Hard x ray photoelectron spectroscopy haxpes 1st edition joseph c woicik eds

Page 1

Visit to download the full and correct content document: https://textbookfull.com/product/hard-x-ray-photoelectron-spectroscopy-haxpes-1st-ed ition-joseph-c-woicik-eds/

X ray Photoelectron Spectroscopy HAXPES 1st Edition Joseph C. Woicik
Hard
(Eds.)

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Handbook of Mineral Spectroscopy: X-Ray Photoelectron Spectra: Volume 1: X-ray Photoelectron Spectra 1st Edition J. Theo Kloprogge

https://textbookfull.com/product/handbook-of-mineralspectroscopy-x-ray-photoelectron-spectra-volume-1-x-rayphotoelectron-spectra-1st-edition-j-theo-kloprogge/

X Ray Spectroscopy with Synchrotron Radiation Fundamentals and Applications Stephen P. Cramer

https://textbookfull.com/product/x-ray-spectroscopy-withsynchrotron-radiation-fundamentals-and-applications-stephen-pcramer/

X-Ray Lasers 2014: Proceedings of the 14th International Conference on X-Ray Lasers 1st Edition Jorge Rocca

https://textbookfull.com/product/x-ray-lasers-2014-proceedingsof-the-14th-international-conference-on-x-ray-lasers-1st-editionjorge-rocca/

X Ray Lasers 2016 Proceedings of the 15th International Conference on X Ray Lasers 1st Edition Tetsuya Kawachi

https://textbookfull.com/product/x-ray-lasers-2016-proceedingsof-the-15th-international-conference-on-x-ray-lasers-1st-editiontetsuya-kawachi/

Handbook of X-ray and Gamma-ray Astrophysics 1st Edition Cosimo Bambi

https://textbookfull.com/product/handbook-of-x-ray-and-gamma-rayastrophysics-1st-edition-cosimo-bambi/

X Ray Lasers 2012 Proceedings of the 13th International Conference on X Ray Lasers 11 15 June 2012 Paris France 1st Edition E. Allaria

https://textbookfull.com/product/x-ray-lasers-2012-proceedingsof-the-13th-international-conference-on-x-raylasers-11-15-june-2012-paris-france-1st-edition-e-allaria/

Resonant X Ray Scattering in Correlated Systems 1st Edition Youichi Murakami

https://textbookfull.com/product/resonant-x-ray-scattering-incorrelated-systems-1st-edition-youichi-murakami/

Handbook of X-ray Imaging: Physics and Technology 1st Edition Paolo Russo

https://textbookfull.com/product/handbook-of-x-ray-imagingphysics-and-technology-1st-edition-paolo-russo/

Handbook of X-ray Imaging: Physics and Technology 1st Edition Paolo Russo (Editor)

https://textbookfull.com/product/handbook-of-x-ray-imagingphysics-and-technology-1st-edition-paolo-russo-editor/

Hard X-ray Photoelectron Spectroscopy (HAXPES)

Springer Series in Surface Sciences 59

SpringerSeriesinSurfaceSciences

Volume59

Serieseditors

RobertoCar,Princeton,USA

GerhardErtl,Berlin,Germany

Hans-JoachimFreund,Berlin,Germany

HansLüth,Jülich,Germany

MarioAgostinoRocca,Genova,Italy

Thisseriescoversthewholespectrumofsurfacesciences,includingstructureand dynamicsofcleanandadsorbate-coveredsurfaces,thin films,basicsurfaceeffects, analyticalmethodsandalsothephysicsandchemistryofinterfaces.Writtenby leadingresearchersinthe field,thebooksareintendedprimarilyforresearchersin academiaandindustryandforgraduatestudents.

Moreinformationaboutthisseriesathttp://www.springer.com/series/409

HardX-rayPhotoelectron Spectroscopy(HAXPES)

123

BrookhavenNationalLaboratory NationalInstituteofStandards andTechnology

Upton,NY USA

ISSN0931-5195ISSN2198-4743(electronic)

SpringerSeriesinSurfaceSciences

ISBN978-3-319-24041-1ISBN978-3-319-24043-5(eBook) DOI10.1007/978-3-319-24043-5

LibraryofCongressControlNumber:2015950038

SpringerChamHeidelbergNewYorkDordrechtLondon © SpringerInternationalPublishingSwitzerland2016

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade.

Printedonacid-freepaper

SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com)

Preface

PhotoelectronspectroscopyhasitsrootsintheNobelPrize-winningworkofAlbert EinsteinandKaiSiegbahn.Itisthereforebothanhonorandahumblingexperience toproduceabookthatdocumentstheexcitementofthenewestdevelopmentsin this field.

AccordingtoEinstein’sdiscoveryofthelawofthephotoelectriceffect,consideredtobethedawnofthequantumage,theconservationofenergybetweenthe incomingphotonandtheoutgoingphotoelectroninthephotoemissionprocess allowsthetechniquetouniquelymeasurethechemicalandelectronicstructureof atoms,molecules,andsolids.However,despiteSeigbahn’soriginaldevelopment ofthetechniqueforchemicalanalysiswithhigh-energyX-rays,theuseof low-energyphotonswithenergiesuptoonlyabout1.5keVbymodernresearchers, atbothlaboratoryandsynchrotronsources,resultsinextremelyshortphotoelectron inelasticmean-freepaths.Asaresult,thislimitedinformationdepthhashistorically restrictedexperimentstothestudyofsurfacesandshallowinterfaces,orwhatis referredtointheliteratureastraditionalsurfacescience.

Itisthereforenosurprisethatrecentadvancesinbothphotonsourceand electron-spectrometerinstrumentationhavedrivenexperimentsintotheextended 2–10keVphotonenergyrangeresultinginwhatisnowcalled hard X-rayphotoelectronspectroscopy(HAXPES).Duetoitsrelativelyunlimitedelectronescape depths,HAXPEShasemergedasapowerfultoolthathasgeneralapplicationtothe studyofthetruebulkandburiedinterfacepropertiesofcomplexmaterialssystems. Itsareasofapplicationarethusgrowingexponentiallycomparedtomoretraditional measurementsatlowerphotonenergies.

Inadditiontothemanyadvantagesofbeingabletostudy “real” samplestaken directlyfromairwithouttheneedforionsputteringorothersurfacepreparation, HAXPEShasopenedupotherresearchareasthatareincludedinthisbooksuchas:

v

Preface

• Thestudyofhighlycorrelatedandspintronicelectronsystemswithsurfaceand interfacecompositionsandstructuresthataredifferentfromtheirbulk.

• Thecombinationofenergyandanglemeasurements(X-raystandingwave, photoelectrondiffraction,andangle-resolvedvalencephotoemission)toproduce elementally,chemically,andspatiallyspecifi celectronicstructureinformation.

• Thestudyofrealisticprototypicalmultilayerdevicestructuresunderboth ambient and operando conditions.

