

Thestateofagasischaracterizedbythreequantities:itspressure, p;(mass) density, ρ (notethatknowledgeofdensityisequivalenttoknowledgeofthe

FORCES ON A VERTICAL PLATE IN A GAS

Figure2.1Illustrationoftheforcesexertedbyagasonathinverticallyoriented plate.Sincetheplatedoesnotfeelanetforce, FL =−FR .

volumeforasingle-phasesystemofagivenmass, ρ = M/V );andtemperature, T (inkelvins).Ingeneral,thereisamathematicalrelationshipbetweenthethree variables,orthermodynamiccoordinates,calledthe equationofstate.Itisimportant torememberthatthedensityisuniformthroughoutthevolumeofagasin thermodynamicequilibrium.

The numberdensity, n0 ,isthenumberofmoleculesperunitvolume ([n0 ] = moleculesm 3 ).Theequationofstateofan idealgas isgivenby

where kB iscalled Boltzmann’sconstant:

Boltzmann’sconstantisa universalconstant independentofthemolecular species.Almostallgasesbehaveasidealgasesiftheyaresufficientlydilute. Theconditionforthisisthatthemoleculesspendalargefractionoftheirtime apartfromoneanothersothattheintermolecularforcesareactingonlyasmall fractionofthetimeforagivenmolecule.Thiswillbecomeclearerinthenextfew sectionswheresomeestimatesofintermolecularspacingsanddistancesbetween collisionsarecomparedtothesizesofthemolecules.Typicalintermolecularforces forneutralmoleculesareappreciableonlyoverdistancesoftheorderoftheradius

ofamolecule.Thisistobecontrastedwiththelong-rangeelectricalforcesofan ionicspecies(Coulomb’sLaw)wheretheforcesareoflongrange,varyingasthe inversesquareofdistance.

Example2.1 Agasisatstandardtemperatureandpressure(referredtoasSTP: p = 1atm = 1013hPa, T = 273.16K).Whatisitsnumberdensity?

Answer: n0 = p/(kB T ) = 2.69 × 1025 moleculesm 3 .Thisvalueiscalledthe Loschmidtnumber.

2.1.1Intermolecularspacing

Theapproximateintermoleculardistancecanbefoundbytakingthemoleculesat aninstantoftimetobeuniformlydistributedinspacewithnumberdensity n0 . Placeacubearoundeachmoleculeinthegas.Theneachmoleculesitsatthecenter ofacubeofsidelength d .Thenumberofthesecubesperunitvolumeis n0 .The volumeofoneofthemis d 3 = 1/n0 ;or d ≈ 1/n 1/3 0 = 3.34 × 10 9 m = 3.34nm (atSTP).Notethattheradiusofamolecule r0 isonlyafewtimes10 10 m = 0.1nm (severaltensoftimeslessthantheintermoleculardistance).Inaliquidorasolid intermoleculardistancesareontheorderofthemolecularsizes(seeTable 2.1).

Atomicrefresher TheBohratomhasradius a = h2 0 /π me Q 2 e ,where 0 = 8.85 × 10 12 Fm 1 (permittivityconstant), h = 6.63 × 10 34 Js(Planck’s constant), Qe = 1.60 × 10 19 C(electroncharge), me = 9.11 × 10 31 kg(electron mass).TheBohrradiusforahydrogenatomis a = 5.29 × 10 11 m = 0.0529nm. MosthighschoolorcollegechemistrybooksdescribetheBohrmodelofthe hydrogenatom.

2.1.2Meanfreepath

Theaveragedistanceamoleculetravelsinthegasbeforecollisioniscalledthe mean freepath.Toobtainanestimateofthemeanfreepathimaginethebackground gasparticlestobestationary.Takeourtestmoleculeofradius r0 tobemoving throughthelatticeoffixedpointsusedinthelastsubsection.Acollisionbetween ourprototypemoleculeandabackgroundmoleculewilloccurwhentheircenters arewithin2r0 ofeachother(Figure2.2).Wecanthinkofthetestmoleculehaving radius2r0 andthelatticecomposedofstationarypoints(seeFigure 2.3).Hence,as thetestmoleculemovesthroughthelatticeitsweepsoutacylinderofradius2r0 . Intime t thevolumesweptoutis (2r0 )2 π × v t (numberperunitvolumetimes volume).Thecross-sectionalareaofthesweeperissometimesgiventhesymbol σc andcalledthe collisioncross-section (seeTable 2.2).Thenumberofbackground

Figure2.2Atthemomentofcollisiontwosphericalmoleculeshaveadistance betweentheircentersof2r0 .

Figure2.3Asamoleculemovesadistance v t ,itencountersallthepointcenters inthevolumeofthecylinderwhoselengthis v t andwhosecross-sectionalarea is4π r 2 0 .Thenumberofpointcentersinthevolumeis n0 4π r 2 0 v t

moleculecentersinthiscylinderis n0 × σc v t (numberperunitvolume × volumeof thecylinder).Thenthenumberofcollisionsperunittime(thecollisionfrequency)is fcoll = n0 σc v [collisionfrequency].(2.3)

Wemaycalculatetheaveragedistancebetweencollisionstobethe[distanceper unittime] = [velocity] × [thetimebetweencollisions](thislastfactoristheinverse ofcollisionfrequency):

[meanfreepath,approximateform].(2.4)

TheGreekletter λ isusedinmosttextstodenotethemeanfreepath.Actually, itispossibletosolvetheproblemwhenalltheparticlesareinmotion,andthe derivationcanbefoundinbooksonthekinetictheoryofgases.Thesameformula occursforthemeanfreepathexceptforanadditionalfactorof √2 = 1.414 ... in thedenominator:

[meanfreepath,moreexactform].(2.5)

Table2.1 Somecharacteristiclengthsinthe kinetictheoryofgasesatSTP(allinunitsof nanometers, 10 9 m)

BohrIntermolecularMeanWavelengthof radiusspacingfreepathyellowlight 0.0533.352500

Table2.2 Somecollisioncross-sections σc forgasesof interestinnm2

Forinterspeciesestimatesusetheaverage.Datafrom AtkinsanddePaula(2002).

Foratypicalgas r0 = 2 × 10 10 m(0.2nm)andthus, σc = 4π r 2 0 ≈ 5 × 10 19 m2 (0.5nm2 ).Using n0 fromabovewehave λ ≈ 5.23 × 10 8 m(52.3nm),which isaboutanorderofmagnitudemorethantheintermolecularspacingatSTP (Table 2.1).

Example2.2 Takeasamodelfortheverticaldependenceofnumberdensity:

where z isthealtitudeabovesealeveland H iscalledthe scaleheight (typically 8kminmidlatitudes,butupto12kminthetropics).Ourexponentialmodelwas justcookedup,butitturnsouttobeaverygoodapproximation.Whataretypical meanfreepathsat z = 0, H ,2H ,takingSTPat z = 0?

Answer:

Then: λz =0 = 52nm, λz =H = 141nm, λz =2H = 384nm.

Fromthepreviousexampleweseethatthemeanfreepathisstillverysmall comparedtoourfamiliareverydaysizesofthings,especiallyweatherphenomena, evenataltitudesofseveralscaleheights(wellintothestratosphere).Whenthe dimensionsofthebodyofgas(say,astormoracoldairmass)arelargecompared

tothemeanfreepath,wecanignorethemolecularmotionsandtreatthegasasa fluid,obeyingthemacroscopiclawsoffluidmechanics.Thisisusuallythecasein atmosphericscienceuptoaltitudesofabout100km.

Themeanfreepathalsogivesusanideaofthelengthscalesoverwhichtransport ofpropertiesoccurs.Ifapropertyistransportedviacollisionsbetweenmoleculesit hastohappenoverlengthscalescomparabletothemeanfreepath.Suchprocesses aresaidtobediffusive,andtheyareratherslowcomparedtosomefluidmotions suchasconvection.

2.1.3Pressurefromkinetictheory

Anintuitivefeelingforthepressureofanidealgascanbegainedbyconsideringa gasenclosedinacubicalboxofedgelength L (seeFigure 2.4).Imagineamolecule goingleftandrightacrosstheboxandbouncingbackatthewalls.Aroundtriptakes atime2L/v0 where v0 isthespeedofthemolecule.Atareflectionitexperiences achangeofmomentum (m0 v0 ) = 2m0 v0 .Eachreflectionimposesanimpulsive forcetothewall(seethephysicsrefresherbelow).Thefrequencyofsuchreflections (bytheentireboxofmolecules)issolargethattheforceiseffectivelysteady(we shallseelaterthattypicalmolecularspeedsarehundredsofms 1 ).Therateof suchimpulsesbyanindividualmoleculeisthechangeinmomentumdividedby thetimeintervalbetweenreflections,2m0 v0 /(2L/v0 ) = m0 v 2 0 /L.Ifwesuppose thatonethirdofthemoleculesaregoingleft-right(theothersaregoingup-down andin-out),thenthenumbergoingleft-rightis n0 L3 /3.Thetotalforceonthe wallis

Figure2.4Amoleculemovinglefttorightwithvelocity v0 iselasticallyreflected bythewall.Afterthecollisionthevelocityis v0 .Thesidedimensionofthe cubicalboxis L

Thistotalforceonthewallshouldalsobethepressure × theareaofthewallwhich canbeexpressedas

Equatingthesewehave p = 1 3 n0 m0 v 2 0 [pressurerelatedto v 2

](2.8) wheretheoverbarindicatesstatisticalaveragingovertheprobabilitydistribution ofmolecularspeeds, v0 .Sinceweknowtheequationofstateforanidealgas(from experiments), p = n0 kB T ,wecanusethisalongwiththerelationshipjustfoundto identifythecorrespondingcoefficientsandarriveatthenewrelationship: 1 2 m0 v 2 0 = 3 2 kB T [kineticenergyandKelvintemperature].(2.9)

Notethattheleft-handsideisjusttheaveragekineticenergy( 1 2 m0 v 2 0 )ofamolecule inthebox.Thisrelationshipsaysthatthe temperature expressedinkelvinsis proportionaltotheaveragekineticenergyofindividualmolecules.Thecoefficient ofproportionalityisthusdeterminedtobe 3 2 timestheBoltzmannconstant.Notethat whentheabsoluteorKelvintemperature T iszero,themoleculesareatrest(v 2 0 = 0). Allthermalmotionispresumedzeroatthistemperatureatleastintheidealgasas wehavedefinedit.Actually,thereisnosuchthingasanidealgasat0K(anyreal gaswouldhavebeenliquifiedorsolidifiedwellabove0K).Moreover,quantum mechanicstellsusthatthereismotionevenatthislowestoflowtemperatures. Fortunately,weneverencountertheselowtemperaturesinmeteorologyandthe IdealGasLawvirtuallyalwaysappliestothegasesofinterest.

Whilethederivationaboveishighlysimplifiedwithmanydetailsomitted,such asflightsthatarenotperpendiculartothewalls,distributionsofthemolecular velocities,collisionsbetweenthemolecules,etc.,thesedetailscanceloutinthe morerigorousderivation.Hence,theformulaanditsinterpretationarecorrect.

Physicsrefresher:impulseforce Whenaparticlereflectsfromarigidsurfaceit exertsaforceonthesurface.TheforceonthewallisfoundbyintegratingNewton’s SecondLawoverthetimeofthecollision: F τ = 1 τ t +τ/2 t τ/2 m0 d v (t ) d t d t where τ isthe(veryshort)timeintervalduringwhichthemoleculeisincontactwith thewall.Unfortunately,wedonotknowthevalueof τ ingeneral.However,over

longerperiodsoutsidetheinterval(t τ/2, t + τ/2)theintegrandvanishessothe integrationperiodcanbeextendedfrom t Trt /2to t + Trt /2where Trt isthelength oftimeforthemoleculetomakeitsroundtripbetweencollisionswiththewall.The forceexertedonthewallduringaroundtripofasinglemoleculeisthen

Iftheroundtriptime(Trt = 2L/v0 )isshortenough(comparedtothesluggishwall’s responsetime)thewallwillfeelanearlysteadyforceofthismagnitude.Nowifwe addthecollisionsofallthemolecules,asinthederivationofpressure,wecanbe assuredofasteadyforceperpendiculartothewall.

Thereareafewlooseendsthatmustbeaddressed.First,notallmoleculesare travelingstrictlyinthe x , y and z directions.Thiscanbedisposedofbynotingthatfor thewallperpendiculartothe x directiononlythe x componentofthemotionmatters. The y and z componentsdonotaffectthiswall.Dothecollisionsonebyonecancel their y and z componentsbeforeandafterthecollisionwiththewall?Afterall,the wallisnotasmoothsurfaceatthemolecularlevel.Theansweristhatoverthelong runandaveragingovermanyparticlesthiscancellationiscomplete.Lastly,the moleculesdonottraveluninterruptedfromoneendoftheboxtotheother.Theygo onlyonemeanfreepath(afewtensofnanometersatSTP)beforetheysuffera collisionwithanothermolecule.Thesolutiontothisproblemliesintheconservation ofmomentum.Afteracollisionthe x componentofmomentumisconservedforthe collidingpairanditisthemomentumchangeatthewallthatmatters,whetheritisthe samemoleculeornot.

InspecificapplicationssuchasmeteorologyitisusefultocasttheIdealGas Lawintoyetanotherformbymultiplyinganddividingbythemassofanindividual molecule, m0 :

where ρ isthemassdensity(ρ = m0 n0 = M/V )inkgm 3 ,andthegasconstant definedby R is kB /m0 (note:thisis not theuniversalgasconstantwhichistobe definedlater).Fordryair

Notethatthisdefinitionofthegasconstantdependsonthemassofindividual molecules m0 .Dryairisamixtureofdifferentidealgases.Thevalueof Rd takes thismixtureintoaccountaswillbeexplainedshortly.

Table2.3 Thecompositionofdryair

Table 2.3 givesthecompositionofdryairbyvolumepercentage–thisistheratio ofthenumberdensityofasubstance n0 tothetotalnumberdensity.Thesametable alsogivesthepercentagebymass–theratio(×100)ofthemassoftheconstituent inasampletothemassofthewholesample.

Example2.3 Whatisthedensityofaparcelofdryairat270Katthe500hPalevel?

Answer:Use ρ = p/(Rd T ):

Example2.4 Whatisthe rootmeansquare (rms)speedofamoleculeofairatSTP?

Answer:Wecanwrite

Example2.5 Whatisthecollisionfrequencyof“air”atSTP?(air isinquotes becauseweimaginetheaircomposedofasinglespecieswhosemolecularweight is29.0,i.e.,29timesthemassofaproton).

Answer:Weusethecollisionfrequencyformula: ≈

σc v

=

× 1025 moleculesm 3 × 5 × 10 19 m2 × 485ms 1 = 6.52 × 109 collisionss 1 .

Example2.6 Whatisthetypicalnumberofcollisionswithawallperpendicularto the x -axisperunitareaperunittime?LettheconditionsbeSTP.

Answer:Thenumberofmoleculesimpingingonthewallfromtheleftis(n0 /4)(Av ) where n0 isthenumberdensity, A istheareaofthewall(1m2 ),and v istheaverage speedofthemoleculesasshowninSection 2.3. n0 = 2.69 × 1025 moleculesm 3

and v canbetakentoberoughlythe vrms ofthepreviousexample.Hence,there areabout1027 collisionspersecondwiththe1m2 wallatSTP.Sowheredidthe divisor6comefrom?Itcomesfromacarefulintegrationoveralltheangles,etc.A simpleminded(butcorrect)wayofobtainingitistonotethat 1 3 ofthemolecules aregoinginthe x direction,butonlyhalfofthesearegoinginthe+x direction. Withorwithoutthe6,thisisaverylargecollisionrate.

Mathrefresher:probabilitydensityfunction(pdf) Thequantity P (u ) d u isthe probabilityoffindingthevariable u tolieintherange (u , u + d u ).Theprobabilityof findingittohave any realvalueisunity;thus

The mean valueof u isdefinedtobe

andits variance or meansquaredvalue isgivenby

Thevariable u iscalleda randomvariable.Intreatingrandomvariablesweconsider independent realizations ofthevariable(likedrawingvaluesfromahat).

2.2Distributionofvelocities

Obviouslythemoleculesinaboxarenotmovingparalleltothe x , y and z directions exclusively.Insteadmoleculeswillhaveinstantaneousvelocitycomponents vx , vy , and vz .Considerthe vx componentforanindividualmoleculeatagiventime. Thevalueof vx willtakeonarangeofvaluesfromonetimetothenextbecause ofcollisionswithothermolecules(itcanbethoughtofasarandomvariable). Computersimulationssuggestthatafteronlyahundredorsocollisionspermolecule theprobabilitydensityofvaluesof vx settlestoasteadyfunctionalform.Afterthis equilibration or thermalizationtime vx isfoundtobedistributedas:

Figure2.5Graphofthenormaldistributionfor σx = 1andfor σx = 2,where

σx = √R∗ T /M .Thelargervalueof σx (highertemperatureorlowermolecular weight)leadstoabroaderdistribution,butstillhasthesameareaunderit.Inthe caseofthe x componentofvelocity,thismeansthevelocityisexpressedinunits of280ms 1 at300K.Notethatthisdiffersfromthermsspeed(485ms 1 ),since weareonlyconsideringoneofthethreecomponentsofvelocity.

whichiscalledthenormaldistribution.Thenormal(sometimescalledtheGaussian) distributionoccursofteninnature.Itgenerallycomesaboutwhenthevariableis subjectedtoalonghistoryofrandomjoltsthatadduptoitscurrentvalue.After alongtime(manyadditiveincrementstothevalueofthevariable)itsprobability distributionapproachesthenormaldistribution.Thiscanbeprovedunderrather generalconditionsinmathematicalstatisticsundertheheadingofthe CentralLimit Theorem.ThenormaldistributionhasthefamiliarbellshapeshowninFigure 2.5 This probabilitydensityfunction (pdf)isnormalizedsuchthat

Theareaunderaportionofthecurvebetweentwovalues vx1 and vx2 isthe probabilityofagivenmoleculehavingits x componentofvelocitylyinginthat range.Obviouslytheprobabilityofitslyingintherange(−∞, ∞)isunity.The most probablevelocity istheoneforwhichthepdfismaximum–itiscalledthe mode ofthedistribution;themodeisthevalueof vx forwhichd P /d vx = 0.Theaverage valueof vx isgivenby

whichvanishesbecause P (vx ) isanevenfunctionontheintegrationintervaland itismultipliedbyanoddfunction, vx .

Themeansquareof vx (alsocalleditsvariance)isgivenby

andthiscanbeshowntobe

Example2.7 Theescapevelocityofamoleculeistheleastverticalvelocity vesc at whichthemoleculecanescapetheEarth’sgravitationalfield.Wecancomputethis velocitybyfindingthevelocitya(collisionless)moleculemighthaveuponfalling frominfinitytotheEarth’ssurface.Theprocedureistoequatethekineticenergyof theparticle 1 2 m0 v 2 esc tothepotentialenergyattheEarth’ssurface GMm0 /R.After cancellingthe m0 oneachsidewefind vesc = √2gR where g = 9.8ms 2 and R ≈ 6400km.Thefinalansweris vesc = 11.2kms 1 ,whichisindependentof mass(molecularspecies).

Therearemanyinterestingpdfformsthatariseinnature.Thesenexttwoexamples occuroften.Morecasescanbefoundinelementarystatisticsbooks.

Example2.8:uniformpdf

Afterperformingtheintegralswefind:

Example2.9:exponentialdistribution

Thisdistributionisgivenbytheformula

whichhasmeanvalue b andvariance b2

Wehavealreadyestablishedthevarianceforanidealgasfromtherelation (see(2.13))

Notethatthefactorof3seenbeforeisnotpresentbecauseoftheconsiderationof onlythe x componentofvelocityinsteadofallthreecomponents.

Thethreecomponentsofvelocityareactuallystatisticallyindependentofone another,andoneoftherulesofprobabilityisthatunderthesecircumstancesthe jointdistribution ofthethreevariatesisjusttheproductoftheindividualdensities:

whereexp(·) standsfore( ) .Andofcourse,thesquareofthevelocityvectorofa moleculeisgivenbythesumofthesquaresofitscomponents:

orwrittenmorecompactly

Theprobabilitydensityfunctionformolecularvelocities(2.23)iscalledthe Maxwell–Boltzmanndistribution (seeTable 2.4).

Thedistributionofvelocitieshasnodependenceondirection,onlyonspeeds (i.e.,itis isotropic).Wecangotosphericalcoordinatesinthevelocityspaceand replaced vx d vy d vz by v 2 sin θ d θ d φ d v .Sincethereisno θ or φ dependencein theintegrandwecanintegrateoverthemandthedifferentialbecomes4π v 2 d v . Thepdf(theremainingintegrand)becomesafunctionofspeedonly:

andtheintegralsnowrunfrom0to ∞.Thelastformulagivestheprobabilityof findingthespeedofamoleculeintheinfinitesimalinterval (v , v + d v ).Agraphof thisfunctionisshowninFigure 2.6.

2.2Distributionofvelocities

Table2.4 Comparisonofcharacteristicvelocityscalesfora Maxwell–Boltzmanndistribution;thevaluesareforthe“hypothetical”air molecule(M = 29)

Valueat

QuantityMathformFormula300K(ms 1 )

20040060080010001200

Figure2.6Graphofthedistributionofmolecularspeeds4π v 2 P (v ) forair molecules(M = 29)atatemperatureof300K.Thespeed v isexpressedin unitsofms 1 .Recallthattheescapevelocityis11.2kms 1 independentofmass. Thevalueoftheprobabilitydensityfunctionat v = 38σ is10 313 sm 1 ,which mighthelptoexplainwhytheEarthretainsitsatmosphere.

Itisinterestingtocomparetheescapevelocity(11200ms 1 )withthe distributionshowninFigure 2.6.Thevalueofthedistributionissome10 313 sm 1 . Thenumberofthesemoleculestoescapeevenoverthehistoryoftheplanet (4.7×109 years)isexceedinglysmall.Themedianofthedistributionmovesto higherspeedsifthetemperatureisraisedorifthemassofthemoleculesislowered. Forexample,Figure 2.7 showsthecaseofhydrogenatoms(M = 1)at350K,a valuecharacteristicofaltitudes ∼ 120km.Thevalueofthedensitydistribution attheescapevelocityis8 × 10 12 sm 1 ,andafternumericalintegrationofthe

0.00035 (v )

atomic hydrogen at 350 K 0.00005

v (ms–1)

Figure2.7Graphofthedistributionofmolecularspeeds4π v 2 P (v ) foratomic hydrogen(M = 1)atatemperatureof350K,avaluefortheupperatmosphere (∼ 120km).Thespeed v isexpressedinunitsofms 1 .Recallthattheescape velocityis11.2kms 1 independentofmass.Thevalueoftheprobabilitydensity functionat v = 11.2kms 1 is8 × 10 12 sm 1 ,andtheareaundertherestof thecurveis2×10 9 .ThisisavaluelargeenoughthatifHreachestheupper atmosphereitwillbedepletedoverplanetarylifetimes.However,Hiscontinually producedintheupperatmospherebyphotodissociation(seeChapter8)ofwater vapor.

densityfromthe11.2kms 1 toinfinity,wefindthattheprobabilityofthespeed beinghigherthantheescapevalueis2 × 10 9 .Thisisprobablylargeenoughfor Htoescape,butsmallenoughthatwatermoleculessteadilybeingdisassociated byhard(veryshortwave)solarradiationcanmaintainapresenceatveryhigh altitudes.

Example2.10 BycontrasttheMoonhasasmallerradius(0.24 rE =1737km)and mass(7.349×1022 kg = 0.01229ME )thanEarth.Thismeansthattheacceleration ofgravityis

gMoon = G MMoon /R2 Moon = 1.63ms 2 and vesc = 2gMoon RMoon = 2380ms 1 .

ThemaximumsurfacetemperatureontheMoonisabout400K.Figure 2.8 shows thedistributionofspeedsforthiscase.Theintegralfromtheescapevelocityto infinityis2.73 ×10 7 ,easilylargeenoughfortheMoontoloseitsatmosphere overitslifetime.

Figure2.8ThedistributionofmolecularairmoleculesfortheMoonat400K.The escapevelocityis2380ms 1 .

2.3Fluxofmoleculesstrikingawall

Therearemanyderivationsofelementaryprocessesinkinetictheory.Wepresent onemoreheresincetheresultcomesupoften.Wewanttoknowthenumberof moleculesstrikingawall(perpendiculartothe x -axis)perunittimeandarea.This issimplythenumberdensitytimesthe x componentofvelocityaveragedoverthe velocitydistribution.Weproceedbyfinding n0 v x usingtheMaxwell–Boltzmann distributionforthe x component(theotherfactorsforthe y and z components integratetounity).Weconsideronlythepositivecomponentof vx :

with A = (m0 /(2π kB T ))1/2 and σ 2 = kB T /m0 .Theintegralcanbeevaluated togive

Andfinally:

.(2.28)

flux/(⊥ area) = 1 4 n0 v [fluxofmoleculeshittingawall].(2.29)

Ifweapplythistoleaksthroughasmallholeinthewalltheprocessiscalled effusion.Theformulaholdswhentheholeissmallerthanthemeanfreepathofthe moleculessothattheyflowthroughtheholewithoutcollisions;otherwisethegas actslikeafluidwhenpassingthroughtheopeningandonemustusefluidmechanics methodsratherthankinetictheory.

Table2.5 Gasnotation

p pressure(Nm 2 = Pa;100Pa = 1hPa = 1mb)

V volume(m3 )

ρ massdensity(kgm 3 )

α specificvolume(m3 kg 1 ), α = ρ 1

m0 massofanindividualmolecule(kg);forH, m0 = 1.67 × 10 27 kg

n0 numberdensity(moleculesm 3 )

kB Boltzmann’sconstant:1.381×10 23 JK 1 molecule 1

MG grammolecularweight;forhydrogen, MH =1gmol 1

˜

MG thegrammolecularweightdividedby1000

Md dryaireffectivemolecularweight, Md = 28.97gmol 1

ME effectivegrammolecularweightofamixtureofgases

Mi bulkmassofconstituent i (kg)

NA Avogadro’snumber:6.022×1023 moleculesmol 1

ν numberofmolesofagas

R∗ universalgasconstant:8.3143JK 1 mol 1

Rd gasconstantfordryair:287JK 1 kg 1

R, RG gasconstantforaparticulargas,G(JK 1 kg 1 )

2.4Moles,etc.

The molecularweight, M ,ofapuregasisthesumoftheatomicweightsofthe atomsmakingupthemolecules.Themolecularweighthasdimensionsgramsper mole,denotedgmol 1 (seeTable 2.5).InkeepingwithSIunitsonemightchoose kgkmol 1 ,whichgivesthesamenumericalvalue.Forexample,themolecular weightofisotopicallypure(nodeuterium(2 H)ortritium(3 H)atomsinthegas)H2 is2andthatofCO2 is12 + 16 + 16 = 44.Thechemicalpropertiesoftheelementare determinedbythenumberofprotonsinthenucleus,whichisdesignatedthe atomic number.The atomicweight isdeterminedbythesumofthenumberofprotonsand thenumberofneutrons.Anelementcanhavedifferent isotopes,i.e.,thenumber ofneutronsmightvaryslightlyfromatomtoatom.Butthemostabundantisotope foundinnatureisusuallydominant,withonlyasmallpercentageoftheother isotopespresent.Ifwetakearandomsamplefromnaturethisleadstoaweighted averageoftheatomicweight,andthisisthevalueusedinmostcomputations. Forourpurposes,wecansimplyusethenumbersgiveninTable 2.6 whichtake intoaccountthedistributionsofnaturallyoccurringisotopes.Strictlyspeakingthe standardissetbythemostabundantisotopeofcarbonwhichisdefinedtohavea molecularweightofexactly12.000kgkmol 1 .

Thenumberofmoleculesinagrammoleiscalled Avogadro’snumber

NA = 6.022 × 1023 moleculesmol 1 [Avogadro’snumber].(2.30)

Table2.6 Selectedatomicandmolecularweightsin gramspermole(equivalentnumericallytokgkmol 1 )

Ar39.948N14.0067

O15.9994

Thenumberofmolesofasubstanceisdenotedby ν .Itisthenumberofmolecules N underconsiderationdividedby NA :

Intermsofnumberdensity(n0 = N /V ),thenumberofmolesisgivenas ν = n0 V /NA ,where V isthevolumeoccupiedbythegasinm3 .Themass(ingrams!) ofanindividualmoleculeisrelatedtothesequantitiesby m0

MG /NA ,where MG isknownasthe(gram-)molecularweightofthegasG.(Avogadro’snumberof purehydrogenatomshasamassof1g.)Thegram-molecularweightistheoneused inmostexistingtables;hence,weuseithere.ButinkeepingwithourSIunits,we needtoexpress m0 inkilogramsinmostformulas.Thustheapplicableexpressionis

0 = MG NA [m0 ingrams].(2.32)

However,

TheIdealGasLawcanthenbewritten:

since ρ = n0 m0 .Now n0 = ν NA /V ,thetotalnumberofmoleculesperunitvolume. Alsonotethat m0 (inkilograms)is ˜ MG /NA .Then

iscalledthe universalgasconstant (R∗ = 8.3145JK 1 mol 1 ).

Notetherelationship:

Inotherwords,theBoltzmannconstantisthegasconstantpermoleculewhile R∗ isthegasconstantforamoleofmolecules.Thegasconstantforaspecificgasis relatedtotheuniversalgasconstantby

Againtheuseof MG insteadof MG abovesimplyconvertstoSIunits;thisis becauseoftheconventionaldefinitionofthemoleintermsofgramsinsteadof kilograms.

Standardconditions (denotedSTP)foragasare0 ◦ Cand1atmofpressure (= 1013hPa).Itisusefultoknowthat1molofanidealgasoccupies22.4liters (1liter = 1000cm3 = 10 3 m3 )or0.0224m 3 atSTP.

Example2.11 Calculatethegasconstantfordryair.

Answer:Use(2.39)with Md = 28.97. Rd = 287Jkg 1 K 1 .

Example2.12 Calculatethegasconstantforwatervapor.

Answer:Sameasabove, Mw = 18.015, Rw = 461.5Jkg 1 K 1 .

Example2.13 CalculatethedensitiesofpuredryairandpurewatervaporatSTP. Answer:Usethegaslaw, ρ = p/RG T :

d (STP) = 1.013 × 105 Pa/(287Jkg 1 K 1 )(273.2K) = 1.292kgm 3 (2.42)

w (STP) = 1.013 × 105 Pa/(461.5Jkg 1 K 1 )(273.2K) = 0.803kgm 3 (2.43)

Watervaporatthesametemperatureandpressureislessdensethandryair.

Example2.14 Avesselcontains1.2kgofdryairatSTP.HowmanymolesofO2 , N2 ,andArarethere?

Answer:1200g = νd Md .Then νd = 1200/28.97 = 41.4molofdryair.Weknow that νO2 = 0.21νd , νN2 = 0.78νd , νAr = 0.0093νd .Inserting,wefind: νO2 = 8.70 mol, νN2 = 32.3mol,and νAr = 0.41mol.

Example2.15 Howhighwouldamoleculewithupwarddirectedspeed485ms 1 gobeforeturningbackintheEarth’sgravityfield?

Answer:Fromelementarymechanicstheheightofsuchaflightisgivenby convertingalltheinitialkineticenergyintopotentialenergy:

mv 2 0 = mgh

or h = v 2 0 /(2g ) ≈ 12000m = 12km.Thisisjustlargerthanthescaleheightofthe atmosphere.

Example2.16 Whatistheaverageforceexertedbyamoleculeofmass m0 making elasticreflectionsonthefloorundertheinfluenceofgravity?

Answer:Letthemoleculefallfromaheight h.Thetimeforitsfallis t = 2h/g . Itsspeeduponimpactis v0 = 2gh.Themomentumchangeonareflectionis 2m0 v0 = 2m0 2gh.Theforceexertedontheflooristhen2m0 v0 / t ; t isthe timeforaroundtripupandbackdownbythemolecule.Wefinallyobtain,

Inotherwords,theaverageforceonthefloorisjusttheweightofthebouncing molecule.Notethattheresultisindependentoftheinitialdroppingheight h.Isit anywonderthatatmosphericpressuremeasurestheweightofairinthecolumn aboveasquaremeter?

2.5Dalton’sLaw

Dalton’sLawdealswithamixtureofidealgases.Itstatesthatthe partialpressures oftheindividualconstituentgaseouscomponentsareadditive.Baseduponthe kinetictheoryderivationaboveitisnotsurprisingthatthepressureswouldbe additiveformixturesofidealgaseswithdifferentmolecularmasses m1 , m2 , .... Writingtheexpressionforthesumofpartialpressures,

Onceweacceptthisrulewecancomputetheeffectivegasconstantforamixtureof gases.Todosowesubstituteforthepartialpressureofthedifferentconstituents:

Aftermultiplyinganddividingthroughby ρ ,themassdensityofthemixture,

Afternotingthatthevolumesarethesamefor ρi and ρ ,wecanwrite

Notethatthecoefficientsinthelastequationaremassfractions,notmolefractions. Itmightbenecessarytocalculatethe effectivemolecularweight ofamixture(as wehaveused Md = 29gmol 1 fordryair).Wecanstartwith

where M isthemolecularweight(kgmol 1 ).Nowreturnto(2.49)andset

Thisleadsto

Asachecklet Reff = 287Jkg 1 K 1 ,andwefind Meff = 0.029kgmol 1 = 29gmol 1 .

Example2.17 Anargonatmosphere.Whatis RAr ?

Answer: RAr = R∗ / ˜ MAr = 8.31 × 103 JK 1 kmol 1 /39.94kgkmol 1 = 208.2JK 1 kg 1 .

Example2.18 WhatisthedensityofargongasatSTP?

Answer: ρ = p/(RAr T ) = (101325Pa)/(208.2JK 1 kg 1 × 273K) = 1.78kgm 3 .

Example2.19 Supposetheatmosphericdensityisgivenby ρ(z ) = ρ0 e z /H ,where z isaltitudeabovesealevel, ρ0 = 1.2kgm 3 and H isthescaleheight,nominally 10km.Whatisthemassofairabove1m2 atsealevel?

Answer:d m foraslabofthicknessd z is ρ(z )A d z where A isthehorizontalcrosssectionalareaoftheslab.Addingupalltheinfinitesimalslabsinthecolumn amountsto M = ∞ 0 Aρ0 e z /H d z = Aρ0 H = 1m2 × 1.2kgm 3 × 104 m = 1.2 × 104 kg.

Notes

Therearemanygoodclassicalthermodynamicsbooks.Onewhichisvery readableandincludesamixofelementarykinetictheoryaswellisSears(1953). AnothermorerecentbutveryreadableaccountisbyHouston(2001).Apurely thermodynamictreatmentisgiveninthephysicstextbyZemansky(1968).Modern physicalchemistrybooksareperhapsbestfordiscussionsofgasthermodynamics, forexampleAtkins(1994).Forareadablebutrigorousdiscussionofconstraints, etc.,seeReiss(1965).

NotationandabbreviationsforChapter2

a Bohrradius

F force(N)

h Planck’sconstant(Js)

h0 initialheight

kB Boltzmann’sconstant(Table2.5)

L lengthofboxedge(m)

λ meanfreepath(m)

me electronmass(kg)

m0 massofasinglemolecule(kg)

Meff effectivemolecularweight(gmol 1 )

MG grammolecularweightofagas(gmol 1 )

M bulkmassofanobject(kg)

n0 (z ) moleculardensityasafunctionofheight(moleculesm 3 )

N totalnumberofmolecules

Nnewtons

NA Avogadro’snumber

p, pG pressure,partialpressureforgasG(Pa)

P (vx , vy , vz ) jointprobabilitydensityfunctionforvelocitycomponents

P (z ) probabilitydensityfunction

r0 effectivemolecularradius(m,nm)

R∗ universalgasconstant(Jmol 1 K 1 )

Rd gasconstantfordryair(Jkg 1 K 1 )

Reff effectivegasconstantforamixtureofgases(Jkg 1 K 1 )

Rw gasconstantforwatervapor(Jkg 1 K 1 )

ρ density(kgm 3 )

t timeinterval(s)

T temperature(K)

σ standarddeviation

σ 2 variance

σc collisioncross-section(m2 )

(u , v , w ) velocitycomponents (vx , vy , vz )

v speed(ms 1 )

v meanspeed(ms 1 )

vesc escapevelocity(ms 1 )

v 2 meansquarevelocity(m2 s 2 )

v 2 x meansquareof x componentofvelocity(m2 s 2 )

V volume(m3 )

z elevation(m)

Problems

2.1Calculatethemassofa1m3 parcelofdryairatSTP.Calculateitsmassatthesame pressurebutat10 ◦ Cand20 ◦ C.

2.2Calculatethemassofa1m3 parcelofwatervaporatSTP.

2.3Whatisthepartialpressureofoxygeninadry1mcubeofairatSTP?

2.4Whatistheweightofthe1mcubeofdryairatSTP?Innewtons,inpounds?(Note: 1kgweighs2.2lbatsealevel.)

2.5Whatisthenumberdensityofavolumeofpureoxygen(O2 )atSTP?

2.6Express Rd intermsofhPainsteadofPa.

2.7Used P (v )/d v = 0tofindaformulaforthemostprobablespeedofamoleculeat STP.

2.8Computethe vrms forO2 ,N2 ,Ar,andH2 atSTP.Comparetotheescapevelocity.

2.9Themassofacertainairparcelis1kg,itstemperatureis0 ◦ Canditoccupiesavolume of1m3 .Itisknowntohave5gofwatervaporandtherestisdryair.Whatisthe partialpressureofwatervapor?Whatisthedensityofthismoistair?Comparetothe densityofdryairatthesameoverallpressure.

2.10Acylindricalcolumnofairhasradius1km.Thesurfacepressureis1000hPa.The entirecolumnisrisingataspeedof10cms 1 .Whatisthekineticenergyofthe column?

2.11Thecylinderofthepreviousproblemisrotatingaboutitsaxisofsymmetryatarateof 2π radiansperday(1day = 8.64×104 s).Whatisitsrotationalkineticenergy?(Hint: Themomentofinertiaofacylindricalslabis I = 1 2 mR2 ;kineticenergy = 1 2 I ω 2 where ω isangularvelocityinrads 1 .)

2.12Supposethenumberdensityofmoleculesinacolumnofairisgivenby n0 (z ) = n0 (0)e z /H .Whatisthetotalnumberofmoleculesinacolumnwithunitcrosssectionalarea?Whatarereasonablevaluesfor n0 (0) and H ?UseSTPat z = 0.

2.13Giventheconditionsofthelastproblemandareasonablevaluefor σc whatisthe approximatealtitude zH forwhichthemeanfreepath, λ,isequalto H ?

2.14Giventhatthemoleculesinacolumnofairaredistributedverticallyasinthelasttwo problemsandthatthetemperatureisconstantinthecolumnat T0 ,whatisthetotal gravitationalpotentialenergyinthecolumninJm 2 ?

2.15Supposethecolumnofairinthelastproblemisisothermalatatemperatureof300K. Whatisthetotalkineticenergyofthemoleculesinthecolumn?

2.16Comparethecollisionfrequencyof“air”moleculesatSTPtothefrequencyofyellow light.Notealsoforcomparisonthatthelifetimeofanexcitedstateofanatomisabout 10 8 s.

TheFirstLawofThermodynamics

Ofteninmeteorologywedealwithafixedmassofagaswhosevolumeandother characteristicsmaychangeastheairmassmovesabout.Theparticularmassof gasmaybethoughtofasasmallparcelofmatterthatistransportedthroughthe environmentbynaturalforcesactinguponit.Wecouldalsoimaginemovingit virtuallyviaanabstractthoughtexperiment,forexampletodetermineitsstability undersmallperturbations.Asanairparcelrisesforwhateverreasoninthereal atmosphere,itwillalmostinstantaneouslyadaptitsinternalpressuretotheexternal pressureexertedbythelocalsurroundings,butthetemperatureandcomposition adjustmoreslowly.Inconvection,entrainmentofneighboringairalsospeedsup theprocessofequalizingthetemperaturebetweeninsideandoutsideair.Stillthere isahugeseparationofequalizationtimesbetweenpressureandtemperatureand/or tracegasconcentrations.Thistimescaleseparationhasmadetheparcelconcept ausefulandevenpowerfultoolintheatmosphericsciences.Wewillreturntoit often.

Thermodynamicsisconcernedwiththe stateofasystem (anexampleofwhichis theparcelalludedtoabovenowtreatedasanapproximatethermodynamicsystem) andthechangesthatoccurinitsstatewhencertainprocessesoccur(suchasits beinglifted).Inthecaseofaparcelcomposedofanidealgas,thestateiscompletely describedbythestatevariables p, V , M and T (actuallyinequilibriumonlythree variablesneedtobespecified,sincetheequationofstateintheformoftheIdeal GasLawcanbeusedtocalculatethefourthfromknowledgeoftheotherthree).In practiceinourapplicationsusingparcels,thetotalmass M(M = i Mi where i indicatesdifferentspeciessuchasO2 ,N2 ,etc.)isusuallyalsoheldfixed(unless otherwisespecified),makingonlythreestatevariables.Therearesomeotherstate variablesmoredirectlyrelatedtoenergeticsthatareconvenientforcertainpurposes andmuchofthischapterwillbeconcernedwiththefirsttwoofthem, internalenergy and enthalpy.

Figure3.1Illustrationofanexpansionofthesysteminthe x directionbya distance x .Theforceexertedbythesystemonthemovablewallis pA,where A istheareaofthewall.Theworkdonecanthenbeexpressedas pA x = p V where V isthechangeinvolumeofthesystem.

Themostbasicenergeticquantitytoconsideristhe work performedbythegas onitssurroundingsduringanexpansionofthesystem’s(e.g.,theparcel’s)volume (seeFigure 3.1).Ifthesystem(whoseshapewetaketobethevolumedefinedby thecylinderofFigure 3.1)expandsinthe x directionbyadistance x ,thenthe forceexerted on theenvironmentis F = pA,where A istheareaofthemovable wallinthecylinderand p isthepressurethesystemexertsonthewall.Theamount ofworkdonebytheparcel on theenvironmentinthisinfinitesimalprocessis 1

workdonebythesystem = F x = pA x = p V

where V istheinfinitesimalchangeinvolumeassociatedwiththeexpansionin the x direction.Theexpansionneednotbesolelyalongthe x -axisasshowninthe figure,butcanbeadistortioninanyoralldirections.Theformula W = p V still holdsforinfinitesimal V

Ifthepressureisnotconstantduringtheexpansion,wemustsumthe contributionsfromasequenceofinfinitesimalexpansions

VA →VB =

[expansionworkdonebythesystem].(3.1)

Onacoordinateplanewithpressureandvolumeasordinateandabscissa,thework performedistheareaunderthecurveof p versus V (Figure 3.2).Thismakesit clearthattheamountofworkdonebythesystemonitsenvironmentdependson thepathtaken p = p(V ),whichdefinesacurveintheplane.Onemightimagine acyclicprocessinwhichthesystemexpandsfrom VA to VB alongonepathand returnsalonganotherpath.Theareabetweenthetwocurvesrepresentsthenetwork

1 Inthistextweusethesignconventionthatpositive W meansworkdone by thesystemonitsenvironment. Sometextbooksusetheoppositesignforworkdonebythesystem.

Area = Work

Figure3.2Graphofpressure p versusvolume V foranexpansionofagaseous systemfrom VA to VB alongaspecifiedcurve p(V ).Theareaunderthecurveis theworkperformedbythesystemontheenvironment.

Work

Figure3.3Graphofpressure p versusvolume V foranexpansionofagaseous systemfrom VA to VB alongaconstantpressurepath(isobaricpath).Thearea underthecurveistheworkperformedbythesystemontheenvironment.

donebytheparcelonitssurroundingsduringthecyclicprocess.Whentheparcel’s volumedecreases,itdoesnegativework.

Example3.1 Considerasystemcomposedof2kgofdryairat0 ◦ C.Letthesystem expandisobaricallyfromitsinitialvolumeof1m3 to3m3 .Howmuchworkis donebythesystem?(SeeFigure 3.3.)

V
V

Answer:Theamountofworkdonebythegaseoussystemonitsenvironmentis givenbytheformula

where VA = 1m 3 and VB = 3m 3 , pA = ρ Rd TA .Thedensityisgivenby2kg/1m3 , TA = 273K, Rd = 287Jkg 1 K 1 ;hence pA = 1.57 × 105 Pa.Finally, W = 3.13× 105 J = 313kJ(kilojoules).

Example3.2 Howmuchdoesthetemperaturechangeduringtheaboveprocess?

Answer: TB = pA /(ρB Rd ).Wecancompute ρB = mass/VB = 2kg /3m 3 = 0.667 kgm 3 .Then TB = 820K.Obviouslyanisobaricprocessleadingtoatriplingof volumeisveryunlikelyintheatmosphere.

3.1Reversibleandirreversiblework

Intheprecedingweassumedthattheworkdonebythesystemwasalonga well-definedpath p(V ).Actuallythisisaratherstrongassumption–thatat eachinfinitesimaladjustmentthecurve p(V ) exists.Weareimplicitlyassuming thatweareinastateofthermodynamicequilibriumateachstep–inother wordsthesystemhastimetocometoequilibrium(i.e.,uniformtemperature throughout,etc.)beforethenextinfinitesimalstep.Inrealprocessessuchas thecompressionofapistoninaninternalcombustionengine,thegasinthe chambermightbehighlynonuniformandlocallydisturbedbysuchthingsas shockwavesduringthenextchangeinvolume(perhapstheequationofstatedoes notevenholdduringthisintervaloftime).Foran irreversiblechange suchas intheinternalcombustionengine,anamountofworkwillbedone,butitmay notbecalculableusing p d V .Inmoreadvancedbooksonthermodynamicsitis shownthatwhenthesystemdoeswork(forexamplebyexpansion) p d V isthe maximumwork thatcanbedone.Butwhenthesystemiscompressed,thereversible (calculable)work( p d V )istheminimalworkdonebythesystemduringthe compression.Inthehighcompressionenginetheamountofworkdoneisseldom morethan75%oftheestimatebasedonthereversibleassumption.Theunfortunate mechanicalengineersimplycannotwininthefaceofirreversibleprocesses. Luckily,mostnaturalprocessesofinteresttotheatmosphericscientistarebetter behaved.

Theidealizationof reversiblework allowsustodocalculationsusing p d V even thoughinrealityitneverquiteworksthatway.Inmostapplicationsthatfollowin thisbooktheassumptionofreversibleworkisadequate.

3.2Heatingasystem

Intheexpansionprocessundergonebyaparcel(fixedmass)inmoving from(VA , pA )to(VB , pB ),theparcelwilldosomeworkontheenvironment, VB VA p(V ) d V .Duringthisprocesssomeenergymightbetransportedintothe systembecauseofatemperaturedifferencebetweentheinteriorofthesystemand thesurroundingenvironment.Thisenergytransportedintothesystemis thermal energy 2 asdescribedinChapter2.Thermalenergyconsistsofallthemodesof energyassociatedwithindividualmolecules:translationalkineticenergy,rotational energyforpolyatomicmoleculesandvibrationalenergy(potentialandkinetic) forpolyatomicmoleculesthatexperienceinternalstretchingoscillations.These individualenergytermseachcontributetothethermalenergyofamolecule(but onlythetranslationalkineticenergycontributestopressure).Infact,theenergyon theaverageissharedequallybetweenthedifferentmodes(translationalkinetic, etc.),althoughatatmospherictemperaturesthevibrationalmodesarenotexcited becauseofquantumthresholdeffects.3

Thistransportofheatiseffectedatthemolecularlevelbythecollisionsof individualmolecules.Ifthereisagradientoftemperature,moleculesfromthe warmerregionwillpenetrateadistanceoftheorderofameanfreepathbefore sufferingacollisionintothecoolerregion(andviceversa),causingthecoolerregion towarm;moleculesmovingtheotherwaycausethewarmerregiontocoolthrough individualcollisions.Therandommotionsofmoleculescrossingtheboundary bringthenewsoftheirdifferent“temperature”viaa randomwalk process(each stepforwardorbackwarddeterminedbytheproverbialflipofacoin).Thenews andconversionarebroughtaboutslowlybutsurely.Thedistanceadvancedby thespreadingedgeofa“warmfront”atthemolecularlevelisproportionalto thesquarerootofthetimeelapsed.Thisisinstarkcontrasttothepropagationof pressuredifferenceswhichmoveviaasound-likewave(distanceofadvanceofthe pressurefrontbeingproportionaltotime).Toobtainanideaofthiscontrastconsider aone-dimensionalgas(x directiononly)andletaninstantaneoushotspotdevelop at x = 0(perhapsafirecrackerexplodes).Itispossibletosolvethisproblem analytically,butthedetailsneednotbegivenhere.Thebasicideaisthatheatflux

2 Inmosttextsthisthermalmotionisreferredtoas heat asthoughitwereamaterialsubstancemovingaround inspace,butsomeauthors(e.g.,BohrenandAlbrecht 1998)shuntheuseofthenoun heat infavoroftheverbs heating or cooling asatransportprocessinvolvingtheenergizingofneighboringmoleculesbytheiraggregate beingincontactwithanaggregateofmoleculesofadifferenttemperature.Wewillusetheterm heat tomean theintegralovertheheatingratewithrespecttotime.Justkeepinmindthatheatisnotafluidflowingaboutin themedium.

3 Theenergylevelsinquantummechanicsarediscreteandthedisturbingcollisionsneedtohaveasufficient energytransfertoeffectatransitiontothenexthigherenergylevel.Typically,rotationallevelsarecloselyenough spacedforthemtobeexcited,butvibrationalthresholdsaremuchhigher,requiringveryhightemperaturesfor excitation.

Figure3.4Spreadinmetersofalocalizedpulseofthermalenergydue(only) tomolecularthermalconductivityinairatSTPafter2handafter12h.The functionalformisthenormaldistributionwithstandarddeviation σ = √2Dt , where D = κH /ρ cp ≈ 2 × 10 5 m 2 s 1 and t istimeinseconds.

isproportionalto κH d T /d x ,where κH isthe thermalconductivity ofair(≈0.024 Jm 1 s 1 K 1 ).Thepulsespreadsoutintheshapeofanormaldistributionasshown inFigure 3.4.Thestandarddeviationofthespreadoftheelevatedtemperaturesis onlyabout3mafter12hours.Thismeansthattheconceptofparcelintegrityfor objectsoftheorderofseveralhundredmetersissafefordaysiftheonlystirring mechanismismoleculardiffusion.Thereareothermechanismsthatcanshorten thetimeofmixingdependingontheconditions,butthesearestillusuallyslow comparedtotheadjustmentoftheinteriortotheexteriorpressure.Notethatsound wavestravelatseveralhundredmeterspersecond.Theadjustmentofpressures shouldbeaccomplishedinseveralhundredpassesofsoundwavesbackandforth acrosstheparcel–stillveryfastcomparedtomolecularandeveneddy(turbulent) transportprocesses.Thesoundwavesareeventuallydissipatedintothermalenergy.

Thermalenergyorheataswehavebeendiscussingitcannowbecontrastedwith the work beingdonebyasystemduringaprocess.Thethermalenergyisatthe molecularlevelanditmigratesfromplacetoplaceviagradientsinthetemperature (sayfromthesystemtoareservoir),whileworkisatthetrulymacroscopic level.Workisperformedwhenoneofthemacroscopicdimensions(sometimes called configurationcoordinates),saythepositionofapiston,isalteredafinite (macroscopic)amount.

Returningtooursystem,heatcanbetransportedintoitbecauseofsmall differencesintemperaturebetweenthesystemanditsenvironment.Theamountof heattakenintothesystemduringafiniteprocessistraditionallygiventhesymbol Q . Wesay 4 QA →B asthesystemmovesfromthestatedenotedAtothestatedenotedB.

4 Notethatinournotationifapositiveamountofheatis absorbed bythesystemthen QA →B isassigneda positivevalue.Thisisthesignconventionfollowedbyvirtuallyalltextbooks.

