Crowdsourced Clustering of Cumputer Generated Floor Plans

Page 1

CrowdsourcedClusteringofComputer GeneratedFloorPlans

DavidSousa-Rodrigues1 ,MafaldaTeixeiradeSampayo2(B) , Eug´enioRodrigues3 ,Ad´elioRodriguesGaspar3 ,and ´ AlvaroGomes4

1 FacultyofMaths,ComputingandTechnology,CentreofComplexityandDesign, TheOpenUniversity,MiltonKeynes,UK david.rodrigues@open.ac.uk

2 DepartmentofArchitecture,CIES,LisbonUniversityInstitute,Lisbon,Portugal mafalda.sampaio@iscte.pt

3 DepartmentofMechanicalEngineering,ADAI,LAETA, UniversityofCoimbra,Coimbra,Portugal

4 DepartmentofElectricalandComputerEngineering,INESCCoimbra, UniversityofCoimbra,Coimbra,Portugal

Abstract. Thispaperidentifiesthemaincriteriausedbyarchitecture specialistsinthetaskofclusteringalternativefloorplandesigns.Itshows howcollectiveactionsofrespondentsleadtotheirclusteringbycarrying outanonlineexercise.Thedesignswererandomlypre-generatedbya hybridevolutionaryalgorithmandaquestionnairewasposedintheend fortherespondentstoindicatewhichsimilaritycriteriatheyhaveused. Anetworkofdesignswasthenobtainedanditwaspartitionedintoclustersusingamodularityoptimizationalgorithm.Theresultsshowthat themaincriterionusedwastheinternalarrangementofspaces,followed byoverallshapeandbyexternalopeningsorientation.Thisworkallows thefuturedevelopmentofnovelalgorithmsforautomaticclassification, clustering,anddatabaseretrievalofarchitecturalfloorplans.

Keywords: Architecture · Networktheory · Crowdsourcing · Clustering · Floorplandesign · Onlinesurvey

1Introduction

Withtheadventofcomputer-aideddesign,thecomputerhasbecomemorethana meredrawingtoolorstructuralpropertiescalculator.Italsotakespartinassistingbuildingpractitionersduringthecreativeprocess,byallowingtheexploration ofpotentialsolutionsinthedailyarchitecturalpractice.InSect. 2 abriefreview ofhowthefieldisengagingwiththesenewtoolsispresented,namelyhowalgorithmsareusedtogeneratedesigns,toclassify,andmaybeusedtoretrieve architecturaldocumentsfromdatabases.Thedevelopmentofsuchalgorithms requiresaprofoundknowledgeofthewayhumanpractitionersofarchitecture perceive,understand,groupandclassifythosesamedocuments.Theaimofthis

c SpringerInternationalPublishingSwitzerland2015 Y.Luo(Ed.):CDVE2015,LNCS9320,pp.1–10,2015. DOI:10.1007/978-3-319-24132-6 17

2D.Sousa-Rodriguesetal.

studyistounderstandwhatarethecollectiveactionsofarchitecturepractitionerswhengroupingfloorplandesigns.Tothiseffectanonlinesurveywas conductedinwhichparticipantswereaskedtoselectsimilarfloorplandesigns andtoansweraquestionnaireindicatingthesimilaritycriteriaused.Theresultinganswersweremappedtoanetworkoffloorplandesignsco-selectionand wereclusteredbyamodularityoptimizationalgorithm(Sect. 3).Thefindingsof thisstudy(Sect. 4)canhelpinthedevelopmentofquerymechanismsfordatabaseretrievaloffloorplansandtheimplementationofclusteringmechanisms toaggregateresultsfromgenerativedesignmethods.Besidestheseapplications, theunderstandingofhowarchitecturepractitionerssolvethiscomplexproblem mayhelptodevelopspecificprogramsfortheteachingofarchitecture.Thelimitationandimplicationsofthisworkarebroadandrangefromthepedagogic leveltothedevelopmentofnewalgorithmsanddatabases(Sect. 5).

