Dr Jens Vogel of Boehringer Ingelheim A Next Generation Platform for Integrated Continuous Manufacturing of Biopharmaceuticals
#iscmp2018 Event Partners:
Continuous Mfg
A Next Generation Platform for Integrated Continuous Manufacturing of Biopharmaceuticals
Jens H. Vogel, PhD President & CEO Boehringer Ingelheim Fremont Inc
London, October 2018
Boehringer Ingelheim BioXcellence™ - Background Our Focus
• • • • •
CMC development, clinical & commercial manufacturing, > 280,000 L cell culture capacity Both stainless steel & disposables platforms Work with 15 of the top 20 Pharma/Biopharma companies 27 products brought to market Boehringer Ingelheim Fremont
• Fully integrated biotech operation (development, > 55,000L clinical & commercial capacity, DP, medical device assembly) • Global Innovation & Technology Management • Center of Excellence for Continuous Biomanufacturing
4
Confidential and Privileged Boehringer Ingelheim BioXcellence™
Boehringer Ingelheim Fremont, Inc, CA, (USA)
Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (GER)
Boehringer Ingelheim RCV, Vienna, (A)
Boehringer Ingelheim BioC, Shanghai (CN)
Flexible Manufacturing Networks & Technologies Needed Orphan Drugs
Precision Medicine
“The Return of the Blockbuster”
From 100,000s of patients to 100s of patients
e.g. Checkpoint inhibitors work in large populations
19% 6%
Increasing percentage of orphan drugs
5
Boehringer Ingelheim BioXcellence™
Our Vision - Create a next-generation manufacturing platform • Leverage BI disposables platform - fully disposable flow path • Process intensification through continuous operation • Clinical and commercial manufacturing • Full integration of upstream and downstream DS operation • High degree of automation • Simplicity & robustness • High degree of flexibility and agility for multi-product operation
6
Boehringer Ingelheim BioXcellence™
Next Generation Manufacturing Boehringer-Ingelheim Fremont – Pfizer Collaboration
7
Boehringer Ingelheim BioXcellence(TM) Boehringer Ingelheim BioXcellence™
Our iSKIDTM Hardware design supports 100L – 2000L scale
2000L (future) 1000L
Parallel Batch Protein A Columns Tangential Flow Filtration
500L 100L
Low pH
Continuous Virus Inactivation High pH
Incubation Chamber
Anion Exchange Polishing Step
8
Boehringer Ingelheim BioXcellence™
8
Our iSKIDTM Hardware design supports 100L – 2000L scale
2000L (future) 1000L
Parallel Batch Protein A Columns Tangential Flow Filtration
500L 100L
Low pH
Continuous Virus Inactivation High pH
Incubation Chamber
Anion Exchange Polishing Step
9
Boehringer Ingelheim BioXcellence™
9
Our approach to developing continuous perfusion v2.0 Continuous Perfusion v1.0 • Long run duration to maximize productivity • Extended process development/validation timelines • Limiting in multi-product settings • Higher risk of contamination • Potential genetic stability issues
• Large volumes of media • Storage/logistical issues • Resource-intensive preparation demands • High cost of media per g of product produced
10
Confidential and Privileged Boehringer Ingelheim BioXcellence™
• Highly intensified short term perfusion (agility) • Minimize media volume and cost through media optimization