• Thetuningofthephotoelectroninelasticmean-freepathandtheX-raypenetrationdepthtostudyburiedlayers,interfaces,andnanoparticleswiththe speci ficnanometerandmesoscopiclengthscalesrelevanttomodernindustry, as,forexample,today’ssemiconductorhetero-structures.

Thebrightnessofthird-andhighergenerationX-raysourceshasalsoopenedthe possibilitiesofbothhigh-resolutiontwo-dimensionalchemicalimagingwithdepth resolution(photoelectronmicroscopy)inadditiontotime-resolvedphotoemission. Thisvolumeprovidesthe fi rstcomplete,up-to-datesummaryofthestateofthe artinHAXPES.Itisthereforeamust-readforscientistsinterestedinharnessingits powerfulcapabilitiesfortheirownresearch.Chapterswrittenbyexpertsinclude historicalwork,moderninstrumentation,theoreticaldevelopments,andreal-world applicationsthatcoverthe fieldsofphysics,chemistry,andmaterialsscienceand engineering.Inconsiderationoftherapiddevelopmentofthetechnique,several chaptersincludehighlightsthatillustratefutureopportunitiesaswell.

Upton,USAJosephC.Woicik

vi

1HardX-rayPhotoemission:AnOverviewandFuture Perspective..........................................1 CharlesS.Fadley

2TheFirstDevelopmentofPhotoelectronSpectroscopy andItsRelationtoHAXPES ............................35 SvanteSvensson,EvelynSokolowskiandNilsMårtensson

3HAXPESattheDawnoftheSynchrotronRadiationAge .......43 PieroPianettaandIngolfLindau

4Hard-X-rayPhotoelectronSpectroscopyofAtoms andMolecules .......................................65 MarcSimon,MariaNovellaPiancastelliandDennisW.Lindle

5InelasticMeanFreePaths,MeanEscapeDepths, InformationDepths,andEffectiveAttenuationLengths forHardX-rayPhotoelectronSpectroscopy .................111 C.J.PowellandS.Tanuma

6HardX-rayAngle-ResolvedPhotoelectronSpectroscopy (HARPES) ..........................................141 AlexanderX.Gray

7OneStepModelDescriptionofHARPES:Inclusion ofDisorderandTemperatureEffects ......................159 JürgenBraun,JánMinárandHubertEbert

8RecoilEffectsinX-rayPhotoelectronSpectroscopy ............175 YosukeKayanuma

9Depth-DependenceofElectronScreening,ChargeCarriers andCorrelation:TheoryandExperiments ..................197 MunetakaTaguchiandGiancarloPanaccione

Contents
vii

10TheInfluenceofFinal-StateEffectsonXPSSpectra fromFirst-RowTransition-Metals .........................217 AndrewP.Grosvenor,MarkC.Biesinger,RogerSt.C.Smart andAndreaR.Gerson

11OptimizingPolarizationDependentHardX-rayPhotoemission ExperimentsforSolids .................................263

J.Weinen,T.C.Koethe,S.Agrestini,D.Kasinathan,F.Strigari, T.Haupricht,Y.F.Liao,K.-D.TsueiandL.H.Tjeng

12PhotoelectronEmissionExcitedbyaHardX-ray StandingWave .......................................277

JörgZegenhagen,Tien-LinLeeandSebastianThiess

13DepthPro filingandInternalStructureDetermination ofLowDimensionalMaterialsUsingX-rayPhotoelectron Spectroscopy ........................................309 SumantaMukherjee,PralayK.SantraandD.D.Sarma

14ProbingPerovskiteInterfacesandSuperlatticeswithX-ray PhotoemissionSpectroscopy .............................341 ScottA.Chambers

15HAXPESMeasurementsofHeterojunctionBandAlignment .....381 ConanWeiland,AbdulK.RumaizandJosephC.Woicik

16HAXPESStudiesofAdvancedSemiconductors ...............407 PatrickS.LysaghtandJosephC.Woicik

17Liquid/SolidInterfacesStudiedbyAmbientPressure HAXPES ...........................................447 Z.LiuandH.Bluhm

18HAXPESApplicationstoAdvancedMaterials ................467 KeisukeKobayashi

19PhotoelectronMicroscopyandHAXPES ....................533 RaymondBrowning

20FemtosecondTime-ResolvedHAXPES .....................555 Lars-PhilipOloff,MasakiOura,AshishChainani andKaiRossnagel Index

viii Contents
.................................................569

Contributors

S.Agrestini MaxPlanckInstituteforChemicalPhysicsofSolids,Dresden, Germany

MarkC.Biesinger SurfaceScienceWestern,TheUniversityofWesternOntario, London,ON,Canada

H.Bluhm LawrenceBerkeleyNationalLaboratory,ChemicalSciencesDivision, Berkeley,CA,USA

JürgenBraun DepartmentofChemie,Ludwig-Maximilians-Universität München,Munich,Germany

RaymondBrowning Shoreham,NY,USA

AshishChainani RIKENSpring-8Center,Hyogo,Japan

ScottA.Chambers PhysicalSciencesDivision,Pacifi cNorthwestNational Laboratory,Richland,WA,USA

HubertEbert DepartmentofChemie,Ludwig-Maximilians-UniversitätMünchen, Munich,Germany

CharlesS.Fadley DepartmentofPhysics,UniversityofCaliforniaDavis,Davis, CA,USA;MaterialsSciencesDivision,LawrenceBerkeleyNationalLaboratory, Berkeley,CA,USA

AndreaR.Gerson MineralsandMaterialsScienceandTechnology(MMaST), MawsonInstitute,UniversityofSouthAustralia,Adelaide,SA,Australia;Blue MineralsConsultancy,Adelaide,SA,Australia

AlexanderX.Gray DepartmentofPhysics,TempleUniversity,Philadelphia,PA, USA

AndrewP.Grosvenor DepartmentofChemistry,UniversityofSaskatchewan, Saskatoon,Canada ix

T.Haupricht II.PhysikalischesInstitut,UniversitätzuKöln,Cologne,Germany

D.Kasinathan MaxPlanckInstituteforChemicalPhysicsofSolids,Dresden, Germany

YosukeKayanuma MaterialsandStructuresLaboratory,TokyoInstituteof Technology,Nagatsuta,Yokohama,Japan

KeisukeKobayashi HiroshimaSynchrotronRadiationCenter,Hiroshima University,Higashi-HiroshimaCity,Japan;QuantumBeamScienceDirectorate, JapanAtomicEnergyAgency,Sayo-Cho,Hyogo,Japan;ResearchInstituteof KUT,KochiUniversityofTechnology,KamiCity,Kochi,Japan