2RelatedWork

Oneoftheearlyarchitecturaltasksinthebuildingdesignprocessisspace planning.Architectsseektoaccommodateallrequirementsandpreferences intoarchitecturalfloorplansduringthesynthesisphase,whicharedetermined duringtheanalyticalphase.Thisisatime-consumingtrial-and-errorprocess withitsassociatedcosts.Theresultingdesignismuchdependentonthepast experienceofthearchitectandoftenbasedonalreadybuiltexamples.Asthe rooms’configurationisessentiallyacombinatorialproblem,mediumtolarge designprograms—listoffunctionalspaces,topologicalrelations,andgeometricconstraints—caneasilyreachanumberofalternativedesignsolutionsthat areimpossibletobedraftedbyhumansinthetraditionalway.Forthisreason,since1960sresearchershavebeendevelopingcomputer-basedapproaches tohelppractitioners[1, 2].Theseapproacheshavetriedtoresolvespecificdesign problemssuchasareaassignment[3],partitioningofaboundary[4 6],allocationofrooms[6 10],designadaptation[11],orthehierarchicalconstructionof differentelements[12].Iftheearlierapproacheslookedtoenumerateallpossibleconfigurations,whichledresearcherstofacethecumbersomeproblemofthe exponentialgrowthofpossiblesolutionsfordesignprogramswithmorethan8 spaces,recentstudiestriedtofindonlythemostpromisingsolutions.Toachieve this,evolutionarycomputationtechniqueswereused,asthesehaveshowncapabilitiestodealwithill-definedandcomplexproblems,anddemonstratedtoproducesurprisinglynovelsolutionsappliedtothegenerationofarchitecturalfloor plans[13].

Onlinesurveyshavebeenusedinseveralapplicationsandareamethodof datacollectionthatconveysseveraladvantages,namelytheyprovideaccessto manyindividualswhosharespecificinterestsandprofessionsthatwouldotherwisebedifficulttocontact.Surveysalsosavetimeastheydoautomated collectionofresponsesandallowresearcherstoworkonothertaskswhiledatais beingcollected[14].Whenproperlydevelopedandimplemented,asurveyportraysthecharacteristicsoflargegroupsofrespondentsonaspecifictopicand

allowsassessingrepresentativeness[15].Severaltypesofsurveysareavailable; e.g.questionnaireandinterviewformats,phonesurvey,andonlinesurveys,which canbecoupledwithinferenceenginesthatactanddirectthesurveyaccording torespondents’answers[16, 17].

Theuseofsurveysinarchitecturalenvironmentshasbeenconductedinmany aspectsofthediscipline.Theyhavebeenusedintheestablishinggroundtruths inperceptualunderstandingoffloorplansforthecharacterizationofshapes,lines andtexture[18, 19].Feedbacktoarchitectsisbeinggivenbysurveysofarchitecturevirtualimmersiveexperimentsthataimtounderstandphysiologicalsignals ofemotions,namelyfear,inspaceperception[20, 21].Severalstudieshavebeen proposedthatincludetheparticipationofthecrowdandarebottom-uplearningprocesses,e.g.peerassessment[22]wherestudentsmarkeachother’work. Inthisstudytheprocessofgroupingfloorplansisinvestigatedtounderstand thecriteriausedbythestudentsandotherpractitionersduringthegrouping process.

3MethodsandMaterials

3.1TheOnlineSurvey

Anonlinesurveywassetupasanexercisetocollectinformationonhowthe respondentsperformtheclusteringtask.Therearemanyonlinetoolsforconductingsurveys[14, 15],butnonecanhandlethespecialproblemposedbyusing architecturaldocuments.Therefore,itwasdecidedtodevelopawebapplication fortheexperiment(Fig. 1).Tounderstandtheperceptionandcriteriaofthetargetpopulation,apostexperimentquestionnairewaspresentedtoparticipants. Individualswhosedailyactivitiesarerelatedtobuildingdesignwerechosenas thetargetgroup;i.e.architects,architecturestudents,civilengineers,andurban planners.Asthetargetgroupiswelldelimited,theselectionofparticipantswas conductedthroughUniversitycommunitiesofarchitecturestudentsandformer students,andalsothroughtheprofessionalaffiliationcontactlists.Thisensured thatthemajorityoftheparticipantsinthisstudywererelatedtothesubject oriftheirpresentprofessionaloccupationisnotrelatedtoarchitecture,atleast theyreceivedtraininginarchitecture.

Fromatotalof72generatedfloorplans,twelvewererandomlyselectedand displayedinawebinterface.Theuserwasaskedtodrag-and-droptoaspecific areainthescreenthefloorplansthatheconsideredsimilar.Eachrespondent repeatedthisiterationtentimes.The72floorplansweregeneratedusingthe EvolutionaryProgramfortheSpaceAllocationProblem(EPSAPalgorithm) [7 9].Thisalgorithmiscapableofproducingalternativefloorplansaccordingto theuser’spreferencesandrequirementssetasthebuildingfunctionalprogram. Thesolutionsgeneratedwereforasingle-familyhousewiththreebedrooms,one hall,onekitchen,alivingroom,onecorridorandtwobathrooms.Onebathroom andallbedroomsareconnectedtothecorridor.Theremainingspacesareconnectedtothehall.Thekitchenpresentsaninternaldoorconnectingittothe livingroom.Oneofthebathroomsservesthepublicareasofthehouse,whilethe

CrowdsourcedClusteringofComputerGeneratedFloorPlans3

Fig.1. Usersdrag-and-dropfloorplansintotheshadedareaaccordingtosimilarity

otherconnectstothecorridoroftheprivateareaofthehouse.Allinnerrooms havedoorsof90cmwidth,theexceptionbeingthelivingroomdoorsthatare 140cm.Exceptforthecirculationareasandoneofthebathrooms;allareas haveatleastonewindow.Thehallhasanexteriordoorfacingnorth.Noother restrictionswereimposed.Attheendoftheonlinesurvey,afinalquestionnaire waspresentedwithalistofpossiblecriteriaandtheusercouldchosewhichhe usedortoprovidewrittenalternatives.Aftersubmissiontheexerciseendedand theuserwasredirectedtothehomepage.