Leveraging Media Development Know-How from Fed Batch Optimization Metabolic Flux Analysis (MFA)
DNAchip technology/ Gene expression analysis d11/d0
d14/d0
d2/d0
d4/d0
d6/d0
d8/d0
d9/d0
d11/d0
-2.4 2.6 -2.6 -2.6 -1.6 2.0
-2.9 3.4 -2.3 -3.3 -1.2 2.6
-3.2 2.9 -2.5 -3.6 -1.1 3.1
-1.1 1.1 -1.0 -1.4 -2.6 -1.6
-1.2 1.0 1.0 -1.4 -2.1 -1.4
-1.6 1.2 -2.7 -1.8 -3.6 -1.4
-2.1 1.3 -2.2 1.0 1.2 1.1
-2.7 -1.0 -2.4 1.1 1.6 -1.1
-4.0 1.4 -1.5 -1.1 2.0 1.1
galactokinase 1 monoamine oxidase A methionine adenosyltransferase II, alpha phosphoglycerate kinase 1 phosphoglucomutase 2 UDP-glucose pyrophosphorylase 2
1.6 1.3 1.9
1.6 1.6 1.8
1.9 1.9 2.4
2.1 2.1 2.5
2.8 2.1 2.5
3.0 2.3 2.2
-1.3 -1.2 1.0
-1.3 -1.1 1.2
1.2 -2.6 1.5
1.3 -1.0 1.9
1.6 -1.3 2.0
1.2 -1.5 1.9
ATPase, H+ transporting, lysosomal V0 subunit D1 ATPase, H+ transporting, lysosomal V0 subunit E carbohydrate sulfotransferase 11
1.6 2.0 1.6 1.9 2.2 -1.2 1.3 2.5 1.8 1.7 -1.7 1.3 1.6
1.8 1.6 1.3 2.3 2.0 -1.9 2.0 1.3 1.9 2.4 -1.5 1.5 1.8
2.2 2.2 2.0 3.9 2.4 -1.8 3.8 1.4 2.6 3.7 -1.3 2.1 2.7
2.3 2.2 2.1 4.7 2.2 -2.2 4.7 1.3 2.9 3.8 -1.2 2.2 2.8
2.2 2.4 2.7 6.4 2.2 -2.8 6.2 1.1 3.4 3.2 -1.0 2.7 2.8
2.1 2.8 3.2 5.5 2.3 -2.8 6.8 1.2 3.4 2.9 1.0 3.5 2.5
-1.4 -1.0 -1.9 -1.2 1.1 1.1 -1.5 1.2 -1.2 -1.1 -2.0 -1.0 -1.3
-1.2 -1.1 -1.5 -1.0 1.2 -1.2 -1.2 -1.1 -1.2 1.1 -2.0 -1.2 1.0
-1.8 -1.3 -1.6 1.0 -2.7 -2.5 -1.3 -2.8 -1.7 -1.6 -1.8 1.2 1.5
-2.1 1.2 1.1 1.2 -1.1 1.2 1.4 -1.6 -1.8 1.4 1.1 1.8 1.7
-2.6 1.1 -1.2 1.4 -1.3 -1.3 1.3 -2.7 -2.5 -1.2 1.3 2.1 1.3
-3.9 -1.2 -1.7 1.4 -1.3 -1.2 -1.1 -3.3 -5.4 1.1 1.0 2.3 -1.2
acetyl-CoA acyltransferase 2 (mitochondrial) acetyl-Coenzyme A dehydrogenase, medium chain acyl-CoA synthetase long-chain family member 1 choline phosphotransferase 1 24-dehydrocholesterol reductase 3-hydroxy-3-methylglutaryl-Coenzyme A reductase lysosomal acid lipase 1 mevalonate kinase peroxisomal delta3, delta2-enoyl-CoA isomerase phosphatidic acid phosphatase 2a sphingosine phosphate lyase 1 sphingomyelin phosphodiesterase 1, acid lysosomal transmembrane protein 23
1.3 -1.5 1.1 -1.5 -1.2 -1.3 1.3
1.1 -1.9 -1.2 -2.1 -2.1 -3.3 -1.9
-1.0 -2.4 -1.1 -2.9 -2.7 -4.6 -2.9
-1.3 -2.3 -1.2 -4.1 -3.1 -7.4 -4.8
-1.3 -1.9 -1.5 -2.8 -2.6 -6.0 -4.6
1.4 1.1 1.1 1.1 1.1 -1.0 -1.1
1.4 1.0 1.0 1.0 1.1 1.0 1.0
-1.0 1.0 -1.8 -1.7 -1.6 -3.2 -2.2
-1.3 -1.1 -2.5 -2.9 -2.4 -3.9 -2.8
-1.4 -1.4 -2.2 -3.4 -3.2 -5.7 -3.2
-1.3 -1.5 -2.2 -2.8 -3.8 -5.9 -3.9
dihydroorotate dehydrogenase polymerase (DNA directed), alpha 1 polymerase (DNA directed), alpha 2 DNA polymerase delta catalytic subunit DNA primase, p49 subunit ribonucleotide reductase M1 thymidine kinase 1
d9/d0
-2.1 3.0 -2.7 -2.2 -1.8 1.7
d8/d0
Description
-1.9 1.3 -2.7 -2.0 -2.1 1.3
d6/d0
Metabolite Enzyme
FC low titer process
-1.8 1.0 -2.6 -1.9 -2.4 1.5
d4/d0
Gene
d2/d0
FC high titer process
-1.3 -1.0 -2.8 -1.6 -3.1 -1.2
DNA/ RNA
PentosePhosphate Pathway
Carbohydrate and amino acid metabolism GALK1 MAOA MAT2A PGK1 PGM2 UGP2
Biomass
Glycolysis
Energy metabolism ATP6V0D1 ATP6V0E CHST11
-1.0 -1.1 1.2
Aminoacids
Lipid metabolism -1.0 2.1 -1.5 1.6 1.6 -1.6 -1.3 1.3 1.2 -1.1 -2.1 -1.0 1.2
Nucleotide metabolism DHODH POLA1 POLA2 POLD1 PRIM1 RRM1 TK1
2.1 -1.0 2.0 1.6 1.5 1.4 1.5
1.3 -1.5 -1.0 -1.6 -1.8 -1.8 -1.0
Pathway analysis
