Proceedings of 1st Shri Chhatrapati Shivaji Maharaj QIP Conference on Engineering Innovations Organized by Shri. Chhatrapati Shivaji Maharaj College of Engineering, Nepti, Ahmednagar In Association with JournalNX - A Multidisciplinary Peer Reviewed Journal, ISSN No: 2581-4230 21st - 22nd February, 2018
EXISTENCE RESULT FOR INITIAL VALUE PROBLEM WITH NONLINEAR FUNCTIONAL RANDOM FRACTIONAL DIFFERENTIAL EQUATION Dr. M. K. Bhosale1, Mr. S.S.Parande2 1(Dept. of Mathematics,Shri. ChhatrapatiShivajiMaharaj College of Engineering Dist. Ahmednagar/Pune University, Maharashtra. India, email: mrs.megha_shinde@rediffmail.com) 2(Dept. of Mathematics,Shri. ChhatrapatiShivajiMaharaj College of Engineering Dist. Ahmednagar/Pune University, Maharashtra. India) ABSTRACT:- In this paper we prove the existence result for initial value problems with nonlinear functional random fractional differential equations under Caratheodory condition .
a mapping x: â„Śâ&#x;ś E is measurable if for any B ∈ βE one has
KEY WORDS: - Random fractional differential equation, fractional integral, Caputo fractional derivative etc. 2000 MATHEMATIC SUBJECT CLASSIFICATION:- 26A33, 47H10. 1. INTRODUCTION:The linear as well as nonlinear initial value problem of random differential equations have been studied in the literature by the authors since long time refer a Dhage[4-6]. Similarly the fraction differential equation are frequently use in many branches of engineering and science It has been mentioned first by Liouville in a paper from 1832. There are real world phenomena with anomalous dynamics such as signals transmission, network traffic and so on. In this case the theory of fractional differential equation is a good tool for modeling such as phenomena. For some fundamental result in the theory of fractional differential equations. We refer paper of Lakshmikantham [9, 10, 11] and [13,14]. Let â„? denote the real line and Let I0 = [−r, 0] and I = [0, T] be two closed and bounded interval in â„? for some r> 0 and T > 0. Let đ??˝ = I0 UI. Let C(I0 , â„?) denote the space of continuous â„? valued function I0 . We equip the space C = C(I0 , â„?) with a supremum norm âˆĽ.âˆĽc defined by âˆĽxâˆĽc = sup |x(t)|
Where đ?’œ Ă— βE is the direct product of the Ďƒ- algebras A and βE those defined in â„Ś and E respectively.
tĎľI0
Clearly C is a Banach Space which is also a Banach Space with respect to this norm. For a given t ĎľI define a continuous R-valued function. xt : I0 â&#x2020;&#x2019; â&#x201E;? by xt (θ) = (t + θ) , θ ĎľI0 Let (Ί, A) be a measurable space i.e. a set đ?&#x203A;ş with a đ?&#x153;&#x17D;algebra of subset of đ?&#x203A;ş and for given a measurable function xâ&#x2C6;ś Ί â&#x2020;&#x2019; C(J, â&#x201E;?). Consider nonlinear functional random fractional differential equations of the form (in short RFDE) cDÎą x( t , Ď&#x2030; )= f( t, x (Ď&#x2030;), Ď&#x2030;) a.e tâ&#x2C6;&#x2C6; J , 0<Îą<1 t x(0, Ď&#x2030;) = x0 (Ď&#x2030;) (1.1) Where x is a random function; x0 is random, DÎą x is the Caputo fractional derivative of x with respect to the variable t â&#x2C6;&#x2C6; J and f: J Ă&#x2014; â&#x201E;? Ă&#x2014; Ί â&#x2020;&#x2019; â&#x201E;? is given function. 2.