3.2NetworkScienceAnalysisoftheCollectedData

Anormalizedmatrixdepictingthefractiontotimeseachpairoffloorplanswas co-selectedisconstructed.Thismatrixisunderstoodasanadjacencymatrix wheretheentriesrepresenttheweightsoftheconnectionsbetweentwodesigns. Theresultspresentsomebackgrounduncertaintyanditisnecessarytodefine aminimumthresholdfortheentriesofthematrix.Thethresholdvaluewas testedtoidentifythestructureoftheselectionprocess,whichrepresentedthe floorplan’snetwork.Thisnetwork—undirectedandweighted—ispartitioned withtheedgebetweennesscommunitydetectionalgorithm[23].Thisisadivisive hierarchicalmechanismthataimstofindcommunitiesbymaximizingthevalueof modularity—networkswithhighmodularityhavedenseintraclusterconnections butsparseconnectionsbetweenverticesofdifferentclusters.Thealgorithmfor creatingthedendrogramproceedsinthefollowingmanner[23]:

4D.Sousa-Rodriguesetal.

1.Calculatetheedgebetweennessinthenetwork.

2.Removetheedgewithhighestvalueofbetweenness.

3.Recalculatebetweennessforalledgesaffectedbytheremoval.

4.Repeatfromstep2untilallnodesareisolated(noedgesremain).

Thebetweennesscentralityofanedgeisthesumofthefractionofall-pairs shortestpathsthatpassthroughthatedge[24 26].Thegraphandtheresulting partitionarecharacterizedaccordingtodiverseproperties—averagepathlength, density,andclusteringcoefficient.

4Results

Atotalof609invitationstoparticipateintheonlinesurveyweresubmitted. Thesurveywasavailablefortherespondentsduringtwoweeks.Ofthoseinvitations,202personsansweredthesurveybyreadingtheinformedconsent,filling theoptionaldemographicinformationformandinitiatedtheexperiment.Of those202only110carriedoutthe10iterationsaskedandfilledthefinalcriteria questionnaire.Intotal,therespondentsperformed1257iterations.Oftheparticipantsthatregistered,92didnotconcludetheexercise.Theaveragenumber ofiterationsmadebythose92personswas1,7.Thepoolofparticipantsinhabits mainlyinPortugalandtheagesrangebetween18and50yearsold.

Byvaryingthethresholdofthefractionofco-selectionsoffloorplandesigns, itispossibletoverifythattheinitialdensenetworkpresentslowmodularity,high densityofedges,andsmallaveragepathlength(Fig. 2).Italsopresentsahigh clusteringcoefficient,whichisindicativeofmanytrianglesinthenetwork.The

andaveragepathlength(rightaxis).

CrowdsourcedClusteringofComputerGeneratedFloorPlans5
0 0.1 0.2 0.3 0.4 threshold weight 0 0.2 0.4 0.6 0.8 0 1 2 3 4 5 6 path length average path length edge density clustering modularity Fig.2. FloorPlanDesignNetworkproperties:clustering,density,modularity(leftaxis)

Fig.3. Dendrogramoftheclusteringidentifyingtheresultingclusters.

increaseofthethresholdleadstohigheraveragepathlength,loweredgedensity, andlowerclusteringcoefficient.Modularitystartsrisinguntilathresholdof0,36. Theaveragepathlengthpeaksaroundathresholdof0,19andavalueof4,6and afterstartsdecreasingagainasaresultofthefragmentationoftheresulting networkweremanyisolatednodesemerge.

Duetothisfragmentation,athresholdof12%waschosen.Thisstillensured amodularityvalueof0,44andanaveragepathlengthof2,7.Theclustering resultedin13clusters(Fig. 3).Itisclearfromthedendrogramthatthisclustering presentsomeisolatednodes,namely {1, 25, 46}.Thedistributionofthefloorplan designclusterswas {20, 18, 7, 5, 5, 3, 3, 3, 3, 2, 1, 1, 1}.

