Zero Imapct Building - Sustainable Strategies

Page 1

E C O D I S T R I C T | MAHGOL MOTALLEBIE KASRA HAJI HASSANDOKHT PETRA ROSS EVANGELOS STAVRAKAKIS GILLES PLAETINCK

SUSTAINABLE CONCEPT SMART BUILDING LOW TECHNICS ZERO ENERGY & IMPACT CALCULATIONS

ZERO IMPACT BUILDING MA (SCI) ARCHITECTURE KU LEUVEN 路 SINT LUCAS GROUP 42 路 GENT 漏2015

GHENT

|

B401


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

T E CH N I C S

D E SI GN

C O N C EP T

CONTENT

..

CONTENT • VISION STATEMENT PROJECT SUMMARY • 6 KEYWORDS

..

FLYOVER CONTEXT• SUNPATH • WIND • AERIAL VIEW

..

VISION OF NATURE AND CULTURE • CPULs

..

MOBILITY VISION • CPULs

..

ZONING PLAN • SITE PLAN

PROJ ECT SUMMARY

V IS I O N S TAT E M E N T

6 KEYWO RDS

After studying the negative impacts of cutting away the highway B401, we decided to take on with a greater vision that may span in a period of time that exceeds the present and the near future. By that desicion our intention is to systemize our reswponse to the problem and to think in advance with a sutainainable vision so that the shape of the urban fututre to come may be given a more positive and sustainable functions and value. Space, time alongside our chozen spatial and building programming form our toolbox palette. In order to unfold our greater planning vision, we have defined 3 different zones -the borders of the city with its ring road, the trasition space just where one enters the city and the city itself-. Furthermore 3 different gradients have been defined -starting from a more global and reaching to a more local situation- while also 3 different topics have been attempted to be tackled -namely transport, culture and nature. All the afore described within a time context of the present , the near future and the deeper future vision.

• B 401 Info center and workshop • Number of users 10 • Footprint 185 m2- building on highway • Gross internal area 298,7 m2

GROUNDPLANS 1:100

..

SECTIONS 1:100

..

DETAILS

..

ELEVATIONS 1:100

..

VISUALIZATIONS

..

MATERIALS • SUPPLIERS

..

MATERIALS • SPECIFICATION

..

MATERIALS • LCA • EMBODIED ENERGY

..

STRUCTURE • ZERO IMPACT APPROACH

..

VERTICAL HARVESTING • WORKSHOP

LOW TECHNIC

..

GREEN WALLS

..

VENTILATION • in summer and winter

..

ELECTRICITY

..

LIGHTING SYSTEM • DAYLIGHT

• Ventilation - system D • Chimney effect • Shading system • Daylight use • Temperature zoning • Compact building

..

WATER MANAGEMENT

..

SEWAGE SYSTEM

..

CHANGES IN DESIGN

..

CALCULATIONS

The intention is to positively activate the spaces around the Flyover and stitch it back to the city and its people by taking away its current notions of a hard barrier.

FLYOVER AS AN INTERCONNECTING EDGE

From.. HARD BORDER

ENERGY

POSITIVE PROJECT • Extra energy production • More greenery • Futuristic vision towards Ecopolic • Changing parking/ highway to park • Flexibility for different use

..

Our proposal should be seen as a pioneer project and serve as an example for similar flyover spaces in Ghent and other cities.

1. GRADIENT OF FUNCTIONS & ATMOSPHERES

ARCHITECTURE CONTEXT

SOCIAL INTERACTION • Info center • Workshop - community • Markets • Green park on highway • Connection building • Vertical harvesting + green walls

RESISTANCE

• Gains 64 240 kWh /year • Demands 5423 kWh /year • Solar roadways - PV panels placed on highway • Heating 10 kWh/ m²a • Cooling 4 kWh /m²a • Overheating 4,2 %

2. MOBILITY VISION

MOBILITY • Bikes + pedestrian priority • Universal access • Separate ramp for cars/ bikes • Connection for bikes/ pedestrian • Public transport future vision

WATER

MATERIALS

• Tube hybrid solar panels • Rainwater collection 287,73 m3/year • Demand 164,25 m3/ year • Rainwater tank 10m3 • Wadi system • Divided sewer system

3. WORKSHOP SPACES, FOOD HARVESTING, COOKING CLASSES & MARKETS

4. GREEN CORRIDORS *CPULs 4

• CLT columns (plato weather treated) • Timber beems and cladding • e- glazing

PERMEABLE SPACE

5. CONNECTIONS BETWEEN NEIGHBOURHOODS

POROSITY

40

TO P I C S MOBILITY NATURE CULTURE

T E RRI TO RY

T I M E S PAN NOW +5-10YRS +50YRS

2015

STITCHING ELEMENT

INTERCONNECTING EDGE

a. CITY OUTSKIRTS b. CITY RING C. WITHIN THE CITY

2020 2060

70

A

6. CLEAN ENERGY (green) B C

90

30


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB2015

AERIAL VIEW - LOCAT ION

B 401 FLYOVER 路 CON TE XT

Maldegem

Brugge

Kortrijk

BELGIUM

GHENT

FLANDERS

WIND DIRECTION DISTRIBUTION IN (%) SITUATION AT LOCATION: ON JUNE 21 / CURRENT / DECEMBER 21

STEREGRAPHIC PROJECTION SUNPATH

GHENT

Sint Niklaas . Antwerp

Aalst . Brussels

ZIB.2015 | ECO DISTRICT | GENT | B401


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

CPUL c

VIS IO N OF NATURE A N D C U LTU R E

*Continuous productive urban landscapes [within] cities

FUTURE+5-10YRS

CURRENT SITUATION

Section B-B´

A-A´´

Section B-B´

B-B´

CURRENT SITUATION

A vision and a strategy for the 21st century for the city to be green. A healthy place for all where zero net pollution is genberated. CPULs as a strategy aims towards bringing the -Natural- back to the city and through this to engage people and neighborhoods in positive activities. Whether for the city, the neighborhood, their family or themselves, this objective may capacitate a broad number of parallel activities, programs and motivation for a healthy urban environment. CPULs is simply taking back that for which we usually travel good distances as an -escape means- of the city and its negative side effects.

C-C´

FUTURE+5-10YRS

Section A-A´

Section A-A´


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

M O B IL IT Y VISION lifestyle change over time

INTERVENTION IN TIME

SKYTRAN MOBILITY - PASSIVE MAGLEV TECHNOLOGY

CURRENT SITUATION ON CITY RING

NOW

SKY

TRA

N

GOI

NG

DOW

N TO

RIN

G

BICYCLE UNDERGROUND PARKING

INT

Section C-C´

ERC

+ 5-10YRS

sophisticated apps

HAN

GE S

POT

PREVENT COMMUTING MORE LOCAL LIFESTYLE

90 min.

SHAREWAY

15 min.

FUTURISTIC VISION + 50YRS A . BETWEEN CITIES

B . CITY RING

C . INSIDE THE CITY

A SPEED VISION

B

A . between cities

PUBLIC C

tram

SKYtran

el.

PRIVATE

C . inside the city

ONEWHEEL

SUPPLY GOOGLECAR

tram

P

B . city ring

SKYTRAN

SKYtran

cambio

SKYtran

minimized

googleCar

el.

ONEwheel

SKYtran

P

P

googleCar

night

ACTIVE MALEV RQUIRES HIGH ENERGY AND MASSIVE INFRASTRUCTURE LEADING TO HIGH COSTS AS WELL.

PASSIVE MAGLEV REQUIRES VERY LITTLE ENERGY AND ONLY MINOR INFRASTRUCTURE LEADING TO THE LOWEST COST TRANSPORTATION SYSTEM KNOWN TO MAN.


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

ZO N ING PLAN

SIT E PL AN drawing over existing situation

TOP OF THE FLYOVER: PARK AND ENERGY 0

50

100

200

HOUSING HOUSING

HOUSING

ECO QUATER

AMP

COMMERCE

EDUCATION bus

ZIB

tram

p ram n a i str ns ede rk ctio p e / r i s bike ated pa s in 2 d r elev for ca p ram

N/ C

IA STR

E

PED

ER YCL

P

P

E

NTS

OTM ALL

ARS

P

RAM

C FOR

EDUCATION

TRANSPORT

ECO CITY GHENT

DS

HOUSING FLATS

ZIB

PED

C /CY

AN TRI

ES

P

OA LE R

i

HOUSING

roundabout + underpass

P OFFICE PARK

ILS

RA AY T

PL

ZONE A: SPORT AND CULTURE

ZONE B: INFO AND WORKSHOP

i

ZONE C: TRANSPORT TRANSITION

P

OFFICE PARK

HOUSING FLATS 0

TOWARDS THE CITY CENTRE

INTEREVENTION LOCATION

OUTTER CITY RING

10

50

100


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

GRO U NDPLANS 1:10 0

A-Á

A-Á

B-B´

B-B´

A-Á

A-Á

B-B´

B-B´


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

A

A’

S EC TIONS 1:100

Detail 0 6

Deta i l 0 3 Deta i l 0 2

Deta i l 0 4

Detail 01

Deta i l 0 5

Section B-B´

Section A-Á


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB2015

A’

DETAILS

DETAIL 02

DETAIL 03

DETAIL 04

DETAIL 05

DETAIL 06

A

DETAIL 01

PIR floor Gy psum plaster b o ard PIR 100 mm OS B 15 mm FJ I beam / cellu lo s e 3 5 0 m m celit 4D wo o d f ib er 1 8 m m finish gy ps u m p laster b o ard

p l ato wood fi n i s h fra m ework 3 0 m m c el i t 4 D 1 8 m m wood st ru c t u re S L S 3 8 / 1 4 0 E u rowa l l 2 x 7 0 m m OSB E u rot h a n e G 7 0 m m fi n i s h g y ps u m p l a sterb oa rd

ZIB.2015 | ECO DISTRICT | GENT | B401


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

E LE VAT IONS 1:100 South Elevation North Elevation

North Elevation

North Elevation

South elevation

North elevation


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB2015

E LE VAT IONS 1:100

VISUAL IZAT IONS East Elevation

West Elevation

East Elevation

West elevation

East elevation

ZIB.2015 | ECO DISTRICT | GENT | B401


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB2015

VIS UA LIZAT IONS

ZIB.2015 | ECO DISTRICT | GENT | B401


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB2015

M ATE RIALS/ W OOD/ F C S C e rti fi e d Sup p l i e rs Di s t a n c e

MAT ERIAL S / B u ild in g / St ru ct u re

ZIB.2015 | ECO DISTRICT | GENT | B401


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB2015

MATERIALS Specs / Sol i d & Struc tural Wood

MAT ERIAL S Spe cs / In su la t ion

ZIB.2015 | ECO DISTRICT | GENT | B401


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB2015

M ATE RIALS / Life Cyc l e A s s e s m e nt

MAT ERIAL S/ Em bod ie d e n e rgy/ CO2

ot he r m a t e ria ls

ZIB.2015 | ECO DISTRICT | GENT | B401


ner

Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

ZERO IMPACT APPROACH

S TRUCTURE

ECONOMY - USIBILITY DURING ECONONY - USIBILITY DURING THE DAYTHE 10.00

i

DAY

3/ Roof terrace

20.00

ALWAYS

i 2/ Info center Entrance from highway

GENERAL PRINCIPLES OF THE BUILDING

{3D} Copy 1 ZIB BUILDING

Gilles Plaetinck

1

Enter address here 7 _ Unnamed

Owner

begeleider : Checker schaal :

{3D} Copy 2 BUILDING 1 ZIB Enter address here 8 _ Unnamed

Gilles Plaetinck

Owner

begeleider : Checker schaal :

Gilles Plaetinck

{3D} Copy 3 ZIB BUILDING

1 Enter address here 8 _ Unnamed

Owner

begeleider : Checker schaal :

ZIB BUILDING {3D} Copy 4 1 Enter address here 9 _ Unnamed

schaal :

1/ Workshop area technical room

0/ Food market in park Vertical harvesting Entrance


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

VERTI CAL HARVESTI N G

W ORKSH OP Healthy food is a basic human right. the ability to access healthy food is often related to multiple issues and not just a result of low income.

Healthy food is a basic human right. the ability to access healthy food is often related to multiple issues and not just a result of low income.

Vertical Harvest places Vertical Harvest places plants on carousels thatplants on carousels that keep them moving themoving length of keep them thethe pulls, giving them equal time in natural light,ofand allowing workers and local people to pick and length thealso greenhouse, transfer the crops. Using Verticalto Harvest be giving them equal time inhydroponics, Healthy food is a basic human right. the ability accesswill healthy capable of producing natural light, and also over al- greens and herbs. food is often related to multiple issues and not just a result of lowing workers to pick low income. and transfer the crops. t Using hydroponics, Vertical Harvest will be capable of producing over

s that keep them m equal time in natucal people to pick and tical Harvest will be bs.

PLANT CABLE LIFT (PLC) SECTION

Sustainable Food zorkshop center’s mission is to “cultivate a healthy community by strengthening the local food system and improving access to nutritious, affordable food.” The main goal of our design is to deliver skills and information for sustainability practioners in the organic food trade. The program attempts to: 1) affect positive changes in shopping, cooking, eating habits, and nutrition, 2) reduce diet-related diseases, 3) promote the health and development of young children, 4) place emphasis on local, seasonal, and culturally-appropriate foods 5) integrate food systems concepts into its curriculum– such as shopping at farmers markets and growing one’s own food.

Sustainable Food zorkshop center’s mission is to “cultivate a healthy community by strengthening the local food system and improving access to nuHealthy affordable food is a basic human the goal abilityofto our access tritious, food. ” Theright. main healthyisfood is often skills relatedand to multiple issues and not just design to deliver information for susa result of low income. tainability practioners in the organic food trade. The program attempts Sustainable Food zorkshopto: center’s mission is to “cultivate a 1)healthy affectcommunity positive changes in shopping, by strengthening the localcooking, food system eating habits, and nutrition, and improving access to nutritious, affordable food.” The goaldiet-related of our designdiseases, is to deliver skills and information 2)main reduce for sustainability practioners the organic food trade. 3) promote the health and in development of young The program attempts to: children, 4) place emphasis on local, seasonal, and cultural1) affect positive changes in shopping, cooking, ly-appropriate foods eating habits, and nutrition, 5)2)integrate food systems concepts into its curricreduce diet-related diseases, ulum– suchthe as health shopping at farmers of markets 3) promote and development young and children,one’s own food. growing 4) place emphasis on local, seasonal, and culturallyappropriate foods 5) integrate food systems concepts into its curriculum– such as shopping at farmers markets and growing one’s own food.

FOOD TEAM = a group of people from the same neighbourhood who work for the direct purchase of regional andof seasonal products. Theysame order food on internet via web FOOD TEAM = a group people from the page voedselteam.be and it is then neighbourhood who work for the direct purchase of delivered once a week to the depot of a team.

Sustainable Food zorkshop center’s mission is to “cultivate a healthy community by strengthening the local food system and improving access to nutritious, affordable food.” The main goal of our design is to deliver skills and information for sustainability practioners in the organic food trade. The program attempts to: 1) affect positive changes in shopping, cooking, eating habits, and nutrition, 2) reduce diet-related diseases, 3) promote the health and development of young children, 4) place emphasis on local, seasonal, and culturally-appropriate foods 5) integrate food systems concepts into its curriculum– such as shopping at farmers markets and growing one’s own food.

