Spatial positioning in the selfish herd”, Lesley J. Morrell, Graeme D. Ruxton, Richard James

Page 1

OriginalArticle

Spatialpositioningintheselfishherd

LesleyJ.Morrell,a GraemeD.Ruxton,b andRichardJamesc aInstituteofIntegrativeandComparativeBiology,UniversityofLeeds,LCMiallBuilding,LeedsLS29JT, UK, bDivisionofEcologyandEvolutionaryBiology,FacultyofBiomedicalandLifeSciences,University ofGlasgow,GlasgowG128QQ,UK,and cDepartmentofPhysics&CentreforMathematicalBiology, UniversityofBath,BathBA27AY,UK

Theantipredatorbenefitsofgroupingarerelativelywellunderstood;however,predationriskoftendiffersforindividualsthat occupydifferentpositionswithinagroup.Theselfishherdhypothesisdescribeshowindividualscanreduceriskofpredationby movingtospecificpositionswithinthegroup.Inexistingtheory,thismovementoccursthroughtheadoptionofpossible ‘‘movementrules’’thatdifferintheircognitivecomplexity.Here,weinvestigatetheeffectivenessofdifferentpreviouslysuggested rulesinreducingriskforcentralandperipheralindividualswithinagroup.Wedemonstratethatinitialspatialpositionis importantindeterminingthesuccessofdifferentrisk-reducingmovementrules,asinitiallycentrallypositionedindividuals arelikelytobemoresuccessfulthanperipheralonesatreducingtheirriskrelativetoothergroupmembers,regardlessofthe movementrulesused.Simplerstrategiesareeffectiveinlow-densitypopulations;butathighdensity,morecomplexrulesare moreeffective.Wealsofindthatcomplexrulesthatconsiderthepositionofmultipleneighborsaretheonlyrulesthat successfullyallowindividualstomovefromperipheraltocentralpositionsormaintaincentralpositions,thusavoidingpredators thatattackfromoutsidethegroup.Ourresultssuggestthattheattackstrategyofapredatorshouldbecriticallyimportantin determiningpreyescapestrategiesinaselfishherdcontextandthatpreyshouldmodifytheirbehavioralresponsestoimpending attackinresponsetotheirpositionwithinagroup. Keywords: aggregation,antipredatorbehavior,grouping,groupcenter, individual-basedmodel,periphery,predationrisk. [BehavEcol22:16–22(2011)]

Predationriskhasbeenwidelydemonstratedtobeakeyfactordrivingthebehavioralecologyofmanyanimals(Caro 2005).Oneofthemost-studiedresponsestoheightenedpredationriskisgroupingbehavior(KrauseandRuxton2002).It iswidelyrecognizedthatunderheightenedpredationrisk, groupstendtobelarger(HagerandHelfman1991; Hoare etal.2004),morecompact(FosterandTreherne1981; Watt etal.1997; SpielerandLinsenmair1999),andindividuals withingroupstendtobemorecloselyassortedbyphenotype (AllanandPitcher1986; Theodorakis1989; Szulkinetal. 2006; Croftetal.2009).Theselfishherdtheory(Hamilton 1971)hasbeenparticularlyinfluentialinunderstandingsuch facultativeaggregationinresponsetoheightenedpredation risk.

Theselfishherdhypothesisassumesthattherelativepredationriskof2individualscanbedeterminedbycomparisonof theareasaroundeachthatisclosertothefocalindividual thantoanyotherindividuals:thedomainofdanger(DOD).

Predatoryattacksareassumedtobelaunchedfromrandom pointswithintheenvironment,withallpositionsbeing equallylikelytobelaunchpoints.Ifanattackislaunched fromwithinaparticularindividual’sDOD,thenthatindividualisassumedtobeattackedandkilled(Hamilton1971).

Thus,anindividualprey’sriskofpredationisproportional tothesizeoftheirDODandtoreducepredationrisk,each animalshouldendeavortoreduceitsDODsizerelativeto thoseofotherindividuals.Thisnaturallyleadstogreateraggregation.Morerecenttheoreticaldevelopmentshavefocusedonevaluatingcandidatebehavioral‘‘movementrules’’ thatcauseindividualstoreducetheirDOD(Mortonetal.

AddresscorrespondencetoL.J.Morrell.E-mail:l.j.morrell@leeds .ac.uk.

Received26April2010;revised31August2010;accepted1 September2010.

TheAuthor2010.PublishedbyOxfordUniversityPressonbehalfof theInternationalSocietyforBehavioralEcology.Allrightsreserved. Forpermissions,pleasee-mail:journals.permissions@oup.com

1994; Viscidoetal.2002; Jamesetal.2004; WoodandAckland 2007; MorrellandJames2008; Morrelletal.2010).

