Onlinesurveyforcollectiveclusteringof computergeneratedarchitecturalfloorplans
DavidSousa-Rodrigues⇤ 1 ,MafaldaTeixeiradeSampayo2 , EugénioRodrigues3 ,AdélioRodriguesGaspar4 ,ÁlvaroGomes5 , andCarlosHenggelerAntunes5
1 CentreofComplexityandDesign,FacultyofMaths,ComputingandTechnology, TheOpenUniversity,MiltonKeynes,UnitedKingdom
2 CIES,DepartmentofArchitecture, LisbonUniversityInstitute,Lisbon,Portugal
3 ADAI,LAETA,INESCCoimbra,DepartmentofMechanicalEngineering, UniversityofCoimbra,Coimbra,Portugal
4 ADAI,LAETA,DepartmentofMechanicalEngineering; UniversityofCoimbra,Coimbra,Portugal
5 INESCCoimbra,DepartmentofElectricalandComputerEngineering, UniversityofCoimbra,Coimbra,Portugal
ExtendedAbstract
Keywords: OnlineSurvey,GenerativeDesign,Clustering,CollectiveIntelligence,Floor PlanDesign,Architecture,Education.
Theaimofthisstudyistounderstandwhatarethecollectiveactionsofarchitecture practitionerswhengroupingfloorplandesigns.Theunderstandingofhowprofessionalsandstudentssolvethiscomplexproblemmayhelptodevelopspecificprogrammes fortheteachingofarchitecture.Inaddition,thefindingsofthisstudycanhelpin thedevelopmentofquerymechanismsfordatabaseretrievaloffloorplansandthe implementationofclusteringmechanismstoaggregatefloorplansresultingfromgenerativedesignmethods.Thestudyaimstocapturehowpractitionersdefinesimilarity betweenfloorplansfromapoolofavailabledesigns.Ahybridevolutionarystrategy isused,whichtakesintoaccountthebuilding’sfunctionalprogramtogeneratealternativefloorplandesigns[1–3].Thefirststepofthismethodologyconsistedinanonlinesurveytogatherinformationonhowtherespondentswouldperformaclustering
Correspondingauthor: david.rodrigues@open.ac.uk (DavidSousa-Rodrigues)
ExtendedabstractacceptedforICTPI’15conference,June17–19,MiltonKeynes,UnitedKingdom–http://www.ictpi15.info/
task.Onlinesurveyshavebeenusedinseveralapplicationsandareamethodofdata collectionthatconveysseveraladvantages.Whenproperlydevelopedandimplemented,asurveyportraysthecharacteristicsoflargegroupsofrespondentsonaspecific topicandallowsassessingitsrepresentation.Severaltypesofsurveysareavailable; e.g.questionnaireandinterviewformats,phonesurvey,andonlinesurveys,whichcan becoupledwithinferenceenginesthatactanddirectthesurveyaccordingtorespondents’answers[4,5].Inthepresentstudy,thesurveywasposedasanonlineexercisein whichrespondentshadtoperformapre-definedtask,whichmakesitsimilartorunninganexperimentinanonlineenvironment.Theexperimentaimedtounderstand theperceptionandcriteriaofthetargetpopulationtoperformtheclusteringtaskby comparingtheresultswiththerespondents’answerstoaquestionnairepresentedat theendoftheexercise.
Figure1:Agedistributionofrespondents
Thetargetgroupofthissurveyisindividualswhosedailyactivitiesarerelatedto architecture,i.e.architects,architecturestudents,civilengineers,andurbanplanners. ThepoolofparticipantsinhabitsmainlyinPortugalandtheagesrangebetween18and 50yearsold.Figure1depictstheagedistributionoftherespondents.
Thetaskwasperformedonlinethroughawebapplication.Fromapopulationof 72floorplans,twelverandomlyselecteddesignsarechosenanddisplayedonscreen. Theuseristhenaskedtodrag-and-droptoaspecificscreenareatheplansthathe considerssimilar(seefigure2).The72floorplansweregeneratedusingtheEvolutionaryProgramfortheSpaceAllocationProgram(EPSAP)[1–3].Thisalgorithmis capableofproducingalternativefloorplansaccordingtothesameuser’spreferences andrequirementssetasthefunctionalprogram.Thisdefinesthetypeofbuildingto
Figure2:TaskPanelofthesurvey.Usersmustdrag-and-droptotheblueareathefloor planspresentedontheleftaccordingtotheirnotionofsimilarity.