Protein
Citric Acid Cycle
Overview BI Systems Systems Biotech Biotechnology Toolbox tools For Media Development
Respiration Fatty acids INSILICO Discovery
Glycolysis
Metabolomics
2.00 1.80 1.60
92438, d=3
92438, d=6
92438, d=8
92438, d=11
1.40
2.00 1.20
[mM cyto]
ACAA2 ACADM ACSL1 CHPT1 DHCR24 HMGCR LIP1 MVK PECI PPAP2A SGPL1 SMPD1 TMEM23
pyruvate
2.00
2.00
2.00 1.00 1.80
92438, d=3
92438, d=6
0.80 1.80 1.60
92438,d=3 d=8 92438,
92438,d=6 d=11 92438,
92438, d=8
92438, d=11
0.60
1.20
1.80
1.00
1.60 1.40
0.80
[mM cyto]
0.60 0.40 0.20
1.20 1.00 0.80 0.60
0.00 Pyruvat
Citrat
1.60
0.00
92438, d=8
92438, d=11
1.40
1.80
1.40
1.60 1.40
1.20 1.00 0.80
1.20 1.00 0.80 0.60
0.60 0.40 Aconitat
0.40
Isocitrat
0.40 0.20
1.60 92438, d=6
2.00
0.20 Fumarat
alphaKetoglutarat
Citrat
Pyruvat 1.00 0.80
0.80
0.60 92438, 0.40 d=8
0.60
0.40 0.20
0.40
0.20 0.00 0.00
OAA
Citrat
Aconitat
Isocitrat
92438, d=11
92438, d=11
92438, d=3
0.80 0.60 92438, d=3
92438, d=6
alpha-
Fumarat
Malat
Ketoglutarat 92438, d=8 92438, d=11
pyruvate 92438, d=11
X
Pyruvat
Citrat
Pyruvat
Citrat
TCA Citrat
Pyruvat
Aconitat
bottleneck? Aconitat Aconitat
Isocitrat Isocitrat
alphaKetoglutarat
alphaKetoglutarat
Fumarat
1.80
92438, d=3
9243
1.60
92438, d=8
9243
1.20 1.00 0.80 0.60
alphaKetoglutarat alphaKetoglutarat
Isocitrat
2.00
1.40
92438, d=6
0.00
Fumarat Fumarat
Fumarat
Malat
Malat
0.40
Malat 0.20 0.00 Pyruvat
Citrat
Aconitat
Isocitrat
alphaKetoglutarat
Malat
Pyruvat
Pyruvat
92438, d=8
1.20 1.00
0.00
1.00
0.20
92438,92438, d=6d=6
92438, d=8
0.00
0.20 0.00 Pyruvat
1.20
92438, d=3
92438, d=3
1.40 1.20
0.20
[mM cyto]
2.00
[mM cyto]
TCA
1.40
1.60 1.40 Glycolysis 0.40
92438, d=3
[mM cyto]
1.60
[mM cyto]
1.80
1.80 OAA
[mM cyto]
1.80
[mM cyto] [mM cyto]
2.00
Aconitat
Isocitrat
Citrat
Citrat
alphaKetoglutarat Aconitat
Aconitat
Fumarat
Isocitrat
Malat
Malat
Isocitrat
alphaKetoglutarat
Fumarat
Malat
Gene expression profiling aims to identify genes/metabolic pathways that are related to improved CHO performance in the bioreactor Metabolic Analysis = Quantification of intracellular reaction rates in a cellular system at a specific physiological ConfidentialFlux and Privileged state usingIngelheim measured extracellular rates Boehringer BioXcellence™ 11
Fumarat
Traditionally N-1 (seeding) bioreactor is batch – perfusion production bioreactor requires 7-10 days “ramp up” to reach production phase N-stage Viable cell density at bench scale Viable Cell Density (e5 cells/mL)
600
500
Production phase
400
300
200
100
0 0
5
10
Day 12
Boehringer Ingelheim BioXcellence™
15
20
25
Intensifying through N-1 perfusion reduces time to reach production phase in production bioreactor (N-stage) by ~5 days
Viable Cell Density (e5 cells/mL)
600
N-1 = Batch
N-1 = Perfusion
500
400
300
200
100
0 0
2
4
6
8
10
12
14
Day 13
Boehringer Ingelheim BioXcellence™
1
Further Process Intensification: non-steady state perfusion using media feed concentrates • Supply adequate nutrients while maintaining low perfusion rate • Leverage concentrated feeds + diluent • Balance with flushing of cellular waste products Logistical challenges of media storage, transport of very large volumes, labor/logistics required for preparation greatly reduced with concentrated feeds