T.C.Koethe II.PhysikalischesInstitut,UniversitätzuKöln,Cologne,Germany

Tien-LinLee DiamondLightSourceLimited,DiamondHouse,Didcot, Oxfordshire,UK

Y.F.Liao NationalSynchrotronRadiationResearchCenter,Taiwan,China

IngolfLindau SLACNationalAcceleratorLaboratory,MenloPark,CA,USA

DennisW.Lindle DepartmentofChemistry,UniversityofNevada,LasVegas, NV,USA

Z.Liu AdvancedLightSource,LawrenceBerkeleyNationalLaboratory, Berkeley,CA,USA;StateKeyLaboratoryofFunctionalMaterialsforInformatics, ShanghaiInstituteofMicrosystemandInformationTechnology,ChineseAcademy ofSciences,Shanghai,China;CondensedMatterPhysicsandPhotonScience Division,SchoolofPhysicalScienceandTechnology,ShanghaiTechUniversity, Shanghai,China

PatrickS.Lysaght SEMATECH,Albany,NY,USA

NilsMårtensson DepartmentofPhysicsandAstronomy,Uppsala,Sweden

JánMinár DepartmentofChemie,Ludwig-Maximilians-UniversitätMünchen, Munich,Germany;NewTechnologies ResearchCenter,UniversityofWest Bohemia,Pilsen,CzechRepublic

SumantaMukherjee SolidStateandStructuralChemistryUnit,IndianInstitute ofScience,Bengaluru,India

Lars-PhilipOloff InstituteofExperimentalandAppliedPhysics,Universityof Kiel,Kiel,Germany;RIKENSpring-8Center,Hyogo,Japan

MasakiOura RIKENSpring-8Center,Hyogo,Japan

GiancarloPanaccione IstitutoOfficinaDeiMateriali(IOM)-CNR,Laboratorio TASC,Trieste,Italy

x Contributors

MariaNovellaPiancastelli LaboratoiredeChimiePhysique-Matièreet Rayonnement,CNRSandUPMC,Cedex05Paris,France;DepartmentofPhysics andAstronomy,UppsalaUniversity,Uppsala,Sweden

PieroPianetta SLACNationalAcceleratorLaboratory,MenloPark,CA,USA

C.J.Powell MaterialsMeasurementScienceDivision,NationalInstituteof StandardsandTechnology,Gaithersburg,MD,USA

KaiRossnagel InstituteofExperimentalandAppliedPhysics,UniversityofKiel, Kiel,Germany;RIKENSpring-8Center,Hyogo,Japan

AbdulK.Rumaiz NationalSynchrotronLightSourceII,BrookhavenNational Laboratory,Upton,NY,USA

PralayK.Santra SolidStateandStructuralChemistryUnit,IndianInstituteof Science,Bengaluru,India;DepartmentofChemicalEngineering,Stanford University,Stanford,USA

D.D.Sarma SolidStateandStructuralChemistryUnit,IndianInstituteofScience, Bengaluru,India;DepartmentofPhysicsandAstronomy,UppsalaUniversity, Uppsala,Sweden

MarcSimon LaboratoiredeChimiePhysique-MatièreetRayonnement,CNRS andUPMC,Cedex05Paris,France

RogerSt.C.Smart MineralsandMaterialsScienceandTechnology(MMaST), MawsonInstitute,UniversityofSouthAustralia,SouthAustralia,Australia

EvelynSokolowski Tystberga,Sweden

F.Strigari II.PhysikalischesInstitut,UniversitätzuKöln,Cologne,Germany

SvanteSvensson DepartmentofPhysicsandAstronomy,Uppsala,Sweden

MunetakaTaguchi RIKENSPring-8Center,Hyogo,Japan;NaraInstituteof ScienceandTechnology(NAIST),Ikoma,Nara,Japan

S.Tanuma NationalInstituteforMaterialsScience,Tsukuba,Ibaraki,Japan

SebastianThiess DeutschesElektronen-Synchrotron,Hamburg,Germany

L.H.Tjeng MaxPlanckInstituteforChemicalPhysicsofSolids,Dresden, Germany

K.-D.Tsuei NationalSynchrotronRadiationResearchCenter,Taiwan,China

ConanWeiland MaterialsMeasurementsLaboratory,NationalInstituteof StandardsandTechnology,Gaithersburg,MD,USA

J.Weinen MaxPlanckInstituteforChemicalPhysicsofSolids,Dresden, Germany

Contributors xi

JosephC.Woicik MaterialsMeasurementLaboratory,NationalInstituteof StandardsandTechnology,Gaithersburg,MD,USA

JörgZegenhagen DiamondLightSourceLimited,DiamondHouse,Didcot, Oxfordshire,UK

xii Contributors

Chapter1

HardX-rayPhotoemission:AnOverview andFuturePerspective

Abstract ThevariousaspectsofhardX-rayphotoemissionarereviewed,including inparticularmorenewlydevelopeddirectionsofmeasurement,butalsowithreferencestootherchaptersinthisbookorpriorpublicationsinwhichadditional detailscanbefound.Anoverviewofthedifferentdimensionsofthetechnique, includingalookatpromisingfuturedirections,ispresented.

1.1Introduction

AlthoughhardX-rayphotoemission(HXPS,HAXPES,HX-PES, )infacthasa longhistory,asreviewedelsewhereinthisbookbySvensson,Sokolowski,and Martensson,byPianettaandLindau,whopioneereditwithsynchrotronradiation (SR)excitationatSSRL[1],andbyKobayashi,whodiscussesthe fi rst undulator-basedactivitiesatSPring-8,itisreallyonlyinthelast15yearsorsothat thedevelopmentofbeamlines,spectrometers,andevenlaboratorysources,hasled toitsrapidgrowth.Bynow,variousstatisticsindicatetherapidgrowthofthe technique.Thenumberofpapersappearingandthecitationstothemaregrowing exponentially,asshownfromtheWebofSciencestatisticsinFig. 1.1,which certainlyrepresentconservativenumbersduetothefactthatauthorsmaynot alwaysuseoursearchkeywordsinpublications,andinfactprobablydothisless withtimeasthetechniquebecomesmorecommonlyused.Someoverallnumbers

C.S.Fadley(&)

DepartmentofPhysics,UniversityofCaliforniaDavis,Davis,CA95616,USA e-mail:fadley@physics.ucdavis.edu

C.S.Fadley

MaterialsSciencesDivision,LawrenceBerkeleyNationalLaboratory,Berkeley CA94720,USA

© SpringerInternationalPublishingSwitzerland2016

J.C.Woicik(ed.), HardX-rayPhotoelectronSpectroscopy(HAXPES), SpringerSeriesinSurfaceSciences59,DOI10.1007/978-3-319-24043-5_1

1

Measures of the growth and impact of hard x-ray photoemission

Fig.1.1 AWebofScienceplotofthenumberofpublicationsandcitationsversustimeinvolving thekeywords “hardX-rayphotoelectronspectroscopy” or “hardX-rayphotoemission” or “high energyphotoelectronspectroscopy” or “highkineticenergyphotoelectrondiffraction” or “hard X-rayphotoelectronmicroscopy” or “HXPS” or “HAXPES” or “HX-PES” or “HAXPEEM”.This dataisfromJune,2015

fromthissearchinJune,2015areabout640publications,1000citationsperyear, 5600citationsintotal,9cites/paper,andanh-indexof38.Thesepublicationshave furthermoreappearedinleadinghigh-impactjournals.Therearealsocurrently approximately20synchrotronradiationbeamlinesrunningorinconstruction/ commissioningthatareatleastpartlydedicatedtoHXPS,inalphabeticalorderat: ALS,BESSYII,CLS,Diamond,PetraIII,NSRRC,NSLS-2,Soleil,andSPring-8, withbyfarthelargestnumberatSPring-8,stilltheleadingfacilityinthistechnique. Commercialsystemspermittingin-laboratorymonochromatizedHXPSarealso nowavailable.Finally,therehasbeenacontinuingseriesofinternationalworkshopsandbynowinternationalconferencesonHXPS,withprogramsandproceedingsoftenonline[2–10].