Theclusterspresentgoodinternalconsistency,meaningthatuponinspection theyarecoherentwiththecriteriareportedbytheusers.Thiscanbeseeninthe threeexamplesoftheclustersobtainedfromtheclusteringprocessinFigs. 4, 5, and 6

Thesurveyco-criteriaanalysisindicatesthattwocriteriaareoftenselected togetherbyparticipants, byinteriorspaces and bycirculationspaces (Table 1). Onasecondlevel,theparticipantsconsideredcriteriarelatedtotheoverall shape

Fig.4. Clusterofplans {0, 13, 41, 63, 64}

6D.Sousa-Rodriguesetal. 50737168466364411306667496054472455512114432945563616553303937204819109442116526126940626123155834252311817333828278574432352270596125 01020304050607080

Fig.5. Clusterofplans {3, 7, 50}

Fig.6. Clusterofplans {4, 9, 10, 11, 19, 42, 48}

Table1. Criteriaco-selection.Diagonalentriesrepresentfrequencyofeachcriterion. Intersectionsofthelowertriangleindicatefrequencyofco-selectionoftwocriteria.

(eitherconsideringcaseswheremirroringorrotationsoccurred)andinathird tierrespondentsconsideredtheexistenceof externalopenings .Thisclearlyshows thatusersfavortheinteriorspaceorganizationasthemostimportantfeaturein definingsimilarityoffloorplans.

5Conclusion

Theresults,asshowninTable 1,indicatethatarchitecturepractitionersgive higherimportancetotheinteriorconfigurationsofspacesthantheoverallbuildingshape.ThisinformationisimportantforfuturedevelopmentofICT-mediated strategiesforarchitectureeducationandprofessionalpractitioners.Theywill alsoimpactotherapplicationssuchasfloorplandesigndatabaseretrieval—by identifyingtheencodingfeaturesusedbyhumanpractitionersthatcanthenbe implementedintheencodingofdatabaserecords—andaggregationofsimilar solutionsthatresultfromgenerativedesignmethods—releasinghumansfrom

CrowdsourcedClusteringofComputerGeneratedFloorPlans7

8D.Sousa-Rodriguesetal.

thetediousandrepetitivetaskofgroupingsimilarfloorplans,andallowingfor concisetypologicalpresentationoffloorplansinautomatedways.

Theexecutionofonlinesurveysisnotfreeofproblems.Samplingissues mightbepresent,astherespondentsarenotmonitoredandsomemisbehavior canhappen;e.g.doubleanswering[14].Theminimizationoftheseproblemswas achievedbyassigningauniquefive-digitcodetoeachparticipantthatmatches theanswersinthedatasetwiththeIPaddress.Theproblem“lurkers”was minimizedbycontactingeachparticipantdirectly,thatispeoplewhodonot participatebuthaveaccesstothesurvey[14].

Theresponseratewasaround30%.Althoughmanyonlinesurveyshavelow responserates,theytrytoincreasebysomeincentivemechanisms,e.g.financial incentives,prizes,coupons,orbooks.However,inthiscasethatwasnotanissue. Noincentivemechanismwasimplementedinthisexperimentforthecompletion ofthesurvey.Thepersonalcontactoftheresearcherwitheachparticipantmade theparticipationinthesurveyamatterofpersonalandprofessionalrespect. However,theeffectivecompletionratewassmall,as92participantsdidnot completethesurvey(18%).Theselimitationsarenotexclusivetothiskindof onlinesurveytechnique[14, 15].

Theseresults,namelythecriteriareportedbytherespondents,canbeincorporatedinmachinelearningalgorithmstoperformclusteringtasksinwaysthat mimicexperts’actions.Also,theobtainedclusteringresultswillbeusedasa groundtruthorbenchmarkfornewclusteringalgorithmsthatdealwithperceptualclusteringoffloorplandesigns.

Acknowledgements. Sousa-Rodrigues,D.waspartiallysupportedbyprojectTopdrimFP7-ICT-2011-8/318121.Rodrigues,E.,Gaspar,A.R.,andGomes, ´ A.werepartiallysupportedbyproject AutomaticGenerationofArchitecturalFloorPlanswith EnergyOptimization (GerAPlanO),QREN38922,CENTRO-07-0402-FEDER-038922 andframedunderthe EnergyforSustainabilityInitiative atUniversityofCoimbra.