FOOD TEAM = a group of people from the same neighbourhood who work for the direct purchase of regional and seasonal products. They order food on internet via web page voedselteam.be and it is then delivered once a week to the depot of a team. + minimal transport requirements + no / returnable packaging pricing + fair p + high-quality local and seasonal food + community initiative

regional and seasonal products. They order food on internet via web page voedselteam.be it is then + minimal transportand requirements delivered once a week +tonothe depot ofpackaging a team. / returnable

+ fair pricing + high-quality local and seasonal food + minimal transport requirements + community initiative + no / returnable packaging

+ fair p pricing + high-quality local and seasonal food + community initiative


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB2015

Black coral pea

Black coral pea

Snake vine

Snake vine

Snake vine

kidney weed

kidney weed

kidney weed

- Ornamental Qualiies - Design Purpose - Manageability / Maintainability - Environmental and Societal Effects - Visual Effect - Feeling Effect

Pandorea

- Quality of growth - Ability to adapt to the wall environment - Environmental Tolerances - Temperature Resistance - Drought Tolerance - Wind Tolerance - Solar Exposure Tolerance - Salt Tolerance in Seaside installaaons - Air and Water Polluuon Tolerance - Pest and Disease Resistance - Arrficial Environment Tolerance - Transplantaaon Tolerance - Pruning Tolerance

Black coral pea Black coral pea Pandorea

Pandorea

Factors should be considered when seleccng plants:

Basil

Basil

Basil

Black coral pea

purple coral pea

purple coral pea

purple coral pea

Black coral pea

GREEN WALLS

Factors should be considered when seleccng plants: Factors should be considered when seleccng plants: - Ornamental Qualiies - Quality of growth - Ornamental Qualiies - Design Purpose growth - Ability to- Quality adapt toofthe wall environment - Design Purpose Manageability / Maintainability - AbilityTolerances to adapt to the wall environment - Environmental Manageability / Maintainability - Environmental and Societal Effects - Environmental - Temperature Resistance Tolerances Environmental and Societal Effects - Visual Effect Temperature Resistance - Drought Tolerance - Visual Effect - Feeling Effect - Drought Tolerance - Wind Tolerance - Feeling Effect - Wind Tolerance Tolerance - Solar Exposure - SolarinExposure - Salt Tolerance Seaside Tolerance installaaons Salt Tolerance in Seaside installaaons - Air and Water Polluuon Tolerance Air and Resistance Water Polluuon Tolerance - Pest and-Disease Pest and Disease Resistance - Arrficial-Environment Tolerance - Arrficial Environment Tolerance - Transplantaaon Tolerance - Transplantaaon Tolerance - Pruning Tolerance - Pruning Tolerance

ZIB.2015 | ECO DISTRICT | GENT | B401


ECO DISTRICT | GENT | B401 Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis | GENT | B401 ZIB.2015 | ECO DISTRICT T 42

ZIB2015

ZIB2015

Mechanical Ventilation with Heat Recovery (MVHR)

VE N TIL AT ION

CALCULATION AND SYSTEM

VENTILATION IN GROUPLANS

Heating 10 kwh/ m²a Cooling 4 kWh /m²a Overheating 4,2 %

Extraction of air ECO DISTRICT | GENT | B401

Pulsion of air

T 42

ZIB2015

Mechanical Ventilation with Heat Recovery (MVHR)

MECHANICAL VENTILATION WITH HEAT RECOVERY (MVHR) Up to 95% of the heat can be recovered. The Heat Recovery Unit runs continuously on trickle and can and is boosted when higher rates of ventilation are required e.g. bathing, cooking. ECO DISTRICT | GENT | B401

T 42 In warmer months a summer by-pass function helps ensure comfort levels are maintained in the home. When summer byMechanical Ventilation with Heat Recovery (MVHR) pass is activated, the dwelling continues to be ventilaated and recieve fresh filtered air, however the heat recovery process is intermittently switched off (heat recovery is by-passed).

In-take / Out-take of air

ZIB2015

Extraction of air

outdoor space

18 °C

ECO DISTRICT | GENT | B401 T 42

level 02

18 °C

15 °C Recuperation unit

Pulsion of air

DN

Gilles Plaetinck

Owner

begeleider : Checker

In warmer months a summer by-pass function helps ensure comfort levels are maintained in the home. When summer by-pass is activated, the dwelling continues to be ventilaated and recieve fresh filtered air, however the heat recovery process is intermittently switched off (heat recovery is by-passed)

ZIB BUILDING Enter address here 3 _ level 2

Up to 95% of the heat can be recovered. The Heat Recovery Unit runs continuously on trickle and can and is boosted when higher rates of ventilation are required e.g. bathing, cooking.

schaal : 1 : 100

level 01

Zehnder ComfoSystems Passive Haus accredited produ ZIB2015 suitable for large houses up to 300m2. Designed to ensu Mechanical Ventilation with Heat Recovery low noise, (MVHR) excellent energy performance and heat exchan efficiency. Choice of control options including LCD tou screen display. Can be combine with ComfoCool for option EXTRACT VENTILATION RATES cooling of up to 5 degrees and humidity reduction by 20%

Up to 95% of the heat can be recovered. The Heat Recovery Unit runs continuously on trickle and can and is boosted when higher rates of ventilation are required e.g. bathing, cooking. In warmer months a summer by-pass function helps ensure comfort levels are maintained in the home. When summer by-pass is activated, the dwelling continues to be ventilaated and recieve fresh Up to 95% of the heat canair, be recovered. filtered however the heat recovery The Heat Recovery Unit runs continuprocess is intermittently switched off ously on trickle and can and is boosted (heat recoveryare is by-passed) when higher rates of ventilation required e.g. bathing, cooking.

In warmer months a summer by-pass function helps ensure comfort levels are maintained in the home. When summer by-pass is activated, the dwelling continues to be ventilaated and recieve fresh

Zehnder suitable low nois efficienc screen di cooling o


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB2015

EL ECT RICIT Y

SUMMER DAY - air through recuperation unit, small change of temperature

SHADING SYSTEM As a shading was chozen system Renson Icarus. Lamellas with angle 45째, made in wood.

Summer day air through recuperation unit small change of temperature

Solar roadways-PVpanels

SUMMER NIGHT - cross-ventilation through building

ZONING ACCORDING TO TEMPERATURES

Elevator

Fuse box

heated zone

Summer night not heated zone cross- ventilation through building

+ -

15 째C

18 째C

Battery with transformator

Shutters control system Electricity

LED lights

ZIB.2015 | ECO DISTRICT | GENT | B401


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB2015 ELECTRICITY SCHEME

ENERGY DEMAND OVERVIEW shutters

summer 0,5 kWh/ day winter 0,3 kWh/ day 183 days x 0,5= 91,5 kWh 182 days x 0,3 = 54,6 kWh = 164,1 kWh

elevator

262 kWh

2 fridges

A++fridge: 104 kWh/year 104 x x2 = 208 kWh

2 coffeemakers

900 W x 0,1 hours/ day = 0,9 kWh x 220 days x 2= 198 kWh /a

1 microwave

67 kWh /a

1 owen

0,85x100 days= 85 kWh /a

2 cooking plates

400 kWh x 2 = 800 kWh /a

stereo

150 kWh/ a

ventilation unit

419 kWh/a

electricity transformer (AC to DC) for PV panels + batteries

68 kWh/ a

ENERGY SUPPLY OVERVIEW - FLY-OVER lights

1 spot 56 W/ 10000 = 0,056 KW 4 hours per day, 365 days a year = 1460 h 0,056 x 1460 = 81,76 kWh 10 spots x 81,76= 817,6 kWh /a 1 spot 72 W/ 10000 = 0,072 KW 4 hours per day, 365 days a year = 1460 h 0,072 x 1460 = 105,12 kWh 5 spots x 105,12= 525,6 kWh /a 1 spot 52 W/ 10000 = 0,052 KW 4 hours per day, 365 days a year = 1460 h 0,052 x 1460 = 75,92 kWh 21 spots x 75,92= 1594,32 kWh /a 1 spot 9 W/ 10000 = 0,009 KW 4 hours per day, 365 days a year = 1460 h 0,009 x 1460 = 13,14 kWh 5 spots x 13,14 = 65,7 kWh /a 5423 kWh /a

average only 4 hours of peak daylight hours per day (4 x 365 = 1460 hours per year) - Surface area ( first part) Fly-over : +- 20 000 m² -> 16 000 x 230 Watt = 3 680 000 Watt or 3680 kW only 50 % of fly-over covered with solar roadways -> 3680 kW x 4 h = 7360 kWh /day -> 3680 kW x 1460 h = 2 686 400 kWh /year -> +- 540 households (+- 5000 kWh /year) Tesla Powerwall: There’s a 10 kWh unit at $3,500 -> 737 Tesla Batteries > the Solar Roadway has the ability to cut greenhouse gases by up to 75-percent! > A decentralized, self-healing, secure power grid. IN FRONT OF FLY-OVER - Surface area Fly-over = 16 x 30 m = 480 m² -> 384 x 230 Watt = 88 320 Watt or 88,3 kW only 50 % of fly-over covered with solar roadways -> 44 kW x 4 h = 176 kWh /day -> 44 kW x 1460 h = 64 240 kWh /year -> +- 13 households (+- 5000 kWh /year)

SOLAR ROADWAYS - PV PANELS Energy from the sun 1/ To generate energy for the ZIB building 2/ To generate energy for the surrounding houses 3/ To generate energy for lighting or signs on the road 4/ The panels will also have the capacity to charge electric vehicles while parked

ZIB.2015 | ECO DISTRICT | GENT | B401


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB2015

LIGHTING SYST EM - D I A L ux

B401-Gent

B401-Gent

6/22/2015

6/22/2015

B401-Gent

Site 1 / Building 6 / Storey 1 / Room 13 / Workplane 13 / Results overview

Site 1 / Building 2 / Zib / Room 9 / Workplane 9 / Results overview

6/22/2015

t yp es parts o f light Site 1 / Luminaire list s

B401-Gent

Site 1 / Building 2 / Zib / Room 9 / Workplane 9 / False colours/Perpendicular illuminance (adaptive)

6/22/2015

Site 1 / Luminaire parts list

Workplane 13 / Results 2nd floor overview

f l o o r overview Workplane 19st / Results

B401-Gent

DAYL IGH T - DIAL u x

Quantity

Luminaire (Luminous emittance)

10

3F Filippi 12736 P 202x24W LED OP 196x1231 Luminous emittance 1 Fitting: 1x24W 2xLED Light output ratio: 100% Lamp luminous flux: 5332 lm Luminaire Luminous Flux: 5332 lm Power: 56.0 W Light yield: 95.2 lm/W

6/22/2015

10x

105°

105°

90°

90°

75°

75°

60°

60° 200

45°

Site 1 / Building 2 / Zib / Room 9 / Workplane 9 / False colours/Perpendicular illuminance (adaptive) B401-Gent

400

6/22/2015 30°

Workplane 9 / False colours/Perpendicular illuminance (adaptive) Workplane 9 / False colours/Perpendicular illuminance (adaptive) Result

105 689 0.227

Profile: Offices, Writing, typewriting, reading, data processing B401-Gent

SFN Eclairages 0732360X CLFV 236 Luminous emittance 1 Fitting: 2xT26 36W/840 Light output ratio: 68.89% Lamp luminous flux: 6700 lm Luminaire Luminous Flux: 4615 lm Power: 72.0 W Light yield: 64.1 lm/W

Height of working plane: 0.800 m , Wall zone: 0.000 m

Mean (target) Min Max Min/average Min/max

Perpendicular illuminance [lx] 463 (500)

5

Workplane 13 / False colours/Perpendicular illuminance (adaptive)

0.152

6/22/2015

Result

Mean (target) Min Max Min/average Min/max

Perpendicular illuminance [lx] 388 (500)

69

732 0.178

0.094

15°

cd/klm

Site 1 / Building 6 / Storey 1 / Room 13 / Workplane 13 / False colours/Perpendicular illuminance (adaptive)

Height of working plane: 0.800 m , Wall zone: 0.000 m

45°

300

C0 - C180

6x

15°

30°

η = 100%

C90 - C270

105°

105°

90°

90°

75°

75°

60°

60° 160

45°

45°

240

Profile: Offices, Writing, typewriting, reading, data processing 30°

15°

cd/klm

C0 - C180

Site 1 / Building 2 / Zib / Room 9 / Workplane 9 / Value chart/Perpendicular illuminance (adaptive)

21 Scale: 1 : 100 B401-Gent

6/22/2015

Workplane 9 / Value chart/Perpendicular illuminance (adaptive)

Perpendicular illuminance (Surface)

Scale: 1 : 200

Perpendicular illuminance (Surface) Mean (actual): 463 lx, Min: 105 lx, Max: 689 lx, Min/average: 0.227, Min/max: 0.152,

(actual): 388 lx, Min: lx, Max: Min/average: illuminance 0.178, Min/max: Site Mean 1 / Building 6 / Storey 1 / Room 13 / 69 Workplane 13 /732 Valuelx, chart/Perpendicular (adaptive) 0.094,

Scale: 1 : 200

Workplane 13 / Value chart/Perpendicular illuminance (adaptive)

Perpendicular illuminance (Surface) Mean (actual): 463 lx, Min: 105 lx, Max: 689 lx, Min/average: 0.227, Min/max: 0.152,

SFN Eclairages 332226XX SAM F 2x26W BE Luminous emittance 1 Fitting: 2xTC-DEL 26W/840 Light output ratio: 32.97% Lamp luminous flux: 3600 lm Luminaire Luminous Flux: 1187 lm Power: 52.0 W Light yield: 22.8 lm/W

21x

15°

30°

η = 69%

C90 - C270

105°

105°

90°

90°

75°

75° 40

60°

60° 60

80 45°

45° 100

120

140 30°

15°

cd/klm

C0 - C180

1

Scale: 1 : 200

Perpendicular illuminance (Surface) Perpendicular illuminance463 (Surface) Mean (actual): lx, Min: 105 lx, Max: 689 lx, Mean (actual): 463 lx, Min: 105 lx, Max: 689 lx, Min/average: 0.227, Min/max: 0.152, Min/average: 0.227, Min/max: 0.152,

Signcomplex AR111-009-AW-W-06 AR111 COB 9W 38° White Luminous emittance 1 Fitting: 1xAR111-009-AW-W-06 Light output ratio: 80.78% Lamp luminous flux: 600 lm Luminaire Luminous Flux: 485 lm Power: 9.0 W Light yield: 53.9 lm/W

Scale: 1 : 100 Perpendicular illuminance (Surface)

Mean (actual): 388 lx, Min: 69 lx, Max: 732 lx, Min/average: 0.178, Min/max: 0.094, Perpendicular illuminance (Surface) Mean (actual): 388 lx, Min: 69 lx, Max: 732 lx, Min/average: 0.178, Min/max: 0.094,

1x

15°

30°

η = 33%

105°

105°

90°

90°

75°

75°

60°

60° 800

45°

45°

1200

30°

15°

cd/klm

C0 - C180

C90 - C270

Total lamp luminous flux: 163020 lm, Total luminaire luminous flux: 101807 lm, Total Load: 2021.0 W, Light yield: 50.4 lm/W Page 96

C90 - C270

15°

30°

η = 81%

SUMMER SUNNY 10-42% LUX WINTER SUNNY 10-42% LUX

ZIB.2015 | ECO DISTRICT | GENT | B401


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

WATE R MANAG EMENT

WATER SUPPLY SCHEME AND CALCULATION RAIN WATER GAIN Available roof area

319,7 m2

In Ghent, avarage of 900mm/m2/year

0,9x 319,7 = 287,73 m3/year

RAIN WATER DEMAND 3 toilets Vertical gardening

Tube hybrid Solar panels

Total

300 l /day 150 l / day = 450l/day = 164,25 m3/ year

relative RW usage

140,7 l/day/100m2

RAIN WATER TANK Relative RWT volume Rain water tank volume

3m3/ 100 m2 9591 l > 10 m3

POTABLE WATER DEMAND Sinks Hot water tank

Water taps

toilet - 3x - 0,3l/s kitchen -4x - 0,2l/s

DIMESION OF PIPES City water supply Rainwater tank Rain water tank

178 mm (DN 18 - 15 - 12) 165 mm (DN 17-15)

Rain water collection for vertical harvesting

THE SOLAR ROADWAYS are composed of hexagonal tiles. Rainwater can infiltrate between the gaps from where it goes to rainwatter collector which supplies the vegetation on fly-over

WADI City water supply


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

S EWAG E SYSTEM

WATER DRAINAGE SCHEME AND CALCULATION

WATER DRAINAGE OF DEVICES Toilet: Toilet sink: Kitchen sink:

DU = 2 l/s DU = 0,5 l/s DU = 0,8 l/s

Frequency of usage at the same time K

0,5

DIMESION OF PIPES Black water Grey water

Sinks

Rain water tank

Divided sewer system within building WADI City water supply

110 mm (DU 110) 75 mm (DU 75 - 63)


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015 WATER SUPPLY AND DRAINAGE IN GROUPLANS

WATER CYCLE

WATER SUPPLY In this building a closed water system is applied, which is based on reusing water in multiple was.

HOT WATER WATER DRAINAGE

Rain water from the roof will be collected in a storage tank situated on the ground floor. This water will be used to flush the toilet and irrigate crops in vertical harvesting system. In case of an overflow, the water will be stored in the constructed wetland near the building. The rainwater can be filtered through a helophyte filter up to drinking water standard. In this building a closed water system is applied, which is

based on reusing water in mullple was. willwaste be collected a storageincludes tank Rain water from the roofThe waterinsystem three types of water: yellow, situated on the ground floor. This water will be used to flush black, and grey water. The yellow water will be stored for the toilet and irrigate crops in verrcal harvessng system. In phosphor, while inthe case of an overflow, theitswater will be stored theblack con- water will be purified into grey water. This water to the quality of rain structed wetland near the building. Thegrey rainwater can is be comparable filtered through a helophyte filterafter up topurification drinking waterbstanwater means of a bio rotor. The remaining dard. The waste water system includes three types of water: residue from the bio rotor, together with the organic waste yellow, black, and grey water. yell harvesting is fermented into biogas that drives a The yellow water will befrom storedthe for its phosphor, while the black water will be purified into turbine grey water.inThis grey to water micro order produce some additional energy. is comparable to the quality rain water aaer purificaaon Theofwaste product derivingbfrom this process will be used as means of a bio rotor. The remaining residue from the bio compost ver􀆟cal harves􀆟ng. This efficient yet complex rotor, together with the organic wasteinfrom the harvessng is system the u􀆟liza􀆟on fermented into biogas that drives acloses micro turbine in order tocycle of the building and turns it produce some addiionalinto energy. an efficient vicious circle that can be considered au arkic.

DN

level 02 PHOSPHOR

ENERGY

RAINWATER TANK

ZIB BUILDING

BIO-ROTOR

Enter address here

2 _ level 1

IRRIGATION SYSTEM

HELOPHYTE FILTER

schaal : 1 : 100

level 01

MICRO TURBINE

The waste product deriving from this process will be used as compost in verrcal harvessng. This efficient yet complex system closes the uulizaaon cycle of the building and turns it into an efficient vicious circle that can be considered au arkic.


