The University of the State of New York • THE STATE EDUCATION DEPARTMENT • Albany, New York 12234 • www.nysed.gov
cm 1 2
Reference Tables for Physical Setting/EARTH SCIENCE
3
Radioactive Decay Data
Specific Heats of Common Materials
Potassium-40
40
C K
5.7 × 10
N
40
Ar
9
1.3 × 10
40
Ca
Rubidium-87
87
87
U
Rb
9
Pb
4.5 × 10
Sr
4.9 × 10
10
Properties of Water
change in field value distance
Heat energy released during freezing . . . . . . . . 334 J/g
change in value time
Heat energy gained during vaporization . . . . . 2260 J/g
Percent by volume
Percent by volume
46.10 28.20 8.23 5.63 4.15 2.36 2.33 2.09
94.04 0.88 0.48 0.49 1.18 1.11 0.33 1.42
33.0
21.0
18
TROPOSPHERE
Percent by volume
19 20
66.0 1.0
1.0
22
0.07
21
78.0 0.91
17
HYDROSPHERE
Percent by mass
16
Oxygen (O) Silicon (Si) Aluminum (Al) Iron (Fe) Calcium (Ca) Sodium (Na) Magnesium (Mg) Potassium (K) Nitrogen (N) Hydrogen (H) Other
CRUST
15
Average Chemical Composition of Earth’s Crust, Hydrosphere, and Troposphere
14
Density at 3.98°C . . . . . . . . . . . . . . . . . . . . . . . . 1.0 g/mL
13
Heat energy released during condensation . . . 2260 J/g
mass Density = volume
ELEMENT (symbol)
12
Rate of change =
Heat energy gained during melting . . . . . . . . . . 334 J/g
11
Gradient =
distance between foci length of major axis
10
Eccentricity =
9
Equations
8
206
4.18 2.11 2.00 1.01 0.84 0.79 0.45 0.38 0.13
7
Uranium-238
238
Liquid water Solid water (ice) Water vapor Dry air Basalt Granite Iron Copper Lead
3
14
6
14
(Joules/gram • °C)
5
Carbon-14
SPECIFIC HEAT
4
MATERIAL
RADIOACTIVE DISINTEGRATION HALF-LIFE (years) ISOTOPE
23
Eurypterus remipes
25
New York State Fossil
24
2010 EDITION This edition of the Earth Science Reference Tables should be used in the classroom beginning in the 2009–2010 school year. The first examination for which these tables will be used is the January 2010 Regents Examination in Physical Setting/Earth Science.
Lake Erie
Ap p
Grenville Province (Highlands)
at Pl
u ea
( Key
) ds n la p U
Tug Hill Plateau
e
International boundary
State boundary
Landscape region boundary
ds
Adirondack Mountains
Lo
an wl
The Catskills
e nc
Major geographic province boundary
Allegheny Plateau
Erie-Ontario Lowlands (Plains)
Lake Ontario
S
a t. L
wr
Interior Lowlands
Generalized Landscape Regions of New York State
Interior Lowlands
ala c h ia n
Champlain Lowlands
ew En (H gla i gh nd l P a nd ro v N 0
20 40 60 Kilometers
80
Miles 0 10 20 30 40 50
ic C t n a Atl
W S
N
e lain P l a t oas
nds ighla H n o H uds rong tan P t a h Man
Huds o nM o h a w k Lo wlands Taco n i c M ounta ins
N Lo ewa w l an rk ds
in c s)
2
Physical Setting/Earth Science Reference Tables — 2010 Edition
E
Physical Setting/Earth Science Reference Tables — 2010 Edition
3
} }
limestones, shales, sandstones, and dolostones
CAMBRIAN and EARLY ORDOVICIAN sandstones and dolostones moderately to intensely metamorphosed east of the Hudson River CAMBRIAN and ORDOVICIAN (undifferentiated) quartzites, dolostones, marbles, and schists intensely metamorphosed; includes portions of the Taconic Sequence and Cortlandt Complex TACONIC SEQUENCE sandstones, shales, and slates slightly to intensely metamorphosed rocks of CAMBRIAN through MIDDLE ORDOVICIAN ages MIDDLE PROTEROZOIC gneisses, quartzites, and marbles Lines are generalized structure trends. MIDDLE PROTEROZOIC anorthositic rocks
ORDOVICIAN CAMBRIAN
CRETACEOUS and PLEISTOCENE (Epoch) weakly consolidated to unconsolidated gravels, sands, and clays LATE TRIASSIC and EARLY JURASSIC conglomerates, red sandstones, red shales, basalt, and diabase (Palisades sill) PENNSYLVANIAN and MISSISSIPPIAN conglomerates, sandstones, and shales DEVONIAN limestones, shales, sandstones, and conglomerates SILURIAN also contains salt, gypsum, and hematite. SILURIAN
GEOLOGIC PERIODS AND ERAS IN NEW YORK
modified from GEOLOGICAL SURVEY NEW YORK STATE MUSEUM 1989
Generalized Bedrock Geology of New York State
ar a River ag Ni
Dominantly metamorphosed rocks
Intensely metamorphosed rocks (regional metamorphism about 1,000 m.y.a.)