References

1.Liggett,R.S.:Automatedfacilitieslayout:past,presentandfuture.Autom.Constr. 9(2),197–215(2000)

2.Steadman,P.:Generativedesignmethodsandtheexplorationofworldsofformal possibility.Architect.Des. 84(5),24–31(2014)

3.Gero,J.S.,Kazakov,V.A.:Evolvingdesigngenesinspacelayoutplanningproblems.Artif.Intell.Eng. 12(3),163–176(1998)

4.Mitchell,W.J.,Steadman,J.P.,Liggett,R.S.:Synthesisandoptimizationofsmall rectangularfloorplans.Environ.Plan.B 3(1),37–70(1976)

5.Quiroz,J.C.,Louis,S.J.,Banerjee,A.,Dascalu,S.M.:Towardscreativedesign usingcollaborativeinteractivegeneticalgorithms.In:EvolutionaryComputation 2009,pp.1849–1856.IEEE,May2009

6.Koenig,R.,Knecht,K.:Comparingtwoevolutionaryalgorithmbasedmethodsfor layoutgeneration:densepackingversussubdivision.Artif.Intell.Eng.Des.Anal. Manuf. 28(03),285–299(2014)

7.Rodrigues,E.,Gaspar,A.,Gomes, ´ A.:Anevolutionarystrategyenhancedwith alocalsearchtechniqueforthespaceallocationprobleminarchitecture,part1: methodology.Comput.Aided-Des. 45(5),887–897(2013)

8.Rodrigues,E.,Gaspar,A.,Gomes, ´ A.:Anevolutionarystrategyenhancedwith alocalsearchtechniqueforthespaceallocationprobleminarchitecture,part2: validationandperformancetests.Comput.Aided-Des. 45(5),898–910(2013)

9.Rodrigues,E.,Gaspar,A.,Gomes, ´ A.:Anapproachtothemulti-levelspaceallocationprobleminarchitectureusingahybridevolutionarytechnique.Autom.Constr. 35,482–498(2013)

10.Michalek,J.J.,Choudhary,R.,Papalambros,P.Y.:Architecturallayoutdesign optimization.Eng.Optim. 34,461–484(2002)

11.Garza,A.G.D.S.,Maher,M.L.:GENCAD:ahybridanalogical/evolutionarymodel ofcreativedesign.In:Gero,J.S.,Maher,M.L.(eds.)ComputationalAndCognitive ModelsOfCreativeDesignV,pp.141–171.KeyCenterofDesignComputingand Cognition,UniversityofSidney,Sydney(2001)

12.Virirakis,L.:GENETICA:acomputerlanguagethatsupportsgeneralformal expressionwithevolvingdatastructures.IEEETrans.Evol.Comput. 7(5),456–481(2003)

13.Kalay,Y.E.:Architecture’sNewMedia:Principles,TheoriesandMethodsof Computer-AidedDesign.TheMITPress,Cambridge(2004)

14.Wright,K.B.:Researchinginternet-basedpopulations:advantagesanddisadvantagesofonlinesurveyresearch,onlinequestionnaireauthoringsoftwarepackages, andwebsurveyservices.J.Comput.-MediatedCommun. 10(3),00–00(2005)

15.Evans,J.R.,Mathur,A.:Thevalueofonlinesurveys.InternetRes. 15(2),195–219 (2005)

16.Urbano,P.,Sousa-Rodrigues,D.:Theadvantageofusingrulesinonlinesurveys. RevistadeCiˆenciasdaComputa¸c˜ao III(3),38–49(2008)

17.Urbano,P.,Sousa-Rodrigues,D.:Rulebasedsystemsappliedtoonlinesurveys. In:IADISWWW/InternetConference.Freiburg,Oct2008

18.Sousa-Rodrigues,D.,deSampayo,M.T.,Rodrigues,E.,Gaspar,A.R.,Gomes, ´ A.,Antunes,C.H.:Onlinesurveyforcollectiveclusteringofcomputergenerated architecturalfloorplans.arXivpreprint arXiv:1504.08145 (2015)

19.delasHeras,L.P.,Fernandez,D.,Fornes,A.,Valveny,E.,Sanchez,G.,Llados, J.:Perceptualretrievalofarchitecturalfloorplans.In:10thIAPRInternational WorkshoponGraphicsRecognition(2013)

20.Dias,M.S.,Eloy,S.,Carreiro,M.,Proˆen¸ca,P.,Moural,A.,Pedro,T.,Freitas,J., Vilar,E.,d’Alpuim,J.,Azevedo,S.:Designingbetterspacesforpeople:virtual realityandbiometricsensingastoolstoevaluatespaceuse.In:Gu,N.,Watanabe, S.,Erhan,H.,Haeusler,M.H.,Huang,W.,Sosa,R.(eds.)RethinkingComprehensiveDesign:SpeculativeCounterculture,Proceedingsofthe19thInternational ConferenceoftheAssociationofComputer-AidedArchitecturalDesignResearch inAsia,HongKong(2014)

21.Dias,M.S.,Eloy,S.,Carreiro,M.,Vilar,E.,Marques,S.,Moural,A.,Proˆen¸ca,P., Cruz,J.,d’Alpuim,J.,Carvalho,N.,Azevedo,A.S.,Pedro,T.:Spaceperception invirtualenvironments-onhowbiometricsensinginvirtualenvironmentsmay givearchitectsusers’sfeedback.In:Thompson,E.M.(ed.)Fusion-Proceedings ofthe32ndeCAADeConference,NewcastleuponTyne,England,UK,vol.2,pp. 271–280,September2014