Considerfirstthesimpleheatingofaparcelwherethevolumeisheldfixed(an isochoric process).Theparcelisheatedbyanamount QA →B anditstemperature undergoesachange T = TB TA .Theheatenergyabsorbedandthetemperature changearerelatedwiththecoefficientofproportionalitybeingthemasstimesthe specificheatcapacitycv (unitsJkg 1 K 1 ); Cv = Mcv ,where Cv (unitsJK 1 )is calledthetotalheatcapacity:

[heatingatconstantvolume].(3.3)

Ingeneral, cv mightbeafunctionoftemperature,butforanidealgasitisnot. Fordryairthevalueof cv is717Jkg 1 K 1 .Inthisprocessnoworkisdoneby theparcelonitsenvironment,sincethevolumeoftheparceldoesnotchange. Alltheheatgiventothesystemgoesintoits internalenergy.Fromthemolecular relation 1 2 mv 2 = 3 2 kB T werecallthattheaveragekineticenergyofthemolecules isproportionaltotheKelvintemperature.Hence,achangeininternalenergyis equivalenttoachangeinthekineticenergy(foranidealmonatomicgas).Aswewill seelaterthekineticenergyoftranslationstillhasthesamerelationtotemperature formulti-atomicgases,buttheinternalenergyinthemulti-atomiccaseismodified (nextsection).

Inchemicalapplications(alsochemicaltextsandhandbooks)itiscommonto usethemolarspecificheatforasubstance, c v .Inthiscasethetotalheatcapacity is Cv = ν c v where ν isthenumberofmolesinthesystem.Inthisformulation:

Example3.3 Asealedroomwithwallsmadeofperfectlyinsulatingmaterialhas dimensions4m×4m ×3m.Theconditionsare p = 1000hPa, T = 300K.Whatis themassofairintheroom?Howmanyjoulesarerequiredtoraisethetemperature by1K?

Answer: M = pV /Rd T = (105 Pa × 48m 3 )/(287Jkg 1 K 1 × 300K ) = 55.7kg.

Q = cv M T = 717Jkg 1 K 1 × 55.7kg × 1K = 4.0×105 J = 400kJ.

Example3.4 Howmanykilowatthoursofenergyareexpendedinthelastexample?

Answer:1kWh = 3600kJ.Sotheresultis0.11kWh.Notethatthecostof1kWh isafewcents(US).

Example3.5 Inthelastexample,considertheeffectofthinwalls.Letustakethe wallstobewoodand1cmthick.Whatistheamountofheatnecessarytobring thesewalls(andfloor)up1◦ C?

Answer:Thespecificheatofwoodis1760Jkg 1 K 1 ,andthedensityofwoodis 600kgm 3 .Thewalls,ceilingandfloorhaveanareaof72m2 makingavolume of0.72m3 .Themassofthismaterialis600kgm 3 × 0.72m3 = 432kg.Thetotal heatcapacityofthesolidmatteris760kJ,nearlytwicethatoftheaircontained.

QA →B = Mcv T

3.2.1InternalenergyandtheFirstLaw

Whenasystemundergoesatransitionfromonestatetoanother,energypasses fromthesystemtoitsenvironmentorviceversa,sinceenergyinallitsformsis conserved(eveniftheprocessisirreversible).Thechangeininternalenergy, U , forasystemisdefinedtobe

Thedifferentialformis

wherethebarcrossingthedofd Q andd W istoremindusthatbothofthese differentialsdependonthepath(itisnotaperfectdifferentialasinmultivariable calculus,whereasdU is).InthelastexpressiondU istheinfinitesimalchangein internalenergy.Thelastequationisastatementoftheconservationofenergy.The FirstLawofThermodynamicsactuallygoesmuchfurtherandstatesthattheinternal energy U isafunctiononlyofthestateofthesystem.Fortheidealmonatomic gasthisisobviousfromoursimplekinetictheorymodelsincetheinternalenergy isthetotalkineticenergysummedoverallthemoleculesinthesystemandthisis proportionaltotheKelvintemperature.Foragivenmass,beingafunctionofthe statemeansitsvalueisuniquelydeterminedateachpointina V p diagram.Note thatneither Q nor W arefunctionsofstate.

3.3Idealgasresults

3.3.1Internalenergyofanidealgas

Inadditiontotheidealgasequationofstateanotherpropertyisnecessarytodefine anidealgas.Wemustspecifyitsinternalenergyasafunctionofthethermodynamic coordinates.Thiscanbeaccomplishedbylaboratoryexperimentstoyield:

where N isthenumberofmoleculesinthesystem.Therearemanyalternative formsofthisrelationbecauseofthedifferentwayswecandescribeanidealgas:

where kB isBoltzmann’sconstant(Table1.1), M isthemassofgasinthesystem, and f isaconstantequalto3foranidealmonatomicgas(e.g.,Ar),and f = 5 formostdiatomicgasesatroomtemperature(e.g.,air).Theinternalenergycan bedeterminedbyaseriesofexperimentsinvolvingadiabaticprocessesinwhich

U =−WA →B iseasilymeasured.Theconstant f dependsupontheinternal structureofthemolecules;itisknownasthe numberofdegreesoffreedom inthe molecule.Foradiatomicmoleculethatisverystiff(doesnotstretchandcontract underthetemperatureconditionsbeingconsidered)suchasO2 andN2 nearroom temperature,thevalueof f is5becausetherearetwomoredegreesoffreedomdue totheabilityofthemoleculetorotateinatwo-dimensionalplane,butnotaboutthe axisjoiningthetwoatomicconstituents(itsmomentofinertiaistoosmallabout theaxisjoiningthetwoatoms).Athightemperatures(notnaturallyoccurringinthe loweratmosphere)thenumberofdegreesoffreedomgoesupbytwobecauseof molecularvibrationduetothespring-likebinding.Hence,fornormalatmospheric conditionssuchasencounteredinthetroposphereandstratosphere:

f = 3idealmonatomicgas(e.g.,argon)(3.10)

f = 5N2 ,O2 nearSTP(3.11)

f = 6CO2 ,H2 Oandothernonlinearmolecules.(3.12)

Itisnotdifficulttoseewhythespecificheatshouldbelargerformoleculeswith larger f .Considertheconstantvolumeheatingcase.Ifheatingoccursinabox ofmonotonicgas,alltheenergymustgointoincreasingthelinear(translational) kineticenergyofthemolecules.Ifthemoleculeisspatiallyextendedsuchasa diatomicmolecule,itcanrotateaswellastranslate.Theaddedenergycangointo rotationalenergyaswellastranslationalenergy.Hence,theheatcapacity(amount ofheatnecessarytoraisethesystem’stemperatureby1K)willbelarger.Basically theheatenergy(thatatthemolecularlevel)mustbesharedamongallthedegrees offreedom,butonlythelinearkineticenergygoesintocausingpressuresinceit carriesmomentumtothewalls(oracrossboundaries).

Aremarkabletheoremprovedintheclassicalstudyofstatisticalmechanicsshows thatinequilibriumtheenergywillbesharedequallybetweeneachoftherotational andtranslationalmodes(andvibrationalmodeswhenapplicable): theprinciple ofequipartitionofenergy.Inthecaseofadiatomicmoleculeonlytworotational modesareavailable,therotationabouttheaxisjoiningthetwoatomsdoesnot count.Inthecaseofatriatomicmoleculeinwhichtheatomsarenotinastraight line(e.g.,CO2 ),allthreerotationalmodesareinvolved: f = 6.Moleculesactually canvibrate(stretchingandcontractinglikemassesjoinedbyaspring)aswell,and atsufficientlyhightemperaturesthesemodescanenterandraise f evenmore,but asremarkedabove,thisvibrationaldegreeoffreedomisnotimportantinmost

applicationsofthermodynamicstotheatmosphere.Ontheotherhand,suchmodes ofvibrationandrotationplayanimportantroleintheabsorptionandemissionof infraredradiationasitpassesthroughair.Insummary,eachmoleculeontheaverage possesses 1 2 kB T foreachofitsmechanicaldegreesoffreedom.For1molofsuch moleculesat300Kthisis 1 2 R∗ T = 2.5kJforeachdegreeoffreedom.Hencefor argonitis7.5kJmol 1 andforO2 andN2 itis12.5kJmol 1 .

Example3.6 Findtheinternalenergyofa1kgmassofdryairatSTP.

Answer:Wecanuse U = ( f /2)ρ Rd TV = ( f /2)MRd T0 ,where M isthemassof thegasinthesystem(here1kg)and f is5.Then U = 1.96 × 105 J = 196kJ.

Example3.7 Comparetheriseinpotentialenergyduetoliftingthe1kgparcelto 9km,approximatelyonescaleheight.

Answer:Thechangeinpotentialenergyis Mgh = 1.08 × 105 J = 108kJ.Hence thegravitationalpotentialchangeiscomparabletotheinternalenergyforaliftof onescaleheight.

3.3.2Heatcapacities

Ifasystemcomposedofanidealgasabsorbsheatataconstantvolume,its temperaturewillincrease.Sincethevolumeisheldconstant,thesystemcando noworkonitsenvironmentintheprocess,therefore

Differentiatingtheequationfortheinternalenergyofanidealgas(3.9)weobtain

Notethat R asusedinthisequationisforaparticulargassuchasdryair.The heatcapacityatconstantvolume, cv ,isproportionaltothenumberofdegreesof freedom.

Anotherimportantprocessistheheatingofthegasatconstantpressure.Inthis case

Wealsohave

Thisleadsto

If U isa functionofstate astheFirstLawclaims,5 thenitisgivenby Mcv T , andwehaveanidentity:

or

whichisaveryimportantrelationforidealgases,holdingindependentlyofthe valueof f .Thislasttellsusthatforanidealgas

That cp isalwaysgreaterthan cv hasaneasyinterpretation:someoftheheat absorbedintheisobariccaseis“wasted”bytheexpansion(workdonebythe systemontheenvironment)ratherthanbeingdevotedtoraisingthetemperature.

Example3.8 Dryair:whatare cv , cp ,usingidealgasrules?

Answer:Wehave cv = 5 2 Rd = 717.5Jkg 1 K 1 ,and cp = ( f /2 + 1)Rd = cv + Rd = (717 + 287) = 1004Jkg 1 K 1 .

Example3.9 Howmuchheatisrequiredtoraisethetemperatureofa1kg parcelofairatconstantpressure(constantaltitudeintheatmosphere)by1◦ C?

Answer: 1004J.

Example3.10 Amassof2kgofdryairisheatedisobaricallyfromatemperature of300Kto310K.Howmuchheatisrequired?

Answer:

5 Asubtlethingisabouttohappenhere:eventhoughtheprocessisoccurringatconstantpressurefromone temperaturetoanother,wecanusetheformula U = Mcv T .Thisisbecause U isafunctionofstate.No matterhowwegofrom TA to TB ,thechangein U isthesame.Hereweseeoneofthemostpowerfultools inthermodynamics,theinvokingofastatefunction’sbeingafunctiononlyofitsstate(notpath).Remember, however,thatformanysubstancesotherthantheidealgas U mightdependonmorethanjusttemperature; nevertheless,itisonlyafunctionofstate.

Example3.11 ForExample3.10,whatisthechangeininternalenergy?

Answer:

Example3.12 ForExample3.10,whatistheamountofworkdone?

Answer:UsetheFirstLaw:

Example3.13 Acolumnofdryair1kmthick(approximatethicknessofthe atmosphericboundarylayer)andunitcross-section(1m2 )isheatedbysunlight atarated Q /d t = 250Js 1 .Iftheheatingtakesplaceatconstantpressure ( p = 1000hPa, T = 300K),byhowmanydegreesperdayisthecolumnheated? (Assumetheairaboveandthegroundbelowareinsulatedfromthewell-mixedair intheboundarylayer.)

Answer: M = 1.16 × 103 kg,

whered Q /d t istherateofheating(Js 1 ).Thend T /d t = 2.14 × 10 4 Ks 1 = 18.5Kday 1 .Thisofcourseisalargerateofincreasefornormal conditions.Theassumptionof250Wistheproblem.Thenextexampleshowsa morerealisticcaseinwhichtheheatingisaccomplishedbyblackcarbonparticles intheair.Muchoftheheatingintheatmosphericboundarylayercomesfromthe absorptionofinfraredradiationaswellassolarradiationbywatervapor.

Example3.14:blackcarbonaerosolinair Supposethereare100blackcarbon particlespercubiccentimeterintheair(10 8 particlesm 3 ).Letustaketheradius ofoneoftheseparticlestobe1 µm.Thismeansthecross-sectionalareaofan individualparticleis3.14 × 10 12 m2 .Thetotalareaofinterceptingcarbonin a1m3 blockofairis3 × 10 4 m2 .(Notethatthisisonlyatinyfractionof the1m2 cross-sectionalareaofthecubeofair.)Ifthesunisstraightoverhead itsfluxis1370Wm 2 .Theheatingrateofthiscubicmeterofaerosol-loaded airisthen0.43W.Iftheairisatsealevelitsdensityisabout1.2kgm 3 ,and

cp = 1004Jkg 1 K 1 .Aftersomearithmeticwefindthattheairwillexperience anincreaseoftemperatureof1.29Kh 1 .

Calculusrefresher:thenaturallogarithm Thenaturallogof x isdenotedby y = ln x (Figure 3.5)andisdefinedby ey = x

Wecandeduceafewvalues,forexample,for x = 1, y = 0,as x →∞, y →∞ and y isonlydefinedfor x positive.As x → 0, y →−∞.Moreover, d x d y = ey = x .

Wecanturnthisintod y = d x /x ,andthenintegrate: y 0 d y = x 1 d x x whichleadstoanalternativedefinitionofln x :

Nowafewproperties.Firstthewonderfulidentity: x = eln x whichfollowsfromthe definition.Thiscanbeusedtoderiveanumberofusefulthings: ab = eln a eln b = eln a +ln b = eln ab ⇒ ln ab = ln a + ln b. x a = eln x a = (eln x )a = ea ln x ⇒ ln x a = a ln x .Finally,wealreadyfoundthat

Figure3.5Thenaturallogarithmln x asafunctionof x

3.3.3Adiabaticprocessesandpotentialtemperature

Manyprocessesinmeteorologyinvolveparcelsofairmovinginsuchawaythat noheatisexchangedwiththeenvironmentduringpassagefromonelocationto another,i.e., Q = 0.Theparceleffectivelyissurroundedbyathermallyinsulating blanket.Akeypointhereisthatittakesalongtimefortemperaturedifferences todiffuseintoaparcelfromoutsidecomparedtotherelativelyshorttimeforthe pressuresinsideandoutsidetoequalize.Thismeansthatinmanysituationswe canregardtheprocessasbeing adiabatic,thatis,isolatedfromdiathermalcontact. Inthatcaseforaninfinitesimaldisplacement

or

Thenextstepsbecomesmootherifweusetheidentity cv = cp R,leadingto:

NextweusetheIdealGasLaw

andtakenaturallogstoobtain

Takingthedifferentialswefind:

Thetermd (ln MR) disappearsbecauseitisconstant.Nowwecansubstituteinour originaladiabaticequationtoeliminatethe V dependence:

andfinally,

Afterdividingthroughby cp anddefining

wecanintegratefrom(

ortakingtheanti-log:

Inatmosphericsciencetheformula(3.36)isveryimportant;oneusuallyseesitin theform

where θ (θ = T0 at p = 1000hPa)iscalledthe potentialtemperature.Weoften seeitinthefollowingform:

Thelastequationiscalled Poisson’sequation.Itgivesthetemperaturethat aparcelofdryairwouldhaveifitwerebroughtadiabaticallytoapressure of1000hPa.Nomatterwheretheparcelliesasapieceoftheenvironment,its potentialtemperatureiswelldefined.Iftheparcelmovesadiabaticallyitspotential temperaturewillnotchange.Whenwefindaquantitydescribingthesystem(defined hereastheparcel)whichdoesnotchangeastheparcelmovesabout(inthiscase adiabatically),werefertoitasa conservativeproperty.Inpracticeparcelsdo moveadiabaticallyinconvectivemotionstoagoodapproximation.Moreover,

6 Takingtheanti-logmeansraisingeachsidetobethepowerofe: y = f (x ) ⇒ e y = e f (x ) .Nowusing x = eln x meanstheanti-logofln x isjust x

Table3.1 Importantformulasforidealgases inadiabaticprocesses

VariablesFormula

175200225250275300325

Figure3.6Dryadiabatforaparcelofairwhosepotentialtemperatureis300K. Theabscissais T inK,andtheordinateis ln (p/p0 ) = z /Ha .Thevalue z /Ha is theheightabovesealevelinunitsofthescaleheight, Ha ,whichistypicallyabout 8kminmidlatitudes.

parcelsmovinghorizontallymovealongconstant θ surfaces(isentropicmotion) (seeTable 3.1).

Tip Itmightbedifficulttoremembertheformof(3.38)(Poisson’sequation),sinceit willappearinavarietyofforms:isthe κ withanegativesign?Is p0 ontopornot? etc.Justremember:letaparcelrise,indoingso θ staysconstant,sothatas T goes down,somust p.Thiscanhelpustoobtainthecorrectformula.

Figure 3.6 showshowthetemperatureofaparcelisloweredifitisliftedin anatmospherewhosepressurefollows p(z ) = p0 e z /Ha ,whichisareasonable approximationtotheactualbehaviorofthepressure.Here Ha iscalledthescale heightoftheatmosphere.Typicallyinmidlatitudes, Ha ≈ 8km.

Example3.15 Airinajetplanenearthetropopauseistakenintotheplaneand compressedadiabaticallyfromanoutsidepressureof300hPato1000hPa.The temperatureoutsideis255K.Whatmustbedonetotheairtobringittoaninside temperatureof300K?

Answer:InadiabaticallycompressingthegastheKelvintemperatureisraisedbya factorof1.411to360K.Theairmustnowbecooledatconstantpressureto300K bytheairconditioningsystem.Recallingthat3600J=1Wh,thisrequires60kJ = 0.0167kWhforeachkilogramofairbroughtintotheplanefromtheoutside.

Example3.16 A1kgparcelofdryairislocatedatthe500hPalevelinthe atmosphere.Itstemperatureis246K.Whatisitspotentialtemperature?

Answer: θ = (1/2) 0.286 T .Wefind θ = 300K.

Example3.17 A1kgmassofdryairislocatedat500hPa.Itspotentialtemperature is θ = 300K(asabove).1kJofheatisabsorbedbytheparcelatconstantpressure. Whatisthechangeintheparcel’spotentialtemperature?

Answer:First,computethechangeintemperature, T = Q /(Mcp ) = 1kJ/ (1.004kJkg 1 K 1 × 1kg) = 0.996K.Next,usePoisson’sequationat500hPa:

Example3.18 A50kgparcelofdryairhastemperature300Katthesurface (1000hPa).Itisliftedadiabaticallytothe700hPalevel.Whatisitspotential temperature?

Answer: θ = 300K.Whatisitstemperatureatthe700hPalevel? T = θ p 1000mb κ = 300K × (0.7)(0.286) = 270.9K.(3.40)

Example3.19 Airat300Kisforcedupamountainslopeadiabaticallythrougha verticalheightof2km.Supposethepressureisgivenby p(z ) = p0 e z /H , H = 10km.Howmuchisthetemperaturechanged?Bywhatratioisthevolumeofsuch aparcelchanged?

Answer: p(2km) = p0 e 2/10 = 0.819 p0 T /300K = (0.819)0.286 T = 283K. VB /VA = (TB pA )/(TA pB ) = 1.15.

Example3.20:otherformsoftheadiabaticcurve Returningtotherelation(3.27), use R = cp cv ,thendividethroughby cv .Weobtain

where γ = cp /cv iscalledtheratioofspecificheats.Foranidealdiatomicgas(and airactslikeone) γ = 1.400.Wecanintegrateasinthetextandobtain

andfinally

Anotherformusefulinphysicsandengineeringcanbederived:

3.4Enthalpy

Inmanymeteorologicalandchemicalapplicationstheinternalenergyisnot themostidealstatefunctionfordescribingenergeticchangesduringtransitions. TheclassicalformoftheFirstLawisespeciallyusefulfortransitionsinwhich thevolumeisheldfixed(d V = 0)sincethevolume-worktermvanishes,but inatmosphericapplicationsmostchangesinthestateofaparceloccureither adiabaticallyorisobarically.Hence,itbecomesconvenienttointroduceanew functionofstatecalledthe enthalpy, H ,definedby

Takethedifferentialtoobtain

AftersubstitutingtheearlierformoftheFirstLawintermsoftheinternalenergy weobtain

Veryoftenatmosphericprocessestakeplaceatafixedpressure(altitude).These includeheatingofaparcelbysolarradiationataparticularaltitude,condensation heating,andcontactheatingatthesurface.Inthiscasetheenthalpyisavery convenientfunctiontodescribetheparcel’sthermodynamicstate.Notethatthe changeinenthalpyunderaconstantpressureprocessisjust

or

Integratingthelastequation:

where F (V ) isanarbitraryfunctionofvolumeappearinghereasanintegration constant.Wecanfindthisfunctionbynotingthat U = Mcv T andusingthe definitionof H ,(3.45),toobtain

H = Mcp T [enthalpyforanidealgas].(3.51)

Inotherwords,thearbitraryfunction F (V ) isidenticallyzerofortheidealgas. Theadiabaticprocessisexpressedas

andfortheidealgas,

and

whichwillquicklyleadustoPoisson’sequation(3.36).

Calculusrefresher:partialderivatives Thermodynamicfunctionsnearlyalways involvemorethanonevariableaswehaveseenalready,e.g., V (T , p).The“partial” of V (T , p) withrespectto p holding T constantisdefinedby

Inmostfieldsthesubscript T followingthelargeparenthesesisomitted,butin thermodynamicsitisconventional(anduseful)toretainthisreminderofwhich variableisbeingheldconstant.Sometimesespeciallyinmathematicsandphysics,the partialderivativeisdenotedbyasubscript.Forexample,let f beafunctionof x and y ,then ∂ f /∂ x = fx ,etc.Yousimplytaketheordinaryderivativebutholdallvariables constantexcepttheonebeingvaried.Forexample,taketheidealgas: V = MRT /p, then (∂ V /∂ p)T =−MRT /p2 .

Thisisagoodtimetosearchoutyouroldcalculusbookandreviewthechapteron partialdifferentiation.Animportantresulttorememberisthatifwegotosecond partialderivativessuchas fxx or fxy ,the order doesnotmatter:

The differential of f (x , y ) is

Ifwedividethroughbyd x andsetd y tozeroweobtain

Supposethefunction f (x , y ) isheldconstant.Then

= 0(3.58) andwefind

Thenotationinthelastequationwillbeencounteredoften.

Example3.21 A1kgparcelisheatedatthesurface(p =1000hPa)atarated Q /d t = 20Wkg 1 (W = watts).Whatistherateofchangeofenthalpy?

Answer:Notethatd p/d t = 0.Then,d H /d t = d Q /d t .

Example3.22 Aparcelmovesalonganisobaricsurface(constantpressure)andis heatedatarated QM /d t = 10Wkg 1 .Whatistherateofchangeof T alongthe pathofmotion?

Answer: (d H /d t ) = Mcp d T /d t = d QM /d t ;d T /d t = (d QM /d t )/cp = 10Wkg 1 /1004J 1 kg 1 = 0.01Ks 1 .

3.5Standardenthalpyoffusionandvaporization

Enthalpyisaveryusefulfunctionindescribingtheenergytransfersinprocesses involvingachangeofphase(e.g.,liquidtovapor).Enthalpyisespeciallyuseful sincetheseprocessesoftentakeplaceatconstantpressure.Anexampleisthe evaporationof1molofwater.Inthiscasethesystem(thevolumecontaining thewater)isheatedbymaintainingasmalltemperaturedifferentialwithits surroundingsatconstantpressureandconstanttemperature.Theheat(nowwe cancallitenthalpy)absorbedtoeffectthistransitionisoftencalledthe latentheat

Table3.2 Standardenthalpiesoftransitionforselected compounds

Thestandardenthalpiesoffusionandvaporizationare evaluatedatthefreezingandboilingpoints(K) respectivelyat1atmofpressure.Unitsinthistablefor theenthalpiesarekJmol 1 ,butbecarefulinusing tablessincetheunitsofenergymightbeinkcal(4.18kJ = 1kcal).InthetableTf isthefreezingpointandTb is theboilingpointat1atmofpressure.

ofvaporization intheolderliterature,butinkeepingwithcurrentconventionitis calledthe enthalpyofvaporization.Manytablesgivevaluesintermsofmolesrather thankilogramsofthesubstance.Tomakeusefulstandardizedtables,conventions havebeenadopted.Inthecaseofevaporationforexample, vap H ◦ indicatesthat 1molofthesubstanceisbeingconsidered(theoverbar)andthesuperscript ◦ indicatesthatitisatastandardtemperature(unitsshouldbeindicatedinthetable).

SeeTable 3.2.

Bydefinition,the standardenthalpyforvaporization, vap H ◦ ,istheheat transferredtothesystematconstantpressurepermoleintheprocessofvaporization ofthesubstancefromitsliquidtoitsvaporform.Thestandardquantityisdefined attheboilingpoint(373Kforwater)at1atmofpressure.

Similarlythe standardenthalpyforfusion istheheattransferredbythesystemto thesurroundingsatconstantpressurepermoleintheprocessoffusingthesubstance fromitsliquidtoitssolidform.Itislabeled fus H ◦ .Byconventionthestandard quantityisevaluatedatthefreezingpointat1atmofpressure.

Example3.23 Wehave36gofliquidwaterat373Kand1atmofpressure.We wishtoevaporatethewaterandraiseitstemperatureto473Katconstantpressure. Whatisthechangeinenthalpyforthetwosteps?(cpvap ≈ 2kJkg 1 K 1 .)

Answer:36gis2.0molofwater.Wemustthengivethesystem2mol × 40.656 kJmol 1 = 81.312Jforstep1.Step2isaheatingatconstantpressure. H2 = Mcp T = 0.036kg × 2kJkg 1 K 1 × 100K = 7.2kJ.

Example3.24 Twogramsofliquidwaterareevaporatedinto1kgofdryairat1 atmconstantpressure.Thetemperatureis300K.Whatisthechangeinenthalpy ofthesystem?

Species

Answer:Thedryairisirrelevant.Wemustdoseveralstepstoaccomplishourgoal. TousethevalueinTable3.2wemustheatthe2gofwatertoitsboilingpoint.The changeinenthalpyforthisis H1 = Mcliq T = 2g × 4.18JK 1 g 1 × 73K = 610J.Nextthewaterisevaporated: H2 = (2/18) mol40.7kJmol 1 = 4.52kJ. Instep3wemustcoolthevaporbackdowntoitsstartingtemperature: H3 = 2kJK 1 kg 1 × 0.002kg ×( 73K) =− 292.0J.Combiningallthreesteps: H1 + H2 + H3 = 4.84kJ.

Example3.25 Inthelastexample,whatisthetemperatureanddensitychangefor theoriginal1kgofairwhichholdsthe2gofliquidwater?

Answer: T = H M 1 c 1 p = 4.84kJ/(1kg1004Jkg 1 K 1 ) = 4.5K.Thechangeindensityis ρ =−p T /Rd T 2 = 105 Pa × 4.5K /(287Jkg 1 K 1 )(300K)2 = 0.019kgm 3 .Thisrepresentsa1.6%change inthedensity,enoughtocauseimportantbuoyancyeffects.

Intheseexampleswemadeliberaluseofthefactthattheenthalpyofasystem dependsonlyonitsstate,notonthepaththroughwhichthestateisfound.This freedomallowsustousestandardtables.

Notes

Mostofthegoodthermodynamicsbooksreferredtoinearlierchaptersworkwell forthisone.

NotationandabbreviationsforChapter3

cv , cp specificheats(heatcapacityperkg)atconstantvolume,pressure (Jkg 1 K 1 )

c v , c p molarspecificheats(Jmol 1 K 1 )

Cv , Cp heatcapacitiesatconstantvolume,pressure(JK 1 )

(d H )p changeinenthalpyatconstantpressure(J)

d H /d t ,d Q /d t timerateofchangeofenthalpy,heattransferrate(Js 1 )

d Q ,d W differentialsforheat,work,thebaremphasizespath dependence(J)

V changeinvolume(m3 )

fus H

◦ (X ) standardenthalpyoffusionofsubstance X (Jmol 1 )

vap H changeinenthalpyduringvaporization(J)

vap H ◦ (X ) standardenthalpyofvaporizationofsubstance X ,theoverbar indicates1molofsubstance,thesuperscript ◦ indicatesat standardconditions(usually25 ◦ C)(Jmol 1 )

x displacementin x f numberofdegreesoffreedomofamolecule

fx partialderivativewithrespectto x

F force(N)

γ ratioofspecificheats cp /cv (dimensionless)

H enthalpy(J)

Ha scaleheightoftheatmosphere

kB Boltzmann’sconstant

κ = R/cp (dimensional)

κH thermalconductivity(JmK 1 )

M bulkmass(kg)

n0 numberdensity(moleculesm 3 )

ν numberofmoles

p pressure(Pa,hPa)

d QM /d t rateofheatingperunitmass(Jkg 1 mol 1 s 1 )

R, RG , Rd , R∗ gasconstant(Jkg 1 K 1 ),gasconstantforagasG,fordryair, universalgasconstant(JK 1 mol 1 )

ρ density(kgm 3 )

T temperature(K)

θ potentialtemperature(K)

V volume(m3 )

VA , VB initialandfinalvolumes

WVA →VB workingoingfrom VA to VB

W , Q workdonebythesystem,heattakenintothesystem

Problems

3.1Suppose p(z ) = p0 e z /H .Evaluatethefollowing.

(a)d p/d z at z = H /3.

(b) ∞ 0 p(z ) d z .

(c) H H /2 p(z ) d z .

(d) ∂ p/∂ H at z = H /2.

3.2Let p = ρ RT .Evaluatethefollowing.

(a) ∂ p/∂ T .

(b) ∂ρ/∂ T .

(c) ∂ p/∂ (1/T )

3.3The compressibility ofasubstanceisdefinedby

where X isthevariablebeingheldconstant.Wecancompressthegasisothermally(κT ) oradiabatically(κθ )(θ isthepotentialtemperature).Calculatebothforanidealgas.

3.4The coefficientofexpansion isdefinedby

Compute β foranidealgas.

3.5Showthatforanygas

Hint: d V =

,seetheCalculusrefresherinthischapter.)

3.6Findtheinternalenergyof1kgofdryairatSTP.

3.7Supposetheatmospherehasitspressuregivenby p(z ) = p0 e z /H with p0 = 1atm and T (z = 0) = 273K.Nowsupposea1kgparcelisliftedadiabaticallyonescale height H .Howmuchworkdoestheparceldoontheenvironmentintheprocess? Whatisthechangeinitsspecificinternalenergy, u ?

3.8 Isobaricprocess A1kgparcelofdryairhastemperature285Kandpressure 1000hPa.Itisheatedbycontactwiththedrygroundtoatemperatureof295K. (a)Whatis Q ?(b)Whatisthechangeoftheparcel’sspecificinternalenergy?(c) Whatisthechangeintheparcel’sspecificenthalpy?

3.9 Isothermalprocess 1kgofdryairat300Kand1000hPaisexpandedisothermally (prettyunusualintheatmosphere)fromavolumeof2m3 totwicethatvalue.(a)What istheworkdonebythegasinthisexpansion?(b)Whatistheheatabsorbed?(c)What isthechangeinenthalpy?

3.10 Isochoricprocess 1m3 ofdryairat1000hPaand290Kisenclosedinarigidbox. Whatisitsdensity(kgm 3 )?3gofliquidwaterareevaporatedintothebox.What istheincreaseoftemperatureinthisboxwhosevolumeisheldfixed?Whatarethe changesininternalenergyandenthalpy?Sketchadiagramofthechangeinthe V –p plane.

3.11 Adiabaticprocess Aparcelofmass1kgisliftedadiabaticallyfrom800hPa,where itstemperatureis270K,to600hPa.Whatisthenewtemperature?Whatarethe changesininternalenergyandenthalpy?Sketchadiagramofthechangeinthe V –p plane.

3.12 Isobaricprocess Aparcelofessentiallydryairisheldatafixedaltitudewherethe pressureis950hPa.Itisheatedbyinfraredradiationbeingabsorbedbysomewater vaporintheparcel.Theheatingrateis20Jkg 1 s 1 .Whatistherateofchangeofthe temperature,specificenthalpyandspecificinternalenergy?Howdoesthepotential temperaturechangeperunittime?Sketchadiagramofthechangeinthe V –p plane.

3.13Anaircolumniscomposedofdryairandthedensityoftheairisgivenby ρ(z ) = ρ0 e z /H ,where ρ0 = 1.25kgm 3 and H = 10km.

(a)Whatisthemassofair(kg)lyingabove1m2 ?

(b)Howmanyidealized“air”moleculesareabovethe1m2 ?

(c)Thenapproximatelyhowmany“airmolecules”arethereintheentireEarth’s atmosphere?

3.14Thespeedofsoundinaircanbecomputedfromtheformula vsound = √1/ρκX ,where κX isthecompressibilityholdingtheparameter X constant.Comparethesoundspeeds (taking ρ = p/RT )when X = κT and X = κθ .Thelatterfitsthedata.Doyourecall fromphysicswhytheadiabaticcompressibilitygivesthecorrectanswerinsteadof theisothermalcompressibility?SeeProblem3.3above.

3.15Supposetheatmospheresatisfies p(z ) = p0 e z /H andthatitisisothermal(T (z ) = T0 ). Whatisthepotentialtemperature θ asafunctionof z ?Sketchagraph.

TheSecondLawofThermodynamics

TheSecondLawofThermodynamicsdealswithchangesintheconditionsof asystemanditssurroundingsundertransitionsfromonethermodynamicstate toanother.Wewillintroduceanewfunctionofstatebyconsideringasimple quasi-staticseriesofchangesforanidealgas.Firstrecallthatsomequantitiesare functionsofthestateonly,whileothersdependonthepathtakenbetweentwo states.AccordingtotheFirstLaw,theinternalenergy U isafunctiononlyof statewithchangesingoingfromstateAtostateB,denoted U ,dependingonly ontheinitialstatecoordinates(e.g., pA , VA , TA )andthefinalstatecoordinates (pB , VB , TB ).Recallthattheenthalpy H isalsoafunctionofstate.Changesinother quantitiessuchastheamountofworkdonebythesystemonthesurroundingsin the(quasi-static)transitiondependuponthepathtakenbetweenthetwostates.In thiscasetheworkdonebythesystemonthesurroundingsmaybewritten,

andthefunction p(V ) isaspecificcurveinthe V –p planedefiningthepathtaken ingoingfromAtoB.Thepathmustbequasi-staticandreversible,otherwisethe path p(V ) maynotevenbedefined,norcouldweuse pd V incomputingdW .The changeininternalenergydependsonlyonthedifference

nomatterwhatthepath(eveniftheprocessisirreversible).Forexample,inthecase oftheidealgastheinternalenergy(andenthalpy)dependonlyonthetemperature, independentofthehistoryofthesystem.Formorecomplexsystems U and H mightdependonotherstatevariablesaswell,butnotonthehistoryofthesystem. Notethattheheat(inducedbyatemperaturedifferencebetweenthesystemandits environment)takenintothesystemduringthetransitionmustalsodependonthe

Figure4.1IllustrationoftwopathsjoiningpointsAandBina V –p statediagram.

pathsince

andtheworkdonebythesystemsurelydependsonpathaswehaveseenearlier(see Figure 4.1).Nextweexplorequasi-statictransitionsofanidealgastoseewhether theremightbeanotherfunctionofthestateofthesystem.

Considerthecaseofan idealgas wherethemass M isfixed.Wecanusethe definitionoftheenthalpytoobtain:

Ifwemultiplythroughbythe integratingfactor 1/T weobtain

UsingtheIdealGasLaw, V /T = MR/p andsolvingford Q /T :

whereasbefore κ = R/cp .Thelastexpressionsaysthatd Q /T isa perfect differential.Thatis,itschangeingoingfromAtoBdoesnotdependonthepath chosenforthesequenceofquasi-staticinfinitesimalsteps.Anecessaryandsufficient conditionforthedifferentialtobeperfectisthatintegralsaroundarbitraryclosed loopsresultinnochangeinthefunction.

Calculusrefresher:perfectdifferential Suppose F isdefinedby:

where A(x , y ) and B(x , y ) arewell-behavedfunctions.Itmighthappenthatthereexists afunction f (x , y ) suchthat

ifso

istheexactdifferentialof f and

whichmeansthat F isindependentofthepathalongwhichtheintegralistaken joiningtheupperandlowerlimits.Itmightbeeasiertoseethisifweintroducea parameter t whichdefinesthecurve

(forexample,aparabola y = x 2 couldbewritten x (t ) = t , y (t ) = t 2 )thisdefinesa curveinthe x –y plane(thepath).Theintegralcanbewritten:

Example4.1 Considerthefunction

Then fx (x , y ) = y cos xy and fy (x , y ) = x cos xy .Then

Example4.2:integratingfactor Considerthefirst-orderlineardifferentialequation forthefunction y (t ):

where b isaconstantand g (t ) isagivenfunction.Nowmultiplythroughbythe integratingfactor ebt .Wecanshowthat

andtheleft-handsideisrenderedaperfectdifferential,byvirtueofourknowingthe properintegratingfactor.Nowweareinpositiontosolvethedifferentialequation byintegratingeachside:

Then

Example4.3 Considerthedifferentialexpression

Wewanttoconsiderintegralsofthisdifferentialfromthepoint(0,0)tothepoint (1,1)alongsomedifferentpaths.Firstconsiderthestraightlinepath, y = x ,which connectsthetwopoints.Then,

Nextconsidertheparabolicpath, y = x 2 ,d y = 2x d x ,whichalsopassesthrough thetwopoints:

Weobtainthesameanswerforthetwodifferentpaths.Infact,itispossibletowrite

Inotherwords,d Z (x , y ) isaperfectdifferential.Integratingfromonepointinthe x –y planetoanotheralwaysyieldsthesameanswer. Ontheotherhand,supposewehadthefunction

Thisdifferentialisnotperfect,butwiththeaidoftheintegratingfactor, y 2 ,wecan createtheperfectdifferential,d Z .

Example4.4 Inclassicalmechanicsweencounterthesameconceptwith conservativeforces,whichimpliestheexistenceofapotentialenergyfunction. Ifaforcecanbedescribedbyapotentialenergyfunction V (x , y , z ) andiftheforce, F(x , y , z ) canbewrittenasthegradientoftheforce:

Orwecanwrite

HencetheworkdoneingoingfromAtoB:

Inthecaseoftheidealgasmentionedabove,wecanusePoisson’sequation,

andinsertinginto(4.6)weobtain:

where S iscalledthe entropy.Inchemistryandphysicstheentropyisusually denoted S andtheentropyperunitmass s;insomeoldermeteorologycontextsit isdenoted φ .Theimportantthingisthatentropyisafunctiononlyofstateand thatitschangeingoingfromonestatetoanothercanbecalculatedbychoosinga reversiblepathjoininginitialandfinalstates.

Foraninfinitesimaldisplacementalongareversiblepath(forageneral thermodynamicsystem,notjustanidealgas),

Theextrasubscriptrevisaddedtoremindthereaderthatthecalculationofd Q /T mustbealongareversiblepath.Recallthatareversiblepathisoneinwhichthe infinitesimalstepsalongthepatharequasi-staticandsuchthateachcanbereversed torestorethesystemtoitspreviousstate.Inperformingthecalculation,weshould findsuchanimaginarybutrealizablepathjoiningthetwostatesforthepurposesof calculation.Ofcourse,innaturethetransitionmightbe(andoftenis)anirreversible orspontaneousonefromstateAtostateB,buttherealwaysexistsareversiblepath joiningthetwostatessothatthechangeinentropycanalwaysbecalculated.As indicatedinthelastequation,theveryexistenceofsuchafunctionofstateas definedaboveconstitutesonestatementoftheSecondLawofThermodynamics.

Inthecaseofdryparcelsofidealgas(nearlyalwayssatisfiedinthedry atmosphere)wecanusetheformula

andintermsofspecificquantities(kg 1 ):

whereanarbitraryintegrationconstanthasbeensettozero,sinceitisneveractually needed.Intheselastformulas s referstotheentropyperunitmass(unitsJK 1 kg 1 ) orthe specificentropy.Wewilluse s (unitsJK 1 mol 1 )toindicateentropyper mole.Foraparcelofdryair,knowingthepotentialtemperatureisequivalent toknowingitsentropy.Hence,thechangeinentropyforaparcelundergoinga reversibletransition(throughaseriesofquasi-staticchanges)canbecomputed simplybycomputingthechangeinitspotentialtemperature

Itisobviousthatforareversibleadiabaticprocess,thechangeinentropyvanishes, since d Q = 0alongthereversiblepath.Forso-called diabatic processes(ones inwhichsomeheatisexchangedbetweenthesystemanditssurroundings),the formuladefiningthechangeinentropycanbeused(d S = d Qrev /T ).

Example4.5 Showthatd Qrev /T = Mcp dln θ reallyworksforanidealgas.First write

Substitutingford H and V :

Afterdividingthroughby T wesimplyrepeatthestepsleadingto(4.6).

Example4.6 Computethechangeinentropyforaparcelofmass M atpressure level p0 beingheateddiabatically(e.g.,byradiationheating)fromtemperature T0 to T .

Answer:Sincetheheatingisdoneatafixedlevel,thepressure p remainsconstant atavalue p0 .Wecanproceedtocomputethechangeinentropybyusing

Example4.7 Howmuchdoesthepotentialtemperatureoftheparcelchangeinthis heatingifittakesplaceat500hPa?

TheSecondLawofThermodynamics

Answer:Since θ = T (p/p0 ) κ , p = constant = 500hPa,and p0 = 1000hPa,we have θ = T (p/p0 ) κ = (T T0 ) (500/1000) 0.287 ,foranisobaricheating process.

Example4.8 Aparcelofidealgasistakenfrom (V0 , p0 ) to (2V0 , 1 2 p0 ) byfirst(path a)expandingisobaricallyto2V0 ,thenthepressureisreducedatconstantvolume to 1 2 p0 (pathb).Whatisthechangeinentropy?

Answer:Alongpathawecompute Sa = d Q /T = Mcp

d T /T = Mcp ln2.Alongpathb, Sb = d Q /T = d U /T = Mcv T

T

/T = Mcv ln2.Now Sa + Sb = M(cp cv ) ln2 = MR ln2.

Example4.9 Usingthesameinitialandfinalstatesasinthepreviousexample, computethechangeinentropybutalongtheisothermalpathjoiningthetwostates (path c ).

Answer:Alongcwehave d Q /T = d W /T = (

)

= (MRT0 /T0 ) 2V0 V0 d V /V = MR ln2,whichisthesameasinthealternative reversibletwo-steppathchoseninthepreviousexample.

Example4.10:changeinphase Computethechangeinentropyfor1kgofwater beingevaporatedtogasat373Katconstantpressure.

Answer:Firstnotethat1kgofwateris55.56mol.Thechangeinentropyis Q /(373K).Sincethepressureisheldconstant, Q = ν vap H ◦ = 55.56mol × 40.66kJmol 1 = 2259kJ.Thechangeinentropyisthen S = 2259kJ/(373K)= 6.06kJK 1

4.2TheSecondLawofThermodynamics

ThereareseveralequivalentstatementsoftheSecondLawofThermodynamics. Forourpresentpurposesitsufficestostatethelawasfollows.

ThereexistsafunctionSoftheextensiveparametersofthesystemthatisa functionofstateandwhosechangesfromonestatetoanothercanbecalculatedby

andsuchthat

foranisolatedsystem.

Thesubscriptisagainareminderthatthecalculationmustbeconductedalong areversiblepath.

4.3Systemsandreversibility

Itistimetopauseandreviewsomedefinitions.Considera system whichis embeddedinits surroundings.Togetherwesaythesecomprisethe universe.The systemisincontactwithitssurroundingsbyvariousmovableorstationarywalls andmembraneswhichmight(ormightnot)allowfluxes(heatormass)tocross.Ifno masscrosseswesaythesystemisclosed,whereasifmasscrossesintooroutofthe volumeconfiningthesystemwesayitisanopensystem(sometimesthisiscalled a controlvolume).Sofarinthisbookwehaveonlyconsideredclosedsystems,but wewillencounteropensystemsaswell.Inequilibrium,boththesystemandthe surroundingshavethermodynamiccoordinates.Areversiblechangeisonewhichis quasi-static(takeninsmallslowstepsinsuchawaythatequilibriumismaintained; thatis,thereisenoughtimebetweenstepsforthepressureandtemperatureto homogenizethroughoutthevolumeofthesystem)andwhichcanbereversedat anypointreturningbothsystemandsurroundingstotheirformercoordinatevalues withouttheexpenditureofanyadditionalwork(moreonthisbelow).

Oftenasystemincontactwithsurroundingsundergoesaspontaneoustransition whenaconstraintisreleasedorrelaxedtosomenewconfiguration.Suchatransition isirreversible.Undermanyofthesespontaneoustransitionstheinternalenergydoes notchange,buttheentropydoes.

Example4.11: Freeexpansion Considerachamberisolatedfromtheoutsideby adiabaticwalls.Insidethechamberisawallseparatinghalfthevolumeoneach side.Thereisanidealgasononesideofthepartition,vacuumontheother.Suddenly thepartitionisremoved(slippedoutsidewayssothatnoworkisdone),suchthat thegasexpands(irreversibly)tofillthewholevolume.Whatarethechangesin internalenergy,enthalpyandentropy?

Answer:TheinternalenergymaybecalculatedfromtheFirstLaw.Thesystemdoes noworksincethevacuumexertsnobackpressureduringtheexpansion.Alsono heatistakenintothesystembecausethewallsareimpermeabletosuchatransfer. Therefore,theinternalenergydoesnotchange: U = Qfreeexp. Wfreeexp. .Note thatwewereabletoapplytheFirstLaweventhoughthepathwasirreversible. Thefactthattheinternalenergyisinvariantmeansthatinthefreeexpansion,the temperaturedoesnotchange(trueforanidealgas–inarealgasthereissome temperaturechange,eventhoughnochangein U occurs).Sincethetemperature doesnotchangewecanseethattheenthalpydoesnotchangefortheidealgas.The changeinentropymustbecomputedbyanalternativereversiblepath.Thereare many,butwecanchoosetheonealonganisothermfrom

Alongtheisotherm,d Q = d W = p d V = MRT d V /V ,therefore

Wecouldalsocomputethechangeinentropyforthesurroundings(theadiabatic walls).Itiszero.Hence,thechangeinentropyfortheuniverseis MR ln2which isapositivenumber.

Inthefreeexpansionprocessintheexampleabove,theentropyofthesystem experiencedanetincrease,whilethatofthesurroundingsdidnotchange.This isanexampleofthesecondpartoftheSecondLaw. Foranirreversibleprocess theentropyofthesystemanditssurroundings(takentogether,theuniverse)will alwaysincrease.Notethatforaninfinitesimalincreaseinvolumethatisanadiabatic freeexpansion,theentropyoftheuniverseincreases.Thismeansthatsomequasistaticprocessesareirreversible.Anirreversibleprocesscouldbedefinedasonein whichtheentropyoftheuniverseincreases.Sohowcouldanadiabaticexpansion everbereversible?Thewayoutisthatonecanimaginemakinginfinitesimal(and reversible!)expansionsatconstantvolumethenatconstantpressureinastair-step proceduretoapproximatetheadiabaticexpansioncurveinthe V –p plane,muchas anintegralcanbeapproximatedbysummingrectangularboxeswhoseupperedges approximatethecurvebeingintegrated.Inthiswayareversibleapproximationcan befoundtotheadiabaticexpansioncurve.

4.4Additivityofentropy

Theentropyforasetofthermodynamicsystemsisthesumoftheindividual entropiesoftheconstituentsubsystems.Hence,theentropiesofthesystemand itssurroundingsare additive.Thesame additivityprinciple appliestotheinternal energyandtheenthalpyandanyotheroftheextensiveparametersdescribingthe compositesystem.Theextensiveparametersvolumeandmassalsosatisfythis principle.Whenweaddupseveralsystemstoformalargersysteminwhichthe entropies,internalenergiesandenthalpiescanbeaddedup,wecallthisa composite system.Wecanexpressthisinequationform:

Example4.12:acolumnofair Wecanthinkofacolumnofairasacomposite system.Itspressureandtemperaturemightbevaryingwithaltitude z butwecan

addupthesecontributionsfromindividualslabs:

where ρ(z ) ismassdensity, u (z ) isthespecificinternalenergy,etc.

Ingeneral,iftwosystemsarebroughtinto“contact”wecansaythesumofthe internalenergiesofthesystemwillremainthesame.Bringingtwosystemsinto contactamountstoremovingorrelaxingaconstraint.Forexample,iftwogasesA andBatthesamepressureareinachamber,butseparatedbyapartition,theremoval ofthepartitionwillallowthegasestomix.Nochangeininternalenergywilloccur ifthechambercontainingbothsubsystemsisinsulatedfromitsenvironment.On theotherhand,thechangeinthetotalentropymustbezeroorpositive.Processes (eitherreversibleornot)inwhichthesumoftheentropiesofasystemandits surroundingsyieldanegativechangeintotalentropydonotoccurinnature.This principlecanbeofgreatutilityindeterminingwhichwayaprocesswillproceed whenaconstraintisrelaxedorremoved.Recallthatremovalofaconstraintmeans thatinordertorestorethesystemtoitsoriginalstateadditionalworkmustbe performedbysomeexternalagent.ThislastisreallytheessenceoftheSecond LawofThermodynamics.Solutionstoproblemsofthistypemaynotalwaysbe facilitatedbyuseoftheinternalenergyalone,sinceitmayremainfixedwhenthe constraintisremoved.Butrestorationoftheoriginalconditionsdoesrequirework, andhencechangesintheinternalenergyaloneareinsufficienttodescribewhathas happened.Itturnsoutthattheentropychangeprovidesthisadditionalinformation.

Example4.13 HowcouldwerestorethegasinExample4.11toitsoriginal conditionandhowmuchworkwouldberequired?

Answer:Firstwewouldhavetobringtheidealgasintocontactwithareservoir oftemperature T ,thenwewouldperformanisothermalcompressionofthegas fromvolume2V0 to V0 .Asweperformthecompressionofthegas,infinitesimal temperaturedifferenceswilldevelopbetweenthesystemandthereservoir:heat willtransferfromonesystemtotheothertomaintainthefixedtemperature.The workperformed(bythesystem)intheisothermalcompressionisjust MRT ln2. NotethatinthecaseofmixingtwogasesAandBmentionedabovewewould needtorecompresseachtoitsoriginalvolumebyanisothermalrouteinorder torestorethemtotheiroriginalstates.Wemightinthiscaseuseamembrane

TheSecondLawofThermodynamics

whichallowsmoleculesAtopassintoanewadjacentchamberbutnotB.But supposeAandBarethesamegas.Doestheentropyincreasewhenthepartitionis removed?No.

4.4.1Expressionforentropyofanidealgas

Itispossibletoderiveananalyticalexpressionfortheentropyofanidealgas. Toproceedconsidertheexpressionforanidealgasdryairparcel.Recallthatthe entropy S isgivenby

Usingtheexpressiondefiningthepotentialtemperaturewehave

Whilethisisaperfectlygoodexpressionfortheentropy,itisnotintermsof extensivevariables M, U , V .Makinguseofthedefiningequationsforanideal gas: p = MRT /V , U = ( f /2)MRT andtheidealgasproperty cp = ( f /2 + 1)R, weeventuallyfind

[entropyofanidealgas](4.53)

whichholdsforanyidealgas.Fordryair, R = Rd , f = 5.Toexpressthisinmolar formreplace MR with ν R∗ .Weimmediatelyseethatsuchafunction S doesexist forthesimpleidealgassystem.Wealsoseethat S isextensive(proportionalto M),andtheextensivearguments U and V areexpressedasratiosofstandardstates withthesamemass.Inadditionwecanseethat S (U , V ) isanincreasingfunction oftheinternalenergy U andthevolume V

AmoredirectwayofderivingtheentropyofanidealgasistostartwiththeFirst Law(nowwithd Q replacedwith T d S ;hencetheexpressionthatfollowswillhold forreversiblepathsinthe V –S plane):

d U = T d S p d V [differentialfor U intermsofentropy].(4.54)

Dividingthroughby T andrearranging: d S = 1 T d U + p T d V .(4.55)

Using U = ( f /2)MRT and p = (MRT /V ):

Then,

Thelastequationisequivalenttotheexpression(4.53)with S0 = 0.