} }
}
Dominantly sedimentary origin
S AND I SL
OUND
0
20 40 60 Kilometers
80
Miles 0 10 20 30 40 50
NG LO
W S
N E
80°
60°
40°
20°
0°
20°
40°
60°
40°
40°
India
Asia
80°
C.
100°
Equatoria
120°
80°
100°
.
140°
120°
140°
lar Current
Australia
Antarctic Circumpo
Antarctica
60°
l C.
ra lia C .
st West Au
Indian Ocean
th Sou
Equatorial Countercurrent
North Equatorial
60°
Oyash io
NOTE: Not all surface ocean currents are shown.
20°
Africa
20°
C
roshio
C.
160°
160°
a
140°
C
S
180°
120°
South Pacific Ocean
160°
140°
120°
Equatorial C. outh
Equatorial Countercurrent
Equatorial C.
a s ka C Al
Southern Ocean
North
North Pacific Ocean
North Pacific C.
C. tka a h
C.
160°
Arctic Ocean
180°
80°
G u
Florida C.
North America
100°
100°
80°
Antarctica
60°
C.
C.
r No
0°
Africa
Europe
40°
r c ti Anta
C
0°
Cool currents
Warm currents
Key
20°
urrent umpolar C c Circ
South Atlantic Ocean
S o ut h Equatorial
Equatorial Guin ea C Countercurrent .
Equatorial
South America
60°
North Atlantic C.
E
nl ee r tG as
North Atlantic Ocean
Nor th
am tre S lf
20°
Greenland
40°
C.
an d
80°
C.
as
Ag ulh
Kam c
East Australi
nC . we g ia
Surface Ocean Currents
C.
. ia C Falkla nd
a rn lifo
Br a z il C .
. .
Ku
rC do a br La
Per u C.
C. nd a l en B e ngu ela C.
4 re tG es W Canary C.
.
Physical Setting/Earth Science Reference Tables — 2010 Edition
20°
20°
Antarctic Circle (66.5° S)
Tropic of Capricorn (23.5° S)
Equator
Tropic of Cancer (23.5° N)
Arctic Circle (66.5° N)
S
an
ou the
as t Ind
e
a Tr ria n a e n ch
Fiji Plate
st Ea
Convergent plate boundary (subduction zone)
subducting plate
overriding plate
Antarctic Plate
Nazca Plate
r
Sandwich Plate
Mantle hot spot
Bouvet Hot Spot
St. Helena Hot Spot
African Plate
Eurasian Plate
Iceland Hot Spot
Complex or uncertain plate boundary
Scotia Plate
Canary Islands Hot Spot
Mi d At la n t i cR idg e
South American Plate
an ibbe Car late P
Pe
Galapagos Hot Spot
Yellowstone Hot Spot
Cocos Plate
Easter Island Hot Spot
Pacific Plate
Hawaii Hot Spot
San Andreas Fault
Juan de Fuca Plate
Divergent plate boundary (usually broken by transform faults along mid-ocean ridges)
Tasman Hot Spot
To n g a Tr e n c h
North American Plate
Mid-Atlantic Ridge
Tectonic Plates
h Aleutian Trenc
Indian-Australian Plate
M
Philippine Plate
Transform plate boundary (transform fault)
Ridg
NOTE: Not all mantle hot spots, plates, and boundaries are shown.