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

C HAN GE IN DESIG N current orientation/ only night ventilation

CAL CUL AT IONS orientation turned 90° / only night ventilation/ 6 windows less; 52 m²

S U RFAC E AREA

Passive House verification L

Photo or Drawing

Building: Workshop + info point Street:

Postcode/City: Country:

B

H

VOLUME

main 1 main 2

22,6 18,4

7 7

4 3,5

632,8 450,8

core 0 core 0 core 3

6,2 6 2 6,2

5 3

3,5 3 5 2,8

108,5 108 5 52,1

Building Type: non-residential Climate: Ukkel

orientation turned 90° / only night ventilation/ 7 windows less; 60m² (window less at SE side)

1244,2

Home Owner(s) / Client(s): Street: Postcode/City: Architect:

AREA

Street:

current orientation/ only night ventilation/ 6 windows less; 52 m²

Calculation electricity / Internal heat gains

Postcode/City: Mechanical System:

main 1

Building type:

storage wc big wc wc workshop

Street: Internal heat gains

Postcode/City:

2015 1 1244,2

Year of Construction: Number of Dwelling Units: Enclosed Volume Ve:

Passive House verification

20,0 2,0

Interior Temperature: Internal Heat Gains:

Heating load Space cooling

284,0

10 11

Cooling load

Space heating and cooling, dehumidification, household electricity.

Primary Energy

Street:

DHW, space heating and auxiliary electricity

Postcode/City: Country:

Specific primary energy reduction through solar electricity

Building Type: non-residential Climate: Ukkel

Pressurization test result n50

Airtightness

Requirements

kWh/(m2a) W/m

2

-

%

-

kWh/(m a)

24

kWh/(m2a)

21

2

2

kWh/(m a) 1/h

120 kWh/(m²a) -

0,6 1/h

Home Owner(s) / Client(s): Street: Postcode/City: Architect: Street: Calculation electricity / Internal heat gains

Postcode/City: Mechanical System:

Building type:

Street: Internal heat gains

Postcode/City: Year of Construction:

current orientation/ only night ventilation/ 8 windows less; 69 m²

2015 1 1244,2

20,0 2,0

Interior Temperature:

Number of Dwelling Units: Internal Heat Gains: -> orientation turned 90° / only night ventilation/ 9 windows less; 77m² (window less at NW side, Enclosed Volume V : Number of Occupants: 8,0 althought there's less overheating in the case of a window less at SE side, the heating demand Specific building demands with reference to the treated floor area exceeds 15) e

Treated floor area Space heating

Annual heating demand Heating load

Space cooling

284,0

10 11

Overall specific space cooling demand Cooling load Frequency of overheating (> 25 °C)

Utilisation pattern:

W/m 2

Planned number of occupants

8

Requirements

kWh/(m2a)

15 kWh/(m²a)

W/m2

10 W/m²

kWh/(m2a)

15 kWh/(m²a)

W/m2

-

%

-

DHW, space heating and auxiliary electricity

24

kWh/(m2a)

-

Specific primary energy reduction through solar electricity

21

kWh/(m2a)

-

0,6

Design

use: Annual method

kWh/(m2a)

Pressurization test result n50

Fill in worksheet IHG Non-Dom!

Type of values used:

73

Primary Energy

Airtightness

Space heating and cooling, dehumidification, household electricity.

°C

1/h

120 kWh/(m²a)

0,6 1/h

Fulfilled?*

Verification

Annual method

yes

Specific space heating demand, annual method:

-

Specific space heating demand, monthly Method:

yes yes

Design

MAIN 2

The monthly method should be used for building certification

10,3 12,0

kWh/(m²a) kWh/(m²a)

Fulfilled?*

Verification

Annual method

yes

Specific space heating demand, annual method:

-

Specific space heating demand, monthly Method:

info/lounge

92

The monthly method should be used for building certification

10,3 12,0

kWh/(m²a) kWh/(m²a)

staircase storage/ technical

56 22 284

15 kWh/(m²a)

W/m2

73

0,6

15 kWh/(m²a) 10 W/m²

kWh/(m2a)

Overall specific space cooling demand

Frequency of overheating (> 25 °C)

Building: Workshop + info point

Planned number of occupants

use: Annual method

Annual heating demand

Photo or Drawing

Fill in worksheet IHG Non-Dom!

Type of values used:

8

Treated floor area Space heating

current orientation/ only night ventilation/ 7 windows less; 60m² (stays the same for each side)

Utilisation pattern:

W/m 2

8,0

Number of Occupants:

Specific building demands with reference to the treated floor area

orientation turned 90° / only night ventilation/ 8 windows less; 69 m²

°C

3,5 3,5 2 2 103

yes yes

Floor_exterior Roof_exterior

158,2

31

127,2 158,2


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

Climate: Building:

SUPPLY type

amount

debiet Q l/sec

total l/sec

factor Wd (l/s) nominal diameter

total WW l/sec

MAIN LEVEL POTABLE sink toilet sink kitchen

3 2 Total 5 Gelijktijdigheid debiet Q (l/sec) diameter

0,1 0,1

0,3 0,2 0,5 0,5 0,25 1,78

0,3 0,2 0,5 0,5 0,25 1,78

VERTICAL COLLECTOR

sink toilets sink kitchen

cm

3 2 Total 5 factor Wd (l/s) nominal diameter

0,5 0,8

0,5 0,88 75 1,5 1,6 3,1 0,5 0,88 75

Interior Temperature: Building Type/Use:

A B A B A A X A A A P B

unheated basement Windows Exterior Door Exterior TB (length/m) Perimeter TB (length/m) Ground TB (length/m)

DEMAND

Treated Floor Area ATFA:

Temperature Zone

Exterior Wall - Ambient Exterior Wall - Ground Roof/Ceiling - Ambient Floor slab / basement ceiling

mm

HEATING

Ukkel Workshop + info point

Building Element

mm

ANNUAL

Area

U-Value

W/(m²K)

559,5 155,0 31,0

115,4 116,9

Total of All Building Envelope Areas

* * * * * * * * * * * *

kKh/a

* * * * * * * * * * * *

0,094 0,105

0,648 -0,030

* * * * * * * * * * * *

1,00 0,69 1,00 0,69 1,00 1,00 0,75 1,00 1,00 1,00 0,69 0,69

74,3

= = = = = = = = = = = =

74,3 74,3

74,3 74,3

860,9

Transmission Heat Losses QT

type MAIN LEVEL RAIN WATER

amount

toilet

3

debiet Q l/sec 0,1

Total 3 Gelijktijdigheid debiet Q (l/sec) diameter

total l/sec 0,3

total WW l/sec 0

0,3 0,71 0,213 1,65

horizontal roof surface (m²) 444 cm

orientation coeff. 1

angle (°) 0

roofcover 0,8

filter coeff. 0,9

81%

eff

Effective Heat Recovery Efficiency

toevoerend

of Heat Recovery

0%

SHX

Efficiency of Subsoil Heat Exchanger

nV,system

0,105

Ventilation Heat Losses QV

VV

nV

1/h

*

795

cAir

*

kWh/a

FECALIËN amount 3

value 2

Total factor Wd (l/s) nominal diameter COLLECTOR VERTICAL

type toilet

amount 3

value 2

Total factor Wd (l/s) nominal diameter

Total (l/s) 6 0,5 1,22 110 Total (l/s) 6 0,5 1,22 110

DRAIN type HORIZONTAL COLLECTOR

sink toilets sink kitchen

amount 3 2 Total 5

value 0,5 0,8

Total (l/s) 1,5 1,6 3,1

usage ( l/ usage)

persons/ day

frequency

usage/day

yearly usage

toilet use small toilet use big VERTICAL GARDENING TOTAL

3 6

20 20

3 1

180 120 150 450

65700 43800 54750 164250 164,25

mm

TOTAL RAINWATER USAGE RELATIVE RAINWATER USAGE

450 140,7

1. 2. 3. 4.

L/ year m³/ year

5.

Orientation of the Area

Reduction Factor See Windows Sheet

g-Value (perp. radiation)

North East South West Horizontal

0,54 0,58 0,56 0,32 0,63

0,50 0,00 0,50 0,50 0,50

* * * * *

*

1124

)

Radiation HP

kWh/(m²a)

* * * * *

kh/d

Internal Heat Gains QI

Spec. Power qI

d/a

*

0,024

209

2,01

mm

LEEGSTAND relative rainwater usage LEEGSTAND relative volume rainwater tank rainwater tank volume

Ratio of Free Heat to Losses

140,7 7 3 9591

= = = = =

0,058 kWh/a

kWh/(m²a)

1124

4,0

kWh/a

kWh/(m²a)

11860

41,8

suggestion:

50 m² * 0,2 m=

Heat Gains QG

SPECIFIC

ANNUAL

HEATING

Ukkel Building: Workshop + info point

20,0 °C Building Type/Use: non-residential Treated Floor Area ATFA: 284,0 m²

Climate:

10 m³ Building Element

Temperature Zone

Exterior Wall - Ambient Exterior Wall - Ground Roof/Ceiling - Ambient Floor slab / basement ceiling unheated basement Windows Exterior Door Exterior TB (length/m) Perimeter TB (length/m) Ground TB (length/m)

A B A B A A X A A A P B

Area

U-Value

W/(m²K)

155,0 31,0

115,4 116,9

* * * * * * * * * * * *

Temp. Factor ft

284,0

=

kKh/a

0,101

* * * * * * * * * * * *

0,094 0,105

0,648 -0,030

* * * * * * * * * * * *

1,00 0,69 1,00 0,69 1,00 1,00 0,75 1,00 1,00 1,00 0,69 0,69

74,3

= = = = = = = = = = = =

74,3 74,3

74,3 74,3

860,9

eff

of Heat Recovery

SHX

Efficiency of Subsoil Heat Exchanger

0%

nV,system

0,105

Energetically Effective Air Exchange nV VV m³

Ventilation Heat Losses QV

795

* (1 -

*

Orientation of the Area 1. 2. 3. 4. 5.

North East South West Horizontal

37,8

10736

Reduction Factor See Windows Sheet

g-Value

0,54 0,58 0,56 0,32 0,63

* * * * *

=

kWh/a

+

=

1124

=

74,3

)

=

1,0

Area

Radiation HP

kWh/(m²a)

0,50 0,00 0,50 0,50 0,50

* * * * *

27,00 4,40 48,60 32,16 3,24

* * * * *

163 197 314 254 317

Spec. Power qI

ATFA

d/a

W/m²

*

kWh/a

kWh/(m²a)

1124

4,0

kWh/a

kWh/(m²a)

11860

41,8

35 30 25

209

*

2,01

*

284,0

= = = = =

15

Losses Gains Heating energy balance Exterior Wall - Ambient 14,7234373

7119

Roof/Ceiling - Ambient

3,81903529

Floor slab / basement ceiling

0,58811509

4,0

Ventilation

3,95818713

10,2516636 10,0951487 Effective 25,0668423

Thermal bridge credit

0,91126837

Select:

kWh/a

kWh/(m²a)

10,1

QS + QI = QF / QL =

9986

=

Total Heat Losses QL Losses

35,2

4. 5. 6.

10,0951487 25,0668423

Thermal bridge credit

0,91126837

North East South West Horizontal Sum Opaque Areas

7119

25,1

kWh/a

kWh/(m²a)

2867

10,1

46,324923

8949

31,5

kWh/a

kWh/(m²a)

2911

10

Internal Heat Gains QI

10,1

Exterior Wall - Ground

0,0

Gt

W/K

kKh/a

Exterior Wall - Ambient

0,9

Gains

52,5

* *

103 105

Thermal Bridge Heat Loss

Apr 12,1 12,0 1838 39 372 7,9 212 0 577 303 57 13 411 5,5

May 9,2 10,6 1393 35 629 7,2 286 0 681 385 79 18 425 6,6

Jun 7,3 8,3 1117 27 720 6,6 298 0 644 378 79 19 411 6,4

Jul 5,7 6,3 871 21 880 6,2 298 0 681 370 80 19 425 6,6

Aug 5,9 5,4 904 18 865 6,3 255 0 658 347 69 16 425 6,2

Sep 8,2 5,8 1245 19 658 6,8 178 0 532 256 47 11 411 5,1

Oct 10,9 7,1 1660 23 499 7,7 116 0 416 177 30 7 425 4,1

Nov 14,0 8,6 2123 28 234 8,4 54 0 242 91 14 3 411 2,9

Dec 16,0 10,9 2432 36 126 9,1 35 0 171 60 9 2 425 2,5

Year 136 113 20612 370 5366 92,8 1998 0 5601 2785 533 126 5001 56,5

Utilisation Factor Losses

29%

39%

52%

69%

84%

88%

82%

88%

73%

53%

34%

27%

58%

0 0,0

0 0,0

4 0,0

30 0,1

142 0,5

192 0,7

417 1,5

192 0,7

40 0,1

4 0,0

0 0,0

0 0,0

1021 3,6

Useful Cooling Energy Dem Spec. Cooling Demand

=

795

kWh/a

kWh/(m²a)

= =

1013 0

3,6 0,0

Roof/Ceiling - Ambient

1,36

1/h

22,0

°C

kWh/a

kWh/(m²a)

5172

18,2

kWh/a

kWh/(m²a)

6185

21,8

kWh/a

kWh/(m²a)

21092

74,3

Exterior Wall - Ground QL,ext

10,3

Exterior Wall - Ambient QL,ground

kWh/a Thermal Bridge Heat kWh/a Loss

1013

+

0

0,9

Gains g-Value

+

5172

QT

QV

kWh/a

kWh/a

14907

Reduction Factor

QL,summer

kWh/a

+

Area

6185

=

=

0,31 0,61 0,30 0,25 0,35

* * * * *

0,50 0,00 0,50 0,50 0,50

kWh/(m²a)

* * * * *

462 578 707 654 913

Sum Spec. Loads Solar + Internal

8 7 6 5 4 3 2 1 0

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

kWh/a

= = = = =

1918 0 5211 2646 513 121

Total

0,024

*

Length Heat. Period

Spec. Power qI

ATFA

d/a

W/m²

303

*

2,0

*

284,0

=

Month Days

10409

36,7

kWh/a

kWh/(m²a)

4151

14,6

kWh/a

kWh/(m²a)

51,3

QS + QI

=

14560

QL / QF

=

1,45

 G * QL

QF - QV,n

=

64%

=

13539

47,7

kWh/a

kWh/(m²a)

1021

4

=

15

(Yes/No)

Requirement met?

yes

8,2

Temperature Amplitude Summer

kWh/(m²a)

Utilisation Factor Heat Losses G

HPP, Cooling

Sum Spec. Heat Losses

kWh/(m²a)

1

K 2

3

4

5

6

7

8

9

10

11

12 Annual Total

31

28

31

30

31

30

31

31

30

31

30

31

Ambient Temp.

2,50

2,70

5,72

8,28

12,75

14,87

17,37

17,07

13,69

10,39

5,68

3,56

9,6

North Radiation

10,6

19,5

32,9

49,4

66,7

69,7

71,2

59,9

41,9

27,5

12,9

8,7

471

East Radiation

14,6

26,6

45,2

69,8

93,7

94,0

98,8

85,1

57,4

38,2

17,9

12,3

654

South Radiation West Radiation Hori. Radiation

31,1 15,5 20,0

44,0 26,1 36,9

64,5 47,1 66,2

78,6 70,7 102,1

91,2 92,6 139,8

85,8 92,6 141,0

89,8 89,6 141,8

88,5 81,9 123,4

73,3 58,0 84,2

57,9 38,2 53,5

34,1 18,3 24,3

24,1 11,6 15,6

763 642 949

-7,50

-7,30

-4,28

-1,72

2,75

4,87

7,37

7,07

3,69

0,39

-4,32

-6,44

-0,4

8,05

6,76

6,86

8,30

10,72

13,45

16,47

17,76

16,96

15,52

13,10

10,37

12,1

Tsky

kKh kWh kWh kWh kWh/m² kWh kWh kWh kWh kWh kWh kWh kWh/m²

kWh/m²

9

Global Radiation

27,0 4,4 48,6 32,2 3,2

* * * * *

Ratio of Losses to Free Heat Gains

yes

Spec. Cooling Demand

10

kKh

kWh

(perp. radiation)

Sum Heat Loads QF

Ventilation

Roof/Ceiling - Ambient

Losses

14907

Heating Degree Hours - Ex Heating Degree Hours - G Losses - Exterior Losses - Ground Losses Summer Ventilatio Sum Spec. Heat Losses Solar Load North Solar Load East Solar Load South Solar Load West Solar Load Horiz. Solar Load Opaque Internal Heat Gains Sum Spec. Loads Solar +

Mar 14,4 13,5 2189 44 244 8,7 141 0 464 213 37 9 425 4,5

Ground Temp

not useful heat gains

unheated basement

10,3

kWh/(m²a)

Feb 15,0 12,3 2286 40 71 8,4 81 0 315 125 21 5 384 3,3

Minimum Acceptable Indoor Temperatu

kh/d

Thermal bridge credit

Floor slab / basement ceiling

0

2,80

Heat Transfer Coef Ventilation

10,1

kWh/(m²a)

Annual Heating Demand

Windows

10 5

1182 0 4287 1327 323

46,324923

0,0

0,0

*

Available Solar Heat Gains QS

90%

–––––––––––

(for window ventilation: at 1 K temperature difference indoor - outdoor)

0,0

3.

