E C O D I S T R I C T | MAHGOL MOTALLEBIE KASRA HAJI HASSANDOKHT PETRA ROSS EVANGELOS STAVRAKAKIS GILLES PLAETINCK
SUSTAINABLE CONCEPT SMART BUILDING LOW TECHNICS ZERO ENERGY & IMPACT CALCULATIONS
ZERO IMPACT BUILDING MA (SCI) ARCHITECTURE KU LEUVEN 路 SINT LUCAS GROUP 42 路 GENT 漏2015
GHENT
|
B401
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
T E CH N I C S
D E SI GN
C O N C EP T
CONTENT
..
CONTENT • VISION STATEMENT PROJECT SUMMARY • 6 KEYWORDS
..
FLYOVER CONTEXT• SUNPATH • WIND • AERIAL VIEW
..
VISION OF NATURE AND CULTURE • CPULs
..
MOBILITY VISION • CPULs
..
ZONING PLAN • SITE PLAN
PROJ ECT SUMMARY
V IS I O N S TAT E M E N T
6 KEYWO RDS
After studying the negative impacts of cutting away the highway B401, we decided to take on with a greater vision that may span in a period of time that exceeds the present and the near future. By that desicion our intention is to systemize our reswponse to the problem and to think in advance with a sutainainable vision so that the shape of the urban fututre to come may be given a more positive and sustainable functions and value. Space, time alongside our chozen spatial and building programming form our toolbox palette. In order to unfold our greater planning vision, we have defined 3 different zones -the borders of the city with its ring road, the trasition space just where one enters the city and the city itself-. Furthermore 3 different gradients have been defined -starting from a more global and reaching to a more local situation- while also 3 different topics have been attempted to be tackled -namely transport, culture and nature. All the afore described within a time context of the present , the near future and the deeper future vision.
• B 401 Info center and workshop • Number of users 10 • Footprint 185 m2- building on highway • Gross internal area 298,7 m2
GROUNDPLANS 1:100
..
SECTIONS 1:100
..
DETAILS
..
ELEVATIONS 1:100
..
VISUALIZATIONS
..
MATERIALS • SUPPLIERS
..
MATERIALS • SPECIFICATION
..
MATERIALS • LCA • EMBODIED ENERGY
..
STRUCTURE • ZERO IMPACT APPROACH
..
VERTICAL HARVESTING • WORKSHOP
LOW TECHNIC
..
GREEN WALLS
..
VENTILATION • in summer and winter
..
ELECTRICITY
..
LIGHTING SYSTEM • DAYLIGHT
• Ventilation - system D • Chimney effect • Shading system • Daylight use • Temperature zoning • Compact building
..
WATER MANAGEMENT
..
SEWAGE SYSTEM
..
CHANGES IN DESIGN
..
CALCULATIONS
The intention is to positively activate the spaces around the Flyover and stitch it back to the city and its people by taking away its current notions of a hard barrier.
FLYOVER AS AN INTERCONNECTING EDGE
From.. HARD BORDER
ENERGY
POSITIVE PROJECT • Extra energy production • More greenery • Futuristic vision towards Ecopolic • Changing parking/ highway to park • Flexibility for different use
..
Our proposal should be seen as a pioneer project and serve as an example for similar flyover spaces in Ghent and other cities.