22.deSampayo,M.T.,Sousa-Rodrigues,D.,Jimenez-Romero,C.,Johnson,J.H.:Peer assessmentinarchitectureeducation.In:InternationalConferenceonTechnology andInnovation,Brno,CzechRepublic,September2014

CrowdsourcedClusteringofComputerGeneratedFloorPlans9

23.Girvan,M.,Newman,M.:Communitystructureinsocialandbiologicalnetworks. Proc.Natl.Acad.Sci.USA 99,7821–7826(2002)

24.Anthonisse,J.M.:Therushinadirectedgraph.Technicalreport,StichtingMathematicshCentrum,Amsterdam(1971)

25.Freeman,L.C.:Asetofmeasuresofcentralitybasedonbetweenness.Sociometry 40(1),35–41(1977)

26.Brandes,U.:Afasteralgorithmforbetweennesscentrality*.J.Math.Sociol. 25(2), 163–177(2001)

10D.Sousa-Rodriguesetal.

Cooperative Design, Visualization, and Engineering

Yuhua Luo (Ed.) 123 LNCS 9320 12th International Conference, CDVE 2015 Mallorca, Spain, September 20–23, 2015 Proceedings

LectureNotesinComputerScience9320

CommencedPublicationin1973

FoundingandFormerSeriesEditors:

GerhardGoos,JurisHartmanis,andJanvanLeeuwen

EditorialBoard

DavidHutchison

LancasterUniversity,Lancaster,UK

TakeoKanade

CarnegieMellonUniversity,Pittsburgh,PA,USA

JosefKittler

UniversityofSurrey,Guildford,UK

JonM.Kleinberg

CornellUniversity,Ithaca,NY,USA

FriedemannMattern

ETHZurich,Zürich,Switzerland

JohnC.Mitchell

StanfordUniversity,Stanford,CA,USA

MoniNaor

WeizmannInstituteofScience,Rehovot,Israel

C.PanduRangan

IndianInstituteofTechnology,Madras,India

BernhardSteffen

TUDortmundUniversity,Dortmund,Germany

DemetriTerzopoulos

UniversityofCalifornia,LosAngeles,CA,USA

DougTygar

UniversityofCalifornia,Berkeley,CA,USA

GerhardWeikum

MaxPlanckInstituteforInformatics,Saarbrücken,Germany

Moreinformationaboutthisseriesathttp://www.springer.com/series/7409

CooperativeDesign, Visualization, andEngineering

YuhuaLuo(Ed.)
12thInternationalConference,CDVE2015 Mallorca,Spain,September20 23,2015 Proceedings 123

Editor YuhuaLuo

UniversityofBalearicIslands 07122,PalmadeMallorca Spain

ISSN0302-9743ISSN1611-3349(electronic)

LectureNotesinComputerScience ISBN978-3-319-24131-9ISBN978-3-319-24132-6(eBook) DOI10.1007/978-3-319-24132-6

LibraryofCongressControlNumber:2015947944

LNCSSublibrary:SL3 InformationSystemsandApplications,incl.Internet/Web,andHCI

SpringerChamHeidelbergNewYorkDordrechtLondon

© SpringerInternationalPublishingSwitzerland2015

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors giveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsor omissionsthatmayhavebeenmade.

Printedonacid-freepaper

SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com)

Preface

Thisyear’s,CDVE2015conferencereturnedtoitsMediterraneanhome Mallorca, Spain.The12thInternationalconferenceonCooperativeDesign,Visualizationand Engineering,CDVE2015,washeldduringSeptember20 23,2015bytheMediterraneanSeaatAlcudia,Mallorca.

Thepapersinthisvolumereflectthefactthatwearereadyandconfidenttoanswer thechallengefromacompletelynewcomputinglandscape.Thepopularityofcloud computing,socialmedia,andbigdatahasbeenthedrivingforcebehindresearchand developmentinourCDVEcommunity.

Anumberofpapersaddressthetopicofbigdataanditsrelationtocooperative work.Theyfocusoninformationmodeling,intensivetaskmanagement,andhowto usecloudtechnologytofostercooperation,etc.

Dealingwithsocialnetworkissuesisthetopicofanothergroupofpapersinthis volume.Theycovercreatingprogramminglanguagestoautomatecooperativeprocesses,socialnetworkinformationvisualization,andtherankingofcooperative researchteamsbyanalyzingsocialnetworkdata.

Usingmobiledevicesforcooperationseemstobeanothertrendinthepapers.The applicationareasareespeciallywide,whichshowthegreatpotentialofmobiledevices insupportingcooperativeapplications.Therearepapersconcentratedonmobile e-learning,onlineinteractionformuseums,mobilee-commerce,andeventhecooperativemonitoringofthedeliveryoffreshproducts.Eachapplicationareamayhaveits ownspecificissuestoaddressinordertooptimizetheefficiency,usability,and effectivenessofthecooperation.