Beyondthis,andmoreimportantly,thetechniquehasbynowbeenappliedtothe fullrangeofforefrontmaterialsissuesinphysicsandchemistry,includingbulk, surface,andburiedinterfacestudies,asbeautifullydemonstratedinvariouschapters inthisbook,e.g.,byBrowning photoelectronmicroscopyofvariousmaterials types;Chambers-oxideheterostructures;Gray dilutemagneticsemiconductors; Kobayashi abroadrangeofadvancedmaterialsanddevicestructures;Liuand Bluhm ambientpressurephotoemissionstudiesofsurfacesandinterfaces, includingveryrecentuseofhardX-rayexcitation[11];TaguchiandPanaccionne, plusTjengetal. stronglycorrelatedmaterials;Mukherjee,SantraandSarma nanostructures;Weiland,Rumaiz,andWoicik,plusLysaghtandWoicik band alignmentsandsemiconductors,andZegenhagen,Lee,andThiess oxidesand superconductors.Inaddition,itisclearthatHXPScanbeveryfruitfullyappliedin atomicandmolecularphysics,asoverviewedbySimon,Piancastelli,andLindle. IherealsonotewithdeepsadnessourlosslastyearofDennisLindle,atruepioneer

2 C.S.Fadley

inapplyinghardX-rayexcitationtoatomicandmolecularphysicswithhisworkat theAdvancedLightSource.

Iwillnotattemptheretorepeatwhatisalreadysowellreviewedandpresented intheabove-citedchaptersdevotedtoapplicationsofHXPS,butwilllimitthis overviewtodiscussingthebasicprinciplesofthetechnique,includingitsstrengths, weaknesses,somenewdirections,andchallengesforfutureexperimentaland theoreticaldevelopments.Thisdiscussionwillthusmoredirectlyrelatetoother chaptersonthefundamentalphysicsofphotoemissioninthehardX-rayregimeby Braun,Ebert,andMinar photoemissiontheory;Browning-photoelectronmicroscopy;Grosvenoretal. fi nal-stateeffects;Kayanuma-recoileffects;Powelland Tanuma inelasticmeanfreepaths;andRossnageletal. time-resolvedmeasurements.Someadditionalnewmeasurementmethodswillbepointedout,for example,involvingstanding-wave(SW)ornear-total-reflection(NTR)excitation frommultilayerheterostructures,whicharenotcoveredelsewhereinthisbook.

Finally,thereaderisdirectedtoseveralotheroverviewsandspecialjournal issuesinvolvingHXPSanditsrelationshiptoconventionalXPSatlessthan2keV thathavebeenpublished[12–14],includingsomefrommygroup[15–20],andto whichspeci ficreferenceswillsubsequentlybemade.

Inconcludingthisintroduction,itisworthnotingthevariousmeasuring modalitiesinphotoemissioningeneral,whichareillustratedinFig. 1.2,allof whichwillbediscussedindividuallyinthefollowingsections.

Fig.1.2 Schematicillustrationofthedifferentmeasurementmodalitiesinphotoemission,with inset examplesdiscussedlaterinthisandotherchaptersofthisbook.Thecoreschematicfrom whichthis figureisderivedisfromY.Takata

Binding Energy x k Binding Energy
GaAs(100)
1HardX-rayPhotoemission:AnOverview 3

1.2BasicEffectsandConsiderations

Advantages, Disadvantages,andChallenges

1.2.1ProbingDepth

Ofcourse,theabilitytoprobemoredeeplyintoasampleandreducetheimportance ofsurfaceeffectsisaprimaryreasonforusinghardX-rayexcitationinphotoemission.HardX-rayisheredefinedas>2keV,sincethatistypicallytheenergy abovewhichcrystalmonochromators,insteadofgratingmonochromators,mustbe used.Someprefertocalltherangeofca.2–10keVthatismostcommonlyusedin HXPSmeasurements “tender” X-rays.

Theprobingdepthiscontrolledbytheinelasticmeanfreepath(IMFP),and Fig. 1.3 showsacompilationofvaluesfor41elementscalculatedfromopticaldata andleadingtothemuch-usedTPP-2Mformulaforestimatingthem,fromthework ofTanumaetal.[21].ThismethodanditsapplicationtoHXPSarediscussedin moredetailinthechapterbyTanumaandPowell.

Theconclusionsfromthisandotherrecentexperimentalwork[22, 23]arethat theonlyreliablewaytoincreasebulkorburiedlayerandinterfacesensitivityforall materialtypesistogotohigherphotonenergiesinthesoftX-ray(ca.0.5–2keV)or hardX-ray(ca.2–10keV)regime.Goingtoverylowphotonenergieswithlaser excitationisalsooftendiscussedasamethodforenhancingbulksensitivity[24], butitseemsclearthatthiswillnotbeauniversalbenefitforallmaterials,andmay onlybetrueforthosewithasignifi cantbandgap.Furtherexperimentalandtheoreticalstudyofthislastpointisneeded.

Fig.1.3 Energydependenceofelectroninelasticmeanfreepathsascalculatedfromoptical propertiesfor41elements,withvaluescloselyrelatedtotheTTP-2Mformula(From[21])

4 C.S.Fadley

1.2.2EaseofSpectralAnalysis

Thereareseveralwaysinwhichspectralanalysisissimplerathigherphoton energies:

• Theinelasticbackgroundsunderspectraaresigni ficantlyreduced,thusmaking theallowanceforthemin fittingtoderivevariouspeakintensitieseasier.

• Augerspectraareingeneralfurtherapart,thuscreatinglessoverlapwith photoelectronpeakswhosedetailedanalysisisdesired.

• Peakintensityanalyses: Theanalysisofpeakintensitiesviastandardformulasforcorephotoelectron emission,suchasthatshownin(1.1)andFig. 1.4 foratypical n‘j levelinatom Q,withanincident fluxof Ihv ðx; y; z; ^ eÞ,radiationpolarizationof ^ e,anIMFPof Ke ðEkin Þ,andaspectrometeracceptancesolidangleoverthesurfaceof XðEkin ; x; yÞ,

andasusede.g.inangle-resolvedXPS(ARXPS)depthprofileanalyses,are simplerbecause:

– TheIMFPs Λe(Ekin)ofdifferentpeaks,althoughkineticenergydependent,can havemuchlessvariationthanwithlowerenergyexcitation,becausethehigher kineticenergiesofless-boundelectroniclevelsarecloserinrelativevalues.