begeneratedandthedesignconstraints.Thesolutionsgeneratedwereasingle-family housewiththreebedrooms,onehall,onekitchen,alivingroom,onecorridorandtwo bathrooms.Abathroomandallthebedroomsareconnectedtothecorridorandall remainingspacesareconnectedtothehall.Thekitchenalsopresentsaninternaldoor connectingittothelivingroom.Oneofthebathroomsservesthepublicareasofthe housewhiletheotherconnectstothecorridoroftheprivateareaofthehouse.All innerroomshavedoorsof90cmwidth,theexceptionbeingthelivingroomdoorsthat are140cm.Withtheexceptionofthecirculationareasandoneofthebathrooms,all areashaveatleastonewindow—thelivingroomhastwo.Thehallhasadoortothe exteriorfacingNorth.Nootherrestrictionswereimposedonthefunctionalprogram ofthisproject.Allsolutionspresentedtotheparticipantswerepreviouslygenerated andtherewasnohumaninterventionintheirselectionforthisexercise.Theparticipantswereaskedtoperformaniteratedtask—tentimes—ofselectingsimilarfloor plans.Attheendofthoseteniterations,afinalformispresentedfortherespondentto identifythecriteriausedintheselectionofthedesigns.Atthismomenttheparticipant couldalsoreview—butnotchange—hispreviousselections.Aftersubmissionthe exercisewasfinished.Thedataobtainedwereanalysedaftertheconstructionoftwo squarematrices—onerepresentingineachentrythenumberofco-visualisationofthe floorplans,i.e.thenumberoftimesfloorplaniandfloorplanjwereshowninthesame iteration;andthesecondmatrixrepresentingthenumberofco-selectionsofthefloor plansbytheuser,i.e.thenumberoftimesthepairwasselectedassimilar.Thefirst matrixistheco-occurrencematrixwhilethesecondistheco-selectionmatrix.Anorm-
alisedmatrixisconstructedbydivisionofthetwopreviousmatrices.Thenormalised matrixgivesthefractionoftimeseachpairoffloorplanswasselected.Thismatrixcan beunderstoodasanadjacencymatrixwheretheentriesrepresenttheweightsofthe connectionsbetweentwofloorplandesigns.Theresultspresentsomebackgrounduncertaintyanditisnecessarytodefineaminimumthresholdfortheentriesofthematrix. Thevalueofthethresholdisvariedtoidentifythestructureoftheselectionprocess. Theresultingfloorplan’snetworkrepresentsthestructureoftheselectionmadebythe participants.Thisnetwork—undirectedandweighted—ispartitionedwiththeedge betweennesscommunitydetectionalgorithmbyGirvanandNewman[6].Thisisadivisivehierarchicalalgorithmthataimstofindcommunitiesbymaximizingthevalue ofmodularity—networkswithhighmodularityhavedenseintra–clusterconnections butsparseconnectionsbetweenverticesofdi↵erentclusters.Thegraphandtheresultingpartitionischaracterisedaccordingtodiverseproperties—degreedistribution, clusteringcoe cient,assortativity,small-world,andscaleinvariance.
Figure3:Communitiesdetectedforthefloorplansdesignswiththresholdof15%
Weshowhowtopologicalpropertiesemergeinthefloorplan’snetwork,andcharacteriseitbyshowinghowthecommunitiesareidentifiedbythecollectiveanswers oftherespondents.Inthecasewhennothresholdisappliedtotheadjacencymatrix theresultingnetworkpresentsasinglegiantcomponentwith15completecliques— subsetsofverticeswheretheinducedsubgraphiscomplete,i.e.everytwoverticesare connected—andanetworkdiameterof2.Whenapplyinga15Byperformingasweep ofthethresholdoftheminimumpercentageofselections,whentwoplansareshownin common,itispossibletoidentifythefloorplansthataretherootsofthedi↵erenttypologies.Thesetsoffloorplansarenotdefinedinahierarchicalmannerbutsomepairs offloorplanswillnaturallybeco-selectedmoreoftenthanothers.Thushierarchiesof
pairsoffloorplansbasedaredefinedontheirco-selectionfrequency.Theunderstandingofhowpeopleperformcertaintasksiscrucialforthedevelopmentofeducation strategiesfocusedonimprovinglearningatuniversityleveleducation.Severalstudieshavebeenproposedthatincludetheparticipationofthecrowdandarebottomup learningprocesses,e.g.peerassessment[7]wherestudentsmarkeachother’swork.In thisstudytheprocessofgroupingfloorplansisinvestigatedtounderstandthecriteria usedbythestudentsandotherpractitioners.Theresultsarepresentedanddiscussed inlightofteachingstrategiesforthearchitectureeducationattheuniversitylevel. Theresultsshowhowcollectiveactiononsimpletaskscanleadtotheemergenceofthe solutionforthecomplextaskofdefininghierarchiesofsimilarityinfloorplan’sdesigns andidentifyingthecriteriausedbyaclassofprofessionals.Theresultsobtainedinthis workareimportantforfuturedevelopmentofICT-mediatedstrategiesforarchitecture educationandprofessionalpractitioners.Theywillalsoimpactotherapplicationssuch asfloorplandesigndatabaseretrievalandaggregationofsimilarsolutionsthatresult fromgenerativedesignmethods.Thecriteriareportedbytherespondentsvariedand canbeincorporatedinmachinelearningalgorithmstoperformtheclusteringtasks presentedtohumansinwaysthatmimicexperts’actions.
References
[1]RodriguesE,GasparA,GomesÁ.Anevolutionarystrategyenhancedwithalocal searchtechniqueforthespaceallocationprobleminarchitecture,Part1:Methodology.ComputerAided-Design.2013;45(5):887–897.
[2]RodriguesE,GasparA,GomesÁ.Anevolutionarystrategyenhancedwithalocal searchtechniqueforthespaceallocationprobleminarchitecture,Part2:Validation andPerformanceTests.ComputerAided-Design.2013;45(5):898–910.
[3]RodriguesE,GasparA,GomesÁ.Anapproachtothemulti-levelspaceallocation probleminarchitectureusingahybridevolutionarytechnique.AutomationinConstruction.2013November;35:482–498.
[4]UrbanoP,Sousa-RodriguesD.RuleBasedSystemsAppliedToOnlineSurveys.In: IADISWWW/InternetConference.Freiburg;2008.
[5]UrbanoP,Sousa-RodriguesD.TheAdvantageOfUsingRulesinOnlineSurveys. RevistadeCiênciasdaComputação.2008;III(3).
[6]GirvanM,NewmanMEJ.Communitystructureinsocialandbiologicalnetworks. ProceedingsoftheNationalAcademyofSciences.2002;99(12):7821–7826.
[7]deSampayoMT,Sousa-RodriguesD,Jimenez-RomeroC,JohnsonJH.PeerAssessmentinArchitectureEducation.In:InternationalConferenceonTechnologyand Innovation.Brno,CzechRepublic;2014.