1. GRADIENT OF FUNCTIONS & ATMOSPHERES
ARCHITECTURE CONTEXT
SOCIAL INTERACTION • Info center • Workshop - community • Markets • Green park on highway • Connection building • Vertical harvesting + green walls
RESISTANCE
• Gains 64 240 kWh /year • Demands 5423 kWh /year • Solar roadways - PV panels placed on highway • Heating 10 kWh/ m²a • Cooling 4 kWh /m²a • Overheating 4,2 %
2. MOBILITY VISION
MOBILITY • Bikes + pedestrian priority • Universal access • Separate ramp for cars/ bikes • Connection for bikes/ pedestrian • Public transport future vision
WATER
MATERIALS
• Tube hybrid solar panels • Rainwater collection 287,73 m3/year • Demand 164,25 m3/ year • Rainwater tank 10m3 • Wadi system • Divided sewer system
3. WORKSHOP SPACES, FOOD HARVESTING, COOKING CLASSES & MARKETS
4. GREEN CORRIDORS *CPULs 4
• CLT columns (plato weather treated) • Timber beems and cladding • e- glazing
PERMEABLE SPACE
5. CONNECTIONS BETWEEN NEIGHBOURHOODS
POROSITY
40
TO P I C S MOBILITY NATURE CULTURE
T E RRI TO RY
T I M E S PAN NOW +5-10YRS +50YRS
2015
STITCHING ELEMENT
INTERCONNECTING EDGE
a. CITY OUTSKIRTS b. CITY RING C. WITHIN THE CITY
2020 2060
70
A
6. CLEAN ENERGY (green) B C
90
30
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB2015
AERIAL VIEW - LOCAT ION
B 401 FLYOVER 路 CON TE XT
Maldegem
Brugge
Kortrijk
BELGIUM
GHENT
FLANDERS
WIND DIRECTION DISTRIBUTION IN (%) SITUATION AT LOCATION: ON JUNE 21 / CURRENT / DECEMBER 21
STEREGRAPHIC PROJECTION SUNPATH
GHENT
Sint Niklaas . Antwerp
Aalst . Brussels
ZIB.2015 | ECO DISTRICT | GENT | B401
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
CPUL c
VIS IO N OF NATURE A N D C U LTU R E
*Continuous productive urban landscapes [within] cities
FUTURE+5-10YRS
CURRENT SITUATION
Section B-B´
A-A´´
Section B-B´
B-B´
CURRENT SITUATION
A vision and a strategy for the 21st century for the city to be green. A healthy place for all where zero net pollution is genberated. CPULs as a strategy aims towards bringing the -Natural- back to the city and through this to engage people and neighborhoods in positive activities. Whether for the city, the neighborhood, their family or themselves, this objective may capacitate a broad number of parallel activities, programs and motivation for a healthy urban environment. CPULs is simply taking back that for which we usually travel good distances as an -escape means- of the city and its negative side effects.
C-C´
FUTURE+5-10YRS
Section A-A´
Section A-A´
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
M O B IL IT Y VISION lifestyle change over time
INTERVENTION IN TIME
SKYTRAN MOBILITY - PASSIVE MAGLEV TECHNOLOGY
CURRENT SITUATION ON CITY RING
NOW
SKY
TRA
N
GOI
NG
DOW
N TO
RIN
G
BICYCLE UNDERGROUND PARKING
INT
Section C-C´
ERC
+ 5-10YRS
sophisticated apps
HAN
GE S
POT
PREVENT COMMUTING MORE LOCAL LIFESTYLE
90 min.
SHAREWAY
€
15 min.
FUTURISTIC VISION + 50YRS A . BETWEEN CITIES
B . CITY RING
C . INSIDE THE CITY
A SPEED VISION
B
A . between cities
PUBLIC C
tram
SKYtran
el.
PRIVATE
C . inside the city
ONEWHEEL
SUPPLY GOOGLECAR
tram
P
B . city ring
SKYTRAN
SKYtran
cambio
SKYtran
minimized
googleCar
el.
ONEwheel
SKYtran
P
P
googleCar
night
ACTIVE MALEV RQUIRES HIGH ENERGY AND MASSIVE INFRASTRUCTURE LEADING TO HIGH COSTS AS WELL.
PASSIVE MAGLEV REQUIRES VERY LITTLE ENERGY AND ONLY MINOR INFRASTRUCTURE LEADING TO THE LOWEST COST TRANSPORTATION SYSTEM KNOWN TO MAN.
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
ZO N ING PLAN
SIT E PL AN drawing over existing situation
TOP OF THE FLYOVER: PARK AND ENERGY 0
50
100
200
HOUSING HOUSING
HOUSING
ECO QUATER
AMP
COMMERCE
EDUCATION bus
ZIB
tram
p ram n a i str ns ede rk ctio p e / r i s bike ated pa s in 2 d r elev for ca p ram
N/ C
IA STR
E
PED
ER YCL
P
P
E
NTS
OTM ALL
ARS
P
RAM
C FOR
EDUCATION
TRANSPORT
ECO CITY GHENT
DS
HOUSING FLATS
ZIB
PED
C /CY
AN TRI
ES
P
OA LE R
i
HOUSING
roundabout + underpass
P OFFICE PARK
ILS
RA AY T
PL
ZONE A: SPORT AND CULTURE
ZONE B: INFO AND WORKSHOP
i
ZONE C: TRANSPORT TRANSITION
P
OFFICE PARK
HOUSING FLATS 0
TOWARDS THE CITY CENTRE
INTEREVENTION LOCATION
OUTTER CITY RING
10
50
100
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
GRO U NDPLANS 1:10 0
A-Á
A-Á
B-B´
B-B´
A-Á
A-Á
B-B´
B-B´
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
A
A’
S EC TIONS 1:100
Detail 0 6
Deta i l 0 3 Deta i l 0 2
Deta i l 0 4
