"Sound of Cowbell" for Piano

Page 1

Keane Southard

Sound of Cowbell A Rhapsody on a North Korean Folk Song For

Piano

(2014) (Duration: c. 11 mins.)


Program notes: Sound of Cowbell was commissioned by Christopher Janwong McKiggan as part of his “Resonance of Hope” project. I began work on the piece in February 2014 and completed it in April of the same year. The piece is a rhapsody on a North Korean folk song sent to me by the North Korean pianist and composer Cheol Woong Kim. After reading about Kim’s remarkable story of growing up in North Korea, being nearly jailed for playing popular music, fleeing the country illegally, and working in manual labor in China before finally ending up in South Korea, I was astonished by what he had been through and the conditions in his home country. I dedicate this work to Kim and all North Koreans who are currently living under such oppression that do not have the freedom to listen to or create the kind of music that they want, among other severe restrictions. Keane Southard 2014

Performance instructions: 1. Unless otherwise indicated, the damper pedal should be used discreetly to allow for maximum clarity.

Keane Southard/Spindrift Pages (ASCAP) Email: keane.southard@hotmail.com Website: keanesouthard.instantencore.com


Commissioned by Christopher Janwong McKiggan

Sound of Cowbell A Rhapsody on a North Korean Folk Song Keane Southard

poco accel.

 

 

q. = 44

pp

     

 





 

                   

    

          7               

  

       

13

     



        

         

                                                        ©2014

  

mf

      p

    



con rubato

mf

  

( e = 105) Tempo I

q. = 50 rit.

  

 

  

mp (tenor line)

p

           

   

  


poco accel.

2

          

                    sfz ff                                        q. = 56 23                     p                              una corda ppp          27                      18

ppp

p

                           p   ppp             31        p

     

ppp

ppp

      p



ppp

      

p

      sf

              sf

tre corde

p


34















5

3

rit.

7

3    3             

       3 3                       5  7         

q. = 44

                            mf

36

ff

   

 

                   

p

 

  

rit.

( e = 80)

                   f

          



            41                                            mp                                                                           45                              f                                                                    q. = 48 con rubato


4

       48                            fff                            52                                                                rit. e = 70               55                              

  

        

  

        

            mf    

  

(half pedal)

                       

         

                           ff                     molto accel.

e = 180                 57                                                         fff                                

  2"- 4"

 


e = 90  60 mp   

con  rubato

(small notes = softer)                                                 p                                                                                               (unrolled if possible)       sim.

63



 

    

   

                           

                                p

mp

  

       

   

rit.        molto        66             

   

  

5

  

 

     

                                                pp                                                  e = 42

                             mf                                                 

69

q. = 52 senza rubato

   

   


    

   

73

       

                   

76

  

                     f

                       

  

               

                                      5   mf                         

        

                                  f                     

79

                             

  

poco rit.

         

   p       

A tempo

 



82

 



mf

mp



6

pp

 

    

         

      


7



   



  





 



      

84

     







                          85            mp

 

     

    

    



      



86





                        

                        



       87 

      

  

       

f

                           


8 88

  

89

 

  

  

 

 

    

  

    

  

 

molto rit.

ff

                          

 

 

 

 

   

cresc.

                    91                        

 

                         

90

 

 

                           

accel.

  

 

 

 

  

       


q. = 60

9

                                     fff mf                                                

92

95

            

                 99

 

  

       

                          103

                         

cresc.

 



                   



 

                                                                      

    

 

                          106                                  f                                 

                   

            


10

                        

110



 

                 

                            

         

                                                  

   114                                                                                 117                                                                           ff f                           

           

                                                 p                           

120

           

  


rit.

   

  

123

    

   

  

       

    

   

     

q. = 40

11

accel.

      

  

 

   

                                                       ff

f

q. = 60

126

   

  

rit.                                                         fff mf                                                      

 129            dim.

   

    

e = 108

                               

                               

         


e = 60

molto rit.

12

     132         

         136     

p

                                           ppp   

 

  



 

q = 42 mf (large notes only)

       p

     

    

       

     



pp



sos.

                                                                  5

5

 7                                12



pp

              

143

    

        

      

 rit.                                                  

         

140

           

ff



  

  

   

  

 


        145                                f

  

   (p)

13

                    mp  pp p                                mf     A tempo

rit.

150

 

  

    

152

     



9

          

5

           

  

9

    

     

  153   6                       f            sos.



 

 

15

 

  

   

A tempo q = 42

ff

   

Slow accel.



 3

 

5



      


14

154

                           5

6

           3

3 5 6                           

    

155

 

6

        sos.



                     

                  

3

5

(l.h. loco)

         156                                                           3

6

7

3

6



7

                  


   

      

157

  6

5

                  6

  sos.

    

15

 3      

                   158                            5

6

7

5

6 7                                  

159

 

 

       

                  sos. sos. ff

       9

    

           sos.

fff

       


16

Slow accel. 160

molto rit.

                      

 

53

   

     

                                31

  

q = 42

       

161

mp

p

   



164

 

              

      

 



  

  

  

  

rit.

     

 

 

    

                          p

    

6

 

 

6

 

 

6 3

pp

  

 


 165        

17

q. = 44

f

  

 

   

 

   

6

6

6

6

6

6

                166          

   

  

 

 

   

   

 

  

     

  

6

6

6

6

6

6

   

        

   

   

 

   

  

 

   

     

  

6

6

6

6

6

6

6

6

6

6

6

6



            167            

               

   

 

   

  

   

        

       

     

   

6

6

6

6

6

6

6

6

6

6

6

6



             168            

  

 

 

    

         

 

    

  

 

    

    

 

    

   

   

6

6

6

6

6

6

6

6

6

6

6

6

    

  

 

    

 

         

 

   

 

   


 169     

18

  

 

   

 

   

 

   

 

   

 

   

6

6

6

6

6

6

6

6

6

6

6

6

   

 

     

  

 

   

 

   

 

   

 

   

     3 3 3        170                          3 3 3  ff                 3

3

( e = 40) q. = 44 molto rit.  3 3 3                              3 3 3  fff

171

3 3                3

                     

174

          

   

 

          

 

3



     

    

                      

        

         

accel.

         

mp

    

 

         

cresc.

 

 


   molto rit.                                                         

19

q. = 60

    

178

    

A tempo

 181       fff

      

     

183

 l.h.  

     

 

           

 l.h.     

   

   l.h.                    

        

           



     

 

    

  

   

      

 

  

l.h.

           

    

  

 



l.h.


  l.h. l.h.                                   3                    

 

       

184

     

 l.h.     

 186                     

            

         

     

      188                     sub. p

 

  

             

 

    

 l.h.     

     

                        

l.h.

  

     

 

       

  

   

  

      

 

 gliss .

20

  

    

                              


 192    

21

   



 

  





      

  

  

    

         



  



5

    

6

  

push ahead through the triplets        3   3   3   3   3   3                                194                                                              fff                                                 

     3   3   3   3   3   3  196                                                                                                                                             


22



198

 

      

   

     

                          

3  3   3   3   3   3                                                                             

 3 3 3 3     3 3               200                                                             fff f 3 3    3              3 3                                           3

3

                   

202

3

3

3

molto rit.

           3

3

A tempo 3

3

               

3 3 3                                                          

    ffff        sos.

               f      


       

       

Very Slow e =70



208

      

212

p

rit.                       

fff

f

                      

      

    

      

A tempo q. =44

         

mp

fff



    

cresc.

    

23



                            

204

                                                 

p

    

 

  



pp

ppp









mf

    

 

pppp





   


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.