4.4.2Expressionfortheinternalenergyofanidealgas

Wecansolvefor U usingthelastequation:

Thisexpresses U = U (S , V , M) forasingle-componentsystem.The thermodynamicpotentials aretheintensiveparametersofthesystemthatcomefromtaking partialderivativesof U withrespecttoitsarguments:

Thefirstleadsto T = U /(( f /2)MR) whichdefines U fortheidealgas.The secondleadstotheidealgasequationofstate, pV = MRT . Whileweworkedouttheanalyticalexpressionsforthecaseofanidealgas, thedifferentialrelationsford U andd S aregeneralandholdforanysubstance. Thereforethelasttwoequationsforthepartialderivativesalsoholdgenerally.We thenlearntwoimportantfacts.(1)Theinternalenergyisalwaysanincreasing functionof S (likewise, S isanincreasingfunctionof U ).(2)Forconstantentropy theinternalenergyisadecreasingfunctionof V .

4.4.3Enthalpyofanidealgas

Byaseriesofstepssimilartothoseofthelastsubsectionwecanfind:

(S , p) = H0 p p0

[enthalpyofanidealgas].(4.61)

Thisexpressionshowsexplicitlythatforasimpleidealgas,theenthalpyisafunction oftheentropyandthepressure.

Inthegeneralcase(notjusttheidealgas)wehaveforasingle-componentsystem d H = T d S + V d p [differentialof H intermsofentropy](4.62) andtherefore

Animportantcorollaryoftheexpressionsford U ,d S andd H isthatthey arenaturalfunctionsofcertainpairsofvariables(fixedmass).Forexample, U = U (S , V ), S = S (U , V ) and H = H (S , p).

4.5Extremumprinciple

Sincetheentropiesofthesystemanditssurroundingstogetheralwaysincrease inanatural(spontaneous)process,wecanseethatthefinalstateafterconstraints havebeenreleasedwillbeoneinwhichtheentropyisamaximum.Forexample, theequilibriumconcentrationofgaseousreactantsandgaseousproductsina chemicalreactionwillreachitsequilibriumvaluewhentheentropyofthesystem ismaximized(seeChapter 5).

Example4.14 Considertwoisolatedparcelsofdryairwithmasses M1 and M2 at thesamepressure p1 = p2 (samealtitude)butatdifferentinitialtemperatures T 0 1 and T 0 2 .Thetwosubsystemscomeintothermalcontact.Whatisthefinaltemperature afterthisirreversibleprocesstakesplace?

Answer:Theenthalpyisconstantduringthismixingprocess

where TF istheresultingtemperatureofthemixture.Wecansolvefor TF :

250255260265

Figure4.2Entropyversusfinaltemperatureforcomponentoneofamixture subjecttotheconstraintthatenthalpybeconserved.

where x = M1 /M, M = M1 + M2 .Thelastequationistheanswertoour problem,butletuslookfurthertoseewhathappenstotheentropy.Thepotential temperatureofsubsystem i is θi = (p0 /pi )κ × Ti ; p0 = 1000hPa.Theentropyof thesystemisthesumoftheentropiesoftheindividualsubsystemscomprisingthe wholesystem

Consideraparticularexampleforwhich M1 = 2kg, M2 = 3kg, x = 0.4, T 0 1 = 250K, T 0 2 = 260Kandforsimplicity cp = 1.Theresulting TF = 256K. Figure 4.2 showsaplotof S asafunctionof T1 .Ourassumptionbasedonintuition andexperiencethatbothmassescometothesametemperatureof256Kisjustified byitsbeingthevalueoftemperaturethatmaximizestheentropyofthecombined system.

4.5.1Carnotcycle

TheCarnotcycleisthemostimportantclosedloopprocessinthermodynamics.We illustrateithereforanidealgas.Thisisafoursteploopprocessasillustratedin Figure 4.3.Thebranch ab isalongahotisothermattemperature Th duringwhich heat Qh istransferredtothesystemfromthehotreservoir.Thenextstepisan adiabaticexpansion bc tothecoolertemperature Tc .Thethirdstep, cd isisothermal andanamountofheat Qc (> 0) isexpelledfromthesystemtothecoolerreservoir at Tc .Finally,thereistheadiabaticcompression da,whichcompletesthecycle

Figure4.3Carnotcyclefor1kgofdryair(takenasanidealgas)inthe V –p plane.Thecycleproceedsasfollows.Step ab isanisothermalexpansionfrom a to b,attemperature Th ,drawinginheat Qh .Step bc isanadiabaticexpansion from b to c .Step cd isanisothermalcompressionattemperature Tc expellingheat Qc fromthesystem.Finally,step da isanadiabaticcompressionfrom d to a .In thiscase Va = 0.50m 3 , T2 = 300K, Vb = 1.50m 3 , T1 = 200K.Thenallother intersectionsaredetermined,e.g., pa =1720hPa, pb = 574hPa.

backtothestartingpoint a .Wecanlisttheproducts:

andsinceitisaclosedloop, d S = 0,wehave

whichleadsto

andinadditionwecanfindfromtheaboveformulas:

IntheCarnotcyclewefollowconventionandcalltheheattransferredtothe systemalongthehotisotherm(a → b) Qh andtheheatrejectedalongthecooler isotherm Qc .Thiswayboth Qh and Qc arepositivenumbers.Notethat Qh > Qc :moreheatisalwaysdrawnfromthehotreservoirthanisrejectedtothecold one.Thedifferenceistheworkextractedfromthesystemduringthecycle.It wouldbenicetousealloftheheatfromthehotreservoirtocreatework,but thisisimpossible,sincesomeheatisalwaysrejectedtothecoldreservoir.We canneverturnallofourheatextractedfromthehotreservoirintowork.This isamajorconsequenceoftheSecondLaw.TheFirstLawsaysenergymustbe conserved,buttheSecondLawgoesfurthertotellusthatwenotonlycannot obtainsomethingfornothing,wecannotevenobtainallofthesomethingtobe usedforwork.

The efficiency oftheprocessistheworkperformedoverthewholeloopdivided byheatextractedfromthehotreservoir:

Figure 4.4 shows(nottoscale)thesamecycleintheentropy–temperatureplane, referredtoasthe S –T plane.Inthisplanethecycleisamoresimplegeometric figure,arectangle.Considertheareaenclosedinaclosedfigureinthe S –T plane

Figure4.4SchematicdiagramoftheCarnotcycleofFigure4.3exceptinthe S –T plane.Thegeometricalfigureisarectangleindependentofthesubstance(i.e.,this diagramisnotrestrictedtotheidealgas).Theareaenclosedistheworkdoneby thesystem.

TheSecondLawofThermodynamics (suchasFigure 4.4):

areaenclosed = T (S ) d S [area-energyinthe S –T plane].(4.76)

TheFirstLawofThermodynamicsstatesthatd U = T d S p d V .Sincetheloop integralofd U vanishes,wefindthattheareaenclosedinthe S –T planeaboveis exactlytheworkdoneintheloopprocess.Inmostcasesinatmosphericscience itiseasiertodealwithareasinthe S –T planethaninthe V –p plane.Thisis becausethevolumeofaparcelisnoteasilyobserved,whereasitspressure(same astheenvironmentalpressureandapproximatelyequivalenttoaltitude)iseasily observed.Similarlyforadiabatictransformations s = cp ln θ isfixedandina diabaticheating p isusuallyfixed.

NotethattherectangularshapeoftheclosedfigureforaCarnotcycleinthe T –S planedoesnotdependonthesystembeingcomposedsolelyofanidealgas. Isothermsandadiabatsarestraightlinesforanysysteminthe S –T diagramin Figure 4.4.ThismeansthattheCarnotcycleisusefulindescribingcycleseven ofacompositesystemcomposedofanysubstances.Aparticularexampleisthe caseofacompositesystemconsistingofaliquidinequilibriumwithitsvapor, bothenclosedinachamber.Thislastconfigurationissimilartoasteamengine whereinvaporiscondensedandlaterevaporatedasseparatelegsofthecycle.It isshowninmoreadvancedthermodynamicsbooksthattheCarnotcycleisthe mostefficientreversiblecycleintermsofobtainingworkfromthesystemby extractingheatfromahotreservoirandrejectingpartofittoacoldreservoir. Irreversiblecyclesarealwayslessefficientthanreversibleones.Thermodynamic loopdiagramsforatmosphericprocesseswillbeexploitedinlaterchaptersas weanalyzetheenergeticsinvolvedinparcelsundergoingtransitionsinthereal atmosphere.

Example4.15: Carnotcycleforanysystem The S –T depictionoftheCarnotcycle (Figure 4.4)worksforanythermodynamicsystem.Wecanshowafewproperties thatholdforthegeneralcasethatwerederivedaboveonlyfortheidealgascase. Forexample,considertheworkdoneinthecycle.TheFirstLawtellsusthatsince ( U )loop = 0fortheclosedloop, Wloop = Qh Qc .NextconsidertheSecond Lawwhichsaysthat ( S )loop = 0;hence Qh /Th = Qc /Tc .Theefficiencyisstill Wloop /Qh anditcanbewrittenas1 Qc /Qh = 1 Tc /Th ,exactlyasfortheideal gas.Finally,wecanverifythattheareaenclosedintherectangleis Wloop .Thearea isgivenby ( T )( ab S ) = (Th Tc )(Qh /Th ) = Qh Tc Qh /Tc = Qh Qc .

4.6Entropysummary

Theextensivethermodynamicvariableswehavediscussedsofararethevolume V ,themass M,internalenergy U ,theenthalpy H andtheentropy S .Thereare alsotheintensiveparameters,pressure p,andtemperature T .Itisbesttothinkof theinternalenergyasafunctionoftheentropy,volumeandmass.Notethateach isanextensivevariable:

ThefollowingformoftheFirstLawactuallyincorporatestheSecondLaw(for fixedmass):

anditshowsexplicitlythattheinternalenergyisbestcharacterizedbythesetwo variables, S and V .Notethatthislastexpressionshowshowtheinternalenergy changesintermsofotherstatevariables(S and V ).Theassociatedintensive parametersaregivenbypartialderivatives:

Theenthalpycanbewritten:

andtheFirstLaw(combinedwiththeSecond)isexpressed(forfixedmass)as

alongwiththecorrespondingpartialderivativeexpressions.Wecanalsothinkof theentropyasthedependentvariable:

4.7Criteriaforequilibrium

Wereturnnowtotheextremumprinciple.Ifweconsiderasystemandits surroundings,andweallowaspontaneouschangetooccur(releaseaconstraint), weknowthat

wherethesubscriptsrefertothesystemandtothesurroundingswhiletheequality signholdsforareversibleprocess.Notethattheentropychangeforthesurroundings canbewritten

Herewehavetakend Qsurr tobethesameasd Q rev surr sincethesurroundingsmight beassumedtoundergoareversiblechange(becauseofitslargemass)whilethatin thesystemmightnotnecessarilybereversible.Butwecantaked Q rev surr =−d Qsys sincetheheatgainedbythesurroundingshastobesuppliedbythesystem.The d Qsys neednotbereversibleinthisproblem.Wenowcanwrite

orrearrangingtoobtaintheimportantformula

Ssys ≥ d Qsys T [equalforreversible,largerforirreversible].(4.88)

Theequalitysignappliesonlyiftheprocessisactuallyreversible.Asanexample, considerthe(irreversible!)freeexpansionstudiedinExample4.11.Inthatcase, d Qsurr = 0whilewefoundthatd Ssys > 0. Considerwhathappenstoasystemundergoingaspontaneoustransitionbecause someconstrainthasbeenrelaxedorremoved.WecanusetheFirstLaw(which holdsforreversibleorirreversibletransitions)towrite

Ifthetransitionoccursatconstantvolumewecanwrite

Thesecanalsobeexpressedas

wherethesubscriptsindicatewhichvariablesaretobeheldconstant.Inwords,if theinternalenergyandthevolumeareconstrainedtobefixedinthetransition,the entropyofthesystemwillincreaseinthetransition.Theotherthreeinequalities canbeexpressedsimilarly.

4.8Gibbsenergy

Thereisanotherthermodynamicstatefunctionwidelyusedinapplicationsto atmosphericscience,the Gibbsenergy (sometimescalledthe Gibbsfreeenergy orjustthe freeenergy).Itprovestobeusefulforprocesseswhichoccuratconstant pressureandconstanttemperature.WecanusetheGibbsenergytohelpusin decidingthedirectionofachemicalreactionandindeterminingtheequilibrium phasesorconcentrationsofchemicalspeciesinequilibrium.TheGibbsenergy isparticularlyusefulforopensystems(thoseinwhichmasscanenterorleave thesystem)andforsystemsinwhichtheinternalcompositionmightchange duetochemicalreactions.Wewilltakeupsomeofthesecaseslaterinthis chapter.

TheGibbsenergycanbedefinedas

G = H TS [definitionofGibbsenergy](4.94) where H isenthalpy, T temperatureand S isentropy.Thedifferentialof G canthen bewritten:

Substitutingford H :

Alongareversiblepathwecantaked Q = T d S whichleadsto d G = V d p S d T [differentialforGibbsenergy].(4.97)

Thislastexpression(whichcombinestheFirstandSecondLaws)tellsusthat G isanaturalfunctionof T and p, G (T , p).Hence,inachangeinwhichthemass,

TheSecondLawofThermodynamics pressureandtemperatureareheldfixed,theGibbsenergywillnotchange.This actuallyhappensinaphasetransition.Forexample,considerachamberwitha movablepistonheldatfixedtemperature.Letthechambercontainaliquidwith itsownvaporinthevolumeaboveit.Ifthepistoniswithdrawnisothermally andquasi-staticallysomeoftheliquidwillevaporateintothevolumeabovethe liquidsurface.Thepressureisjustthevaporpressureandisconstantsinceit dependsonlyonthe(fixed)temperature.Weshouldnotethatthepressureinthe liquidisthesameasthepressureinthevapor(weignoregravityhere).Different positionsofthepiston(leadingtodifferentvolumesofthevapor)correspondto thesametemperatureandthesamepressure(inbothliquidandvapor).Along thislocusofpointsinthestatespace(saythe V –p diagram)forthiscomposite systemtheGibbsenergyisconstant.Wewillreturntothetwo-phaseproblemin Chapter 5.

Returningtothegeneralproblemweseefrom(4.97):

Asindicatedinanearlierchapter,thereactionsoftracegasesintheatmosphere occuratconstantpressureandtemperature.Inthiscasetheatmospherewhich containsordersofmagnitudemoreneutralbackgroundmolecules(nitrogen,oxygen andargon)thanthe(usuallytrace)reactantsactsasamassivethermalandpressure bufferholdingthetemperatureandpressureconstant.Hence,thereactionsamong tracegasesintheatmosphereoccuratfixedpressure(altitude)andtemperature (thatofthebackgroundgas).Inthesecaseswhere T and p areheldconstantonly theconcentrationofthespeciesisallowedtochange.Thisistheperfectsetupfor useoftheGibbsenergy.

4.8.1Gibbsenergyforanidealgas

Beginwiththedefinitionof G

where κ = R/cp asbefore.Then

The specific Gibbsenergyis G normalizedbythemass,sometimesdenoted g (T , p):

Anotherformthatisusefulespeciallyinchemistryisthe molar Gibbsenergy. InsteadofspecifyingthespecificGibbsenergyasperunitmassitmaybemore convenienttoexpressitasapermolequantity.Intheexpressionfor G notethat forheatingatconstantpressure:

(4.103) or

(4.104) where cp isinJkg 1 K 1 , M isinkg, ν isthenumberofmoles,and c p isin Jmol 1 K 1 .Alsorecallthat R∗ istheuniversalgasconstant(8.3145Jmol 1 K 1 ). Then

(4.105) andusing G (T , p) = G (T , p)/ν wehave

Intheseexpressions, κ isthesamedimensionlessnumbersince R/cp = R∗ /c p . Acompositesystemconsistingofseveraldistinctsubsystemsofidealgases i = 1, , n leadstoanexpressionfortheGibbsenergy:

4.8.2EquilibriumcriteriafortheGibbsenergy

Aswithentropyandinternalenergy,thereisaconditionforequilibriumforthe Gibbsenergyanditisoftenmoreusefulthantheothers:

whichafterdividingeachsidebyd S simplifiesto

Nowforaprocessatconstanttemperatureandpressure,

[equilibriumcriterionforGibbsenergy].(4.110)

Thislastisanimportantresult,sincesomanyprocessestakeplaceatconstant temperatureandpressure.Theinequalitiesderivedearlieraresomewhatlessuseful sinceinapplicationsitismoredifficulttocontrol H , S or U .Thelastequation statesthatinaspontaneousprocessthe(possiblycomposite)systemwilladjust itscoordinatesinsuchawayastolowerthevalueofthesystem’sGibbsenergy; inthissenseitbehaveslikeapotentialenergyfunctioninmechanicswherea systemtendstowardminimumpotentialenergy(seeFigure 4.5).Equilibriumwill establishitselfattheminimumof G (T , p),muchasitdidinthelastchapterfora maximumof S (U , V ) onlythistimewehaveafunctionwhosedependentvariables aremoreunderourcontrol(ormoretothepointthosefoundinnaturallyoccurring circumstances).

Figure4.5InaspontaneoustransitiontheGibbsenergyisaminimum.

4.9Multiplecomponents

Inallthethermodynamicfunctionswehavestudiedsofarwehaveignoredthefact thatthechemicalcompositionofthesystemmightchange.Infact,thefunctionsof statemightbesummarizedby:

(4.111)

(4.112)

(4.113)

(4.114)

where ν1 , ... , νK indicatethenumberofmolesofeachchemicalspeciesinthe system.Thesemolarindicatorsarethermodynamiccoordinates.Wecanwrite

Wecanwritemorecompactly

wherethe G i arethemolarGibbsenergiesfortheindividualcomponentsinthe mixture.1 Notethatasimilarexpression(butwithdifferentialsoftheirnatural variablesservingascoefficients)holdsford U andd H withthesamevaluesof G i

expresseshowmuchthecompositeGibbsenergychangespermoleofspecies1 beingaddedtothesystem.Aswithotherintensiveparametersinsubsystemsin contact(suchas T1 and T2 whenthesubsystems1and2areindiathermalcontact, or p1 and p2 whenthepressuresareallowedtobeunconstrained)thespecificGibbs energies G i willtendtowardequalitywhenthenumberofmolesofthedifferent speciesareallowedtovary(e.g.,bychemicalreactionsorphasechanges).

Wecanobtainsomeinsightintothisequalizingofthe G i byconsideringasystem atconstantpressureandtemperatureinwhichtherearetwochemicalspecies,A andB.Wehavethereaction:

1 The G i aredenoted µi inthechemicalliteratureandarecalledthe chemicalpotentials ofthesystemcomponents.

TheSecondLawofThermodynamics

ThenumberofmolesofBbeingcreated, δνB =−δνA .Andsince

Wefindthatatequilibriumwhered G = 0:

ThespeciesAandBmightbedifferentphasesofthesamesubstance.Weagain findtheequalityofthetwomolarGibbsenergiesforeachphasewhenequilibrium isestablished.Wewillfindthistobeofgreatutilityinthenextchapter.

Nextconsiderasystemcomposedoftwosubsystemsofequalvolume,oneis filledwith νA molesofidealgasspeciesAtheotherwith νB molesofB.Further, supposethetwogaseshavethesamepressure p andtemperature T .Nowsuppose thetwosubsystemsarebroughtintomaterialcontactwiththevolumebeingthe sumoftheoriginalvolumes,thepressuresandtemperaturesalsobeingthesame. WhatisthefinalGibbsenergy?Whatarethefinalenthalpy,internalenergy,and entropy?

TheinitialGibbsenergyis:

wherewehaveusedthesamespecificGibbsenergy G (p

T ) foreachoftheideal gasesAandB.Oncethegasesaremixedintothelargervolume,thetotalpressure willbethesame,butthepartialpressureswillbeonlyhalfasmuchsincethey occupytwicethevolumebutatthesametemperature.Hence,

Takingthedifferenceandusingtheformula(4.101)weget

Thisillustratesthatthespontaneousprocessofmixingtwoidealgasesleadsto adecreaseintheGibbsenergy.

Fortheinternalenergyandenthalpy,thejobiseasy.Thechangeoftheinternal energyis

since T = 0.Thesameholdsforenthalpywiththesubstitution c V → c p . Asexpected,duringthemixingofidealgasestheGibbsenergydecreases,while theenthalpyandinternalenergiesdonotchange.

Tocalculatetheentropychangewechooseareversibleisothermalpath.Weuse

with H = T = 0.Hence,

Themixingoftwoidealgasescausesanincreaseoftheentropyaswelearned earlier.

SupposenowthatthegasesAandBareidentical, M

.Then,from(4.126)wegettheincreaseoftheentropyafter mixing:

Doesthismakesense?Inthebeginningeachsubvolumecontainsthesamenumber ofmolesofidenticalgases.Whatchangesafterthemixingofthegases?Nothing. Thenthechangeinentropyshouldbezero.Sowegettwodifferentanswersfor thesameproblem.ThishasbecomeknownastheGibbsParadox.Thereason thisparadoxarisesisthatinclassicalphysicswecannotconsiderthemixingof twoidenticalgasesasalimitingcaseofthemixingoftwodifferentgases.Ifwe startourconsiderationfordifferentgases,theyhavealwaystobedifferent.Itis impossibletogettheanswerfortheentropychangeofthemixingoftwoidentical gasessimplybyequatingthemassesandthegasconstantsinequation(4.126). Inclassicalphysicstheexchangeofcoordinatesbetweentwoidenticalparticles (gasmoleculesinourcase)correspondstoanewmicroscopicstateofthesystem (twogasesinthecylinder),althoughnothingchangeswithsuchanexchangeat themacroscopiclevel.Thisparadoxdoesnotexistinquantumtheory,wherethe exchangeoftwoidenticalparticlesdoesnotcorrespondtoanewmicroscopicstate ofthesystem.Therefore,whentwoidenticalgasesaremixed, theentropydoesnot change.

Notes Asidefromthebooksalreadymentionedinearlierchapters,abeautifultreatment ofthermodynamicsfromanaxiomaticpointofviewisgivenbyCallen(1985). Thermodynamicsanditsapplicationsinengineeringhasalonghistory.Agood introductorylevelengineeringbookisthatbyÇengalandBoles(2002).Bothof

Emanuel’sbooks(1994, 2005)aswellasthebookbyCurryandWebster(1999) discussthethermodynamicsofconvectionphenomena.

NotationandabbreviationsforChapter4

c v , c p specificheats,theoverbarindicatesquantitiesexpressedper mole(Jmol 1 K 1 )

d Qrev infinitesimalabsorptionofheat,subscriptindicatingthatthe changebereversible(J)

d SU ,V infinitesimalchangeinentropyduringwhich U and V are heldconstant(JK 1 )

F force(N)

g Gibbsenergyperkilogram(Jkg 1 )

G GibbsenergypermoleormolarGibbsenergy(Jmol 1 )

G Gibbsenergy(J)

H enthalpy(J)

κ = R/cp (dimensionless)

M bulkmass(kg)

µi chemicalpotentialofspecies i ,sameas G i (Jmol 1 )

ν , νA , νB numberofmoles,numberofmolesofspeciesA,B

p pressure(Pa)

p(V ) pressureasafunctionofvolume;expressionforacurvein the (p, V ) plane

R gasconstantforaparticulargas(Jkg 1 K 1 )

s entropyperunitmass(lowercaseindicatesperunitmass) (JK 1 kg 1 )

S , SA , SB entropy,entropyofstateA,stateB(JK 1 )

Ssys , Ssurr , Suniverse entropyforthesystem,surroundings,universe(sys+surr)

θ potentialtemperature(K)

U internalenergy(J)

UA , UB internalenergyatstatesA,B(J)

WA →B , QA →B workdonebythesystem,heattakenintothesystemin goingfromstateAtostateB(J)

Problems

4.1Aparcelisliftedadiabaticallyfrom z = 0to z = H ,whatisitschangeinentropy?

4.2Computethechangeinentropyforanidealdrygasofmass M whichisheatedat constantvolumefrom T1 to T2 .Take M = 1kg, T1 = 300Kand T2 = 310K.

4.3Aparcelisliftedisothermallyfrompressure p0 to p1 .Finditschangeinpotential temperature.Take p0 = 1000hPaand p1 = 500hPa, T0 = 300K.

4.4A1kgparcelat500hPaand250Kisheatedwith500Jofradiationheating.What isthechangeinitsenthalpy?Whatisthechangeinitsentropy?Itspotential temperature?

4.5Aquantity18gofwateris(a)heatedfrom273Kto373K,(b)evaporatedtogasform, and(c)heatedto473K.Allstepsareperformedatconstantpressure.Computethe changeinentropyforsteps(a),(b),and(c).Note:theheatcapacityforwatervaporis ≈ 2kJK 1 kg 1 .

Usethesedatainthenexttwoproblems:2kgofanidealgas(dryair)isattemperature 300K, p = 1000hPa.

Step1:thevolumeisincreasedadiabaticallyuntilitisdoubled.

Step2:thepressureisheldconstantandthevolumeisdecreasedtoitsoriginalvalue.

Step3:thevolumeisheldconstantandthetemperatureisincreaseduntiltheoriginal stateisrecovered.

4.6(a)Sketchtheprocess(steps1,2and3)inthe V –p plane.

(b)Whatarethevolumeandtemperatureattheendofstep1?

(c)Whatisthechangeofenthalpy H ,internalenergy U ,andentropy S ,during step1?

(d)Howmuchworkisdonebythesysteminstep1?

4.7ContinuingProblem4.6.

(a)Howmuchworkisperformedinstep2?

(b)Whatisthetotalamountofworkinallthreesteps?

(c)Whatistheentropychange S instep2?

(d)Whatarethetotalchangesin U , H , S duringallthreesteps?

4.8Adryairparcelhasamassof1kg.Itundergoesaprocessthatisdepictedinthe V –p planeinFigure 4.6.Calculatethechangeofentropy,enthalpyandinternalenergyfor thisairparcel.

Figure4.6DiagramforProblem4.8.

Figure4.7DiagramforProblem4.9.

4.9Findthechangeofinternalenergyandenthalpyforthecyclicprocessshownin Figure 4.7.StartingfrompointAdescribehowthetemperaturechangesduringthis cyclicprocess.

4.10Showthattheworkperformedbyasystemduringareversibleisothermalcycleis alwayszero.

4.11ShowthatfortheCarnotcycleofanidealgasholds(4.74)

Hint: Divideoneofthefourequationsforworkdonealongthedifferentlegsofthe cyclebyanotherone.

4.12AtropicalstormcanbeapproximatedasaCarnotcycle.Airisheatednearly isothermallyasitflowsalongtheseasurface(typically27 ◦ C).Theairislifted adiabaticallyintheeyewalltoaheightabovethetropopausewhereitbeginsto coolduetolossofinfraredradiationtospace.Thetemperaturewherethisoccurs isabout 73 ◦ C.Finallytheairdescendstothesurfaceadiabatically.Calculatethe thermodynamicefficiencyofthis“heatengine.”2

4.13Showthattheworkdoneina(reversible)Carnotcycleistheproductoftheentropy differencebetweenthetwoadiabatsandthetemperaturedifferencebetweenthetwo isotherms(seeFigure 4.4).Theresultholdsforanysystem,notjustanidealgas.

4.14Airisexpandedisothermallyat300Kfromapressureof1000hPato800hPa.What isthechangeinspecificGibbsenergy?

2 KerryEmanuel(2005)explainsthissimplemodelatbeginner’slevelinChapter10ofhisbook DevineWind

Airandwater

Innaturewaterpresentsitselfinsolid,liquidandgaseousphases.Energytransfers duringtransformationsamongthesephaseshaveimportantconsequencesin weatherandclimate.Thesystemofredistributionofwaterontheplanetconstitutes the hydrologicalcycle whichiscentraltoweatherandclimateresearchand operations.Waterisalsoanimportantsolventintheoceans,soilsandincloud droplets.Thepresenceoftinyparticlesintheaircaninfluencetheformationof clouddropsandtherebychangetheEarth’sradiationbalancebetweenabsorbed andemittedand/orreflectedradiation.Theseandothereffectsleadusintothe fascinatingroleofwaterintheenvironment.Ofcourse,thermodynamicsisan indispensabletoolinunravelingthisverychallengingpuzzle.

5.1Vaporpressure

Westartwithadiscussionoftheequilibriumgaspressureinachamberindiathermal contactwithareservoiratafixedtemperature, T0 .Thechamberistohaveavolume thatisadjustable,asshowninFigure 5.1.Inthefollowingletthechamberhaveno airpresent–onlythegasfromevaporationoftheliquid.Wearetochooseavolume V suchthatthereissomeliquidpresentatthebottomofthechamber(wesayherethe bottomofthechamber,butotherwiseweignoregravity).Therearegasmolecules constantlystrikingtheliquidfromaboveandsticking.Therateatwhichparticles entertheliquidphasewillbeproportionaltothenumberdensityofmoleculesin thegasphase(recallfromourdiscussionofkinetictheorythatthefluxofmolecules perunitperpendicularareacrossingaplaneis 1 4 n0 v where v ismeanspeedofthe vapormolecules(seeChapter 2)).Moleculesintheliquidphasemusthaveatleast acertainminimumverticalcomponentofvelocityinsidethecondensedphaseto escapetheliquidsurface(theyhavetoovercomethepotentialenergynecessary toleavethesurface).Ifwewaitfortheequilibriumtoestablishitself,therateof moleculesleavingtheliquidsurfacegoingintothevolumeabovewillexactlyequal

Figure5.1Quasi-staticcompressionofavaporatconstanttemperature.InA→ B,thereisnoliquidpresent.AtpointB,liquidbeginstoformonthebaseofthe chamber.InB → C,thereisliquidinequilibriumwiththevapor.

therateofmoleculesarrivingandsticking.Iftherateofdeparturesshouldexceed therateofstickingarrivals,thenumberdensityofgasmolecules n0 wouldsteadily increaseuntiltheratesequalize.

Ifthevolumeofthechamberisdecreasedslightly,theequilibriumwillhave tobere-established.Thesteadystateequalityofarrivalanddepartureratescan onlybemaintainedforthesamenumberdensityinthegasphaseasbeforesince thetemperatureisheldfixed.Indecreasingthevolumewemustcondenseanet amountofvapormoleculesintotheliquidphaseundertheseconditions.Asthe excessnumberofstickingmoleculesfallsintoapotentialenergywellwhenthey entertheliquidtheirvelocitiesintheliquidincrease(pictureaslowlymoving marblerollingoffthetable’sedge,whereitskineticenergysuddenlychangesfrom nearzerotoalargevalue).Thisexcesskineticenergyofthemoleculesentering theliquidisquicklysharedwiththeotherwatermoleculesintheliquid,slightly raisingitstemperature.Thistinyexcesstemperatureoverthatofthereservoirin contactwiththesystemisquicklywipedout(withaheat(enthalpy)transferto thereservoir),maintainingtheisothermalconstraint.Asthevolumeisdecreased, thereisanotherformofenergybeingaddedtothesystem,becauseduringthe compression,workisbeingperformedonthesystembythepiston(maintaining constantpressure).

Considerthesituationina V –p diagram(Figure 5.2).Wewishtotraceanisotherm forthissystem.WestartatpointAwhereallthematterinthechamberisinthegas phase.WecompressthegasisothermallyuntilwereachpointBwhereliquidbegins tocondenseonthefloorofthechamber(nodroplets,please,becausesurfacetension

B to C
A to B

criticalisotherm

Figure5.2Pressureversusvolumediagramforamixtureofliquidandvapor.We startatpointAwherethesystemisallvapor,andcompressisothermallytopoint B,whereliquidbeginstoappear.IngoingfromBtoCamixtureofliquidand vaporispresent.Alongthissecondstagetheisothermisalsoanisobar.Theportion ofthecurvetotheleftofCrepresentstheliquidphase.Thecriticalisothermis shownbytheboldline. T1 < T2 < T3 <...< T7 .Thedashedlineboundsthe areawheretheliquidanditsvaporareinequilibrium.

ofthecurveddropletsurfaceswouldcomplicatetheenergeticshere;butalsono gravityinthisexperiment–thewatercouldcongregateontheceilingforallwe carehere).Asweisothermallyandquasi-staticallycompressfurther,thepressure remainsconstantasmorematterisconvertedfromgastoliquidphase.Heatreleased fromthecondensationandfromtheworkperformedduringthecompressionmust betransferredfromthechambertothereservoirinordertomaintainthesame temperature.Thechangeininternalenergyiscomposedoftwocontributions,the workdonebythepistononthegasandtheheatassociatedwiththematterbeing convertedfromvaportoliquid.Thechangeinenthalpyofthesystemdoesnot dependonvolume,soitschangeonlyinvolvesthecondensationcontribution.The changeinenthalpyinmovingalongfromBtoCinFigure 5.2 is

where M isthe(positive)amountofmattercondensedintheprocessand L = Hvap iscalledthe enthalpyofvaporization (latentheatofevaporation inold fashionedterminology).Forwaterat0 ◦ C, L = 2.500 × 106 Jkg 1 ,anditisnearly independentof T (error < 1%,overtherangeofinterestinatmosphericscience). Whenthevolumeisreducedtosuchanextentthatwehaveonlyliquidinthe chamber,thefurtherdecreaseinvolumerequiresaverylargeincreaseinpressure,

H

becauseliquidsarealmostincompressible(seethesegmentofthecurveC → Dof theisotherm).

Ifweplotisothermscorrespondingtohighertemperatures(T1 < T2 < T3 ), weseethatthelengthofthehorizontalportionoftheisothermdecreases.This meansthatwithincreasingtemperaturethevolumeintervalforwhichtheliquid andvaporcancoexistinequilibriumdecreases.Thishappensuntilwereachthe so-called criticalisotherm,wherethisintervalshrinkstoapoint.Thetemperature correspondingtothisisothermiscalledthe criticaltemperature.Atthecritical temperature Tc , ∂ 2 p/∂ V 2 = 0,an inflectionpoint.Theisothermswithtemperature wellabovethecriticaltemperaturearehyperbolae,becausethesubstanceatvery hightemperaturesbehaveslikeanidealgas.

5.2Saturationvaporpressure

Theequilibriumpressureofwatervaporaboveaflatsurfaceofliquidwaterina chambersuchasshowninFigure 5.1 iscalledthe saturationvaporpressure.Itis independentoftheshapeofthevolumeinthecylinder(sinceitonlydependsonthe numberdensity ns ofthevapor).Thesaturationvaporpressure(usuallydenoted es ) ishoweveraverystrongfunctionoftemperature T .Thisisintuitivelyreasonable sinceanincreaseintemperaturewillincreasetheproportionofliquidmolecules havingvelocitiesabovethethresholdtodepartfromthesurface.Moredepartures willrequiremorearrivalratestomaintainequilibrium.Thisinturnwillrequirea largernumberdensitywhichisproportionaltothevaporpressure.Notethatthe fluxofmoleculesmovingdownperpendicularlyis 1 4 ns v (seeChapter 2).

Figure 5.3 showsagraphofthesaturationvaporpressureofwateroveraflat liquidsurfaceversusthetemperatureindegreesCelsius.Manyaspectsofweather andclimatedependonthisveryrapidincreasewithtemperature.Asaroughbut

Figure5.3Saturationvaporpressureforwateroveraflatliquidsurfaceversus temperatureindegreesCelsius.

usefulruleofthumb,thesaturationvaporpressuredoublesforevery10 ◦ Cincrease intemperature(atleastintherangeofinterestforatmosphericscience).Evenso, atmoderatetemperaturesthesaturationvaporpressureisverysmallcomparedto atmosphericpressurenearthesurface(usually5to30hPacomparedto1000hPa).

Doesthepresenceofdryairaffectthesaturationvaporpressureofwater?Perhaps theaddedpressureoftheairontheliquidsurfacesqueezesmorewatermolecules intothevaporphase.Butonthecontrary,someairdissolvesintheliquidandthereby mighthinderthefluxofmoleculesoutoftheliquidsurface.Botheffectsarepresent buttogethertheirimpactislessthan1%ofthesaturationvaporpressure.

5.3VanderWaalsequation

Aswelearnedearlier,theapproximationofanidealgasworkswellifwecanneglect theintermolecularforces.Thisisvirtuallyalwaysthecaseforthemajorconstituents ofairatEarth-likeconditions.Butasagasnearsitscriticaltemperatureandthe liquidorsolidstatecancoexistwiththegasphase,thedeparturefromidealityis important.AsweseefromFigure 5.2 theidealgasequationofstatedescribesthe behaviorofrealgasesinlimitingcasesofhightemperaturesandlowpressures. Isothermsforanidealgasarerectangularhyperbolae(p ∝ 1/V ).Asmallpressure decreaseleadstoalargeincreaseinvolume(BtoAinFigure 5.2).However,the idealgasequationofstateisnolongeragoodapproximationwhenthetemperature ofthegasisbelowitscriticalpoint,andthevolumeisintherangewherethe isothermsbecomehorizontal(seetheflatsegmentCtoBinFigure 5.2);i.e.,there isamixtureofliquidandgasinequilibriumtogether.

Averyusefulequationthatdescribesthebehaviorofmanysubstancesovera widerangeoftemperaturesandpressureswasderivedbyvanderWaals.Thevan derWaalsequationfor1molofgasis:

p + a v 2 (v b) = R∗ T [vanderWaalsequation](5.2)

where a and b areconstants(differentfordifferentsubstances)and v isthevolume permoleofthegas(i.e.,the reducedvolume orthe specificvolume).Theterm b in(5.2)isduetothefinitesizeofthemolecules,whiletheterm a /v 2 isduetothe effectoftheattractivemolecularforces.For a = b = 0,thevanderVaalsequation reducestotheIdealGasLaw(5.2).

UsuallythevanderWaalsequationiswrittenintheform p = R∗ T v b a v 2 .(5.3)

Figure 5.4 showsanexampleofisothermscalculatedusingthevanderWaals equation.IfwecompareFigures 5.2 and 5.4,weseethatvanderWaalsisotherms

Figure5.4VanderWaalsisotherms.Theisothermwiththeinflectionpointisthe criticalisotherm.Theequilibriumvaporpressure e issuchthattheshadedareas areequal.

reproducemanyfeaturesofrealgasbehavior.AsshowninFigure 5.4 forlarge v andlow p thereisalargeincreaseinvolumewithasmalldecreaseinpressure.Fora liquid(small v andhigh p)thereisasmalldecreaseinvolumewithalargeincrease inpressure.Thereisacriticalisothermwithtemperature T = Tc indicatingapoint ofinflection(∂ 2 p/∂ v 2 = 0).Theisothermswithtemperatureshigherthan Tc are verysimilartothoseinFigure 5.2.However,theisothermswithtemperatureless than Tc lookverydifferent:theyarenothorizontalintheregionwheretwophases, waterandvapor,coexist.ConsideroneparticularisothermABCDEFGderived fromthevanderWaalsequation.Letuscompressthegasuntilsaturationoccurs atpointFontheisotherm.Thenwithafurtherdecreaseofthevolumethereisno increaseinpressure,whichcorrespondstothehorizontalstretchFB.Instead,the vanderWaalsisothermshowsanincreaseinpressure(partofthediagramFE). Alongthisbranchofthecurvethevaporis supersaturated.Vaporcantheoretically existforthesevalues,butifasmallimpurityispresentsuchasadustparticle,ora scratchonthewall,thevaporwillbegintocondenseonthissiteandthesystemwill collapsetotheflathorizontallineBFinFigure 5.4.Inotherwordsthisstateofthe vaporisunstable:anydisturbancecausesittomigratetoastableconditionwhich containstwosubsystems,vaporandliquid.So,ifweplotthevanderWaalsisotherm foragiventemperature,wewillnotfindtheflatportion(BDF)whichweknow shouldbethere(fromexperiment).Wehavetoputitin“byhand.”Buthowdowe decidetheproperpressurevalueatwhichtoinsertthisflatportion?Therule(first discoveredbyMaxwell)isthattheareasboundedbythecurvesBCDBandDEFD havetobeequal.Letussketchaproof.ConsiderthecycleFEDCBDFinFigure 5.4

(a“figure8”onitsside).FromtheFirstLawweknowthatforanisothermalprocess theworkdoneduringaclosedcycleisequaltotheamountofheatabsorbedbythe system, W = Q ,sincethechangeininternalenergyiszeroforacyclicprocess. Wealsoknowthattheloopintegral d Qrev /T = 0(ourprocessiscontrivedtobe reversible).Foranisothermalprocesswecantaketemperatureoutoftheintegral andget Qloop = 0.Since Qloop = 0,wealsohave Wloop = 0.Ifthehorizontal linewerenotsuchthattheareasareequal,ourimaginary(butrealizable)process wouldviolatethelawsofthermodynamics(either d U = 0or d S = 0orboth).

Anexcellentdiscussionofunstablestates(supersaturated,etc.)canbefound inadvancedbooks,especiallythediscussioninCallen(1985),wherethecase isillustratedwiththevanderWaalssystem.1 Thecriterionforstabilitycanbe expressedintermsoftheconcavityorconvexityofthethermodynamicfunctions:

orfortheGibbsenergy:

Ifthegraphsfor S (U , V , M) and G (T , p, M) havethewrongsignofconcavitythe branchofthecurvewherethecriteriafailwillbeunstable.

5.4Multiplephasesystems

Weproceedwiththecaseofwaterinbothitsliquidandvaporformsinequilibrium inacontainer.Thisisaone-component(onlyonechemicalspeciesispresent) systemwithtwophases(liquidandgas)inequilibrium.Experiencetellsusthat thetwophasescancoexistinequilibriuminthisconfiguration.Infact,wehave seenthatforagivenmassofthesubstancethereisarangeofvaluesofvolumefor whichtheequilibriumexistswithtransfersofmassfromonephasetotheotheras thevolumeischanged(atconstantpressureandtemperature).Thisisthehorizontal lineCBinFigure 5.2.Letthetemperatureandpressuresbe T0 and p0 alongCB.In the T –p planethislineisasinglepoint(T0 , p0 ),seeFigure 5.5.Ifweweretomake aninfinitesimalchangeinthetemperaturereservoirto T0 + T (seeFigure 5.6), thenwewouldmovetoahigherhorizontallineinFigure 5.2,therebyoperatingat

1 CallengivesanexpressionfortheentropyofavanderWaalsgas: S (u, v ) = ν R∗ ln (v

where c isthemolarheatcapacityatconstantpressure.Forwatervapor,

, and c = 3.1.

Figure5.5Apointinthe T –p planeinwhichliquidandvaporareinequilibrium.

Figure5.6Asthetemperatureisincreasedfrom T0 to T0 + T ,thesaturation vaporpressurewillincreasefrom p0 to p0 + p.

(p0 + p, T0 + T ).Aswechangefromoneflatlineinthe V –p plane,wetrace outanewcurveinthe T –p plane.Letuscallit pequil (T ). Alongthiscurve, p = pequil (T ),thetwophasescanexistinequilibrium.Infact, if T and p lieonthecurve(i.e., p = pequil (T ))thenthevolumecanbevaried isothermallyandisobaricallycausingmasstotransferfromonephasetotheother untiloneofthephasesisexhausted.ThepointinFigure 5.5 liesbetweenpointsB andbinFigure 5.7.Thevariationcanbethoughtofasintooroutofthe T –p plane alongthe V (volume)axis.

Theupshotofallthisisthatwhenthetwophasesaretogetherinequilibrium therewillbeauniquecurveinthe T –p plane.Thislineisofgreatinteresttous. Forexampleitsslopetellsushowmuchthesaturationvaporpressurewillincrease forasmallchangeinthetemperature.

Watercanformiceasitssolidphase.Itturnsoutthatasingle-componentsystem suchaspurewatercancoexistinallthreephasessimultaneouslyonlyatasingle pointinthephasediagramcalledthe triplepoint. Thetriplepointforwateris 273.16Katapressureof6.11hPa.Atpressuresbelow6.11hPaiceandvaporcan

Figure5.7Aschematicphasediagraminthe T –p planeofthephasesofwater. BelowthelineABCthephaseisvapor.TotheleftofABDthephaseissolid. AboveDBCthephaseisliquid.Theselinesarecalledphaseboundariessince alongthemtwophasescancoexist.ThepointBistheso-calledtriplepointsince allthreephasescancoexistatthispoint.Thedashedlineabindicatesatmospheric pressure.Theboilingpointisatb.

coexist,butnoliquidwaterwillexistinequilibrium.Therearemanyotherphases ofwaterinitsdifferentcrystallineforms,andtheseareimportantinhighpressure situationswelloutsidetherangeencounteredinatmosphericapplications.

5.5Phaseboundaries

Considerapointrepresentingastateinthe T –p plane.Atsuchanarbitrarypointthe Gibbsenergyforeachofthesubsystemphaseswillhavegivenvalues Ml gl (T , p) and Mg gg (T , p),where Ml and Mg arethemassesoftheliquidandgaseous subsystemsand gl (T , p) and gg (T , p) arethespecificGibbsenergiesforeach(by useoftheterm specific wemeanthateachisperunitmass).TheGibbsenergy forthewholesystemisthesumofthemassweightedspecificGibbsenergies. Notethatwhenthetwophasescoexistinequilibrium,thepressure,temperature andspecificGibbsenergiesofeachphasearehomogeneousthroughout(e.g.,the specificGibbsenergyoftheliquidequalsthatofthevapor).Onlythedensitydiffers fromonephasetotheother.Toshowthis,supposeweareonaphaseboundaryin the T –p plane(thecurveofequilibriumstatesdescribedinthelastsection),andwe changethevolumeofthesystemslightly, V .Inthattransition,thetotalsystem Gibbsenergy, G (T , p) doesnotchangesince p, T ,and M donotchange.This meansthat

Ml gl (T , p) + Mg gg (T , p) = 0(5.6) wherewehavemadeuseofthefactthatthespecificGibbsenergiesdonotchange because p and T arefixed.Nowinthelastequationwecannotethat Ml =− Mg

becausethemasshastobeconserved.Thisleadstotheinterestinganduseful conclusionthatalongaphaseboundary, gl (T , p) = gg (T , p) [alongaphaseboundary].(5.7)

Inthe T –p phaseplanedifferentregionsrepresentdifferentphasesofthistwophasesystem.Aphaseboundaryexistsalongwhichtheliquidandgaseousphases cancoexistinequilibrium.WehaveshownabovethatthespecificGibbsenergies foreachindividualphaseareequalalongthephaseboundaryinthe T –p plane. Thisresultwillallowustocalculatetheslopeofthephaseboundaryinthenext section.

Gibbsphaserule Inthelasttwosectionswediscussedmultiplephasesandin particularthecaseofwateranditsthreephases.Ingeneraltheremightbemorethan onecomponentaswell(forexample,amixturewithdifferentphasesforeach).The intensivevariablesintheproblemarethetemperatureandthepressure(commonand equalforallthecomponents).Wealsoknowthatwhenthesystemisinequilibrium, thespecificGibbsenergiesforagivencomponent G i (T , p) willbeequalforthe phasesofthatcomponent.Inlookingbackatthewaterproblemweseethatthereare regionsinthe T –p diagramwhereboth T and p canbevariedindependently.These areregionswherethereisasinglephasepresent.Thelinesinthediagram(Figure 5.7) representalocusofpointswheretwophasesarepresentinequilibrium.Finally,the triplepointisthesinglepointwherethreephasesarepresentinequilibrium.Thisis thesituationwhenthereisonlyonecomponentpresent(water).

The numberofdegreesoffreedom denotedhereas F (differentfromthesamename usedinkinetictheory)referstothenumberofwaysoneoftheintensivevariables (T , p, G 1 , G 2 , ... , G c ,where C isthenumberofcomponents)canbevaried independently.Forexample,intheregionsawayfromphaseboundariesinFigure 5.7 both T and p maybevariedindependently(twodegreesoffreedom),butonaphase boundary,onlyoneofthesevariablesisindependentsincethephaseboundaryis definedbyafunction, p = p(T ) (onedegreeoffreedom).Atthetriplepointthe numberofdegreesoffreedomiszero.

Itispossibletoderiveaformulaforthenumberofdegreesoffreedomfora multi-component,multi-phasesystemanditisworthpresentinghere.Firstnotethat thenumberofmolarconcentrationvariablesis C ,butonly C 1areindependent, sinceweareinterestedonlyinmolefractions.Thenumberofphasesis P .Sothetotal numberoftheseintensivevariablesis P (C 1).Buttherearesomerelationsbetween thesevariablesbecausesomeoftheGibbsenergiesarerelatedtooneanother.For eachindividualcomponenttheGibbsenergiesofthephaseshavetobeequal.For eachcomponentthereare P 1relations.(Forexample,iftherearetwophasesthere isonlyonerelation,say G 1 = G 2 ,etc.)Thisreducesthenumberofindependent

intensivevariablesby C (P 1).Westillhavethepressureandtemperaturethatare independenttoadd.Thusweobtain

leadingtothe Gibbsphaserule:

F = C P + 2 [numberofdegreesoffreedom:Gibbsphaserule].(5.9)

Weseethatforasingle-componentsystemwithonephase, F = 2(theregions betweenphaseboundariesinFigure 5.7).Whentherearetwophasespresent(ona phaseboundaryline), F = 1.Whenallthreephasesarepresent, F = 0,thetriple point.

Othersystemsofinterestincludethecaseofwaterwithadissolvedsolutesuchas salt.Thiswouldbeatwo-componentsystemwithtwophases(theliquidsolutionand thesaturatedvaporinequilibriumwithitabove).Thiscasewillbediscussedlater.

5.6Clausius–Clapeyronequation

HavingestablishedthatthespecificGibbsenergiesforliquidandgaseousphases arethesamealongthephaseboundary,wecannowproceedtocalculatetheslope ofthephaseboundaryinthe T –p plane.Thisslopeistherateofchangeofthe vaporpressurewithrespecttotemperatureasthesystemisallowedtomovealong thephaseboundary.Thisslopemeasurestherateatwhichthesaturationvapor pressureincreasesforincrementalchangesintemperature–animportantquantity inmeteorology.

Firstconsidersuchareversiblechangeofthecompositesystem(gasandliquid inequilibrium)alongthephaseboundary.Wehave:

Then(usinginfinitesimalnotationinsteadof )

wherethesmallletters s and v referto specific entropyandvolumesrespectively, andhenceforthwedenotethesaturationvaporpressureas es .Rearranging:

First,noticethat vg vl (e.g.,foronegrammoleofvapor22.4 × 103 cm3 versus18cm3 ofwater)sothat vl canbeneglected.Thespecificvolumeofan

idealgasis RT /p,where R isthegasconstantfortheparticularspecies(herewater vapor).Thedifferenceofspecificentropiescanbecalculated.Thisdifferenceisthe changeinspecificentropyasweconvertaunitmassofliquidintogasformata fixedtemperature: Hvap /T = L/T ,where L istheenthalpyofvaporization(per kilogram).Wearriveatthe Clausius–Clapeyronequation:

[Clausius–Clapeyronequation].(5.13)

Beforeproceedingtointegratethisequationtofindanexpressionfor es (T ),it shouldbenotedthattheprocedurejustemployedisverygeneralandcanbeapplied tomanyotherproblems.Whilewewillnotpursueithere,itisperhapsclearthat theequilibriumwespeakofcouldbethatofchemicalspeciesinsteadofphases, oritcouldbeacombinationofboth.Inphysicalchemistrytextsthetechniqueof equilibriumboundariesutilizingtheGibbsenergycanbefoundtoleadtosuch diverserulesasthetemperaturedependenceofreactionratecoefficients.

5.7IntegrationoftheClausius–Clapeyronequation

Toproceedwedivideeachsideoftheequationby es andmultiplythroughbyd T . Theleft-handsidewillbeafunctiononlyof es andtheright-handsidewillbeonly afunctionof T .Thisallowsustointegrate:

Nextwechoosethelowerlimittobe273.2Ksothat es (0) = 6.11hPa.Thevalue 6.11hPahastocomefromobservations–thermodynamicscannottellusthevalueof suchaconstant.Afterall,this integrationconstant shouldbedifferentfordifferent substances(e.g.,comparethisvaluetothevaporpressureofmercuryat20 ◦ C whichis0.16Pa).Insertingtheothernumericalvaluesleadsto:

wherewehaveinsertedthenumericalvaluesfor R = Rw and L = Lvap .This equationcanalsoberearrangedtogivethehandyformula:

es = 2.497 × 109 e 5417/T (hPa) [integratedformofthe Clausius–Clapeyronequation].(5.17)

Figure5.8Saturationvaporpressureoverice(dashedline)andliquidwater (solidline).ThecurveswerecomputedwiththeClausius–Clapeyronequation with Lvap = 2.5 × 106 Jkg 1 and Lsublime = 2.83 × 106 Jkg 1 .