Relative motion at plate boundary
ia n
Eurasian Plate
Antarctic Plate
i nd tI s e we g th Rid u o
Mi d
S
Key
frican Rif st A
Ea
t
ian ab Ar late P idge
dian Ridge -In
Pa cifi cR
Physical Setting/Earth Science Reference Tables — 2010 Edition
hile Tren u-C ch
5
C
Rock Cycle in Earth’s Crust r nd/o na tio ation c pa ent om em C
Relationship of Transported Particle Size to Water Velocity
Depo s and B ition uria l
100.0 Boulders 25.6
n
r Pressure t and/o Hea tamorphism e M
IGNEOUS ROCK
Sand 0.01
0.006
Silt
0.001
Clay
at
0.0001
1000 500
100 50
li
10 5
So
ic di f
1 0.5
g
MAGMA
0.2
0.1 0.05
l ti n
Pebbles
0.1
0.01
Me
1.0
0.0004 io
METAMORPHIC ROCK
n
6.4
n
lift) rosio (U p &E ing r e th Wea lting Me
PARTICLE DIAMETER (cm)
( U p l if t ) n Weathering & Erosio
M e lt i n g
e ss ur H e a t a nd/or Pre m is M e ta m or p h
(U We athe plift) ring & Ero sio
E r o s i on
SEDIMENTARY ROCK
Cobbles
10.0
SEDIMENTS
STREAM VELOCITY (cm/s) This generalized graph shows the water velocity needed to maintain, but not start, movement. Variations occur due to differences in particle density and shape.
noncrystalline
Pumice
Scoria Vesicular andesite
Rhyolite
Andesite
Vesicular basalt Basalt
INTRUSIVE (Plutonic)
Granite
Diorite
Peridotite
Gabbro
Pegmatite
LOWER FELSIC (rich in Si, Al)
Dunite
Vesicular rhyolite
CRYSTAL SIZE
10 mm 1 mm less than or to 1 mm larger 10 mm
EXTRUSIVE (Volcanic)
Basaltic glass
Diabase
COLOR
DARKER
DENSITY
HIGHER
TEXTURE
Glassy
Nonvesicular Vesicular (gas pockets)
Fine
Coarse
Nonvesicular
Very coarse
MAFIC (rich in Fe, Mg)
COMPOSITION
100%
100% Potassium feldspar (pink to white)
75%
Quartz (clear to white)
75% Plagioclase feldspar (white to gray)
50%
50%
Pyroxene (green) Biotite (black)
25% Amphibole (black)
0%
6
Obsidian (usually appears black)
LIGHTER
MINERAL COMPOSITION (relative by volume)
CHARACTERISTICS
IGNEOUS ROCKS
ENVIRONMENT OF FORMATION
Scheme for Igneous Rock Identification
Olivine (green)
25%
0% Physical Setting/Earth Science Reference Tables — 2010 Edition
Scheme for Sedimentary Rock Identification INORGANIC LAND-DERIVED SEDIMENTARY ROCKS TEXTURE
GRAIN SIZE
COMPOSITION
Pebbles, cobbles, and/or boulders embedded in sand, silt, and/or clay Clastic (fragmental)
Sand (0.006 to 0.2 cm) Silt (0.0004 to 0.006 cm) Clay (less than 0.0004 cm)
COMMENTS
Rounded fragments Mostly quartz, feldspar, and clay minerals; may contain fragments of other rocks and minerals
Angular fragments
ROCK NAME
MAP SYMBOL
Conglomerate Breccia
Fine to coarse
Sandstone
Very fine grain
Siltstone
Compact; may split easily
. . . . . . . . . . . . . . . . . .