Thecostsandbenefitsofgroupingarenotalwaysexperiencedequallybyallmembersofagroup(KrauseandRuxton 2002).Thetheoryofmarginalpredation(Hamilton1971; Vine 1971)suggeststhatifpredatorsattacktheclosestprey,then thoseontheedgeofgroupsshouldexperiencegreaterrisk, eitherbecausetheyhavethelargestDODsorbecausepredatorsaresimplymorelikelytoattackfromoutsideagroupthan withinit.Simulationmodelshaveshownthatperipheralindividualsshouldbeatgreaterrisk(Bumannetal.1997; Morrell andRomey2008),andempiricalevidencesuggeststhatthisis indeedoftenbutnotalwaysthecase(Okamura1986; Rayor andUetz1990; Sa´lekandSmilauer2002; Stankowich2003; Romeyetal.2008,butsee Parrish1989; QuinnandCresswell 2006).Anindividual’spositionwithinagroup,therefore, mightoftenbeexpectedtoaffectitsresponsetoapredation event.Previoustheoryhasassumedthatallindividualsfollow thesamemovementrulesinresponsetocuesofanimminent predatoryattack.Here,weinvestigatehowpositionwithin agroupaffectsantipredatorbehaviorinthecontextofthe selfishherd,byinvestigatingthesuccessofa‘‘mutant’’movementruleinvadingagroupofindividualsusingadifferent movementruleinresponsetoapredationthreat(seeMETHODSfordescriptionsofdifferentmovementrules).Wewill considerbothsituations,wherepredationoccursfromapositionoutsidethegroup,aswellassituationswhereattackscan belaunchedfromanypointinspace.Weconsiderhowthe position(centralorperipheral)inwhichanindividualfinds itselfwhenitinitiallyrespondstothepredationthreataffects thesuccessofdifferentmovementrulesinreducingrelative DODareas.Wepredictthatstartingpositionwillinfluencethe relativesuccessofdifferentmovementrulesinreducingDOD areasandthereforepredationriskofindividuals.

Previoustheoreticaldevelopmentsexploringtheeffectivenessofdifferentmovementrulesevaluatedtheeffectiveness

BehavioralEcology doi:10.1093/beheco/arq157 AdvanceAccesspublication12October2010
by guest on December 3, 2016 http://beheco.oxfordjournals.org/ Downloaded from

ofsuchrulespurelyintermsoftheirabilitytoreducethe mover’sDOD.Thisisreasonablebecause,asoriginallyformulated,theSelfishHerdtheoryassumedthatpredatoryattackswereequallyaslikelytobelaunchedfromanyposition withintheenvironment.Manysubsequentworkshaveretainedthisassumption(e.g., Mortonetal.1994; Viscido etal.2002; Jamesetal.2004; MorrellandJames2008, Morrell etal.2010),andweusethisapproachheretoallowfor comparisonwithpreviousstudies.Insomecircumstances (e.g.,avianpredatorsattackingpreyfromabove; Quinnand Cresswell2006),suchanapproachisappropriate.However,as Jamesetal.(2004) argue,inmanypredator-preyassociations, attacksaregenerallyunlikelytooccurfrompositionswithin thegroup.Forexample,asagroupmovesthroughitsenvironment,itislikelythatanambushingpredatorwaitinginthe pathofthegroupwouldbedetectedbeforethegroupmoves overitsposition.Hence,inmanyecologicalsituations,predatoryattacksongroupedpreywilloccurexclusivelyfromoutsidethegroup.Insuchcircumstances,thereisastrong premiumtoagroupmemberinbeingintheinteriorofthe groupbecauseperipheralindividualswillbeatmuchgreater risk.Accordingly,inasecondanalysis,weinvestigatehoweffectivedifferentmovementrulesareatplacingtheiruser withinthecenterofagroup.

METHODS

Modelframework

Weusethemodelingframeworkdescribedby Jamesetal. (2004) and MorrellandJames(2008) asthebasisforour simulationmodelofaggregationbehaviorandprovideasummaryhere. N point-likeagents(theprey)areplacedina 2-dimensionalcirculararenaofradius R usingarandomuniformdistribution.Thatis,initially,thereisnoaggregation,

ApproximateUDODs(a)and LDODs(b)foranillustrative groupof11animals.IndividualswithinfiniteUDODsand peripheralpositionsarecoloredgray,whereasthosewith finiteUDODsandcentralpositionsarecoloredblack.Panels (c)and(d)illustratethepositionofamutantindividualusingLCHinagroupof individualsusingNN,showing howamutantindividualwhich beginsontheperipheryofthe group(c)canacquireacentral positionafterseveralseconds ofmovement(d).Initialpositionsareasin(a)and(b).Individualsstartinginperipheral positionsaregray,andcentral individualsareblack.Dotted linesin(d)donotshowmovementtrajectories(whichare usuallycurved),butsimply linkfinalpositionstooriginal startpositions(opendashed circles).Individualcolorsin (d)representstartingposition (central/peripheral/mutant). Thesefiguresareforillustrativepurposesonlyanddonot representpositionsusedinthe analysis.

andindividualsareplacedwithoutconsiderationtothepositionsofothers.Populationdensity, d,isdescribedby N/pR2 Ineachsimulation, Nm agentsareallocateda‘‘mutant’’movementrule,whereas Np agentsareallocateda‘‘population’’ movementrule(Nm 1 Np ¼ N).Weusethe‘‘limiteddomain ofdanger’’(LDOD)frameworktodescriberelativepredation risks,thisisthoughttomorerealisticallyportrayindividual predationriskthanthetraditionaldefinition,inwhichsome individualshaveinfiniteDODs(Jamesetal.2004; Morrelland James2008).Theconventionalor‘‘unlimiteddomainofdanger’’(UDOD)ofanagentin2Dspaceisdefinedastheregion closertothatagentthananyotherandisthemeasureof individualpredationriskintroducedin Hamilton(1971) TheLDODofanagentistheregionthatisinsideboththe UDODandinsideacircleofradius r centeredontheagent (see Figure1 forillustrationofUDODsandLDODs).For eachagent,wecalculatethearea(A)oftheirLDOD.The maximumLDODarea,whichoccursonlywhentheagentis atleast2r fromanyothers,isgivenby Amax ¼ pr 2.LDODareas arereducedbyanybisectorgeneratedbyanindividualwithin adistanceof2r.WealsocalculateUDODareasusingVoronoi tessellations:Thisinformationislaterusedtoidentifycentral andperipheralagents.

