Energia mecânica, Impulso, Quantidade de movimento e conservações

Page 1

ENERGIA, IMPULSO E QUANTIDADE DE MOVIMENTO 1- (Uff-RJ) Diversos jogos e esportes envolvem a colocação de objetos em movimento, os quais podem ser impulsionados por contato direto do atleta ou utilizando-se um equipamento adequado. O conceito físico de impulso tem grande importância na análise dos movimentos e choques envolvidos nesses jogos e esportes. Para exemplificá-lo, três bolas de mesma massa são abandonadas de uma mesma altura e colidem com a superfície horizontal de uma mesa de madeira. A bola 1 é feita de borracha; a 2 de madeira e a 3 de massa de modelar. Comparando os impulsos I1, I2 e I3 que cada uma das bolas exerce, respectivamente, sobre a mesa, é correto afirmar que: a) I1 = I2 = I3 b) I1 > I2 > I3 c) I1 < I2 < I3 d) I1 < I2 e I2 > I3 e) I1 > I2 e I2 < I3 2- (ITA-SP) Um automóvel pára quase que instantaneamente ao bater frontalmente numa árvore. A proteção oferecida pelo "air-bag", comparativamente ao carro que dele não dispõe, advém do fato de que a transferência para o carro de parte do momentum do motorista se dá em condição de: a) menor força em maior período de tempo. b) menor velocidade, com mesma aceleração. c) menor energia, numa distância menor. d) menor velocidade e maior desaceleração. e) mesmo tempo, com força menor. 3- (PUC-SP) O gráfico representa a força resultante sobre um carrinho de supermercado de massa total 40 kg, inicialmente em repouso.

A intensidade da força constante que produz o mesmo impulso que a força representada no gráfico durante o intervalo de tempo de 0 a 25 s é, em newtons, igual a: a) 1,2 b) 12 c) 15 d) 20 e) 21 4- (FGV-SP) Uma ema pesa aproximadamente 360 N e consegue desenvolver uma velocidade de 60 km/h, o que lhe confere uma quantidade de movimento linear, em kg.m/s, de: Dado: aceleração da gravidade = 10 m/s2 a) 36. b) 360. c) 600. d) 2 160. e) 3 600.


5- (UERJ-RJ) Um estudante, ao observar o movimento de uma partícula, inicialmente em repouso, constatou que a força resultante que atuou sobre a partícula era não-nula e manteve módulo, direção e sentido inalterados durante todo o intervalo de tempo da observação. Desse modo, ele pôde classificar as variações temporais da quantidade de movimento e da energia cinética dessa partícula, ao longo do tempo de observação, respectivamente, como: a) linear – linear b) constante – linear c) linear – quadrática d) constante – quadrática e) n.r.a 6- (MACKENZIE-SP) Durante sua apresentação numa "pista de gelo", um patinador de 60 kg, devido à ação exclusiva da gravidade, desliza por uma superfície plana, ligeiramente inclinada em relação à horizontal, conforme ilustra a figura a seguir. O atrito é praticamente desprezível. Quando esse patinador se encontra no topo da pista, sua velocidade é zero e ao atingir o ponto mais baixo da trajetória, sua quantidade de movimento tem módulo: Dados: g = 10 m/s2

a) 1,20 . 102 kg . m/s b) 1,60 . 102 kg . m/s c) 2,40 . 102 kg . m/s d) 3,60 . 102 kg . m/s e) 4,80 . 102 kg . m/s 7- (UFRGS) Um observador, situado em um sistema de referência inercial, constata que um corpo de massa igual a 2 kg, que se move com velocidade constante de 15 m/s no sentido positivo do eixo x, recebe um impulso de 40 N.s em sentido oposto ao de sua velocidade. Para esse observador, com que velocidade, especificada em módulo e sentido, o corpo se move imediatamente após o impulso? a) -35 m/s. b) 35 m/s. c) -10 m/s. d) -5 m/s. e) 5 m/s. 8- (UNIFESP-SP) Uma menina deixa cair uma bolinha de massa de modelar que se choca verticalmente com o chão e pára; a bolinha tem massa 10 g e atinge o chão com velocidade de 3,0 m/s. Pode-se afirmar que o impulso exercido pelo chão sobre essa bolinha é vertical, tem sentido para: a) cima e módulo 3,0 . 10-2 N . s. b) baixo e módulo 3,0 . 10-2 N . s. c) cima e módulo 6,0 . 10-2 N . s. d) baixo e módulo 6,0 . 10-2 N . s. e) cima e módulo igual a zero. 9- (FGV-SP) Em plena feira, enfurecida com a cantada que havia recebido, a mocinha, armada com um tomate de 120 g, lança-o em direção ao atrevido feirante, atingindo-lhe a cabeça com velocidade de 6 m/s. Se o choque do tomate foi perfeitamente inelástico e a interação trocada pelo tomate e a cabeça do rapaz demorou 0,01 s, a intensidade da força média associada à interação foi de: a) 20 N. b) 36 N. c) 48 N. d) 72 N. e) 94 N.