Shale
CHEMICALLY AND/OR ORGANICALLY FORMED SEDIMENTARY ROCKS TEXTURE
GRAIN SIZE
Crystalline
Fine to coarse crystals
COMPOSITION
COMMENTS
Halite Gypsum
Microscopic to very coarse
Bioclastic
MAP SYMBOL
Rock salt Crystals from chemical precipitates and evaporites
Rock gypsum Dolostone
Dolomite Crystalline or bioclastic
ROCK NAME
Calcite
Precipitates of biologic origin or cemented shell fragments
Carbon
Compacted plant remains
Limestone Bituminous coal
Scheme for Metamorphic Rock Identification TEXTURE
GRAIN SIZE
COMPOSITION
TYPE OF METAMORPHISM
Medium to coarse
AMPHIBOLE GARNET PYROXENE
Fine to medium
Regional (Heat and pressure increases) MICA QUARTZ FELDSPAR
MINERAL ALIGNMENT NONFOLIATED
BANDING
FOLIATED
Fine
Fine
Carbon
Regional
Fine
Various minerals
Contact (heat)
Quartz Fine to coarse
COMMENTS
ROCK NAME
Low-grade metamorphism of shale
Slate
Foliation surfaces shiny from microscopic mica crystals
Phyllite
Platy mica crystals visible from metamorphism of clay or feldspars
Schist
High-grade metamorphism; mineral types segregated into bands
Gneiss
Metamorphism of bituminous coal
MAP SYMBOL
Anthracite coal
Various rocks changed by heat from nearby magma/lava
Hornfels
Metamorphism of quartz sandstone
Quartzite
Regional Calcite and/or dolomite
or
Metamorphism of limestone or dolostone
Marble
contact Coarse
Various minerals
Physical Setting/Earth Science Reference Tables — 2010 Edition
Pebbles may be distorted or stretched
Metaconglomerate
7
GEOLOGIC HISTORY Eon
Era
Period
PHANEROZOIC
QUATERNARY
CENOZOIC
NEOGENE
0.01
PLEISTOCENE 1.8 PLIOCENE 5.3
MIOCENE
PALEOGENE
PROTEROZOIC
M I D D L E
EOCENE PALEOCENE
L A T E
Bedrock
23.0 33.9 55.8 65.5
Humans, mastodonts, mammoths Large carnivorous mammals Abundant grazing mammals Earliest grasses Many modern groups of mammals Mass extinction of dinosaurs, ammonoids, and many land plants
LATE
MESOZOIC CRETACEOUS First sexually reproducing organisms
Earliest flowering plants Diverse bony fishes
EARLY 146
LATE
Earliest birds
MIDDLE
JURASSIC
Abundant dinosaurs and ammonoids
EARLY 200
E A R L Y
Oceanic oxygen begins to enter the atmosphere
Earliest mammals
LATE
TRIASSIC
MIDDLE EARLY 251 LATE MIDDLE
PALEOZOIC
Earliest dinosaurs Mass extinction of many land and marine organisms (including trilobites) Mammal-like reptiles
PERMIAN EARLY
4000
Oceanic oxygen produced by cyanobacteria combines with iron, forming iron oxide layers on ocean floor
CARBONIFEROUS
L A T E
ARCHEAN
P R E C A M B R I A N
3000
Sediment
HOLOCENE 0
OLIGOCENE
1000
2000
Life on Earth
Million years ago
Million years ago 0
500
Epoch
NY Rock Record
M I D D L E Earliest stromatolites Oldest microfossils
E A R L Y
Abundant reptiles 299
LATE EARLY
PENNSYLVANIAN
318
LATE MISSISSIPPIAN
MIDDLE EARLY
359 Earliest amphibians and plant seeds Extinction of many marine organisms
LATE
DEVONIAN
Earth’s first forests Earliest ammonoids and sharks Abundant fish
MIDDLE EARLY 416
Evidence of biological carbon
LATE
SILURIAN
Extensive coal-forming forests Abundant amphibians Large and numerous scale trees and seed ferns (vascular plants); earliest reptiles
EARLY 444
Earliest insects Earliest land plants and animals Abundant eurypterids
LATE Oldest known rocks
ORDOVICIAN
Invertebrates dominant Earth’s first coral reefs
MIDDLE EARLY 488 LATE
Estimated time of origin of Earth and solar system
4600
MIDDLE
CAMBRIAN
EARLY 542 580
(Index fossils not drawn to scale)
A
B
C
1300
D
E
F
G
H
I
Burgess shale fauna (diverse soft-bodied organisms) Earliest fishes Extinction of many primitive marine organisms Earliest trilobites Great diversity of life-forms with shelly parts Ediacaran fauna (first multicellular, soft-bodied marine organisms)
Abundant stromatolites
J
K
L
M
N
Cryptolithus Centroceras Tetragraptus Valcouroceras Eucalyptocrinus Coelophysis Stylonurus Dicellograptus Eurypterus Hexameroceras Manticoceras Ctenocrinus Phacops Elliptocephala
8
Physical Setting/Earth Science Reference Tables — 2010 Edition
OF NEW YORK STATE Time Distribution of Fossils
Important Geologic Events in New York
(including important fossils of New York) The center of each lettered circle indicates the approximate time of existence of a specific index fossil (e.g. Fossil A lived at the end of the Early Cambrian).