– Theinstrumentresponsefunction,indicatedasthesolid-angleofacceptance Ω(Ekin, x, y)inFig. 1.4,willalsotendtobemorenearlyconstantoverasetof peakswithhigh,andthusverynearlyequal,kineticenergies.

Theeffectsofelasticscatteringinsmearingoutthephotoelectronintensity distribution,indicatedbythescatteringfactor f(θscatt)inFig. 1.4,willbeless pronounced,duetothegenerallyincreasingforwardfocusingeffectas energyisincreased.

Theeffectofrefractionincrossingtheinnerpotentialbarrier V0 willbeless asenergyisincreased.

– Theeffectsofsurface-associatedinelasticscatteringwillalsobereducedas thekineticenergyincreases[25].

– In valencephotoemission,itisalsowellknown[26, 27]thatthephotoelectric crosssectionbecomesmoreandmoredominatedbythecoreregionofeach atomasenergyisincreased,thuspermittinganapproximatedecompositionof avalencespectruminthehigh-energyXPSordensity-of-states(DOS)limit intoasumofpartialintensitiesbasedonorbital-projectedDOSsandatomic differentialcrosssections,asindicatedin(1.2)below:

I ðQn‘jÞ¼ C Z 1 0 Ihv ðx; y; z; ^ eÞqQ ðx; y; zÞ d rQn‘j ðhv; ^ eÞ d X exp z Ke ðEkin Þ sin h XðEkin ; x; yÞdxdydz ð
1:1Þ
1HardX-rayPhotoemission:AnOverview 5

Fig.1.4 Corephotoelectronemission,withageneralsampleandexperimentalconfiguration indicated,alongwiththestandardformulaforanalyzingintensities,alsoappearingin(1.1)

Itotal ðEkin Þ¼ X Qn‘j I ðEkin ; Qn‘jÞ ¼ X Qn‘j

with qQn‘j ðEb ; x; y; zÞ theprojecteddensityofstatesforthe Qn‘j orbitalatagiven bindingenergyandpositioninthesample.

Thus,thesimpleformulasshownin(1.1)orin(1.2)willbemorequantitativefor HXPSinmanysituations,permittingsimplerspectralanalysesofbothcoreand valencespectra.

Itisimportant fi nallytonotethatauser-friendlyprogramexistsforcalculating spectraforcore-levelemission,namelySimulationofElectronSpectraforSurface Analysis(SESSA),whoseinputdatabaseshaverecentlybeenextendedtocover hardX-rayexcitation[28, 29].Thisprogramincludesallofthephysicaleffects indicatedinFig. 1.4,withelasticscatteringassumedtobefromanarrayofrandomlypositionedatoms,althoughitdoesnotincluderefractioneffectsincrossing theinnerpotential.

C 0
0 Ihv ðx; y; z; ^ eÞqQn‘j ðEb ; x; y; zÞ d rQn‘j ðhv; ^ eÞ d X exp z Ke ðEkin Þ sin h XðEkin ; x; yÞdxdydz ð1 2Þ
Z 1
6 C.S.Fadley

1.2.3PhotoelectricCrossSections,IncludingPolarization

Effects

Beyondtheseconsiderationshowever,istheclearchallengethatphotoelectriccross sectionsdecreasedramaticallyasphotonenergy,orequivalentykineticenergy Ekin isincreased[30–32],varyinginahigh-energyasymptoticlimitroughlyas σQn‘j (Ekin) ∝ (Ekin) 7/2 =(Ekin) 3.5 forssubshellsand ∝(Ekin) 9/2 =(Ekin) 4.5 forp,d,and fsubshells,butwithmoreaccuratecalculationsforspeci ficcasesinthetworeferencesmentioned.Figure 1.5 illustratesthisdecreasewithcalculatedcrosssections [30]forthesubshellsofMnandOover1–10keVspanningthemostcommon HXPSrange.Thus,thedevelopmentofHXPShasrequiredthedesignofbeamlines, includingenhancedintensitywithundulatorexcitation[33],andlaboratorysources withthehighestpossibleintensities,aswellasspectrometerswiththehighestsolid anglesofacceptance,withthelatterforexamplenowgoingupto ±30° incommercialhemisphericalelectrostaticinstrumentsandupto ±45° incustom-designed systems[34].Thepossibilityoftime-of-flightanalysistofurtherincreaseintensities isalsobeingdiscussed[35, 36].However,withpresentSRHXPSfacilities,itisstill possibletosaturateanyexistingdetectorforintensecorelevels,andresearchand developmentthusneedstobedoneforhigher-throughputelectrondetectorscapable oftheGHz-regime[37],ascomparedtothecurrent *1MHzfor2Ddetection,and *10MHzfor1Ddetection.

Anotherimportantconsequenceofthisenergyvariationforvalence-levelstudies isthatsubshellswithlower ‘ foragiven n thatthusexhibitmoreoscillationsinthe coreregiondecayinintensitylessrapidlythanthosewithhigher ‘.Figure 1.5 illustratesthat,forexample,Mn3sdecayslessrapidlythanMn3p,andMn3pless

Mn 1s(1/2)

Mn 2s(1/2)

Mn 2p(1/2)

Mn 2p(3/2)

Mn 3s(1/2)

Mn 3p(1/2)

Mn 3p(3/2)

Mn 3d(3/2)

Mn 3d(5/2)

Mn 4s(1/2)

O 1s(1/2)

O 2s(1/2)

O 2p(1/2)

O 2p(3/2)

RelativisticsubshellcrosssectionsforMnandOasafunctionofphotonenergyoverthe region1–10keV(From[30])

0200040006000800010000 0.01 0.1 1 10 100 1000 10000 100000
<----Valence----> <---------Core--------->
Photoelectric cross sections for O and Mn (Scofield)
(Barn = 10 -24 cm 2 )
Subshell
photoelectric cross section
Photon energy (eV)
1HardX-rayPhotoemission:AnOverview 7
Fig.1.5

rapidlythanMn3d.AsimilarthingisfoundforO2s,whichdecayslessrapidly thanO2p.Thesevariationsalreadymaketheasymptoticformulasabove,whichdo notdiscriminatep,d,andfcrosssections,lookinaccuratefortypicalHXPS energies.Infact,theexponentsderivedwithcrosssectionratiosfromFig. 1.5 at8 and10keV,byassumingthat(Crosssectionathν =10,000)/(Crosssectionat hν =8000)=(Ekin at10,000eV)m/(Ekin at8000eV)m yieldvaluesofm= 2.4to 2.6forMn1s,Mn2s,Mn3s,andMn4s,orabout5/2,withO1sandO2sbeing somewhathigheratm=3.0,orabout6/2.Mn2pandMn3pshowm= 3.3to 3.4,andO2plargervaluesofm= 3.9to 4.0,orabout7/2–8/2.Lastly,Mn3d hasthelargestvalueatm= 4.2to 4.3,approachingtheasymptoticlimitof9/2. Thus,thesevaluesonlyroughlyagreewith,andspanagreaterrangethan,the asymptoticnumbersabove,andofcourseclearlyshowthetrendswith ‘ foragiven n alreadymentioned.