TheresultinggraphisshowninFigure 5.8.Ifweconsiderthevaportobein equilibriumwithanicesurfacewemustuse Lsublime = 2.83 × 106 Jkg 1 andthe resultofthisisshowninFigure 5.8 asthedashedline.Notethatbelow T = 273K thesaturationvaporpressureislargeroverliquidthanoverice.Thismeansthatif thereisanicesurfaceinthechamber,theicesurfacewillnotbeinequilibriumwith thevaporinthechamber,whichisatthesaturationvalueforaliquidsurface.The upshotisthattheicevolumewillgrowinsizeattheexpenseoftheliquidmass. Eventuallythevaporpressureinsuchachamberwillbecomethatofthesaturation vaporpressureoverice.Thiseffectisimportantinacloudattemperaturesbelow freezing(0 ◦ C)inwhichicecrystalsareembeddedinafieldof supercooled water droplets.Thetermsupercooledisappliedsincewaterdropletscanbebelowthe freezingpoint(0 ◦ C)withoutactuallyfreezing.Wewillseelaterthatthepresenceof animpurityinthedroplet,suchassilverchloride,cancausethedroplettofreezeat slightlyhighertemperatures.Thepointatwhichallthesupercooleddropletsfreeze is 40 ◦ C.

Example5.1:comparingvaporpressureovericeandliquidwater Aplotofthe saturationvaporpressureoveraflatliquidwatersurfaceisshowninFigure 5.8 Ifweconsiderthevaportobeinequilibriumwithanicesurfacewemustuse Lsublime = 2.834 × 106 Jkg 1 .Thenthevaporpressureovericeisapproximately

Thecorrespondingformulaforvaporpressureoveraliquidsurfaceis

wherethetemperatureinbothformulas 2 isinkelvinsandthevaporpressureisin hPa.Moreaccurateformulascanbederivedbytakingintoaccountthetemperature dependenceof Lsublime ,etc.

TheseareshowninFigure 5.8 withthevaporpressureoverliquidasthesolid lineandoverthesolidsurfaceasthedashedline.Notethatbelow T = 273K,if thereisapieceoficeinthechamber,itwillgrowinsizesincetheevaporationrate fromtheicewillbelessthantheevaporationratefromaflatliquidsurface.

Anothereffectwhichisimportantinsomeapplicationsisthedifferencein saturationvaporpressuresfordifferentisotopesofwater,H2 O18 versusH2 O16 . Bothoftheseisotopesareradiologicallystable(theydonotdecay)andbothare foundinnature.Theheavierisotopemakesuponlyabout0.20%ofoxygenatoms. Thevibrationfrequenciesofthewatermoleculesareaffectedslightlybythesmall amountoftheheavierisotope.Thisleadstoaverysmallchangeinthesaturation vaporpressureofwaterhavingmoreorlessoftheheavyisotopepresentintheliquid. Thissmalleffecthasatemperaturedependenceanditleadstoslightlydifferent evaporationratesoverwarmversuscooloceanwaters.Thisleadstoadifferent concentrationoftheisotoperatiointhewatervaporoverthesedifferenttypesof oceanwater.Theratiooftheheavyisotopicwatertothelighteronecanbemeasured inicecoresandinothermaterial.Theapplicationisinpaleoclimatologywheresnow depositedonpolaricefieldsleavesinitslayeringarecordoftemperaturesignatures ofpastclimates.Thisisaveryactiveareaofcurrentresearch–notjustforthewater isotopesbutforthoseofmanyotherelements.

5.8Mixingairandwater

Whenthereisamixtureofairandwatervaportheeffectivemolecularweightof thegaschangesslightly.WecanuseDalton’sLaw(Section 2.5)tofindtheeffective valueofthegasconstant, Reff .Firstwefindtheeffectivevalueofthemolecular weightwhensomewatervaporispresent.Theresultis 3

2 Emanuel(1994)containsextendeddiscussionsoftheserelations.

3 Thealgebrarequiredbeginshereandcontinuesonthenextpage.

where w ,the mixingratio,isgivenbytheratioofthemassofwatervaportothe massofdryairinaparcel:

Enteringthecalculationwastheratioofmolecularweightsofwatertoair:

The mixingratio w isusuallygiveninunitsofgramsofwatervaporperkilogram ofdryair(ofcourse,inequationssuchasthosejustaboveitwouldbein (kgvapor)(kgair) 1 ).

Theeffectivevalueofthegasconstantisthen

Theresultsaboveallowustowritetheequationofstateforthemoistairas

where Rd = 287Jkg 1 K 1 and

iscalledthe virtualtemperature.Notethatthevirtualtemperatureisalwayslarger thantheactualtemperature,butthattheyseldomdifferbymorethan1K(w is seldomgreaterthan4×10 2 (kgvapor)(kgdryair) 1 .

Theuseofvirtualtemperatureallowsthemeteorologist(whoseinterestis buoyancy)tocorrectthedensitytolowervalueswhenwatervaporispresentwhile retainingthesimplicityoftheIdealGasLawfordryair(Rd = 287Jkg 1 K 1 ).This

Footnote3 continued

workstoaverygoodapproximationinpracticalsituations.Rememberthatwater vaporhasalowermolecularweightbuteachwatervapormoleculeattemperature T hasthesameeffectonpressureasanairmolecule.Thusifthereisamixtureof watervaporandairwherethetotalpressureisthesame,thedensitywillbelower thanforthesamevolumeofdryairatthesametemperatureandpressure.

The saturationvapormixingratio isdenoted ws anditisastrongfunctionof temperature.Keepinmindthatthesaturationvapormixingratioisalsoafunction oftheairpressure(equivalenttoaltitude)becauseitistheratioofwatermassto airmass.

The relativehumidity isgivenby

Orintermsofpercent:

The dewpoint temperature, TD ,isthetemperatureatwhich

Inotherwords,foragivenvalueof w ,itisthetemperatureforwhichthatvalueof mixingratio, w ,isequaltothesaturationmixingratio, ws .Wereachthedewpoint bycoolingatconstantpressuretothetemperaturewhere w inaparcelreachesits saturationvalue.

Tofindtherelationshipbetweenthepartialpressureduetovaporandthepartial pressureofthedryairinaparcel,wewrite:

Takingtheratioandrearranging:

[mixingratiointermsofvaporandairpressure](5.33) where

Andofcoursetheformulaholdsforthesaturationcaseaswell ws = es p [saturationmixingratio].(5.35)

Strictlyspeaking, p aboveis pdry whichisnot patmo = e + pdry ,butusuallythe differenceisnegligible.

Wecanalsowrite

andsincewearetolowerthetemperatureto TD isobaricallywecansay

Thenifeither w or e areknownwecanfind TD bysolvingoneoftheseequations for TD .

Example5.2 Watervaporismostlydistributedintheboundarylayerofthe atmosphere(lowest1–2km).Assumetheatmosphereisisothermalat300Kand thatthesurfacehumidityis95%.Ifallthevaporisdistributeduniformlyinthe first1.5km,howmuchwaterliesaboveagivensquaremeterofsurfaceinkgm 2 ? Alsoexpresstheresultinmmequivalentofliquidwater.

Answer:FirstcomputethesaturatedwatervaporpressurefromtheClausius–Clapeyronequation: es = 36hPa.Thenthesaturationmixingratioisgivenby ws = (0.622) × (0.036) (kgwater)(kgair) 1 = 0.022(kgwater)(kgair) 1 .Thus, thewatervapormixingratiois95%ofthis,0.021(kgvapor)(kgair) 1 .Themass ofairinthe1.5kmcolumnis1500m3 × 1.2kgm 3 = 1800kg.Multiplyingyields 38kgofwatervaporinthe1m2 column.Theequivalentdepthofliquidwateris Mwater /(ρliqwater × 1m 2 ) = 38mm.

Example5.3 : dryline Thisisafairlysharpboundaryoftenfoundintheareaeastof theRockyMountainsrunningnorth–south.Theboundaryseparatesdryaironthe westfrommoistairontheeast.Thedryaircancomefromwindsfromthesouth (Mexico)ordryairdescendingfromtheRockies.Totheeasttheairmaybemoist becauseofsoutherlyflowfromtheGulfofMexico.Reductionsofdewpointofas muchas18 ◦ Ccanbefoundingoingfromeasttowestacrossthedryline.Iftheair columnispushedeastwardstheheavierdryaircanwedgeunderthelightermoist airandsometimesleadtocloudinessorevenrain.

Anothermeasureofmoistureencounteredinatmosphericscienceisthe specific humidity, q.Itisthenumberofgramsofwatervaporperunitmassofairplus

Airandwater

watervapor(usuallyexpressedinkilograms).Inapplications, q isnumerically closeenoughtothemixingratio w thatoneseldomneedstodistinguishbetween them.

Example5.4 Compare q and w ifthepressureis800hPaand q = 0.010(kgvapor) (kgmoistair) 1 .Wecanwrite(using p = pd + e ):

Notethatthepressureof800hPareallydidnotmatter.

Example5.5 Moisteningthetropicalboundarylayer(temperature300K).Suppose theairabovetheseasurfaceisstill(i.e.,ignoreadvection)andabsolutelydry. Supposeevaporationtakesplacesteadilyatarateof1myr 1 .Howlongdoesit taketheboundarylayertocometo80%humidity?

Answer:Theevaporationrateis1myr 1 .Then

At300Kand80%RH,theamountofwatervaporabove1m2 intheboundarylayer (1.5km)is32kg.Hence,

Example5.6 Canitsaturateintime?Supposeadryparcelisintroducedtothe tropicalboundarylayerat30 ◦ N.Itflowsalongthesurfaceinthetradewindsuntil itreachestheEquator.Doesithavetimetosaturate?

Answer:Letthetradesflowtowardthesouthwestat10ms 1 .Themeridional distancetotheEquatoris30×100km = 3 × 106 m.Alongadiagonalat45◦ this isenhancedto4.24×106 m.Thetimerequiredforthispassageisapproximately 4×106 s = 46days.Accordingtothepreviousexamplethisappearstobesufficient timefortheparceltosaturate.

Example5.7 Thetemperatureis20 ◦ Candthevaporpressureis10.0Pa.Whatis thedewpointtemperature?

Answer:Solve(5.37)for TD :

Figure5.9Relativepositionsofthetemperature T ,dewpoint TD ,andwet-bulb temperature Tw ofanairparcel.

5.9Wet-bulbtemperature,LCL

Thethermodynamicstateofanairparcelisdeterminedbyitstemperature,pressure andmixingratio.However,insomeapplicationsitisnotconvenienttousethe mixingratio.Forexample,themixingratioisnoteasilymeasureddirectly.There isanotherindicatorofatmosphericmoisturecalledthewet-bulbtemperature(Tw ) whichcanbemeasuredmoredirectly.Thewet-bulbtemperatureliesbetweenthe dewpointtemperatureandtheairtemperature(seeFigure 5.9).

Beforeintroducingthewet-bulbtemperature,letusturnagaintothedewpoint temperaturewhichisalsoameasureofmoistureintheair.Recallthatitisthe temperaturetowhichairmustbecooledatconstantpressureinordertobecome saturatedwithrespecttoaplanesurfaceofwater.Asweperformthecoolingwe mustkeepthemixingratiooftheairfixed.Atthistemperaturetheactualmixing ratiobecomesequaltothesaturationmixingratio:

Attemperatureshigherthanthedewpointtheaircontainssomemoisture,but lessthanthesaturationvalue.Asthetemperatureisdecreasedtothedewpoint condensationoccurs.Sinceatthedewpointthemixingratioisequaltothesaturation mixingratio,itisevidentthatthedewpointtemperatureisalwayslowerthanor equaltotheairtemperature.Ifthetwoareclosetogether,therelativehumidityis high.Ifthedewpointisfarbelowtheairtemperature,therelativehumidityislow. Thedewpointisagoodindicatorofhumandiscomfort.Whentemperaturesarehigh itismorecomfortablewithalow TD ratherthanwithahighdewpointtemperature becauseofthehigherrelativehumidity.Whentherelativehumidityishighthe rateofevaporationfromamoistsurfaceislow(itisactuallyproportionalto100 minustherelativehumidityinpercent).Meteorologistsoftenrefertothedifference betweentemperatureanddewpoint,whichiscalledthe dewpointdepression. Thefrostpointisdefinedsimilarlytothedewpoint.Thefrostpointisthe temperaturetowhichairmustbecooledatconstantpressureinordertobecome

saturatedwithrespecttoaplanesurfaceofice.Notethatthemixingratioisconstant duringaconstantpressurecoolingofaparcel.

Thedewpointtemperatureisdifficulttomeasuredirectly.Itiseasytomeasure the wet-bulbtemperature.Thisisthetemperatureofawetsurface(nominallyawet clothwrappedaroundthebulbofathermometer)thatisimmersedintheambient air.Thewetsurfaceevaporatesmoistureintothesurrounding(typicallylessthan saturated)airandinsodoingthetemperatureofthewetsurfaceislowered(as perspirationintodryaircoolstheskin).Thewetsurfacewillcometoanequilibrium temperatureafterashorttimeiftheairnearthewetsurfaceiscontinuallyventilated withthedryerambientair.Thisequilibriumtemperatureofthewetclothiscalled thewet-bulbtemperature.Ifthesurroundingairisfullysaturated,therewillbeno netcoolingsincetherateofevaporationwilljustequaltherateofcondensationonto thewetsurface,leavingthewet-bulbtemperaturetobethesameasthedewpoint temperature.Forunsaturatedairthewet-bulbtemperaturealwaysfallsbetweenthe dewpointtemperatureandthedry-bulbtemperature(thedifferencebetweenthe dry-bulbandwet-bulbtemperaturesiscalledthe wet-bulbdepression).Notethatan evaporatingclouddropletorraindrophasatemperatureatthewet-bulbtemperature.

Thewet-bulbtemperaturecanbemeasuredwitha slingpsychrometer,which consistsofathermometerwithwetgauzecoveringitsbulb.Thishand-helddeviceis swungaroundfromashortchaintomaintaintheproximityoffreshambientairatthe wetsurface.Withouttheswinging,stagnantsaturatedairwouldaccumulatearound thewetbulbandraiseitstemperaturetoanerroneouslevel.Watermoleculesleaving thewetsurfacediffuseawayfromthebulbthroughthethinboundarylayerofair surroundingit.Atthesametimeheatisbeingconductedfromthewarmerambient airtowardsthecoolerwetsurfacethroughthesamethinboundarylayer.Equilibrium isestablishedbetweentheenthalpyfluxduetoevaporationcarriedbyout-flowing moleculesandthein-flowingenthalpyflux.Aformulacanbederivedfortherelative humiditygiventhewet-bulbanddry-bulbtemperatures(see Wet-bulbderivation in theboxbelow).Forpracticalusetherelationshipiscommonlyexpressedintables. Itisinterestingthatthegeometricalconfigurationofthewetclothsurroundingthe bulbdoesnotmatterbecausethosefactorscancel.Morediscussionofthewet-bulb temperaturecanbefoundinExercises7.8and7.9inChapter 7.

Thesaturationmixingratiodependsontemperatureandairpressure,thusit isafunctionofheight.Whenaparcelisliftedadiabatically,itstemperatureand pressurebothdecrease.Thetemperaturedependenceoftheparcelislinearwith height(wewillseeinthenextchapterthatitis10Kkm 1 ).Hence,astheairrises 1kmthetemperaturewillfallabout10K.Thesaturationvaporpressurebecomes halfitssurfacevaluebecauseofthisdecrease(remembertheruleofthumbabout thedoublingofvaporpressureforevery10 ◦ C).Themixingratio w0 staysthesame forthisascent,whiletheairpressure p(z ) andthevaporpressure e (z ) intheparcel

Lifting Condensation Level

eachfallabout12%(usingascaleheight H oftheatmosphereofabout8km):

Sothevaporpressuregoesdownby ≈12%whilethesaturationvaporpressuregoes downby50%.Thisshowsthatthesaturationvaporpressureisdecreasingmuch fasterthantheactualvaporpressureintheparcel.Asthiscontinues(thesame percentagesforeachkilometerofascent)thecurveswillcrossandcondensation willoccur.Thelevelatwhichaninitiallyunsaturatedparcelreachesitssaturation levelwhilebeingliftedadiabaticallyiscalledthe liftingcondensationlevel (LCL). Ifweknowthetemperature,pressureandmixingratioofanairparcel,wecanfind theLCL,wherecondensationstartstooccuralongtheascent.

Ifweknowthemixingratio,wecaneasilyfindthedewpointandwet-bulb temperatureandviceversa.Figure 5.10 showstheLCLforaparcelatinitial temperature T ,pressure p,anddewpoint TD .Itislocatedattheintersection ofthelinewithconstantpotentialtemperature(theunsaturatedparcelascends dryadiabatically)andthelineofconstantsaturationmixingratiostartingatthe dewpointtemperature(thisisbecausethemixingratioisfixedatitsinitialvalue duringthisnoncondensingpartoftheascent).Thephysicalsignificanceofthese parameterswillbemoreclearwhenwestarttoworkwiththermodynamicdiagrams inChapter 7.

Wet-bulbderivation Intheprecedingweindicatedthatthegeometricalfactors cancelinthewet-bulbdepression.Toshowthiswecanderivetherelationship betweentherelativehumidityandthewet-bulbdepression.Forsimplicitywetakethe bulbtobeasphereofradius R0 ,butintheenditdoesnotmatterwhatthegeometrical

Figure5.10Illustrationoftheliftingcondensationlevel(LCL).

Figure5.11Watervapormoleculesdiffuseawayfromthewetsurfaceasheatis conductedtowardsthewetsurface.Whenthesefluxesmatch,thetemperatureatthe wetsurfacewillbethewet-bulbtemperature.

shapeis.Therearetwofluxesfromthespherethathavetobecomputed:(1)theflux ofwatervapormoleculesleavingthesphereduetoevaporationtowardlessmoistair faraway;(2)theheatconductedtothespherebecauseofthewarmerairfaraway (Figure 5.11).

Thewatervapormoleculesdiffuseawaywithaflux Fw (r ) where r isthedistance fromthecenterofthesphere, r ≥ R0 .Thefluxatanyvalueof r passingthrougha surroundingsphereis

where D isthediffusioncoefficientforthisprocess(knownfromtables), nw (r ) isthe numberdensityofvapormoleculesatradius r .Thisfluxmustbeindependentof r sinceotherwisetherewouldbeasourceoffluxotherthanthewetbulb’ssurface. Wecanthenset Fw (r ) = F0 = constant.Thisallowsustointegrateeachsidefrom R0 to ∞ afterdividingthroughby4π r 2 D .Thisproduces:

Wecanrecognizethat

where nsat (Tw ) isthesaturationnumberdensityfor T = Tw .Ifwedividethroughby nsat (TD ) wehave

whereRH = n∞ /nsat (TD ) istherelativehumidityawayfromthewetbulb.Sofarwe donotknowthevalueof F0 intheaboveformula.Anothermeasurementisrequired. Wemustnowturntocondition(2),theheatconduction.Heatflowsfrominfinity towardthewetbulbbyheatconduction.Thefluxofheatcrossingasphericalsurface ofradius r is

where κH isthe(availablefromtables)thermalconductivitycoefficientandthesame argumentisusedasabovefortheconstancyofthefluxpassingthroughspheresof differentradii.

Asabovewecanintegrateafterdividingthroughbythefactor4π r 2 κH .Weget:

Thereisoneothercondition,thatthefluxofheathastoberelatedtothefluxof vapormolecules.Eachmoleculeofwatervaporleavingtoinfinitycoolsthewetbulb by = L/NA where L istheenthalpyofvaporizationpermoleofwatervaporand NA isAvogadro’snumber.Thissaysthat

Nowwecansubstitutefor H0 anddividethetwoequationsabovetoobtain:

Usingthepsychrometerwemeasureboth TD and Tw .Wecanthencalculate nsat (TD ) and nsat (Tw ) fromtheClausius–Clapeyronrelation.TheonlyunknownaboveisRH, whichcannowbecalculated.Thecomputationistedious,hence,thetables.Notethat thegeometricfactors4π R0 cancelledout.Itcanbeshownthatnomatterwhatthe geometricalshapeofthewebbulb,thesegeometricalquantitieswillcanceloutand thewet-bulbtemperatureisindependentoftheshapeofthebulb.Sowhyswing thepsychrometeraround?Thereasonistohavefreshenvironmentalairwithina millimeterortwoofthewetbulbtoinsurethatthemoistairatinfinityis representativeandnotcontaminatedbythewetbulb’sevaporation.

5.10Equilibriumvaporpressureoveracurvedsurface

Sofarourdiscussionofthesaturationvaporpressurehasbeenrestrictedtothat overaplanesurfaceofwater.However,inatmosphericphysicswealsoencounter situationswherethesurfaceiscurved.Thisisthecase,forexample,inclouddroplet formation.Clouddropletshaveapproximatelysphericalshape,whichmeansthat growthofadropletimpliesanincreaseofthesurfaceareaofthedrop.Increasing

surfaceareaofaliquidrequireswork(considerblowingasoapbubble).Growthofa dropletthenrequiresconsiderationof surfacetension.Thustofindtheequilibrium vaporpressureoveradropletwehavetoincludesurfacetensionintheenergy balance.Theenergyrequiredforanincreaseofsurfacearead A is σ d A,where σ isthesurfacetension(surfaceenergyperunitarea),inJm 2 (thevalueforwater is0.0761Jm 2 at0 ◦ C).Theenergyrequiredtocreateasphericaldrop4 ofradius a is σ 4π a 2 .

Considertheformationofaclouddropletfrompurewatervapor(noaerosols orotherimpuritiespresent).Suchaprocessiscalled homogeneousnucleation as opposedto heterogeneousnucleation,whensmallaerosolparticlestakepartinthe dropletformation.Supposethatinitially,at t = t1 ,wehavewatervaporofmass M atpartialpressure e andtemperature T .TheGibbsenergyofthesystem, Ginitial ,is

initial = Mgv (5.52) where gv isthespecific(perunitmass)Gibbsenergyofthewatervapor.Itdepends onthevaporpressureandthetemperature.Supposethatatsomelatertime, t = t2 , anembryonicdropletstartstoform.Itgrowsbyoccasionalstickingcollisionsby watervapormoleculesandatsomemomentdevelopsaradius a andmass Mw . Thesphericalsurfaceareaofthedropletis A = 4π a 2 .Thetotalmassisconserved, soif Mv isthemassofwatervaporremainingaftercondensation,then

ThetotalGibbsenergyofthesystemattime t2 , Gfinal ,is

Thefirsttermontheright-handsideof(5.54)istheGibbsenergyofthewater vapor,thesecondistheGibbsenergyoftheliquid,andthelasttermisdueto surfacetension.

ThechangeoftheGibbsenergyduetothedropletformationcanbefoundby subtracting(5.52)from(5.54)andtakingintoaccount(5.53):

Thenextstepistofindthedifference gw gv .Weknowthatataconstanttemperature (inourcasethetemperatureisfixed)thechangeintheGibbsenergyisd g = v d p,

4 Theexampleofasoapbubbleishelpful.Soapywaterhasahighersurfacetensioncoefficientthanpurewater sothesurfacetensionisveryimportant.Alsoonemustrememberthatthebubblehastwicethesurfacearea becausethereisaninsidesurfaceaswellasanoutsidesurface,incontrasttothewaterdroplet.

G

Figure5.13Schematicdiagramillustratingthenotationforequilibriumvapor pressureoveradroplet, e ,andthatoveraflatsurface, es .

where v isthespecificvolume(v = (density) 1 ).Then,forthevaporwehave d gv = vv d e ,fortheliquidd gw = vw d e ,andthedifferenceisequalto

since vv vw .Substitutingspecificvolume vv fromtheIdealGasLaw,weobtain

and,aftertheintegration,

Wecanfindtheconstantofintegrationbytakingintoaccountthatinequilibrium (seeFigure 5.13),alongthephaseboundarywhere e = es (T ), gw = gv (see(5.7)). Then,

Substituting(5.59)into(5.55)gives

Themassofasphericalwaterdropletwithradius a anddensity ρw is Mw = 4 3 πρw a 3 ,andthesurfaceareais A = 4π a 2 .ThenthechangeintheGibbsenergy duetothedropletformation, G = Gfinal Ginitial ,is:

From(5.61)weseethatinthesubsaturatedair,when e < es ,ln (e /es ) isnegative, and G isalwayspositive(seeFigure 5.14).FromSection4.8.2weknowthat equilibriumoccurswhentheminimumoftheGibbsenergyisachieved;or,inother

Figure5.14ThechangeofGibbsenergyduetotheformationofawaterdroplet asafunctionoftheradiusofthedroplet.

words,thesystemtendsspontaneouslytowarditsequilibriumstatebyhavingthe Gibbsenergydiminishmoreandmoreuntilitreachesitsminimum.Weconclude thattherearenofavorableconditionsforclouddroplet(a > 0)formationin unsaturatedair.

Thesituationisdifferentwhentheairissupersaturated,whichmeansthat e > es andln (e /es ) ispositive(seeFigure 5.14).Inthiscase G increasesastheradius a increases,thenitreachesamaximumatsomeradius,andthendecreaseswiththe furtherincreaseof a .Iftheclouddroplethasaradiuslessthanthecriticalradius a ∗ , itwilldisappearbyevaporation.If,however,theclouddropletreachesthecritical radius a ∗ ,thenitwillcontinuetogrow.Wecanfindanexpressionforthecritical radiusbyequatingthederivative ∂ G /∂ a tozero.Theresultis

whichiscalledKelvin’sformula.Itallowsonetofindtheradius a ∗ ofadroplet whichisinequilibriumwithairwiththevaporpressure e .Thisequilibriumstate isunstable.Thisbecomesevidentifweconsideraslightgrowthofthedroplet. Thisgrowthmightbeduetothecondensationofwatervaporinthevicinityofthe droplet,whichmeansthattherelativehumiditydecreasesjustabovethesurface. Sincetheairinthevicinityofthedropletbecomesdrier,thereisadiffusivefluxof moistairtowardthedroplet,andthecondensationprocesscontinues,leadingtothe furthergrowthofthedroplet.Ontheotherhand,ifthedropletevaporatesslightly, therelativehumidityjustabovethedropletsurfaceincreases,thewatervaporstarts todiffusefromthedroplet,andthedropletwillcontinuetoevaporatetomaintain therelativehumiditycorrespondingtoradius a ∗ .

5.10Equilibriumvaporpressureoveracurvedsurface 125

Wecanrewrite(5.62)inordertodeterminetheequilibriumvaporpressure e over adropletwithradius a ,

wheretheparameter b isdefinedby

Ifwesubstitute σ =0.076Jm 2 , ρw =1000kgm 3 ,and Rw = 461.5Jkg 1 K 1 , weobtain

(5.65) (inmeters).At273K, b = 1.21nm(typically b a ).Formula(5.63)showsthat theequilibriumvaporpressureoverasphericaldropletisnotequaltothesaturation vaporpressureasdeterminedoveraplanesurfaceofwater.Thishappensbecause ofthesurfacetension.Iftheradiusofthedropletgoestoinfinity, a →∞,which correspondstoaplanesurface,weobtaintheresultforaflatsurface e = es (see Figure 5.13).

Example5.8 Waterdropletsareinequilibriumwithsurroundingvaporata temperatureof2 ◦ C.Calculatethevaporpressureandrelativehumidityoverthe dropletwithradius0.008 µm.

Answer:Thesaturationvaporpressureat2 ◦ Cis: es = 2.497 × 109 exp( 5417/ 275.2) (hPa)=7.06hPa.From(5.63)weobtain e = 7.06 × exp(3.3 × 10 7 / (275.2 × 0.008 × 10 6 )) = 8.2hPa.RH = 116%.Asupersaturationof16%is requiredforthecreationofaclouddropletwithradius0.008 µmbyhomogeneous nucleationat2 ◦ C.

Toobtaintherelativehumidity,dividebothsidesof(5.63)by es :

ThisrelationshipisillustratedinFigure 5.15 foratemperatureof5 ◦ C.Asshown inthefigure,theformationofadropletwithradius0.01 µmrequiressupersaturation of112%.Atthesametime,inrealcloudstherelativehumidityrarelyexceeds101%. AsweseefromFigure 5.15,1.0%supersaturationisrequiredtoformadropletwith radiuslargerthan0.1 µm.Largedropletsinacloudsimplycannotformbyrandom collisionsofmoleculesontheirsurfaces.Fromtheabovediscussionitfollows thattheprocessofhomogeneousnucleationisunlikely.Innatureclouddroplets formbyheterogeneousnucleationonatmosphericaerosols.Considerthenhowthe

Figure5.15Therelativehumidityasafunctionofdropletradius.Thecurveis plottedforatemperatureof5 ◦ C.Thisgraphshowstherelativehumiditynecessary toformadropletofthesizeindicatedontheabscissa.

equilibriumvaporpressureoverthedropletchangesifthedropletcontainsdissolved electrolytes(usuallyfromaerosols,e.g.seasalt).Wewillconsider hygroscopic particles (thosethataresolubleinwater).Themostcommonofthesearesodium chloride(NaCl)andammoniumsulfate((NH4 )2 SO4 )whichdissolvewhenwater condensesontothem.Inthiscaseawaterdropletcanbetreatedasasolutionwith thewaterasasolventandthesaltasasolute.

Chemistryrefresher:Raoult’sLaw Theratiooftheequilibriumvaporpressure overasolution, e ,totheequilibriumvaporpressureoverpuresolvent, e ,isequalto themolefractionofthesolventinthesolution, f , e /e = f .Thepresenceofsaltin solutionalwayslowersthevaporpressure.

Consideraclouddropletthatcontains nsalt moleculesofsaltand nw molecules ofwaterperunitvolume.If e istheequilibriumvaporpressureoverthesolution (seeFigure 5.16)then,accordingtoRaoult’sLaw,

Figure5.16Illustrationofthenotation.Left:saturationvaporpressure e overa solutiondroplet.Center:saturationvaporpressure e overapurewaterdroplet. Right:saturationvaporpressureoveraflatsurface es .

where e istheequilibriumvaporoveradropletcomposedofpuresolvent.The secondexpressioncomesafterdividingnumeratoranddenominatorby nw .Ifwe takeintoaccountthatforadilutesolution nsalt nw andexpandthedenominator in(5.67)inageometricseries,5 wefind(retainingonlythelinearterm),

In(5.68)theeffectofdissociationoftheionsisnotyettakenintoaccount.Ifthe saltdissociatesinto i ions,sayNa+ andCl giving i = 2,thenthenumberofmoles ofsoluteindividualsinthedroplet,

,is

where Msalt and Msalt arethemassandmolecularweightofthesaltrespectively (besuretousekgpermolehereforthemolecularweight).Thedegreeofionic dissociation i ≈ 2forsodiumchlorideand i ≈ 3forammoniumsulfate.The numberofmolesofwaterwithmolecularweight Mw inthemass Mw is

where a istheradiusofthedroplet.6 Theratioofmolesisequaltotheratioof numberdensities:

Aftersubstituting(5.71)into(5.68)weobtain

5 Thegeometricseriesfor 1 1+ = 1 + 2 ,where | | < 1.

6 Weassumethatdissolvingthesaltparticledoesnotchangethevolumeofthedroplet.

wherewehaveintroducedanewparametertosimplifythenotation

Aftersubstituting ρw = 1000kgm 3 , Mw = 18gmol 1 weobtain

CombiningKelvin’sformula(5.66)and(5.72)weobtaintheformulafor equilibriumvaporpressureofasolutiondroplet:

Tobetterunderstandthisformulaconsideralimitingcase.Weagainlettheradius ofthedropletgotoinfinity, a →∞.From(5.75)weobtaintheknownresult:the equilibriumvaporpressureovertheplanesurfaceofwater(a =∞)isequaltothe saturationvaporpressure, e = es .

Considernowadropletwitharadius a b.Thenonecanexpandtheexponential functionin(5.75)inaTaylorseries 7 andget

Thesecondtermontheright-handsideof(5.76)isresponsibleforthesurface tension,thethirdtermisduetothepresenceofthesaltinthedroplet.Agraphical illustrationofformula(5.76)isgiveninFigure 5.17 for10 19 kgofsodiumchloride. Thecurveshowingthedependenceofrelativehumidityonradiusofthesolution dropletiscalledtheKöhlercurve.Thedashedcurvecorrespondstohomogeneous nucleation(5.63)withnosaltpresent.Thesetwocurvesdifferconsiderablyfor smallvaluesoftheradiusofthesolutiondroplet.Themostimportantresultisthat withanembeddedsolublesaltnucleusinthedropletamuchlowersupersaturation isrequiredforthedroplettobeinequilibriumwithitsenvironmentthaninthecase ofapurewaterdropletofthesamesize.Forexample,withsupersaturationofjust 0.1%adropletwitharadiusslightlylargerthan0.1 µmcanbeformed.Withavery smallradiusthedropletcanbeinequilibriumwiththesurroundingairevenwitha relativehumiditylessthan100%.Thisispossibleonlybecauseofthepresenceof hygroscopicparticles.Withrelativehumidity90%asolutiondropletwithradius 0.05 µmcanformifthereare10 19 kgofsodiumchloride(notshowninthegraph).

Forasmalldropletradius,theKöhlercurveincreasesmonotonicallyuntilit reachesamaximumatradius a = a ,andthenitdecreasesmonotonically.Consider

Figure5.17Relativehumiditywithwhichasolutiondropletformedon10 19 kg ofNaClisinequilibriumwithwatervaporasafunctionofthedropletradius.The temperatureis5 ◦ C.

adropletwitharadiuslessthan a .Iftherelativehumidityincreases,suchaparticle growstoadjusttothenewequilibriumconditions.Theequilibriumisstable,since slightfluctuationsincondensationorevaporationdonotleadtofurthergrowingor shrinkingofthedroplet.Ifthedropletgrowsslightlybycondensation,therelative humidityincreases,thediffusivefluxisdirectedawayfromthedropletandthe dropletevaporatestoreturntoequilibrium.Withslightevaporation,therelative humidityinthevicinitydecreases,whichcausesdiffusivefluxtowardthedroplet, andthedropletagainreturnstoequilibriumwiththesurroundingair.Suchdroplets withradiuslessthan a arecalledhazeparticles.

Thesituationisdifferentifthedropletreachestheradius a .Nowtheequilibrium isunstable.Withanyfurthergrowthofthedroplettherelativehumiditydecreases andthedropletcontinuestogrow.Thisisonemechanismforclouddroplet formation.

Example5.9 Howbigisasaltparticlewhosemassis10 19 kg?Usingthedensity of2165kgm 3 ,wecancalculatethatasphericalparticleofthismasswouldhave aradiusof0.022 µm.Howmanymoleculesareinthisparticle?Thenumber

ofmolesis M/M NaCl = 10 19 × 1000/58.44kgmol 1 = 0.017 ×10 16 mol. ThenumberofmoleculesisAvogadro’snumbertimesthenumberofmoles: 1.03×106 molecules.

5.11Isobaricmixingofairparcels

Whentwoparcelsofdryairatthesamepressure(altitude)arebroughtintocontact andmixed,thefinaltemperatureis

Ifthemixingratiosoftheparcelsare w1 and w2 ,wecanarriveatthesamekindof linearrelationship

Itispossiblethatalthoughthecombinations (w1 , T1 ) and (w2 , T2 ) areneitherone individuallysaturated,themixedairparcel (wf , Tf ) issaturated.Twoclearmoist airparcelscancomeintocontactwithafoggyresult.

Example5.10 Supposetwoparcelsofequalvolumesandpressures,butdiffering temperatures(273Kand293K)comeintocontactneartheground(p = 1000hPa). Leteachhaverelativehumidity90%.Wecanuse

Thefinaltemperaturesare:

Wecancomputetheinitialmixingratios:

Thefinalmixingratiois

Butthesaturationmixingratioat Tf is

Wefindthatthefinalmixingratioisabovethesaturationvalueforthefinal temperature,hencewehavesupercooledwatervaporandthereforefog.

Thefinaltemperaturewillactuallybeslightlyabove Tf becausesomeheating willoccurduringthecondensation.

Notes

MoreadvancedtreatmentsofwaterandaircanbefoundinBohrenandAlbrecht (1998),IrebarneandGodson(1981),andCurryandWebster(1999).Discussions ofclouddrops,etc.,canbefoundinFleagleandBusinger(1980),RogersandYau (1989),Houze(1993)andEmanuel(1994).

NotationandabbreviationsforChapter 5

a dropletradius(m)

a ∗ criticaldropletradius(m)

e , es vaporpressure,saturationvaporpressure(Pa)

e vaporpressureoverasolution(Pa)

= Mw /Md = 0.622(dimensionless)

gl , gg specificGibbsenergyforliquid,gas(Jkg 1 )

gv , gw specificGibbsenergyforvapor,liquidwater(Jkg 1 )

G Gibbsenergy(J)

h specificenthalpy(Jkg 1 )

H (r ) fluxofheatcrossingthesurfaceofasphere(Js 1 )

κH thermalconductivitycoefficient(JmK 1 s 1 )

L = Hvap theenthalpy(latentheat)ofevaporation(Jkg 1 )

LCLliftingcondensationlevel

Mv , Md , Me grammolecularweightofvapor,dryairandeffective (gmol 1 )

Ml , Mg bulkmassofliquid,gas(kg)

ns numberdensityofvapormoleculesatsaturation (moleculesm 3 )

nsat numberdensityofvapormoleculesatsaturation (moleculesm 3 )

nw numberdensityofwatermoleculesinvapor (moleculesm 3 )

n0 numberdensity(moleculesm 3 )

NA Avogadro’snumber(moleculesmol 1 )

q specifichumidity(kgwatervapor/kgofmoistair)

r relativehumidity

Rw thegasconstantforwatervapor(Table 1.1)

Reff effectivegasconstantforamixtureofspecies (Jkg 1 K 1 )

R∗ universalgasconstant(Jmol 1 K 1 )

sl , sg specificentropyforliquid,gas(JK 1 kg 1 ))

S entropy(JK 1 )

σ surfacetension(Jm 2 )

T Kelvintemperature(K)

TD dewpointtemperature(K)

Tv virtualtemperature(K)

Tw wet-bulbtemperature(K)

θ potentialtemperature(K)

v meanmolecularspeed(ms 1 )

vl , vg specificvolumeforliquid,gas(m3 kg 1 )

w mixingratio(kgwatervaporperkgofdryair)

ws saturationmixingratio(kgwatervaporperkgofdryair)

Problems

5.1Akilogramofwaterisvaporizedat0 ◦ Candat1000hPaatmosphericpressure.(a) Calculatethechangeinenthalpyofthewatersubstanceinthetransitionand(b)the changeofentropyfortheprocess.

5.2Whatisthevirtualtemperatureforakilogramofairat T = 283K,relativehumidity 50%at1000hPa?

5.3Thenormaltemperatureofhumanbloodis37.2 ◦ C.Ifapersonisliftedinaballoon theairpressuredecreases.Therewillbeapressure(altitude)wherethebloodbegins toboil.WhatisthatpressureinhPa?Atabouthowmanymetersisthatabovesea level?

5.4Itisamuggynightattheoldballpark.Thetemperatureis30 ◦ Candthehumidity is85%.Whatisthechangeindensity(%)oftheairfromadrynightatthesame temperatureandpressure(1000hPa)?

5.5Assumetheatmosphereisisothermalat303K(verytropical),whichgivesascale heightof H = 8.87km.Thesurfacehumidityis80%.Thevaporisdistributed uniformlyinthefirst1.5km,andtheairisdryabovethat.Forsimplicitytakethe airpressuretobeuniforminthislowest1.5km.Howmuchwater(invaporform)lies aboveagivensquaremeterofsurface(kgm 2 )?Expresstheresultinmmequivalent ofliquidwater.Comparetothesituationwhenthetemperatureis273K.

5.6Asystemconsistsofdryairmixedwithwatervaporatatemperatureof20 ◦ C.The pressureofthemixtureis990hPa.Therelativehumidityis50%.

(a)Whatisthesaturationvaporpressure?

(b)Whatisthepartialpressureofthewatervapor?

(c)Whatisthedensityofthemixture.Compareitwiththedensityofdryairatthe same T and p

(d)Whatare w and ws ?

(e)Ifthesystem(parcel)isliftedadiabaticallyto500hPa,whichisconserved e or w ?

5.7Calculatetheequilibriumvaporpressureoversphericaldropletswithradii0.01,0.1, 1,10 µmattemperature273K.Plottherelativehumidity(withrespecttoaflatwater surface)asafunctionofradius.

5.8Whatsupersaturationisneededforthedropletswithradius0.5 µmtobeinthe equilibriumwithwatervaporattemperatureof10 ◦ C?

5.9Anammoniumsulfate((NH4 )2 SO4 )particleofmass10 20 kgofradius0.07 µm ispresentintheairattemperature0 ◦ C.Findtherelativehumiditynecessaryfor heterogeneousnucleation.

5.10Findtheexpressionforthecriticalvalue(maximumoftheKöhlercurve)ofthedroplet radiusandrelativehumidity.Calculatethesevaluesforadropletcontaining10 16 kg ofNaClat0◦ C.

Profilesoftheatmosphere

Thepropertiesoftheatmospherethatvarywithaltitudeincludethepressure, temperatureandthecompositionofconstituentssuchaswatervapor.Thischapter providessomeinsightintothesedependencieswithsimplederivationsthathold underidealizedconditions.Thestagewillbesetforthefollowingchapterwhich providesmethodsforanalyzingtheconditionsatthetimeofobservation.

6.1Pressureversusheight

Atmosphericpressuredropsoffdramaticallywithheightabovethesurface.Thisis indicatedbythegraphinFigure 6.1 whichshowsthedependenceofpressureon altitudefortheUSStandardAtmosphere.1

Bybalancingtheverticalcomponentsofforceonaslabofairatanarbitrary height z itispossibletoderiveaformulafortheaveragepressureasafunction ofheight, p(z ).Consideracolumnofairwithcross-section1m2 .Inthecolumn

Figure6.1Dependenceofpressure p (hPa)onaltitude z (km)fortheUSStandard Atmosphere.

1 TheUSStandardAtmosphereisamodeloftheatmosphericprofileofvariousproperties.Itisusedprimarilyin aviationandsatellitedragcalculations.Itattemptstogiveaglobalaverageofconditions.Morecanbelearned aboutitontheinternet.

(z +dz)A p(z)A

(d )g

Figure6.2Diagramofacolumnofairofcross-sectionarea A withaslabof thicknessd z atheight z .Thepressureandgravitationalforcesontheslabare indicated.

wepictureathinhorizontalslabofairwhosebottomsurfaceislocatedatheight z abovesealevelandwhosethicknessisd z (seeFigure 6.2).Themassofmaterialin theslabis(densitytimesvolume):d M = ρ Ad z ,where A = 1m2 isthehorizontal cross-sectionalareaoftheslab.Theweightoftheslabofgasis (d M)g = (ρ Ad z )g .

Beneaththeslabisapressureforcepushingupwards: p(z )A.Abovetheslabisa pressureforcepressingdownwards,

Equatingthenetpressureforceontheslabtothegravitationalforce,

Aftercancellationsweobtainthe hydrostaticequation: d p d z =−ρ g [hydrostaticequation].(6.3)

WecanusetheIdealGasLawtowrite:

(6.4)

whereweindicateexplicitlythatbothtemperatureandpressurearefunctionsof altitude z .Inthelaststepweusedtheidealgasequationofstate.Thehydrostatic equationhasmanyuses,butitisparticularlyusefulifthedependenceof T on z is known.Thismayoftenbethecase,atleastapproximately.Ifitistruewecanwrite:

Thenintegratingeachsidefromthesurfaceuptolevel z leadsto:

wherewehaveindicatedthe“dummy”integrationvariableby z todistinguishit fromtheupperlimitoftheintegral.Finally,

Iftheintegralscanbeperformed,wehaveananalyticalexpressionfor p(z ).Even ifthe z dependenceof T isknownonlygraphicallyorintabularform,theintegral canbeperformednumerically.

Example6.1 InExample2.16wefoundthataballofmass m bouncingelastically onthefloorgivesanaverageforceonthefloorof mg .Wecanalsoderivethe hydrostaticequationforaballbouncingonthefloor,butreflectingbackelastically onaceilingonlyashortdistanceabove.Lettheballleavethefloorwithvertical velocity v0 andwhenitgetstotheceiling h,itsvelocitywillbe v1 .Therateof momentumtransfertotheceilingis2mv1 /T ,where T isthetimeforaroundtrip ceilingtofloorandback.Wecanshowthat T = 4h/(v0 + v1 ).Theaveragepressures exertedbythereflectingballattheceiling ph andatthefloor p0 are

where A istheareaonthesurfaceofthefloororceiling,andthedifferenceinthe pressuresis

Wethenhave

Finally, p/ z =−ρ g .Ofcourse,wearetopicturealargenumberofballs (molecules)bouncingupanddownsoastomakeasteadypressure.

Example6.2: constantdensitycase Considerthecaseofconstantdensityasa functionofheight.Thisprofileismoreliketheoceanthantheatmosphere.Taking

z = 0tobeatthebottomofthefluid,wecanintegratethehydrostaticequation directlyfrom0tothetopofthefluid H :

Integratingfrom0to z wefindthat

Thepressureiszeroatthetopofthefluidanditincreaseslinearlywithdepthbelow thesurfaceuntilthebottom(z = 0)isreached.

Example6.3 : pressureintheocean Whatisthepressureat5kmbelowthesurface intheocean?

Answer:Thedensityofwateris103 kgm 3 .Now ρ gh = 5 × 107 Pa ≈ 500atm. Forreference,itmightbenotedthat1atmofpressureisequivalenttothatatabout 10mdepthofwater.

Example6.4 : isothermalatmosphere Takethetemperaturetobeconstant(T = T0 ) withrespectto z .Thenwecanintegrate:

where p0 isthepressureat z = 0andthe scaleheightH isgivenby

Notethestraightforwardphysicalinterpretation:largetemperaturesleadtolarge scaleheights(swelling);large g leadstosmallerscaleheights.Moreover,larger R (smallermolecularweight)leadstolarger H

Itturnsoutthattakingthescaleheight H tobeaconstantisarather goodapproximationtothepressuredependenceonaltitude,ascanbeseenin Figure 6.3 whereinacalculatedprofile(dashed)issuperimposedontheUSStandard Atmospherevalues.Inthecalculationavalueof H = 7.89kmwasusedalongwith pz =0 = 1013hPa.Thismodelfittotheempiricalresultisverygoodconsidering thatthetemperatureisveryaltitudedependentfortheUSStandardAtmosphereas showninFigure 6.4.

Figure6.3Thepressureversusaltitudecurvewithacomputedprofile(dashed) superimposed.Thecalculationwasconductedwiththeconstantvalueof H = 7.89 kmandavalueof pz =0 = 1013hPa(toagreewiththeStandardAtmosphereatthe surface).

Figure6.4ThetemperatureversusaltitudecurvefortheUSStandardAtmosphere. Thealtitudeofthediscontinuityinslopeatabout11kmiscalledthe tropopause.

6.2Slopeofthedryadiabat

Considernextthedryadiabat.Thisisthetemperaturedependenceofaparcelof dryairasitisdisplacedupwards 2 underadiabaticconditions(noheatingduetothe temperaturedifferentialwiththeenvironment).Forasmallverticaldisplacement oftheparcelwecanwritethechangeinenthalpyfortheparcel(treatedasa thermodynamicsystemundergoingareversibletransformation):

2 Someexternalmeansmustcausethedisplacementsuchasbuoyancyortheriseofairduetoupslopewind.

Dividingeachsideby M d z ,

andusingthehydrostaticequation(d p/d z =−ρ g )and ρ = p/RT weobtain:

Finally,

Thisverysimpleandelegantresultdoesnotdependontheactualtemperature profileoftheatmosphere.Wecanevaluatethisformulatofind:

Notethattheadiabaticlapserate d isdefinedtobeapositivenumber.Figure 6.5 showsthetemperatureandsizeofaparcelbeingliftedadiabaticallyfromthesurface to10km.

Example6.5: dryadiabaticatmosphere Considerthepressureprofileofan atmospherewhoseverticaldependenceoftemperatureisthatofadryadiabat.This

Figure6.5Illustrationofthesizeofaparcelasitisliftedadiabatically.Thevolume ofthesphericalparcelwascalculatedfrom(3.43).

Profilesoftheatmosphere isanatmospherethatisthoroughlymixedintheverticaldimension.(Forexample, theturbulentboundarylayerwhichoccupiesthelowest1to2kmoftheaircolumn. Wewillshowthislater.)Itstemperaturefallsofflinearlyasd T /d z =−g /cp .For theseconditions θ isthesamethroughout.Suchanatmosphericprofileiscalled isentropic.Wehavethehydrostaticequation

andPoisson’sequation

Wetake θ tobeaconstantinPoisson’sequation.Thus,

andfinally,

whereinthelastweused κ = R/cp . Notethattheformulafailswhen z >θ cp /g ≈ 30km.

Theisentropic(θ = constant)profileisoftenobservedinthedaytimeboundary layeranduptotheLCLwheretheairiswellmixedvertically.Abovethislevelthe lapserateissmallerbecauseofwarmingduetocondensationofwatervaporinthe parcelintodroplets.

Whendoesthehydrostaticapproximationnotwork?Thiscanhappeninunusual circumstances,butfirstconsidertypicalconditions.Iftheforceofgravityisnot balancedbytheverticalgradientofthepressurefield,theparcelmustbeaccelerating vertically.Supposetheimbalanceis1%oranaccelerationof ≈ 0.1ms 2 .After only10saparcelstartingatrestwouldhaveaverticalvelocityof1ms 1 ,a

veryrareoccurrenceexceptinathunderstorm.Verticalvelocitiesaretypically oftheorderof0.01ms 1 ,whichsuggeststhatlargeimbalancesareveryrare. Argumentscanalsobeconstructedfromthree-dimensionalconsiderationsthatat synopticscales(scalesthatmatchthetypicalobservingstationsonaweathermap, afewhundredkilometers)onefindsthathorizontalmotionsaretypicallyonthe orderof1to10ms 1 andverticalmotionsareoftheorderofcentimetersper second.Theseargumentscanbefoundinthefirstfewchaptersofmostdynamics books.

6.3Geopotentialheightandthickness

Themechanicalpotentialenergyperunitmassofaparcel(calledthe gravitational geopotential)is (z ) = gz where z isitsheightabovesomereferencelevel(typically sealevel).3 Wecanwriteforthechangeinpotentialfromoneleveltoanother:

Thisistheamountofworkperformedinliftinga1kg parcelfrom zbelow to zabove (notcountingbuoyancyforces,justgravity).Thegeopotentialcanbeturnedaround slightlytobeconsideredafunctionofthepressureleveloftheparcel.Soinstead of (z ) wecanthinkof (p).Thisisjustthegravitationalpotentialenergyper unitmassofaparcelatpressurelevel p.Nowthechangeingravitationalpotential energyingoingfromonepressureleveltoanotheris

where zpabove and zpbelow aretheelevationsabovethereferencelevelforwhichthe pressuresare pabove and pbelow .The geopotentialheight, Zp ,isdefinedtobethe heightinmetersofthepressurelevelforagivenvalueofthepotentialenergyper unitmass:

= (p)/g .(6.31)

The geopotentialheight, Zp1 (x , y ),istheelevationofthesurfaceforagiven pressure p = p1 .Theheightofthisconstantpressuresurfaceisafunctionof x and y (longitudeandlatitude)overtheEarth’ssurface.Allmeteorologistsarefamiliar withthe500hPaheightfield,sinceitissoimportantinweatherforecasting.

Example6.6 : heightfieldofanisothermalatmosphere Supposethetemperatureis everywhere T0 .Whatisthe500hPaheightfield?

3 If z werelargeenoughwewouldhavetotakeintoaccountthe z dependenceof g = g (z ) (duetotheweakening ofthegravitationalforcewithdistancefromtheEarth’scenter)anduse z g (z ) d z ,butthisisseldomimportant instudiesofweatherandclimateofthetroposphere.

Zp

Answer:Foranisothermalatmospherewehave p = p0 e z /H (6.32)

oraftertakingnaturallogsofeachside, z = H ln p0 p .(6.33)

Foratemperatureof300K,thescaleheight H = Rd T0 /g is8786m.Ifthereference pressureisfixedat1000hPa,usingln2 = 0.693,wehave Z500 = 6090m.

Notethatbecauseitismuchcolderatthepoles,the500hPaheightfieldis loweratthepoles(T ≈ 250K)thanattheEquator(TEquator ≈ 300K),orabout 5000mversus6000m.Roughlyspeaking,theheightfieldscalesinverselyto T , butrememberthisisforanisothermalatmosphere.