EXISTENCE RESULT:Let E denote a Banach space with the norm ||.|| and let Q: Eâ&#x;śE. We further assume that the Banach space E is separable i.e. E has countable dense subset and let βE be the Ď&#x192; â&#x2C6;&#x2019; algebra of Borel subset of E. We say
x-1(B) = {(Ď&#x2030;, x) â&#x2C6;&#x2C6; â&#x201E;Ś Ă&#x2014; E : x (Ď&#x2030;, x) â&#x2C6;&#x2C6; B } â&#x2C6;&#x2C6; đ?&#x2019;&#x153; Ă&#x2014; βE
Let Q: â&#x201E;Ś Ă&#x2014; Eâ&#x;ś E be a mapping. Then Q is called a random operator if Q (Ď&#x2030;, x) is measurable in Ď&#x2030; for all xâ&#x2C6;&#x2C6;E and it is expressed as Q(Ď&#x2030;) x = Q(Ď&#x2030;, x). A random operator Q (Ď&#x2030;) on E is called continuous (resp. compact, totally bounded and completely continuous) If Q(Ď&#x2030;, x) is continuous (resp. compact, totally bounded and completely continuous) in x for all Ď&#x2030; Ďľ â&#x201E;Ś. Ě&#x2026;Ě&#x2026;Ě&#x2026;Ě&#x2026; Lemma 2.1[12]: Let BR (0) and B R (0) be the open and closed ball centered at origin of radius R in the separable Banach space E and let Q: â&#x201E;ŚĂ&#x2014; Ě&#x2026;Ě&#x2026;Ě&#x2026;Ě&#x2026; BR (0)â&#x;ś E be a compact and continuous random operator. Further suppose that there does not exists an uĎľ E with ||u||=R such that Q (Ď&#x2030;) u = Îť u for all Îť Ďľ â&#x201E;Ś where Îť > 1. Then the random equation Q(Ď&#x2030;)x = x has a random solution, i.e. there is a Ě&#x2026;Ě&#x2026;Ě&#x2026;Ě&#x2026; measurable function đ?&#x153;&#x2030;:â&#x201E;Śâ&#x;śB such that R (0) Q(Ď&#x2030;)đ?&#x153;&#x2030;(Ď&#x2030;)=đ?&#x153;&#x2030;(Ď&#x2030;) for all Ď&#x2030;Ďľ â&#x201E;Ś . Lemma 2.2[12]: (CarathĂŠodory) Let Q: â&#x201E;Ś Ă&#x2014; E â&#x;ś E be a mapping such that Q(.,x) is measurable for all xĎľ E and Q(Ď&#x2030;,.) is continuous for all Ď&#x2030; Ďľâ&#x201E;Ś Then the map (Ď&#x2030;, x) â&#x;śQ(Ď&#x2030;, x) is jointly measurable. We seek random solution of (1.1) in Banach space C (J, â&#x201E;?) of continuous real valued function defined on J. We equip the space C ( J, â&#x201E;?) with the supremum norm||.|| defined by ||x|| = suptĎľâ&#x201E;?|x(t)| It is known that the Banach space C (â&#x201E;?, â&#x201E;?) is separable. By L1 (â&#x201E;?, â&#x201E;?) we denote the space of Lebesgue measurable real-valued function defined on â&#x201E;?. By ||.||L1 we denote the usual norm in L1 (â&#x201E;?, â&#x201E;?) defined by 1 ||x||L1= â&#x2C6;Ť0 |x(t)|dt. We need the following definition in the sequel. Definition 2.1: A CarathĂŠodory function f :â&#x201E;? Ă&#x2014; â&#x201E;? Ă&#x2014; â&#x201E;Ś â&#x;śâ&#x201E;? is called random L1- CarathĂŠodory if for each real number r>0 there is a measurable and bounded function hr : â&#x201E;Ś â&#x;ś L1(â&#x201E;?,â&#x201E;?) such that |f (t, x, Ď&#x2030;)| â&#x2030;¤ hr (t, Ď&#x2030;) a. e.t Ďľ â&#x201E;? . Where |x|â&#x2030;¤ r and for all Ď&#x2030; Ďľ â&#x201E;Ś We consider the following set of hypothesis H1) The function (t, x) â&#x2020;&#x2019; f(t, x, Ď&#x2030;) is continuous for a.e. Ď&#x2030;â&#x2C6;&#x2C6;đ?&#x203A;ş.