14
Boehringer Ingelheim BioXcellence™
Pain point in perfusion v1.0 is large media requirement E.g. 1000 L bioreactor, 14 day process, perfusing 2 vessel volumes per day (VVD)
1000 L
1x medium = ~30,000 L
15
Boehringer Ingelheim BioXcellence™
1
Concentrated media feeds reduce volume of prepared media consumption by ~75%* E.g. 1000 L bioreactor, 14 day process, 2 VVD
1000 L
1x medium = 30,000 L
Concentrated Feeds
Diluent
1000 L
Concentrated feeds = 7000 L Antifoam
1x – 2x medium
* Raw materials used same as 1x media 16
Boehringer Ingelheim BioXcellence™
1
Non-steady state process reaches 150-200e6 c/mL; D14 viab >70% ≤2 VVD total perfusion rate incl diluent (0.5-0.75 VV D total feeds) Perfusion rates (total and media feeds)
VCD (e5 c/mL) and Viability (%)
2000
90 80 70
1500
60 50
VCD 1000
40 30
500
20 10
0
0 0
17
2
4
6
Day
8
10
12
14
2.5
Vessel Volume Exchange (Lmedia /Lbioreactor*day)
Viability
100
Viability (%)
Viable Cell Density (e5 cells/mL)
2500
Total VVD incl diluent
2
1.5
1
0.5
VVD of all media feeds combined
0 0
2
4
6
8
10
12
14
16
Day
Representative BI cell line at bench scale. Plans to test 3 more cell lines Q3-Q4 2018
Boehringer Ingelheim BioXcellence™
1
Volumetric productivity Permeate productivity (g/L/d)
Permeate productivity (g/L/day)
10 9 8 7
Non-SS perfusion
6 5 4 3
SS perfusion
2 1 0 0
5
10
15
20
25
Day 18
Boehringer Ingelheim BioXcellence™
1
Non-steady state harvests >5x more product than steady-state in similar time, ~10x more than fed-batch Total harvested product (g/Lbr)
Harvest
90
Total harvested product (g/Lbr)
80
Non-steady state perfusion =76.2 g/Lbr
70 60 50 40 30
Steady state perfusion = 15.3 g/Lbr
20 10
Fed Batch = 6.0 g/Lbr
0 0
2
4
6
8
10
12
14
Day 19
Boehringer Ingelheim BioXcellence™
1
Total product made per liter of culture media consumed a sometimes underappreciated metric
g of product produced per L prepared media consumed during production phase
25 20
SS
15 10 5
non SS
SS
0 d0-2 Growth media
FB d2-14
non SS
g of product produced per Lmedia (g/Lmedia)
Vessel volumes media consumed (VV)
Vessel volumes media consumed 12 10
nonSS w/ MC = 10 g/Lmedia
8 6 4 2
Production
FB = 6-10 g/Lmedia
SS = 0.65 g/Lmedia
0
*raw materials used for MC prep same as 1x. Steady state use 1x medium (2 VVD), non-SS use media concentrate feeds (MC + diluent = 2VVD), not including diluent volume in calc. 20
Boehringer Ingelheim BioXcellence™
2
Our iSKIDTM Hardware design supports 100L – 2000L scale
2000L (future) 1000L
Parallel Batch Protein A Columns Tangential Flow Filtration
500L 100L
Low pH
Continuous Virus Inactivation High pH
Incubation Chamber
Anion Exchange Polishing Step
21
Boehringer Ingelheim BioXcellence™
21
Protein A column eluates are homogenous from cycle to cycle Protein A column Homogenization 5 4
Volumeharvest = f(productivity, DBCtarget)
3 2 1 0 0
22
2
4
6 8 Time (Day)
Boehringer Ingelheim BioXcellence™
10
12
DBC: ProA Dynamic Binding Capacity DBC has an established acceptable range
Product Eluted from ProA
Harvest productivity (g/Lbioreactor/day)
6
0
5
10
15
20
Time (cycle #)
Confidential │ 22
Why simply run two Protein A Columns and not SMB / PCC? •
Daily harvest due to perfusion reduces Protein A resin volume by 10-15X
•