S
I H
E
BIRDS
MAMMALS VASCULAR PLANTS EURYPTERIDS
Q
N
P
M
BRACHIOPODS
GASTROPODS
Pangaea begins to break up
232 million years ago Alleghenian orogeny caused by collision of North America and Africa along transform margin, forming Pangaea
R X
Catskill delta forms Erosion of Acadian Mountains Acadian orogeny caused by collision of North America and Avalon and closing of remaining part of Iapetus Ocean
Z
V Y
U
D
T J
359 million years ago
Salt and gypsum deposited in evaporite basins
K B
119 million years ago
Intrusion of Palisades sill CORALS
CRINOIDS
G
59 million years ago
Sands and clays underlying Long Island and Staten Island deposited on margin of Atlantic Ocean
Initial opening of Atlantic Ocean North America and Africa separate
PLACODERM FISH
F
GRAPTOLITES
C
Advance and retreat of last continental ice
Dome-like uplift of Adirondack region begins
L
TRILOBITES
AMMONOIDS
DINOSAURS
NAUTILOIDS
O
Inferred Positions of Earth’s Landmasses
Erosion of Taconic Mountains; Queenston delta forms Taconian orogeny caused by closing of western part of Iapetus Ocean and collision between North America and volcanic island arc
W
458 million years ago
Widespread deposition over most of New York along edge of Iapetus Ocean
A
Rifting and initial opening of Iapetus Ocean Erosion of Grenville Mountains Grenville orogeny: metamorphism of bedrock now exposed in the Adirondacks and Hudson Highlands
O
P
Q
R
Mastodont Cooksonia Naples Tree Beluga Whale Bothriolepis Aneurophyton Physical Setting/Earth Science Reference Tables — 2010 Edition
S
Condor
T
U
V
W
X
Y
Z
Cystiphyllum Maclurites Eospirifer Mucrospirifer Lichenaria Pleurodictyum Platyceras ESC/BW/TN (2009)
9
Inferred Properties of Earth’s Interior
AT
TIC LAN
OCE
AN
DENSITY (g/cm3) IC
TLANT MID-A GE RID
LE NT MA
CASCADES PACIFIC OCEAN
9.9–12.2
&
N
R
REL) COICKE
RO N
STI FF ER
E
3.4–5.6
LA (P
OU TE (I
LI
NO SP HE R
CR RIG UST ID MA NT AS TH LE E
}
NO RT H
AM ER
IC A
) RE T LE HE AN SP M O IC TH ST
2.7 granitic continental crust 3.0 basaltic oceanic crust MOHO
RE ) COICKEL
12.8–13.1
IN N
(IRO ER N& N
TRENCH
EARTH’S CENTER
PRESSURE (million atmospheres)
4 3 2 1 0 7000
MEL TING POIN T
TEMPERATURE (°C)
6000 5000 4000
E UR AT R E T MP IN O TE P R IO NG ER TI T IN EL M
3000 2000 PARTIAL MELTING
1000 0 0
1000 2000 3000 4000 5000 6000 DEPTH (km)
10
Physical Setting/Earth Science Reference Tables — 2010 Edition
Earthquake P-Wave and S-Wave Travel Time
24 23 22 21 20 19 18
S
17
TRAVEL TIME (min)
16 15 14 13 12 11 10
P
9 8 7 6 5 4 3 2 1 0 0
1
2
3
4
5
6
7
8
9
10
EPICENTER DISTANCE (× 103 km)
Physical Setting/Earth Science Reference Tables — 2010 Edition
11