109 | P a g e
H 2) H 3)
Proceedings of 1st Shri Chhatrapati Shivaji Maharaj QIP Conference on Engineering Innovations Organized by Shri. Chhatrapati Shivaji Maharaj College of Engineering, Nepti, Ahmednagar In Association with JournalNX - A Multidisciplinary Peer Reviewed Journal, ISSN No: 2581-4230 21st - 22nd February, 2018 Ě&#x2026;Ě&#x2026;Ě&#x2026; Ě&#x2026; The function Ď&#x2030; â&#x2020;&#x2019; f(t, x, Ď&#x2030;) is measurable for a. e. Next we show that Q(Ď&#x2030;)(BR (0)) is equicontinuous set in Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; (0), t1, t2â&#x2C6;&#x2C6; J , É&#x203A; > 0 we have Ď&#x2030; â&#x2C6;&#x2C6;đ?&#x203A;ş. E for any x â&#x2C6;&#x2C6; B K t Ě&#x2026;Ě&#x2026;Ě&#x2026; Ě&#x2026; (Ď&#x2030;) There exist y â&#x2C6;&#x2C6;â&#x201E;? s.t. x0 â&#x2C6;&#x2C6; BR (0) for a. e. Ď&#x2030; â&#x2C6;&#x2C6;đ?&#x203A;ş |Q(Ď&#x2030;)x(t1 ) â&#x2C6;&#x2019; Q(Ď&#x2030;)x(t 2 )| â&#x2030;¤Î&#x201C;Îą â&#x2C6;Ť0 2(t 2 â&#x2C6;&#x2019; Ď&#x201E;)Îąâ&#x2C6;&#x2019;1 â&#x2C6;&#x2019; where K t (t1 â&#x2C6;&#x2019; Ď&#x201E;)Îąâ&#x2C6;&#x2019;1 dĎ&#x201E; + â&#x2C6;Ťt 1(t1 â&#x2C6;&#x2019; Ď&#x201E;)Îąâ&#x2C6;&#x2019;1 dĎ&#x201E; Ě&#x2026;Ě&#x2026;Ě&#x2026;Ě&#x2026;(0) = { xâ&#x2C6;&#x2C6;â&#x201E;? : ||x - x || â&#x2030;¤ É&#x203A; }. B Î&#x201C;Îą R
0
H 4)
nâ&#x2020;&#x2019;â&#x2C6;&#x17E;
By the dominated convergent theorem we obtain t lim Q(Ď&#x2030;) xn (t)= lim [x0 (Ď&#x2030;) + â&#x2C6;Ť0 g Îą (t â&#x2C6;&#x2019; nâ&#x2020;&#x2019;â&#x2C6;&#x17E;
nâ&#x2020;&#x2019; â&#x2C6;&#x17E;
s) f(s, xn (Ď&#x2030;), Ď&#x2030;) ds] t
= x0 (Ď&#x2030;) + â&#x2C6;Ť0 g Îą (t â&#x2C6;&#x2019; s)f(s, xs (Ď&#x2030;), Ď&#x2030;)ds = Q(Ď&#x2030;)x(t) For all t â&#x2C6;&#x2C6; J, Ď&#x2030; â&#x2C6;&#x2C6;đ?&#x203A;ş. This shows that Q(Ď&#x2030;) is a continuous Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; (0). random operator on B Now we show that Q(Ď&#x2030;) is a compact random operator Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; (0). on B Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; (0)) is a To finish it, we should prove that Q(Ď&#x2030;)(B uniformly bounded equi continuous set in E for each KaÎą É&#x203A; Ď&#x2030;â&#x2C6;&#x2C6;đ?&#x203A;ş. Since the map Ď&#x2030; â&#x2020;&#x2019; Î&#x201C;Îą+1â&#x2030;¤ 2 . Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; (0) has Let Ď&#x2030;â&#x2C6;&#x2C6;đ?&#x203A;ş be fixed then for any x: đ?&#x203A;ş â&#x2020;&#x2019; B t (t) (Ď&#x2030;), |Q(Ď&#x2030;)xn â&#x2C6;&#x2019; xo (Ď&#x2030;)| â&#x2030;¤ â&#x2C6;Ť0 g Îą (t â&#x2C6;&#x2019; s) |f(s, xn Ď&#x2030;) |ds K
t
â&#x2030;¤ Î&#x201C;Îą â&#x2C6;Ť0 (t â&#x2C6;&#x2019; s)Îąâ&#x2C6;&#x2019;1 ds KaÎą
É&#x203A;
â&#x2030;¤ Î&#x201C;Îą+1 â&#x2030;¤ 2
2K
K