Othermorecomplexbutimportantvariationsinrelativeintensityalsooccurif oneconsiderstheimportantcaseofvalence-electronspectra.Forexample,by 10keVthevalencespectrumofasamplewithbothMnandOinit(aswouldbe typicalforatransitionmetal(TM)oxide)isexpectedtobedominatedbyO2pand Mn4scharacter.

Anothercross-sectioneffectthatmustbeallowedforasenergyincreasesisthe increasingimportanceofnon-dipoleterms[31, 32, 38](seealsochapterbySimon, Piancastelli,andLindle).Thesecanbebrokenintotwotypes,dependingon whethercore-likeintensitiesareinvolvedormomentum-resolvedangle-resolved photoemission(ARPES)valenceintensitiesarebeinganalyzed.Inthe firstcase, standardcorrectionparameterstotheusualdipoleformulaareavailablefora numberofatomsandenergies[31, 32, 38],andthesecanbeinterpolatedand extrapolatedforagivencaseathand.ForARPES,ormoreappropriately,soft-and hard-X-rayARPES(SARPESandHARPES,respectively),acorrectionduetothe photonmomentumisneededinthemomentum-conservationequation,asdiscussed elsewhere[15, 18, 19, 39, 40],laterinthischapter,andinthechapterbyGrayin thisbook.Thisisasimplecorrectiontodoaswell,providedthattheexperimental geometryispreciselydefined.

AsanothermorerecentlyrealizedaspectofhardX-rayphotoelectriccross sections,ithasrecentlybeenshownbyDrubeetal.thatinterchannelcoupling effectsthatareessentiallyresonantphotoemissionwithdeepcorelevelscansignificantlyinfluencetherelativeintensitiesofshallowercorelevels.Forexample,the Ag3d3/2,5/2 intensitiesatbindingenergiesof *374and368eVareinfluencedbyas muchas30%inscanningthephotonenergyovertheAg2p1/2,3/2 resonancesat *3560and3250eV.Thus,itmaybenecessarytoavoidsuchresonancesbyas muchasafewhundredeVifasimplequantitativeanalysisaccordingtoequations suchasthosein(1.1)or(1.2)istobevalid.

AsmoreandmorehardX-raybeamlinesarepermittingthevariationofpolarizationthroughtheuseofdiamondphaseretarders[41, 42],itisimportanttonote thestrongeffectsthatthiscanhaveonthedifferentialphotoelectriccrosssections. Thisisparticularlyimportantforvalence-levelspectrainwhichthedifferentorbital contributionscanberesolvedinenergythroughtheprojecteddensitiesofstates,as

8 C.S.Fadley

indicatedin(1.2).Asasimpleillustrationofthis,Figs. 1.6 and 1.7 showsome calculateddifferentialcrosssectionsfortheCu3dz2 andO2pz orbitals,attwo energiesof0.8and5keVandthreedifferentpolarizationorientationsalongx,y, andz.Thesehavebeencalculatedinanon-relativisticlimitusingequationspublishedsometimeago[43],withextrapolationsofradialmatrixelementsandphase shiftsforthe ‘ ± 1interferingchannelsto5keVusingthedatain[43],andanonline programduetoNemšáketal.thatpermitscalculatingthemforanarbitrary experimentalgeometry[44].Ofcourse,foranyssubshellinthedipolelimit,the crosssectionlookslikeapwaveorientedalongthepolarizationdirection,thatisof thefunctionalformgivenattheleftofFig. 1.7,sincethereisonlyonechannelin the finalstate,andsowillhaveanodeforemissionperpendiculartothepolarization vectorforallthreeorientationsinthis figure.

Fromthesecalculationsformorecomplexnon-ssubshells,itisclearthatvarying polarizationawayfromthespecialcaseofbeingparalleltotheelectronemission

Fig.1.6 Non-relativisticdipole-approximationcrosssectionsfortheCu3dz2 orbital,forthree differentpolarizationdirectionsandat800and5000eVphotonenergies.Themaximumvalueof eachcontourisindicatedinthe inset (From[44])

1HardX-rayPhotoemission:AnOverview 9

direction(aspecialcasewhichisknowntoyieldcrosssectionsofexactlythesame formastheorbitalshapeangularshape[43]),canyielddramaticchanges.For example,theCu3dz2 crosssectiontendstolooksomewhatliketheorbitalforz polarization,butiscompletelydifferentinxandypolarization.Therearealsosome signifi cantchangesastheenergyisincreasedfrom800to5000,particularlyforx andypolarization.SimilarthingsaretruefortheO2pz crosssection,againtending tolookliketheorbitalforzpolarization,butchangingdramaticallysoastohave nodesalongtheorbitaldirectionwithxandypolarization.Althoughmoreaccurate relativisticcalculationsallowingfornon-dipoleeffectswouldnodoubtbesomewhatdifferentfromtheseresults,thechangeswithpolarizationandenergyin Figs. 1.6 and 1.7 wouldbeexpectedtobesemi-quantitativelymaintained. Asonesimpleillustrationoftheutilityofpolarizationinvalence-bandstudies,it ispointedoutininrecentpublications[42, 45],andinthechapterbyTjengetal., thatitcanbeusefultoemitelectronsperpendiculartothepolarizationdirectionin ordertosuppressthestrongTM4scontributionsinTMoxidevalencespectra,soas tomoredirectlyseethetransitionmetal3dcontributions(cf.Fig. 1.5).Figures 1.6

10 C.S.Fadley
Fig.1.7 AsFig. 1.6,butfortheO2pz crosssections(From[44])

and 1.7 makeitclearthatotherpolarization-emissiongeometriescouldbeusefulin enhancingorde-enhancingthecontributionsofdifferentorbitals.Makinguseof suchvariationsincrosssectionswithpolarizationisofcoursealsoatypeoflinear dichroism,andwillbeaveryusefultechniqueinfutureHXPSstudies.

Finally,itisimportanttonotethatelasticscattering,asindicatedschematically inFig. 1.4,willminimallytendtosmearoutthevariousfeaturesseeninpurely atomiccrosssectionssuchasthoseinFigs. 1.6 and 1.7,butalsoforanyatomically orderedsystemtoproducestrongmodulationsduetophotoelectrondiffraction,as discussedfurtherbelow.