Crowdsourcingisagainoneofthemajortopicsamongthepapers.Thereare interestingpapersaboutapplyingcrowdsourcingtoarchitecturedesign,makingclient decisionsine-commerce,etc.Infactweshouldcontinuetoexplorethisnewwayof cooperationandexpectmoreachievementsinthisdirection.

Inthe fieldofcooperativeengineering,therearemanyresearchresultsreported, suchasinthecollaborationforproductdesign,operation,andprocesscontrol,enabling networkedenterprisestorealizeinteroperability,etc.

Withrespecttothetheoreticalanalysisandmodelingofgroupbehavior,thereare reportsbasedontheanalysisofrealcasedata,usingBaysiannetworkstomodelteam behavior.ThestudyshowsthatusingBaysiannetworksinanalyzingandmodeling teamperformancefromapsychologicalperspectiveisfeasible.Webelievethatthis achievementwillcontributetoenrichingthetheoreticalstudyofcooperativeteam work.

Toseethegreatprogressmadeinthe fieldsofcooperativedesign,visualization,and engineeringhasbeenagreatpleasure.Iwouldliketothankallofourauthorsfor submittingtheirpapersandpresentingtheirhardwork.Theyareatthefrontierof technologicaladvancementforthebenefitofsociety.

IwouldliketothankallofourProgramCommitteemembers,volunteerreviewers, andOrganizationCommitteemembersfortheircontinuoussupportoftheconference. Myspecialthanksgotomycolleague,theOrganizationCommitteeChair, Dr.SebastiánGalmésObrador,andmyuniversity theUniversityoftheBalearic Islands fortheirconstantsupportandencouragementofthisconference.Thesuccess ofthisyear ’sconferencewouldnothavebeenpossiblewithouttheirgeneroussupport.

September2015YuhuaLuo VIPreface

Organization

ConferenceChair

YuhuaLuoUniversityoftheBalearicIslands,Spain

InternationalProgramCommittee

ProgramChair

DieterRollerUniversityofStuttgart,Germany

Members

JoseAlfredoCosta PeterDemian

CarrieSturtsDossick SusanFinger SebastiaGalmes HalinGilles MattiHannus ShuangxiHuang TonyHuang Claudia-LaviniaIgnat

Reviewers

JoseAlfredoCosta PeterDemian SelimErol SusanFinger TakayukiFujimoto SebastiaGalmes HalinGilles

TonyHuang ShuangxiHuang HaraldKlein

JessieKennedy HaraldKlein

Jean-ChristopheLapayre FrancisLau

PierreLeclercq

JangHoLee

JosP.vanLeeuwen Kwan-LiuMa MaryLouMaher ToanNguyen

ManuelOrtega NikoSalonen FernandoSanchez WeimingShen RamSriram ChengzhengSun ThomasTamisier XiangyuWang NobuyoshiYabuki

Jean-ChristopheLapayre PierreLeclercq

JangHoLee

JosP.Leeuwen JaimeLloret LakhouaNajeh

ToanNguyen ManuelOrtega CarlosPampulim RobertoPérez

OrganizationCommittee

Chairs

JuanCarlosPreciado GuofengQin DieterRoler NikoSalonen FernandoSanchez YilunShang WeimingShen ThomasTamisier XiangyuWang NobuyoshiYabuki