Movementrules

Weconsiderasubsetofprevious-proposedmovementrules, encompassingvariationincomplexity:nearestneighbor (NN; Hamilton1971),multipleNNs(3NN; Mortonetal. 1994),andlocalcrowdedhorizon(LCH; Viscidoetal. 2002).UndertheNNrule,agentsmovedirectlytowardtheir closestneighbor,underthe3NNrule,individualsmovetowardtheaveragelocationoftheir3closestneighbors,and undertheLCHrule,thepositionofmultipleneighborsis

Figure1
Morrelletal. • Spatialpositionsinselfishherds 17 by guest on December 3, 2016 http://beheco.oxfordjournals.org/ Downloaded from

takenintoaccount,withcloseroneshavingthegreatestinfluenceonmovementdirection.Todescribethiseffect,we weighttheinfluenceofindividualsusingtheperceptionfunctionsuggestedby Viscidoetal.(2002) asbeingthemostbiologicallyplausible:f x ¼ 1 110 375x,where x isthedistance fromthefocalindividual.Anindividual’smovementdirection isdeterminedsolelybyitsmovementrule:agentsdonotreceive anydirectionalinformationonpredatorattackdirection,and thehabitatcontainsnorefugeareas.Thatis,atthestartof asimulation(t ¼ 0),thepreyareassumedtoinitiatetheir behavioralrulesinresponsetopickingupcuesofanimminent predatoryattack.Thesecuesinformthepreythatanattackis likelyintheimmediatefuture,buttheydonotprovideinformationastothepositionfromwhichtheattackwillbe launched.Allpreyareassumedtopickupthesecuesatthe sametime.Thewarningcuesmightbethefleeingoralarm callingofnearbyheterospecifics,forexample.Wethensimulate themovementoftheanimalsfromthispointuntiltheattack actuallyoccurs.Simulationsendatthepointofattack(t ¼ tmax), wheretherelativevulnerabilitiesofindividualsareevaluated.

Ineachtimestep t,untilamaximum tmax,eachagentidentifiesitstargetlocation,basedonthemovementruleitis following,andthenmovestowarditataspeedof0.15m/s (Jamesetal.2004; MorrellandJames2008).Eachagentupdatesitstargetlocationanddirectionineverytimestep,and atimestepinoursimulationslasts0.1s.Aftereverytimestep andforeveryindividual,wecalculatedboththeLDODarea andtheUDODarea.UDODareasareusedtodefinecentral andperipheralpositions(peripheralindividualshaveinfinite UDODs),andLDODareasmeasureindividualpredation risk. Figure1a,b illustratesagroupofanimalswithUDODs (Figure1a)andLDODs(Figure1b)marked.Weran1000 simulationsforeachpossiblepairwisecombinationofmutant versuspopulationmovementrules(6combinationsintotal). However,westandardizedstartingpositionsbetweenmovement rules,suchthatallmutantversuspopulationcombinationswere runwiththesamesetof1000initialpositions.Allsimulations wereprogrammedinC.Resultingdatawereanalyzedusing Matlab R2007b.

Ourmodelclearlydoesnotaccuratelydepictany1particularreal-worldsystem.Ouraimwastoexploretheprinciples thatmayunderliethe‘‘movementtowardconspecifics’’aspect ofantipredatorresponses(seenintherealworldintheaggregationofpreyanimalsunderthreatofpredation;seethe INTRODUCTIONforempiricalexamplesofthis).Asoneof ouraimswastoprovidecomparisonwith,anddevelopment of,previousselfishherdmodels,weexploretheprinciplesin thesamemodelingframeworkasusedbypreviousworks.Although,forsimplicity,weexplorea2-dimensionallandscape inourmodel,ourresultscouldcertainlybeextrapolatedfrom to3Dones(suchasfishshoalsorbirdflocks).

Researchquestions

Weusethedatafromthemodeltoanswer2questions:1)how doesstartingposition(peripheralorcentral)influencethe successofamutantinvadingapopulationintermsofitspredationriskrelativetoothergroupmembers(proportionof totalLDODareaoccupiedbythemutantandanaverage memberofthepopulation),therebyavoidingpredatorsthat attackrandomlyand2)howsuccessfularethedifferentmovementrulesinallowinganindividualtomovefromperipheral tocentralpositions,therebyavoidingpredatorsthatattack fromoutsidethegroup?Thefirstofthesecomplementary questionsfollowsthetraditionalapproachofcomparing DODareasbetweenindividuals,whereasthesecondexplores riskavoidancewhenpredatorsareexpectedtoattackfrom outsidethegroup.