1.2.4ChemicalShifts,MultipletSplittings,andSatellites

inCore-LevelSpectra

Itisobviousthatcore-spectrainHXPScanbeminedforthesamekindsof informationasinsoftX-rayexcitedspectra:chemicalstatefromchemicalshifts, orbitaloccupationsandspinfrommultipletstructure,andlocalbondinginformation fromsatellites,whethertheyaredescribedasshake-upor final-statescreeningin nature.ButitwasrealizedearlyonbyHoribaetal.inworkonacolossalmagnetoresistivemanganite[46],subsequentlyinworkonhightemperaturesuperconductors[47]andlaterondilutemagneticsemiconductors(DMSs)[48]that goingtohigherenergiespermitsobservingextremelysharplow-binding-energy satellitesontransition-metal2pspectra,andthatthesecanbeinterpretedintermsof bulkscreeningbyhighlydelocalizedvalenceelectronsneartheFermilevel[49]. AnexampleofthiskindofdatafortheDMSGa0.97Mn0.03AsisshowninFig. 1.8, forwhichtheMn2p3/2 peakshowsaverystrongscreeningsatelliteofthistype. These final-stateeffectsprovideyetanotherhandleonvalenceelectronicstructure andhavebeenfoundtobesensitiveforexampletothepresenceofferromagnetic order[46, 48].ThespectruminFig. 1.8 alsoexhibitsamultipletsplittingfortheMn 3sspectrumthatcanbeusedtoestimatethespinonthisatom.These finalstate effectsandtheirinterpretationarereviewedinthechapterbyGrosvenoretal.and alsodiscussedinthechapterbyTaguchiandPanaccione.

1.2.5RecoilEffects

RecoileffectsinHXPSwere fi rstexploredbyTakataetal.[50],andarediscussed indetailinthechapterbyKayanuma.Theyhavebeenfoundtoaffectbothcore level-andvalencelevel-spectra[50–52],andmustbeconsideredassourcesofboth peakshiftstoeffectivelyhigherbindingenergies,andpeakbroadening.Figure 1.9b providesasimplewaytoestimatethemaximummagnitudeofthepeakshift,inthe simplestassumptionthatitisasingle-atomphenomenon.However,itisalsoclear

1HardX-rayPhotoemission:AnOverview 11

Mn2p “bulk” screening satellite linked to magnetism: Seen only in hard x-ray spectra

Mn3s splitting implies Mn3+ 3d4 (screening?)

Fig.1.8 SurveyspectrumfromthedilutemagneticsemiconductorGa0.97Mn0.03As(001)with 3.2keVexcitation,andwith enlargedinsets fromscanninglongeronMn2pand3s.Mn2preveals asharp final-statescreeningpeakonlyseenwithhardX-rayexcitation.Mn3sshowadoubletdue tomultipletsplittingthatcanbeusedtoestimatethespinofMn.DatafromSPring-8(From[40])

Fig.1.9 CalculatedparametersforestimatingthefeasibilityofARPESathigherenergies, including(a)contoursforvariousphotonenergiestoyieldaphotoemissionDebye-Wallerfactor W(T)of0.5at20K,and b therecoilenergyforallatomsasafunctionofphotonenergy.Values fortwo firstdemonstrationcasesWandGaAsstudiedwithhardX-rays[39]arehighlighted(From [55])

fromworktodatethatitisthedetailedvibrationalcouplingofagivenatomtoits nearneighborsthatcontrolsthemagnitudeoftherecoilshift[52],suggestingwhat hasbeencalled “recoilspectroscopy” asalocalprobeofsuchlocalbondingeffects, includingthoseinvalencespectra[53].

Aparticularlyilluminatingrecentexampleoftheobservationofrecoileffectsin gas-phaseHXPSisforNe1semission[54],forwhichthep-wavenatureofthe

Ga0.97Mn0.03As h= 3238.12 eV Θ = 2.0 T = 20K 9008007006005004003002001000 0.0 5.0x104 1.0x105 1.5x105 Photoemission Intensity (Arb. Units) Binding Energy (eV) Ga3p Ga3d Ga3s As3s As3p Mn2p As3d C1s Cl2s Mn3s V.B
O1s 2575258025852590259526002605 0.0 0.2 0.4 0.6 0.8 1.0 Normalized Photoemission Intensity (Arb. Units) Kinetic Energy (eV)
20406080 100 120140160180200 500 1000 1500 2000 Debye Temperature (K) 140.0 970.0 1800 2630 3460 4290 5120 5950 6780 6780 5950 5120 4290 3460 2630 1800 970 140 W GaAs Ru Rh Mo Pd Sb Sn Cd Ag C –Diamond, Graphite In-Plane Be Si Cr Al Mg Ca Os Re Ir Hf Ta Pt Au V Ti Mn Zr Nb As Fe Co Cu Zn • C –Graphite Perp-Plane Atomic Mass 0102030405060708090100110 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 Recoil Energy (eV) Atomic Number/Element 500 eV 1000 eV 2000 eV 4000 eV 6000 eV 8000 eV 10000 eV NeCaZnZrSnNdYbHgThFmDs Photoelectron kinetic energy Recoil energy (eV) 5.5 x 10 -4 [Ekin(eV)/(Atomic Wt(amu))] 010203040 0.0 0.1 0.2 0.3 NeCaZnZr (a) (b)
12 C.S.Fadley

crosssectionmeansthattheemissionofthephotoelectronsisstronglybiased towardbeingeitherparalleloranti-paralleltothepolarizationvector,asshownin Fig. 1.10a.ButifthephotoelectronsandthesubsequentKLLAugerelectronsare detectedalongthepolarizationasshown,thentheAugerelectronswillbeDoppler shiftedinenergydependingonthedirectionofemissionofthephotoelectrons.The turningonofthiseffectisseenasphotonenergyisincreasedintothe10keV regimeinFig. 1.10b.Sucheffectsarepresumablyalsopresentinsolidsaswell,and willbeasourceofbroadeninginAugerpeakwidthsathigherenergies.Thisand otheraspectsofHXPSinatomicandmolecularphysicsarediscussedinthechapter bySimon,Piancastelli,andLindle.

Asa finalcommentonrecoil,theuseofaDebye-Waller(D-W)factorto estimatetherecoil-freefractionforagivenexcitationisdirectlyrelatedtothe analysisofMössbauerspectra[50],andalsotothedegreetowhichHXPSvalence spectracanbeexpectedtoexhibitmomentum-resolvedelectronicstructurevia directtransitionsinangle-resolvedphotoemission(ARPES)[55].Figure 1.9ainfact permitsestimatingthefractionofmomentum-resolvedtransitionsasafunctionof Debyetemperature,atomicmass,andphotonenergy.WhentheD-Wfactorisvery small,onespeaksofbeingintheXPSlimitormorepreciselythe matrix-element-weighteddensityofstates(MEWDOS)limit.Thiscontinuum betweentheARPESlimitatlowtemperatureand/orlowenergyandtheXPSlimit athightemperatureand/orhighenergyisdiscussedfurtherbelow,inpriorpublications[18, 39, 40, 55],andinthechapterbyGray.