-358

Mechanical, Automatically Controlled Ventilation

Ventilation Heat Losses QV

internal gains

internal gains passive solar gains

0,6 3,8

284

not useful heat gains

m

unheated basement

Heat Losses Summer Ventilation

1.

7690

Corresponding Air Change Rate

(Yes/No)

Requirement met?

Total

1500 294

Window Night Ventilation, Manual

0,0

kWh/(m²a)

0,84

103

Floor slab / basement ceiling

10

Floor Area

5782

°C

284

Building Type/Use: non-residential

Jan 16,8 12,6 2553 41 67 9,4 44 0 218 79 11 3 425 2,8

Windows

Additional Summer Ventilation

0,0 0,6 X 3,8

103

Thermalm²bridge credit

9,9 Exterior0,0 Door

Ground

passive solar gains

25,1 10,2516636

Cross check sum

46,324923 Exterior

20

per m² Treated

25

Treated Floor Area ATFA:

Interior Temperature:

Building: Workshop + info point

Annual AHeating Demand Clear Room Height TFA

Air Volume VV

46,324923

103 90

internal gains

internal gains passive solar gains Cross check sum

= = = = = = = = = = = =

passive solar gains

3,95818713

19,6

25

0

2867

-0,030

Annual Heating Demand

Limiting Value

Annual Heating Demand

19,6

3,65267499

Climate: Ukkel

°C

kWh/a

103

kWh/(m²*a)

19,5834732

3,65267499

116,9

0,648

Useful Cooling Demand QK

Exterior Door Thermal0,0 Bridge Heat Loss not useful heat gains

115,4 19,5834732

0,094 0,105

kKh/a

* * * * * * * * * * * *

kWh/a

3,7

Windows

3,81903529 155,0 0,58811509 31,0

1,00 1,00 1,00 1,00 1,00 1,00 0,75 1,00 1,00 1,00 1,00 1,00

* * * * * * * * * * * *

284,0

Gt

Mon. Red. Fac.

W/(m²K)

25,1 Transmission Losses QT (Negative: Heat Loads)

30

5

25,1

0,101

Useful Heat Losses QV,n

Exterior Wall - Ground

14,7

kWh/(m²a)

=

Ventilation

Exterior Door

20

kWh/a

Total

0,024

0,058

40

(perp. radiation)

Length Heat. Period kh/d

795,2

1/h

0,038

Available Solar Heat Gains QS

Internal Heat Gains QI

kWh/(m²a)

Reduction Factor Night/Weekend Saving

QV

(

-0,91 0,00

10736

kKh/a

*

0,33

kWh/a

19,58

-259

Gt

Wh/(m³K)

0,058 QT

Total Heat Losses QL

)+

cAir

1/h

*

0,81

5562

–––––––––––––-

1/h

nV

35

12.

unheated basement

nV,Res

HR

1/h

50

3,82 0,59

2,80

11.

4,0

Data for heating balance diagram

45

m

*

284,0

81%

14,72

Clear Room Height

ATFA

Effective Heat Recovery Efficiency

4181 1085 167

Total

Effective Air Volume, VV

kWh/a

15

10.

2.

QL - QG =

Limiting Value

9.

* * * * * * * * * * * *

of the Area

kWh/(m²a) per m² Treated Floor Area

Gt

Transmission Heat Losses QT

Ventilation System:

Annual Heating Demand QH

40

8.

U-Value

559,5

25

Building Type/Use: non-residential

Treated Floor Area ATFA:

Gains

3,7

Orientation

*

G * QF

Interior Temperature:

559,5

Total of All Building Envelope Areas

DEMAND

6.

14,7

1182 0 4287 1327 323

kWh/a

Passive House verification

5.

15

kWh/(m²a)

(1 - ( QF / QL )5 ) / (1 - ( QF / QL )6 ) =

Utilisation Factor Heat Gains G

L/ day/ 100 m² % m³/ 100 m² Liter

37,8

795,2

kWh/a

Free Heat QF

4.

ATFA

W/m²

*

2.

Losses Area

Exterior Wall - Ambient A Exterior Wall - Ground Exterior Wall - Ground B Roof/Ceiling --Ambient Roof/Ceiling Ambient A Floor slab / basement ceiling Floor slab / basement ceil B A A unheated basement unheated basement X Windows A Windows Exterior A Exterior Door Door Exterior TB (length/m) A Thermal0,0 Bridge Heat Loss Perimeter (length/m) P not usefulTB heat gains Ground TB (length/m) B

kWh/a

163 197 314 254 317

Total Length Heat. Period

L/ day L/ day/100m²

=

1,0

Area

27,00 4,40 48,60 32,16 3,24

* * * * *

=

Reduction Factor Night/Weekend Saving

kWh/a

+

=

74,3

Available Solar Heat Gains QS

Heat flows [kWh/(m²a)]

COLLECTOR HORIZONTAL

type toilet

Type

10736

10736

Gt

QV

(

0,038

1.

3.

kWh/(m²a)

1/h

kKh/a

0,33

QT

Total Heat Losses QL

)+

0,81 Wh/(m³K)

0,058

RAIN WATER USAGE

=

1/h

* (1 -

50

-0,91 0,00

2,80

Building Element

19,58

nV,Res

HR

1/h

Energetically Effective Air Exchange nV

319,7

–––––––––––––-

m

*

284,0

Effective Air Volume, VV

Heating energy balance Exterior Wall - Ambient 14,7234373 Temperature Zone

7.

-259

Interior Temperature Summer:

Wh/(m²K) (Enter in Summer worksheet.)

Data for heating balance diagram

3,82 0,59

Clear Room Height

ATFA Ventilation System:

14,72

60

Spec. Capacity:

45

Total

Toevoerend ROOF SURFACE

4181

5562

(This page displays the sums of the monthly method over the cooling period))

Climate: Ukkel

kWh/a

1085 167

Passive House verification SPECIFIC USEFUL COOLING DEMAND MONTHLY METHOD

Building: Workshop + info point

per m² Treated Floor Area

Gt

Temp. Factor ft

0,101

20,0 °C non-residential 284,0 m²

Heat flows [kWh/(m²a)]

SPECIFIC

Passive House verification SPECIFIC USEFUL COOLING DEMAND MONTHLY METHOD

Specific losses, loads, useful cooling demand [kWh/(m² month)]

Passive House verification

WAT E R

365


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

Passive House verification

Passive House verification Climate: Ukkel

°C 20 Building Type/Use: non-residential Treated Floor Area ATFA: m² 284,0

Interior Temperature:

Building: Workshop + info point

60

Spec. Capacity: Overheating limit:

25

Wh/K pro m² TFA °C

Area

Building Element 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

Temperature Zone

Exterior Wall - Ambien Exterior Wall - Ground Roof/Ceiling - Ambient Floor slab / basement unheated basement Windows Exterior Door Exterior TB (length/m) Perimeter TB (length/m Ground TB (length/m)

A B A B A A X A A A P B

559,5 155,0 31,0

115,4 116,9

Red. Factor fT,Summer

U-Value

0,094 0,105

0,648 -0,030

= = = = = = = = = = = =

1,00 1,00 1,00 1,00 1,00 1,00 0,75 1,00 1,00 1,00 1,00 1,00

Summer Ventilation

1/h

1/h

+

X

Angle Factor

4. 5. 6

* * * * *

142,2

W/K

3,3

W/K

m

*

=

795

0,00

0,000

* (1 -

)

+

1/h

0,038

=

0,038

Orientation Orientation of the of Area the Area

*

0,038

*

0,33

=

9,9

W/K

795

*

0,000

*

0,33

=

0,0

W/K

1,36

1/h

g-Value Dirt 0,95 0,95 0,95 0,95 0,95

8,2

K

Area

78 78 78 78 54 54

78 78 78 78

kWh/a kWh/a

= = = = = = = = = = = =

= = = = = = = = = = = =

0% 0% 0% 0%

0,50 0,00 0,50 0,50 0,50

* * * * *

27,0 4,4 48,6 32,2 3,2

* * * * *

82% 71% 82% 76% 78%

Internal Heat Gains QI

Specif. Power qI

ATFA

W/m²

2,01

Frequency of Overheating hmax

4,2%

*

284

22,0

m

kWh/(m²a) kWh/(m²a)

11313 11313

39,8 39,8

1000

Wh/(m²K)

/(

60

2,80 = = * 2,80 nV,Res nV,Res

1/h 1/h

kKh/akKh/a

1/h 1/h

0,058 0,058 0,000 0,000 kWh/a kWh/a

kWh/(m²a) kWh/(m²a)

*

*

0,058 0,058

*

*

0,330,33

*

*

78 78

= =

1185 1185

4,2 4,2

795795

*

*

0,000 0,000

*

*

0,330,33

*

*

55 55

= =

0 0

0,0 0,0

Total Total

(

(

Reduction Reduction Factor Factor SeeSee Windows Windows worksheet worksheet

0,54 0,54 0,58 0,58 0,56 0,56 0,32 0,32 0,63 0,63

* * * * *

* * * * *

11313 11313

QV QV kWh/a kWh/a

+ +

g-Value g-Value

1185 1185 ) *) * 1,0 1,0 AreaArea

= =

1185 1185

4,2 4,2

kWh/a kWh/a

kWh/(m²a) kWh/(m²a)

12497 12497

44,0 44,0

Global Global Radiation Radiation

(perp.(perp. radiation) radiation)

0,50 0,50 0,00 0,00 0,50 0,50 0,50 0,50 0,50 0,50

* * * * *

* * * * *

27,0 27,0 4,44,4 48,6 48,6 32,2 32,2 3,23,2

kWh/(m²a) kWh/(m²a)

* * * * *

* * * * *

208208 250250 398398 323323 403403

kWh/a kWh/a

= = = = =

= = = = =

Length Length Heat. Heat. Period Period Spec. Spec. Power Power qI qI kh/d kh/d

Internal Internal Heat Heat Gains Gains QI QI

AprApr 8,5 8,5 8,4 8,4 1335 1335 28 28 4,8 4,8 371371 0 0 1069 1069 391391 104104 13 13 411411 8,3 8,3 57% 57% 9 9

MayMay 5,4 5,4 6,9 6,9 856856 23 23 3,1 3,1 500500 0 0 1261 1261 497497 143143 18 18 425425 10,0 10,0 31% 31% 0 0

JunJun 3,7 3,7 4,7 4,7 589589 15 15 2,1 2,1 520520 0 0 1194 1194 489489 144144 19 19 411411 9,8 9,8 22% 22% 0 0

Jul Jul 2,0 2,0 2,6 2,6 316316 9 9 1,1 1,1 520520 0 0 1263 1263 478478 145145 19 19 425425 10,0 10,0 11% 11% 0 0

AugAug 2,2 2,2 1,7 1,7 350350 5 5 1,3 1,3 445445 0 0 1220 1220 448448 126126 16 16 425425 9,4 9,4 13% 13% 0 0

SepSep 4,6 4,6 2,2 2,2 722722 7 7 2,6 2,6 311311 0 0 986986 331331 86 86 11 11 411411 7,5 7,5 34% 34% 0 0

OctOct 7,2 7,2 3,3 3,3 1132 1132 11 11 4,0 4,0 202202 0 0 771771 229229 55 55 7 7 425425 5,9 5,9 67% 67% 19 19

NovNov 10,4 10,4 5,0 5,0 1630 1630 16 16 5,8 5,8 94 94 0 0 448448 118118 25 25 3 3 411411 3,9 3,9 98% 98% 564564

DecDec 12,3 12,3 7,2 7,2 1931 1931 23 23 6,9 6,9 62 62 0 0 318318 77 77 16 16 2 2 425425 3,2 3,2 100% 100% 1057 1057

Year Year 92 92 kKhkKh 70 70 kKhkKh 14433kWhkWh 14433 227227 kWhkWh kWh/m² 51,6 kWh/m² 51,6 3490 kWhkWh 3490 0 0 kWhkWh 10377 10377kWhkWh 3597 kWhkWh 3597 968968 kWhkWh 126126 kWhkWh 5001 5001 kWhkWh kWh/m² 83,0 kWh/m² 83,0 48% 48% 3419 3419 kWhkWh

2,0 2,0

0,5 0,5

0,0 0,0

0,0 0,0

0,0 0,0

0,0 0,0

0,0 0,0

0,0 0,0

0,1 0,1

2,0 2,0

3,7 3,7

kWh/m² 12,0 12,0 kWh/m²

Sum Sum Spec. Spec. Gains Gains Solar Solar + Internal + Internal

1505 1505 0 0 5440 5440 1685 1685 411411 55 55 9095 9095

d/a d/a

0,024 0,024 *

*

242242

W/m²W/m²

*

*

2,02,0 *

ATFAATFA m²

=

FreeFree HeatHeat QF QF

4,2 0,0 7,4 4,0 0,6

0,3

0,06

W

W/m²

571

2,0

5. OSB -plaat 6. Eurothane G

7. Plaster insulating

kWh/a kWh/a

kWh/(m²a) kWh/(m²a)

3315 3315

11,7 11,7

kWh/a kWh/a

kWh/(m²a) kWh/(m²a)

Month Month

12411 12411

43,7 43,7

Days Days

2

8 8

1. bitumenmembraam 2.

2 2

3. EPS 4. OSB -plaat

FebFeb

MarMar

AprApr

MayMay

JunJun

Jul Jul

AugAug

SepSep

OctOct

NovNov

5. cellulose 6. OSB -plaat

DecDec

7. regelwerk hout 5 8. gipskartonplaat 3419 3419 2911 2911

12,0 12,0 10,3 10,3

kWh/a kWh/a kWh/a kWh/a

284

Percentage of Sec. 3

11. 12.

70

13.

1

1

31 31

2

2

28 28

3

3

31 31

4

4

5

5

6

6

7

7

8

8

9

9

10 10

11 11

Heating Heating Period Period 12 12 Annual Annual TotalTotal Method Method 365 365

Radiation: North

°C

Temperature Zone

Exterior Wall - Ambient Exterior Wall - Ground Roof/Ceiling - Thickness Ambient Air Layer Floor slab / basement ceiling

Direction of

Heat Flow

unheated basement (check only one Windows Exterior Door

field)

Exterior TB (length/m)

Perimeter TB (length/m) Ground TB (length/m)

5

°C

East

South

West

Horizontal

5

20

10

10

0,107

interior Rsi :

 [W/(mK)]

0,230

A B 30 A B A AX X A A A P B I

Area

U-Value

W/(m²K)

Factor Always 1 (except "X")

559,5

0,101 * * 155,0 0,094 mm * 31,0 0,105 * Upwards * Horizontal * * Downwards 115,4 0,648 * * 116,9 -0,030 * * * *

* * * *h a * * hr * * * * * * *

House/DU Partition Wall

0,130

cm

0,130

Air Layer Thickness Direction of Efficiency of Heat Recovery of the Heat Exchanger

30 30

31 31

30 30

31 31

31 31

30 30

31 31

30 30

31 31

8,288,28

12,75 12,75

14,87 14,87

17,37 17,37

17,07 17,07

13,69 13,69

10,39 10,39

5,685,68

3,563,56

9,6 9,6

5,2 5,2

49,449,4

66,766,7

69,769,7

71,271,2

59,959,9

41,941,9

27,527,5

12,912,9

8,7 8,7

471 471

209 209 163 163

= =

73% 73% kWh/a kWh/a

kWh/(m²a) kWh/(m²a)

EastEast Radiation Radiation South South Radiation Radiation West West Radiation Radiation

14,614,6 31,131,1 15,515,5

26,626,6 44,044,0 26,126,1

45,245,2 64,564,5 47,147,1

69,869,8 78,678,6 70,770,7

93,793,7 91,291,2 92,692,6

94,094,0 85,885,8 92,692,6

98,898,8 89,889,8 89,689,6

85,185,1 88,588,5 81,981,9

57,457,4 73,373,3 58,058,0

38,238,2 57,957,9 38,238,2

17,917,9 34,134,1 18,318,3

12,312,3 24,124,1 11,611,6

654 654 763 763 642 642

197 197 314 314 254 254

Heat Heat Gains Gains QGQG

G *G Q*F QF = =

9078 9078

32,0 32,0

Hori.Hori. Radiation Radiation

20,020,0

36,936,9

66,266,2

102,1 102,1

139,8 139,8

141,0 141,0

141,8 141,8

123,4 123,4

84,284,2

53,553,5

24,324,3

15,615,6

949 949

317 317

kWh/a kWh/a

kWh/(m²a) kWh/(m²a)

TskyTsky Ground Ground Temp Temp

-7,50 -7,50 8,058,05

-7,30 -7,30 6,766,76

-4,28 -4,28 6,866,86

-1,72 -1,72 8,308,30

2,752,75 10,72 10,72

4,874,87 13,45 13,45

7,377,37 16,47 16,47

7,077,07 17,76 17,76

3,693,69 16,96 16,96

0,390,39 15,52 15,52

-4,32 -4,32 13,10 13,10

-6,44 -6,44 10,37 10,37

-0,4-0,4 12,112,1

9,8 9,8

Annual Annual Heating Heating Demand Demand QHQH

QL Q- L Q-G QG = =

 [W/(mK)]

