República Bolivariana de Venezuela Universidad Fermín toro Facultad de Ingeniería Cabudare – Estado Lara
Integrante: Kelvic Mendoza C.I. 17.699.793
1.) Introduccion a la Teoría de Interpolación Un problema que se presenta con frecuencia en las ciencias experimentales y en ingeniería es tratar de construir una función (denominada “función interpolante”) de la que se conoce una serie de datos (denominados “datos de interpolación”). Estos datos pueden ser fruto de las observaciones realizadas en un determinado experimento en el que se relacionan dos o más variables e involucran valores de una función y/o de sus derivadas. El objetivo será determinar una función que verifique estos datos y que además sea fácil de construir y manipular. Por su sencillez y operatividad los polinomios se usan frecuentemente como funciones interpolantes. Un problema de interpolación en general puede enunciarse de la siguiente forma: Dado un conjunto de datos, generalmente valores de una función y/o sus derivadas en determinados puntos xi, i = 0, 1, · · · ,n, que llamaremos nodos, nuestro objetivo es construir otra función que coincida con la función dada en los datos de interpolación. Según el tipo de los datos de interpolación, podemos considerar los siguientes tipos de interpolación: Interpolación de Lagrange Interpolación de Taylor Interpolación De Hermite 2.) Polinomios Interpolantes de Newton-Gregory y Gauss 3- ) Polinomio Interpolante de Newton-Gregory Cuando la función ha sido tabulada, se comporta como un polinomio, se le puede aproximar al polinomio se le parece. Una forma sencilla de escribir un polinomio que pasa por un conjunto de puntos esquiespaciados, es la fórmula del polinomio interpolante de Newton-Gregory (en avance y retroceso). 4.) Fórmula de Avance 5.)Fórmula de Retroceso 6.) Polinomio Interpolante de Gauss
Hay una gran variedad de formulas de interpolación además del método de Newton-Gregory, difieren de la forma de las trayectorias tomadas en la tabla de diferencias; por ejemplo la fórmula del polinomio interpolante de Gauss( en avance y retroceso), donde la trayectoria es en forma de Zig-Zag, es decir los valores desde el punto de partida Xo serán seleccionados en forma de zig.zag. En el caso de la formula de avance los valores son tomados en forma de zig-zag, iniciando primero hacia hacia abajo, luego hacia arriba, luego hacia abajo, y asi sucesivamente. En formula de avance los valores son tomados en forma de zigzag, iniciando primero hacia arriba, luego hacia abajo, luego hacia arriba, y asi sucesivamente. 7.) Interpolación De Hermite Disponemos de los valores de una función y de algunas de sus derivadas sucesivas en determinados puntos. Por ejemplo, f (xi) y f′ (xi) en n + 1 puntos distintos, xi, i = 0, 1, · · ·, n En general, las funciones interpolantes forman un espacio vectorial de dimensión finita, es decir son del tipo: Ψ (x) = a0 ψ0 (x) + a1 ψ1 (x) + · · · + an ψn (x), Donde ψ0(x), ψ1(x), · · ·, ψn(x) Son funciones dadas que forman base del espacio vectorial correspondiente y ai, i = 0, 1, ·, n numeras reales a determinar. Dependiendo del tipo de funciones que utilicemos como funciones interpolantes, la interpolación se llamara polinómica, racional, trigonométrica, spline polinomial. Entre las diferentes funciones interpolantes, por su sencillez y facilidad para operar, los polinomios son los utilizados con mayor frecuencia en problemas de interpolación, en este caso las funciones de base son ψi (x) = xi, i = 0, 1, · · ·, n. Sin embargo, no siempre dan una respuesta satisfactoria, especialmente si la solución del problema requiere el uso de polinomios de alto grado o, por ejemplo, si se observa un comportamiento periódico en los datos de interpolación. Por simplicidad, nos centraremos en este Tema en el estudio del caso particular de la interpolación polinómica de Langrange. 8.) Interpolación Usando Splines En el subcampo matemático del análisis numérico, un spline es una curva diferenciable definida en porciones mediante polinomios.