Approach1:avoidingriskbyreducingLDODarearelativeto others:theeffectofspatialposition

Toassessrelativepredationriskandtheabilityofamutant strategytoinvadeapopulationstrategy,ateachtimestep,we firstcalculatedthetotalLDODarea, Atot (thesumof A forall individuals).Wethencalculatedtheproportionof Atot occupiedbythemutantandtheproportionoccupiedbyeach populationmember.Wethencalculatedthemeanvaluefor thepopulation.Finally,wecalculatedthedifferencebetween theproportionof Atot occupiedbythemutantandthemean proportionoccupiedbyanaveragepopulationmember.This wasrepeatedforeachtimestepineachreplicatesimulation.A positivevalueindicatesthatthemutantoccupiesalargerproportionofthetotalareathananaveragepopulationmember, andasmallervalueindicatedthatthemutantoccupiesasmallerareaandcansuccessfullyinvadethepopulation.ThisapproachassumesthatpredationriskisbasedonlyonLDOD area(i.e.,thatpredatorscanattackanywherewithinthegroup andfollowsthesameapproachusedinpreviousstudiesofthe selfishherd(Hamilton1971; Mortonetal.1994; Viscidoetal. 2002; Jamesetal.2004; MorrellandJames2008, Morrelletal. 2010).Previousworkhasshownthatbothpopulationsize(N) anddensity(d)canaffectrulesuccess(MorrellandJames 2008),andwevarythesehere,predictingthatcomplexrules willperformbetterinsmallerhigherdensitypopulations. Weareinterestedinhowspatialpositionaffectschangein LDODarea(andthereforereductioninrelativerisk).Wedefineaperipheralindividualasanymemberofagroupwithan infiniteDOD,usingtheUDODframework.Anyindividual withafiniteDODisconsideredcentral(thisisequivalentto usingtheminimumconvexpolygonapproachtodefining peripheralindividualswithinagroup; KrauseandTegeder 1994; KrauseandRuxton2002).Werecordthestartingposition(peripheralorcentral)forthemutantindividualineach simulationandusethisinformationtosplitthedatacollected onLDODareas.Wethencalculatethemeanandstandard erroracrossreplicatesformutantsthatwereperipheral(414/ 1000replicateswhen N ¼ 20,233/1000replicateswhen N ¼ 50)andcentral(586and767replicates,respectively)atthe startofthesimulation.Wealsocalculatethemeanandstandarderroracrossallindividuals,regardlessofwhetherthey startedinaperipheralorcentralposition.Forvisualsimplicity,wesubsampleourresultsandshowonlythedifferencesin LDODareasat2pointsintime,following MorrellandJames (2008):after2sofmovement(tmax ¼ 2, Figure2,lefthand column)andafter10sofmovement(tmax ¼ 10, Figure2, righthandcolumn).Thefirstoftheserepresentsa‘‘earlyattacking’’predatorthatcancompleteanattackwithin2s ofcuesofitspresencebeingdetected;thesecondrepresentinga‘‘laterattacking’’predatorthatrequireslonger.Biologically,thisvariationmightbeinterpretedasreflectinghow quicklyanambushingpredatorcanclosethedistancefrom thepointthatitbreakscovertothepointwhereitcancompleteanattack:anearly-attackingpredatorcancoverthisdistancequickly,soaggregatingpreyhaverelativelylittletimeto respondtoanycuesofimminentattack(whicharetriggered whenthepredatorbreakscover).

Approach2:avoidingriskbymovingtothegroupcenter Foramovementruletobeconsideredsuccessfulintermsof reducingtheriskofperipheralpredationforindividualsusing thatrule,theproportionofmutantindividualsoccupyingperipheralpositionsshouldbelowerthanexpectedbychance oncemovementhasbegun(seebelow).Usingthedefinition ofperipheralabove,foreachindividual(mutantandpopulationmember)withineachgroup,werecordwhethertheir

18 BehavioralEcology by guest on December 3, 2016 http://beheco.oxfordjournals.org/ Downloaded from

positionisperipheralorcentralatthestartofthesimulation, after2sofmovement,andafter10sofmovement.

Foreachreplicatesimulation,wecalculatetheproportionof individualsoccupyingcentralpositionsandtheproportion occupyingperipheralones.Wealsocalculatetheproportion ofthe1000simulations,wherethemutantindividualoccupies

Figure2

Mean(62standarderror)differencebetweentheproportionoftotalLDODarea occupiedbythemutantand themeanproportionoftotal LDODareaoccupiedbypopulationmembers,after2s(left handcolumn)and10s(right handcolumn)ofmovement. Dataarepresentedasthe meanformutantsstartingin allpositions(filledcircles) plusthosestartingincentral (opencircles)andperipheral (opendiamonds)positions.

Panelsshowasinglemutant (Nm ¼ 1)inagroupof20individuals(N ¼ 20),at3populationdensities:(aandb) d ¼ 2;(candd) d ¼ 4;(eandf) d ¼ 10,andasinglemutant (Nm =1)inagroupof50individuals(N =50)at d =4(gand h).Whereerrorbarsarenot shown,theyaresmallerthan thesizeofthesymbol.

acentralpositionandtheproportionwhereitoccupiesaperipheralone.Thisallowsustoassesswhethermutantsare moreorlesslikelytooccupycentralpositionsthanwould beexpectedbychance.Iftheprobabilityofamutantoccupyingaperipheralpositionislowerthanthemeanproportion ofthegroupthatisontheperiphery,thenthemutantismore

a)b) c) d) e)f) g)h)
Morrelletal. • Spatialpositionsinselfishherds 19 by guest on December 3, 2016 http://beheco.oxfordjournals.org/ Downloaded from

likelytooccupyacentralpositionthanwouldbeexpectedby chance.Forexample,ifonaverage,40%ofthegroupmembersarepositionedontheperipheryatanygivenpointinthe movementsequence,wewouldexpectasinglemutantwithin thatgrouptobeontheperipheryin40%ofthesimulations. Ifthemutantisperipheralinlessthan40%ofthesimulations,thisislowerthanonewouldexpectbychance,andthe ruleissuccessfulatmovingtheindividualtothecenterofthe group.Ifitisperipheralinmorethan40%ofthesimulations, thentheruleisunsuccessful. Figure1c,d illustratesthepositionsoftheindividualsinagroupofanimalsbefore(Figure1c) andafter(Figure1d)movement,demonstratinghowaperipheralmutantcanmovetoacentralposition.

