Colégio Estadual Odilon José de Oliveira Disciplina: Matemática Professor: Leandro Teles Aluna (o):_____________________________________ Série: 8º Turma: ____ Data:___/___/___ Valor: 10,0 AVALIAÇÃO DE PROGRESSÃO Questão 1(0,4) Fatore os seguintes números.
Questão 2(0,4) Calcule o MMC em cada caso.
Questão 3(0,4) Efetue as seguintes operações.
Questão 4(0,4) Calcule as seguintes potências.
Questão 5(0,4) Calcule as seguintes potências.
Questão 6(0,4) Obtenha o valor de x em cada caso.
. Questão 7(0,4) Multiplique as seguintes frações.
Questão 8(0,4) Divida as seguintes frações.
Questão 9(0,4) Levando em consideração os conhecimentos sobre os conjuntos numéricos, podemos verificar que a alternativa INCORRETA é: a) O conjunto dos números naturais está contido no conjunto dos números inteiros. b) O conjunto dos números racionais está contido no conjunto dos números reais. c) O número zero também pertence ao conjunto dos números Irracionais. d) O conjunto dos números Irracionais está contido no conjunto dos números reais. e) O número π(pi) pertence ao conjunto dos números Irracionais. Questão 10(0,4) Fatore:
a) 16 x 2 y 56 xy
d) 18ab 18bc 24ac
b)
y3 y7 2 8
e) ax ay bx by
Questão 11(0,4) Diga se as frações a seguir são algébricas ou não algébricas. a)
7 gh 5mn 125 45
45 xy 12 ahi 17 xc 7 100000000000 4x5 c) y 1 d) x 1 e) 34a b xy 2 b)
Questão 12(0,4) Resolva as seguintes equações. a) 7 x 7 8x 5x 4 8x 5
b)
3 x x 2 3
c) 4x 3 32
d)
x 1 7
1 x x 2x 3 5x x 3 2 3 6 4 12
Questão 13(0,4) Resolva o sistema.
x y 1 a) 2 x y 14
Questão 14(0,4) Qual das afirmações a seguir é verdadeira? a) b) c) d)
x y 2 x 2 y 2 2 2 x 2 2 y 2 x y x y 2 2 xy y 2 x 2
x x
2
y2
2
x 2 2 xy y 2
2
2 e) y 2 x 4 2 xy y 4 Questão 15(0,4) Complete.
Monômio 2x 2 y
Coeficiente
Parte literal
3 7
abc 5
abc 3 b
Questão 16(0,4) Observe os monômios da tabela a seguir e responda às questões. A x 2
B 4 xy 5
C 1 xyz 5 8
D E 5 125 y x y 5 x 5
F 3 4 5 y x 2
a) Qual deles tem maior grau? b) Quais são semelhantes? c) Quais tem o mesmo coeficiente? Questão 17(0,4) Efetue as seguintes multiplicações de monômio por monômio. a)
3xy 5xy 5
b)
6z
c)
5a b c 8a c b
5
3
xy 6 xy 9 7
4
2
8
Questão 18(0,4) Efetue as seguinte divisões de monômio por monômio.]
G hy
a)
9x z y 3x z y 5
6
2
3
4
b) 15a 6 b10c 5ab
c) 16h 7 k 10v 9 8v 6 h 3 k 4 Questão 19(0,4) Efetue as seguintes adições. a) 3xy 5xy 2 z 2 xy 4 xy 2 z
b) 4a 2 5ax 2 8ma3b 5 2a 2 2ax 2 ma3b 5
Questão 20 (0,4) Simplifique:
n 52 n 52 n 82 n 72
Questão 21 (0,4) Represente algebricamente. a) A diferença de dois quadrados de c e d. b) O quadrado da diferença de k e h. c) O quadrado da soma de x e y. d) O produto da soma pela diferença de m e n. e) Questão 22(0,4) Assinale a alternativa CORRETA. a) b) c) d) e)
Todo monômio é também um polinômio, mas nem todo polinômio é um monômio. Todos monômios que têm o mesmos coeficientes são semelhantes. Para multiplicar monômios basta multiplicar seus coeficientes. O grau do monômio 6 xyz é seis. O grau de um monômio nulo é zero.
Questão 23(24) O valor numérico da expressão b 2 4ac para a 2 , b 3 e c 1 é. a) 0 b) 21 c) -1 d) 1 e) -5 Questão 24 (0,4) Calcule utilizando a definição. a)
9 2 x 2
c) 8 x y
2
e) 6 x 8 7 y 5
2
Questão 25 (0,4) Calcule utilizando a definição. a)
3 x3 x
c) 5 y 5 y
e) 2 x 4 y 5 2 x 4 y 5