Inoursolutionwealsohadtospecifythesurfacepressure.Ifthereismore atmosphericmassaboveonepositionontheEarth(asmeasuredbysurface pressure),thiswillliftthegeopotentialheightfield.Sotheheightfieldisdetermined bytheamountofmassabovethereferencesurface(thissetsthesurfacepressure) atapointandthethermalstructureoftheairabovethatpoint.Keepinmindthat thesurfacepressure(proportionaltothemassabovethesite)variesnomorethana fewpercentfromtimetotime.Itfallsasmuchas8%or9%intheeyeofthemost intense(hurricanestrength)tropicalstorms.

Theverticallyaveragedtemperatureinalayercanbedefinedas

= pabove pbelow T dln p pabove pbelow dln p (6.34)

wheredln p = d p/p.(Notethatd z ∝−d p/p atleastlocallyaccordingtothe hydrostaticequation.)Thisjustifiestheuseofdln p asourintegrationincrement. Afterapplyingthehydrostaticequationwefind:

.(6.35)

Finally, zabove zbelow = RT g ln pbelow pabove = H ln pbelow pabove [thickness](6.36) andfordryair H = 29.3T isthe(local)scaleheight.Thequantity z = zabove zbelow iscalledthe thickness ofthelayerlyingbetweenthetwopressuresurfaces.

6.4Archimedes’Principle

Clearlythethicknessisameasureofthelocalverticallyaveragedtemperatureof thelayer.

Example6.7 Howthickisthe500to600hPalayerwhentheaveragetemperature is280K?

Answer: z ≈ 1500m.(6.37)

Example6.8 The1000hPato500hPathicknessisoftenusedinweatherdiscussions todescribetheaveragetemperatureinthelowerpartofthetroposphere.Whatis theaveragetemperatureforasealeveltemperatureof295Kandalapserateof 6Kkm 1 ?

Answer:Use T = (1/ z ) z 0 (T0 z ) d z and(6.36).Thenthetemperature T = 278K.Thethicknessis ≈ 5647m.

Itisimportanttonoticethatthicknessisameasureoftemperature.Coldlayers arethin,warmlayersthick,indirectproportiontotheaverageKelvintemperature inthelayer.

6.4Archimedes’Principle

Inafluidsuchastheatmospherealowdensityparcelembeddedinadenser environmentwillrise.Considerafluidofuniformdensity.Figure 6.6 showsan arbitraryvolumeisolatedinsideaboxoffluidofuniformdensity(pictureathin filmenclosingaportionofthesameuniformfluid).Thefluidincludingtheenclosed parcelisatrest.Therefore,allcomponentsoftheforcesactingontheenclosed interiorportion(parcel)mustsumvectoriallytozero.Weneedonlyconsider

Figure6.6Diagramofanirregularvolumeinafluid.Theweightofthemassin thevolumeis ρe Vg ,where ρe isthedensityofthefluid, V isthevolumeand g is theaccelerationduetogravity.Thepressureforcesofsurroundingfluidindicated bythearrowspointinginwardexactlybalancethedownwardpointingforcedue togravity.Butifafluidoflowerdensity,say ρ ,issubstitutedinthesameirregular volume,therewillbeanetupwardsforceonthismass.

Profilesoftheatmosphere theverticalcomponents,sincethehorizontalcomponentsbalancewithoutany gravitationalcontribution.Theweightoftheinteriorvolumeindicatedbythe downwardpointingvector(seeFigure 6.6)hasmagnitude Mg = ρe Vg .The subscripteindicatesthedensityoftheuniformfluid(theenvironment).Thepressure forcesexertedbythesurroundingfluidmustaddupvectoriallytoavectorpointing upwardswithmagnitude Mg .Nowsupposetheisolatedvolumeiscarvedoutand refilledwithmatterofadifferentdensity,say ρ .Theforceexertedonthisvolume (parcel)isupwardsandofmagnitude ρe Vg ,buttheweightoftheparcelisonly ρ Vg .Thereisthusanetupwardforceof

Ifthedensityoftheparcel ρ islessthantheenvironmentaldensity,theforce willbeupwards.Thisisthe buoyancyforce ontheparcelandtheformulais called Archimedes’Principle.Oftenwewanttoknowtheforceperunitmassor acceleration.WecanuseNewton’sSecondLaw(F = Ma where a isthevertical acceleration):

Wemayuse p = pe andforanidealgas ρ = p/RT ;hence

andsimplifying

Notethatif T > Te ,theforceisupward;andif T < Te ,theforceisdownward. (Proofthatwarmairrisesaswelearnedinelementaryschool!)

Example6.9 Considerathunderstormshaft.Letthetemperatureinsidetheshaft nearthesurfacebe5Kwarmerthanthatoutside ≈ 300K.Thenthevertical accelerationofaparcelintheshaftisapproximately0.163ms 2 .Iftheacceleration isconstantthevelocityaftertime t is v = at andthealtitudeis z = 1 2 at 2 .Theparcel reaches4kminabout3.7minatwhichtimeithasaverticalvelocityof36ms 1 .

Ofcourse,thisanalysisisverysimplifiedbecausetheeffectsoflatentheatrelease areignored.Inadditionitwasassumedthatthedifferentialtemperaturebetween theinterioroftheparcelandtheenvironmentremainedconstantduringtheascent. Inensuingsectionswewillseehowtheseeffectsaretakenintoaccount.

6.5Stability

Aslabofair(parcel)sitsatrestinanenvironmentwithacertaintemperatureprofile. Theforcesarebalancedontheparcel.Whathappensiftheparcelisnudgedupwards ordownwardsbyatinyamount?Dotheforcesinthenewpositionbalanceordothey impartarestoringforceorperhapsarepellingforce?Firstconsideraparcelatpoint AinFigure 6.7.Notethatastraightlinesegmentslantedupwardsintotheupper leftquadrantdirectionpassesthroughthepointatA.Thisstraightlinesegmentisa dryadiabatpassingthroughA.IfaparcelisliftedadiabaticallyatA,itmovesalong thisadiabatanditfindsitselfwarmerthantheenvironmentalcurvewhichliesto itsleft.Inthiscasetheparcel,beingwarmerthantheenvironment,willexperience abuoyantforceupwards.Hence,aparcelatpointAunderasmallperturbation upwardswillexperienceanetbuoyantforcetocontinuegoingupward.Ifthesame parcelisnudgeddownwardsfromAitwillexperienceadownwardbuoyantforce. WesaythepointAis unstable withrespecttodryconvection. NextconsiderthepointC.AnanalysissimilartotheaboveshowsthatthepointC is stable withrespecttoinfinitesimalperturbations.ThepointBis neutral.Infact, wecanquicklyseethatallpointsbetweenthesurfaceandBalongtheenvironmental curveareunstable.Wesaythisisan unstablelayer.Similarly,thepointsaboveB onthecurveasshownforma stablelayer

Figure6.7Asoundingcurveoftheatmosphere:temperature T versusheight z . Alsoindicatedarestraightlinesegmentsrepresentingdryadiabatspassingthrough thepointsA(unstable),B(neutral)andC(stable).

Obviously,thekeytotheseanalysesisthelocalslopeoftheenvironmentalprofile comparedtotheslopeofadryadiabat.Clearly

Theverticalderivativeofthepotentialtemperature(seeSection 3.3.3),d θ/d z , providesanevensimplerrule.Thederivativeof θ withrespectto z canbecalculated fromitsdefinition, θ = T (p/p0 ) κ (with κ = Rd /cp ):

Thehydrostaticequationcanbeusedtosimplifythesecondterm:

Thisgives

Inthelastequationweintroducedthelocalenvironmentallapserate:

/d z . Thislastexpressionimmediatelytellsusthat

Figure6.8Schematicofthreesoundingsona θ –z diagram.Theonewithd θ/d z > 0isstable;theneutralsoundinghasd θ/d z = 0;theunstableonehasd θ/d z < 0.

Inthe θ versus z diagram,thedryadiabatsareverticallines(Figure 6.8).If θ is increasing withaltitude,thelayeris stable.If θ isdecreasingwithaltitude,the layerisunstable.WewilltalkmoreaboutstabilityinChapter 7,whenwework withthermodynamicdiagrams.

6.6Verticaloscillations

Consideralevel z0 inastablelayeroftheatmospheresuchaspointCinFigure 6.7. Sincethelayerisstable,aparceldisplacedupwardswillexperiencearestoringforce tendingtopushitbacktothepoint z0 .Similarlyadownwardsdisplacementbelow z0 willresultinanupwardsrestoringforce.Theacceleration a ofaparcelslightly displacedalongadryadiabatatthispointisgivenbyArchimedes’Principle:

where Te (z ) istheenvironmentaltemperatureprofileor sounding; Ta (z ) isthelocal adiabatpassingthroughthecurve Te (z ) atheight z0 (thisispointCinFigure 6.7); T0 isthevalueoftheenvironmentaltemperatureatthepointofintersection, z0 , T0 ≡ Te (z0 ).Bothenvironmentalandadiabaticcurvescrossatthispoint.Recall thatd Te /d z =− e andd Ta /d z =− d .Thentheenvironmentalandadiabatic temperaturesnearthepoint z0 canbewrittenas:

wherewehaveusedtheapproximatesign(≈)toindicatethatweareusingonly thetangenttotheenvironmentalcurve;ofcourse,theadiabaticlapseratecurveis astraightline,sotheapproximationisnotnecessaryinthesecondequation.For

notationalconveniencelet x = z z0 .Thenwecanequatetheaccelerationtothe secondtimederivativeof x :

Thisisthefamiliar harmonicoscillator equation,whosesolutionis

where A and B areconstantsdependingontheinitialconditions,4 and(inunits rads 1 )

Thisfrequencyiscalledthe Brunt–Väisälä frequency.Thefrequencyincyclesper second(Hz), f = ω/2π ,is

Physicsrefresher:oscillatornotation Theangularfrequencyofalinearoscillator isdenotedby ω .Itsunitsareradianspersecond.Thecorrespondingfrequency f is givenby ω/2π inunitsofcyclespersecondorhertz.Theperiodoftheoscillationis P = 1/f = 2π/ω .

Whentheatmosphereisstable( d > e )aparcelwilloscillate;iftheatmosphere isunstable,then ω 2 < 0andthetrigonometricfunctionsbecomeamixtureof exponentialsatleastoneofwhichisgrowingintime.Toseethisgobacktothe differentialequationfortheoscillator(6.54)andinsteadof ω 2 insert λ2 > 0.Then thesolutionsbecome Aeλt + Be λt .(Youcaninsertthisinthedifferentialequationto satisfyyourself.)Thismeansthatinsteadofoscillating,theparcel“runsaway.”

Anotherimportantobservationisthatforsmallamplitudeoscillations(whenthelinear formulaisvalid)thefrequencyisindependentoftheamplitudeofthedisplacement.

4 Weusuallyarenotinterestedintheinitialconditionsoftheoscillation,butratherthe(angular)frequency, ω

Analternativeexpressionfor ω intermsofthepotentialtemperatureisoften useful.Referringtothelastsubsectionwefind:

ω 2 = g θ d θ d z [squareoftheBrunt–Väisäläfrequency].(6.59)

Thisparticularrepresentationshowsexplicitlythatifd θ/d z ispositive(stable atmosphericlayer),thenthequantity ω isarealnumberandtheoscillationswill occur.Iftheslopeisnegative,thenthefrequencybecomesanimaginarynumber, whichmeansthattheparcel’sdisplacementwillgrowexponentiallyintime,either upordowndependingontheinitialperturbation.Ofcourseintherealatmosphere theparceldoesnotaccelerateallthewaytoinfinity,butinsteaditsmotionislimited bythefailureofourlinearanalysiswhichassumedsmalldeviations.Unstablelayers leadtooverturningandmixingoftheparcelswithinthelayer.

Example6.10 Supposetheenvironmentallapserateis0Kkm 1 (isothermal atmosphere)and T0 = 300K,thenwhatistheoscillationfrequency?

Answer:

whichcorrespondstoaperiodof5.7min.

Itistypicalofatmosphericverticaloscillationsthatthecharacteristictimeisof theorderofafewminutes.

6.7WhereistheLCL?

InthissectionwederiveanapproximateformulathatshowsthattheLCL(lifting condensationlevel,seeSection 5.9)isdeterminedasafunctionofthetemperature andmixingratio, T0 and w0 ,ofaparcelatthesurface.Considerwhathappensto thesaturationvaporpressureforthisparcel.Astheparcelrisesitstemperaturefalls fromitssurfacevalue,

where Ta (z ) isusedtodenotethetemperatureoftheparcelasitrisesadiabatically toaltitude z abovethesurface.Thesaturationvaporpressureonlydependsonthe temperatureinsidetheparcel.WecanusetheintegratedformoftheClausius–Clapeyronequation(5.15)toevaluatethesaturationvaporpressure es (Ta (z )) inthe parcelasafunctionofaltitude(alongthedryadiabat):

where Rw = 461.5Jkg 1 K 1 isthegasconstantforwatervapor,and L isthe enthalpyofvaporization(latentheat)forwater(L = 2.500 × 106 Jkg 1 ).Wecan simplifythelastequationbynotingthat

whichleadsto:

Astheparcelisliftedadiabatically(bysomeexternalmechanism)itsmixing ratio, w = w0 ,willremainfixedsinceitisaconservativequantity.Theexternal airpressurecanbewrittenasanexponentialfunction, p0 e z /H ,toagood approximation,where H istheatmosphericscaleheight.Asaparcelrises adiabaticallyitsinternalpressurewilladjusttothatoftheexternalpressureat eachaltitude z .Since w0 = e (z )/p(z ) wecanobtainaformulaforthevertical dependenceoftheactualvaporpressure e (z ) intheparcel

wheretheatmosphericscaleheight, H ,canbetakentobe Rd T0 /g with T0 the temperaturenearthesurface.Thevalueof Hw (≈ 1.7km)ismuchsmallerthan typicalvaluesof H .AnexampleisshowninFigure 6.9 where H wastakento be8.3km.Atthesurface e (z ) es (z ),butthegapnarrowsastheparcelislifted adiabatically.Thevalueof e (z ) willcatchupwith es (z ) as z increases.Thesaturation mixingratiochangesastheparcelrises,asshowninFigure 6.10.

Considerthe T –z diagramshowninFigure 6.11 toseehowthetemperature oftheparceldecreaseslinearlywithaltitudeasitrises.Atthesametimethe temperatureversusheightfor ws = constantalsodecreasesbutmoreslowly.The intersectionofthetwocurvesistheLCL.Thislatestviewistheoneusuallyshown inthermodynamicdiagramswhicharethesubjectofthenextchapter.

Byequatingtheformsfor es (T (z )) tothatof e (z ) wefindaformulafor zLCL

LCL = ln (es (T0 ) /w0 p0 ) 1/Hw 1/H .(6.66)

Wecansimplifythisfurtherbynotingthattheargumentofthelogarithmreduces to ws /w0 = 1/r where r istherelativehumidityatthereferencelevel(surfaceor sealevel):

LCL = ln (1/r )/(1/Hw 1/H ).(6.67)

Figure6.9Anexampleofhowthesaturationvaporpressureshrinksfasterthanthe vaporpressureinaparcelrisingfrom z = 0.Theinitialmixingratiois0.007kg/kg andtheinitialsaturationmixingratiois0.015kg/kg.Theinitialtemperatureis 20 ◦ C.Thescaleheightoftheatmosphereistakentobe8.3kmandthescale heightforthesaturationvaporpressureis1.66km.Wherethecurvescrossisthe liftingcondensationlevel(LCL).

Figure6.10Illustrationofhowthemixingratio(w (z ))andthesaturationmixing ratio(ws (z ))changeastheparcelisliftedfrom z = 0.Notethat w (z ) = w0 isaconstantofthemotion,but ws (z ) decreases.Wherethecurvescrossisthe liftingcondensationlevel(LCL).Thevaluesoftheparametersarethesameasin Figure 6.9.

ThisformulaallowsustofindanapproximatevaluefortheLCLforagiven valueof w0 and T0

Example6.11: profileofwatervaporintheatmosphere Considertheprofileof es (z ) in(6.64).Letusimaginethatthewatervaporintheatmosphereissaturated.Wecan usetheresultsabovetocomputetheratioof es (T (z )) tothesaturationvalueatthe surface, es (T (0)).Lettherelativehumiditybe100%allthewayup.Theprofileis showninFigure 6.12 fortheparametervaluesofthepreviousfigures.Notethatthe scaleheightforthe(saturated)watervaporis ≈ 1.66km,whichisatypicalheight oftheatmosphericboundarylayer.Thisisessentiallytheexplanationofwhywater vaporisconfinedtothelowestfewkilometersoftheatmosphere.

Figure6.11Theverticalascentofaparcelfrom z = 0asafunctionoftemperature.Thecurvelabeled (T T0 )/ d isthetemperatureoftheparcelduring dryadiabaticascent; T0 isthetemperatureatthesurface.Thecurvelabeled ws (T , p(z )) = constantisthesaturationmixingratio.Wherethecurvescross istheliftingcondensationlevel(LCL).

Figure6.12Theratio es (T (z ))/es (T (0)) forwatervaporembeddedinanatmospherewithtemperatureprofile T (0) d z .Thescaleheightinthisexampleis Hw = Rw T 2 0 /L d ≈ 1.66km.Thevaluesoftheparametersarethesameasin Figure 6.11.

6.8Slopeofamoistadiabat

Aswasdiscussedintheprevioussection,anairparcelliftedadiabatically experiencesadecreaseintemperatureatthedryadiabaticrateuntilthevaporinthe parcelbecomessaturated,definingtheLCL.Astheparcelcontinuestorise,water vaporwillbeconvertedtodropletswithanaccompanyingwarmingoftheparcel. ThisassumesthepresenceofcondensationnucleiasdiscussedinChapter 5.This isvirtuallyalwaysthecase(butthenumberdensityofcondensationnucleidiffers significantlyfromplacetoplaceespeciallyfromabovelandsurfacestoabove oceansurfaces).Thisadditionalheatingfromcondensationcausesthetemperature todecreaseatalowerrate(asafunctionofaltitude)comparedtothedryadiabatic process.Theslopeofthemoistadiabatcanbefoundusingargumentssimilarto thoseintheprevioussection.

Thechangeinenthalpyforaparcelofmass M andvolume V undergoinga smallverticaldisplacementisgivenby

(6.68) whereweusetheapproximatesignbecauseweareneglectingsomesmallterms. Forexample,wedonotincludethecontributionsfromwatervaporintheparcel Mv c v p aswellasthatoftheliquidwaterdroplets.Thecompositeparcelriseswith noheatingfromtheoutsidesuchthatd Q = 0,butifwetreatthedryairasthe onlyconstituentofoursystem,therewillbeheatingaswatervaporisconverted todroplets.Wecanwrited Q =−ML d ws .Notethatthisisapositivenumberfor risingairsinced ws < 0(ws decreasesfortherisingparcel).Thislastisbecausethe saturationmixingratiodecreaseswithaltitudeastemperaturesareloweredalong thelift.Takingintoaccountthehydrostaticequation(6.3)anddividingbothsides oftheequation(6.68)by M,werewrite(6.68)as

or,afterdividingbothsidesby

Identifying

Thesecondtermontheright-handsidehastwopartssince ws = ws (T , p) = es (T )/p.Expandingthederivative:

Next,insertthehydrostaticexpressionford p/d z ,usingthedryairdensity.Then evaluatethepartialderivativeof w

(T , p):

Nowevaluate ∂ ws /∂ T usingtheClausius–Clapeyronequation(whichintroduces Rw ,thegasconstantforwatervapor):

Figure6.13Relativeslopeofadryadiabat(lapserate d )andthatofamoist adiabat(lapserate m )startedfromthesamepointona T –p diagram.

Theninsertingthisinto(6.71)andrearranging,wehave

Thisrathercumbersomeformulacannotbesimplifiedfurther.Thenumeratorin largeparenthesesisoftheorderof1.3andthedenominatorisoftheorderof2.8 whentypicalnumbersareinserted.Thismeansthatthemoistadiabaticlapserateis lessthanthedryadiabaticlapserate(Figure 6.13).5 Thisishardlyasurprisesince theparcelisheatedasitrisesatsaturationbecauseofthecondensation.

6.9Liftingmoistair

Aswehavejustlearned,anadiabaticallyrisingparcelcontainingsomemoisture willeventuallyreachitscondensationlevel.Abovethispoint,withfurtherlifting, waterdropletsformandgrowattheexpenseofvaporintheparcel.Asvaporis condensed,theparcelofairisheated,causingtemperaturechangesalongthevertical path,andtherebyaltering(actuallyincreasing)thebuoyancyoftheparcel.Ifthe waterdropletsarelostduetoprecipitation,itisreferredtoasa pseudo-adiabatic process.Theprefix pseudo indicatesthatthisprocessisirreversible(becauseofthe precipitation)andcannotstrictlybeconsideredasanadiabaticprocess.Another possibilityisthatanascendingairparcelretainsthewaterdropletsaftertheyare formed.Suchaprocessiscalleda moist adiabaticprocess.Temperaturedifferences betweentheinsideoftheparcelandthatoutsideareapproximatelypreserved becausethemolecularthermalconduction(andeventheeddytransport)istoo slow.Consistentwiththeotherapproximationswehaveadopted,thechangesin theparcel’sthermodynamiccoordinatesinaliftingprocesscanbetakentobe

5 MoredetailedderivationsretainingthecontributionsduetoliquidandvaporcanbefoundinthebookbyBohren andAlbrecht(1998)andthatbyIrebarneandGodson(1981).Thesecomplicationsaddgreatlytothetediumof thederivation,buttheapproximateresultisinsufficientagreementtowarrantomittingthemhere.

reversibleandadiabatic.Theactualdifferencebetweenthepseudo-adiabaticandthe moistadiabaticprocessesisnegligibleforawiderangeofproblemsinatmospheric science.Inthisbookwewillnotdistinguishbetweenpseudo-adiabaticandmoist adiabaticprocesses.Thepathofasaturatedairparcelwillbecalleda moistadiabat Ithasalreadybeenshownthatthepathofadryairparcelcanbeconveniently describedintermsofthepotentialtemperature,whichisconstantduringadry adiabaticprocessand,consequently,servesasaperfect tracer ofadiabaticmotion foradryairparcel.Wecallitatracersincewecouldlabeltheparcelwithits(fixed) potentialtemperatureandfollowitaround.Inthissectionwewillintroduceanew variablethatisconservedduringbothdryandmoistadiabaticprocesses,andcan beusedtotraceamoistairparcel.

Westartwiththedefinitionofentropyasappliedtoanidealgas.Supposethe parcelissaturated.Inaninfinitesimalliftatiny(positive)massofwater(per kilogramofair)equalto d ws iscondensed.The(positive)changeinentropyfora moistairparcelwithmass M isthen ML d ws /T .Ontheotherhand,thechange inentropyforadryparcelofidealgasis Mcp d θ/θ (seethediscussionsurrounding equation(4.34)).Wecanequatethesetwoexpressionsfortheinfinitesimalentropy change,andaftercancellingthecommonmassfactorwehave:

Toagoodapproximation6

Thenwehave:

Uponintegratingeachside:

6 Toshowthisconsiderthequantity

WecanusetheClausius–Clapeyronequationtoshowthatthefirstterminparenthesesismuchlargerthanthe secondterm(recallthatforevery10Kofincreaseintemperaturethereisadoublingofvaporpressure;then d ws /ws ∼ 1,andd T /T ∼ 10/300.Compare:1 10/300).Wemaythensubstituted (ws /T ) ford ws /T toa goodapproximation.

Profilesoftheatmosphere

where θ(T , p) = T (p0 /p)κ .Thislastrelationship(6.80)formsanimplicit functionalrelationshipthatdefinesacurveinthe T –P plane.Therelationship canalsobewritten

Thecoefficientinfrontoftheexponential, θe ,iscalledthe equivalentpotential temperature.Theequivalentpotentialtemperatureisconservedalongthepathofa moistparcel.

Foradryadiabat θdry (T ) = constant,butforthe moist adiabat,d θ/d T > 0.If wesolvefor θe from(6.81),weobtain

Toseethephysicalsignificanceof θe letuslifttheparceluntilallitswateris condensedout(thismeans p → 0or z →∞).Inthislimit ws → 0in(6.82)and theequivalentpotentialtemperature θe becomesequaltothepotentialtemperature θ .Inotherwords,tofindanequivalentpotentialtemperature,oneshouldlifttheair parceluntilallmoistureiscondensedandprecipitatesout,thencompressthedry parceladiabaticallydownwardsuntilitreaches1000mb.Thetemperaturetheparcel attainsatthe1000hPalevelistheequivalentpotentialtemperature θe .Thewhole processissupposedtooccurwithoutexchangingheatwiththeenvironment.Note that θe isauniquelabelthatcanbeattachedtoanyairparcel,givenitsvaluesof T , w and p ataparticularlevel.

Iftheparcelisinitiallysaturatedandhastemperature T0 atlevel p0 ,theequivalent potentialtemperature θe canbecalculatedbysubstitutingitstemperature T0 ,its potentialtemperature θ(T0 , p0 ),andthesaturationmixingratio ws (T0 ) into(6.82). Iftheparcelisinitiallyunsaturated,thenthetemperature,potentialtemperature, andsaturationmixingratioaretobecalculatedattheliftingcondensationlevel (LCL).Sincethemixingratio w isequaltothesaturationmixingratio ws atthe LCL,theformulaforequivalentpotentialtemperatureforanunsaturatedparcel becomes

Weemphasizeagainthattheequivalentpotentialtemperatureisconservedduring bothdryandmoistadiabaticprocesses,whilepotentialtemperatureisconserved onlyduringdryadiabaticprocesses.Thisisthereasonforusing θe :itcanserve asagoodtracerforamovingairmass.Imagine,forexample,amoistflowthat

passesoveramountain.Ifairintheflowisinitiallyunsaturated,itcouldbe liftedbyconvectionontheupslopesideofthemountaintotheLCL,wherethe condensationprocessstarts.Duringtheliftingmoistureisremovedbyraining outontheupslopeside.Thenastheairdescendsbacktothesurfaceonthe leesideofthemountain,itwillbemuchwarmeranddrierthanontheupslope side.ThisistheoriginoftheChinookwind(moreonthisinChapter 7).So,the temperature,potentialtemperature,andmixingratiovaryduringbothascentand descentofairparcels.Atthesametime,theequivalentpotentialtemperatureis thesameatthestartingandendingpoints;itisconservedduringthiscomplicated process.

Thereisyetanothergoodtracerofmoistair:theso-calledwet-bulbpotential temperature.The wet-bulbpotentialtemperature, θw ,isthetemperatureanair parcelwouldhaveifcooledfromitsinitialstateadiabaticallytosaturation, andthenbroughtto1000hPabyamoistadiabaticprocess.Thisalgorithmof findingthewet-bulbpotentialtemperaturedependsonwhetherornottheparcelis initiallysaturated.Iftheparcelisinitiallysaturated,itshouldbecarriedalonga moistadiabattothe1000hPapressurelevel.Iftheparcelisinitiallyunsaturated, itshouldbeliftedfirsttotheLCLandthentakenmoistadiabaticallytothe 1000hPalevel.Whendescending,anairparcelmayneedadditionalwatervapor tomaintainsaturation.Thewet-bulbpotentialtemperature,liketheequivalent potentialtemperature,isconservedduringbothdryandmoistadiabaticprocesses. So,inthecaseoftheChinookwinditisthesameontheupslopeandleesidesofthe mountain.

Thelastusefulcharacteristicofmoistairthatweintroduceinthissection isthe saturationequivalentpotentialtemperature θs .Consideranunsaturated parcel.Thesaturationequivalentpotentialtemperatureistheequivalentpotential temperaturetheparcelwouldhaveifitstartedoutcompletelysaturated.The saturationequivalentpotentialtemperature θs canbedefinedas:

Itisimportanttounderstandthedifferencebetween(6.82)and(6.84). θ and ws in(6.82)arethepotentialtemperatureandsaturationmixingratioofsaturated airattemperature T ,whereasthesamevariablesin(6.84)arecalculatedatthe temperature T ofunsaturatedair.Thesaturationequivalentpotentialtemperatureis notconservedduringanunsaturatedprocess.Forsaturatedair, θe isequalto θs .The reasonweintroduce θs isthatitisausefulcharacteristicofairflowwhenanalyzing airstability(wewilldiscussitbrieflyinChapter 7).

6.10Moiststaticenergy

Wecanfindaverysimpleformfortheenthalpyofmoistair,

wherethesecondtermrepresentsthecontributionduetotheenthalpyof vaporization,andthethirdistheenthalpyofthevapor.Ifthewaterweretocondense, thesecondtermwouldcontributetoraisingthetemperature.Neglectingthethird term(whichisverysmallcomparedtotheothers)thespecificenthalpycanbe written

wherewehaveneglectedthemassofwatervaporcomparedtothatofthedryair. Ifweconsideraparcelofairbeinglifted,thereisactuallyanothertermdue tothegravitationalpotentialenergyperunitmass gz ,where g isthegravitational accelerationand z istheelevationabovesomereferencelevel.Kineticenergycould alsobeaddedbutweneglectithere.Thesumofenthalpyandgravitationalpotential energyisconservedalongaverticalpath.Thissumiscalledthe moiststaticenergy. Thetermstaticisusedbecauseweneglectedkineticenergy.Astheparcelislifted, themoiststaticenergy(callit hmse )isconserved.NotethatbelowtheLCLthis meansthat

whichisthedryadiabaticlapserate.AbovetheLCLwecanobtainfurther informationaboutthemoistlapserate.Forexample,theformulafortheslope forthemoistadiabat(6.75)canbederivedfromit.7

6.11Profilesofwell-mixedlayers

Veryoftenalayeroffinitethicknessiscausedtobewellmixedbyturbulent processes(stirring).Forexample,inthefirstkilometerortwoabovetheground theairisturbulentduetomechanicallydriveneddiesthatareinducedbythelarger scaleairflowsinteractingwiththesurfacefeatures.Iftheatmosphericprofileis stable,buildings,treesandotherprotuberancesaboveaflatboundarywillcause irregularitiesoftheairflow.Moreover,iftheairisunstable,convectiveirregularities willaddtothemechanicalturbulence.Thiskindofturbulent,well-mixedlayermay

7 SeeBohrenandAlbrecht(1998).

6.11Profilesofwell-mixedlayers 159 persistuptoafewkilometerswhereitgentlychangestothemoreorderlylarger scaleflow.Thelayersabovethisboundarylayerarecalledthe freeatmosphere. Inamixedlayerasawholewedonothaveastrictthermalequilibrium. Thatistosaythelayerwillnotreachauniformtemperatureasafunctionof height.Themechanicalstirringoverridesthetendencyforthelayertocometoa uniformtemperatureduetothermalconduction(duetomolecularoreddietransport processes).Thereasonforthisisthatasparcelsrisetheirtemperaturesarelowered becauseofadiabaticexpansion.Observationsshowthatforsuchwell-mixedlayers, especiallynearthegroundandongustydays,thetemperatureprofileapproaches thedryadiabaticlapserate.Anexampleisthelayerbetween850hPaand1000hPa showninFigure 7.13.

6.11.1Well-mixedtemperatureprofile

Aheuristicproofoftheadiabaticlapserateinawell-mixedlayercanbeconstructed byassumingthattheatmosphereissubdividedintohorizontallayers,eachlabeled byanindex, i .Nowsupposeapieceofoneofthelowerlayersiscarriedtoahigher layerandinturnthesameamountofmassfromtheupperlayeriscarriedbelowby themechanicalstirringmechanism.Astheparcelfrombelowisliftedadiabatically andthenbroughtintocontactwiththelayerabove,itwillbeinthermalcontactwith otherparcelsinthathorizontallayer.Theliftedparcelandtheothersintheupper levelwillreachatemperature(isobaricmixing)betweentheoriginalenvironmental temperatureofthelayerandthatoftheadiabaticallyliftedparcel.Theadjustment toequilibriuminthisupperhorizontallayerrepresentsanincreaseinentropyof thatlayerwhichcanbetreatedasathermodynamicsystem.Thecollectionofall thelayerscanbethoughtofasacollectionofthermodynamicsystemswhichwe allowtointeractinthispeculiarway.Eachtimeaparcelisliftedorloweredand broughtintocontactwithalayeratadifferentpressurelevel,theentropyofthat systemincreasesandfurthermoretheentropyoftheentirecollectionincreases.As themixingproceedsinthisway,eachsteppreservingthemassatanindividuallevel andpreservingthetotalenthalpyofthesystem,thesystemwillcometoaprofile inwhichfurthermixingwillnolongerincreasetheentropyofthecollection.This finalstatemustbetheoneinwhichtheentropyishomogeneousthroughout.This isthestatewithconstantpotentialtemperature(recall S = Mcp ln θ )andthisis theadiabaticprofile.

Mathematicalderivation Wecanmakeourargumentmorecompellingbyusingan analyticalapproach.First,taketheentropyofthewholesystemoflayerstobe

Wewishtopreservethetotalenthalpyofthecompositesystem:

Wewouldliketofindtheextremumof S subjecttotheconstraintthat H beheld constant.Aconvenientwaytodoitisthroughtheuseofa Lagrangemultiplier, λ (almostallcalculusbooksnowadaysdiscussthistechnique).Weproceedby writing

andsetthepartialderivativestozero:

Thisprocedurefindsthesetof

thatwillmake S extreme.Wefind

Inotherwords θi doesnotdependon i or z ;itisaconstant. Ofcourse,itmustbekeptinmindthatthemathematicalproofdoesnoteasethe assumptionswemadeaboutadiabaticliftingandloweringandtheassumptionsabout horizontal(constantpressure)exchangesofheatbetweentheparcelbeingmovedand itsenvironmentatthesamelevel(pressure).Ontheotherhand,thefactthatsucha simpleargumentreproducestheprofileseeninnaturesoregularlysuggeststhatour assumptionsarereasonable.

6.11.2Watervaporinawell-mixedlayer

Wehaveremarkedinearlierchaptersthatthemixingratio, w ,isaconservedquantity underverticalmotionsbelowtheLCL.Wecangothroughthesameargumentas abovetoshowthatthemixingratioofwater(orthatofanyotherinertchemical species)shouldbecomeuniforminthelayer.Basically,whenwebringaparcelinto alayerinwhichthebackgroundisdifferentfromthemixingratiointheparcel,the twowillmixinsuchawaythatthenewmixingratiowillliebetweenthatofthe parcelandthatofthewholelayerinproportiontothemasses.Thismixinginan individuallayerwillincreasetheentropyofthatlayer.Eachexchangeofparcels willcauseanincreaseintheentropyoftheentirecompositesystemuntilfurther

exchangesdonotincreasetheentropy.Thisfinalconfigurationwilloccurwhenthe entirelayerorcompositeoflayersisatauniformmixingratio, w .

Auniformvalueof w inalayerexhibitsacharacteristicshapeofthedewpoint temperatureinathermodynamicdiagram.Itturnsoutthedewpointcurvewilllie exactlyparalleltooneofthesaturationlinesonthechart.

Oceanmixing Therearelayersintheoceaninwhichthemixingtheorygivenabove fortheatmosphereworks.Themostimportantanalogousconservedquantityinthe oceanisthesalinity.Thisquantity,alongwithpotentialtemperature,isuniformin thedeepestlayersoftheoceanwhereenoughtimehaselapsedsincetheirisolation toleavethesewatermasseswellmixed.

Notes

ManyofthesubjectsinthischapterarecoveredindynamicsbookssuchasHolton (1992).ThethermodynamicdetailsarediscussedinmoredetailbyBohrenand Albrecht(1998)andIrebarneandGodson(1981).

NotationandabbreviationsforChapter6

A horizontalareaofaslab(m2 )

g accelerationduetogravity(9.81ms 2 )

d , m , e lapserate, d T /d z ofdryairascendingadiabatically,ofmoist adiabat,oftheenvironment(Km 1 )

h heightaboveareferencelevel

H scaleheight

Hw ascaleheightforwatervapor(m)

κ = R/cp (dimensionless)

L = Hvap enthalpyofvaporization(latentheat)(Jkg 1 )

ω , f angularfrequency(rad 1 ),frequency(Hz)

p, p(z ), p0 pressure,asafunctionof z ,atareferencelevel(hPa) (z ), 1 , 2 geopotentialheightasafunctionofheight,attwolevels(meters, onchartsoftenindecameters,dm)

ρ , ρ0 , ρe density,atareferencelevel,oftheenvironment(kgm 3 )

T , T (z ), T0 temperature,asafunctionof z ,atareferencelevel(K)

Te (z ), Ta (z ) temperatureoftheenvironment,ofanadiabat(K)

T verticalaveragetemperatureinalayerofair(K)

θ , θe , θs , θw potentialtemperature(K),equivalentpotential,saturation equivalentpotential,wet-bulbpotential

w , ws mixingratio,saturationmixingratio(kgwatervaporperkgdry air)

z , z verticaldistance,incrementofit(m)

Zp potentialenergyperunitmassduetogravity(m)

Problems

6.1Supposethetemperatureoftheatmospherehasthedependence T = T0 e z /z0 .Find anexpressionforthepressure p(z ).

6.2A1m3 parcelofmoistair(r = 75%, T = 303K, p = 1000hPa)isembeddedin surroundingdryair.Whatistheverticalaccelerationofthisparcel?

6.3Supposeaparcelhasaverticalaccelerationof0.12ms 2 (seepreviousproblem).If itstartsatrestatthesurface,whatisitsverticalvelocityafter5s,10s,30s?How longdoesittaketoreachthetopoftheboundarylayer(≈ 2km)?

6.4Atacertainlevelofthe(dry)atmosphere z ,thetemperatureis303Kandthelocallapse rateis12Kkm 1 .Isthislayerstable?Supposea1m3 parcelisdisplacedupwardsby 0.5kmadiabatically.Whatisitsaccelerationduetobuoyancy?Howwilltheanswer changeiftheparcelisdisplacedisothermally?

6.5Supposetheatmospherehasitstemperatureequalto300Kandpressure1000hPaat z = 0.Thetemperatureprofilefallslinearlywithalapserateof6Kkm 1 upto10km. Above10kmthetemperatureisconstant.Whatisthepressureasafunctionof z ?

6.6UsetheresultsofProblem6.1tocomputethepotentialtemperatureasafunctionof height z

6.7FindthedrylapseratenearthesurfaceforMars.ThemeanradiusofMars RMars = 3.40×106 mis0.530 × REarth ;massofMars = 0.107MEarth ;universalgravitational constant G = 6.67 × 10 11 Nm2 kg 2 ;forCO2 , cp ≈ 0.76kJkg 1 K 1 .

6.8Supposeanatmosphericprofileisgivenby T (p) = a + b ln p/p0 ,0 < p ≤ p0 .Find anexpressionforthegeopotentialheight Z (p) asafunctionofpressure, p

6.9Whatisthethicknessofthe1000to900hPalayerifthemeantemperatureis300K?

6.10Whatistheaccelerationofadryairparcelwhosetemperatureis300Kembeddedin anenvironmentof285K?

6.11ComputetheBrunt–Väisäläfrequencyfordryairinalayerwhered θ/d z = 1Kkm 1 , θ = 300K.GivetheanswerinHzaswell.Computetheperiodoftheoscillations.

6.12Considerthedifferentialequation:

Showthat x = A cos ω t + B sin ω t isasolutionforconstantvaluesof A and B

6.13Relatingthelastproblemtobuoyantoscillationsofadryairparcel,findthecoefficients A and B fortwosituations,usingd θ/d z =1Kkm 1 and θ ≈ 300K:(a) x (0) = 10m, v (0) = 0ms 1 ;(b) x (0) = 0m, v (0) = 1ms 1 .

Thermodynamiccharts

Atmosphericscientistsmakeuseofavarietyofchartsintheiranalysisofweather conditions.Inthepreviouschapterwelearnedtoidentifywhetheraparcellocatedat aparticularaltitudeisstableundersmallperturbations.Thestabilityisdetermined bythelocalslopeoftheenvironmentalcurvecomparedtothatofanadiabatpassing throughthesamepoint.Thediagramusedinthosestudieswasthetemperature versusthealtitude.Onsuchadiagramaplotoftheobservedenvironmental temperatureversusaltitudecouldbecomparedwithplotsofhypotheticaladiabatic trajectoriesofparcels.Welearnedthatcomparingthelocalslopescouldrevealthe stabilityofairlocatedatapoint(altitude)ontheenvironmentalcurve.

Whilethetemperatureandthealtitudeareconvenientfordeterminingthelocal stability,thetemperatureandthelogarithmofthepressurearemoreappropriate coordinatesforcomputingenergeticquantitiesofinterestwithoutgivingupthe convenientstabilityrules.Sincetheatmosphereisverynearlyinhydrostatic equilibrium,thealtitude,temperatureandlogpressurearecloselyrelatedthrough thehydrostaticequation,d p/p =−(g /RT )d z .Usingln p0 /p (p0 isastandard pressure,usually1000hPa)astheverticalcoordinateinsteadofaltitudewillallow ustorelatetheenergeticsofaparcel’smovementsinanunstableenvironment.

Toseehow T versusln p isrelatedtothermodynamicdiagramsusedearlierin thisbook,consideraclosedloopintegralenclosinganareainthisplane:

where v = 1/ρ isthespecificvolumeofaparcel.Wecanwrite

Thermodynamiccharts

since d (pv ) = 0.Thismeanstheareaenclosedbytheloopintegralinthe T versus ln p planeisproportionaltothenegativeoftheworkdone by thegasintheparcel intraversingtheloop.Thismeanstheareaisproportionaltothework on thegas bytheenvironment.Thisprovidesaconnectiontothethermodynamicdiagrams wearefamiliarwith.Wewillseethephysicalsignificanceandapplicabilityofthis connectioninthenextsection.

7.1Areasandenergy

Consideraparcelperchedatanunstableequilibriumpoint(altitude)inthe atmosphere.Aslightupwardsnudgewillcausetheparceltoaccelerateupwards becauseoftheincreasing(fromzero)buoyantforce.Astheparcelrisesawayfrom itspreviousbutprecariousequilibriumlevelitwillgainkineticenergyandlose buoyantpotentialenergy.Wecanobtainaformulaforthekineticenergyofthe parcelasafunctionofdistanceabovetheinitiallevel.Weconsideronlyadiabatic motion,whereintheairparcelmoveswithoutheatexchangewiththesurrounding environmentalair.

AccordingtoArchimedes’Principle,theupwardforceperunitmass(equalto acceleration)ontheparcelis

where M isthemassoftheparcel, ρa (z ) isthedensityoftheairintheparcel asitmovesverticallyalonganadiabaticpath,and ρe (z ) isthedensityofthe environmentalairjustoutsidetheparcelatlevel z .Notethatfordisplacements forwhich ρa islessthan ρe therewillbeanupwards(positive)buoyantforceon theparcel.Theworkdoneperunitmassontheparcelbythebuoyancyforcein movingtheparcelfrom z0 to z is z z0 (F /M) d z ,whichisalsothechangeinthe kineticenergyperunitmassoftheparcelinthisdisplacement.Inotherwords, thepositivebuoyancyforcecausestheparceltoincreasespeedasitmovesin theverticaldirection.Using K todenotethekineticenergyperunitmass,we obtain

Substitutingthehydrostaticequation,d p/d z =−ρ g ,andtheidealgasequationof state, p = ρ RT ,yields:

Theresultisthatthekineticenergyofaparcelisproportionaltotheareainthe closedloopdefinedbydoublyintersectingenvironmentalandadiabaticcurvesin a T –ln p diagram:

Itisworthrememberingthattheabovederivationisvalidforbothdryandmoist adiabaticprocesses.Astheparcelrisesadiabatically,itskineticenergygoesup,if thereisapositiveareaenclosedbytheparcel’spathandenvironmentalcurve.

Thesamefactis,ofcourse,trueforthe v –p diagram.Thechangeofkinetic energyperunitmassin v –p variablesis

wherewehavesubstituted v = va ve

Wehaveseenthatthe v –p and T –ln p diagramshavethearea-energyproperty: theareaenclosedbytheenvironmentalcurveontheleftandanadiabatic(parcel) curveontherightisproportionaltothekineticenergyperunitmassassumedbya parcelbeingforcedupwardsbybuoyancyinsuchanunstableatmosphericprofile.

Figure 7.1 showsadiagramofanenvironmentalsoundingcurvewithadry adiabatleavingthesurfaceandrejoiningthesoundingatahigherlevelinthe atmosphere.Theoretically,aparcelleavingthesurfacealongthedryadiabatwill haveakineticenergyonreachingtheenvironmentalcurveproportionaltothe shadedareaboundedbythetwocurves.

Ofcourse,theideaoffrictionlessmotionoftheparcelishighlyidealized. Exchangeofmomentumtransmittedbysmalleddiesbetweentheparcelandits environmenttendtoslowtheparcelandalteritsmotionfromtheidealconditions offrictionlessmotion.This entrainment processalsoexchangesotherproperties suchaschemicalcompositionandenthalpy.Nevertheless,theidealizedkinetic energyparameterhasprovenusefulindiagnosingandpredictingtheconsequences ofunstablesituations.

SOUNDING T

Figure7.1Schematicdiagramofasounding(leftborderoftheshadedarea)along withadryadiabatrisingfromthesurface(rightborderoftheshadedarea).The shadedareaisproportionaltothekineticenergyacquiredbyaparcelinrisingfrom thesurfacetotheintersectionofthetwocurves.

Wewillreturntoenergeticconsiderationsafterintroducingtheskew T diagram andpassingthroughaseriesofchartexercisesdesignedtobuildfamiliaritywith thecharts.

7.2Skew T diagram

Whileintheprevioussectionwesawthatthe T –ln p diagramhastheveryuseful area-energyproperty,experiencehasshownthatarelateddiagramisevenmore usefulwhilepreservingthearea-energyproperty.Whileseveralsuchdiagramshave beenproposedovertheyearsanddiscussionsofthemcanbefoundontheinternet, byfarthemostwidelyusedistheskew T –log p chartwhichwewillrefertosimply astheskew T chart.Useofthediagramsavestime,avoidstediouscalculations, andprovidesaneasyvisualmeansofsummarizingtheverticalstructureofthe atmosphericthermal,stability,energeticandmoisturecharacteristics.

Datafroma radiosonde (aninstrumentedballoonlaunchedevery12hoursata networkofthousandsoflocationsovertheglobe)areplottedonthediagramto formthe sounding orenvironmentalcurve.Themainparametersderivedfrom theradiosondearethepressure,temperature,humidity,altitudeandhorizontal componentsofwindvelocity.

Theskew T diagramdiffersfromthe T –ln p diagraminthattheabscissaisrotated abouttheorigin(T0 ≈−50◦ C,ln1000)byabout45◦ downwardsinaclockwise directionasillustratedinFigure 7.2.

Theresultingcoordinateplane(ordiagramorchart)(Figure 7.3)isshownin theformusedbypracticingmeteorologistsandresearchers.Theabscissa X onthis diagramisproportionalto (T + β ln (p0 /p)),where β isanadjustablecoefficient setonceandforallforconvenience(fortheusualskew T chart,thevalueis closetounitymakingtheangleofrotation45◦ ).Theordinate Y isproportionalto ln (p0 /p) whichisverynearlyproportionaltothealtitude,makinginterpretation

Figure7.2Intheskew T diagramthe T -axisisrotatedabout45◦ clockwise.The originalisothermswereverticalwhiletherotatedonesaretiltedasshown.The isobarsarehorizontalbeforeandaftertherotation(onlytheabscissaisrotated).

Figure7.3Illustrationofaskew T –log p diagram.Theisolinesarelabeled.

ofthiscoordinateeasier.Tobesurethatthispairofcoordinatesisviablefromthe pointofviewofenergetics,considertakinganintegralaroundaclosedloopinthe plane:

Thistellsusthataclosedloopinaskew T diagramhasthesamevalueasthat sameloopina T –ln p (unskewed)diagram.Thelargertheareaenclosedthemore energywillbeinvolvedinarelatedclosedloopprocess.Theclosedloopprocess canthenberelatedtotheconversionofbuoyantpotentialenergyintokineticenergy ofconvectionaswediscussedinthelastsection.

Intheskew T diagramthelinesofconstantpressure(isobars)arehorizontal whiletheisothermsarenolongerverticalbutaretiltedtotheright.Examination ofFigure 7.3 showsmanylinesbesidestheisobarsandtheisotherms.Letustake onecurveatatime.

Dryadiabat Wecanobtainanequationforthedryadiabatbytakingthelogarithmof Poisson’sequation,

Thisrelationshipshowsthatthedryadiabatsarenotexactlystraightlinesonaskew T diagram.Hence,thedryadiabatsareslightlycurved(solid)lineswhichrunfrom thelowerrighttotheupperleftofthediagramandarenearlyperpendicularto theisotherms.The45◦ anglebetweentheskewedisothermsandisobarsandthe resulting90◦ anglebetweenisothermsandadiabatsmakesiteasierfortheobserver toseethedifferencebetweenthesoundingandtheadiabats.Thispropertyhasled tothewideadoptionoftheskew T diagram.ThepressureisinhPa(sameasmb), thetemperatureisindegreesCelsius.Thedryadiabatsarelabeledbythepotential temperatureassociatedwiththem.

Saturationmixingratio Theselinesaredrawnontheskew T diagramasdashedlines runningtowardtheupperright.Theunitsaregkg 1 ,whichindicatetheamountof wateringramsperkilogramofairatsaturationattheparticulartemperatureand pressure.Thevalueforeachsaturationmixingratiolineisshownonthebottomof thediagram(onsomechartsontheinternetitmightbeshownontheupperright).

Moistadiabat Theseareshownasdashedlinesrunningtowardtheupperleft.They canbecomputedfromtheinformationinthepreviouschapter,butthisisunnecessary sincethechartsalreadyprovidetherelationship.Moreaboutthesebelow.

Figure7.4Exampleofasoundingonaskew T –log p diagram.

Thethermodynamicstateofaparcelofaircanberepresentedasapointinthe diagram.Forexample,aparcelhavingtemperature 10◦ Candpressure600hPa isseentohavepotentialtemperature ≈30◦ C.Tospecifytheparcel’sproperties completelyweneedtoknowitswatervaporcontent, w ingkg 1 .Supposeourparcel whichislocatedat600hPaand 10◦ Ccontainswatervaporwithamixingratioof 0.5gkg 1 .Thesethreequantities p, T , w aresufficienttodefinethethermodynamic stateoftheparcel.Onecouldequallywellspecify p, θ ,andRHsinceonetriplet canbefoundfromtheother.

NextconsiderthesoundingplottedinFigure 7.4.Therearetwosoundingcurves plottedonthechart:thetemperatureplotandthedewpointplot.Bothprofiles arebasedonradiosondemeasurements.Thetemperaturelineisalwaystothe rightofthedewpointline.Onecanreadthevaluesofpotentialtemperature, equivalentpotentialtemperature,saturationmixingratio,andactualmixingratio ofanairparcelsituatedatanyparticularpressureandtemperature.Aparcelof aircanbemovedhypotheticallyindifferentdirectionsonthechart.Asitmoves

Thermodynamiccharts

itsthermodynamiccoordinateschange.Forexample,consideraparcelonthe environmentaltemperaturecurveat400hPa;ahorizontalmove(OA)isanisobaric change(thismightresultfromcoolingduetoradiation).Amovealonganisotherm (OB)showshowtheparcel’spropertieschangeunderanisothermaldisplacement.A movealongadryadiabat(OC)indicatesthechangesthataparcelwouldexperience ifitwereliftedadiabaticallytoadifferentpressurelevel.Asaparcelislifteddry adiabatically,thechartshowsthatthetemperatureofsuchaparceldecreases(it crossesisothermsofdecreasingtemperatures).Thiscoolingisagainagraphical expressionofPoisson’sequation.Tointroduceskew T charts,letuswalkthrough somechartexercises.

7.3Chartexercises1

Exercise1 Anairparcelhasatemperatureof253Katthe600hPapressurelevel.

(a)Finditspotentialtemperatureandsaturationmixingratiousingbothskew T –log p chart andformulas.

Answer:(Figure 7.5)Ontheskew T diagramthatweuse(seeFigure 7.5),the temperatureisindegreesCelsius;forthatreasonwefirsthavetoconvertKelvins todegreesCelsius(T =−20◦ C).Findthepointonthediagramwheretheabscissais equalto 20◦ Candtheordinateisequalto600hPa(pointA).Tofindthepotential temperatureoftheparcel,followadryadiabattotheintersectionwiththe1000hPa level(pointB).ReadthetemperatureatpointB.Thisisthepotentialtemperatureof theparcelwhichisequalto293K.Tofindthesaturationmixingratio,frompointA followthelinewithconstantsaturationmixingratiototheintersectionwiththeabscissa (dashedline).Readthevalueofsaturationmixingratio(1.3gkg 1 ).