Dewpoint (°C) Dry-Bulb Temperature (°C) – 20 –18 –16 –14 –12 –10 –8 –6 –4 –2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Difference Between Wet-Bulb and Dry-Bulb Temperatures (C°) 0 – 20 –18 –16 –14 –12 –10 –8 –6 –4 –2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
1 – 33 – 28 – 24 – 21 –18 –14 –12 –10 –7 –5 –3 –1 1 4 6 8 10 12 14 16 19 21 23 25 27 29
2
– 36 – 28 – 22 –18 –14 –12 –8 –6 –3 –1 1 3 6 8 11 13 15 17 19 21 23 25 27
3
4
5
6
7
8
9
10
11
12
13
14
15
– 29 – 22 –17 – 29 –13 – 20 – 9 –15 – 24 – 6 –11 –17 – 4 – 7 –11 –19 –1 – 4 – 7 –13 – 21 1 – 2 – 5 – 9 –14 4 1 – 2 – 5 – 9 –14 – 28 6 4 1 – 2 – 5 – 9 –16 9 6 4 1 – 2 – 5 –10 –17 11 9 7 4 1 –1 – 6 –10 –17 13 11 9 7 4 2 – 2 – 5 –10 –19 15 14 12 10 7 4 2 –2 – 5 –10 –19 17 16 14 12 10 8 5 3 –1 – 5 –10 –19 20 18 16 14 12 10 8 6 2 –1 – 5 –10 –18 22 20 18 17 15 13 11 9 6 3 0 –4 –9 24 22 21 19 17 16 14 11 9 7 4 1 –3 26 24 23 21 19 18 16 14 12 10 8 5 1
Relative Humidity (%) Dry-Bulb Temperature (°C) – 20 –18 –16 –14 –12 –10 –8 –6 –4 –2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
12
Difference Between Wet-Bulb and Dry-Bulb Temperatures (C°) 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
1 28 40 48 55 61 66 71 73 77 79 81 83 85 86 87 88 88 89 90 91 91 92 92 92 93 93
2
3
4
5
6
7
8
9
10
11
12
13
14
15
11 23 33 41 48 54 58 63 67 70 72 74 76 78 79 80 81 82 83 84 85 86 86
13 20 32 37 45 51 56 59 62 65 67 69 71 72 74 75 76 77 78 79
11 20 28 36 42 46 51 54 57 60 62 64 66 68 69 70 71 72
1 11 20 27 35 39 43 48 50 54 56 58 60 62 64 65 66
6 14 22 28 33 38 41 45 48 51 53 55 57 59 61
10 17 24 28 33 37 40 44 46 49 51 53 55
6 13 19 25 29 33 36 40 42 45 47 49
4 10 16 21 26 30 33 36 39 42 44
2 8 14 19 23 27 30 34 36 39
1 7 12 17 21 25 28 31 34
1 6 11 15 20 23 26 29
5 10 14 18 21 25
4 9 13 17 20
4 9 12 16
Physical Setting/Earth Science Reference Tables — 2010 Edition
Pressure
Temperature Fahrenheit (°F)
Celsius (°C) 110
220
Water boils
100
200
90
180
80
160
70
140
60
120
50 40
100
30
80 Room temperature
20 60 10 40
Water freezes
0 20 0
–10 –20
–20
–30
–40
–40
–60
–50
Kelvin (K)
millibars
inches
(mb)
(in of Hg*)
1040.0
30.70
1036.0
30.60
380 370 360
1032.0
350
1028.0
30.50 30.40 30.30
340
1024.0
330 320 310
1020.0
30.10
1016.0
30.00
One atmosphere
300
1012.0
290
30.20
29.90 29.80
1008.0
280
29.70 1004.0
270
29.60
260
1000.0
250
996.0
29.40
992.0
29.30
240 230 988.0
220
29.50
29.20 29.10
984.0
Key to Weather Map Symbols Station Model
28
29.00 980.0
Station Model Explanation
28.90
976.0
28.80
972.0
28.70
968.0
28.60
196
1 2
+19/
27
.25
28.50 *Hg = mercury
Air Masses
Present Weather
cA continental arctic Drizzle
Rain
Smog
Hail
ThunderRain storms showers
cP continental polar cT continental tropical mT maritime tropical
Snow
Sleet
Freezing rain
Fog
Haze
Snow showers