En los problemas de interpolación, se utiliza a menudo la interpolación mediante splines porque da lugar a resultados similares requiriendo solamente el uso de polinomios de bajo grado, evitando así las oscilaciones, indeseables en la mayoría de las aplicaciones, encontradas al interpolar mediante polinomios de grado elevado. Para el ajuste de curvas, los splines se utilizan para aproximar formas complicadas. La simplicidad de la representación y la facilidad de cómputo de los splines los hacen populares para la representación de curvas en informática, particularmente en el terreno de los gráficos por ordenador. El término "spline" hace referencia a una amplia clase de funciones que son utilizadas en aplicaciones que requieren la interpolación de datos, o un suavizado de curvas. Los splines son utilizados para trabajar tanto en una como en varias dimensiones. Las funciones para la interpolación por splines normalmente se determinan como minimizadores de la aspereza sometidas a una serie de restricciones. Este es el caso más sencillo. En él, vamos a interpolar una función f(x) de la que se nos dan un número N de pares (x,f(x)) por los que tendrá que pasar nuestra función polinómica P(x). Esta serie de funciones nuestras van a ser lineales, esto es, con grado 1: de la forma P(x) = ax + b. Definiremos una de estas funciones por cada par de puntos adyacentes, hasta un total de (N-1) funciones, haciéndolas pasar obligatoriamente por los puntos que van a determinarlas, es decir, la función P(x) será el conjunto de segmentos que unen nodos consecutivos; es por ello que nuestra función será continua en dichos puntos, pero no derivable en general. Ejemplo: Interpolar con splines f(x) = 1 / x, en los puntos en los que x vale 1, 2 y 4 F (1) = 1 F (2) = 0.5 F (4) = 0.25 El primer segmento P1(x) = ax + b deberá unir los primeros dos puntos de coordenadas (1,1) y (2,0.5). Surge un sistema lineal de dos ecuaciones en dos incógnitas: (1) 1=a+b (2) 0.5=2a+b
De (1) se obtiene: a=1-b (3) Reemplazando (3) en (2) se obtiene: 0.5=2(1-b)+b Luego b=1.5 Reemplazando el valor de (b) en (1), se obtiene: a = - 0.5 Por lo tanto, se concluye que: P1(x) = - 0.5x + 1.5 El segundo segmento P2(x) = ax + b deberá unir el segundo punto (2,0.5) con el tercer punto (4,0.25). Análogamente a lo hecho para P1(x), en el caso de P2(x) se obtiene: (1) 0.5 = 2a + b (2) 0.25 = 4a + b a = - 0.125, b = 0.75 Luego P2(x) = - 0.125x + 0.75 9- ) Polinomio Interpolante De Lagrange El problema de la interpolación polinómica de Lagrange consiste en lo siguiente: Conocidos los valores de una función f en n + 1 puntos distintos xi, i = 0, 1, · · ·, n de un intervalo [a, b], nos planteamos obtener un polinomio Pn de grado no superior a n, que coincida con la función f en estos n + 1 puntos, es decir, Pn (xi) = f (xi), Para i = 0, 1, · · ·, n. El polinomio Pn buscado forma parte del conjunto de los polinomios de grado menor o igual que n y, por tanto, Pn (x) será de la forma Pn (x) = an x n + an−1 x n−1 + · · · + a1 x + a0, Y, para determinarla, habría que hallar los n + 1 coeficientes reales a0, a1, · · ·, an. En el caso que an sea no nulo, diremos que Pn (x) tiene exactamente grado n.
La existencia y unicidad del polinomio de interpolación Pn (x) se prueba en el siguiente resultado, adamas se determina una primera forma de construirlo. Sean f: [a, b] → R y {x0, x1, · · ·, xn}, n+1 puntos distintos del intervalo [a, b]. Entonces, existe un único polinomio Pn (x) de grado menor o igual que n, que verifica Pn (xi) = f (xi), i = 0, 1, · · ·, n. A este polinomio se le denomina polinomio de interpolación de f en los nodos {x0, x1, · · · , xn} y viene dado por Pn (x) =Xni=0f (xi) Li (x), (1.1) Donde, para cada i ∈ {0, 1, · · · , n}, Li (x) =Ynj=0j=6 ix – xj xi – xj Tabla de Diferencias Resulta conveniente arreglar los datos en una tabla con los valores x en orden ascendente. Además de las columnas para x y f(x), se deberán tabular las diferencias de los valores funcionales. La tabla que se muestra a continuación es llamada tabla de diferencias. x 0,0 0,2 0,4 0,6 0,8 1,0 1,2
f(x) 0,000 0,020 0,203 0,052 0,423 0,211 0,684 1,030 1,557 2,572
2
0,203 0,032 0,220 0,159 0,261 0,346 0,527 1,015
3
f(x) 0,017 0,127 0,041
f(x) 0,024
0,085
0,096
0,181 0,488
0,307
4
f(x)
0,044
Los términos calculados en la tabla de diferencias, permiten determinar los coeficientes de polinomios interpolantes. Es convencional que la letra h sea la representar el orden de los valores x y f(x) 10- ) Diferencias Divididas Y La fórmula General De Newton
5
f(x)
6
La diferencia dividida de newton para la interpolación de polinomios está entre los modelos más populares y útiles. Para un polinomio de grado n se requiere de n+1 puntos. Se usan estos datos para determinar los coeficientes para las diferencias divididas. Partiendo de una tabla de diferencias divididas. Para aplicar el polinomio de interpolación por diferencias divididas por newton, no es necesario que los datos tabulados sean necesariamente equiespaciados o que los valores deban estar ordenados en forma ascendente. El valor que aporta el polinomio de newton está sujeto a un error.
11.) Aplicación De Los Métodos Numéricos De Interpolación En La Resolución De Problemas Formulas como las de Newton-Gregory, Gauss, lagrange, Hermite, newton, etc, son compatibles con computadoras y debido a las muchas funciones tabulares disponibles, como subrutinas de librerías; dichas formulas tienen relevancia en la solución de ecuaciones diferenciales ordinarias. El polinomio de interpolación suele usarse para estimar valores de una función tabulada, en las abscisas que no aparecen en la tabla. El aumento de grado no siempre mejora la aproximación El polinomio es muy sensible a los errores de los datos