Figure7.5DiagramforExercise1.

1 Intheseexercisesweusereducedaccuracy, TSTP ∼ = 273Kand pSTP ∼ = 1000hPaasSTPexceptwhen TSTP appearsintheintegratedClausius–Clapeyronequation.

Usingformulas,(i)findthepotentialtemperaturefromPoisson’sequation,(ii) findthesaturationmixingratiofromtheintegratedformoftheClausius–Clapeyron equation(5.17)andformula(5.35).

(b)Movetheparcelalongthedryadiabat(dryadiabatically)tothe850hPalevel.Whatis thenewtemperatureoftheparcel?Whatisthenewsaturationmixingratio?Whatis theparcel’spotentialtemperatureat850hPa?

Answer:FrompointAfollowthedryadiabattoapressurelevelof850hPa(point C).Tofindthetemperature,followtheisothermfrompointCtotheintersectionwith theabscissa.Readthetemperature(T = 7◦ C).Tofindthesaturationmixingratio, frompointCfollowthelineofconstantsaturationmixingratiototheintersection withtheabscissa.Readthevalueofsaturationmixingratio(7gkg 1 ).Theparcel’s potentialtemperatureatthe850hPalevelisthesameasat600hPa,sincethedescent wasconducteddryadiabaticallywithconservationofpotentialtemperature.

Exercise2 Anairparcelhasatemperatureof298Kat1000hPalevel.Itsmixing ratiois14gkg 1 .Findtherelativehumidityusingthechartandformulas.

Answer:FindthepointonFigure 7.6 withabscissa25◦ Candordinate1000hPa correspondingtotheinitialconditionsoftheparcel(pointA).

Weknowthemixingratio,hence,tofindtherelativehumiditywehavetofind thesaturationmixingratio(seeExercise1).ThesaturationmixingratioatpointA is20gkg 1 .Thustherelativehumidityis

Usingtheformulas,thetemperatureoftheparcelisknown,thereforefromthe Clausius–Clapeyronequationwefindthesaturationpressuretobe32hPa.Then, calculatethesaturationmixingratiofromformula(5.35).Finally,findtherelative humidityfrom(5.28).

Exercise3 UsingthesameinitialconditionsasinExercise2,findthedewpoint oftheparcelusingbothchartandformulas.

Figure7.6DiagramforExercises2and3.

Thermodynamiccharts

Answer:Bydefinition,thedewpointisthetemperaturetowhichanairparcelmust becooledatthesamepressurelevelinorderforittobesaturated.Inourcasethe parcelisunsaturated,itsmixingratiobeinglessthanthesaturationmixingratio.So, tofindthedewpointmovetotheleftfromtheinitialconditionoftheparcel(point A)alongtheisobarcorrespondingtothe1000hPalevel.Stopattheintersection oftheisobarwiththelineofconstantsaturationmixingratiocorrespondingto 14gkg 1 (pointB).Thisshiftalongtheisobarcorrespondstocoolingtheparcelat thesamepressureleveluntilitsmixingratiobecomesequaltoitssaturationmixing ratio.Therefore,thetemperature(theabscissa)atpointBisthedewpoint.Forthis problem TD = 19 ◦ C.Itisimportanttounderstandthatthedewpointandmixing ratiooftheparcelreflectequivalentinformation:ifyouknowthedewpoint,you canfindthemixingratioatthesametemperatureandpressure,andviceversa.Now letuscalculatethedewpointusingformulasinsteadofdiagrams.Tofindthedew point,wehavetoequatethesaturationmixingratiototheactualmixingratioof theparcel:

Thisgivesusthedewpointtemperature TD = 19 ◦ C.

Exercise4 Anairparcelisliftedadiabaticallyfromthe1000hPalevelwhere theparcelhasatemperatureof20◦ Canddewpoint6◦ C.FindtheLCL(lifting condensationlevel).Whatarethetemperatureandpotentialtemperatureofthe parcelatthislevel?

Answer:Findtheparcel’sinitiallocationonFigure 7.7 correspondingto20 ◦ C abscissaand1000hPaordinate(pointA).Thesaturationmixingratioat20◦ Cis 14.5gkg 1 .Sinceweknowthedewpoint,wecaneasilyfindtheactualmixing ratio:themagnitudeofthesaturationmixingratioatthedewpoint(6◦ Catthe 1000hPalevel,pointB)istheactualmixingratio,whichisequalto5.7gkg 1 in ourcase.Sincetheactualmixingratioislessthanthesaturationmixingratio,the airparcelisunsaturated.Therefore,theparcel,whenliftedadiabatically,followsa dryadiabaticlinepassingthroughpointA.Duringascentthepotentialtemperature isconstant,aswellasthemixingratiooftheparcel(thereisnocondensationand latentheatrelease).Atthesametime,thesaturationmixingratiodecreasessince thetemperaturedecreases.So,atsomepressurelevelthesaturationmixingratio andtheactualmixingratiobecomeequaltoeachother,whichmeansthatadiabatic liftingeventuallyleadstosaturationandcondensation.Thelevelatwhichtheairin theparcelhascooledbyadiabaticexpansionsufficientlytobecomesaturatedisthe

LCL.TheLCLcanbefoundattheintersectionofthedryadiabatstartingfromthe initialparcel’stemperatureandpressure(AConthegraph)andconstantsaturation mixingratiolinestartingfromthedewpoint(BC).InourcasetheLCL(pointC)is at810hPa.Thetemperatureatthislevelis3◦ C.Thepotentialtemperatureis293K attheLCL.Thepotentialtemperatureisconservedduringthelifting;itisthesame asthatatthe1000hPalevel.

WecancalculatetheLCLwithoutusingcharts,butthisismoredifficult.We havetofindatwhatpressurelevelthedryadiabatthatstartedatpointAintersects withthelineofconstantsaturationmixingratiothatstartedfrompointB.Wecan, forexample,expresstemperatureintermsofpotentialtemperatureandpressure usingPoisson’sequationandsubstituteitintotheClausius–Clapeyronequation.As aresult,wehavetosolveatranscendentalequationforpressure.Chartsarequicker.

Exercise5 ContinueExercise4.Iftheparcelisliftedadiabaticallytothe450hPa level,whatisitsfinaltemperature?

Answer:At810hPatheparcelhasbeensaturated.So,itsfurtherliftingisalonga moistadiabat.FollowthemoistadiabatstartingfrompointCtothe450hPalevel. Thetemperatureatthispointis 29◦ C.

Exercise6 Anairparcelatthe800hPalevelwithtemperature 10◦ Cissaturated (mixingratio2.2gkg 1 ).Computetheequivalentpotentialtemperature θe using boththeskew T –log p chartandtheformulafor θe .

Answer:Lifttheparcelfromitsinitiallocation(pointAonFigure 7.8)alongthe moistadiabattoinfinity(approximately200hPaonthegraph,moistanddry adiabatsarenearlyparalleltoeachotheratthisandhigherlevels).Allvaporthat theparcelinitiallycontainedhascondensed.Thenmovetheparcelbacktothe

Figure7.7DiagramforExercises4and5.

Figure7.8DiagramforExercises6and7.

1000hPalevel(pointB)alongthedryadiabat.ThetemperatureatpointBisthe equivalentpotentialtemperature (286K).

Fromformula(6.82)weget

Exercise7 ContinueExercise6.Lifttheparceltothe425hPalevel.Howmuch wateriscondensedduringtheascent?

Answer:BringtheparcelfrompointAtothe425hPalevelalongthemoistadiabat (pointC).Theascentisalongthemoistadiabatsincetheparcelwassaturatedat theinitialtemperatureandpressure.AtpointCthesaturationmixingratioisequal to0.10gkg 1 .Hence,theamountofwatercondensedoutduringtheascentis 2.2gkg 1 0.1gkg 1 = 2.1gkg 1 .

Figure7.9DiagramforExercise8.

Exercise8 Airat800hPahasatemperatureof10◦ Candadewpointof0 ◦ C. Determinethewet-bulbtemperatureandthewet-bulbpotentialtemperature.

Answer:Thewet-bulbtemperature,bydefinition,isthetemperatureanairparcel wouldhaveifcooledadiabaticallytosaturationatconstantpressurebyevaporation ofwaterintoit.Tofindthewet-bulbtemperatureonFigure 7.9 youhavetoperform thefollowingsteps.(1)Findtheliftingcondensationlevel(seeExercise4).Itisat 690hPa(pointC).(2)DrawamoistadiabatstartingatCdowntotheintersection withthe800hPaisobar(pointD).Readthemagnitudeofthetemperatureatpoint D,whichisthewet-bulbtemperature(5◦ C).Thewet-bulbpotentialtemperature canbefoundbyextrapolatingthemoistadiabatlinestartingattheLCL(pointC) tothe1000hPalevel(288K).

Exercise9 Therelativehumidityoftheairatthe950hPapressurelevelis47%. Plottherelativepositionsoftemperature,dewpointandwet-bulbtemperatureon thechart.

Answer:TheRH = 47%meansthatairisunsaturated.Therefore,thedewpoint (pointBonFigure 7.10)istotheleftofthetemperature(pointA)atthe950isobar level.Thewet-bulbtemperatureisalwayshigherthanthedewpoint.Thishappens becausethedewpointistheresultofcoolingtosaturationatconstantpressurewith constantmixingratio.Instead,thewet-bulbtemperaturecharacterizescoolingto saturationoftheairparcelbyevaporatingwaterintotheparcel,whichraisesthe actualmixingratioasthecoolingproceeds.So,thewet-bulbtemperature(pointC) isbetweenthedewpointandtheactualtemperature.

Exercise10:Chinookwind TheChinookwindisthewarmdrywindthatisthe resultofwinddescendingeastwardsfromtheRockyMountains(Figure 7.11). Chinookwindscancauselargetemperaturechangesoccurringonlyoverafew

hours.“Chinook”isaNativeAmericanwordthatmeans“snow-eater,”reflecting thewarmingeffect,whichcouldbeaccompaniedbysubstantialmelting.Itiscalled FöhninEurope.Lettheairhaveatemperatureof10◦ Cand5gkg 1 mixingratio atpressure950hPaattheupslope(western)sideofthemountain.Whenpassing overthetopofthemountainatthe600hPalevel,assumethat80%ofthemoisture isprecipitatedout.Theairreturnstothe950hPalevelontheeasternsideofthe mountainafterbeingheatedbythecondensation.Comparethetemperature,relative humidity,potentialtemperatureandwet-bulbpotentialtemperaturesonbothsides ofthemountainatthe950hPalevel.

Answer:Findtheinitiallocationoftheparcelonthechart(pointAonFigure 7.12). Atthispointthesaturationmixingratioisequalto8gkg 1 .Sinceweknowthe mixingratiooftheparcelatpointA,wecanfindtherelativehumidityRH = 62%.ThepotentialtemperatureatpointAis287K(seeExercise1).Theparcelis unsaturatedatpointA.Thus,whenlifting,itfollowsadryadiabatuntilitreaches theLCL(seeExercise4).TheLCLisatthe860hPalevel.Theintersectionof thedryadiabatstartingatpointAandthelineofconstantsaturationmixingratio of5gkg 1 isatpointL.Tofindthewet-bulbpotentialtemperature(seeExercise8),

Figure7.10DiagramforExercise9.
Figure7.11Exercise10,illustrationoftheChinookwind.

Figure7.12DiagramforExercise10.

drawamoistadiabatstartingfromLbacktothe1000hPalevel.Readtheabscissa, whichyields9◦ C.Withfurtheruplifting,theparcelfollowsthemoistadiabatto thetopofthemountainatthe600hPalevel(pointB).Atthispointtheparcel hassaturationmixingratioequalto1.6gkg 1 .Nowwecanfindtheamountof watercondensedoutduringtheascenttothetopofthemountain.Itisequaltothe differencebetweenmixingratiosatpointsAandB,5gkg 1 1.6gkg 1 = 3.4 gkg 1 .Weknowthat80%ofthismoisture,whichis2.7gkg 1 ,isprecipitated out.Therefore,thereis3.4gkg 1 2.7gkg 1 = 0.7gkg 1 ofliquidwateratthe topofthemountain.Whendescendingontheothersideofthemountain,theair parcelfollowsthemoistadiabatagainsinceitissaturated.Whendescending,the parcelwarmsandexpands,sowaterevaporates.Eventually,atsomelevel,allthe liquidwaterevaporates,theparcelisnolongersaturatedanditsfurtherdescentis alongadryadiabat.Howcanwecanfindthis“threshold”pressurelevelwhenthe parcelreachesitsnewsaturationmixingratiocorrespondingtotheevaporationof allliquidwater?Weknowthatatthetopofthemountainthereis1.6gofliquid waterperkilogramofdryair.Wealsoknowthataftertheprecipitationthereis still0.7gofliquidwaterperkilogramofdryair.Hence,thenewsaturationmixing ratio,whenallliquidwaterevaporates,is1.6gkg 1 + 0.7gkg 1 = 2.3gkg 1 . Theparcelintersectsthelinewith2.3gkg 1 saturationmixingratioatthe660hPa level(pointC).Thisisthe“threshold”pressurelevelbecausethereaftertheparcel becomesunsaturatedandfollowsitsdryadiabattothe950hPalevel(pointD). Theparcel’snewtemperatureatpointDis17◦ C,whichis7 ◦ Cwarmerthaninthe beginning.Duringdryadiabaticdescentthemixingratioisconstant,soatpointD theparcelhasthesamemixingratioasatpointC,whichis2.3gkg 1 .Thesaturation mixingratioatpointDis12.6gkg 1 .Therefore,therelativehumidityoftheair

ontheothersideofthemountainis18%(comparewith62%atthebeginning). ThepotentialtemperatureatpointDis294K(comparewith287KatpointA).The wet-bulbtemperatureisagain9 ◦ C;itisconservedduringtheprocess.

7.4Stabilityproblem:examplesounding

Figure 7.13 showsatypicalsounding.Inthisexampletheairnearthesurface isunsaturatedsincethedewpointislessthantheairtemperature.Whenlifted, theairfollowsadryadiabatuntilitreachestheLCLasdepictedinthegraph. Furtherupliftingisalongamoistadiabat(indicatedbythedashedline).Thefirst intersectionofthismoistadiabatwiththesoundingcurveoccursatthe leveloffree convection (LFConthegraph).IfaparcelisliftedtoaheightlowerthantheLFC, itreturnstowardthesurfacebecauseitexperiencesnegativebuoyancysinceitis

Figure7.13Illustrationofahypotheticalsounding.Solidcurvescorrespondtoair temperatureanddewpointsounding,thedashedcurveshowstheactualpathofa parcelliftingfromthesurface.

7.4Stabilityproblem:examplesounding 179 alwayscoolerthantheenvironmentalongitspath.If,however,theparcelreaches theLFC,itbecomeswarmerthanitssurroundings.So,theLFCisthelevelwhere theparcelbecomespositivelybuoyant.Thepositivebuoyancycarriestheparcelup tothe levelofneutralbuoyancy (LNB),wheretheparcel’spathintersectswiththe (measured)temperaturesounding.

InChapter6wediscussedstabilitycriteriaforanunsaturatedparcel.Letusapply thesetodifferentlayersofthesounding.Bylayerwemeanathinslabofairalong thesoundingacrosswhichthereisanapproximatelyconstantlapserate.Consider thestabilityoflayersdepictedonFigure 7.13 (Figure 7.14 enlargesthepartofthe chartweareinterestedin).

LayerABisstablesinceitslapserateislessthanthedryadiabaticlapserate. LayerBCisalayerexhibitingaslight inversion.Aninversionoccursinalayer whenthetemperatureincreaseswithheight–suchalayerisobviouslystable.The layerCDisalsostable,itslapseratebeinglessthanthedryadiabaticlapserate. ThelayerDEisneutral;itisparalleltothedryadiabat,sotemperaturedecreases atthesamerateaswithadryadiabaticprocess.

Nowconsiderthecasewhenthetemperaturedecreaseswithheightatarateless thanthedryadiabaticlapseratebutgreaterthanthemoistadiabaticlapserate, d > > m (forexample,layerAB).AnairparcelinlayerABisnegatively buoyantifliftedashortdistancebutcouldbecomepositivelybuoyantifan imposedverticalmotionisstrongenoughtobringthisparceltoitslevelof freeconvection(LFC).Forexample,theairmightbepushedupamountainside orliftedbymechanicallyinducedoverturning(turbulence).Suchasituationis called conditionalinstability.Thelayerisstablewhenairisunsaturated,butcould becomeunstablewithexternallyimposedverticalmotion.Wecantestthelayerfor

Figure7.14TheenlargedareaofinterestofthesoundingshowninFigure 7.13.

Thermodynamiccharts

conditionalinstabilitybycalculatingtheverticalgradientofsaturationequivalent potentialtemperatured θs /d z ,ratherthanbycalculatingthelapserate.Inthecaseof conditionalinstabilityd θs /d z < 0.Indeed,onecanseefromthegraph(Figure 7.14) that θs (A) >θs (B).If = m (AandBareonthesamemoistadiabat),then θs (A) = θs (B),andd θs /d z = 0.

Tosummarize,ifthetemperatureintheparticularlayerdecreasesatarategreater thanthedryadiabaticlapserate,thislayerisunstableinanycaseforbothsaturated andunsaturatedparcels.Ifthetemperaturedecreasesataratelessthanthemoist adiabaticlapserate,thislayerisabsolutelystable;thesaturationequivalentpotential temperatureincreaseswithheightinthiscase.Theformulasbelowlistthestability criteria:

Thereisanothertypeofinstabilitycalled potentialinstability.Potentialinstability occurswhenthelayerisliftedasawhole,forexamplebyconvectionassociated withamovingfrontorwithaflowpassingoveramountain.Whenmoving,the saturationconditionsand,consequently,pathsaredifferentforthebottomand topofthelayer,whichcanchangetheinitialtemperaturegradient.Considerthe invertedlayerBConthesamesounding(Figure 7.15).Thereasonwechosean inversionlayeristhattheeffectwewanttodemonstrateismorepronouncedinthis case.Imaginethatanupliftingflowmovesthislayerasawhole200hPahigher. Whathappens?Thebottomofthelayer(pointB)isalmostsaturatedinitially. Therefore,whenlifted,itquicklyreachesitsLCL(labeledasLCLB onthegraph) andfollowsamoistadiabatthereafter(pointB1 ).Thesituationatthetopofthe layer(pointC)isdifferent.Atthebeginning,airatthetopofthelayerhasalow relativehumidity,itsdewpointisfartotheleftofitstemperature.Whenuplifted, theairatpointCreachesitsLCL(labeledLCLC onthegraph)andthenfollows amoistadiabat(pointC1 ).NowconsiderthelapserateoftheB1 C1 layer.Itis largerthanthedryadiabaticlapserate.So,theabsolutelystablelayerBCbecomes unstablewhenuplifted.Thisisthecaseofpotentialinstability.Thecriterion forthisinstabilityisanegativegradientoftheequivalentpotentialtemperature inthelayer,d θe /d z < 0.Indeed,theequivalentpotentialtemperatureremains constantduringtheliftingeverywhere:bothaboveandbelowtheLCL.Whenthe airreachestheLCL,theequivalentpotentialtemperaturebecomesequaltothe saturationequivalentpotentialtemperature, θe = θs .Afterthat,fromthecriterion

Figure7.15Illustrationofpotentialinstability.ThestablelayerBCbecomes unstableafteruplifting.

forconditionalinstability(7.15)weobtaind θe /d z < 0forpotentialinstability.One canseefromFigure 7.15 that θe (B)>θe (C).Thisisacommonoccurrenceinthe southeasternUSAaswarmmoistairisadvectedfromthesouth,overridingdrier airadvectedfromthewest.Ifliftingoccurs,suchaconfigurationcanleadtosevere weatherconditions.

7.5Convectiveavailablepotentialenergy(CAPE)

Inprevioussectionsweanalyzedthestabilityofthedisplacementofasmallparcel intermsoftemperaturelapserate.Inthissectionwewillcontinuetoanalyze stability,butintermsofenergy.Wehavealreadyshownthatwhenthereisapositive areaintheclosedloopbetweenenvironmentalandadiabaticcurvesona T –ln p diagramor,inotherwords,ifaparcel(afteranudge)ispositivelybuoyant,the parcel’skineticenergyincreases.Consideraparcelbeinginitiallyunsaturatedin aconditionallyunstableatmosphere.Wedenotetheparcel’sinitiallocationbyA intheexampleofatemperaturesoundingshowninFigure 7.13.Whenlifted,the parcelfirstfollowsadryadiabatuntilitreachestheLCL.Withfurtherlifting,it followsamoistadiabat.Iftheupwardmotionisstrongenoughtobringtheparcel toitsLFC,theparcelbecomespositivelybuoyant.Figure 7.16 showsthesame soundingasFigure 7.13.Thepositivearea(shadeddarkonFigure 7.16)between theparcel’spathandthesoundingboundedbytheLFCandtheLNBiscalled the convectiveavailablepotentialenergy (CAPE).CAPErepresentsthemaximum kineticenergythatapositivelybuoyantparcelcanacquirebyascendingwithout exchangingmomentum(eddyfriction),heatandmoisturewithitsenvironment.

Figure7.16ThesamesoundingasinFigure 7.13.Darkandlightgrayareas representconvectiveavailablepotentialenergy(CAPE)andconvectiveinhibition energy(CIN)correspondingly.

Wecancalculatetheidealchangeofkineticenergyperunitmassduetopositive buoyancybyintegrating(7.5)fromLFCtoLNB.Theamountofkineticenergy releasedinthissituationis

CAPEisausefulmeasureofthunderstormseverity,sinceitallowsustoestimate thevalueofmaximumpossibleverticalvelocity.Indeed,ifaparcelhaszerovertical velocityattheLFC,thenfrom(7.17)

Inthisconsiderationwehaveneglectedtheeffectofwatercondensation,which reducesbuoyancyslightly.ValuesofCAPEgreaterthan1000Jkg 1 implythe possibilityofstrongconvection.Evenifthefinalverticalvelocityislessthanthe maximumvalue,theenergyisstilldissipatedinturbulencewithinthecloud.

LetusreturnnowtoFigure 7.13.BeforetheparcelstartingatpointAreaches itsLFC,ithastoovercomeapotentialenergybarrierbetweentheLCLandthe LFC,whereaparceliscoolerthanitsenvironmentandnegativebuoyancytends toreturntheparceltowardthesurface.This negative areabetweentheparcel’s pathandenvironmentboundedbytheLCLandtheLFCiscalledthe convective inhibitionenergy (CIN).ItisshownasthelightgrayareainFigure 7.16.CIN controlswhetherconvectionactuallyoccurs.Itisameasureofhowmuchenergy isrequiredtoovercomethenegativebuoyancyandallowconvection.TofindCIN wehavetointegrate(7.5)fromtheLCLtotheLFC,namely

IftheCINisgreaterthan100Jkg 1 ,asignificantsourceofliftingisneededtobring theparceltoitsLFCinordertocreatefavorableconditionsfordeepconvection.

Figure7.17ThesamesoundingasinFigure 7.13.Foraparceloriginatingatpoint B,CAPEiszero.

Figure7.18Illustrationofahypotheticalsounding.

Ifwe,forexample,areinterestedintheCAPEofanairparcelstartingatpointB ratherthanatpointAonthesamesoundingdiagram(Figure 7.17),thentheCAPE iszero.ThepathoftheparcelstartingatpointBisshownbyadashedlineon Figure 7.17.Thisparcelisalwayscoolerthanitslocalenvironment.Itisimportant tonotethatthevalueofCAPEdependsontheinitialparcellocation.

ConsiderthesoundingshowninFigure 7.18.Aparcelstartingfromthesurface willexperiencenegativebuoyancy.TheareacorrespondingtotheCINisshown inlightgrayinFigure 7.19,whichsimplyenlargesthepartofFigure 7.18 weare interestedin.TheareashadedindarkergraycorrespondstotheCAPE.Tobecome positivelybuoyant,aparcelstartedfromthesurface(pointAonthegraph)has toovercomethis“lightgray”area.Imaginenowthatweexpectthesurfacetobe warmedinthenextcoupleofhours.Then,insteadofpointA,theparcelstartsfrom pointA1 (Figure 7.20).Itdoesnotexperiencenegativebuoyancyanylonger;itsLFC coincideswithitsLCL,andtheseareexcellentconditionsforseverethunderstorm activity.If,onthecontrary,weexpectthesurfacetobecooled(Figure 7.21,point

Figure7.19ThesamesoundingasinFigure 7.18.CAPEandCINfortheparcel startedfromthesurface(pointA)areshownindarkandlightgraycorrespondingly.

Figure7.20ThesamesoundingasinFigure 7.18.Illustrationofahypothetical surfacewarming.FortheparceloriginatingatpointA1 ,thereisnoCIN.

A2 ),thenthesituationisreversed.CINbecomeslarger,andCAPEissmallerthan theprevioussituation.Thismeansthattheconditionsforathunderstormareno longerfavorable.

Fortunatelyfortheforecaster,thevaluesofmanyoftheparametersdiscussed above(CAPE,CIN,etc.)areprintedrightontheskew T chartsthatarepublishedat manysitesontheinternet.Hence,notediouscomputationsofareasarenecessary bytheuser.

Figure7.21ThesamesoundingasinFigure 7.18.Illustrationofahypothetical surfacecooling.FortheparceloriginatedfrompointA2 ,CAPEdecreases,butCIN increasesincomparisonwiththeparcelstartedfromA.

NotationandabbreviationsforChapter7

CAPEconvectiveavailablepotentialenergy(Jkg 1 )

CINconvectiveinhibitionenergy(Jkg 1 )

F , F /M force,perunitmass(Nkg 1 )

h, u specificenthalpy,internalenergy(Jkg 1 )

K kineticenergy(J)

Levap latentheatofevaporation(Jkg 1 )

R gasconstant(JK 1 kg 1 )

ρa parceldensityforadiabaticchange(kgm 3 )

ρe environmentaldensity(kgm 3 )

Va , Ve volumesofaparcelalonganadiabatandoftheenvironment(m3 )

w , ws mixingratio,saturated(gwatervaporperkgdryair)

X , Y abscissa,ordinate

Problems

7.1RefertothesoundinginFigure 7.22

(a)Estimatethemixingratioatthesurface.

(b)Estimatethesaturationmixingratioatthesurface.Whatistherelativehumidityat thesurface?

(c)Whatisthedewpoint?

(d)WhatisthepressurelevelattheLCL?

(e)Whatisthewet-bulbtemperatureatthesurface?

(f)IsCIN > 0?

Figure7.22AsoundingfromLakeCharles,LA,at00Z,June1,2007.Takenfrom theUniversityofWyomingwebsite.

(g)IstherealargeCAPE?

(h)Whatisthemixingratioat800hPa?

(i)Whatisthesaturationmixingratioat800hPa?

7.2RefertothesoundinginFigure 7.23

72764 BIS Bismarck

00Z 01 Jan 2007

Figure7.23AsoundingfromBismarck,ND,at00Z,January1,2007.Takenfrom theUniversityofWyomingwebsite.

Thermodynamiccharts

(a)Whereisthetropopause?

(b)DescribetheairmassoverBismarckonthisday.

(c)Describethehumidityasafunctionofaltitude.

(d)Arethereanytemperatureinversionsasafunctionofaltitude?

(e)IsthereanyCAPEorCIN?Stable?

7.3RefertothesoundinginFigure 7.24.

(a)Whereisthetropopause?

(b)DescribetheairmassoverBismarckonthisday.

(c)Describethehumidityasafunctionofaltitude.

(d)Arethereanytemperatureinversionsasafunctionofaltitude?

(e)IsthereanyCAPEorCIN?Stable?

00Z 01 Aug 2007

Figure7.24AsoundingfromBismarck,ND,at00Z,August1,2007.Takenfrom theUniversityofWyomingwebsite.

72764 BIS Bismarck

Figure7.25Ablankskew T chartforProblem7.4.TakenfromtheUniversityof Wyomingwebsite.

7.4Theairat1000hPaand11◦ Chasdewpoint 0.5 ◦ C(seeFigure 7.25).

(a)Findthemixingratio,relativehumidity,andthepotentialtemperatureusingboth theskew T chartandformulas.

(b)Findtheliftingcondensationlevelusingthechart.

(c)Findtheequivalentpotentialtemperatureusingthechart.

(d)Whatarethemixingratioandthepotentialtemperatureiftheparcelrisesto 900hPa?

(e)Whatistheequivalentpotentialtemperatureiftheparcelrisesto600hPa?

7.5Consideraparcelofmoistairthatrisesfromthesurfacewhere p = 1000hPato400hPa. Assumeallofthecondensedwaterisprecipitatedoutduringtheascent.Theparcelthen descends(unsaturated)backtothesurface.Iftheinitialtemperatureis20◦ Candits initialdewpointis0◦ C,findthefollowing(useFigure 7.26).

(a)Howmuchwateriscondensedduringtheascent?

(b)Thetemperatureoftheparcelanditsdewpointtemperaturewhenitreturnstothe surface(1000hPa).

Figure7.26Ablankskew T chartforProblem7.5.TakenfromtheUniversityof Wyomingwebsite.

Thermochemistry

Applicationsofthermodynamicsformtheheartof physicalchemistry.Withthe FirstLawofThermodynamicswecanfindsomeelementaryapplicationsof thermodynamicstoprocessesrelevanttotheatmosphere.Asanexample,consider theelementaryreaction

wheretheginparenthesesindicatesthatthechemicalspeciesisinthegaseousstate (thesolidphaseisindicatedbys,liquidbylandaqueoussolutionbyaq).

AtthemolecularlevelamoleculeofCO2 strikesanH2 moleculeandthe rearrangementcollisionoccurswithacertainprobabilitydependingonvelocities, spatialorientationofthecolliders,etc.Therateatwhichareactionproceedsin asystemistheproductofthelikelihoodofacollisionbetweentheimportant partiesandtheprobabilityofrearrangement,giventhecollision.SometimesaCO moleculebumpsintoanH2 Omoleculeandthereversereactionoccurs.Thatthe reactionmightgobothwaysisindicatedbytheequation

Onceequilibriumisestablished(rateofreactionsproceedingtotherightequals therateofthosegoingtotheleft)inasuitableenclosure,wecanconsiderthematter involvedtobeathermodynamicsystemwhichcanbetreatedbythemethodsof equilibriumthermodynamics.Thenumberofmolesofthespecies νCO2 , νH2 , νCO and νH2 O becomethermodynamiccoordinatesorfunctionsalongwiththoseweare alreadyacquaintedwith, M, p, V , U , H , S , G ,and T .Infact,wewanttoknowhow thesecoordinates(equilibriumconcentrations)varyasafunctionofthetemperature ifthepressureisheldconstant.Fixedpressureistheusualconditionforgasphase reactionsintheatmospheresincetheycanbetakenasoccurringinasmallparcelor volumeelement,whosepressureinsidequicklyadjuststothatoutside(whichinour

CO2 (g ) + H2 (g ) → CO(g ) + H2 O(g )
CO2 (g ) + H2 (g ) CO(g ) + H2 O(g ).(8.2)

casedependsonaltitude).Intherealatmospheretherearemanychemicalspecies invariousstatesofequilibrium.Thetaskoftheatmosphericchemistisoftentosort outwhichreactionsareimportant,whatthesourcesofthevariousspeciesare,what isthefeasibilityandenergeticsofchemicalreactionsandhowfastthereactions proceed.

8.1Standardenthalpyofformation

Considerageneralchemicalreaction

whereAandBarecalledthe reactants,CandDarethe products,and a , b, c and d areintegers(sometimesrationalnumbers)insertedtobalancetheequation.

Supposetheingredientsontheleft-handsideoftheequation(the reactants)are placedinaclosedcontainerthatisimpermeabletomattercrossingitsbounding surface.Furthermore,letthereaction(8.3)proceedfromlefttorightatconstant pressure.Ifnoheatisallowedtoenterorleavethesystemduringthe(irreversible) process,thefinaltemperaturewillbedifferentfromthatbeforethereactionbegan. Ifthetemperatureofthesystemgoesup,wesaythereactionis exothermic.Ifthe temperaturegoesdown,itis endothermic.Chemistshavefoundaconvenientway ofcharacterizingtheenergeticsofsuchreactions.Supposethereactiongoesfrom lefttorighttocompletion(noreactantsremaining),thentheheatrequiredtorestore thesystemtoitsoriginaltemperatureatconstantpressureisitschangeinenthalpy duringtheirreversibleprocess, H .

Inordertofindtheheatofreactionforaparticularchemicalprocessitis necessarytostartwiththeso-called standardenthalpyofformation oftheindividual compounds.Thesearebasedupontheenthalpyneededtoformthecompoundfrom thestateoftheindividualatomicspeciesmostcommonlyfoundinnature.For example,theconventionfortheelementoxygenistostartwiththegaseousform O2 ,notO.SimilarlythebasestateaccordingtotheconventionfornitrogenisN2 andforhydrogenitisH2 .ForargonitistheatomicformArandforcarbonitisC. Thestandardenthalpyofchemicalreaction,whenreactantsintheirstandardstate areconvertedtoproductsintheirstandardstates,isequaltothedifferencebetween standardenthalpyofformationofproductsandreactants:

Theoverbarindicatesthat1molofthesubstanceisconsidered,thesuperscript ◦ referstothestandardstate,whichisat1atmand25 ◦ Cbyconvention(seeTable 8.1). If H ◦ isnegative,heatisreleasedandthereactionisexothermic.Exothermic

Table8.1 Standardenthalpiesofformationforselected compounds( H ◦ inunitsofkJmol 1 )

Thesymbolinparenthesesafterthecompoundindicateswhether itsphysicalstateisliquid,solidorgas.Allvaluesrelateto298K.

+

reactionscanproceedspontaneouslyintheatmosphere.Iftheoppositeistrue, H ◦ ispositive,thereactionisendothermic,andanexternalsourceofenergyis neededforthereactiontoproceed.

Theexothermicreactionscanbesignificantforthethermalbudgetofthe atmosphere.Theclassicalexampleisthereactionleadingtotheformationofozone. Theheatreleasedinthisprocessdominatestheformofthetemperatureprofilein thestratosphere.

Example8.1 Themainmechanismofozoneformationinthestratosphereisthe recombinationofatomicoxygen:

whereMisamoleculeinthebackgroundgaswhichisneededtocarryoffthe excessmomentuminatwo-bodies-to-onemolecularcollision.Findhowmuch heatisreleasedbythisreaction.

Answer:Tofindhowmuchheatisliberated,weneedtocalculatetheenthalpyof thereaction:

Theminussignindicatesthatthisisanexothermicreaction.Therefore,withthe reactionofozoneformation(8.5)106.4kJpermoleisliberated.Thisliberatedheat warmsthestratosphericairandraisesitstemperaturewhichreachesamaximum atabout50kmaltitude.NotethattheconcentrationofOin(8.5)isdeterminedby thephotodissociationofO2 ,O3 andotherspecies.

Example8.2 Supposewewantedtoknowthechangeinenthalpyforthereaction:

Weform

H ◦ ispositive,whichmeansthatthisreactionisendothermic,andheatisabsorbed duringtheprocess.

8.2Photochemistry

Furtherexamplesofendothermicreactionsincludethe photochemicalreactions. Inthiscasetheadditionalsourceofenergynecessaryfortheendothermic reactiontoproceedissolarradiationwhichcanbreakthechemicalbondsof atmosphericspecies.Inthisbookwewillconsideronlyonephotochemicalprocess: photodissociation. 1

Physicsrefresher Solarradiationconsistsofelectromagneticwaves. Electromagneticradiationhasadualwave-particlenature.Thismeansthat electromagneticradiationexhibitsbothwave-likeandparticle-likeproperties.Inits waveformelectromagneticradiationcanbethoughtofasagroupofsuperimposed wavessometimesreferredtoasan ensemble propagatinginvacuumwiththespeedof light c = 2.998 × 108 ms 1 independentofwavelength.Eachwaveinthisensemble canbetreatedasasimplesinusoidalfunction(seeFigure 8.1)withacertain wavelength,frequency,andamplitude.Thewavelength, λ,isthedistancebetween twosuccessivepeaksofthewave.Theunitsof λ aremeters.Thefrequencyofawave, f ,isthenumberofcyclesthatpassanobserverinasecond.Theunitoffrequencyis thehertz(1Hzisoneoscillationpersecond).Theproductofwavelengthand frequencyforanindividualwaveisequaltothespeedoflight(speedisdistance dividedbytime): c = λ × f .Fromthisequationonecanseethatwaveswithhigher frequencieshaveshorterwavelengths,andwaveswithlowerfrequencieshavelonger wavelengths.

Whenradiationinteractswithatomsormolecules,itcanbeabsorbedoremitted onlybycertaindiscreteamountsofenergy.Inotherwords,electromagneticradiation is quantized.Thewavesmaybethoughtofasabeamofparticlescalledphotons carryingdiscreteamountsorpackagesofenergy.Theenergyofaphotonof

1 Interestedreadersarereferredto BasicPhysicalChemistryfortheAtmosphericSciences byPeterV.Hobbs (2000)formoreinformationonphotochemicalreactions.

Figure8.1Asinusoidalwaveofagivenwavelength.

Hence,theshorterwavelength(higherfrequency)photonsaremoreenergetic.The electromagneticspectrumfromradiowavestogammaraysisillustratedin Figure 8.2.Themostenergeticphotonsaregammarays.Asonemovesvertically downthespectrumfromgammaraystowardsradiowaves,theenergydecreasesand

Figure8.2Electromagneticspectrum.

sodoesthefrequency,whilethewavelengthincreases.Anarrowbandofthespectrum correspondstothevisiblelight.Photonsinthevisiblerange(approximately 400–700nm)canbedetectedbyahumaneye.Ultravioletradiationhasshorter wavelength(higherfrequency)thanthevisiblepartofthespectrum.

Todescribetheradiationpenetratingtheatmosphereitisusefultointroducethe ideaofan energyflux.Theenergyflux(energypassingperunitareaperpendicular tothebeam,perunittime)isgivenby

where n0 isthenumberofphotonsperunitvolume(numberdensity asinagas). Theenergyfluxofsolarphotonsatthetopoftheatmosphereis1370Wm 2 . Thisparameteriscalledthe solarconstant.Solarphotonspropagatingthroughthe atmospherecanbeabsorbedand/orscatteredbyatmosphericconstituents.Consider the attenuation ofaphotonfluxatwavelength λ duetophotonabsorptionassuming normalincidenceforsimplicity(thesunisat zenith,directlyoverhead(Figure 8.3)).

Wedenoteaphotonenergyfluxatwavelength λ as Fλ ;itsdimensionisenergyper unitarea,perunittime,andperunitwavelength.Ifatthetopoftheatmospherethe fluxperunitwavelengthis Fλ(top),thefluxatheight z , Fλ(z ),isdescribedby

λ(z ) = Fλ(top) exp( τ(z )) [attenuationofaverticalsolarbeam].(8.12)

=0

Figure8.3Schematicdiagramofasolarbeamcomingfromdirectlyoverhead withattenuationofthebeam’sintensityindicatedbyshading.

F = energyflux = n0 hcf (8.11)
F
Fλ(top)
Fλ(z) z

Thisequationfollowsfromtheradiativetransfertheory. 2 Thecoefficient τ in theexponentiscalledtheopticaldepth:

Theopticaldepth τ isproportionaltotheverticallyintegratedcolumndensity ∞

z N (z )d z where N isaconcentrationofatmosphericspeciesabsorbingat λ.The integrationfrom z to ∞ reflectsthepaththephotonstravelfromthetopofthe atmospheretoheight z .Thecoefficientofproportionality σ iscalledtheabsorption cross-section.Thisparameterdescribestheabilityofaparticulargaseousspecies toabsorbphotons;itismeasuredinm2 (oftenintheliteratureascm2 ).Absorption cross-sectionscanbemeasuredinthelaboratory.Whentheopticaldepthgets closetounity,thefluxisattenuatedbyafactorofroughlythree(e ≈ 2.7).For example,for λ between240and300nm(ultravioletrange) τ reachesunitydueto theabsorptionbyozoneapproximatelyatheightsof30–38km.Thismeansthat thesolarphotonsinthisrangeareabsorbedbyozoneinthestratosphereanddonot reachthetroposphere.Atshorterwavelengths,between175and200nm,radiation isabsorbedbyoxygenatheightsof40–80km.Atwavelengthsgreaterthan310 nm,mostphotonspenetrateintothetroposphereandreachthesurface.Ifthesun haszenithangle = 0,thencos hastobeaddedintheformulafortheflux attenuation(Figure 8.4):

Thelargerthezenithangle,thestrongertheattenuationatagivenheight z

Thephotonsintheultravioletandvisiblerangesareenergeticenoughtobreak moleculesapart.Thisprocessiscalledphotodissociation.Photodissociationplays averyimportantroleinthetroposphereandthestratosphere.Forexample,akey reactioninthetroposphereisthephotodissociationofozonebyultravioletradiation:

+ hf → O2 + O(8.15) wherethenotation hf denotesaphotonwithfrequency f .Thisnotationemphasizes thattheenergycarriedbythephotonisthefrequencytimesPlanck’sconstant.The formationoftroposphericozoneisduetophotodissociationofNO2 :

2 Abeamisattenuatedinadistanceintervald z byanamountproportionaltotheincomingbeam’sfluxandto theamountofattenuatingmaterialintheinterval.Theresultisd Fλ =−AFλ d z where A isproportionaltothe amountofattenuatingmaterialperunitvolume.Integrationofthisequationleadstoexponentialdecayalong thepath,knownasBeer’sLaw.

Figure8.4Schematicdiagramofasolarbeamcomingfromtheupperrightand passingthroughaslabofmatterwiththicknessd z .Thepathlengthintheslabis d z / cos ,where isthesolarzenithangle.

TheatomicoxygenthenleadstotheformationofozonebyrecombinationwithO2 : O + O2 + M → O3 + M.(8.17)

Theformationoftheozonelayerisalsocausedbyphotodissociation.Inthe stratosphere,ultravioletradiationwith λ ≤ 240nmphotodissociatesmolecular oxygenO2 creatingatomicoxygen:

+ hf → O + O.(8.18)

Ozoneisthenformedbyrecombinationofatomicandmolecularoxygen(reaction (8.17)).

Example8.3 Considerthephotodissociationofanoxygenmoleculethatcreates twogroundstateoxygenatoms:

+ hf → O + O.(8.19)

Whatphotonenergyisrequiredforthisreactiontoproceed?Whatpartofthe electromagneticspectrumcorrespondstothisenergy?

Answer:Firstletusexaminethestandardenthalpyofthisreaction:

where NA isAvogadro’snumber.Tofindtheminimumenergyofaphotonrequired tobreakoneO2 moleculewehavetoequatethestandardenthalpyofthisreaction tozero.Onlyphotonswithenergy hf greaterthanthisminimumenergyareableto

breakanO2 moleculeapart: hf ≥ 498.34/NA kJ.Thisinequalitygivesthevalue ofthesmallestfrequencyrequired: f ≥ 498.34 × 103 /(6.022 × 1023 × 6.62 × 10 34 ) = 12.49 × 1014 Hz,orthelargestwavelength. λ ≤ 0.24 × 10 6 m = 240nm. Therefore,radiationwith λ ≤ 240nm,whichcorrespondstotheultravioletpartof thespectrum,isneededforthereaction(8.19)toproceed.

Wecanfindtheenergyofaphotonnecessaryforacertainreactiontoproceed withoutexaminationoftheenthalpy,ifweknowtheenergyofdissociationofa chemicalbond.

Example8.4 DuringthedaytimeanimportantsourceofNOinthestratosphereis thedissociationofNO2 molecules:

Findthemaximumwavelengthofelectromagneticradiationrequiredforthis reaction,iftheenergyofdissociationofanNO2 moleculeis5.05 × 10 19 J.Energy ofdissociationisoftengiveninelectronvolts:3

1electronvolt(eV) = 1.6 × 10 19 J(8.22) or 5.05 × 10 19 J = 3.16eV(8.23) (thisreactionisalsoimportantinpollutedurbanair,sinceitisasourceof troposphericozone).

Answer:Photonswithenergy hf ≥ 5.05 × 10 19 Jareneededtodissociatean NO2 molecule.Then, f ≥ 5.05 × 10 19 /(6.62 × 10 34 ) = 7.6 × 1014 Hz.Finally, λ ≤ 2.998 × 108 /7.62 × 1014 = 0.39 × 10 6 m = 390nm,whichisattheboundary betweenthevisibleandultravioletpartsofthespectrum.

8.3Gibbsenergyforchemicalreactions

Earlierweshowedhowtofindtheenthalpyforphasechangesandchemical reactionsbymanipulatingvaluestakenfromstandardtables.Inthissectionwe

3 Theunitelectronvolt(eV)istheenergyanelectronhasafterbeingacceleratedacrossapotentialdifferenceof 1volt.Thisisthepreferredunitinatomicandnuclearphysics.Thebindingenergyofanelectronintheground stateofahydrogenatomis13.6eV.

willworkwiththeGibbsenergy,whichisusefulindeterminingthefeasibility ofachemicalreactionandtheabundancesofspeciesinchemicalequilibrium situations.Usingenthalpytodeterminewhetherareactionwillproceedislimited, sinceenthalpydependsonentropy S andpressure p aswellastheconcentrationsof thevariousspeciespresent.Ifwearetoexaminewhetherareactionwillproceed,we willfindithardtoholdtheentropyconstant,especiallyinnature.Ontheotherhand, theGibbsenergyisusefulwhenthetemperatureandpressureareheldconstant. Thisisoftenthecaseintheatmospherewhenthereactionoccursbetweentrace gasesatacertainaltitude(pressure)andthetemperatureisconstantbecausethe reagentsarebufferedthermallybythesurroundingbackgroundgasmolecules.

The standardGibbsenergy isintroducedsimilarlytothestandardenthalpyof thereaction.ThestandardGibbsenergyofachemicalcompound, G ◦ ,isthe changeoftheGibbsenergywhen1molofacompoundisformed(theoverbar isanindicationof1molbeingconsidered).Conventionally,thestandardGibbs energyofcompoundsintheirmoststableformistakentobezero.Thesuperscript ◦ indicatesthestandardstate,whichisat1atmand25 ◦ C.

Forthegeneralchemicalreaction

thestandardGibbsenergyisthedifferencebetweentheGibbsenergiesofproducts andreactants:

InChapter4welearnedthatiftemperatureandpressureareheldconstant,thenas thesystemtendsspontaneouslytoitsequilibrium,itsGibbsenergywilldecreaseto aminimum.Applyingthisequilibriumcriteriontochemicalsystems,weconclude thatif G ◦ ofthereactionisnegative,thereactantsintheirstandardstateare areconvertedtotheproductsintheirstandardstate.If,ontheotherhand, G ◦ is positive,thenanadditionalsourceofenergyisneededforthereactiontoproceed.

Example8.5 CalculatethestandardGibbsenergyofformationat25 ◦ Cand1atm forthereaction:

Canitproceedspontaneously?

Table8.2 StandardGibbsenergyfor selectedcompounds( G ◦ inunits kJmol 1 ),allvaluesrelatetothe standardconditions298Kand1atm ofpressure

Answer:ThestandardGibbsenergyofthisreaction(Table8.2)

Since G ◦ isnegative,thereaction(8.26)canproceedspontaneously.Notethat thereisnoinformationabouthowlongthereactionwilltaketocomplete.

Example8.6 SupposewearelookingforsomeeffectivemechanismofOH productionintheatmosphere.WesuggestthattherecombinationofH2 OandO2 canworkasasourceforOH:

Beforewestartthelaboratoryexperimentstocheckouridea,wecancalculatethe Gibbsenergyofthisreaction:

AftersubstitutingthenumbersfromTable 8.2,weget G ◦ = 281.3kJmol 1 . ThepositivevalueofstandardGibbsenergymeansthatthesuggestedmechanism forOHformationisthermodynamicallyimpossibleintheatmosphere.

8.4Elementarykinetics

Wehaveseenhowtoestimatetheenergeticsandfeasibilityofchemicalreactions proceedingonewayortheotherusingthemethodsofequilibriumthermodynamics. Butequilibriumthermodynamicscannottellushowrapidlyareactionwillproceed.

Thisisthebusinessofchemicalkineticswhichconsidersthedetailsofthemolecular collisionandtheintermediatecomplexesthatcanformduringtheevent.For example,kineticscanprovideameansofcomputingthecharacteristictimeof thedecayofthereactantsintheatmosphere.Oneshouldkeepinmindthatnegative Gibbsenergychangeforareaction(thermodynamicallyfavorableconditions)does notalwaysmeanthatthereactionwillproceedfastenoughtobeobserved.

8.4.1Reactionrate

Areactionratecanbedefinedintuitivelyastherateatwhichtheproductsof thereactionareformed,whichisthesameastherateatwhichthereactantsare consumed.Asanexample,considerabimolecularreactionwithmoleculesCand DasproductsandAandBasreactants:

Therateofthisreaction(therateoflossofAorBandtherateofincreaseofC andD)is

where [X] denotestheconcentrationofspeciesXexpressedinmoleculescm 3 and k isthe reactionratecoefficient.Theunitsof k dependontheorderofthereaction: forthebimolecularreaction(8.30) k isincm3 s 1 .Thereactionratecoefficient k is uniqueforagivenreactionateachgiventemperature.Thetemperaturedependence k (T ) isdescribedbythe Arrheniusequation:

k (T ) = A exp Eact R∗ T [ratecoefficientwithactivationenergy].(8.31)

Eact iscalledthe activationenergy.Alargevalueof Eact usuallyimpliesastrong temperaturedependenceofthereactionratecoefficient.Theconstant A (nottobe confusedwiththeidentityofthespeciesAin(8.29))beforetheexponentialfunction isrelatedtothefrequencyofmolecularcollisionsandtheprobabilityformolecules tohaveanorientationinspacefavorableforareaction.Thedependenceof A on temperatureisusuallyweakcomparedtothatoftheexponentialfactor.

TheideaofactivationenergyisshownschematicallyinFigure 8.5.Thehorizontal axisrepresentsthereactioncoordinateforthereactants.Thereactioncoordinate canbethoughtofasthedistancebetweenthemoleculesAandBinthereaction (8.29).Theverticalaxisisthepotentialenergyofthereaction. H ◦ isthestandard enthalpyofformationforthisreaction.Notethat H ◦ isnegative,sothereaction isexothermic.

Figure8.5Schematicgraphofenergychangeforanexothermicreaction. Reactantshavetobeenergeticenoughtoovercomethebarrier Eact

Figure8.6Velocitydistributionofmoleculesattwodifferenttemperatures.The velocity v isexpressedinunitsof kB T /m0 .Thevelocity v ∗ correspondstothe kineticenergyequalto Eact

FortheproductsCandDtobeformedbythisreaction,thereactantsAandB musthaveenoughkineticenergytoovercometheenergybarrier Eact .Itshould benotedthatmanyreactionsintherealatmospheredonotproceedbecausethe activationbarrieristoolarge.Forexample,C + O2 → CO2 doesnottakeplacein theatmospherebecauseofthelargebarrier.

Equation(8.59)impliesthatreactionsproceedfasterathighertemperatures.4 Thiscanbeexplainedwiththehelpofkinetictheory.Itfollowsfrom(2.26)thatthe higherthetemperatureofthegas,thegreaterthefractionofmoleculesthathave kineticenergiesthatexceedacertaingivenenergy.Figure 8.6 showsthevelocity distributionfortwotemperatures.Athighertemperaturesmoremoleculeshave velocitieshigherthanthethresholdvelocity v ∗ correspondingtothekineticenergy 1 2 m0 v ∗2 whichisequalto Eact .Thismeansthatincreasingthetemperatureofthe gasincreasestheprobabilitythatmoleculeswillovercomethebarrier Eact andthat theproductswillbeformedatahigherrate.

4 Forsomereactionstheactivationenergyisactuallynegative(nobarrier).Therateofthesereactionsdecreases withincreasingtemperature.

8.4.2Conceptofchemicallifetime

Considerthecaseofafirst-orderreaction,whenoneelement,A,decomposesinto twoelements,CandD:

TherateofdecreaseoftheconcentrationofelementAisproportionaltoits concentration:

where k isthereactionratecoefficient.Afterrearrangingthetermsin(8.33)we have

and

Ifattheinitialtime t = t0 theconcentrationofAisequalto[A]0 ,then

ThisequationshowsthattheconcentrationofAdecaysexponentiallywith characteristictime tc = 1/k .Thetime tc requiredfortheconcentrationofAto decreasebyafactorofefromitsinitialvalueiscalledthechemicallifetime.The largerthereactionratecoefficient k ,theshorterthelifetime tc .