RESULTS

Approach1:avoidingriskbyreducingLDODarearelativeto others:theeffectofspatialposition

Wedefineasuccessfulinvasionasonewherethedifferencein theproportionofthetotalLDODareabetweenthemutant andthepopulation(seeMETHODS)isnegative.In Figure2, equalsuccessoccursat0,indicatedbyahorizontaldashed line.Ifthedatapointrepresentingthemeandifferencelies belowthisline(i.e.,isnegative),themutantcaninvade.Ifthe pointisabovethisline(i.e.,ispositive),thepopulationis stableagainstinvasion.

First,weconsiderthesuccessofmutantindividualsinobtainingsmallerLDODsthanpopulationmembers,regardless oftheirstartingposition(filledcirclesin Figure2),andfind thattherearecleardifferencesintheabilityofmutantsto successfullyinvadeapopulation.Forexample,inasmall lowdensitypopulation(N ¼ 20, d ¼ 2),andifpredatorsattack after2sofmovement(Figure2a),theonlymutantsableto invadeareNNmutantsinLCHpopulationsand3NNmutants inLCHpopulations.Inallothermutantpopulationcombinations,thepopulationisstableagainstinvasion.Incontrast, after10sofmovement(Figure2b),NNpopulationsareunstableandcanbeinvadedbymutantsusingboth3NNand LCH.

However,ifwedividethedataandconsiderseparatelythose mutantsthatstartinthecenterofthegroup(opencircles), andthosethatstartontheperiphery(opendiamonds),somewhatdifferentpatternsemerge.Ingeneral,centrallypositionedmutantsaremorecapableofinvadingpopulations thanaretheirperipherallypositionedcounterparts.Thatis (regardlessofbehavioralrulesadoptedbyindividuals),those individualsthat—forwhateverreason—findthemselvesaway fromtheperipherywhenmovementsbeginareatanadvantage.Indeed,ifamutantisontheedgeofthegroupatthe startofsimulations,itisunabletoinvadethegroupafter2sof movement(i.e.,ifpredatorsattackearly; Figure2a,opendiamonds).Ifpredatorsattacklate(after10sofmovement, Figure2b),thenNNpopulationsbecomeunstableagainst evenperipheralmutantsusing3NNandLCHandarethemselvesunabletoinvadepopulationsusingthesestrategies,regardlessoftheirstartingposition.

Wealsoconsideredtheimpactofalteringthestartingdensity andsizeofthepopulationontherelativeinvasionsuccessof peripheralandcentralmutants(Figure2).After2sofmovement(Figure2,lefthandcolumn),increasingthestarting densityofthegroup(Figure2a–e)resultsisadecreasein performanceforNNmutants;theybecomeincreasinglyless abletoinvadepopulationsusingotherstrategiesandincreasinglysusceptibletoinvasionby3NNandLCHmutants.Centrallypositionedmutantscontinuetobemoresuccessfulin theirinvasionthanperipheralones;inparticular,central mutantsusingsimplerrulesareabletoinvadeapopulation

usingmorecomplexrules.Ifpredatorsattacklater(after10s, Figure2,righthandcolumn),thenincreasingpopulation densityresultsinincreasedstabilityofcomplexrulesand increasedinvasionsuccessofcomplexrules(Figure2b,d,f). Even,peripheralmutantsusingmorecomplexrulesareable toinvadepopulationsusingsimplerrules.

Increasingpopulationsizehassimilareffectstodecreasing populationdensity(Figure2g,h).Increasinggroupsizefrom 20to50individuals(whilecontrollingfordensity;comparing Figure2c,g)suggeststhatinlargerpopulations,simplerrules aremoreeasilyabletoinvade.Forexample,consideringall mutants,NNcaninvadeLCHafter2sofmovementinagroup of50(Figure2g)butnotinagroupof20(Figure2c).After 10sofmovement(Figure2,righthandside),weseedecreasedstabilityofpopulationsusingcomplexrulesaspopulationsizeincreases(Figure2d,h).Forexample,centrally positioned3NNmutantscaninvadeLCHpopulationsat N ¼ 50(Figure2h)butnotat N ¼ 20(Figure2d),and 3NNpopulationsarestableagainstinvasionbycentralLCH mutantsat N ¼ 50,butnotat N ¼ 20.