Physical Setting/Earth Science Reference Tables — 2010 Edition
mP maritime polar
Fronts
Hurricane
Cold Warm Stationary
Tornado
Occluded
13
km 140
Selected Properties of Earth’s Atmosphere
mi 100
Atmospheric Pressure
Temperature Zones
Altitude
Thermosphere 120
75
80
50
(extends to 600 km)
Mesopause
Mesosphere Stratopause
40
25
Water Vapor
Stratosphere Tropopause
Sea Level 0
Troposphere
0 –100° –90°
0° –55°
100°
0
15°
Temperature (°C)
1.0
Pressure (atm)
0
20
40
Concentration (g/m3) Tropopause Polar front jet stream
Planetary Wind and Moisture Belts in the Troposphere
DRY
Polar front
N.E.
The drawing on the right shows the locations of the belts near the time of an equinox. The locations shift somewhat with the changing latitude of the Sun’s vertical ray. In the Northern Hemisphere, the belts shift northward in the summer and southward in the winter.
WET
60° N
S.W. Winds
30° N
DRY N.E. Winds
Subtropical jet streams
0°
WET
(Not drawn to scale) S.E. Winds
30° S
DRY N.W. Winds
60° S
WET S.E.
DRY
Polar front jet stream
Electromagnetic Spectrum X rays Gamma rays
Microwaves Ultraviolet
Infrared
Radio waves
Decreasing wavelength
Increasing wavelength Visible light Violet
14
Blue
Green Yellow Orange
Red
(Not drawn to scale)
Physical Setting/Earth Science Reference Tables — 2010 Edition
Characteristics of Stars (Name in italics refers to star represented by a .) (Stages indicate the general sequence of star development.) 1,000,000
Deneb
Luminosity
(Rate at which a star emits energy relative to the Sun)
100,000
Massive Stars
Betelgeuse
SUPERGIANTS
Rigel
(Intermediate stage)
Spica 10,000
GIANTS
Polaris
1,000
(Intermediate stage)
Aldebaran 100
MA IN
10
(E a
Pollux
SE
Sirius
rly QU s ta E N ge C )
Alpha Centauri
E
1
Sun
0.1
40 Eridani B 0.01
Barnard’s Star
WHITE DWARFS (Late stage)
0.001
Procyon B 0.0001 30,000
20,000
10,000 8,000
Small Stars
Proxima Centauri
6,000
4,000
3,000
2,000
Surface Temperature (K) Blue
Blue White
White
Yellow
Orange
Red
Color
Solar System Data Celestial Object
SUN
Mean Distance from Sun (million km)
Period of Revolution (d=days) (y=years)
Period of Rotation at Equator
Eccentricity of Orbit
Equatorial Diameter (km)
Mass (Earth = 1)
Density (g/cm3)
—
—
27 d
—
1,392,000
333,000.00
1.4
57.9
88 d
59 d
0.206
4,879
0.06
5.4
VENUS
108.2
224.7 d
243 d
0.007
12,104
0.82
5.2
EARTH
149.6
365.26 d
23 h 56 min 4 s
0.017
12,756
1.00
5.5
MARS
227.9
687 d
24 h 37 min 23 s
0.093
6,794
0.11
3.9
JUPITER
778.4
11.9 y
9 h 50 min 30 s
0.048
142,984
317.83
1.3
SATURN
1,426.7
29.5 y
10 h 14 min
0.054
120,536
95.16
0.7
URANUS
2,871.0
84.0 y
17 h 14 min
0.047
51,118
14.54
1.3
NEPTUNE
4,498.3
164.8 y
16 h
0.009
49,528
17.15
1.8
149.6
27.3 d
27.3 d
0.055
3,476
0.01
3.3