SebastiaGalmesUniversityoftheBalearicIslands,Spain

TonyHuangUniversityofTasmania,Australia

Members

TomeuEstrany

TakayukiFujimoto

AlexGarcia JaimeLloret GuofengQin

VIIIOrganization
Contents CooperativeTeamWorkAnalysisandModeling:ABayesianNetwork Approach................................................1 PilarFuster-Parra,AlexGarcía-Mas,JaumeCantallops, andFranciscoJavierPonseti ExtendingCIAMMethodologytoSupportMobileApplicationDesignand Evaluation:ACaseStudyinm-Learning..........................11 MiguelA.Redondo,AnaI.Molina,andChristianX.Navarro SCPL:ASocialCooperativeProgrammingLanguagetoAutomate CooperativeProcesses.......................................19 José MaríaConejero,FernandoSánchez-Figueroa, Luis-MaríaGarcía-Rodríguez,RobertoRodríguez-Echeverría, andJuanCarlosPreciado EngineeringDataIntensiveApplicationswithCadral..................28 YoannDidry,OlivierParisot,andThomasTamisier DynamicContentandUserIdentificationinSocialSemanticTagging Systems................................................36 SamanKamranandMehdiJazayeri ChallengesofBigDataintheAgeofBuildingInformationModeling: AHigh-LevelConceptualPipeline..............................48 ConradBoton,GillesHalin,SylvainKubicki,andDanielForgues SMART:DesignandEvaluationofaCollaborativeMuseumVisiting Application..............................................57 WeidongHuang,BridgetteKaminski,JingLuo,XiaodiHuang, JingweiLi,AaronRoss,JasonWright,andDohyungAn TheDesignofWallPicturestoRelieveDrivingFatigue intheLongTunnel.........................................65 Meng-CongZheng TowardsanImplementableAestheticMeasureforCollaborative ArchitectureDesign.........................................72 AgnieszkaMarsandEwaGrabska CooperativeMonitoringoftheDeliveryofFreshProducts..............76 SandraSendra,JaimeLloret,RaquelLacuesta, andJoseMiguelJimenez
EvaluatingaMicro-paymentSystemforMobileElectronicCommence.....87 XiaodiHuang,XiaolingDai,EdwinSingh,andWeidongHuang ACloudModelforInternetofThingsonLogisticSupplyChain.........93 GuofengQin,LishengWang,andQiyanLi ACollaborativeRequirementMiningFrameworktoSupportOEMs.......105 RomainPinquié,PhilippeVéron,FrédéricSegonds,andNicolasCroué AnInformationIntegratedMethodandItsApplicationofVirtualFactory UsingBIM...............................................115 BaoJinsong,ZhuYing,andXiaZiyue GlobalStiffnessandWell-ConditionedWorkspaceOptimizationAnalysis of3UPU-UPURobotBasedonParetoFrontTheory..................124 DanZhangandBinWei AHadoopUseCaseforEngineeringData.........................134 BenoitLangeandToanNguyen CrowdsourcedClusteringofComputerGeneratedFloorPlans...........142 DavidSousa-Rodrigues,MafaldaTeixeiradeSampayo, EugénioRodrigues,AdélioRodriguesGaspar,and ÁlvaroGomes CollectiveIntelligenceSupportProtocol:ASystemicApproach forCollaborativeArchitecturalDesign............................152 AlexandruSenciuc,IrenePluchinotta,andSamiaBenRajeb CollaborativeShoppingwiththeCrowd...........................162 AndreasMladenow,ChristineBauer,andChristineStrauss G-Form:ACollaborativeDesignApproachtoRegardDeepWebFormas GalaxyofConcepts.........................................170 RadhouaneBoughammoura,LobnaHlaoua,andMohamedNazihOmri Helaba:ASystemtoHighlightDesignRationaleinCollaborativeDesign Processes................................................175 MariselaGutierrezLopez,MiekeHaesen,KrisLuyten, andKarinConinx CooperativeOperatingControlforStimulationofSimultaneously CultivatedBioprocesses......................................185 MieczyslawMetzger,WitoldNocoń,andAnnaWęgrzyn ApplicationoftheSequenceDiagramsintheDesignofDistributedControl System.................................................193 DariuszChoinski,PiotrSkupin,andPiotrKrauze XContents
CooperativeEngineeringofAgent-BasedProcessControlAlgorithm.......197 GrzegorzPolakówandPiotrLaszczyk AnOn-LineModelVerificationSystemforModel-BasedControl Algorithms...............................................201 TomaszKlopot,PiotrSkupin,WitoldKlopot,andPiotrGacki Co-constructionofMeaningviaaCollaborativeActionResearchApproach....205 SamiaBenRajebandPierreLeclercq SentimentAnalysisBasedonCollaborativeDataforPolishLanguage......216 RomanBartusiakandTomaszKajdanowicz Inter-disciplineCollaborationinMedicalTeaching...................220 S.Ubik,J.Navratil,J.Melnikov,J.Schraml,M.Broul,andP.Pečiva SupportingEnvironmentalPlanning:KnowledgeManagementThrough FuzzyCognitiveMapping....................................228 D.Borri,D.Camarda,I.Pluchinotta,andD.Esposito RankingofCollaborativeResearchTeamsBasedonSocialNetwork AnalysisandBibliometrics....................................236 MengleiZhang,XiaodongZhang,andYangHu ASolutionofCollaborationandInteroperability forNetworkedEnterprises....................................243 ChengweiYangandShanShanGao ANovelAutomaticProcessforConstructionProgressTrackingBased onLaserScanningforIndustrialPlants...........................250 JianChai,Hung-LinChi,andXiangyuWang AnIntegratedApproachforProgressTrackinginLiquefiedNaturalGas Construction..............................................259 JunWang,WenchiShou,XiangyuWang,andHung-LinChi AMin-costwithDelaySchedulingMethodforLargeScaleInstance IntensiveTasks............................................268 ChengweiYangandSumianPeng AuthorIndex ............................................279 ContentsXI

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.