Approach2:avoidingriskbymovingtothegroupcenter Whenweconsidertherelativeproportionsofmutantsand populationmembersoccupyingperipheralpositions,wefind thatforallpopulationdensitiesstudied,theresultsaresimilar (Figure3).NNmutantsaremorelikelytooccupyperipheral positionsafter2and10sofmovementthanexpectedby chance,whenattemptingtoinvadeboth3NNandLCHpopulations.Conversely,both3NNandLCHmutantsareless likelytooccupyperipheralpositionsinprimarilyNNgroups (Figure3).LCHisalsolesslikelytooccupyperipheralpositionsinNN3groups,althoughNN3mutantsaremorelikely tooccupyperipheralpositionsinLCHgroups.Thesepatterns holdwhenthegroupissampledat2or10sandaremore pronouncedasthestartingdensityofthegroupincreases (Figure3b,c),suggestingthatLCHisthemostsuccessful methodofoccupyingcentralpositions,followedby3NN. Thereisalsoverylittleeffectofincreasingpopulationsize (to N ¼ 50):patternsremainthesame,althoughoverallproportionsofperipheralindividualsarereducedincomparison tosmallergroupsaswouldbeexpected(datanotshown).

DISCUSSION

Ourresultssuggestthatthepositionofanindividualwithin agroupiscriticallyimportantindeterminingthesuccessof movementrulesinallowingtheindividualtoavoidpredation. IfweconsiderpredationriskintermsofrelativeLDODarea (approach1)andassumethatpredatorsattackfromarandomlychosenposition(includingpositionswithinthegroup, withaprobabilitydependentonLDODarea; Hamilton1971), thenweseepatternsreflectingpreviousfindings,wherethe densityofthegroupandpredatorattacktimingstronglyaffect thesuccessofdifferentmovementrules(Morrelletal.2010). Inlowdensitypopulations,simplestrategiesareabletoinvade populationsusingmorecomplexstrategiesandarestable againstinvasionwhenpredatorsattackrapidly,butmorecomplexstrategiessucceedwhenpredatorsattackmoreslowly.In particular,weshowthatcentrallypositionedmutantsaremore capableofinvasionthanareperipherallypositionedmutants. Individualsusingsimplestrategiescanalsobenefitviathe encounter-dilutioneffect(TurnerandPitcher1986)inlowdensitypopulationswhenpredatorsattackrapidly(Morrell andJames2008).Intheencounter-dilutioneffect,allindividualsinagroupbenefitequallyfromaggregationreducingthe rateatwhichpredatoryattacksarelaunched.

20 BehavioralEcology by guest on December 3, 2016 http://beheco.oxfordjournals.org/ Downloaded from

Mean(6standarddeviation)proportionofagroupofindividuals occupyingaperipheralposition(opencircles)andproportionof simulationrunswherethemutantoccupiedaperipheralposition (filledcircles)atthestartofthesimulations,after2sandafter10s, foreachmutant-populationcombination.(a) d ¼ 2,(b) d ¼ 4(c) d ¼ 10.Otherparametervalues: N ¼ 20, Nm ¼ 1.

However,ifpredatorsattackonlyfromoutsideagroup (approach2),primarilytargetingperipheralindividuals,we findthattheresultsdiffer.Simplerules(NN)nolongerperformwellagainstmorecomplexrulesastheydonotallow individualsusingthemtogaincentralpositionsandaremore likelytomeanthatanindividualthatbeginsinthecenter cannotmaintainthatposition.Populationdensityisnolonger importantindeterminingsuccessmeasuredinthisway.The morecomplexstrategiesperformsignificantlybetterinallowingindividualstogainandmaintaincentralpositions.

Itisperhapsunsurprisingthatthemorecomplexrulesresult inahigherproportionofindividualsendingupincentralpositions.Ifweimagineasimplegroupof3individuals,anindividualthatchoosestomovetotheaveragelocationofits2 companionswillbeaimingtoendupbetweenthem(i.e.,in thecenter,althoughinagroupof3ina2-Denvironment,all willhaveinfiniteUDODs).Extendingtolargergroupsand

rulestakingintoaccountmoreneighbors,itbecomesclear thatcomplexruleswillusuallyleadtomovementtowardthe centerofthegroup.Thiswillresultinthekindofcompactionofgroupsnormallyseeninthewild.Inexperimental trials,sticklebacks(Gasterosteusaculeatus; KrauseandTegeder 1994),toadtadpoles(Bufobufo and Bufomaculatus; Wattetal. 1997, SpielerandLinsenmair1999),andbandedkillifish (Fundulusdiaphanus; Hoareetal.2004)allshowincreased densitiesfollowingapredatorstimulus,althoughtheprecise mechanismsandmovementrulesaremostlyunknown.

Ifgroupsareprimarilyattackedfromoutsidethegroup (Vine1971),ratherthanfromanywherewithintheenvironment(Hamilton1971),thenonecanimaginethatmovement towardthegroupcenterwillevolve,eitherasaruleinitselfor viaarulethatinvolvesanumberofNNs(perhapscognitively simplerthanmovementtowardthecenter,whichwouldrequireknowledgeofthepositionsofallindividualswithinthe groupratherthanafewclosestneighbors).Inmanycases, preyanimalswillreceivesomedirectionalinformationregardingthepositionofthepredator,andtheirmovementwill incorporatethisaspectinadditiontomovementtowardconspecificsaseachseekstheiroptimalpositionwithinthefleeinggroup(Viscidoetal.2001).