Area section 3 (optional)

Area section 1

1. PIR dekvloer 2. gipskartonplaat 3. gespoten pur 4. OSB -plaat

5. cellulose 6. houtvezel Celit 4D 7. regelwerk hout 6

 [W/(mK)]

0,023

Percentage of Sec. 3

0,094

0,039

K

23,1 13,2 13,2 3,0

0,16

Clear Room Height m

284,0

1/h

nL

nL

Downwards 1/h 0,114

ha

nV ,Res (Heating Load)

Horizontal *

2,80

*

22,2 13,2 13,2 3,0

Total

=

W/(mK)

22,2 22,2 22,2 22,2 22,2

W

1299 337 43

1728 -80

or

hr +

or or or or or or or or or or or or or

0,81

*(1-

4,17 W/(m²K)

0,33

Efficiency SHX

23,1

0%

0,16

Supply Air per m² Living Area

m³/h

1,50 m³/h/m²

m³/h

324 43

1661 -77

A B D B A A X A A A A A I

Windows Exterior Door Exterior thermal bridges (Length/m) Perimeter Thermal Bridges (Length/m) Floor Slab Thermal Bridges (Length/m) House/DU Partition Wall

65,0 0,0 88,0 0,0

48,0

5,0 20,0

0,81

or

0,10 0,09 0,11

0,65

K

or

691

=

3. South 4. West

5. Horizontal

15

g-Value

27,0 4,4 48,6 32,2 3,2

2. East

350

Reduction Factor

(perp. radiation)

* * * * *

0,5 0,0 0,5 0,5 0,5

0%

2

1/h

or

0,114 PV 2 W

or

Transmission Heat Losses Concentrated leakages Insulation to other rooms, better R = 1.5 m²K/W open staircase TOTAL of the Risk Summands Interior doors predominantly closed

0 1 0 0 1

PT,Room W PSupply Air W

1061

1386

Ratio

Risk Summand

0,77

-0,23 0,00 0,50

( 2 = no thermal contact except door)

0,00 0,00 0,27 Risk Factor

0,5 0,6 0,6 0,3 0,6

11 8 28 19 20

* * * * *

W/m² or or or or or

cm

W/m²

1,6

 [W/(mK)]

41 0 247 68 10

Total

=

575

or

367

PI 1

W

or

PS + PI

=

1029

PL - PG

=

2989

=

= 48mm°C

48 Upwards °C

 Air Temperature Without Heating ha Supply 0,8333 W/(m²K)

hr 4,17 W/(m²K) Heat Flow Horizontal For Comparison: Heating Load Transportable by Supply Air. PSupply Air,Max X (check only one field) Downwards

0,15

Supply,Min W/(mK) 886

=

W

n? Total

53,0

specific:

W/(m²K) cm

FINAL ZIB FILE CALCULTIONS PHPP.xls PHPP, U-Values

n?

Heat Flow

Heat Flow

n?

X

mm Upwards

ha

1,25 W/(m²K)

Horizontal

hr

FINAL ZIB FILE CALCULTIONS PHPP.xls 4,17 W/(m²K)

0,16

W/(mK)

(check only one field) Secondary Calculation: EquivalentDownwards Thermal Conductivity of Still Air Spaces

Air Layer Thickness Direction of cm

30

(check only one field)

30

X

mm Upwards Horizontal Downwards

 ha 0,8333 W/(m²K) hr 4,17 W/(m²K)

W

10,7

W/m²

3,1 (Yes/No)

cm

Air Layer Thickness Direction of

3042

°C

Secondary Calculation: Equivalent Thermal Conductivity of Still Air Spaces

5

or

3042

15,7

15

Percentage of Sec. 3

821

15,6

350 30

W

or

°C

Supply Air Heating Sufficient?

15

0,15

454 PG 2

W

30 Air Layer Thickness Input Max. Supply Air Temperature Max. SupplyDirection Air Temperature of Supply,Max

100

he right

0,078

PI 2

W

454

=

Heating Load PH

Thickness [mm]

ers and

Percentage of Sec. 2

W

or or or or or

Heating power (gains) PG

5

0,286

PS 2

W

284

Secondary Calculation: Equivalent Thermal Conductivity of Still Air Spaces

3864

77 0 378 100 20

PG 1

W/(m²K) n?

 [W/(mK)]

Area section 3 (optional)

or

= = = = =

*

W

6 3 18 13 10

ATFA

Spec. Power

Internal heating power PI

PL 2

W

PS 1

W/(mK)

No

2,00

664

PL 1 4019

=

Radiation 2

W/m²

(see Windows worksheet)

* * * * *

12

50,0

Radiation 1

Solar heating power PS

30 Total

Area

1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00

Room Trans. Loss W

K

* * * * * * * * * * * * *

23,1 13,2 23,1 13,2 23,1 23,1 23,1 23,1 23,1 23,1 23,1 23,1 3,0

= = = = = = = = = = = = =

=

Room is on the ground floor.

W

22,2

* * * * * * * * * * * * *

3200

SHX

PV 1

TempDiff 2

or

1

0,114

)=

Always 1 (except "X")

W/(m²K)

* * * * * * * * * * * * *

151 191 0

719

–––––––––––-

or

W/(mK) 1/h

HR

K

*

Temperature Zone

Aboveground Exterior Wall Belowground Exterior Wall Roof/Ceiling Underground Floor Slab

Enter: 1 = Yes 0 = No SHX

TempDiff 1

Wh/(m³K)

*

Building Element

1249

795

HR

cAir

1/h

0,114

=

1,25 W/(m²K) 1/h

0,105

3328

-67

0%

nV,system

100 150

PT 2

W

= = = = = = = = = = = = =

22,2 13,2 22,2 13,2

Specific Heating Load PH / ATFA

U-Value:

PHPP, U-Values

1,00 1,00 1,00 1,00

Heat Recovery Efficiency SHX

0,094

the Area 1. North

0,17 0,04

0,149

0,160

0,75 1,00 1,00

23,1 23,1 23,1 23,1 23,1

K

or or or or or or or or or or or or or

PT + PV

10

hout FJI beam

81%

mm Upwards

Orientation

x

0,028

0,048

VL

(check only one field)

5

0,290 0,130

Heat Flow

Ventilation Heating Load PV

Interior insulationn?

Area section 2 (optional)

1,00

4,17 1,00

PT 1

TempDiff 2

Thickness [mm]

cm

Floor

exterior Rse:

X

HR

Energetically Effective Air Exchange nV

18

0,286

interior Rsi :

1,25

23,1 13,2 23,1 13,2

1

Room floor area

K

* * * * W/(m²K) * W/(m²K) * * * * * * * *

( 1= Yes / 0 = No)

Building Satisfies Passive House Criteria

8,9%

Total Room Risk

Percentage of Sec. 2

Heat transfer resistance [m²K/W]

°C

Planned ambient air quantity for the room

Total Heating Load PL

Assembly No. Building assembly description

3

30

795,2

0,177

0,290

1,00 1,00 1,00 1,00

Effective Air Volume, VV

70

hout FJI beam

20

Planned ambient air quantities for the remaining rooms

TempDiff 1

ATFA

W/(m²K)

0,036

0,039

Interior Temperature:

–––––––––––––-

Ventilation System:

0,10 0,04  [W/(mK)]

Area section 2 (optional)

284,0

Workshop room

W/m²

Transmission Heat Losses PT

Total

30,0

Risk Determination of Group Heating for a Critical Room

Secondary Calculation: Equivalent Thermal Conductivity of Still Air Spaces

x

2,6%

0,0

10.

Interior insulationn?

U-Value:

8. afwerking hout

)=

9.

10

kWh/(m²a) kWh/(m²a) Reference Reference to habitable to habitable areaarea

*

8.

15

0,100

2,6%

5,725,72

yesyes

7.

140

0,023

kWh/(m²a) kWh/(m²a) Reference Reference to habitable to habitable areaarea

32,932,9

Requirement Requirement met? met?

30

n?

Roof

Area section 1

4 4

2,702,70

12 12

6.

18

0,286

exterior Rse :

19,519,5

15 15

hout FJI beam

5.

17

he right

6 6

2,502,50

Limiting Limiting Value Value

0,023

0,130

4.

Thickness [mm]

ers and

0,158

0,048

Heat transfer resistance [m²K/W]

10,610,6

3419 3419

 [W/(mK)]

Area section 3 (optional)

2,6%

Ambient Temp. Ambient Temp.

(Yes/No) (Yes/No)

2.

 [W/(mK)]

Area section 2 (optional)

Sum Sum Spec. Spec. Losses Losses

North North Radiation Radiation

kWh/(m²*a) kWh/(m²*a)

0,160

6,8

Building Element 1.

Assembly No. Building assembly description

JanJan

Treated Floor Area ATFA :

8.

Annual Annual Heating Heating Demand: Demand: Comparison Comparison

* 284,0 284,0 = =

m²/m²

16,4

3. houtvezel celit 4D 4. Eurowall

0,99 0,99

Utilisation Utilisation Factor Factor HeatHeat Gains Gains G G

 [W/(mK)]

Area section 1

-2,2

Ground Design Temp.

3.

1. hout gevel 2. regelwerk hout

LOAD Building Type/Use: non-residential

Climate (HL): Ukkel

Weather Condition 2:

0,13 0,04

U-Value:

PHPP, PHPP, Heating Heating Period Period Method Method

QS Q+S Q +I Q=I =

interior Rsi : exterior Rse :

QF Q / FQ/L Q=L =

RatioRatio FreeFree HeatHeat to Losses to Losses

x

Heat transfer resistance [m²K/W]

HEATING

Secondary Calculation: Equivalent Thermal -3,1 10 10Conductivity 30 15 of Still 20 Air Weather Condition 1: °C W/m² Spaces

Interior insulationn?

Exterior wall

SPACE

Building: Workshop + info point

still air spaces -> Secondary calculation to thhe right

10 10

0 0

32,0 32,0

SPECIFIC

Design Temperature

1

kWh/(m²a) kWh/(m²a) Total Total

Workshop + info point

Assembly No. Building assembly description

MarMar 10,7 10,7 9,8 9,8 1679 1679 32 32 6,0 6,0 246246 0 0 860860 275275 68 68 9 9 425425 6,6 6,6 84% 84% 134134

Spec. Spec. Heating Heating Demand Demand

Passive House verification

ELEMENTS Wedge shaped building element layeers and

12 12

795795

Reduction Reduction Factor Factor Night/Weekend Night/Weekend Saving Saving

BUILDING

Percentage of Sec. 2

Gt Gt

Wh/(m³K) Wh/(m³K)

FebFeb 11,7 11,7 8,9 8,9 1836 1836 29 29 6,6 6,6 142142 0 0 583583 162162 38 38 5 5 384384 4,6 4,6 98% 98% 580580

795795

1/h 1/h

°C

OF

nV,equi,fraction nV,equi,fraction

0,81 )+ )+ 0,038 0,038 = = )*(1)*(1- 0,81 0,81 ) ) *(1-*(1- 0,81 = = cAir cAir

3,7 3,7

°C

non-residential non-residential Building Building Type/Use: Type/Use:

Treated Treated FloorFloor AreaArea ATFAA : TFA : 284284

ATFA

Spec. Capacity 1/k

*

-273 -273

JanJan Heating Heating Degree Degree Hours Hours - E - E 13,1 13,1 Degree Degree Hours Hours - G- G 8,9 8,9 Heating Heating Losses - Exterior 2056 Losses - Exterior 2056 Losses Losses - Ground - Ground 29 29 Sum Spec. Losses Sum Spec. Losses 7,3 7,3 Solar Gains - North Solar Gains - North 78 78 Solar Gains - East 0 0 Solar Gains - East Solar Gains - South 405405 Solar Gains - South Solar Gains - West Solar Gains - West 103103 Solar Gains - Horiz. 20 20 Solar Gains - Horiz. Solar Solar Gains Gains - Opaque - Opaque 3 3 Internal Heat Gains 425425 Internal Heat Gains Sum Spec. Gains Solar Sum Spec. Gains Solar + + 3,6 3,6 Utilisation Utilisation Factor Factor 100% 100% Annual Annual Heating Heating Demand Demand 1055 1055

EN 13790 EN 13790 Monthly Monthly Method Method

= = = = =

If the "frequency over 25°C" exceeds 10%, additional measures to protect against summer heat waves are necessary.

kWh/d

5861 5861

m

Available Available Solar Solar Heat Heat Gains Gains QS QS

°C

at the overheating limit max = 25 °C

Solar Load

1143 1143 175175

––––––––––– –––––––––––

(perp. radiation)

* * * * *

4406 4406

Clear Clear Room Room Height Height

HR HR

nV,equi,fraction nV,equi,fraction

per per m² m² Treated Treated FloorFloor AreaArea

Spec. Spec. Heating Heating Demand Demand

Interior Interior Temperature: Temperature: 20 20

Workshop Workshop + info + info point point Building: Building:

Building:

Aperture

Portion of Glazing

Total

0,0

North North East East South South West West Horizontal Horizontal SumSum Opaque Opaque Areas Areas

Wh/(m³K)

795

Temperature amplitude summer

* * * * * * * * * * * *

284284 *

SHX SHX

Total Total Heat Heat Losses Losses QL QL

cAir

1/h

QT QT

0,808

kKh/akKh/a

* * * * * * * * * * * *

Total Total

kWh/a kWh/a

1/h

1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,75 0,75 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00

Ventilation Ventilation Heat Heat Losses Losses QV QV

nV,Rest

HR

Solar Aperture

Daily Temperature Swing due to Solar Load

-0,030 -0,030

Ukkel Ukkel Climate: Climate:

°C

––––––––––– –––––––––––

1/h

(for window ventilation: at 1 K temperature difference indoor - outdoor)

* * * * *

0,648 0,648

* * * * * * * * * * * *

ATFAATFA

2,80

* * * * * * * * * * * *

0,094 0,094 0,105 0,105

0,105 0,105 *(1-*(10,105 0,105 * *

°C

Gt Gt

Month. Month. Red.Red. Fac.Fac.

W/(m²K) W/(m²K)

0,101 0,101

* * * * * * * * * * * *

Effective Effective Air Volume Air Volume VRAXVRAX

Effective Effective Air Change Air Change RateRate Ambient Ambient nV,e nV,e Effective Effective Air Change Air Change RateRate Ground Ground nV,g nV,g

Mechanical, Automatically Controlled Ventilation

0,44 1,00 0,43 0,39 0,52

U-Value U-Value

Transmission Transmission Heat Heat Losses Losses QT QT

Corresponding Air Change Rate

Summer

20 20

non-residential non-residential Building Building Type/Use: Type/Use:

Treated Treated FloorFloor AreaArea ATFAA : TFA : 284,0 284,0

–––––––––––

Window Night Ventilation, Manual

Shading Factor

AreaArea

559,5 559,5 * * 155,0 155,0 * 31,0 31,0 * * * * 115,4 115,4 * * 116,9 116,9 * * *

1/h 1/h

Minimum Acceptable Indoor Temperature

3.

-3,5

Clear Room Height

284,0

nV,equi,fraction

Additional Summer Ventilation for Cooling

2.

74,8

Ventilation Ventilation Losses Losses Ambient Ambient QV QV Ventilation Ventilation Losses Losses Ground Ground QV,eQV,e

nV,system

Summer

unheated unheated basement basement Windows Windows Exterior Exterior Door Door Exterior Exterior TB TB (length/m) (length/m) Perimeter Perimeter TB TB (length/m) (length/m) Ground Ground TB TB (length/m) (length/m)

A B A B A A X A A A P B

nL,nat

0,000

Ventilation Transm. Ambient HV,e Ventilation Transm. Ground HV,g

North 0,9 East 0,9 South 0,9 West 0,9 Horizontal 0,9 Sum Opaque Areas

14,6 3,3

A B A B A A X A A A P B

VRAXVRAX

VV

1.

Exterior Exterior Wall Wall - Ambient - Ambient Exterior Exterior Wall Wall - Ground - Ground Roof/Ceiling Roof/Ceiling - Ambient - Ambient Floor Floor slab slab / basement / basement ceiling ceiling

X with HR (check if applicable)

1/h

Energetically Effective Airchange Rate nV

Orientation of the Area

Building Building Element Element

56,3

continuous ventilation to provide sufficient indoor air quality

Mechanical Ventilation Summer:

Interior Interior Temperature: Temperature:

nV,system nV,system

Air Change Rate by Natural (Windows & Leakages) or Exhaust-Only Mechanical Ventilation, Summer:

Select:

Ukkel Ukkel Climate: Climate:

0%

SHX

SHX Efficiency

Effective Air Volume VV

81%

(This (This page page displays displays the the sums sums of the of the monthly monthly method method overover the the heating heating period) period)

Temperature Temperature ZoneZone

* * * * * * * * * * * *

ATFA HR

SS PP EE CC I FI F I CI C A A NN N UU AA L L HH EE AA T T DD EE MM AA NN DD MM OO NN TT HH LL Y Y MM EE TT HH OO DD

Workshop Workshop + info + info point point Building: Building:

HSummer Heat Conductance

Exterior Thermal Transmittance, HT,e Ground Thermal Transmittance, HT,g

Heat Recovery Efficiency

SS PP EE CC I FI F I CI C A A NN N UU AA L L HH EE AA TT I NI N GG D D EE MM AA NN DD MM OO NN TT HH LL Y Y MM EE TT HH OO DD

Spec. Spec. Capacity: Capacity: 60 60 Wh/(m²K) Wh/(m²K) (Enter (Enter in "Summer" in "Summer" worksheet.) worksheet.)