There exist K>0 and x0 â&#x2C6;&#x2C6; Ί s.t.||f(t, x, Ď&#x2030;)|| â&#x2030;¤ Î&#x201C;Îą a.e. Ď&#x2030; â&#x2C6;&#x2C6;đ?&#x203A;ş. And Î&#x201C; is a gamma function Our main existence result is Theorem 2.1: Assume that the hypothesis H1 â&#x20AC;&#x201C; H4 hold. Suppose that there exist a real number R>0 such that R > r1 ||Îł (Ď&#x2030;) ||L1 đ?&#x153;&#x201C; (â&#x201E;?) â&#x20AC;Ś (2.1) for all Ď&#x2030; Ďľ â&#x201E;Ś where r1 = maxtĎľ[0,1] r(t),r(t) is in the greens function Then the (1.1) has a random solution defined on â&#x201E;? Proof: - Set E=C (â&#x201E;?, â&#x201E;?) and define a mapping Q: â&#x201E;Ś Ă&#x2014; Eâ&#x;śE by t Q(Ď&#x2030;)x(t) = x0 (Ď&#x2030;) + â&#x2C6;Ť0 g Îą (t â&#x2C6;&#x2019; s)f(s, xs (Ď&#x2030;), Ď&#x2030;)ds â&#x20AC;Ś(2.2) a.e. Ď&#x2030; â&#x2C6;&#x2C6;đ?&#x203A;ş and for all t â&#x2C6;&#x2C6; J. ( Equation (2.2) is an Integral representation of (1.1)) Then the solution of (1.1) is fixed point of operator Q . Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; (0) in E centered at Define a closed ball B origin with radius R where the real number R satisfies the inequality (2.1). We show that Q satisfies all the Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; (0). condition of lemma 2.1 on B Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; First we show that Q is random operator in B (0). Since f(t, xt (Ď&#x2030;), Ď&#x2030;) is random Caratheodory and x(t, Ď&#x2030; ) is measurable, the map Ď&#x2030; â&#x2020;&#x2019; f(t, xt (Ď&#x2030;), Ď&#x2030;) is measurable. Similarly the product g Îą (t â&#x2C6;&#x2019; s)f(s, xs (Ď&#x2030;), Ď&#x2030;) of continuous and measurable function is again measurable. Further the integral is a limit of finite sum of measurable function . Therefore the map t Ί â&#x2020;&#x2019; x0 (Ď&#x2030;) + â&#x2C6;Ť0 g Îą (t â&#x2C6;&#x2019; s)f(s, xs (Ď&#x2030;), Ď&#x2030;)ds = Q(Ď&#x2030;)x(t) is measurable. Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; (0) in to E. As a result Q is random operator on đ?&#x203A;ş Ă&#x2014; B Next we show that the random operator Q(Ď&#x2030;) is Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; (0). Let xn be a sequence of point in B Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; continuous on B Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; (0). Then it is (0) converging to the point x in B sufficient to prove that lim Q(Ď&#x2030;) xn (t) = Q(Ď&#x2030;)x(t) for all t â&#x2C6;&#x2C6; J, Ď&#x2030; â&#x2C6;&#x2C6;đ?&#x203A;ş.
2
â&#x2030;¤ Î&#x201C;Îą+1 (t â&#x2C6;&#x2019; s)Îą< É&#x203A;
Hence for all t1, t2â&#x2C6;&#x2C6; J |Q(Ď&#x2030;)x(t1 ) â&#x2C6;&#x2019; Q(Ď&#x2030;)x(t 2 )| â&#x2020;&#x2019; 0 as t1 â&#x2020;&#x2019; t2 uniformly for all Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; (0). x â&#x2C6;&#x2C6;B Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; (0) is . Then we know it is compact by Therefore Q(Ď&#x2030;)B Arzela â&#x20AC;&#x201C; Ascoli theorem for each Ď&#x2030;â&#x2C6;&#x2C6;đ?&#x203A;ş. Consequently Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; Q(Ď&#x2030;) is a completely continuous random operator on B (0). Finally we suppose there exist such an element u in E with ||u || = R satisfying Q(Ď&#x2030;)u(t) = Îť u(t, Ď&#x2030;) for some Ď&#x2030; â&#x2C6;&#x2C6;đ?&#x203A;ş and Îť > 1. Now for this Ď&#x2030; â&#x2C6;&#x2C6; we have Îť u(t, Ď&#x2030;) = Q(Ď&#x2030;)u(t) 1 | u(t, Ď&#x2030;) | â&#x2030;¤ | Q(Ď&#x2030;)u(t) | Îť 1
t
â&#x2030;¤ Îť|x0 (Ď&#x2030;) + â&#x2C6;Ť0 g Îą (t â&#x2C6;&#x2019; s)f(s, xs (Ď&#x2030;), Ď&#x2030;)ds | 1