Example8.7: halflife Thecharacteristictimeforaunimoleculardecayis tc .What isthehalflife,i.e.,whatisthetimeafterwhichhalftheconcentrationremains? Wehave

Then 1 2

Considernextthebimolecularreaction:

TherateoflossofAisgivenby

where k istheconstantforthisbimolecularreaction(8.39).Animportantcaseis whentheconcentration[B]ismuchlargerthan[A],then[B]canbeconsidereda constant,say[B0 ]inthelastequation.Forexample,gasAmightbeatracegassuch asatomicoxygenO,andgasBmightbeabackgroundgassuchasO2 orN2 (see e.g.,(8.17)).Thisleadsto

andthelifetimeofAis:

Foraphotochemicalreaction

thedecayoftheconcentrationofmoleculeAisgivenby

where J isthephotodissociationcoefficientexpressedins 1 .Thephotodissociation coefficient J intheinterval λ atheight z isdeterminedbythefluxofphotonswith wavelength λ atheight z , Fλ(z ),andtheabsorptioncross-section 5 ofmolecules absorbingnear λ, σ(λ).Notethat Fλ(z ) isthenumberofphotonsperunitarea,per unittime,perunitwavelength(unitsofphotonsm 3 s 1 ): Fλ(z ) = Fλ(top) exp( τ(z )/ cos )

(adiscussionof Fλ(z ) canbefoundinSection 8.2).Integratingoverabandof wavelengths λ (weassumeeachphotonstrikingamoleculedissociatesit),the photodissociationcoefficientforthatwavelengthbandis

(z ) =

Onecanseefrom(8.44)thatthephotochemicallifetimeistheinverse J : tc = 1/J .(8.46)

5 Atypicalvalueof σ(λ) forthephotoabsorptioninthevisiblewavelengthrangebyNO2 is5×10 5 nm2 (Seinfeld andPandis, 1998).

Theconceptoflifetimeisusefulinmanyatmosphericproblems.Myriadsof atmosphericconstituentsundergochemicalreactionsandphotochemicalprocesses causedbysolarradiation.Inaddition,chemicalspeciesareadvectedbytransport processesintheatmosphere.Separationofprocesseswithdifferenttimescalescan simplifytheproblemsignificantly.Insomecasesthisistheonlywaytoanalyzethe variabilityintheverycomplicatedworldofatmosphericconstituents.Supposewe knowthatthephotochemicallifetimeofacertainconstituentismuchsmallerthan thecharacteristictimeofatmospherictransportatagivenheight.Thisisthecase, forexample,forstratosphericozone:ataltitudeshigherthan30kmthechemical lifetimeofozoneisseveralordersofmagnitudesmallerthanthetransporttimescale. Thisallowsustoneglecttheeffectoftransportinthefirstorderofapproximation whenanalyzingozonevariability.Nowconsidermethaneinthestratosphere.In thiscasethephotochemicallifetimeisseveralordersofmagnitudelargerthan thecharacteristictimefortransportprocesses.Thenwecantreatmethaneasin photochemicalequilibrium,whichmeansthatwecanneglectthechangeofmethane concentrationduetophotochemicalprocesses.Thefactthatmethanevariabilityis mainlydeterminedbytransportmakesitagoodtracerofatmosphericmassesin thestratosphere.

Example8.8 Considerthereactionofnitricoxideandozone,

AssumingthatthisreactionisthelonemechanismofNOdepletion,findthelifetime ofNOattemperature250K(typicalof z = 30kmintheatmosphere).

Answer:ThechangeofNOconcentrationduetothisreactioncanbedescribedby theequation:

d t [NO] =−k1 [NO][O3 ](8.48)

where k1 = 1.8 × 10 12 exp( 1370/T ) cm3 s 1 .TheconcentrationofO3 canbe consideredasaconstantsinceitismuchlargerthanthatofNO.If[NO]0 isthe concentrationofNOattheinitialtime,thenwehave [NO] = [NO]0 e k1 [O3 ]t .(8.49)

Thelifetime tc = 1/k1 [O3 ].With k1 ≈ 7.5 × 10 15 cm3 s 1 at T = 250Kand concentrationofO3 equalto3 × 1012 cm 3 at30km,weobtain tc ≈ 40s.

8.5Equilibriumconstant

Consideragenerictwo-bodies-to-two-bodiesreaction:

Asthereactionproceedstheproductsofthisreaction(CandD)becomesufficiently denseinnumberthattheywillbegintoreactandformAandBthroughthereverse reaction:

Wheneventuallytherateoftheforwardreaction(8.50)isthesameastherateof thereversereaction(8.51),thesystemisinchemicalequilibrium.Wecancombine (8.50)and(8.51)andwrite

Ifweweretryingtofindtherateforwhichthereaction(8.52)proceedsfromthe pointofviewoftheindividualgasmolecules,wewouldsaytherateofincreaseof theconcentrationofCisgivenby

where kab and kcd arethereactionratecoefficientsforforwardandreversereactions respectively.TheequationsimplystatesthattherateofbuildupofCisthesumof theratesofreactivecollisionsofAandBminusthereverseprocessinwhich CandDreact.Thefirsttermmustbeproportionaltotherespectivenumber densitiesandsimilarlyforthesecond(loss)term.Sinceforeverycreationofa CmoleculetheremustbeaBmolecule,theseratesofformationmustbeequal toeachotherandequaltothenegativeoftheratesofformationoftheAandB molecules.

Inequilibriumtheratesofchangeofthespeciesarezero.Thismeans

= 0equilibrium(8.54) or

Theconstant K iscalledthe equilibriumconstant forthereaction.If K isknown, wecandeterminetheratiosofconcentrationsoftheproductandreactantgasesin equilibrium.

Forthecaseofageneralreaction

theequilibriumconstantis(asderivedinphysicalchemistrytexts):

Therulecanbegeneralizedtocaseswheremorethantwospeciesareoneachside oftheequation.

Itisseenfrom(8.57)thatwhentheinversereactionrateisverysmall,which meansthatproductsdominateoverreactants, K islarge.Small K meanstherewill bearelativelylargeconcentrationofthereactantspecies.

Theequilibriumconstantdependsoncollisiondynamicsandinprinciple shouldhaveastrongtemperaturedependence,sincetheintermolecularrelative velocitywillbeanimportantfactorintherearrangements.Tofindthetemperature dependenceoftheequilibriumconstant,letuswritethereactionratecoefficients fortheforwardandreversereactions(8.52).UsingtheArrheniusequation(8.59) thereactionratecoefficientfortheforwardreaction, k1 ,is

Thereactionratecoefficientforthereversereaction, k2 ,is

Theequilibriumconstant

Hence,knowingthestandardenthalpyassociatedwithareactionprovides informationabouttheequilibriumconcentrationsofthespecies.

Example8.9 ConsidertherecombinationofOHandO:

Writetheexpressionfortheequilibriumconstant.Byusingformula(8.60)findout whethertheproductswilldominateoverreactantsathighorlowtemperatures.

Answer:Inorderforthereactiontoproceed,anOHmoleculehastobumpintoan Oatominthesametinyvolume.Therateofgrowthtermmustbeproportionalto [OH][O].Theequilibriumconstantis

Tofindthetemperatureatwhichtheforwardreactionwillbefavoredweneedto findthestandardenthalpy:

Since H ◦ isnegative,from(8.60)wehavethattheequilibriumconstant K is largerwithlowertemperature.Thisexplainswhytheproductsofreaction(8.61) willdominateoverreactantsatthelowertemperatures.

Thenextstepistofindtheconnectionbetweentheequilibriumconstantand theGibbsenergy.Theequilibriumofthechemicalreactionimpliesthatatagiven temperaturethereexistpartialpressuresofthegasesinvolvedinthereactionwith whichtherateoftheforwardreactionisequaltotherateofthereversereaction.Let usexpresstheequilibriumconstantintermsofpartialpressuresofeachconstituent. UsingtheIdealGasLawforthemolarconcentrationsweobtain:

,(8.64)

wherethe pi arepartialpressuresand = (a + b) (c + d ).Wecanrewrite(8.64) intheform: K = Kp (R∗ T ) ,(8.65) where Kp = pcC pdD paA pbB [equilibriumconstantforidealgases].(8.66)

Kp isusedasanequilibriumconstantforchemicalreactionsinvolvingspeciesin thegaseousstate.

ForareversibletransformationatconstanttemperaturethechangeofGibbs energyis(see(4.97))

For1molofidealgas

(NotethatthemolarGibbsenergy G isalsocalledthechemicalpotential.)By integratingthisequationfromthestandardpressurelevelof1atmtosomearbitrary pressurelevel p holding T constantweobtain

where p isinatm.Inthisformula G istheGibbsenergyatpressure p andtemperature T and G ◦ T istheGibbsenergyat1atmandtemperature T . Using(8.69)wecanwritethechangeofGibbsenergyforthegeneralchemical reaction

intheform

Theargumentofthelogarithmicfunctioninthelastformulaistheequilibrium constant Kp (see(8.66)).Therefore,

Atequilibrium G = 0,andthechangeofGibbsenergyatapressureof1atmand arbitrarytemperature T , G ◦ T ,isrelatedtotheequilibriumconstantatpressure p andtemperature T , Kp ,bythesimplerelation:

Theequation(8.73)tellsusthatif G ◦ T ispositive, Kp shouldbelessthanunity, whichmeansthatatequilibriumtheconcentrationsofthereactantswillexceed thoseoftheproducts.If,ontheotherhand, G ◦ T isnegativeand,moreover,is large,then Kp islargeandtheproductswilldominateintheequilibrium.

Forstandardconditionsatapressureof1atmandatemperatureof25 ◦ Cwe obtain,injoules,

ThechangeinGibbsenergy G isespeciallyusefulbecauseitsimultaneously takesintoaccountboththeFirstandSecondLawsofThermodynamics.Itdoesso insuchawaythatifthetemperatureandpressureareheldconstant(andtheyoften areinatmosphericproblems)wehaveafunctionwhichcanbeappliedmuchmore broadly.

Example8.10 ConsiderthereactionofrecombinationofNO2 andO3 : NO2 + O3 NO3 + O2 .(8.75)

Dothereactantsorproductsdominatefortheforwardreactionat1atmand25 ◦ C? Answer:WehavetofindthechangeoftheGibbsenergyforthisreaction.

From(8.74)weobtain Kp = 1.9 × 1017 .Withsuchalargevalueof Kp theproducts willdominatefortheforwardreactionatequilibrium.

8.6Solutions

Chemistryrefresher A solution isahomogeneousmixtureofseveralcomponents. Consideratwo-componentsolution.Onecomponenthasamolefraction ηw (theratio ofthenumberofmolesofacomponenttothetotalnumberofmoles),andtheother componenthasmolefraction η .Thecomponentwithagreatermolefraction,letitbe ηw ,iscalledthe solvent.Thesolventdeterminesthestateofmatterofthesolution (gas,liquidorsolid).Thecomponentwiththesmallermolefraction, η ,iscalledthe solute.InChapter5weconsideredaclouddropletasanexampleofasolutionwith waterasasolventandthesaltasasolute.Asolutionofasaltinasolventsuchas wateris saturated whentheratesofdissolvingandcrystallizationareequal.Inthis casetherecouldbesomesubstanceinthecrystallineformpresentinthecomposite system.Forexample,theremightbeasaltcrystalinsideaclouddroplet.Theamount ofdissolvedmaterial(solute)inthesaturatedsolutioniscalledits solubility,which mightdependstronglyontemperatureandweaklyonpressure.Weareinterestedin theeffectofthedissolvedsoluteonthevaporpressureofthesolvent.

Raoult’sLaw Considerasolutionthatisinchemicalequilibrium.Thevapor pressureofeachcomponentofthesolutionisapproximately

where ppure i isthevaporpressureofapure i thcomponentand ηi isthemolefractionof an i thcomponentofthesolution.Thesolutioniscalled ideal whenbothsolventand soluteobeyRaoult’sLaw.Raoult’sLawapplieswhenthecomponentsofthesolution arepresentinhighconcentrations.WeusedRaoult’sLawwhenweconsideredthe equilibriumvaporpressureoveradropletcontainingdissolvedelectrolytes.

Forsolutionsatlowconcentrationsthevaporpressureofthesoluteobeys Henry’s Law.AccordingtoHenry’sLaw,thevaporpressureofasolute, p,isaproductofthe molefractionofthesolute, η ,andanempiricaltabulatedconstant, KH ,expressedin unitsofpressure:

Generally,thevalueof KH increaseswithincreasingtemperature.Thus,atthesame pressurethemolefractionofasolutedecreaseswithincreasingtemperature.

Whentheatmosphericpressuredecreases,thepartialpressureofagasdecreases, andthemolarsolubilityofagasdecreases.Forexample,highinthemountainsthe atmosphericpressureislow;asaresultthesolubilityofoxygeninhumanblood decreases,whichcancauserespirationproblems.Attheoppositeend,thehigherthe pressure,thehigherthesolubilityofgases.Youmightsaythegasis“squeezed”into thesolution.

Example8.11 Calculatethemolarsolubilityofnitrogendissolvedin1lof water at25 ◦ Candatmosphericpressureof1atm.Henry’sLawconstantfornitrogenat 25 ◦ Cis8.68 × 109 Pa.ThepercentagebyvolumeofN2 indryairis78.1.

Answer:ThepartialpressureofN2 at1atmis pN2 = 0.781 × 1atm = 7.91 × 104 Pa.FromHenry’sLaw ηN2 = pN2 /KH = (7.91 × 104 Pa)/(8.68 × 109 Pa) = 9.1 × 10 6 .Themolefractionofnitrogen ηN2 = νN2 /(νN2 + νH2 O ) ≈ νN2 /νH2 O since νN2 νH2 O .ThenumberofmolesofH2 Oin1lis (1000/18) mol.Then, νN2 = (9.1 × 10 6 × 1000/18) mol = 5.05 × 10 4 mol.Themolarsolubilityof nitrogenis5.05 × 10 4 moll 1 .

Example8.12 CalculatethemolarsolubilityofCO2 inmolesperliterdissolved inwaterat25 ◦ CandCO2 pressureof2.4atm(pressureusedtocarbonatesoda). Henry’sLawconstantforCO2 at25 ◦ Cis1.67 × 108 Pa.

Answer:2.4atm=2.43 × 105 Pa.ThemolefractionofCO2 accordingtoHenry’s Lawis ηCO2 = pCO2 /KH = (2.43 × 105 Pa)/(1.67 × 108 Pa).Sincethereis (1000/18) molofH2 Oin1l,themolarsolubilityofCO2 is (2.43 × 105 Pa × 1000/18moll 1 )/(1.67 × 108 Pa) = 8.1 × 10 2 moll 1 .Whenoneopensabottle ofsoda,thepressuredecreases;asaresultthesolubilityofCO2 decreases,andthe

Figure8.7Notation.(a)Puresolventinequilibriumwithitsvaporatpressure es . (b)Solutioninequilibriumwiththesolvent’svaporatpressure e .

bubblesofCO2 emergefromthesolution.Athighertemperaturethesolubilityof CO2 decreasessinceHenry’sconstantincreases(sodafromafridgesparklesless thansodaheldatroomtemperature).

8.6.1MolarGibbsenergyofanidealsolution

InthissectionwewillfindouthowtheGibbsenergyofapuresolventchangeswhen asmallamountofsoluteisadded.Wewillconsiderliquidsthatareatequilibrium withtheirvapors.ThismeansthattheGibbsenergyofthevaporisequaltothe Gibbsenergyoftheliquid.Letusdenotetheequilibriumvaporpressureovera puresolventas es ,andtheequilibriumvaporpressureoverthesolutionas e (see Figure 8.7).From(8.69)themolarGibbsenergy(theGibbsenergypermole)of vaporatpressure es is

where es isinatm, G isthemolarGibbsenergy 6 atpressure p andtemperature T and G ◦ T isthemolarGibbsenergyat1atmandtemperature T .Sinceatequilibrium themolarGibbsenergyofaliquidisequaltothatofthevapor, G vapor = G liquid , theGibbsenergyofapuresolvent,denotedas G w ,is

Whenasoluteisadded,themolarGibbsenergyofthesolvent, G ,whichisat equilibriumwithitsvaporatpressure e ,is

6 ThemolarGibbsenergyisoftencalledthechemicalpotential.

Subtracting(8.80)from(8.81),weobtainthedifferencebetweenthemolarGibbs energyofthesolventinthesolutionandthepuresolvent:

FromRaoult’sLaw, e /es = ηw ,where ηw isthemolefractionofsolvent(e.g. water)inthesolution.Then,

Wewillconsideradilutesolution,whenthemolefractionofthesolute, η ,ismuch smallerthanthatofthesolvent, η ηw .Since η + ηw = 1,werewrite(8.83)as

Takingintoaccountthatfor η 1,thelogarithmicfunctioncanbewrittenas ln (1 η) ≈−η ,weobtain

Wewilluse(8.85)inthenextsectiontofindthetemperatureatwhichthesolution boilsandfreezes.

8.6.2Theelevationoftheboilingpointandtheloweringofthefreezingpoint ofasolution

Whensomesoluteisdissolvedinapuresolvent,theboilingandfreezingpointsof thesolutionarenotthesameasforthepuresolvent.Wewillshowthatthechange isproportionaltotheamountofsolute.Wewillconsidernonvolatilesolutes(for example,asalt).Inthiscasethevaporofthesoluteisapuregas.

Example8.13 Showthattheadditionofadissolvedsoluteinasolutionwillelevate theboilingpointcomparedtotheboilingpointofpuresolvent.

Answer:Theboilingpointisthetemperatureatwhichthesaturatedvaporpressure ofaliquidisthesameastheatmosphericpressure.Weconsidertwocases.

Case1: equilibriumbetweenapuresolventanditsvapor(seeFigure 8.8a).The puresolventboilsattemperature T0 .Thevaporpressureis1atm.Atequilibrium, themolarGibbsenergiesofthepuresolvent,denotedbelowas G w ,anditsvapor, denotedas G v ,areequaltoeachother:

Gv(T0, p)

Gw(T0, p)

Figure8.8Notation.(a)MolarGibbsenergyforthevaporoverthepuresolvent, G v (T0 , p),andmolarGibbsenergyforthepuresolvent, G w (T0 , p).(b)MolarGibbs energyofsolventvaporoverthesolution, G v (T , p),andmolarGibbsenergyof thesolvent, G (T , p).

Case2: thereisanamount η ofnonvolatilesoluteinthesolvent.Thesolutionis atequilibriumwiththesolvent’svapor(seeFigure 8.8b).Thevaporpressureatthe boilingpointis1atm,thesameasincase1,buttheboilingpointdiffers.Assume thatthesolutionboilsatatemperature T = T0 + T where T T0 .From (8.85)themolarGibbsenergyofthesolventinthesolutionis G = G w R∗ T η . Atequilibrium,themolarGibbsenergyofthesolventinthesolution, G ,isequal tothemolarGibbsenergyofthevapor, G v :

or

Since T T0 wecanexpandbothsidesof(8.88)inTaylor’sseriesretaining onlythelinearterm:

Substitutingtheseexpansionsin(8.88)andtakingintoaccount(8.86),weobtain

Herewealsoreplaced T η by T0 η since η hasasmallvalueproportionalto T .

AsshowninSection4.8,thetemperaturederivativeoftheGibbsenergyata constantpressureisminustheentropy.So,

and

where sw istheentropyof1molofthesolventand sv istheentropyof1molof thesolvent’svapor.Then,from(8.91)weobtain

and

Multiplyinganddividingtheright-handsideofthelastequationby T0 andtaking intoaccountthat (sv sw )T0 istheamountofheatrequiredtoevaporate1molof thesolventattheboilingpoint,inotherwords (sv sw )T0 = vap H ◦ ,weobtain thefinalformulafortheelevationoftheboilingpoint T :

Since T ispositive,theboilingpointofthesolutionishigherthanthatofthepure solvent.Thechangeintheboilingpointisproportionaltotheamountofsolute η .

Example8.14 Whatisthechangeintheboilingtemperatureof1lofwaterwith 15gofNaCldissolvedinit?

Answer:ThemolecularweightofNaClis58.44gmol 1 .Substitutingin(8.96) η = (15/58.44)/(

,weobtain T

Example8.15 Calculatethechangeinthefreezingpointofthesolution. Answer:Weassumethatonlypuresolventisfrozen,whilethesoluteremainsin thesolution.Thenthecalculationofthefreezingpointofthesolutionissimilarto thecalculationoftheboilingpointexceptwehavefusioninsteadofvaporization. fus H ◦ istheheatreleasedwhen1molofthesolventisfrozenatatemperature T0 ;

thisheatisnegative.Substituting fus H ◦ in(8.96),wefindthatthefreezingpoint ofasolutionislowerthanthatofthepuresolvent.Thedifference T is:

Thedecreaseinthefreezingpointisproportionaltotheamountofsolute.

Example8.16 Whatisthechangeinthefreezingtemperatureof1lofwaterwith 15gofNaCldissolvedinit?

Answer: | fus H ◦ | forwateris6.008kJmol 1 , T0 = 273K, η = (15/58.44)/ (1000/18), R∗ = 8.31JK 1 mol 1 .Accordingto(8.97)thechangeinfreezing temperature T =−0.48K.

Notes

Thereareexcellentbooksonphysicalchemistry,forexampleAtkins(1994). ThebookbyHouston(2001)givesareadableaccountofthekinetictheoryof gasesandreactionkinetics.ThebookbyHobbs(2000)onphysicalchemistryfor theatmosphericsciencesisataboutthesamelevelasthisbookanditdelves muchmoreintothesubjectofreactionsintheatmosphere.Amorethorough discussionofchemicalequilibriumiscontainedinDenbigh(1981).Thebookon atmosphericphysicsandchemistrybySeinfeldandPandis(1998)isthemost comprehensive.Booksonthemoregeneralsubjectofatmosphericchemistry includethosebyBrimblecombe(1986)andWarneck(1999).Acomprehensive bookonthechemistryofthemiddleatmosphereisbyBrasseurandSolomon(2005). Finlayson-PittsandPitts(2000)coverboththeupperandloweratmosphereand includemanyusefultables.

NotationandabbreviationsforChapter8

c speedoflightinvacuum(ms 1 )

G ◦ changeinGibbsenergypermole,atstandardconditions (kJmol 1 )

H ◦ changeinenthalpypermole,atstandardconditions(kJmol 1 )

Eact activationenergy(J)

E energy(J)

η mixingratio

f frequencyofelectromagneticwave(Hz)

F energyflux(Jm 2 s 1 )

Fλ(z ) fluxofelectromagneticenergyatwavelength λ,elevation z (Jm 2 s 1 m 1 )

g,l,aqgaseous,liquid,aqueousphase

h Planck’sconstant(Js)

H ◦ standardenthalpy(kJmol 1 )

J photodissociationcoefficient(s 1 )

k reactioncoefficient

K , Kp equilibriumconstant

KH Henry’sLawconstant

λ wavelengthofanelectromagneticwave(m)

n0 numberdensityofphotons(photonsm 3 )

N (z ) concentrationofabsorbersatlevel z (moleculesm 3 )

R∗ universalgasconstant(Jmol 1 K 1 )

σ(λ) absorptioncross-section(m2 )

tc lifetime(s)

t1/2 halflife(s)

τ opticaldepth(dimensionless) zenithangle

v ∗ thresholdvelocitytoexceedanactivationbarrier(ms 1 )

[X ] concentrationofX(moleculescm 3 )

[X ]0 concentrationofXat t = 0

Problems

8.1Computethestandardenthalpyofreactionforthefollowingreactions: CO + O2 → CO2 + O O + O3 → 2O2 .

Arethesereactionsexothermicorendothermic?

8.2CalculatethestandardGibbsenergyforthereaction: NO3 + H2 O → HNO3 + OH.

Canthisreactionproceedspontaneously?

8.3Considerthereaction 2NO → N2 + O2

Determinewhetherhighorlowtemperaturesarefavorablefortheforwardandreverse reactions.(Hint:Useformula(8.60).)

8.4ThereactionofHNO3 dissociationis

HNO3 + hf → OH + NO2 .

Byexaminationofthestandardenthalpyfindoutwhatphotonenergyisrequiredfor thisreactiontoproceed(useTable 8.1).

8.5Calculatetheequilibriumconstantat298Kforthereaction

NO + O3 → NO2 + O2 .

Arethereactantsorproductsfavoredforthisreactionatequilibriumat298K?Doyou needtoraiseorlowerthetemperaturetohavemoreproductsattheequilibrium?

8.6Findtheexpressionfortheequilibriumconstantforthereaction

A + B AB,

intermsofreactioncoefficients,ifthecoefficientfortheforwardreactionis k1 ,and thecoefficientforthereversereactionis k2

8.7Estimatethemolarsolubilityofoxygeninwaterat25 ◦ Cand1atm.Henry’sconstant foroxygenis4.4 × 109 Pa.ThepercentagebyvolumeofO2 indryairis20.95%.

8.8Estimatebyhowmuchtheamountofnitrogeninadiver’sbloodwillchangewhen thediverisrisingfromadepthof80m.Anadulthumanmalehasanaverageblood volumeofabout5l.UseHenry’sLawconstantfornitrogenat25 ◦ C, KH = 8.68 × 109 Pa.(Fastrising,i.e.,arapiddecreaseinpressureandthusnitrogensolubility,cancause theformationofnitrogenbubblesinthebloodstreamwhichoftenleadstodeath.)

8.9Showthatthedifferencebetweenthevaporpressureofasolutionatagiventemperature T andthevaporpressureofapuresolventatthesametemperatureis

where η isamolefractionofanonvolatilesolute, v isthevolumeof1molofasolvent, vv isthevolumeof1molofvapor. Hint:Suggestthatthesolutionisinequilibriumwith thevaporatpressure e = es + p where es istheequilibriumvaporpressureforthe puresolventand p issmall.Thefactthat p issmallallowsyoutoexpandtheGibbs energyinTaylor’sseriesandretainonlythelinearterm(similartothecalculationof theboilingpointofasolution).

Thethermodynamicequation

Inthischapterwederivetwoofthefundamentalequationsofatmosphericscience, the equationofcontinuity andthe thermodynamicequation.Theequationof continuityexpressestheconservationofmassintheformofapartialdifferential equation,theformneededtoimplementitinnumericalsimulationsorforecasts. ThethermodynamicequationexpressesthecombinedFirstandSecondLawsof Thermodynamicsintoasimilarform.Butbeforewecometotheseimportant formulasweneedsomeexperiencewithscalarandvectorfields.Muchofthechapter isconcernedwithelementaryvectoranalysiswhichshouldhavebeencoveredin theprerequisitecalculuscourse.Hence,somestudentscanskipoverthereview sections,butweadviseallstudentstorefreshtheirmemories.Allthismachineryis toprepareforthenextstepinaneducationinatmosphericsciences: dynamics

Vectorrefresher Athree-dimensionalvector,denotedinboldface, a ,isa mathematicalobjectwhichhasbothlengthanddirection.Intwo-spaceitcanbe representedbyanarrowasinFigure 9.1.Ittakesthreenumberstorepresenta 3-vector,twoanglesandalength, (θ , φ ; |a |).Alternatively,itcanberepresentedbyits threecomponentsalongthethreeCartesiancoordinateaxes,(ax , ay , az ).Notethatthe vectorisanabstractobjectinspaceindependentofthechoiceofcoordinatesystem, butthethreenumbersneededtospecifyitmayindividuallydependonthecoordinate systemchosenbytheanalysttodescribethevector.Forexample,itisconventionalin meteorologytosetupaCartesiancoordinatesystemwiththeoriginatapointonthe Earth’ssurface,the x -axisincreasingintheeastwarddirectionandthe y -axis increasinginthenorthwarddirection.

Multiplicationbyascalar Let α beascalar,i.e.,anumberwhichisindependentof ourchoiceofcoordinatesystem, a beavector.Thenmultiplicationofavectorbya scalariswrittenas b = α a .Thedirectionof b isthesameasthatof a andthelengthis |α ||a |.Inotherwordsthetwoanglesdesignatingthedirectionof b and a arethe

Figure9.1Thevector a intwodimensions.

same,butthelengthisstretched.If α isnegative,thedirectionofthevectoris reversed.InthecaseofCartesiancomponentrepresentation,allthreecomponentsare multipliedby α : (α ax , α ay , α az ).

Addingvectors Thesumoftwovectorsisavector c = a + b whosecomponents aredefinedbyaddingtheCartesiancomponentsoftheaddends:

Clearly a + b = b + a .Thesumofthetwovectorscanalsobeunderstood geometricallybyjoiningthetailofonevectortotheheadoftheotherandtheline joiningthefirsttailtothesecondheadisthevectorsum.

Cartesianunitvectors Aunitvectorisavectorwhichhasunitlength.Itisvery convenientandcommontouseunitvectorswhichpointalongthethreeCartesian axes:

Thisnotationallowsusto expand avectorintoitsCartesiancomponents

Thelengthof a isgivenby |

Notethatthelengthofavectorisindependentofthecoordinatesystemchosen.

Wind inmeteorologyisusuallydenotedby v = u i + v j + w k .Thusawindblowing totheeastis u i ;if u > 0itiscalleda westerly.Awindblowingtothenorthis v j; if v > 0itiscalled southerly.Risingair(averticalwind)isdenoted w k .Notethat thecomponentsarereferredtoaCartesiancoordinatesystemwhoseoriginisatthe surfaceoftheEarthatafixedlocation.Wind speed isgivenby √u 2 + v 2 + w 2 .

Example9.1 Findthelengthofthevector a = 2i + 3j 4k .

Answer: |a |= 22 + 32 + ( 4)2 = √29.

Example9.2 Findthesumofthevectors a = 2i + 3j 4k , b =−4i + 3j + 2k . Answer: a + b =−2i + 6j 2k .

Itissometimesusefultouseacurvilinearcoordinatesystemsuchas cylindrical coordinates todescribephenomenaintheatmosphere.Weusetheunitvectors pointingalongthecylindricalcoordinatedirections(dependentonthepoint):

r , ˆ nθ , ˆ k .Avector a canbewrittenas:

Example9.3 Apurelycyclonicwindblowscounterclockwise(northernhemisphere) aboutacenterofaction.Atadistance r fromthecenterthewindcanbedenotedas v

Example9.4 Apointonarotatingdiskwithaxisatthedisk’scenterhasvelocity r ω ˆ nθ ,where ω isangularvelocityinrads 1 and r istheaxisofrotation.

Vectorrefresher:dotproduct The dot or scalarproduct oftwovectorsresultsina scalar.Eventhoughthecomponentsofthetwovectorsformingthescalarproduct dependonthechoiceofcoordinatesystem,thescalarproductdoesnot:

where θa,b istheanglebetweenthetwovectorsasshowninFigure 9.2.Notethat sincecos θa,b isanevenfunctionofitsargument,theorderofthevectorsinthe productmakesnodifference: a · b = b · a .

Analternativewaytodefinethedotproduct a b is

Itcanbeshownthatthetwodefinitionsareequivalent.Usingtheseconddefinition,

Figure9.2Illustrationofthevectors a and b inadotproduct.

wecanshowthat c · (a + b) = c · a + c · b. Itisalsoclearthat i i = 1, i j = 0,etc.

Example9.5 Find a · b where a = 2i + 3j 4k , b =−4i + 3j + 2k

Answer: a · b = (2) × ( 4) + 3 × 3 + ( 4) × (2) =−7.

Example9.6 Whatistheanglebetween a and b?

Answer:cos θ = a · b/|a ||b|=−7/ 29;arccos ( 7/ 29) = 1.815.

Crossproduct The vector or crossproduct isindicatedbythenotation c = a × b.(9.10)

Thevector c isperpendiculartotheplanedefinedby a and b (seeFigure 9.3).The righthandruleisusedtodetermineitsdirection(pointtherightindexfingeralong thefirstvectorintheproduct,thensweepittowardthesecondvector’sdirection;the thumbpointsinthedirectionofthevectorproduct).Itslengthisgivenby

Bytherighthandrulewesee:

Ausefulformforthecrossproduct a × b is

Figure9.3Illustrationofthevectors c = a × b inacrossproduct. c is perpendiculartotheplaneformedby a and b.

Mathrefresher: 3 × 3 determinant Recallthatitcanbeexpandedalonganyrow orcolumn.Intherepresentationofthecrossproduct:

Recallthealternatingsignsoftheunitvectorsasoneexpandsalongthetoprow.Note thatiftworows(vectors)ofadeterminantareproportional,thedeterminantvanishes. Thisissimplythestatementthatsin (θa,b ) = 0.

Vectorrefresher:theboxproduct Thisisdefinedby:

Ausefulformfortheboxproductis

.(9.15)

Thethreevectors a , b and c formarectangularparallelepiped.Theboxproductisthe volumeofthatgeometricalfigure.Therulesofdeterminantscanbeusefulhere.For example,cyclicpermutationoftherowsleadstoanequivalentdeterminant. Interchangingadjacentrowsflipsthesign.Itisusefultoknowthatthethreevectors

Figure9.4Sketchoftheparallelepipedformedbythevectors a , b and c.The magnitudeoftheboxproduct a b × c isthevolumeoftheparallelepiped.

ofaboxproductcanbeidentifiedasthethreeedgesofasolidparallelepiped.Thebox productisthevolumeoftheparallelepiped(seeFigure 9.4).Notethat

9.1Scalarandvectorfields

Ascalarfieldisafunctiondefinedonthethree-dimensionalspacecoordinatesand possiblyalongthetimeaxis.Anexampleisthetemperaturefield T (x , y , z ; t ) ≡ T (r , t ),wherethepositionvector r isdefinedby

(9.17) and i , j, k areunitvectorspointingalongthe x , y and z axes(seeFigure 9.5).A smallincrementin r isdenotedas 1

Figure9.5Schematicdiagramofapositionvector r whosecomponentsare x , y and z .

1 Herewereplacethesmallvalues x , δ x ,etc.,withinfinitesimalsd x ,etc.,withtheapproximatesign ≈ replaced bytheequalitysign =.Thismeansthatinthisnotationsecond-orderquantitiessuchas (d x )2 areneglected(set tozero)whenadditivetofirst-orderterms.Whilethis operational shortcutmightcausesometocringe,itshould notdisturbtheflowofourstory.

Figure9.6Schematicdiagramofapositionvector r andanincrementofitd r

Considertheestimationofthetemperaturefieldatthepoint r + d r (Figure 9.6), giventhatweknowitsvalueatthepoint r ,namely T (r ):

WemayusethefirsttwotermsoftheTaylorexpansion:

Wecanalsowritethisasadotproduct:

Aftersubstitutingd T = T (r + d r ) T (r ),weobtain d T = d r ·∇ T [differentialofascalarfield].(9.21)

Thevector ∇ T (r ) iscalledthe gradientofT.Wewillusethemodernnotation ∇ T todenotethegradient(insomeoldertextsitisdenoted grad T ).

[gradientofascalarfield].(9.22)

Thegradientisa vectorfield.Ateachpointinspace r ithasanassociatedlength anddirection.

Ifyouwanttoknowtherateofchangeofthefieldinaparticulardirection,say alongthedirectiondefinedbytheunitvector, n,itcanbefoundbydefining2 the vectorincrementd r tobe n d s whered s isaninfinitesimaldistanceand n defines thedirectionalongwhichtheincrementistobetaken.Using(9.21)wecanwrite

Thisderivativetakenalongthedirectionofthespecifiedunitvector n iscalledthe directionalderivative,andisoftengiventhenotation ∂ T /∂ n astherateofchangeof T alongacertaindirection,definedbytheunitvector n.Theconventionalnotation forthedirectionalderivativeis:

If n liesinthetangentplanetoanisothermal(stillthinkingofthescalarfieldas temperature)surface,thedirectionalderivativevanishessincethereisnochangein anydirectionlyinginthisplane.Thismeansthatthecomponent(projection)ofthe gradientvectortangenttotheisothermalsurfacevanishes.Thegradientvectoris perpendiculartoisothermalsurfaces(ingeneralso-called levelsurfaces).Thiscan beseenforafixedgradientvector ∇ T .Justvarytheunitvectorinalldirections. Thelengthsof n and ∇ T arefixed,sothemaximumoccurswhentheanglebetween n and ∇ T iszero(cos θn,∇ T = 1),inotherwordswhen n isparallelto ∇ T

Example9.7 Considerthefield

Findthegradientasafunctionof x and y .

Answer:

SeethecontourmapinFigure 9.7

Example9.8 Findthedirectionalderivativeofthefieldinthelastexampleinthe direction n = (1/√2)(i + j) (thisisaunitvectorinthe x –y planedirected45◦ abovethe x -axis).

Answer:Takethedotproductof n withthegradient:

2 Rememberthatthereaderhasthepowertochoosed r,itstinylengthanddirection.

Figure9.7Contourmapofafield T (r ) = cos2π x cos π y showingconstant T lines.Arrowsindicatedirectionofthegradientvectorevaluatedatthepointswhere thearrowsoriginate.

Figure9.8Asmallrectangularparallelepipedofsidewidthsd x ,d y ,d z ,indicating thepressureforcesonthesidesperpendiculartothe x -axis.

9.2Pressuregradientforce

Thegradientofthepressurefield ∇ p(r , t ) isveryimportantinmeteorology. Consideraparcelofaircontainedintherectangularparallelepipedd x d y d z ,and whosecenterislocatedatthepoint r .Thisvolumeelementisembeddedina surroundingpressurefield p(r ) = p(x , y , z ).Letuscomputethe x componentof thenetforceonthevolumeelement.AsindicatedinFigure 9.8,theleft-mostface experiencesaforceduetotheexternalfieldtotheright: F leftface x = p(x

theright-mostfaceexperiencesaforcetotheleft

Thenetforceonthevolumeelementis

whered V isthevolumeoftheinfinitesimalmaterialelement.Newton’sSecond Law(forceismasstimesacceleration)tellsusthat

where ax isthe x componentofaccelerationandd M isthemasscontainedinthe parcel.Wecandivideeachsidebyd V andobtain

where ρ isthedensityoftheairintheparcel.Putinmoreconventionalformwe have:

Ifweevaluatethe y and z componentsinasimilarfashionwecansummarizethe resultinvectorform

Theforceperunitmass a asgivenhereiscalledthe pressuregradientforce.Wehave encountereditsverticalcomponentearlierinestablishingthehydrostaticequation. Abovetheatmosphericboundarylayeritshorizontalcomponentsareverynearly balancedbytheCoriolisforceinmidlatitudes(called geostrophicbalance).

Example9.9:horizontalaccelerationofaparcelinthetropics Supposeaparcel whosedensityis0.7kgm 3 isembeddedinafieldofpressurewithagradient 10hPaover1000km.Whatistheaccelerationoftheparcel(ignoringtheCoriolis force)andwhatisitsincreaseinspeedfromrestinpassingover1000km?

Answer:Theaccelerationistowardlowpressureandisgivenby a = 1.43 × 10 3 ms 2 v = √2ax = 53ms 1

9.3Surfaceintegralsandflux

Considerthevectorfieldofvelocityofafluid, v (r ),ataninstantoftime(disregard timedependencefornow).Thefluidismovinglocallyalonglinesegments tangentialtothelocalvelocityvector v (r ).Thetrajectoriesofindividualparcels followtheflowlinesinsteadyflow(∂ v /∂ t = 0)butdifferinunsteadyflow (∂ v /∂ t = 0).Animaginarysurfaceisplacedinthefluidflow(sayapenetrable screen)asindicatedinFigure 9.9.Letanelementofthesurfacebedenotedbyd S whered S isthemagnitudeofthe(vector)areaelementandthedirectionofd S isthe localperpendiculartothesurfaceareaelement.Inaclosedsurface,byconvention, thevectorpointsoutwards;otherwise,ithastobespecifiedaccordingtocontext. Firstimagineaparallelflowthatisuniformoveritscross-sectioninapipeinthe x direction.Then v (r ) = v0 i .Supposethesurface S isaperpendicularcross-section ofthepipe.Then S = S i .Howmuchmasspassesthrough S perunittime?First considerthe“front”offluidpassingthrough S attime t .Attime t + d t thefront advancesbyadistance v0 d t .Theamountofvolumesweptoutbythisfrontinthe timed t isjust v0 S d t = v · S d t asinFigure 9.9.Ifthedensityofthefluidis ρ ,we canconvertthistoamassflux

or

Figure9.9Advanceofamaterialsurfacethroughacylindricalpipeduringthe timed t .Theflowistakentobeofuniformvelocity v overthecross-section.

Figure9.10Illustrationofaflowthroughasurfaceatanangletothenormal.The volumeoffluidsweptoutinthetimed t is |S||v |d t cos θS,v = S v d t

S

Figure9.11Portionofasurface S depictinganareaelementonasurfaced S throughwhichfluidofdensity ρ ispassingatvelocity v .

Ifthesurfaceweretiltedwithrespecttothe y –z planetheamountofmassperunit timepassingthroughitwouldbethesame(seeFigure 9.10).Theonlythingthat mattersistheprojectionof S ontothevelocity v .Ifthesurfacewerecurvedwe wouldhavetogeneralizeto(seeFigure 9.11)

Theamountof massflux passingthroughtheareaelementd S is massflux = ρ v · d S [fluxofmassthroughanareaelement].(9.37)

Figure9.12Theannulusistheshadedarea.Itscircumferenceis2π r anditswidth isd r .Theareaoftheannulusis2π r d r .

Themassfluxdensityis

where n isaunitvectorparalleltotheinfinitesimalareavectord S (i.e.,

Example9.10:fluidflowinapipe Viscousflowinapipeisslowernearthewalls thanalongthecenterlineofthepipe.Asimplesteadyflowsolutionforan incompressiblefluidisgivenby

where r isthecylindrical-coordinatedistanceperpendiculartothecenterlineand a istheradiusofthepipe. u0 isthevelocityatthecenterofthecross-section. Whatisthefluxofmassthroughaplaneparalleltothecenterlineofthepipe?

Answer: Firstformanannulus(aring)(seeFigure 9.12)inthecross-section.The areaoftheringis2π r d r .Themassfluxthroughtheringis ρ u (r )2π r d r .Thetotal fluxis

9.4Conductionofheat

TheFourierLawofheatconductionstatesthattheamountofheat(enthalpy)flowing acrossaunitperpendiculararea(thevectorenthalpyflux q)isproportionaltothe gradientofthetemperaturefield, ∇ T .TheFourierLawworkswellinsolidssince

thetransferisfromonemoleculetoitsneighborinamediumwherethereisno relativemacroscopicmotionfromonelocationinthesolidtoanother.

Inliquidsorgasesthestorycanbemuchmorecomplicatedbecausethese macroscopicmotionsarepermitted.Buoyancyforexamplemightcausedifferential forcesmovinglighter(usuallywarmer)materialupwardsleavingthemoredense fluidbehind.Thisresultsinanettransferofheatupwardsinthemediumat themacroscopiclevel.Whiletheactualtransferofheattakesplacefromone infinitesimalelementtoanotherviamolecularcollisions(arelativelyslowprocess whenconsideredatmacroscopicscales),themacroscopicmotionscanmoveheat aroundmuchmorerapidlythanpuremoleculartransfersatthesmallerscalefrom oneinfinitesimalelementtoanotherbuildinguptothemacroscopicscale.

Thetransferofheatbywindsorcurrentsiscalled thermaladvection.In atmosphericapplicationsthetransferisdominatedbyadvectionbylargeeddies (fluctuatingorirregulardeparturestypicalinturbulencefromthelargerscaleflows). Forexample,inthemorningboundarylayerwhereturbulenceiscommon,theair atthesurfacewhichhasbeenheatedbytherisingsuncanbebuoyedinparcelsto heightsofakilometerortwo(whereitsrisemightbelimitedbyincreasedstability atthoselevels).Theeddiesnecessarilybringwarmairinaparcelintocontactwith coolerairatthesamelevelwithanensuinglargethermalgradientatboundaries separatingwarmerandcoolerparcelsandultimatelyenthalpyistransferredatthe molecularlevel:

where q isaheatfluxdensityand κH isacoefficientknownasthethermal conductivity(itvariesfromonesubstancetoanotherandcanbefoundintables). Heatflowsfromwarmtowardcoolregionsinthedirectionoppositethegradient vector.Theamountofheattransferredbymolecularprocessesperunittimeflowing throughasurface S (flux), FS ,is

Example9.11 Steadyheatflowsalongarodwithcircularcross-section(area A) andlength L withitsleftandrightendsattachedtoreservoirsoftemperatures TL and TR .Let x = 0attheleftendand x = L attherightendoftherod.Thefluxof heat F (x ) atthepoint x is

Butthefluxofheatmustbeconstantatanypointalongtherodotherwiseheat energywouldaccumulateatsomepoint.Then F (x ) = F0 .Wecannowintegrate

Figure9.13Temperaturedependencealongarodoflength L,heldattemperature TL at x = 0and TR at x = L. thelastequationfrom0to L tofind:

Thisallowsustoevaluate F

andwefindthe x dependenceof T (x ) byintegratingfrom0to x :

SeeFigure 9.13.Itisinterestingthatthecurvedoesnotdependon κH or A.

9.5Two-dimensionaldivergence

Webeginourstudyofdivergenceintwodimensions(inthe x –y plane).Weare examininganimportantpropertyofavectorfieldsuchasthetwo-dimensional velocity V (x , y ).Istheremorefluidflowingoutofasmallfixedareaintheplane thaniscomingin?Thetwo-dimensionaldivergenceisrelevantinmeteorological applications.Forexample,atabox(fixedinspace)surroundingalowpressure areaatthesurface,airspiralsincounterclockwiseinthenorthernhemisphere (cyclonically)towardsthecenterofthelow.Inthe x –y plane(thesurface)thereisa netflowofairintothebox.Whathappenstoit?(Afterall,massisconserved.)The answerisitgoesupinthe z direction.Whenairgoesupweknowwhathappens:it

Figure9.14Atwo-dimensionalrectangularboxcenteredatthepoint(x0 , y0 )ina constant z planeillustratingthefluxissuingfromthebox.

rains(assumingmoistureisavailable,etc.).Hencewecareaboutthenetflowinto oroutoffixedhorizontalboxesatdifferentlevelsintheatmosphere.3

Thereisamathematicalwayofexpressingthenetflowintooroutofatwodimensional(2D)box.Letusfocusourquestiononasmallregioninspace consistingofarectangleofsidesdx anddy whosecenterisat(x0 , y0 ).Wecan evaluatethefluxpassingthrougheachofthefouredgesandaddthemuptofindout whetherthereisanetfluxissuing from thebox.Toobtainthefluxcomingthrough therighthandedge(seeFigure 9.14)weneedtotake

Thefluxgoingoutoftheleftverticaledgeissimilar:

Whenweaddtheseleftandrightedgefluxcontributionstogetherweobtain

netfluxouttheleftandrightedges = ∂ Vx ∂ x d x

.(9.49)

3 Notethattheairintheboxmighthavesimplybecomemoredenseduringthenetinflow,butweimplicitlymade theapproximationthattheairisverynearlyincompressible.

Thethermodynamicequation

Itiseasytoseethatthenetfluxpassingthroughtheupperandloweredgesis just

netfluxoutfromtheupperandloweredges =

Ifweaddupthefluxesfromallfouredgesweobtain:

The divergence ofthe2Dvectorfield V (x , y ) isdefinedtobethelimitasthebox shrinkstozerooftheemergingfluxdividedbytheareaofthebox.Wecanexpress itinCartesiancoordinatesusingourresultsfromabove:

wherewehaveemployedthesubscript2tomakeitclearthatwearedealingwith twodimensionsonly.Butthedefinitionholdsmoregenerallyforanyinfinitesimal loop(rectangular,parallelogram,circle,etc.)aroundthetinyshrinkingarea:

Inthelaststepwemadeuseoftherulefortriplevectorboxproducts: a · (b × c) = (a × b) · c.

Example9.12:easterlyflowrateincreasing Suppose v (x ) = λx i , λ> 0.The divergenceof v (x ) isdiv2 (v ) = λ.Thisisadivergentflowsincemorefluidis leavingatinybox(fixedinspaceanywhereintheflow)ontheeastsideperunit timethanisenteringonthewestside(perunitboxareaandtime).

Example9.13:divergenceexpressedinpolarcoordinates FollowingFigure 9.15 weusealooparoundanareaelementinpolarcoordinates.Thefoursidesare(1) r → r + d r , θ .(2)Attheouterradius r + d r ,let θ → θ + d θ .(3)Nowdecrease r : at θ + d θ , r + d r → r .(4)Nowbacktothestartingpoint,at r , θ + d θ → θ Thetwoangle-changingsidesyieldfortheemerging(radial)fluxes(steps1 and3): netradialfluxes = Vr (r + d r , θ)(r + d r ) d θ Vr (r , θ)r d θ = ∂(

Figure9.15ViewinpolarcoordinatesoftheboxdescribedinExample9.13.

Nextconsidertheangularfluxes(steps2and4):

Theareaofthelittleelementis r d θ d r .Upondividingthroughbythisareaand takingthelimitasitshrinkstozerowehave:

(V ) = 1 r

Example9.14:rigidlyrotatingfluid Thisissimilartoarotatingdisk.Thevelocity fieldis V = v

where

isaunitvectorperpendicularto ˆ r fixedatthe point(r , θ )andpointinginthedirectionofincreasing θ (see(9.7)).Wecancompute div2 (V ) = 0.Notethat Vr = 0inthiscase.Thisisageneralresultinthecaseof V = f (r ) ˆ nθ .

9.6Three-dimensionaldivergence

Thegeneralizationtothethree-dimensionaldivergenceisstraightforward.This timethetinyboxintheplanebecomesa3Dboxfixedinthespace.Considera closedsurface S .Thevelocityfluxemanatingfromtheenclosedvolumeis emergingflux = S v (r ) · d S.(9.57)

Nowlettheenclosedvolumebecomeverysmall.FortheCartesiancoordinatecase takeittobearectangularparallelepipedwhosesidesareoflengthsd x ,d y ,d z .Its volumeisthereforetheproduct, (d V )S = d x d y d z wherethesubscript S isusedto

Thethermodynamicequation indicatethesurfacesurroundingtheinfinitesimalvolumeelement.The divergence ofthevelocityfieldisdefinedtobetheemergingfluxperunitvolume:

Thisdefinitionofthedivergenceisactuallyindependentoftheshapeofthevolume forreasonablywell-behavedfunctions v (r ).Wetakeitheretobearectangular parallelepipedforconvenience.Notethatthedivergenceisascalarfielddefined overthespacewhosepointsaredesignatedby r .

Whilethisappearstobeausefulconcept,sofaritseemstobearatherdifficult thingtocompute.Nextwewillfindaconvenientwaytocomputethedivergence. Inrectangularcoordinateswetakethesurfacetobetherectangularparallelepiped mentionedbefore.

Theintegrationoverthesixfacesoftheboxissosimilartothetwo-dimensional casethatweneednotrepeatithere.Theresultis

Thedivergenceisthen:

Fromourearliernotationwiththe ∇ operator,wecanwrite

Example9.15:divergenceoftheproductofscalarandvector Wecanfindthe divergenceofaproductofascalarfieldandavectorfieldbyexpandingthe individualtermsintotheirCartesian[x , y , z ]components.Let G (r ) beascalar fieldand a (r ) beavectorfield:

9.7Divergencetheorem

Consideramacroscopicvolume V surroundedbyaclosedsurface S inwhicha vectorfield A (r ) isdefined.Letthefluxoutofthevolumebe

Nowsubdividethevolumeintoboxeseachoneofwhichissmallenoughthatwe canusetheapproximation

Notethatfluxflowingoutofthesidesofonelittleboxflowsintothesidesofits neighbor.Ifweformthesum

Butsincethefluxleavingthewholevolumeisjustthealgebraicsumofthefluxes leavingthetinyboxes

Wehaveatlastthe divergencetheorem:

Thedivergencetheoremisveryusefulinthatitsayswecanapplythemicrodefinitionessentiallytomacroscopicvolumes.Wesimplyintegratethedivergence formicro-volumesuptoobtainthefluxissuingfromthemacroscopicvolume. WhilethemathematicalexpressionforthedivergenceinCartesiancoordinates isveryusefulforcomputationfromanalyticalformulas,weoftenfindthatin meteorologicalapplicationstheintegralformsareeasiertoapply.Forexample inthe2Dcasewecanintegratearoundaboxonaweathermapanddividebyits areatoobtainagoodapproximationtothedivergence.