W/(m²K)

0,101

* * * * * * * * * * * *

Passive PassiveHouse Houseverification verification

Specific losses, gains, Specific losses, gains, heating demand [kWh/(m² month)] heating demand [kWh/(m² month)]

SUMMER

U-VALUES

Passive PassiveHouse Houseverification verification

W/m²

Appraisal and Advice

normally no problem

1061


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

Passive House verification CALCULATING

SHADING

FACTORS

Climate: Ukkel Building: Workshop + info point

50,8

Latitude:

Quantity

Glazing area m²

rS

North

22,18

81%

East

3,14

100%

South

39,92

85%

°

Angle of Deviation from Inclination from North the Horizontal

Description

Orientation

Degrees

Orientation

Glazing width

Degrees

Glazing height

m

m

wG

24,37

53%

Horizontal

2,53

100%

Height of the shading object

Glazing area

Horizontal distance

m

hG

3 5 1 9 1

Door glass window_NW window_SW window SE Door elev.

250 340 250 160 250

90 90 90 90 90

West North West South West

0,99 1,59 0,39 1,59 1,59

1,99 2,79 2,79 2,79 1,99

5,9 22,2 1,1 39,9 3,2

2 1 1

Door glass Door_Ext Door elev.

250 70 250

90 90 90

West East West

0,99 0,81 1,59

1,99 1,95 1,99

3,9 1,6 3,2

2 1 1 1

Door glass Door_Ext Door elev. skylight

250 70 250 250

90 90 90 0

West East West Horizontal

0,99 0,81 1,59 1,59

1,99 1,95 1,99 1,59

3,9 1,6 3,2 2,5

m

hHori

AG

Reduction factor

West

Window reveal depth m

dHori

0,60 4,20

7,50

4,20

Ventilation dimensioning for systems with one ventilation unit

DATA

Workshop + info point

Treated floor area A TFA

Room height h

m

Room ventilation volume (A TFA*h) =

Distance from glazing edge to reveal

Distance from Additional shading Horizontal shading upper glazing reduction factor reduction factor edge to overhang

Overhang depth

m

m

oover

%

dover

0,060 0,060 0,060 0,060 0,060

4,20

0,50

4,20

0,50

0,060 0,060 0,060

4,20 12,00 4,20

%

rother

4,20 1,00 1,00

0,060 0,060 0,060 0,060

VV

284 2,8 795

Reveal Shading Reduction Factor

Overhang shading reduction factor

%

Total shading reduction factor

%

x

Balanced PH ventilation

Please Check

Climate:

Annual heating demand:

Average air change rate calculation

rR

rO

rS

100% 100% 100% 100% 100%

100% 81% 100% 85% 100%

51% 100% 58% 100% 39%

51% 81% 58% 85% 39%

26% 100% 26%

100% 100% 100%

60% 27% 39%

16% 27% 10%

100% 100% 100% 100%

100% 100% 100% 100%

100% 100% 100% 100%

100% 100% 100% 100%

Wind protection coefficients e and f Coefficient e for screening class No screening Moderate screening High screening Coefficient f

One side exposed 0,03 0,02 0,01 20

for Annual Demand:

for Heating Load:

15

0,10 15

0,04

Wind protection coefficient, e Wind protection coefficient, f Air Change Rate at Press. Test

Several sides exposed 0,10 0,07 0,04 15

n50

1/h

1/h nV,Res

1/h

0,60

0,60

for Annual Demand:

for Heating Load:

0,00

0,00

0,038

Type of operation

Maximum Standard Basic Minimum

Global radiation (cardinal points)

Shading

Dirt

Nonperpendicular incident radiation

maximum:

kWh/(m²a)

0,75

0,95

0,85

0,95

0,85

0,95

0,85

0,95

0,85

0,95

0,85

0,95

0,85

160 222 321 225 317

0,81 1,00 0,85 0,53 1,00

Glazing inclination ≠ 90°: Please check Ug value manually

Description

PHPP, Shading

WINDOW

Deviation from north Degrees

250 340 250 160 250

U-VALUE

X

Heating degree hours:

kWh/(m²a)

74,3

Glazing fraction

g-Value

0,822 0,714 0,822 0,758 0,780

Total or Average Value for All Windows.

Quantity

RADIATION,

Angle of inclination from the horizontal Degrees

Window rough openings

Orientation

Width

90 90 90 90 90

West North West South West

1,200 1,800 0,600 1,800 1,800

2,200 3,000 3,000 3,000 2,200

West East West

1,200 1,000 1,800

2,200 2,200 2,200

West East West Horizontal

1,200 1,000 1,800 1,800

2,200 2,200 2,200 1,800

3 5 1 9 1

Door glass window_NW window_SW window SE Door elev.

2 1 1

Door glass Door_Ext Door elev.

250 70 250

90 90 90

2 1 1 1

Door glass Door_Ext Door elev. skylight

250 70 250 250

90 90 90 0

m

Height

Reduction factor for solar radiation

Net Air Volume for Press. Test

1244

Vn50

Air permeability

0,87

m³/(hm²)

Average global radiation

Transmission losses

Heat gains solar radiation

m2

W/(m 2K)

m2

kWh/(m 2a)

163 197 314 254 317

kWh/a

kWh/a

0,62 1,29 0,62 0,63 0,59

22,2 3,1 39,9 24,4 2,5

0,48

0,49

115,40

0,65

92,1

in Area in the Areas worksheet Select: Wall main Wall main Wall main Wall main

Glazing

Nr.

5 5 5 5

Select glazing from the WinType worksheet Select: INTERPANE iplus INTERPANE iplus INTERPANE iplus INTERPANE iplus

Frame

2 2 2

5

INTERPANE iplus

2

Wall core 0

7

INTERPANE iplus

2

Wall core 0 Wall core 0

7 7

Door _wooden

Wall core 3 Wall core 3 Wall core 3

8 8 6 0 0 0 0

1

batimet batiment TA batimet batiment TA batimet batiment TA

3 3 3

batimet batiment TA

3

batimet batiment TA

3

Wooden frame

2

INTERPANE iplus

2

batimet batiment TA

3

INTERPANE iplus

2

batimet batiment TA

3

0 8

g-Value

Select window from the Nr. Nr. WinType worksheet Select: 2 batimet batiment TA 3

Wall main

Roof

Glazing area

27,00 4,40 48,60 32,16 3,24

Installed

m

Window U-Value

0,54 0,58 0,56 0,32 0,63

0

Door _wooden INTERPANE iplus INTERPANE iplus

1 2 2 0 0 0 0

0

Wooden frame batimet batiment TA batimet batiment TA

2 3 3 0 0 0 0

Perpendicular Radiation

Glazing

Frames (centre)

-

W/(m2K)

W/(m2K)

0,71 0,71 0,71 0,71 0,71

0,50 0,00 0,50

0,49 1,40 0,49

0,50 0,00 0,50 0,50

0,49 1,40 0,49 0,49

0,50 0,50 0,50 0,50 0,50

0,49 0,49 0,49 0,49 0,49

1243 423 2237 1517 143

Heat recovery

input

efficiency SHX

1/h

1/h

[-]

Wh/m³

83

0,10

0,00

81,8%

0,29 SHX 

0,0% 0%

mfoAir ComfoAir19 350 - Zehnder

350 - Zehnder

Conductance value of outdoor air duct  Length of outdoor air duct Conductance value of exhaust air duct  Length of exhaust air duct Temperature of mechanical services room (Enter only if the central unit is outside of the thermal envelope.) Effective heat recovery efficiency

0,84

W/(mK)

m W/(mK)

m °C

Nominal width: Insul. Thickness x

Results (unhide cells to make U- & -values from WinType worksheet visible)

Installation

Right 1/0

Bottom 1/0

Top 1/0

0,028 0,028 0,028 0,028 0,028

0 1 0 1 0

0 1 0 1 0

1 0 1 0 1

1 0 1 0 1

0,71 0,59 0,71

0,028 0,049 0,028

0 0 0

0 0 0

1 1 1

1 1 1

0,71 0,59 0,71 0,71

0,028 0,049 0,028 0,028

0 0 0 0

0 0 0 0

1 1 1 0

0 0 0 0

installation installation installation installation installation left right bottom top Average value W/(mK)

W/(mK)

W/(mK)

W/(mK)

W/(mK)

0,040 0,040 0,040 0,040 0,040

Glazed Window Glazing U-Value Fraction Area Area Window per Window PHPP.xls % m2 FINAL ZIB m2FILE CALCULTIONS W/(m2K)

7,9 27,0 1,8 48,6 4,0

5,91 22,18 1,09 39,92 3,16

0,65 0,62 0,70 0,62 0,62

75% 82% 60% 82% 80%

0,040 0,005 0,040

5,3 2,2 4,0

3,94 1,57 3,16

0,65 1,29 0,62

75% 71% 80%

0,040 0,005 0,040 0,000

5,3 2,2 4,0 3,2

3,94 1,57 3,16 2,53

0,63 1,29 0,60 0,59

75% 71% 80% 78%

Reflective? Please mark with an "x"! Yes No Thermal conductivity Nominal air flow rate  Exterior duct diameter Exterior diameter -Interior Surface -value

Surface temperature difference

0,338

0,30 0,23 0,16 0,00

Average air change rate (1/h)

83

0,10

Specific power input [Wh/m³]

0,29

Application range [m³/h]

71 - 293

Frost protection required

Unit noise level < 35dB(A)

yes

no

See calculation below

0,8

0,338 1,5

See calculation below Room Temperature (°C) Av. Ambient Temp. Heating P. (°C) Av. Ground Temp (°C)

20 5,9 10,6

81,8%

HR,eff

SHX

SHX efficiency Heat recovery efficiency SHX

7119

1/h

240 185 130 0

0,35

Heat recovery efficiency Unit HR

SHX

0% Secondary calculation

-value supply or ambient air duct

Left 1/0

W/(mK)

Specific power

m³/h

Air change rate

m³/h

Central unit within the thermal envelope.

Secondary calculation

Spacer spacer (centre)

Mean

Air Change Rate (Extract air system) efficiency Unit

Air flow rate

Average air flow rate (m³/h)

Effective heat recovery efficiency subsoil heat exchanger

1182 0 4287 1327 323

5562

U-Value

(Sheet Additional Vent) Sheet Extended ventilation (Multiple ventilation units, non-residential buildings)

Mean

20

1,00 0,77 0,54

Central unit outside of the thermal envelope.

Effective heat recovery

40

0 0 0

WC 3 20

Selection of ventilation unit with heat recovery

X

Extract air excess

Bathroom (shower only)

Factors referenced to maximum

8,0 4,0 12,0

Ventilation unit selection

Air exchange

Daily operation duration h/d

Bathroom

q50

0,094

SHX efficiency

Window area

0,50 0,00 0,50 0,50 0,50

Ventilation unit / Heat recovery efficiency design (Sheet Ventilation see below) Sheet Ventilation (Standard design)

m³/h

Average value

The PHPP offers two methods for dimensioning the air quantities and choosing the ventilation unit. Fresh air or extract air quantities for residential buildings and parameters for ventilation sys can be determined using the standard planning option in the 'Ventilation' sheet. The 'Additional Vent' sheet has been created for more complex ventilation systems and allows up to 10 differen Furthermore, air quantities can be determined on a room-by-room or zone-by-zone basis. Please select your design method here.

Ukkel

Window area orientation

North East South West Horizontal

10

240

m³/(P*h)

Design air flow rate (maximum)

Infiltration air change rate

%

rH

Passive House verification Building: Workshop + info point

m³/h

Supply air per person

Quantity

(Annual Heating Demand worksheet)

Selection of ventilation data input - Results

SOLAR

m³/h

P

Extract air rooms

(Annual Heating Demand worksheet)

Pure extract air

Infiltration air change rate

FACTOR

m³/h

Total Extract Air Requirement

m²/P

Number of occupants Supply air requirement

(Areas worksheet)

Type of ventilation system

Excess extract air

REDUCTION

Extract air requirement per room

36 8,0 30 240 Kitchen 2 60 180

Occupancy Building:

dReveal

0,60

7,50

VENTILATION

m

oReveal

STANDARD INPUT FOR BALANCED VENTILATION

Passive House verification

-value extract or exhaust air duct

200 mm 50 mm

Nominal width: Insul. Thickness: x

0,03 W/(mK) 83 m³/h 14 0,200 0,300 4,16 2,52 0,338 2,002

K m m W/(m²K) W/(m²K) W/(mK) K

200 mm 50 mm

Reflective? Please mark with an "x"! Yes No 0,03 W/(mK) Thermal conductivity Nominal air flow rate 83 m³/h  Exterior duct diameter Exterior diameter -Interior Surface -value

Surface temperature difference

14 0,200 0,300 4,16 2,52 0,338 2,002

K m m W/(m²K) W/(m²K) W/(mK) K


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

Passive House verification

Passive House verification

Passive House verification

Passive House verification Building:

VENTILATION

Workshop + info point

Building Type/Use:

795

Day_ 50%

Fraction of Opening Duration Climate Boundary Conditions Temperature Diff Interior - Exterior

4 1

Wind Velocity

1,80 2,70

Clear Width Clear Height Tilting Windows?

0,200

Opening Width (for tilting windows)

Building: Workshop + info point

UNITS

25 °C Building Type/Use: non-residential Treated Floor Area ATFA: 284,0 m²

Night 50%

ATFA

1 0

Effective Air Volume VV

K m/s

nV,system 1/h

0,000

Hygrically Effective Mech. Air Change Rate Summer

16 1,80 2,70 X 0,200

m m m

Direct Ambient Air Change Rate Summer

80%

nV,Res

nNight,Windows

1/h

1/h

1/h

+

*

0,038

+

2,603

Deviation from North Angle of Inclination from the Horizontal Height of the Collector Field

=

795

m

Tilting Windows? Opening Width (for Tilting Windows)

m

Difference in Height to Window 1

m

Single-Sided Ventilation 2 - Airflow Volume Cross Ventilation Airflow Volume Contribution to Air Change Rate

0 0 0 0,00

=

0,000

0,000

Total

Description Ventilation Type

Night time Window Ventilation Daytime Window Ventilation

Daily Average Air Change Rate

1,36 0,00

8,0 0,8

2545

0 0 0 0,00

0 0 0 0,00

m³/h m³/h

Supply Air Cooling check as appropriate On/Off Mode (check as appropriate) Minimum Temperature of Cooling Coil Surface

X 0

2

Minimum Temperature of Cooling Coil Surface

m³/h

Volume Flow Rate

1/h

x 10 150

° ° m

Humidity Sources Humidity Capacity Building Humidity at Beginning of Cooling Period

1/h

X Panel Cooling check as appropriate

Useful Cooling Demand

8

sensible

3,6 ,

Covered Fraction of DHW Demand

9

kWh/a

3021

kWh

1571

kWh

(Verification sheet)

2911

kWh

(PE Value worksheet)

100%

(DHW+Distribution)

5183

kWh

2638

kWh

(Separate Calculation)

(SolarDHW worksheet)

48%

49%

(Data worksheet)

QUse

Useful Heat Provided

litre litre

Specific Heat Losses Storage (total)

2,0

W/K

Typical Temperature DHW

60

°C

20

(Project)

CO2-Emissions Factor (CO2-Equivalent)

Zonneboiler 200200 Zonneboiler

litre

60

Max. Heating Power Required for Heating the Building Length of the Heating Period Length of DHW Heating Period

°C

24 80

Boiler Type Primary Energy Factor

oved gas Improved gascondensing condensing boiler boiler 1,1

kWh/kWh

250

g/kWh

4209

kWh/a

3,04

kW

tHP

5022

h

tDHW

8760

h

PBH

(Heating Load worksheet)

W

Use characteristic values entered (check if appropriate)?