Designed for simplicity & robustness
Cost of consumables, facility, depreciation, labor, QA, QC…
(qualification, operation, maintenance) Further reduction & potential buffer
•
PCC or SMB savings savings through more complex continuous
chromatography designs limited impact on overall economics 23
PowerPoint Master 16:9 Boehringer Ingelheim BioXcellence™
Our iSKIDTM Hardware design supports 100L – 2000L scale
2000L (future) 1000L
Parallel Batch Protein A Columns Tangential Flow Filtration
500L 100L
Low pH
Continuous Virus Inactivation High pH
Incubation Chamber
Anion Exchange Polishing Step
24
Boehringer Ingelheim BioXcellence™
24
Continuous Virus Inactivation: 3D printed chamber design based on CFD Low pH
3D printed VI chamber
Product Static Mixer 1 High pH Product
Incubation Chamber or Tubular Reactor
Static Mixer 2
!"#$%& '()#*$ = (-.(%$ /-.#$ )!12(%&
Final design should only be 6Âą1% larger than the ideal plug flow volume while meeting a 60 minute Minimum Residence Time requirement
25
Boehringer Ingelheim BioXcellence™
BI continuous manufacturing platform at Fremont
26
Boehringer Ingelheim BioXcellence™
Prototype integrated, automated, Disposable Flow Path downstream System is fully integrated from SUB through perfusion, Pro A, CVI, AEX, & SPTFF. Fully automated system System has no hold steps (pools), Zero dead volume valves No sterilizing filters and no filter fouling concerns. Liquid from the SUB through the downstream is hydraulically linked. Upstream media and downstream buffer concentrates are used to save lab space. 27
The Bioprocessing Summit - Aug 15,2018 - Boston Boehringer Ingelheim BioXcellence™
Integral components of our PAT Toolbox Waters PATROL®
C Technologies FlowVPE
Gilson GX-271 Liquid Handler
BEND RESEARCH MAST System
SP200
Only GMP PAT
Cell Removal System (CRS) 28
Boehringer Ingelheim BioXcellence™
Summary: Next-gen platform shows up to 10X productivity compared to fed batch and maximizes plant flexibility in multi-product setting
• Demonstrated at small- to pilot scale; Next: GMP iSKID for clinical & commercial • Potential future capacities (2000L scale): • 30-60kg purified product per 14 day short term perfusion campaign possible • 600-1200 kg purified drug substance; Scale-out with demand
• Can complement existing disposables and large scale stainless steel capacities in flexible global manufacturing network 29
Boehringer Ingelheim BioXcellence™
29
Acknowledgements • Jon Coffman • Scott Godfrey • Samet Yildirim • Henry Lin • Hayden Tessman • Natasha Patel • Ambica Selvaraj • Reynaldo Reyes, Jr • Lisa Sawicki • Felipe Strefling 30
Status: August 2018 Boehringer Ingelheim BioXcellence™
• • • • • • •
Raquel Orozco Aaron Kwong Matt Brown Joelle Khouri Zack Kyser Priscilla Ngo Charles Capron
• • • • • • • • • •
Greg Hiller Matt Gagnon Ana Maria Ovalle Phil McCormick Mike O’Connor Bob Kottmeier Jeff Salm, Rob Farner , Dave Brunner Paul Mensah
Thank You!
31
Status: August 2018 Boehringer Ingelheim BioXcellenceâ„¢
Boehringer Ingelheim Fremont iSKID in non-GMP pilot plant
32
Confidential and Privileged Boehringer Ingelheim BioXcellence™
BI Fremont stainless steel commercial plant
33
Confidential and Privileged Boehringer Ingelheim BioXcellence™