Example9.16 Acylinderofradius R ofairhasdensityprofile ρ(z ).Itisrigidly risingat w0 ms 1 .Whatisthefluxofmasspassingthroughalevelat z = z0 ?

Answer:Massflux = ρ(z ) · w0 · π R2 .Justforfuntake R = 1km; ρ = ρ0 e z /H ,

ρ0 = 1.2kgm 3 , H = 104 m;andfinally w0 = 0.01ms 1 .Thenat z = 0,we have3.77×104 kgs 1 .At z = H /2thisbecomes2.29 ×104 kgs 1 .

9.8Continuityequation

Considerthedivergenceoftheproduct ρ(r )v (r ).Accordingtothedefinitionofthe divergencethisisthefluxof mass perunittimeissuingfromaninfinitesimalvolume perunitvolume.Iftheboxfromwhichthemassisissuingis fixedinspace (and therearenosourcesofmassinside),themassinsidetheboxhastobechanging:

where M isthemassinsidethefixedbox.Dividingbythevolumeoftheboxand lettingitshrinktozero,weobtain:

Theminussigntakesintoaccountthatthefluxoutoftheboxrepresentsanegative rateofchangeofmassinthebox.Notethatweusedthe partial derivativeinthe lastformulabecausewearereferringtoa fixed positionforourbox.Rearranging wehavetheEulerianformofthe equationofcontinuity:

t +∇· (ρ v ) = 0 [Eulerformoftheequationofcontinuity].(9.70)

Byexpandingthedivergenceoftheproductwecanwriteitinanotherform:

Thislastequationhasaveryspecialmeaningifweregroupthefirsttwoterms

Dρ Dt =−ρ ∇· v [Lagrangianformoftheequationofcontinuity](9.72) wherethedifferentialoperator

D Dt ≡ ∂ ∂ t + v ·∇ [materialderivative](9.73) iscalledthe materialderivative,andwewillreturntoitinthenextsection. Analternativeandperhapsamorephysicalderivationofthecontinuityequation (intwodimensionsforsimplicity)canbeconductedasfollows.Considerasmall

Figure9.16Schematicviewofaboxelementinmotionatvelocity v .Thebox mightextenditswidthorheightduringthemotion,butmassmustbeconserved.

rectangularboxwithsidesd x andd y ,whoseareaisd x d y .Themassdensityof materialintheboxis ρ givingthemassintheboxas M = ρ d x d y = constant sincemasswillbeconservedalongthepathofthebox.Theboxmightbedistorted duetothedifferentialmotionsofthefluid(e.g.,shear).Wecanwrite:

where xR (t ) representsthelocationoftherighthandedgeoftheboxasitmoves, xL (t ) similarlyrepresentsthelocationofthelefthandedge(seeFigure 9.16).The samenotationgoesfortheupperandloweredgesofthebox.Notethat xR (t ) might bemovingatadifferentspeedfrom xL (t ) andthereforetheboxmightbestretched orsqueezedinthatdirection.Aswetakethederivativethroughtheexpressionwe obtain

wherebyd u wemean (d x /d t )(R ) (d x /d t )(L),andbyd v wemean (d y /d t )(U ) (d y /d t )(L).Inthelastequationwehavetorecognizethatthederivativeof ρ is along themotion,aswasthederivativeofthemass.Afterdividingthroughbythe aread x d y andtakingthelimit:

Nowwiththefancynotation:

Inthelastequationweusedthematerialderivativefortherateofchangeof ρ since itistakenalongthemotion.Notethatthisisthesamestatementasin(9.72).The generalizationtothreedimensionsisstraightforward.

9.9Materialderivative

Asaparcelmoves,itstemperatureorsomeotherpropertymightchangealongthe pathoftheparcel.Ontheotherhand,somepropertiesareconservedalongthe path,forexample,thepotentialtemperatureinadiabaticflows.Therateofchange ofafieldalongthefluid’smotionisanimportantpointofviewtotakebecause manyphysicallawsaremosteasilyexpressedinthisform.Forexample,therate ofchangeofthemomentuminreactiontoanimposedforceistobetakenalong thepathoftheparcel(Newton’sSecondLaw).

Takeasmallrectangularparallelepipedofdimensiond x ,d y ,d z .Letthecenter ofthefiguremovewiththelocalvelocityofthefluidinwhichitisembedded, v (r , t ). Thevelocityfield v (r , t ) mightbechanginginbothspaceandtime.Considerthe temperature T (r , t ) asanexample.Ifweknowthevalueofthetemperatureata certainpoint(r , t ),say T (r , t ),whatcanwesayaboutitsvalueatneighboringpoints inspace-time?Thetotaldifferentialcanbeusedtomakeanestimate.Wecanwrite thetotaldifferentialforthetemperaturefieldas

Thisisthechangeinthetemperatureduetoadisplacementfrompoint r to r + d r andfrom t to t + d t . Nowdividethroughbyd t

Ingenerald r canbeinanydirection,butinthisspecialcaseitshouldbethe displacementd r thatoccursduetothemotionofthefluidduringthetimed t .In otherwords,d r = v (r , t ) d t where v (r , t ) isthevelocityofthefluidmotionfield

evaluatedat(r , t ).Afterthiscrucialsubstitutionwecanwrite:

Statedagain,thisistheexplicitrecognitionthatthesmallincrementd r whichis associatedwiththetimeintervald t isidentifiedwiththemotionofthefluid,namely itisthespatialincrementthatisadvancedbythefluiditselfduringthetimed t . Weagainencountertheimportantcombinationofderivativeswhichwetermedthe materialderivative,

Thechangeofthetemperaturefieldalongthemotion,DT /Dt ,iscomposedoftwo terms:thefirstterm, ∂ T /∂ t ,representsthe local changeofthetemperatureina certainvolumefixedinspace(aweatherstationforexample);thesecondterm, v ·∇ T ,isduetotheadvectionofhotterorcolderairintothisfixedvolumebythe wind.

9.10Thermodynamicequation

Considertheheatingofamovingparcel.WeapplytheFirstLawof Thermodynamicstoanindividualparcel.Wecanwrite

wherewehaveusedd Q toindicatetheamountofdiabaticheating 4 oftheparcel intimed t .Therateofchangeoftheenthalpyoftheparcelasitmovesalongits pathisgivenbythematerialderivative:

whereDQ /Dt istherateofdiabaticheatingoftheparcel(Js 1 ).Sincetheaircan betreatedasanidealgaswemaywrited H = cp M d T :

ThisisanexpressionfortheFirstLawofThermodynamicsforafluidinmotion. The thermodynamicequation followsfrom(9.84)bydividingthroughby M,the

4 Thediabaticheatingincludessolarandterrestrialinfraredabsorptionheatingaswellasheatingdueto condensation.

Thethermodynamicequation massoftheparcel(sincemassisconservedalongthepath):

[thermodynamicequation](9.85)

whereDQM /Dt indicatestheheatingrateperunitmassofair;itiscalledthe diabatic heatingrate(perunitmass).Theleft-handsideofthethermodynamic equationistheheatingrateofaparcelalongitspath.Theheatingrateisproportional totherateofchangeofthetemperature.Theright-handsideoftheequationtells uswhatcontributestothatheatingrate.Firstistheheatingperunitmassofthe parcelbysuchactionsasradiativeheatingorcondensationheating,collectively calledDQM /Dt .Thesecondtermcontributestotherateoftemperaturechange becauseofcompressionorexpansionoftheparcelasitmovesalongitspathfrom onepressuretoanother.

Example9.17 Supposea1kgparcelofairmoveshorizontallyalonganisobaric surfaceandisheatedbyradiationby4Wkg 1 .Whatistherateofchangeof temperatureoftheparcel?

Answer:NotethatthederivativeDp/Dt vanishesbecausetheparcelmovesalong anisobaricsurface.Thenwecanfindtherateofchangeoftemperaturefrom (4Wkg 1 )/(1004Jkg 1 K 1 ) ≈ 0.004Ks 1 .

Example9.18 Inthepreviousexamplesupposetheparcelismovingeastward alongthehorizontalisobaricsurfaceatavelocityof3ms 1 andthattheeastward componentofthegradientoftemperatureisgivenby1.5Kkm 1 .Whatisthelocal (fixedposition)rateofchangeoftemperature?

Answer:Weneedtowritethematerialderivative:

T

t + v ·∇ T = 0.004Ks 1 .

Weseekthevalueof ∂ T /∂ t .Thehorizontalvelocityis v = 3 i (ms 1 )and ∇ T = 0.0015 i (Km 1 ).Hence, ∂ T /∂ t = (0.004 0.0045) Ks 1

Example9.19 Whatistherateofchange(alongitspath)oftemperatureofa parcelofdensity ρ = 1.0kgm 3 whichisrisingsuchthatDp/Dt =−0.3Pas 1 ? Assumethediabaticheatingrateiszero.

Answer:WecancalculateDT /Dt =−0.3Pas 1 /(1.0kgm 3 × 1004JK 1 kg 1 ) ≈−0.0003Ks 1 .

Example9.20 Continuingthepreviousexample,whatisthelocal(fixedposition) rateofchangeofthetemperature,assumingtheenvironmentallapserateis 10Kkm 1 ?

Answer:Firstweneedtoestimatetheverticalvelocity, w .Assuminghydrostatic balancewecancalculate

andd p/d z =−ρ g ;hence, w ≈ 0.03ms 1 .Nowproceedwith

Thus,

Finally,wecancombinethetwoandfindthat ∂ T /∂ t = 0.Thisisbecausewechose theadiabaticlapserateasourverticalgradient.Thereadershouldthinkofthe consequencesofalapseratethatisgreaterorlessthantheadiabaticlapserate.

9.11Potentialtemperatureform

Thethermodynamicequationcanalsobeexpressedintermsofthepotential temperaturebystartingwiththeSecondLawofThermodynamics:

θ ,orindifferentialform

Usingthematerialderivativewefind

[potentialtemperatureformofthethermodynamicequation]. (9.87)

Thisformisequivalenttotheform(9.85)anditshowsmoredirectlytheinfluence ofboththeFirstandSecondLawsofThermodynamics.Itisleftasanexercisefor thereadertoshowtheequivalenceofthetwo(Problem9.13).

9.12ContributionstoDQM /Dt

DQM /Dt isamaterialderivative,whichmeanstherateofchangeistakenalong themotionoftheinfinitesimalvolumeelement.Localheatingofaninfinitesimal volumeelementcanbeduetoseveralsources.Welistafewofthemhere.

Heatingbyconduction Atthemolecularleveltheheatexchangefromoneinfinitesimal volumeelementtoitsneighborswithdifferingtemperatureisgivenbythedivergence oftheheatflux ∇· h(r , t ).Thisgivesthecoolingrateperunitvolumeofthemoving element.Toobtainthecoolingrateperunitmass,onemustdividebydensity ρ(r , t )

Heatingbyphasechange Asamoistparcelmovesitmightexperienceatemperature changeandthiscouldleadtocondensation(orevaporation)ontodroplets.Therelease

Thethermodynamicequation

ofenthalpyisgivenby L d Mvap = Mair L d ws ,where ws (T ) isthesaturationmixing ratioofthevolumeelementcontaining Mair ofair.Hence,theheatingrateperunit massissimply L d ws (notethatd ws isnegativeforcondensation).

Heatingbyradiation Inthiscasewehaveacertainradiationfluxdensityofenergy F(r , t ).Theheatingrateperunitvolumeis −∇· F(r , t ).Andtheheatingrateperunit massis (1/ρ)∇· F(r , t ).

Tosummarizewehave

Sometimesafrictionalheatingtermisincludedaswell.Generallyinapplications suchasnumericalweatherforecastingandclimatemodeling,thefirsttermabove issmallcomparedtotheothersandisneglected.

Notes

Thischapterisreallyanintroductiontodynamics.Mostdynamicsbookscover thesesubjectsandmanydosoinmoredetail,seeforexample,Holton(1992).

NotationandabbreviationsforChapter9

a , b etc.arbitraryvectors

a , ax theseareusedforvectoraccelerationandits x component

ax , ay , az theCartesiancomponentsofvector a A avectorfield

div2 V divergenceofvectorfield V intwodimensions

D/Dt materialderivative

DQM /Dt therateofheatingofamovingparcelperunitmass (Js 1 kg 1 )

∇· F(r , t ) divergenceofthevectorfield F(r , t )

∇ T = (∂ T /∂ x )i +··· gradientof T

i , j, k theCartesianunitvectors

κH thermalconductivity(JK 1 m 1 s 1 )

L enthalpyofevaporation(latentheat)(Jkg 1 )

n unitvector

nθ unitvectorinthethetadirection(polarcoordinates)

∂ T /∂ n directionalderivativeof T

r = x i + y j + z k positionvector

ˆ r unitvectorinthe r direction(polarcoordinates)

ρ density(kgm 3 )

S,d S surface,surfaceelementvector

v three-dimensionalvelocityvectorfield(ms 1 )

V uppercaseusuallyindicatestwo-dimensionalvelocity

Problems

9.1Bywritingoutthecomponents,provethat

9.2Ahorizontalwindisblowingfromsouthwesttonortheastat30◦ northofeast.Express itintermsof i , j, k .

9.3Findaunitvector45◦ northofeast.Findaunitvectorperpendiculartothisoneinthe x –y plane.

9.4Thevectors2i + 3j,4i k determineaplane.Finda unit vectorperpendiculartothis plane.

9.5Aparcelmovesalongapath:

If γ = 0,whatisthecurvethatdescribesthemotion?Describethemotionwhen γ> 0.Whatisthepositionvectorasafunctionoftime?Whatisthevelocityvector?

9.6Acertainpressurefieldvariesspatiallyas

Howmanymaximaarethereatthesurface(z = 0)andatthecenterofthechannel (y = 0)asonegoesaroundthecircle(x goesfrom0to2π R)?Whatisthetotal differentialofthepressure?Whatisthepressuregradient?

9.7Thewindhastheform v = (v0 /r ) nθ , nθ =− sin θ i + cos θ j.Whatare u , v ?What isthedivergenceofthiswind,div2 (v )?

9.8Acertainsurfacepressurefieldisgivenby

Describethispressuresurfacenear (x0 , y0 ).Whatisthepressuregradientasafunction of x and y ?Whatisthedirectionalderivativeinthedirection45◦ northofeast?

9.9The500hPalevelisgivenby

Z500 = 5500 + 50sin (φ ω t ) cos π y

, L ≤ y ≤ L

wheretheverticalheightsareinmetersandthelongitudinaldistancesareinkilometers. L isabout30◦ oflatitude.Suppose ω = 2π radianspermonth.Describethis disturbance.

9.10Supposethediabaticheatingrateforaparcelis10Wkg 1 andthewindisblowing atanangleof60◦ northofeastat10ms 1 .Alsosupposethetemperaturegradientis 0.1Kkm 1 anddirecteddueeast.Youmayassumethehorizontalgradientofpressure iszero.Findtherateofchangeoftemperaturealongthemotionandfindthelocalrate ofchangeofthetemperatureatafixedpoint.

9.11Sinkingair.Supposetheatmosphericprofileisisothermal.Aparcelisdescendingat 2cms 1 andthediabaticheatingrateiszero.Whatistherateoftemperatureincrease alongthemotion;atafixedaltitude?(Usereasonablevaluesforparametersnotgiven.)

9.12Dryairisblowingfromwesttoeastataspeedof u = 12ms 1 .Thetemperature gradientis ∇ T = 2.0 × 10 6 (Km 1 ) i .Theairisbeingheateddiabaticallyatarate 1.1 × 10 5 Kkg 1 s 1 .Theairmovesalonganisobaricsurface.

(a)Writeanexpressionfortherateofchangeofthetemperatureoftheairalongits pathintermsoftheheatingrates(thermodynamicequation).

(b)Basedupon(a)evaluatethematerialderivative.

(c)Theairispassingoverafixedstation.Findtherateofchangeofthetemperature atthestation.

9.13Showthatthetwoforms(9.85, 9.87)ofthethermodynamicequationareequivalent byusing θ = T (p/p0 ) κ .

AppendixA

Unitsandnumericalvaluesofconstants

Theunitsusedinatmosphericsciencearethe StandardInternational (SI)units. TheseareessentiallytheMKSunits.Theunitsoflengthare meters,abbreviated m;thoseformassarethe kilogram,abbreviatedkg;andfortimetheunitisthe second,abbreviateds.Theunitsforvelocitythenarems 1 .Theunitofforceis the newton (1kgms 2 ,abbreviatedN).Tables A1–A3 showtheSIunitsforsome basicphysicalquantitiescommonlyusedinatmosphericscience.

Theunitofpressureisthe pascal (1Nm 2 = 1Pa).Thisisofspecialimportance inmeteorology.Inparticular,atmosphericscientistslikethe millibar (abbreviated mb),butinkeepingwithSIunitsmoreandmoremeteorologistsusethe hectopascal (abbreviatedhPa;1hPa = 100Pa = 1mb).The kilopascal (1kPa = 10hPa)isthe formalSIunitandsomeauthorspreferit. Oneatmosphere (abbreviated1atm)of pressureis

1atm = 1.013bar

= 1013.25mb

= 1013.25hPa

= 101.325kPa

= 101325Pa

= 1.01325 × 105 Pa(A1) and1mb = 1hectopascal = 100Pa.Sometimesoneencounterspressureininches ofmercury(inHg)ormillimetersofmercury(mmHg);1atm = 760.000mmHg = 29.9213inHg.

The dimensions ofaquantitysuchasdensity, ρ ,canbeconstructedfromthe fundamentaldimensionsoflength,mass,timeandtemperature,denotedbythe letters L, M , T , θ respectively.Thedimensionsofdensity,indicatedwithsquare brackets [ρ ],are ML 3 .IntheSIsystemits units arekgm 3 .Manyquantitiesare purenumbersandhavenodimension;examplesincludeargumentsoffunctions suchassineorlog.Theradianisreallynotaunitinthesenseusedhere.

TableA1 Usefulnumericalvalues

Universal

gravitationalconstant(G )6.673×10 11 Nm2 kg 2

universalgasconstant(R∗ )8.3145JK 1 mol 1

Avogadro’snumber(NA )[grammole]6.022 ×1023 moleculesmol 1

Boltzmann’sconstant(kB )1.381 ×10 23 JK 1 molecule 1

protonrestmass1.673 ×10 27 kg

electronrestmass9.109 ×10 31 kg

PlanetEarth

equatorialradius6378km

polarradius6357km

massofearth5.983×1024 kg

rotationperiod(24h)8.640×104 s

accelerationofgravity(atabout45 ◦ N)9.8067ms 2

solarconstant1370Wm 2

Dryair

gasconstant(Rd )287.0JK 1 kg 1

molecularweight(Md )28.97gmol 1

speedofsoundat0 ◦ C,1000hPa331.3ms 1 densityat0 ◦ Cand1000hPa1.276kgm 3

specificheatatconstantpressure(cp )1004JK 1 kg 1 specificheatatconstantvolume(cv )717JK 1 kg 1

Watersubstance

molecularweight(Mw )18.015gmol 1

gasconstantforwatervapor(Rw )461.5JK 1 kg 1 densityofliquidwaterat0 ◦ C1.000×103 kgm 3 latentheatofvaporizationat0 ◦ C2.500×106 Jkg 1

TableA2 Selectedphysicalquantitiesandtheirunits

QuantityUnitAbbreviation masskilogramkg lengthmeterm timeseconds forcenewtonN pressurepascalPa = Nm 2 = 0.01hPa energyjouleJ

temperaturedegreeCelsius ◦ C temperaturedegreeKelvinK speedms 1 densitykgm 3

specificheatJkg 1 K 1

TableA3 Selectedconversionsto SIunits

QuantityConversion energy/heat4.186J = 1cal 1kWh = 3.6×106 J

pressure1atm = 760mmHg

1atm = 29.9213inHg

distance1m = 3.281ft

temperature T (K) = T (◦ C) + 273.16

Eachsideofanequationmusthavethesamedimensions.Thisprinciplecan oftenbeusedtofinderrorsinaproblemsolution.

AppendixB

Notationandabbreviations

atmpressureunit,oneatmosphere(Chapter 1)

a , b,etc.arbitraryvectors(Chapter 9)

a , ax vectoraccelerationandits x component(Chapter 9)

a Bohrradius(Chapter 2)

a dropletradius(m)(Chapter 5)

a , b empiricalcoefficientsusedinvanderWaalsequationofstate (Chapter 5)

a ∗ criticaldropletradius(m)(Chapter 5)

ax , ay , az theCartesiancomponentsofvector a (Chapter 9)

A avectorfield(Chapter 9)

A horizontalareaofaslab(m2 )(Chapter 6)

c speedoflightinvacuum(ms 1 )(Chapter 8)

cv , cp specificheats(heatcapacityperkg)atconstantvolume,pressure (Jkg 1 K 1 )(Chapter 3)

c v , c p molarspecificheats(Jmol 1 K 1 )(Chapter 3)

c v , c p , G overbarindicatesquantitiesexpressedpermole(Chapter 4)

CAPEconvectiveavailablepotentialenergy(Jkg 1 )(Chapter 7)

CINconvectiveinhibitionenergy(Jkg 1 )(Chapter 7)

Cv , Cp heatcapacitiesatconstantvolume,pressure(JK 1 )(Chapter 3) div2 V divergenceofvectorfield V intwodimensions(Chapter 9)

d H /d t rateofheating(Chapter 9)

d H /d t ,d Q /d t timerateofchangeofenthalpy,heatingrate(Js 1 )(Chapter 3) (d H )p changeinenthalpyatconstantpressure(J)(Chapter 3)

d Qrev infinitesimalabsorptionofheat,subscriptindicatingthatthe changeisreversible(J)(Chapter 4)

d QM /d t rateofheatingperunitmass(Jkg 1 s 1 )(Chapter 9)

d Q ,d W differentialsforheat,work,baremphasizespathdependence(J) (Chapter 3)

d SU ,V infinitesimalchangeinentropyduringwhich U and V areheld constant(JK 1 )(Chapter 4)

D/Dt materialderivative(Chapter 9)

f H ◦ (X ) standardheatoffusionofsubstance X (Jmol 1 )(Chapter 3)

G ◦ changeinGibbsenergypermole,atstandardconditions (kJmol 1 )(Chapter 8)

V changeinvolume(m 3 )(Chapter 3)

vap H ◦ (X ) standardheatofvaporizationofsubstance X ,overbarindicates 1molofsubstance,superscriptoindicatesatstandard conditions(usually25◦ C)(Jmol 1 )(Chapter 3)

x displacementin x (Chapter 3)

H ◦ changeinenthalpypermole,atstandardconditions(kJmol 1 ) (Chapter 8)

t timeinterval(s)(Chapter 2)

e , es vaporpressure,saturationvaporpressure(Pa)(Chapter 5)

e vaporpressureoverasolution(Pa)(Chapter 5)

Eact activationenergy(J)(Chapter 8)

E energy(J)(Chapter 8) = Mw /Md = 0.622(dimensionless)(Chapter 5)

η mixingratio(Chapter 8)

f frequencyofelectromagneticwave(Hz)(Chapter 8)

f numberofdegreesoffreedomofamolecule(Chapter 3)

fx partialderivativewithrespectto x (Chapter 3)

F force(N)(Chapters 2, 3)

F energyflux(Js 1 )(Chapter 8)

Fλ(z ) fluxofelectromagneticenergyatwavelength λ,elevation z (Js 1 m 1 )(Chapter 8)

F , F /M force,perunitmass(Nkg 1 )(Chapter 7)

F force(N)(Chapter 4)

g,l,aqgaseous,liquid,aqueousphase(Chapter 8)

g accelerationduetogravity(9.81ms 2 )(Chapter 6)

g Gibbsenergyperkilogram(Jkg 1 )(Chapter 4)

g , gz , g0 accelerationduetogravity,itsvalueasafunctionofaltitude,its valueatthesurface(ms 2 )(Chapter 1)

gl , gg specificGibbsenergyforliquid,gas(Jkg 1 )(Chapter 5)

gv , gw specificGibbsenergyforvapor,liquidwater(Jkg 1 )(Chapter 5)

G gravitationalconstant(Chapter 1,Table A1)

G Gibbsenergy(J)(Chapters 4, 8)

G Gibbsenergypermole(Jmol 1 )(Chapter 4)

γ ratioofspecificheats cp /cv (dimensionless)(Chapter 3)

d , m , e lapserate, d T /d z ofdryairascendingadiabatically,ofmoist adiabat,oftheenvironment(Km 1 )(Chapter 6)

∇ T ∇ T = (∂ T /∂ x )i +··· ,gradientof T (Chapter 9)

h height(Chapter 1)

h heightaboveareferencelevel(Chapter 6)

h specificenthalpy(Jkg 1 )(Chapter 5)

h Planck’sconstant(Js)(Chapters 2, 8)

h, u specificenthalpy,internalenergy(Jkg 1 )(Chapter 7)

h0 initialheight(Chapter 2)

H enthalpy(J)(Chapters 3, 4)

H scaleheight(Chapter 6)

H (r ) fluxofheatcrossingthesurfaceofasphere(Js 1 )(Chapter 5)

Ha scaleheightoftheatmosphere(Chapter 3)

Hw ascaleheightforwatervapor(morkm)(Chapter 6)

H ◦ standardenthalpy(kJmol 1 )(Chapter 8)

i , j, k theCartesianunitvectors(Chapter 9)

J photodissociationcoefficient(s 1 )(Chapter 8)

k reactioncoefficient(Chapter 8)

kB Boltzmann’sconstant(Chapters 1, 2, 3,Table A1)

K , Kp equilibriumconstant(Chapter 8)

KH constantinHenry’sLaw(Chapter 8)

K kineticenergy(J)(Chapter 7)

κ = R/cp (dimensionless)(Chapters 3, 4, 6)(0.286fordryair)

κH thermalconductivitycoefficient(Jm 1 s 1 K 1 )(Chapters 3, 5, 9)

LCLliftingcondensationlevel(Chapter 5)

L dimensionlength(m)(Chapter 1)

L enthalpyofevaporation(latentheat)(Chapter 9)

L lengthofboxedge(m)(Chapter 2)

λ meanfreepath(m)(Chapter 2)

λ wavelengthofanelectromagneticwave(m)(Chapter 8)

L = Hvap theenthalpy(latentheat)ofevaporation(Jkg 1 )(Chapters 5, 6)

Levap latentheatofevaporation(Jkg 1 )(Chapter 7)

mbpressureunit,onemillibar = 1hPa(Chapter 1)

me electronmass(kg)(Chapter 2)

m0 massofamolecule(kg)(Chapter 2)

M dimensionmass(kg)(Chapter 1)

Meff effectivemolecularweight(gmol 1 )(Chapter 2)

MG grammolecularweightofagas(gmol 1 )(Chapter 2)

Mv , Md , Me grammolecularweightofvapor,dryairandeffective(gmol 1 ) (Chapter 5)

M mass(kg)(Chapters 2, 3, 4)

M massofanobjectorsystem(Chapter 1)

ME massoftheEarth(Chapter 1)

Ml , Mg bulkmassofliquid,gas(kg)(Chapter 5)

n unitvector(Chapter 9)

nθ unitvectorinthethetadirection(polarcoordinates)(Chapter 9)

ns numberdensityofvapormoleculesatsaturation(moleculesm 3 ) (Chapter 5)

nsat numberdensityofvapormoleculesatsaturation(moleculesm 3 ) (Chapter 5)

nw numberdensityofwatermoleculesinvapor(moleculesm 3 ) (Chapter 5)

n0 (z ) moleculardensityasfunctionofheight(moleculesm 3 ) (Chapter 2)

n0 numberdensityofphotons(photons/m 3 )(Chapter 8)

n0 numberdensity(moleculesm 3 )(Chapters 3, 5)

Nnewtons(Chapter 2)

N totalnumberofmolecules(Chapter 2)

NA Avogadro’snumber(moleculesmol 1 )(Chapters 1, 2, 5,Table A1)

N (z ) concentrationofabsorbersatlevel z (absorbersm 3 )(Chapter 8)

ν , νA , νB numberofmoles,numberofmolesofspeciesA,B(Chapters 3, 4)

ω , f angularfrequency(rads 1 ),frequency(cycless 1 ≡ Hz) (Chapter 6)

p pressure(Pa)(allchapters)

p, pG pressure,partialpressureforgasG(Chapter 2)

p, p(z ), p0 pressure,asafunctionof z ,atareferencelevel(hPa)(Chapter 6)

p(V ) pressureasafunctionofvolume;expressionforacurveinthe p–V plane(Chapter 4)

Paunitofpressure,1Pa = Nm 2 (Chapter 1)

P (z ) probabilitydensityfunction(Chapter 2)

P (vx , vy , vz ) jointprobabilitydensityfunctionforvelocitycomponents (Chapter 2)

(z ), 1 , 2 geopotentialheightasafunctionofheight,attwolevels(meters, onchartsoftenindecameters,dm)(Chapter 6)

q specifichumidity(kgwatervapor/kgofmoistair)(Chapter 5)

rr = x i + y j + z k positionvector(Chapter 9)

r unitvectorinthe r direction(polarcoordinates)(Chapter 9)

r relativehumidity(Chapter 5)

r0 effectivemolecularradius(m)(Chapter 2)

R gasconstantforaparticulargas(Jkg 1 K 1 )

Rd gasconstantfordryair(Jkg 1 K 1 )(Chapter 2,Table A1)

Reff effectivegasconstantforamixtureofspecies(Jkg 1 K 1 ) (Chapters 2, 5)

Rw thegasconstantforwatervapor(Chapters 2, 5,Table A1)

R∗ universalgasconstant(Jmol 1 K 1 )(Table 1.1)

ρ density(kgm 3 )(allchapters)

ρ , ρ0 , ρe density,atareferencelevel,oftheenvironment(kgm 3 ) (Chapter 6)

ρa , ρe densityforadiabatandenvironment(kgm 3 )(Chapter 7)

s entropyperunitmass(lowercaseindicatesperunitmass) (JK 1 kg 1 )(Chapter 4)

sl , sg specificentropyforliquid,gas(JK 1 kg 1 )(Chapter 5)

SIStandardInternationalsystemofunits(Chapter 1)

S,d S surface,surfaceelementvector(Chapter 9)

S entropy(JK 1 )(Chapter 5)

S , SA , SB entropy,entropyofstateA,stateB(JK 1 )(Chapter 4)

Ssys , Ssurr , Suniverse entropyforthesystem,surroundings,universe(sys+surr) (Chapter 4)

σ standarddeviation(Chapter 2)

σ surfacetension(Jm 2 )(Chapter 5)

σ 2 variance(Chapter 2)

σ(λ) absorptioncross-section(m2 )(Chapter 8)

σc collisioncross-section(m2 ,nm2 )(Chapter 2)

t0 , tc bothstandforlifetime(s)(Chapter 8)

t1/2 halflife(s)(Chapter 8)

T Kelvintemperature(K)(Chapters 2, 3, 5)

TC temperaturemeasuredindegreesCelsius(◦ C)(Chapter 5)

TD dewpointtemperature(K)(Chapter 5)

Tv virtualtemperature(K)(Chapter 5)

Tw wet-bulbtemperature(K)(Chapter 5)

T dimensiontime,alsoperiodofarepeatingprocess,and temperature(Chapter 1)

Temp temperaturedimension(Chapter 1)

T , T (z ), T0 temperature,asafunctionof z ,atareferencelevel(K) (Chapter 6)

Te (z ), Ta (z ) temperatureofenvironment,ofanadiabat(K)(Chapter 6)

T verticalaveragetemperatureinalayerofair(K)(Chapter 6)

θ potentialtemperature(K)(allchapters)

θe equivalentpotentialtemperature(K)(Chapter 5)

θw wet-bulbpotentialtemperature(K)(Chapter 5)

θs saturationequivalentpotentialtemperature(K)(Chapter 5) zenithangle(Chapter 8)

τ opticaldepth(dimensionless)(Chapter 8)

(u , v , w ) thevelocitycomponents (vx , vy , vz ) (Chapter 2)

U internalenergy(J)(allchapters)

UA , UB internalenergyatstatesA,B(J)(Chapter 4)

v three-dimensionalvelocityvectorfield(ms 1 )(Chapter 9)

v speed(ms 1 ),sometimeswithasubscriptindicatingvelocity componentalongacoordinateaxis(e.g., vx )(Chapter 1)

vesc escapevelocity(kms 1 )(Chapter 2)

vl , vg specificvolumeforliquid,gas(m3 kg 1 )(Chapter 5)

v ∗ thresholdvelocitytoexceedanactivationbarrier(ms 1 ) (Chapter 8)

v meanspeed(ms 1 )(Chapter 2)

v meanmolecularspeed(ms 1 )(Chapter 5)

v 2 meansquarevelocity(m2 s 2 )(Chapter 2)

v 2 x meansquareof x componentofvelocity(m2 s 2 )(Chapter 2)

V uppercaseusuallyindicatestwo-dimensionalvelocity (Chapter 9)

V volumeofasystem(m3 )(Chapters 1, 3)

V volume(m3 )(Chapter 3)

Va , Ve volumesofaparcelalonganadiabatandoftheenvironment (m3 )(Chapter 7)

VA , VB initialandfinalvolumes(Chapter 3)

w , ws mixingratio,saturated(kgwatervaporperkgdryair) (Chapters 5, 6, 7)

WA →B , QA →B workdonebythesystem,heattakenintothesystemingoing fromstateAtostateB(J)(Chapter 4)

WV1 →V2 workingoingfrom V1 to V2 (Chapter 3)

W , Q workdonebythesystem,heattakenintothesystem(Chapter 3)

[X ] concentrationofX(Chapter 8)

[X ]0 concentrationofXat t = 0(Chapter 8)

z elevation(m)(Chapter 2)

z , z verticaldistance,incrementofit(m)(Chapter 6)

Zp altitudeofpressurelevel p (m)(Chapter 6)

AppendixC

Answersforselectedproblems

Chapter1

1.126428ftfor H = 8km.

1.20.0013.

1.3819hPa(using H = 8km,1mile =1.6km).

1.4(a)40200km,(b)111.7kmdeg 1 ,(c)96.7kmdeg 1

1.550000km2 .43000km2

1.811.2kms 1 .

1.92 2h/g .

Chapter2

2.11.29,1.25,1.2kgm 3 .

2.20.80kgm 3 .

2.3212hPa.

2.412.7N.

2.52.69×1025 moleculesm 3

2.6 Rd = 2.87hPaK 1 m3 kg 1

2.7Differentiate P (v ) withrespectto v andsetittozero.SeeTable 2.2

2.8462,493,413,1846ms 1 .

2.9630Pa.1kgm 1 .Pressurewithmoisture = 78646Pa.Densityofmoistmix = 1kgm 3 .Densityofdryairatsametemperatureandpressure:1.003kgm 3 .

2.101.6×108 J.

2.114.3×107 J.

2.12 n0 = 2.69 × 1025 moleculesm 3 , H = 8000m, N = 2.15×1029 molecules.

2.13 zλ=H = H ln (n0 σc H ).

2.14 (gp0 /RT0 ) ∞ 0 z e z /H d z = gp0 H 2 /RT0 .

2.15 1 2 Nm0 v 2 = 3 2 NkB T ,seeProblem2.12for N .

2.16 fyellow = c /λ = 6.0 × 1014 s 1 . fcoll = n0 σc v ≈ 6.5 × 109 s 1 .Anexcited atommightsuffertensofcollisionsbeforeitrelaxestothelowerenergy level.

Chapter3

3.1(d) p0 e 1/2 /2H .

3.2(a) ρ R.(b)and(c)Let1/T ≡ x ,thentakethepartialwithrespectto x

3.3 κT = 1/p;toget κθ use pV γ = p0 V γ 0 ;result1/γ p.

3.4 β = 1/T

3.6195.8kJ.

3.7 T = 205.1K. T =−67.9K.Therefore, U = 48.7J = W ,since Q = 0.

3.8(a)10kJ,(b)7.17kJ,(c)d U + V d p → d U .

3.9(a)59.7kJ,(b)59.7kJ.

3.101.202kgm 3 . Q =−7500J.Usethemassofthedryaironlyasan approximation. T = 8.7K.

3.11 T600 = 248.7K. U = Mcv T , H =−21.4kJ.

3.120.02Kkg 1 s 1 ,20Jkg 1 s 1 , U perunittime = 14.3Jkg 1 s 1

3.13(a)12,500kg.(b)Massofan“air”molecule = 0.029/NA = 4.82 × 10 26 kg. N = 2.6 × 1029 molecules.(c)1.3×1044 .

3.14 vsound = √RT forisothermal; √γ RT , γ = 1.40foradiabaticcompression waves.

3.15 θ = T0 (p0 /p)0.286 .

Chapter4

4.1Zeroifreversible.

4.223.5JK 1 .

4.3 θ = 65.8K.

4.4 H = 500J. T = 0.5K. S = 2JK 1

4.5(a) ( S )a = 23.5JK 1 ,(b) ( S )b = 120.6JK 1 ,(c) ( S )c = 8.6JK 1 .

4.6(b) V2 = 3.44m3 , T2 = 227K,(c) H =−146.7kJ, U =−104.7kJ, (d) W = 104.7kJ.

4.7(a) p2 = 37877Pa, W2 =−65.2kJ,(b) W1 = 104.7kJ, W2 =−65.2kJ, Wtot = 39.5kJ,(c) T3 = 113.6K, ( S )2 = 1.39kJK 1 .

4.8Usetheisothermjoiningthebeginningandendpoints. S = 199JK 1 . U = H = 0.

4.9Bothzeroforthecycle,ifitisreversible. Tmax isatthepointA. Tmin isatthe oppositepointonthecircle.

4.10Slidingupanddownanisotherminthe T S diagramenclosesnoarea.

4.14 19.2kJ.

Chapter5

5.1(a)2.5 × 106 J,(b)9.15JK 1 .

5.2283.6K.

5.3 es = 65hPa,z = 22km × ln (1000/66.75) = 21.7km.

5.41.4%.

5.53.8cm.

5.6(a)23.6hPa,(b)11.8hPa,(c)1.171kgm 1 ,(d) w = 0.0074kgkg 1 , ws = 0.0149kgkg 1 ,(e) w .

5.7(0.01,6.80hPa,112.8%),(0.10,6.10hPa,101.2%),(1.0,6.03hPa,100.1%), (10,6.025hPa,100.0%).

5.8eb/a = 1.002.

5.9101.4%.

5.10RadiusatthemaximumoftheKöhlercurve a = 3B/b;RH = 1 + 2b1.5 /31.5 B0.5 × 100%; a = 6 µm,RH = 100%.

Chapter6

6.1 p(z ) = p0 exp (gz0 /RT0 )e(z / z0 1) .

6.20.12ms 2 .

6.30.6ms 1 ,1.2ms 1 ,3.6ms 1 ,3min.

6.4Adiabatically0.03ms 2 ,isothermally0.02ms 2 .

6.5If p0 = 1000hPa, T0 = 300K, = 6Kkm 1 , z10 = 10km, T1 = T0 z10 = 240K,then p(z ) =

6.6 = T0 exp z / z0 + κ gz0 (ez /z0 1 )/RT0 .

6.7 ≈ 5Kkm 1 .

6.8 Z (p) =− Ra g ln p p0 Rb 2gp0 (ln p p0 )2 .

6.9926m.

6.100.516ms 2 .

6.11 ω = 5.7 × 10 3 rads 1 , f = 9.1 × 10 4 Hz, T = 18min.

6.13(a) A = 10m, B = 0,(b) A = 0, B = 175m.

Chapter7

7.1(a)16gkg 1 ,(b)22gkg 1 ,RH = 73%,(c)20 ◦C,(d)940hPa,(e)23 ◦ C, (f)yes,(g)yes,(h)8.5gkg 1 ,(i)12gkg 1 .

7.2(a)270hPa,(b)coldanddry,(c)verylowto400hPa,abovethat T TD ≈ 10 ◦ C,(d)between950and910hPa,750and700hPa,above200hPa,(e)no, yes.

7.3(a)150hPa,(b)unstable,(c)moderatebelow700hPa,dryabove,(d)at 650hPa,(e)largeCAPE,noCIN,unstable.

7.4(a) w = 3.6gkg 1 ,RH = 45%, θ = 284K,(b)840hPa,(c) θe = 294K, (d)thesameasin(a),(e)thesameasin(c).

7.5(a)3.5gkg 1 ,(b) T = 30 ◦ C, TD =−30 ◦ C.Note:thenumbershereare unrealisticbuteasytoworkwithonthecharts.

Chapter8

8.1 33.81kJmol 1 , 391.9kJmol 1 ;bothexothermic.

8.2 H ◦ = 72.14kJmol 1 ,no.

8.3Lowtemperaturesforforward,highforreverse(thisishowNOisformedin combustion).

8.43.4 × 10 19 J = 2.1eV.

8.56 × 1034 ,Lowerthetemperature.

8.6 k1 /k2 .

8.72.68 × 10 4 moll 1 .

8.82.5 × 10 2 mol.

Chapter9

9.1d (ax bx )/d t + d (ay by )/d t = bx d ax /d t + ax d bx /d t +··· .

9.2 |v |

9.3 √2 2 (i + j), √2 2 (i j).

9.4 0.239 i + 0.160 j 0.958 k .

9.5Circlewithradius α centeredat (x0 , y0 ).Pointontherimofarollingwheel.

9.6Threemaxima.

9.7 u =−y v0 /r +1 , v = x v0 /r + 1.div2 (v ) = 0,since vr = 0, vθ hasno θ dependence.

9.8Ellipticallyshapedbowl. ∇ p = 4a (x x0 )3 i + 2b(y y0 )j, ∂ p/∂ n = √2 2 (4a (x x0 )3 + 2b(y y0 ))

9.9Thisisawavethattravelswesttoeastandtakesonemonthtocircletheglobe.

9.100.01Ks 1 , ∂ T /∂ t = 0.009Ks 1 .

9.11Warming:0.00020Km 1 ,sameatfixedaltitude,sinced T /d z = 0.

9.12(b)1.1 × 10 5 Ks 1 ,(c) 1.3 × 10 5 Ks 1 .

Bibliography

Atkins,P.,1994. PhysicalChemistry,NewYork:W.H.Freeman. Atkins,P.andJ.dePaula,2002. Atkins’PhysicalChemistry,seventhedition,Oxford: OxforduniversityPress.

Bohren,C.F.andB.A.Albrecht,1998. AtmosphericThermodynamics,NewYork: OxfordUniversityPress.

Brasseur,G.andS.Solomon,2005. AeronomyoftheMiddleAtmosphere,Dordrecht: D.Reidel.

Brimblecombe,P.,1986. AirCompositionandChemistry,Cambridge:Cambridge UniversityPress.

Callen,H.B.,1985. ThermodynamicsandanIntroductiontoThermostatistics, NewYork:Wiley.

Çengal,Y.A.andM.A.Boles,2002. Thermodynamics:AnEngineeringApproach, NewYork:McGraw-Hill.

Curry,J.A.andP.J.Webster,1999. ThermodynamicsofAtmospheres&Oceans, SanDiego,CA:AcademicPress.

Denbigh,K.,1981. ThePrinciplesofChemicalEquilibrium,NewYork:Cambridge UniversityPress.

Emanuel,K.A.,1994. AtmosphericConvection,NewYork:OxfordUniversityPress. Emanuel,K.A.,2005. DevineWind,NewYork:OxfordUniversityPress. Fermi,E.,1956. Thermodynamics,NewYork:Dover. Finlayson-Pitts,B.J.andJ.N.Pitts,2000. ChemistryoftheUpperandLower Atmosphere,SanDiego,CA:AcademicPress.

Fleagle,R.G.andJ.A.Businger,1980. AnIntroductiontoAtmosphericPhysics,San Diego,CA:AcademicPress.

Giancoli,D.C.,2004. Physics:PrincipleswithApplications, sixthedition,Englewood Cliffs,NJ:PrenticeHall.

Guggenheim,E.A.,1959. Thermodynamics:AnAdvancedTreatmentforChemistsand Physicists,Amsterdam:North-Holland.

Halliday,D.,R.ResnickandJ.Walker,2004. FundamentalsofPhysics, seventhedition, NewYork:Wiley.

Hobbs,P.,2000. BasicPhysicalChemistryfortheAtmosphericSciences,secondedition, Cambridge:CambridgeUniversityPress.

Holton,J.R.,1992. AnIntroductiontoDynamicalMeteorology,NewYork: AcademicPress.

Houston,P.L.,2001. ChemicalKineticsandReactionDynamics,NewYork: McGraw-Hill.

Houze,R.A.,Jr.,1993. CloudDynamics,NewYork:AcademicPress. Irebarne,J.V.andW.L.Godson,1981. AtmosphericThermodynamics,Boston, MA:Kluwer.

Present,R.D.,1958. KineticTheoryofGases,NewYork:McGraw-Hill. Reiss,H.,1965. MethodsofThermodynamics,Mineola,NY:Dover.

Rogers,R.R.andM.K.Yau,1989. AShortCourseinCloudPhysics,Oxford:Pergamon. Sears,F.W.,1953. AnIntroductiontoThermodynamics,theKineticTheoryofGasesand StatisticalMechanics,Reading,MA:Addison-Wesley. Sears,F.W.andM.W.Zemanski,1984. UniversityPhysics,sixthedition,Reading,MA: Addison-Wesley.

Seinfeld,J.S.andS.N.Pandis,1998. AtmosphericChemistryandPhysics,NewYork: WileyInterscience. Stewart,J.,1995. Calculus,thirdedition,PacificGrove,CA:Brooks/Cole.

Stull,R.B.,1988. AnIntroductiontoBoundaryLayerMeteorology,Dordrecht:Kluwer. Stull,R.B.,2000. MeteorologyforScientistsandEngineers,PacificGrove,CA: Brooks/Cole.

Taylor,F.W.,2005. ElementaryClimatePhysics,Oxford:OxfordUniversityPress. USAirWeatherServiceManual(AWSM105-124). Vardavas,I.M.andF.W.Taylor,2007. RadiationandClimate,Oxford:Oxford UniversityPress.

Wallace,J.M.andP.V.Hobbs,2006. AtmosphericScience:AnIntroductorySurvey, secondedition,Amsterdam:Elsevier.

Warneck,P.,1999. ChemistryoftheNaturalAtmosphere,secondedition,International GeophysicsSeries,SanDiego,CA:AcademicPress.

Whitten,K.W.,R.E.DavisandL.Peck,1996. GeneralChemistry,Orlando,FL: SaundersCollegePublishing.

Wills,A.P.,1958. VectorAnalysiswithanIntroductiontoTensorAnalysis,NewYork: Dover.

Zemansky,M.W.,1968. HeatandThermodynamics,NewYork:McGraw-Hill.

activationenergy, 202 additivityprinciple, 78 adiabat, 11 adiabatic, 57 air, 28

Archimedes’Principle, 144 Arrheniusequation, 202 atm, 2 atomicnumber, 36 Avogadro’snumber, 36

Boltzmann’sconstant, 21 boxproduct, 224 Brunt–Väisäläfrequency, 148 bulk, 7 buoyancyforce, 144

CAPE, 181

Carnotcycle, 84 Cartesiancomponents, 221 CentralLimitTheorem, 30 chemicalpotential, 93 CIN, 183

Clausius–Clapeyronequation, 110 closedsystem, 15 coefficientofexpansion, 67 collisioncross-section, 22 collisionfrequency, 23 component, 8 compositesystem, 78 compressibility, 66 conditionalinstability, 179 conservativeforce, 73 conservativeproperty, 58 continuityequation, 240 convectiveavailablepotentialenergy(CAPE), 181 convectiveinhibitionenergy(CIN), 183 coordinates, 7 criticalisotherm, 102 crossproduct, 223 cyclonicwind, 222 cylindricalcoordinates, 222 cylindricalpipe, 230

Index

degreesoffreedom, 52 density, 2 determinant, 224 dewpointtemperature, 114 diabatic, 75, 244 diathermal, 9 differential, 63 dimensions, 2 directionalderivative, 227 divergence, 234, 236 divergencetheorem, 239 dotproduct, 222 dynamics, 1, 220

efficiency, 85 effusion, 35 endothermic, 192, 194 enthalpy, 44, 61, 64 entropy, 74 equationofcontinuity, 220, 240 equationofstate, 21 equilibration, 30 equilibriumconstant, 207 equilibriumstate, 7 equivalentpotentialtemperature, 156 escapevelocity, 19 exothermic, 192 exponentialfunction, 15 extensivevariable, 13

flux, 230, 231 Fourier’sLaw, 232 freeatmosphere, 159 freeconvection,levelof(LFC), 178 freeexpansion, 77, 88 functionofstate, 54

geopotential, 141 geopotentialheight, 141 Gibbsenergy, 89 gradient, 226 gravitationalgeopotential, 141

harmonicoscillator, 148 haze, 129 heat, 48 heattransfer, 10 heating, 48 heatingbyradiation, 246 hectopascal, 2 Henry’sLaw, 212 heterogeneousnucleation, 122 homogeneousnucleation, 122 hydrologicalcycle, 99 hydrostaticequation, 135, 146 hygroscopic, 126

idealgas, 21, 70 inflectionpoint, 102 integratingfactor, 70, 72 integrationconstant, 110 intensivevariable, 13 internalenergy, 44, 51 internalenergyofanidealgas, 53 internallyuniformproperty, 7 inversion, 179 irreversiblechange, 47 irreversibleprocess, 12 isochoric, 50 isolatedsystem, 11 isotherm, 10 isothermalpath, 76 isotope, 36 isotropic, 32

jointdistribution, 32

Kelvin, 26 kilogram, 2 kilopascal, 2

Lagrangemultiplier, 160 latentheat, 63 LCL, 119 levelsurface, 227 LFC, 178 liftingcondensationlevel,LCL, 119 Loschmidtnumber, 22

macroscopic, 7 massfluxdensity, 232 materialderivative, 240, 242 maximumwork, 47 Maxwell–Boltzmanndistribution, 32 meanfreepath, 22 meansquaredvalue, 29 meanvalue, 29 millibar, 2 mixingratio, 113 mode, 30 moist, 156 moistadiabat, 155 moiststaticenergy, 158 mol, 7

molarGibbsenergy, 91 mole, 7 molecularweight, 36 mostprobablevelocity, 30

neutralbuoyancy,levelof(LNB), 179 Newton, 2, 5 Newton’sSecondLaw, 144 partialpressure, 39 pascal, 2 perfectdifferential, 70 photochemicalreactions, 194 photodissociation, 194 physicalchemistry, 191 Poisson’sequation, 58, 59 polarcoordinates, 236 positionvector, 225 potentialenergy, 6 potentialinstability, 180 potentialtemperature, 58, 75 pressure, 20 pressuregradientforce, 228, 229 probabilitydensityfunction,pdf, 30 products, 192 pseudo-adiabaticprocess, 154 quasi-staticprocess, 12 radiation,heatingby, 246 randomvariable, 29 Raoult’sLaw, 211 reactants, 9, 192 reactionratecoefficient, 202 realizations, 29 rectangularparallelepiped, 224 reducedvolume, 103 relativehumidity, 114 reservoir, 9 reversibleadiabaticprocess, 75 reversibleprocess, 12 reversiblework, 47 rootmeansquare, 28 rotatingfluid, 237 saturated, 9 saturationequivalentpotentialtemperature, 157 saturationvapormixingratio, 114 saturationvaporpressure, 102 scalarfield, 225 scalarproduct, 222 scaleheight, 19, 24, 137 SIunits, 2 slingpsychrometer, 118 slopeofdryadiabat, 138 sounding, 147 specificentropy, 75, 109 specificGibbsenergy, 91 specificheatcapacity, 50 specifichumidity, 115 specificvolume, 103 stablelayer, 145

stable,stability, 145 standardconditions, 38 standardenthalpyforfusion, 64 standardenthalpyforvaporization, 64 standardenthalpyofformation, 192 StandardInternationalunits, 2 stateofasystem, 44 STP, 3, 38 supercooled, 111 supersaturated, 104 surfaceintegral, 230 surfacetension, 122 surroundings, 9, 77 temperature, 26 thermaladvection, 233 thermalconductivity, 233 thermalenergy, 48 thermodynamiccoordinates, 7 thermodynamicequation, 220, 243 thermodynamicpotential, 81

thermodynamicsystem, 7 thickness, 142 tracer, 155 triplepoint, 106 unitvector, 221 universalconstant, 3, 21 universalgasconstant, 3, 38 universe, 77 unstable, 145 vaporization, 64 variance, 29 vectoraddition, 221 vectorfield, 226 virtualtemperature, 113 viscousflow, 232 weight, 5 wet-bulbpotentialtemperature, 157 work, 13, 45

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.