°C

Total Monthly Heating Load DHW Production

m³/h

Installation of Boiler (Outdoor: 0, Indoor: 1)

Radiation on Tilted Collector Surface

g/kg g/(m²h) g/(g/kg)/m² g/kg

latent

0,0

kWh/(m²a)

Dehumidification

kWh/(m²a)

3,6

kWh/(m²a)

0,0 0,0

kWh/(m²a)

1,0

900

0,9

800

0,8

700 600 500

0,5

400

0,4

300

0,3

100

0,1

0

0,0

March

April

May

June

July

August

September

October

November

December

kWh/(m²a)

104%

104%

95%

95%

Standby Heat Loss Boiler at 70 °C

qB,70

(Manufacturer)

1,4%

1,4%

Average Return Temperature Measured at 30% Load

30%

(Manufacturer)

Average Fraction of Heat Output Released to Heating Circuit Temperature Difference Betw. Power-On and Power-Off

Brink

April

May

June

July

August

September

October

November

December

Radiation on Tilted Collector Surface

198

326

535

725

883

835

864

835

643

453

230

153

kWh/Month

0,18

0,31

0,49

0,64

0,75

0,72

0,74

0,72

0,58

0,42

0,21

0,13

-

432

432

432

432

432

432

432

432

432

432

432

432

kWh/Month

Monthly Heating Load Covered by Solar

77

133

212

277

325

311

319

310

250

181

92

58

kWh/Month

0 = FR*(ta)

k1

k2

C

Kdir(50°)

Kdfu

Output

-

W/(m²K)

W/(m²K²)

kJ/(m²K)

-

-

kWh/(m²a)

0,0

8,1

1,0

488,0

Module VTC / FPC Area (Aperture) m² please enter

2,0

Comments

FPC

Insert new

Insert new rows ABOVE this row only in order to maintain the integrity of references

3,5 3,37 0,395

0,02 0,0104 0,02

6,4 4,7 11,53

0,9 0,97 0,95

0,8 0,94 0,9

300 546 487

70%

SO

(Manufacturer)

zHC,m

(Manufacturer)



(Manufacturer)

K

30

K

0

Input field

0,4

Useful Heat Output per Basic Cycle

QN,GZ

(Manufacturer)

kWh

22,5

kWh

QN,m

(Manufacturer)

kW

15,0

kW

Utilisation Factor Heat Generator DHW & Heating

x

2 2,6 1,2

FPC FPC VTC

FK AD FK AD AR FK AD RK AD

QHE,GZ

(Manufacturer)

kWh

kWh

kWh

Pel,SB

(Manufacturer)

W

W

W

hH,g,K =f*k'' hTW,g,K =100%/fTW hg,K

86% 87%

87% kWh/a

Final Energy Demand Space Heating

QFinal, HE  QH,wi* eH,g,K QFinal, DHW  QWW,wi* eTW,g,K

kWh/(m²a)

1821 3030

Annual Primary Energy Demand

4851 5336

17,1 18,8

kg/a

kg/(m²a)

Annual CO2-Equivalent Emissions

1213

4,3

columns BEFORE this

0,77 0,854 0,62

60%

Total Final Energy Demand

column 6 Standard Flat Plate Collector 7 Improved Flat Plate Collector 8 Vacuum Tube Collector

(Manufacturer)

(Project)

Utilisation Factor Heat Generator DHW Run

Monthly Solar Fraction

3,5

GZ

Ainstall

Heating energy demand for a basic machine cycle

March

0,8

30 Standard Values

Unit with regulation (no fan / no starting aid)

February

F3-Q

95%

2,0%

For Interior Installations: Area of Mechanical Room

Final Energy Demand DHW

1 2 3 4 5 6 7 8 9 10 11 12

°C

Project Data

Input field

99%

Heat generator without pellets conveyor

Total Monthly Heating Load DHW Production

Brief Description

3 1

Standard Values

(Manufacturer)

Efficiency of Heat Generator in Constant Operation

January

Selection List Solar Collectors Manufacturer

Project Data

30

Input field

kW

0

(Manufacturer)

Utilisation Factor Heat Generator Heating Run Monthly Solar Fraction

15



Efficiency of Heat Generator in Basic Cycle

0,2

kW

100%

Average Power Output of the Heat Generator

200

Standard Values

15 0

Input Values (Biomass Heat Generator)

0,6

February

(Rating Plate)

Boiler Efficiency at Nominal Output

Boiler Efficiency at 30% Load

0,7

January

Pnominal

Input Values (Oil and Gas Boiler)

1000

100,0%

2

W

Project Data

kWh/(m²a)

0,0

100%

kWh/(m²a)

Design Output

Recirculation Cooling

Unsatisfied Demand

(DHW+Distribution)

QDHW,Wi=QDHW *(1-Solar, DHW )

Monthly Heating Load Covered by Solar

Sensible Fraction

3,6

Solar, DHW

Solar Fraction for DHW

m²/Pers

140

Total Storage Heat Losses

Supply Air Cooling

Total

QgDHW

Total Heating Demand of DHW system

Persons

Volume Solar Part (below)

Storage Heat Losses (Standby Part Only)

of which

Remaining for Panel Cooling

QH

Space Heating Demand without Distribution Losses

284

(PE Value worksheet)

QH,Wi=QH*(1-Solar, H)

Effective Annual Heating Demand

m

Monthly Solar Fraction

12 2 700

Solar, H

Solar Fraction for Space Heat

Volume Standby Part (above)

Room Temperature

°C

QH+QHS:

Space Heating Demand + Distribution Losses

Selection:

200

Recirculation Cooling check as appropriate On/Off Mode (check as appropriate)

VTC

Secondary Calculation of Storage Losses Selection of DHW storage from list (see below):

1/h 1/h

Building Type/Use: non-residential

Covered Fraction of Space Heating Demand

from Climate Data worksheet

Effective DHW Demand

1/h

(GAS, OIL, WOOD)

49%

2,641 2,64

Tube Collector 88 Vacuum Vacuum Tube Collector

%

Solar Contribution to Useful Heat

=

° Selection:

m

1/h

+

8 6,00 180 45 0,5

aHori

Estimated Solar Fraction of DHW Production

nNight,mechanical

Ambient Air Change Rate Summer

X Additional Dehumidification check as appropriate Max. Humidity Ratio

Summary of Summer Ventilation Distribution

Building: Workshop + info point

from DHW+Distribution worksheet

rother

Specific Collector Area

Sola radiatiion, heating load, DHW generation, heating load covered by solar [kWh/month]

m

2161 0 2161 1,36

284,0

kWh/a

Additional Reduction Factor Shading

Total Storage Volume

Clear Height

0 0 0 0,00

GENERATION

Treated Floor Area ATFA:

Horizontal Distance

Occupancy

1/h

)

hHori

Height of Horizon m³

2,80

 HR Efficiency Humidity Rec.

nV,nat 0,000

m

284

* (1 -

Solar Collector Area

Clear Room Height

5183 50,8

Selection of collector from list (see below):

Interior Temperature Summer:

Building: Workshop + info point

Clear Width

0 0 0 0,00

qgDHW

Latitude:

Climate: Ukkel

Window Group 2 (Cross Ventilation) Quantity

Single-Sided Ventilation 1 - Airflow Volume

HEAT

Building Type/Use: non-residential Treated Floor Area ATFA:

Heating Demand DHW

Note: for summer night ventilation please set a temperature difference of 1 K and a wind velocity of 0 m/s otherwise the cooling effects of the night ventilation will be overestimated! Window Group 1 Quantity

COOLING

OF

Solar Fraction with DHW demand including washing and dish-washing

non-residential

Building Volume

Description

COMPRESSOR

EFFICIENCY

Solar fraction[-]

SUMMER

SOLAR HOT WATER GENERATION

QFinal  QFinal,DHW + QFinal,HE


Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis

ZIB.2015 | ECO DISTRICT | GENT | B401

ZIB2015

Passive House verification

kh/a

*

795,2

=

kh/a

*

1

=

130 0 32

considered in heat recovery efficiency no summer contribution to IHG

*

1,0

/

5,02

=

6

337 0 82

7%

circulation 2 reception a

workshop room b reception b

9% 9% 9%

18% 9%

Workshop

500

50%

1

3,5

10,5

2,8

2,7

WC, Sanitary

200

0%

0

2,0

4,5

2,8

2,7

none

300

0%

0

4,0

5,8

2,8

2,7

none

50%

1

1,4

11,6

2,8

2,7

0%

0

1,8

5,5

2,8

2,7

70

East

10,0

good

34

Kitchen, Storage, Preparation Circulation Area

100

39

Storage, Services

100

Circulation Area

100

250

West

50%

1

1,4

11,6

2,8

2,7

11,0

good

Secondary Areas

100

70

East

50%

1

3,5

3,8

2,8

2,7

3,6

good

Workshop

500

250

West

50%

1

3,5

10,5

2,8

2,7

10,0

low

Secondary Areas

100

250

West

50%

1

3,5

3,8

2,8

2,7

3,6

low

38 38 37

41

37

70

East

11,0

good none

12 12 12 12 12 12 12 12 12

W W

Office Equipment

*

1 00 1,00

*

0 35 0,35

kh/a

*

1

=

Data entries in worksheet Boiler. Auxiliary energy demand including possible drinking water product

14

*

0

*

10 1,0 1,0

/ /

5 02 5,02 5,02

= =

0 0

36 0

PC 1 PC in Energy Saving Mode

DHW system Enter Average Power Consumption of Pump

1

Circulation Pump

0

29 29

Enter the Rated Power of the Pump Storage Load Pump DHW

1

0

Boiler Electricity Consumption at 100% Load

DHW Boiler Aux. Energy

1

0

Enter the Rated Power of the Solar DHW Pump

Solar Aux Electricity

Misc. Aux. Electricity Misc. Aux. Electricity

1 0

0 0

W

1 15 15

30

W

*

1,00

*

5,5

kh/a

*

1

=

160

Secondary Areas

0,6

/

8,76

=

0

416

W

*

1,00

*

0,3

kh/a

*

1

=

23

*

1,0

/

5,02

=

0

61

kWh/a

Divide by Living Area:

PC in Energy Saving Mode

Workshop

*

1,00

*

0,2

kh/a

*

1

=

0

*

1,0

/

5,02

=

0

0

*

1,00 1,00

* *

1,8 1,0

kh/a

*

*

1 1

= HH

=

26 0

1,8

*

*

0,6 1,0

/ /

8,76 8,76

= =

0 0

6

68

1

*

0

*

1

1

0

1

1

* *

1

*

1

*

1

0 1349

Kitchen / Aux. Electricity

Predominant Utilisation Pattern of Building

1 1

Telephone System

HPP, Electricity Non-Dom

2 2

1

Server in Energy Saving Mode

1 1

1

Printer in Energy Saving Mode

0 0

1

Printer

1 1

1

Copier

4,7

*

1

1

Monitor in Energy Saving Mode

Server

*

1

1

Copier in Energy Saving Mode

W W

PC 2

1

1

41

Monitor 2

519 kWh/(m²a)

*

W

Total Specific Demand

Monitor in Energy Saving Mode

W

67 1

37

2

Monitor 1

W

12,0 12,0 12,0 12,0 12,0 12,0 12,0

3 3 3 3 3 3 3 3 3

1 1 1 1 1 1 1 1 1

* * * * * * * * * * * * * *

80 2,0 28 2,0 80 2,0 28 2,0 400 30 300 2 100

9

20

*(

2750

* (1-

*

2750

*

*(

0

* (1-

18

0,9 )

=

0,9

=

0

)

=

0

)

=

0

*

0

*

*(

2250

* (1-

=

*

2250

*

*(

0

* (1-

*

0

*

*(

0

*

0

*(

0

*

0

=

*(

0

=

*(

8760 8760

0

=

0

)

=

0 -

=

0

)=

0

)=

-

0

=

)=

*

*

*

=

*

*

*

=

*

*

*

=

*

*

*

=

*

*

*

=

*

*

*

=

22 5 0 0 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Automatic, not permanently on Automatic, not permanently on Automatic, not permanently on Automatic, not permanently on Automatic, not permanently on Automatic, not permanently on Automatic, not permanently on Automatic, not permanently on Automatic, not permanently on Manual

0,0

Manual

0,0

Manual

0,0

Manual

0,0

Manual

0,0

Manual

0,0

Manual

0,0

Manual

0,0

Manual

0,0

Manual

0,0

Manual

0,0

Manual

0,0

Manual

Additional Demand

348

Useful Energy (kWh/a)

0

Electric Fraction

=

Duration of Utilisation in Energy Saving Mode (h/a)

5,02

Non-Electric Fraction

/

relative absenteeism

1,0

Useful Energy (kWh/a)

*

Utilisation Hours per Year (h/a)

134

Norm Consumption

=

Power Rating (W)

1

Number of Meals per Utilisation Day

*

Quantity

0

kh/a

Utilisation Days per Year (d/a)

0

5,0

Existing/Planned ? (1/0)

Aux. Energy - Wood fired/pellet boiler

40

*

Existing/Planned? (1/0)

0

0,7

In the thermal envelope? (1/0)

1

*

In the thermal envelope? (1/0)

Aux. Energy - Heat. Boiler

W

Room Category

Boiler Electricity Consumption at 30% Load

36 40

Room Category

0

1

W

Room Category

1

Circulation Pump

36

12,0

h/a

0 0 0,0

Controlled/Uncontrolled (1/0) Enter the Rated Power of the Pump

12,0

Utilisation Hours per Year [h/a]

W/m²

Lighting Control

W/m²

Motion Detector with/without (1/0)

m

With Motion With Motion With Motion With Motion With Motion With Motion With Motion With Motion With Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion

9

2250 2750 3900 2750 2750 2750 2750 2250 2750

Primary Energy Demand (kWh/a)

=

technical room

circulation 1

m

h/a

h/a

kWh/a

kWh/(m²a)

kWh/a

8

8,0

4,9

0,1

12,8

8,0

1,6

0,1

4,3

8,0

4,1

0,1

10,6

8,0

2,5

0,1

6,4

3,0

0,7

0,0

1,9

8,0

2,5

0,1

6,4

8,0

2,5

0,1

6,4

8,0

4,9

0,1

12,8

8,0

2,5

0,1

6,4

8 8 8 3 8 8 8 8

00 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 =

22,0

=

5,0

=

0,0

0,0 0,0

=

0,0

0,0

=

180,0

0,0

=

0,0

=

0,0

0,0

=

0,0

=

0,0

=

0,0

=

0,0

=

0,0

=

0,0

=

0,0

=

0,0

=

0,0

=

0,0

=

0,0

=

0,0

=

0,0

Primary Energy Demand (kWh/a)

15%

m

57 13 0 0 468 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Primary Energy Demand (kWh/a)

795,2

storage

41

35

m

Spec. Electricity Demand (kWh/(m²a))

*

6%

m

Electricity Demand (kWh/a)

h-1

kh/a

18%

-

Electricity Demand (kWh/a)

244

*

5,0 3,7 0,1

wc

Degrees

15

Full Load Hours of Lighting

*

W

* * *

workshop room a

Lux

2

User Determined: Lighting Full Load Hours

Wh/m³

1

h

Primary Energy Demand (kWh/a)

0,31

1

0,10 0,00 1,00

11

Internal Heat Source (W)

*

10

Used During Time Period (kh/a)

Reference Size

Wh/m³

9

Available as Interior Heat

Period of Operation

0,31

8

Electricity Demand (kWh/a)

Utilization Factor

1

1

-1

7

Electricity Demand (kWh/a)

Heating System

6

Other Primary Energy Demand (kWh/a)

Defroster HX

5

Solar Fraction

Summer Ventilation

4

Marginal Performance Ratio

Winter Ventilation

3

Norm Demand

Ventilation System

2

Within the Thermal Envelope? (1/0)

Application

1

Used ? (1/0)

Room / Zone

Column Nr.

Lighting Control

°C

Room Geometry: Input of a Typical Room or Room by Room Installed Lighting Power (Standard)

Lighting / Non-Domestic

kWh/a

0,82 0,71 0,82 0,76

User Data: Installed Lighting Power

55

Design Flow Temperature

kW

0,85

Daylight Utilisation

5183

DHW System Heating Demand

kWh/(m2a)

0,95

Glazing Fraction

Input Warning

15

0,81 1,00 0,85 0,53

Window Width

10

Boiler Rated Power

kWh/kWh

NonPerpendicular Radiation

Lintel Height

Annual Space Heating Demand

-1

h °C

Facade with Windows

Dirt Factor

Room Height

-2,0

kh/a

2,6

kWh/kWh

49%

Shading

Room Width

Defrosting HX from

Primary Energy Factor - Electricity

kWh/kWh

Existing window (1/0)

HH

0,10

kh/a

0,7

North East South West

kWh/kWh

Orientation

Air Change Rate

ELECTRICITY

2,6 1,1

Light Transmission Glazing

1244

5 Enclosed Volume

Operation Vent. System Summer

kWh/a

Deviation from North

1

4 Dwelling Units

d

5,02 3,74

510,3

D E M A N D Non-Domestic Use

Window Properties (from Windows worksheet):

Nominal Illuminance Level

795

3 Air Volume

Operation Vent. System Winter

Auxiliary Electricity Demand:

Room Category

209

2 Heating Period

Room Category

284

1 Living Area

AUXILIARY

Workshop + info point

284,0

Fraction of Treated Floor Area

Building:

Treated Floor Area ATFA:

Primary Energy Factors: Electricity: Gas: Energy Carrier for DHW: Solar Fraction of DHW Marginal Performance Ratio DHW:

Passive House verification

ELECTRICITY

Workshop + info point

Room Depth

Building:

FINAL ZIB FILE CALCULTIONS PHPP.xls

8 kWh / Meal

PHPP, Aux Electricity

FINAL ZIB FILE CALCULTIONS PHPP.xls

Electricity

1

41

Workshop

2

2

Dishwashing Cold Water Connection

* *

1

250 250

2

2

365

coffee machine Mixer

1 1

1 1

250 200

vacuum cleaner

1

1

35

Refrigerating

Total Auxiliary Electricity

Total Specific Demand

* *

10

*

10

*

0,25

=

1250

kWh / Cover

0 10 0,10

* =

0,53

0,00 0,00 0,20

=

0%

*

0

*

kWh/d

0,30

*

387 0 1 1 0 7 0 0 0 510 2389

0%

* * * * * * * * *

kWh

100%

=

100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

0 00 0,0

= * (1+

0,30 ) *

1,20

*(1-

0,49

)=

3250 0 0 0 1006 0 2 2 0 18 0 0 0 1327

1250,0

=

Hot Water NonElectric Dishwashing

Cooking

0

=

386,9

=

0,0

=

0,8

=

0,6

=

0,0

=

7,0

=

0,0

=

0,0 0,0

=

510,3

0

0

2389

0,0

0,0

8

kWh/a kWh/(m²a)