Theremaybesomelimitations,however,tothesuccessof complexrules.First,complexmovementruleshavebeencriticizedonthegroundsthattheymaybetoodifficultforanimalstofollow(Mortonetal.1994; Viscidoetal.2002; Morrell andJames2008),forexample,individualsmaybelimitedin theirknowledgeofthepositionsofothergroupmembers. Second,ifanimalsareunawareofwhereapredatorattackis likelytocomefrom(i.e.,ifpredatorsattackrandomlyandthis sometimesrepresentsanattackfromoutside,andatother times,anattackfromwithintheareaoccupiedbythegroup), thentheremaybeatrade-offbetweenmovingtowardcentral locationsandreducingriskthrough,forexample,encounterdilutioneffects.Recentworkstudyingsticklebacksattacking swarmsof Daphnia hasshownthatdenserareasofgroupsare moreconspicuoustopredators(Ioannouetal.2009),yetindividualsbenefitfrombeingindenserpartsofgroups throughaperceptualinabilityofpredatorstotargetindividualswithinthegroup(theconfusioneffect; Krakauer1995). Widelyspacedredshanks(Tringatetanus)arealsomorelikely tofallvictimtosparrowhawk(Accipiternisus)predators (QuinnandCresswell2006).

Insomespecies,theabilityofanindividualtooccupycentral positionsmaybelimitedbydominancehierarchieswithin agroup,asdominantindividualsmayforcesubordinate onestotheperiphery(HallandFedigan1997; Ruckstuhl andNeuhaus2005; Hirsch2007),wherepredationriskis higher.Thus,optimalmovementstrategiesmaydifferbetweendominantandsubordinateindividuals:Dominantindividualspreferringastrategythatensurestheymaintaincentral positions,subordinateonespreferringonethatallowsthemto reducetheirindividualriskrapidly.Theinteractionbetween dominanceandpredationavoidanceisaninterestingroute forfurtherinquiry.

Inotheranimalgroups,anindividual’spositionisnotlimitedbydominancehierarchiesbutmaydependinsteadon factorssuchashungerlevels(foragingneeds)andantipredatordefenses(Krause1994; Romey1995; MorrellandRomey 2008).Althoughcentralindividualsareoftensaferfrompredation,theyarealsooftensubjecttoreducedfeedingrates (Krause1994).Predatorattacksmaythereforearisewhen aparticularindividualisinthegroupcenteronsomeoccasionsandthegroupperipheryonothers.Individualbehavioralresponsestopredatorsmaythereforebeflexible, allowingindividualstorespondoptimallydependingonsome measureofstate.Thissuggeststhatthebestmovement

a) b) c)
Figure3
Morrelletal. • Spatialpositionsinselfishherds 21 by guest on December 3, 2016 http://beheco.oxfordjournals.org/ Downloaded from

strategydependsnotonlyonthepositionwithinagroupbut alsoonthebehavioraldecisionsofothers.Awell-protected centralindividualwithasmallDODwouldbenefitthemostby maintainingthatposition:Individualsmovingtowarditfrom theperipherywouldservetoreduceitsDODfurtherthrough thecompactionofthegroup,potentiallyreducingitsrelative risk,buttheindividualmayalsoneedtoensurethatitisnot pushedtotheperipheryofthegroup.Agame-theoretical approachinvestigatingthepositionsofindividualswithin groupsbeforeandafterapredatorattackmaybeusefulhere, anditislikelythatantipredatormovementwithinrealanimal groupsismuchmorecomplexthanthemovementrulessofar proposed.

Ourresultsdemonstratetheimportanceofconsidering ‘‘how’’apredationeventmayoccurwhenconsideringthe successofdifferentantipredatoryaggregativebehaviors.If predatorspreferentiallytargetperipheralprey,thenmovementthattakesanindividualtoacentralpositionshould evolve.Ifpredatorstargetbasedonothercriteria,suchas spacing,preferentiallytargetingmoreisolatedprey,thenavarietyofescaperulesmayarise.Therolesofdominance,state (hungerlevelsorantipredatordefenses)andthewaythey interactwithpredatoravoidancehaveyettobestudiedin thecontextoftheselfishherd,andexperimentalworkinvestigatingtherulesusedbyrealanimalsisalmostcompletely lacking(butsee KrauseandTegeder1994).However,the predictionsprovidedbyourtheoryshouldprovidefurther stimulustosuchempiricalinvestigation.

FUNDING

NaturalEnvironmentResearchCouncilPostdoctoralFellowship(NE/D008921/1)toL.J.M.

Wewouldliketothank2anonymousrefereesforinsightfulcomments.PaulBennettwrotetheoriginalprogramonwhichthiswork isbased.

REFERENCES

AllanJR,PitcherTJ.1986.Speciessegregationduringpredatorevasionincyprinidfishshoals.FreshwEcol.16:653–659.

BumannD,KrauseJ,RubensteinD.1997.Mortalityriskofspatial positionsinanimalgroups:thedangerofbeinginthefront. Behaviour.134:1063–1076.

CaroT.2005.Antipredatordefencesinbirdsandmammals.Chicago (IL):UniversityofChicagoPress.

CroftDP,DardenSK,RuxtonGD.2009.Predationriskasadriving forceforphenotypicassortment:across-populationcomparison. ProcRSocLondB.276:1899–1904.

FosterWA,TreherneJE.1981.Evidenceforthedilutioneffectinthe selfishherdfromfishpredationonamarineinsect.Nature. 293:466–467.

HagerMC,HelfmanGS.1991.Safetyinnumbers:shoalsizechoice byminnowsunderpredatorythreat.BehavEcolSociobiol. 29:271–276.