1
t
â&#x2030;¤ Îť x0 (Ď&#x2030;) + Îť â&#x2C6;Ť0 g Îą (t â&#x2C6;&#x2019; s)f(s, xs (Ď&#x2030;), Ď&#x2030;)ds 1
kaÎą
â&#x2030;¤ Îť x0 (Ď&#x2030;) + ÎťÎ&#x201C;Îą+1 â&#x2030;¤Ď 1 kaÎą For all t â&#x2C6;&#x2C6; J where Ď = Îť x0(Ď&#x2030;) + ÎťÎ&#x201C;Îą+1 This contradicts to inequality (2.1) this all the condition of lemma 2.1 are satisfied. Hence random equation Q(Ď&#x2030;) x(t) = x(t,Ď&#x2030;) has a random Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; (0) i.e. there exist a measurable function Ξ solution in B Ě&#x2026;Ě&#x2026;Ě&#x2026;RĚ&#x2026; (0) such that Q(Ď&#x2030;)đ?&#x153;&#x2030;(t)=đ?&#x153;&#x2030;(t) for all Ď&#x2030;Ďľ â&#x201E;Ś and t â&#x2C6;&#x2C6; :đ?&#x203A;şâ&#x2020;&#x2019;B J. As a result RFDE (1.1) has a random solution defined on J. This completes the proof. REFERENCES [1] T.T.Soong, Random Differential Equations in Science and Engineering, Academic Press, New York, 1973. [2] R. P. AGARWAL, M BENCHOHRA, S. HAMANI, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. DOI 10.1007/s10440-008-9356-6. [3] R. A. KHAN, Existence and approximation of solutions of nonlinear problems with integral boundary conditions, Dynamic Systems and Applications, 14 (2005), 281â&#x20AC;&#x201C;296. [4] B.C. Dhage, S.K. Ntouyas, Existence and attractivity results for nonlinear first order random differential equations, Opuscula Math. 30 (2010) 4, 411â&#x20AC;&#x201C;429. [5] B.C. Dhage, On global existence and attractivity results for nonlinear random integral equations, Panamer. Math. J. 19 (2009) 1, 97â&#x20AC;&#x201C;111. [6] G.S. Ladde, V. Lakshmikantham, Random Differential Inequalities, Academic Press, New York, 1980. [7] B.C. Dhage, On n-th order nonlinear ordinary random differential equations, Nonlinear Oscil. 13 (2011) 4, 535â&#x20AC;&#x201C;549. [8] V. Lupulescu, S.K. Ntoukas, Random fractional differential equations, International Electronic Journal of Pure and Applied Mathematics, 4 (2012) 2, 119â&#x20AC;&#x201C;136.
110 | P a g e
[9]
[10]
[11]
[12]
[13]
[14]
Proceedings of 1st Shri Chhatrapati Shivaji Maharaj QIP Conference on Engineering Innovations Organized by Shri. Chhatrapati Shivaji Maharaj College of Engineering, Nepti, Ahmednagar In Association with JournalNX - A Multidisciplinary Peer Reviewed Journal, ISSN No: 2581-4230 21st - 22nd February, 2018 A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam, 2006 V. Lakshmikantham, A.S. Vatsala, Theory of fractional differential inequalities and applications, Commun. Appl. Anal. 11 (2007), 395â&#x20AC;&#x201C;402. V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69 (2008), 2677â&#x20AC;&#x201C;2682. B.C.Dhage, S.V. badgire, S.K.Ntouyas, Periodic boundary valu problem of second order random differential equation .Electron. J. Qaul. Theory Diff.Equ.,21(2009), 1-14. M.K.Bhosale , R.N.Ingle,Second Order Nonlinear Functional Random Differential Equation, Journal of Global research in Mathematical Archives, 9( 2013), 15-22 . M.K.Bhosale , R.N.Ingle,Existence Theory For Second Order Nonlinear Functional Random Differential Equation In Banach Algebra, IOSR-JM, 11(2015) 612.
111 | P a g e