10- (UERJ) Uma bola de futebol de massa igual a 300 g atinge uma trave da baliza com velocidade de 5,0 m/s e volta na mesma direção com velocidade idêntica. O módulo do impulso aplicado pela trave sobre a bola, em N × s corresponde a: a) 1,5 b) 2,5 c) 3,0 d) 5,0 e) 6,5 GABARITO 1. B

2. A

3. E

4. C

5. C

6. C

7. D

8. A

9. D

10. C

CONSERVAÇÃO DA ENERGIA MECÂNICA E CONSERVAÇÃO DA QUANTIDADE DE MOVIMENTO 1- (UFMG-MG) Rita está esquiando numa montanha dos Andes. A energia cinética dela em função do tempo, durante parte do trajeto, está representada neste gráfico:

Os pontos Q e R, indicados nesse gráfico, correspondem a dois instantes diferentes do movimento de Rita. Despreze todas as formas de atrito. Com base nessas informações, é CORRETO afirmar que Rita atinge: a) velocidade máxima em Q e altura mínima em R. b) velocidade máxima em R e altura máxima em Q. c) velocidade máxima em Q e altura máxima em R. d) velocidade máxima em R e altura mínima em Q. 2- (PUC-RJ) Determine a massa de um avião viajando a 720 km/h, a uma altura de 3.000 m do solo, cuja energia mecânica total é de 70,0.106 J. Considere a energia potencial gravitacional como zero no solo.(g=10m/s2)

a) 1000 kg. b) 1400 kg. c) 2800 kg. d) 5000 kg e) 10000 kg. 3-(PUC-RJ) Uma pedra, deixada cair de um edifício, leva 4s para atingir o solo. Desprezando a resistência do ar e considerando g = 10 m/s2, escolha a opção que indica a altura do edifício em metros. a) 20 b) 40 c) 80 d) 120 e) 160


4- (PUC-MG) Um ciclista desce uma rua inclinada, com forte vento contrário ao seu movimento, com velocidade constante. Pode-se afirmar que: a) sua energia cinética está aumentando. b) sua energia potencial gravitacional está diminuindo c) sua energia cinética está diminuindo. d) sua energia potencial gravitacional é constante. 5- (PUC-MG) Os gatos conseguem sair ilesos de muitas quedas. Suponha que a maior velocidade que ele possa atingir o solo, sem se machucar, seja de 29 km/h. Então, desprezando-se a resistência do ar e considerando g = 10m/s2, a altura máxima de queda para que um gato, partindo do repouso, nada sofra é, aproximadamente, de: a) 6,4 m b) 10 m c) 2,5 m d) 3,2 m e) 8,2m 6- (Uffrj-RJ) O salto com vara é, sem dúvida, uma das disciplinas mais exigentes do atletismo. Em um único salto, o atleta executa cerca de 23 movimentos em menos de 2 segundos. Na última Olimpíada de Atenas a atleta russa, Svetlana Feofanova, bateu o recorde feminino, saltando 4,88 m. A figura a seguir representa um atleta durante um salto com vara, em três instantes distintos.

Assinale a opção que melhor identifica os tipos de energia envolvidos em cada uma das situações I, II, e III, respectivamente. a) - cinética - cinética e gravitacional - cinética e gravitacional b) - cinética e elástica - cinética, gravitacional e elástica - cinética e gravitacional c) - cinética - cinética, gravitacional e elástica - cinética e gravitacional d) - cinética e elástica - cinética e elástica - gravitacional e) - cinética e elástica - cinética e gravitacional – gravitacional 7- (Ufpe) Com base na figura a seguir, calcule a menor velocidade com que o corpo deve passar pelo ponto A para ser capaz de atingir o ponto B. Despreze o atrito e considere g = 10 m/s2.