HallCL,FediganLM.1997.Spatialbenefitsaffordedbyhighrankin white-facedcapuchins.AnimBehav.53:1069–1082.

HamiltonWD.1971.Geometryfortheselfishherd.JTheorBiol. 31:295–311.

HirschB.2007.Costsandbenefitsofwithin-groupspatialposition: afeedingcompetitionmodel.QRevBiol.82:9–27.

HoareDJ,CouzinID,GodinJGJ,KrauseJ.2004.Context-dependent groupsizechoiceinfish.AnimBehav.67:155–164.

IoannouCC,MorrellLJ,RuxtonGD,KrauseJ.2009.Theeffectof preydensityonpredators:conspicuousnessandattacksuccessare sensitivetospatialscale.AmNat.173:499–506.

JamesR,BennettPG,KrauseJ.2004.Geometryformutualisticand selfishherds:thelimiteddomainofdanger.JTheorBiol.228: 107–113.

KrakauerDC.1995.Groupsconfusepredatorsbyexploitingperceptualbottlenecks:aconnectionistmodeloftheconfusioneffect. BehavEcolSociobiol.36:421–429.

KrauseJ.1994.Differentialfitnessreturnsinrelationtospatialpositioningroups.BiolRevCamPhilSoc.69:187.

KrauseJ,RuxtonGD.2002.LivinginGroups.Oxford:OxfordUniversityPress.

KrauseJ,TegederRW.1994.Themechanismofaggregationbehaviourinfishshoals:individualsminimizeapproachtimetoneighbours.AnimBehav.48:353–359.

MorrellLJ,JamesR.2008.Mechanismsforaggregationinanimals: rulesuccessdependsonecologicalvariables.BehavEcol.19: 193–201.

MorrellLJ,RomeyWL.2008.Optimalindividualpositionswithin animalgroups.BehavEcol.19:909–919.

MorrellLJ,RuxtonGD,JamesR.Forthcoming2010.Thetemporal selfishherd:predationriskwhileaggregationsform.ProcRSoc LondB.doi:10.1098/rspb.2010.1605.

MortonTL,HaefnerJW,NugalaV,DecinoRD,MendesL.1994.The selfishherdrevisited:dosimplemovementrulesreducerelative predationrisk.JTheorBiol.167:73–79.

OkamuraB.1986.Grouplivingandtheeffectsofspatialpositionin aggregationsof Mytilusedulis.Oecologia.69:341–347.

ParrishJK.1989.Reexaminingtheselfishherd:arecentralfishsafer. AnimBehav.38:1048–1053.

QuinnJL,CresswellW.2006.Testingdomainsofdangerintheselfish herd:sparrowhawkstargetwidelyspacedredshanksinflocks.Proc RoySocLondB.273:2521–2526.

RayorLS,UetzGW.1990.Trade-offsinforagingsuccessandpredation riskwithspatialpositionincolonialspiders.BehavEcolSociobiol. 27:77–85.

RomeyWL.1995.Positionpreferenceswithingroups:dowhirligigs selectpositionswhichbalancefeedingopportunitieswithpredator avoidance.BehavEcolSociobiol.37:195–200.

RomeyWL,WalstonA,WattPJ.2008.Do3-Dpredatorsattackthe marginsof2-Dselfishherds?BehavEcol.19:74–78.

RuckstuhlKE,NeuhausP.2005.Sexualsegregationinvertebrates: ecologyofthetwosexes.Cambridge(MA):CambridgeUniversity Press.

Sa´lekM,SmilauerP.2002.PredationonNorthernLapwing Vanellus vanellus nests:theeffectofpopulationdensityandspatialdistributionofnests.Ardea.90:51–60.

SpielerM,LinsenmairKE.1999.Aggregationbehaviourof Bufomaculatus tadpolesasanantipredatormechanism.Ethology.105: 665–686.

StankowichT.2003.Marginalpredationmethodologiesandtheimportanceofpredatorpreferences.AnimBehav.66:589–599.

SzulkinM,DawidowiczP,DodsonSI.2006.Behaviouraluniformityas aresponsetocuesofpredationrisk.AnimBehav.71:1013–1019.

TheodorakisCW.1989.Sizesegregationandtheeffectsofoddityon predationriskinminnowschools.AnimBehav.38:496–502.

TurnerGF,PitcherTJ.1986.Attackabatement:amodelforgroup protectionbycombinedavoidanceanddilution.AmNat.128: 228–240.

VineI.1971.Riskofvisualdetectionandpursuitbyapredatorand selectiveadvantageofflockingbehaviour.JTheorBiol.30:405–422.

ViscidoSV,MillerM,WetheyDS.2001.Theresponseofaselfishherd toanattackfromoutsidethegroupperimeter.JTheorBiol.208: 315–328.

ViscidoSV,MillerM,WetheyDS.2002.Thedilemmaoftheselfish herd:thesearchforarealisticmovementrule.JTheorBiol.217: 183–194.

WattPJ,NottinghamSF,YoungS.1997.Toadtadpoleaggregation behaviour:evidenceforapredatoravoidancefunction.AnimBehav.54:865–872.

WoodAJ,AcklandGJ.2007.Evolvingtheselfishherd:emergenceof distinctaggregatingstrategiesinanindividual-basedmodel.Proc RoySocLondB.274:1637–1642.

22 BehavioralEcology by guest on December 3, 2016 http://beheco.oxfordjournals.org/ Downloaded from

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.