6210

22

kWh/a kWh/(m²a)


ZIB2015

PP, IHG Non-Dom

Passive House verification INTERNAL

Passive House verification

G A I N S Non-domestic Use

HEAT

Workshop + info point

Building:

Utilisation Pattern:

HEAT

2,01

Other

2,17 W/m²

W/m²

Manual entry:

PHPP Calculation: Non-residential buildings

Interior Temperature:

2,0

Treated Floor Area ATFA:

Number of Residences:

W/m²

Annual Heating Demand qHeating Length of Heating Period: Marginal Utilisability of Additional Heat Gains:

37

Secondary Areas

Persons F

3

2

2 2

Persons G

>10 yr., standing light work >10 yr., standing light work >10 yr., standing light work >10 yr., standing light work

or

1

or

1

or

1

or

1 1

> 10 yr., sitting

1

> 10 yr., sitting

1

> 10 yr., sitting

{

6

{ { { {

2

{

or

{

*

no

}*

or

{

*

no

}*

or

{

*

no

}*

or

{

*

no

}*

or

{

*

no

*

no

*

no

}*

{

or

}* 51

{

or

{

Lighting

3850

Office Applications (Within Therm. Envelope)

207

Cooking

625

(Within Therm. Envelope)

100

*

*

1,00

}*

100Space*Heat Distribution 0 *

}*

100

}*

80

}*

154

/

8760

=

0

1,00

/

8760

=

Heat m Pipe * Loss0Coefficient * per 1,00

/

8760

=

* 2750 * 0,10 Design Flow Temperature

/

8760

=

Length of Distribution Pipes

Temperature of the Room Through Which the Pipes

80

Design System heating load

80

Design Return 0 Temperature 1,00

0

*

*

1,00

Flow Temperature Control (check)

*

*

-15

Possible Utilization * Factor0,10 of Released/Heat * 2750

8760

=

8760

=

DHW Non-Electric Wash and Dish

qDHW

1,00

/

8,76

=

1,00

/

8,76

=

8,76

=

8,76

=

/

8,76

= td

* / 1,00 Circulation period of operation per year

8,76

=

DHW Distribution and Storage *

Length of Circulation Pipes (Flow + Return)

*

0,50

Heat Loss Coefficient per m Pipe

8

Design Return Temperature

/

0,30

Temperature of the *Room Through Which / the Pipes

1,00

* of operation. Daily circulation period

=

Annual Heat Released per m of Pipe

2

Workshop

3

DISTRIBUTION 8

250

Building: Workshop + info point

Interior Temperature:

20

*(

Annual Heat Loss

Treated Floor Area ATFA:

Occupancy: Number of Residences: Annual Heating Demand qHeating

Heat Available From Internal Sources

Length of Heating Period:

-11

Average heating load Pave: Marginal Utilisability of Additional Heat Gains:

Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Design Flow Temperature Design System heating load

Annual Heat Emission per m of Plumbing Possible Utilization Factor of Released Heat

Total Heat Losses of the DHW System

209

Specif. Losses of the DHW System

d/a

 (Project) X Mechanical Room dist Flow, Design Value Pheating (exist./calc.) dist-20)+20

q*HL QHL

= LH · q*HL · (1-G)

qHL

= QHL / ATFA

ea,HL

qDHW

DHW Distribution and Storage

11

ea,WL

=(cpH2OVH2O+cpMatVMat)(dist-X)

= nPers . 3 . 365 / nLU .

0

0

109

12,0 10,6 0

2008 = QDHW / ATFA

Cold Region

Total

= 365 tdCirc

kWh/a

mX) tCirc

=t /365d * G kWh/(m²a) heating 0,4 = LHS · q*Z ·(1-GDHW) -

GDHW QZ

104% LU (Project) (Project)

qIndividual 10,6 nTap 0 qU

Litre/Person/d °C kWh/a

2008  QU

G_S

°C

QWL

h/d

= QWL / ATFA

ea,WL

h/a

= (qTWW + qWV) / qTWW

QgDHW

-

q57 gDHW

kWh/a

kWh/a

7,1

kWh/a

7,1

5,51 W/(m²K) 0,350 W/(mK) Total 29,996 K

h/a

57

0 0%

57

0

m W/m/K °C °C h/d

kWh/m/a -

57

kWh/a

50,00 0,018

m m

0,4557

kWh/tap opening

8760

Tap openings per year kWh/a

34%

-

2652

kWh/a Total 1,2,3

80

Secondary Calculation Storage Losses

W

34% 466

466

kWh/a

Specific Heat Losses Storage (total) Typical Temperature DHW

= QDHW+QWL

3175

kWh/a

Room Temperature

kWh/(m²a)

258,1% 5183

= QgDHW / ATFA

11,2

kWh/a kWh/(m²a)

18,3

kWh/tap opening Tap openings per year

2652

Thermal Conductivity

kWh/a Total 1,2,3

18 mm mm

0,43 W/(mK)

3175

30 K 0,01800 m 0,02025258,1% m 0,02025 m

Surface -Value

5,51 W/(m²K) 0,350 W/(mK)

5183

29,996 K

Secondary Calculation Storage Losses

W

466

 Interior Pipe Diameter: Exterior Pipe Diameter Exterior Pipe Diameter

FINAL ZIB FILE CALCULTIONS PHPP.xls

Litre/Person/d

kWh/a

m

0,4557

Surface Temperature Difference

kWh/a

2008

Litre/Person/d °C

m

No

°C

= QZ+QU+QS

°C

2652

0,4

0,43 W/(mK) 10,6 m 0,01800 0,02025 m 0 0,02025 m

Total 1,2,3

qWL

kWh/m/a

0,4

-

12,030 K

°C

50,00 0,018

80 Nominal Width Insulation =theating/8760*G 34% Thickness: Reflective? Please mark with an "x"! = PS·8.760 kh·(1-G_S) x Yes466

-

=theating/8760*G

W/m/K = PS·8.760 kh·(1-G_S)

kWh/a

0

3992

m

QS

°C kWh/(m·a)

kWh/(m²a)

104%

kWh/a

Specific Heat Losses Storage (total) Typical Temperature DHW

Total 1,2,3

kWh/a kWh/(m²a)

Room Temperature

11,2

kWh/a kWh/(m²a)

18,3

5,51 W/(m²K) 0,350 W/(mK) 29,996 K

-

4380

2652

kWh/a

= (qTWW + qWV) / qTWW

.

Surface Temperature Difference

kW

°C

34%

30 K 0,01800 m 0,02025 m 0,02025 m

°C

3

55

0,43 W/(mK)

°C

0,0 0,000 0,0 0,0 0,0

= nTap qIndividual

-

= QWL / ATFA

= nPers . 3 . 365 / nLU

Total PS

8760 Calculation: -Values of Plumbing Secondary

= QZ+QU+QS

=(cpH2OVH2O+cpMatVMat)(dist-X)

W/(mK)

1,5 0,350 20 60,0 12,0

=theating/8760*G kWh/(m²a) 7,1 = qU ·(1-G_U)

kWh/a

G_U

34%

kWh/a

kWh/(m²a)

q*Z 109

-

3992

= QgDHW / ATFA

kWh/(m²a)

104%

tCirc

kWh/(m·a)=0.875*(dist-20)+20

=theating/8760*G

= QDHW+QWL

°C

Total 1,2,3

= nTap qIndividual

qgDHW

kWh/(m·a)

R

°C

= qU ·(1-G_U)

-

= ( qH + qHL) / qH

Warm Region

57 0 Total Heating Demand of DHW system =theating/365d * G 34% 0% Total Spec.57 Heating Demand = LHS · q*Z ·(1-GDHW ) 0 of DHW System

QgDHW

Total 1,2,3

tdCirc (Project)

4380ratio DHW-distribution 0 Performance + storage

kW

(Electricity worksheet)

QDHW

= 365 tdCirc

°C

DW Temperature of Drinking Water (10°)

Specif. Useful Heat - DHW

2,2

qWL

dist Flow, Design Value

Annual Heat Loss of Individual Pipes

°C

53 109

Possible Utilization Factor of Released Heat

mX) tCirc

W/(mK)

VDHW (Project or Average Value 25 Litres/P/d)

Useful Heat - DHW

Total

QWL

618

°C

X Mechanical Room kW

Specif. Losses =0.875*(dist-20)+20 55 of the DHW 3System

m

DHW: Standard Useful Heat Average Cold Water Temperature of the Supply

W/m²

59%

Annual Losses

DHW Consumption per Person and Day (60 °C)

QS

45,0

mX) tHeating*0.024

G

DHW Non-Electric Wash and Dish

G_S

kWh/(m²a)

-24

PS

5,00 0,350 20 55,0 3,0 50,00

LH (Project)

R

QU

=

W

Performance ratio DHW-distribution + storage Parts Total Heating Demand of DHW system Warm Region Cold Region Total Spec. Heating Demand of DHW System 1 2 3

Specif. Losses 'Performance ratio of heat distribution

365

/

Possible Utilization Factor of Released Heat

Flow Temperature Control (check) Design Return Temperature

)*

Annual Heat Losses from Storage

Space Heat Distribution Length of Distribution Pipes

1,00

+ Average Heat Released From Storage

m² Pers

kWh/a d kW

qU G_U

Annual Heat Loss of Individual Pipes

-23

°C

284 8,0 1 2911 209 0,6 59%

nTap

°C

 (Project)

d

Amount of tap openings per year

dU_Pipe (Project) qIndividual

W/(mK) LHS (Project)

Surface -Value

m

kWh/(m²a) Surface -Value Warm Region Cold Region Surface Temperature Difference

m

U_Pipe 12,0

Heat loss per tap opening

18 mm mm

109

= QDHW / ATFA

3

20 0,0 60,0 0,0 Total Heat Losses of the DHW System 12,0 0,0

(Project)

6

2

Exterior Pipe Diameter

LU (Project)

Heat A NPossible D Utilization D H Factor W of Released SYS TEM

Building Type/Use: non-residential

Specific Demand

Availability

Loss Nighttime [W]

Loss Daytime [W]

Heat loss per tap opening

Amount of tap openings per year Passive House verification

HEAT

-8

Total

Occupied Days per Year [d/a]

Temp.

- Room

3

Temp. [K]

T: Cold Water

Number of WCs (calculation value)

Number of WCs: Use standard value for schools (X)

(user data)

Number of WCs

on/off (1 / 0)

41

QZ

Annual Heat Loss from Circulation Lines

Exterior Pipe Diameter

0 1

Total qDHW

(Electricity worksheet)

Possible Utilization Factor0,0 of Released Heat 1,5

X Mechanical Room

q*Z

QDHW

Warm Region Specif. Useful Heat - DHW Cold Region

Total 1,2,3

 Interior Pipe Diameter: Exterior Pipe Diameter Exterior Pipe Diameter

DW Temperature of Drinking Water (10°)

Annual Heat Losses from Storage 0,350 0,000

dist Flow, Design Value

tCirc

= ( qH + qHL) / qH

53 59% Nominal Width 109 0 0 Insulation Thickness: Reflective? Please mark with an "x"! x Yes No Thermal Conductivity

VDHW (Project or Average Value 25 Litres/P/d)

DHW Non-Electric Wash and Dish Parts Useful Heat - DHW

Warm Region Region Average Heat Released FromCold Storage

36 0

ea,HL

Annual Heat Loss = QDHW / ATFA

 (Project)

R

= QHL / ATFA

Total Length of Individual Pipes

LHS (Project)

Circ

= LH · q*HL · (1-G)

qHL

Released per 0 m of Pipe = LH · q*HL · (1-G) Annual Heat 109 0 Possible Utilization Factor of Released Heat = QHL / ATFA Annual Heat Loss from Circulation Lines = ( qH + qHL) / qH

24

GDHW

Possible Utilization Factor of Released Heat

Total Length of Individual Pipes

440

QHL

18 mm mm

Total 3

45,0

mX) tHeating*0.024

Annual Losses

Circulation59% period of operation per year

(Electricity worksheet)

QDHW

R

G

mX) tHeating*0.024 53 Temperature Design Return

DW Temperature of Drinking Water (10°)

Specif. Useful Heat - DHW

dist-20)+20

q*HL

dist-20)+20 Daily circulation 45,0 period of operation.

VDHW (Project or Average Value 25 Litres/P/d)

Useful Heat - DHW

*

-24

G

ea,HL

Average Cold Water Temperature of the Supply

0

(Data transfered from Electricity Non-Dom worksheet; input kitchen)

0

qHL

DHW Consumption per Person and Day (60 °C)

Auxiliary Appliances (See Aux Electricity Worksheet)

5 0

S Y S T E M

Specif. Losses

1

0

q*HL

DHW

5,00 DHW Distribution and Storage 0,350 20 Length of Circulation Pipes (Flow + Return) Heat Loss55,0 Coefficient per m Pipe 3,0 Temperature of the Room Through Which the Pipes 50,00 Design Flow Temperature

dist Flow, Design Value

R

X Mechanical Room dist Flow, Design Value

Average Cold Water Temperature of the Supply

 (Project)

=

AND

Design Return Temperature

Cold Region 2

5,00 0,350 20 55,0 Secondary Calculation: -Values of Plumbing 3,0 50,00

Pheating (exist./calc.)

DHW Consumption per Person and Day (60 °C)

X Mechanical Room

QHL

DHW: Standard Useful Heat

 (Project)

DHW: Standard Useful Heat

0

Annual Losses

'Performance ratio of heat distribution

Heat Loss Coefficient per m Pipe

'Performance ratio of heat distribution

LH (Project)

Specif. Losses

Other (Within Therm. Envelope)

1

/

1

LH (Project)

Flow Temperature Control (check)

 Interior Pipe Diameter: Exterior Pipe Diameter Exterior Pipe Diameter

Parts

Annual Heat Emission per m of Plumbing

Pheating (exist./calc.)

8760

/

Annual Heat Emission per m of Plumbing

Cooling (Within Therm. Envelope)

Cold Water Due to Flushing WC

Average Heat Emitted by Persons (W)

=

Design Flow Temperature

(calculation from column AJ)

Used in Time Span (h/a)

Relative Presence

}*

8760

0

kWh/a d kW

Possible Utilization Factor of Released Heat

Building: Workshop + info point

*

}*

DISTRIBUTION

Interior Temperature:

100

0

Predominant Utilisation Pattern of Building

Nominal Width Insulation Thickness: Reflective? Please mark with an "x"! x Yes No Thermal Conductivity

m² Pers

Temperature of the Room Through Which the Pipes

20 °C Building Type/Use: non-residential Treated Floor Area ATFA: 284 m² 8,0 Occupancy: Pers 1 Number of Residences: 2911 Annual Heating Demand qHeating kWh/a 9 18Length of Heating Period: 209 d Average heating 0,6 kW 2250 * 1,00 / load Pave: 59% Marginal Utilisability of Additional Heat Gains:

Dishwashing (Within Therm. Envelope)

Heat Loss Due to Cold Water

HEAT

}*

*

Lighting / Equipment / Aux. Electricity

Utilisation Hours per Year [h/a]

Heat Emitted per Person (W)

Average Occupancy (Persons / m²)

Floor Area of Utilisation Zone (m²) }*

Useful Ene ergy [kWh/a]]

Evaporation (person specific)

planning with # of persons Enter # of persons or floor area Enter # of persons or floor area Enter # of persons or floor area planning with # of persons Enter # of persons or floor area Enter # of persons or floor area

27 standard value standard value standard value standard value standard value standard value standard value

284 8,0 1 2911 209 0,6 59%

Length of Distribution Pipes

Flow Temperature Passive House Design verification Design System heating load

Average H Heat Release e

Persons D

SYSTEM

°C

Space Heat Distribution

W

Average Power Cold Water

3

Persons C Persons E

3

Planning with the number of persons or via floor area of utilisation zone (planning via area only if the occupancy is available for this utilisation pattern). Pers./Area (1 / 0)

6,3

Internal Heat Gains Aux. Electricity:

Used in Tiime Period (kh h/a)

Persons B

3

Heating Period: 209,2693 d/a

20

Warm Region

°C

Used in Period (d/a)

Workshop

Select

Select 41

284

20

Room Temperature:

Availabiliity

Persons A

Utilisation Pattern

Column Nr.

P m²

Number of Occupants

TF Area:

8,0

Activity of Persons

Persons:

Persons

DHW

Building Type/Use: non-residential

Carefully complete the Electricity Non-Dom worksheet!

Average heating load Pave:

Calculation Internal Heat

AND

Building: Workshop + info point

Occupancy:

Type of Values Used:

DISTRIBUTION

Secondary Calculation: -Values of Plumbing

Total Storage Heat Losses

2,5

W/K

60

°C

20

°C

100

W

Total Storage Heat Losses

2,5

W/K

60

°C

20

°C

100

W


ZERO IMPACT BUILDING MA (SCI) ARCHITECTURE KU LEUVEN 路 SINT LUCAS GROUP 42 路 GENT 漏2015


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.