8- (PUC-RS) Um bloco de 4,0 kg de massa, e velocidade de 10m/s, movendo-se sobre um plano horizontal, choca-se contra uma mola, como mostra a figura


Sendo a constante elástica da mola igual a 10000N/m, o valor da deformação máxima que a mola poderia atingir, em cm, é: a) 1 b) 2 c) 4 d) 20 e) 40 9-(Ufpe-PE) Uma bolinha de massa m = 200 g é largada do repouso de uma altura h, acima de uma mola ideal, de constante elástica k = 1240 N/m, que está fixada no piso (ver figura).

Ela colide com a mola comprimindo-a por X = 10 cm. Calcule, em metros, a altura inicial h. Despreze a resistência do ar (g=10 m/s2) 10- Um carrinho de massa 1,0 kg move-se sobre um piso horizontal, com velocidade de 4,0 m/s, em direção a outro carrinho de massa 3,0 kg, inicialmente em repouso. Após o choque, eles permanecem unidos. Admitindo que o sistema seja isolado, determine: a) a intensidade da quantidade de movimento do conjunto de carrinhos após o choque. b) o módulo da velocidade do conjunto após a colisão. 11- Um canhão de massa 500 kg, estacionado no solo, dispara horizontalmente uma bala de massa 1 kg com velocidade escalar de 200 m/s. Determine a velocidade escalar de recuo do canhão no momento do disparo.

12- Ao longo de um eixo x, uma partícula A de massa 0,1 kg incide com velocidade escalar de 1 m/s sobre uma partícula B de massa 0,3 kg, inicialmente em repouso. O esquema a seguir ilustra isso, como também o que sucede após o choque.

a) Mostre que houve conservação da quantidade de movimento do sistema. b) Informe se houve ou não perda de energia mecânica do sistema nessa colisão.


13- Um carrinho A de massa mA = 2,0 kg e velocidade escalar vA = 5,0 m/s choca-se frontalmente com um outro carrinho B, de mesma massa, que caminhava à sua frente com velocidade escalar vB = 1,0 m/s, sobre uma mesma reta horizontal.

Considere que a colisão ocorra de forma que a perda de energia mecânica do sistema seja máxima, mas consistente com o princípio de conservação da quantidade de movimento. a) Quais as velocidades escalares dos objetos imediatamente após a colisão? b) Qual a energia mecânica dissipada (perdida) nesse choque? 14- (FUVEST) Um vagão A, de massa 10t (1 t = 103 kg), move-se com velocidade escalar igual a 0,40m/s sobre trilhos horizontal sem atrito até colidir com um outro vagão B, de massa 20t, inicialmente em repouso. Após a colisão, o vagão A fica parado. A energia cinética final do vagão B vale: a) 100J b) 200J c) 400J d) 800J e) 1 600J 15- Os princípios de conservação na Física (conservação da energia, da quantidade de movimento, da carga elétrica, etc.) desempenham papéis fundamentais nas explicações de diversos fenômenos. Considere o estudo de uma colisão entre duas partículas A e B que constituem um Sistema isolado. Verifique quais as proposições corretas e dê como resposta a soma dos números a elas associados. (01) Se a colisão entre A e B for elástica, a energia cinética total das partículas permanece constante durante a colisão. (02) Se a colisão entre A e B for elástica, a energia mecânica do sistema (soma das energias cinética e elástica) permanece constante durante a colisão. (04) Se a colisão entre A e B for elástica, a quantidade de movimento de cada uma das partículas permanecerá constante. (08) Se a colisão entre A e B for perfeitamente inelástica, não haverá conservação da quantidade de movimento do sistema. (16) Se a colisão entre A e B não for elástica, haverá dissipação de energia mecânica, porém, haverá conservação da quantidade de movimento total do sistema. a) 16 b) 18 c) 26 d) 32 e) 48

******************************************************************************************************************* GABARITO 1. B 2. B 3. C 4. B 5. D 6. C 7. 10 m/s 8. D 9. 3,1m 10. a) 4 kg m/s b) 1 m/s 11, 0,4 m/s 12. a) 0,2 kgm/s b) 0,2 J 13. a) 3 m/s b) 8 J 14. C 15. B


*******************************************************************************************************************


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.