Fig.1.10 DopplereffectonAugeremissionfromafreeatom. a Thetwobasicrecoildirectionsof Ne1semissionrelativetothepolarizationdirectionsoftheincidentX-ray,dependingonwhether thephotoelectronisemittedtowardthespectrometerorawayfromit.Theexpectationforthis effectonasubsequentAugeremissionspectrumisindicatedinthe inset. b ActualAugerspectra forthetransitionNe+1 1s 1 → Ne+2 2p 2 (1D2)+Augerelectron,asphotonenergyisincreased. DatafromSoleil(From[54])

(a)(b)
1HardX-rayPhotoemission:AnOverview 13

1.2.6CircularandLinearDichroism

Makinguseoflinearpolarizationtoaccentuatedifferentorbitalcontributionshasbeen discussedaboveundercrosssections,butbeyondthisisthewell-knownmagnetic circulardichroism(MCD)inmagneticsystems, fi rstobservedinsoftX-rayphotoemissionfromFebySchneideretal.[56],and firstobservedinHXPSfromFe3O4 and Zn-dopedFe3O4 byUedaetal.[57].TodistinguishphotoemissionMCDfromthe morecommonlypracticedX-rayabsorptionMCD(XMCD),itseemsworthwhileto designatethephotoemissionvariantasPMCD.Althoughthemuch-usedsumrulesof XMCDhavenosimpleanaloguesinPMCD,PMCDdatanonethelesspermits assessingmagneticorder,includingatburiedinterfaces.Linearmagneticdichroismin photoemission(PMLD)hasalsobeenmeasured,andoftenisreferredtowiththesuffix ADtodenotethatitismeasuredinangulardistributions.NotetoEditor:Thereare termsinthe figurecaptionthatInoticedarenotdefinedinthetext.SomePMCD resultsfromthe fi rstHXPSstudyarepresentedinFig. 1.11 [57],andinFig. 1.12c–e fromamorerecentstudyofaburiedlayerofCo2FeAl0:5Si0.5 [58].

PMCDhasinfactbeenusedinconnectionwithsoftX-raystanding-wave excitation(tobeintroducedbelow)toprobethedepthdistributionofmagnetic orderthroughburiedinterfacesofFe/Cr[59]andFe/MgO[60],andsuchmeasurementsshouldbepossiblewithhardX-rayexcitation.

1.2.7Spin-ResolvedSpectra

AddingthespindimensiontoHXPSisanobviousnextstepthatwouldincreasethe abilitytoprobemagneticsystemsenormously,and firstmeasurementsof spin-resolvedspectrahavealreadybeenmadeonthesameburiedlayercontaining Fe[58],asshowninFig. 1.12a–c.

Novelimagingspindetectors[61, 62]andothermoreefficientspindetectorsthat shouldbesuitableforHXPS[63]arealsobeingdevelopedthatpromiseafactorof *100,ifnotmore,inspeed,andsomeofthesearebeingimplementedforHXPS

Fig.1.11 HardX-ray photoemissionMCD(PMCD) forFe2pcore-levelemission froma10nm-thickFe3O4 film.DatafromSPring-8 (From[57])

14 C.S.Fadley

Fig.1.12a–c Spin-resolvedspectraand d–e photoemissionMCD(PMCD)andMLD(PMLD) fromFe2p3/2 inaburiedlayerofCo2FeAl0:5Si0.5 with5.9keVexcitation. a Countratesinspin detectorchannels, b spinpolarizationderivedfromthecurvesin(a),and c spin-resolvedspectra. d–f Comparisonofspin-resolvedFe2p3/2 spectrawith(c)PMCDand(d),(e)PMLDfromthe samesample.DatafromSPring-8(From[58])

facilitiesatpresent.Thus,anexcitingelementoffuturestudieswillnodoubt involvemoreuseofspinresolution.

1.2.8PhotoelectronDiffraction

X-rayphotoelectrondiffraction(XPD)incore-levelemissionisawell-developed techniquefordetermininglocalatomicstructureinanelement-resolvedway,with over50,000citationsinaWebofSciencesearchbasedon “photoelectron diffraction”.VariousreviewsofXPDmakinguseofsoftX-rayexcitationhave appearedintheliterature[64–66].InthechapterbyChambers,heillustratestheuse ofXPDforcharacterizingoxideheterostructures.TheliteratureonhardX-ray photoelectrondiffractionismuchmorelimited,butgrowing,verymuchdueto Kobayashietal.[67].

Aninitialtheoreticalstudy[68]ofHXPDpointedoutthatthetraditional multiple-scatteringclustermodelforcalculatingXPD,asforexample,usedinthe onlineElectronDiffractioninAtomicClusters(EDAC)program[69]maynotbe themostrapidlyconvergentforHXPD,inwhichalargerno.ofatomscontribute

(c) (a) (d) (e) (f) (b)
1HardX-rayPhotoemission:AnOverview 15

Fig.1.13 HardX-rayphotoelectrondiffractionfromSiwithvaryingthicknessesofSiO2 ontop andanexcitationenergyof5414.7eVfromamonochromatizedlaboratoryCrKα1 source.The spectrometerhereacceptedaverywideangleof *±40° a Si1sspectrafromaSi(001) single-crystalcoveredbyaSiO2 layerrecordedatacertainazimuth.Notethesingle-shotabilityto doARXPSfordepthprofiling. b–d Two-dimensionalHXPDpatternsofSi1satakineticenergy of3569eVfromaSicrystal b terminatedbyH, c coveredbya4.1-nm-thickSiO2 layerand d coveredbya7.0-nm-thickSiO2 layer.The dashedlines in b indicateKikuchibandsalongthe (110)and(111)planardirections. e Acalculatedpatternfromamultiple-scatteringcluster calculation.DatafromalaboratoryHXPSsystem(From[34])

duetothelargerIMFPs,andtheindividualelectron-atomscatteringeventsbecome muchmoreforwardpeaked,withthesecombinedeffectsleadingtodiffraction patternsmoreproperlyinterpretedasoverlappingKikuchibands[68].Thus,a dynamicaldiffractionapproachismoreappropriateinthehigh-energylimit.This priorstudypointedoutthepossiblesensitivityofHXPDtothesitetypeofanatom, e.g.asadopant,andthisisapromisingfuturedirectionforitsapplication.One preliminarystudyofthistypehasbeendone,forMninGaAs[70].

AsanexampleofHXPDresults,Fig. 1.13 showssomedatafromSiwithvarious thicknessesofSiO2 ontop,asobtainedfromalaboratorysystemusingCrKα excitationat5.4keV[71].Here,thedataarecomparedtoclustercalculations.Itis evidentthattheamorphousSiO2 overlayerattenuatesandsmearsouttheHXPD modulations,butthattheyarestillpresenttosomedegreeevenwith7nmof amorphousSiO2 ontop.AmuchmoredetailedsetofsuchdataforZnO,as comparedtobothclusteranddynamicaldiffractiontheory,ispresentedinFig. 18. 28 ofthechapterbyKobayashi.

H-Si(001)
Native SiO2 /Si(001) ν (a) (b) (c) (d) (e)
4.1 nm SiO2 /Si(001)7.0 nmSiO2 /Si(001)Multiple scattering cluster simulation
16 C.S.Fadley

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.