MERCURY
EARTH’S MOON
(0.386 from Earth)
Physical Setting/Earth Science Reference Tables — 2010 Edition
15
Either
Metallic luster
HARDNESS
FRACTURE
LUSTER
CLEAVAGE
Properties of Common Minerals DISTINGUISHING CHARACTERISTICS
USE(S)
COMPOSITION*
MINERAL NAME
1–2
silver to gray
black streak, greasy feel
pencil lead, lubricants
C
Graphite
2.5
metallic silver
gray-black streak, cubic cleavage, density = 7.6 g/cm3
ore of lead, batteries
PbS
Galena
5.5 – 6.5
black to silver
black streak, magnetic
ore of iron, steel
Fe3O4
Magnetite
6.5
brassy yellow
green-black streak, (fool’s gold)
ore of sulfur
FeS2
Pyrite
5.5 – 6.5 or 1
metallic silver or earthy red
red-brown streak
ore of iron, jewelry
Fe2O3
Hematite
white to green
greasy feel
ceramics, paper
Mg3Si4O10(OH)2
Talc
yellow to amber
white-yellow streak
sulfuric acid
S
Sulfur
1
2
Nonmetallic luster
COMMON COLORS
2
white to pink or gray
easily scratched by fingernail
plaster of paris, drywall
CaSO4•2H2O
Selenite gypsum
2 – 2.5
colorless to yellow
flexible in thin sheets
paint, roofing
KAl3Si3O10(OH)2
Muscovite mica
2.5
colorless to white
cubic cleavage, salty taste
food additive, melts ice
NaCl
Halite
2.5 – 3
black to dark brown
flexible in thin sheets
construction materials
K(Mg,Fe)3 AlSi3O10(OH)2
Biotite mica
3
colorless or variable
bubbles with acid, rhombohedral cleavage
cement, lime
CaCO3
Calcite
3.5
colorless or variable
bubbles with acid when powdered
building stones
CaMg(CO3)2
Dolomite
4
colorless or variable
cleaves in 4 directions
hydrofluoric acid
CaF2
Fluorite
5–6
black to dark green
cleaves in 2 directions at 90°
mineral collections, jewelry
(Ca,Na) (Mg,Fe,Al) (Si,Al)2O6
Pyroxene (commonly augite)
5.5
black to dark green
cleaves at 56° and 124°
6
white to pink
cleaves in 2 directions at 90°
ceramics, glass
KAlSi3O8
Potassium feldspar (commonly orthoclase)
6
white to gray
cleaves in 2 directions, striations visible
ceramics, glass
(Na,Ca)AlSi3O8
Plagioclase feldspar
mineral collections, CaNa(Mg,Fe)4 (Al,Fe,Ti)3 jewelry Si6O22(O,OH)2
Amphibole (commonly hornblende)
6.5
green to gray or brown
commonly light green and granular
furnace bricks, jewelry
(Fe,Mg)2SiO4
Olivine
7
colorless or variable
glassy luster, may form hexagonal crystals
glass, jewelry, electronics
SiO2
Quartz
6.5 – 7.5
dark red to green
often seen as red glassy grains in NYS metamorphic rocks
jewelry (NYS gem), abrasives
Fe3Al2Si3O12
Garnet
*Chemical symbols:
Al = aluminum C = carbon Ca = calcium
Cl = chlorine F = fluorine Fe = iron
H = hydrogen K = potassium Mg = magnesium
Na = sodium O = oxygen Pb = lead
S = sulfur Si = silicon Ti = titanium
= dominant form of breakage
16
Physical Setting/Earth Science Reference Tables — 2010 Edition