Detail 01
Deta i l 0 5
Section B-B´
Section A-Á
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB2015
A’
DETAILS
DETAIL 02
DETAIL 03
DETAIL 04
DETAIL 05
DETAIL 06
A
DETAIL 01
PIR floor Gy psum plaster b o ard PIR 100 mm OS B 15 mm FJ I beam / cellu lo s e 3 5 0 m m celit 4D wo o d f ib er 1 8 m m finish gy ps u m p laster b o ard
p l ato wood fi n i s h fra m ework 3 0 m m c el i t 4 D 1 8 m m wood st ru c t u re S L S 3 8 / 1 4 0 E u rowa l l 2 x 7 0 m m OSB E u rot h a n e G 7 0 m m fi n i s h g y ps u m p l a sterb oa rd
ZIB.2015 | ECO DISTRICT | GENT | B401
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
E LE VAT IONS 1:100 South Elevation North Elevation
North Elevation
North Elevation
South elevation
North elevation
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB2015
E LE VAT IONS 1:100
VISUAL IZAT IONS East Elevation
West Elevation
East Elevation
West elevation
East elevation
ZIB.2015 | ECO DISTRICT | GENT | B401
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB2015
VIS UA LIZAT IONS
ZIB.2015 | ECO DISTRICT | GENT | B401
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB2015
M ATE RIALS/ W OOD/ F C S C e rti fi e d Sup p l i e rs Di s t a n c e
MAT ERIAL S / B u ild in g / St ru ct u re
ZIB.2015 | ECO DISTRICT | GENT | B401
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB2015
MATERIALS Specs / Sol i d & Struc tural Wood
MAT ERIAL S Spe cs / In su la t ion
ZIB.2015 | ECO DISTRICT | GENT | B401
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB2015
M ATE RIALS / Life Cyc l e A s s e s m e nt
MAT ERIAL S/ Em bod ie d e n e rgy/ CO2
ot he r m a t e ria ls
ZIB.2015 | ECO DISTRICT | GENT | B401
ner
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
ZERO IMPACT APPROACH
S TRUCTURE
ECONOMY - USIBILITY DURING ECONONY - USIBILITY DURING THE DAYTHE 10.00
i
DAY
3/ Roof terrace
20.00
ALWAYS
i 2/ Info center Entrance from highway
GENERAL PRINCIPLES OF THE BUILDING
{3D} Copy 1 ZIB BUILDING
Gilles Plaetinck
1
Enter address here 7 _ Unnamed
Owner
begeleider : Checker schaal :
{3D} Copy 2 BUILDING 1 ZIB Enter address here 8 _ Unnamed
Gilles Plaetinck
Owner
begeleider : Checker schaal :
Gilles Plaetinck
{3D} Copy 3 ZIB BUILDING
1 Enter address here 8 _ Unnamed
Owner
begeleider : Checker schaal :
ZIB BUILDING {3D} Copy 4 1 Enter address here 9 _ Unnamed
schaal :
1/ Workshop area technical room
0/ Food market in park Vertical harvesting Entrance
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
VERTI CAL HARVESTI N G
W ORKSH OP Healthy food is a basic human right. the ability to access healthy food is often related to multiple issues and not just a result of low income.
Healthy food is a basic human right. the ability to access healthy food is often related to multiple issues and not just a result of low income.
Vertical Harvest places Vertical Harvest places plants on carousels thatplants on carousels that keep them moving themoving length of keep them thethe pulls, giving them equal time in natural light,ofand allowing workers and local people to pick and length thealso greenhouse, transfer the crops. Using Verticalto Harvest be giving them equal time inhydroponics, Healthy food is a basic human right. the ability accesswill healthy capable of producing natural light, and also over al- greens and herbs. food is often related to multiple issues and not just a result of lowing workers to pick low income. and transfer the crops. t Using hydroponics, Vertical Harvest will be capable of producing over
s that keep them m equal time in natucal people to pick and tical Harvest will be bs.
PLANT CABLE LIFT (PLC) SECTION
Sustainable Food zorkshop center’s mission is to “cultivate a healthy community by strengthening the local food system and improving access to nutritious, affordable food.” The main goal of our design is to deliver skills and information for sustainability practioners in the organic food trade. The program attempts to: 1) affect positive changes in shopping, cooking, eating habits, and nutrition, 2) reduce diet-related diseases, 3) promote the health and development of young children, 4) place emphasis on local, seasonal, and culturally-appropriate foods 5) integrate food systems concepts into its curriculum– such as shopping at farmers markets and growing one’s own food.
Sustainable Food zorkshop center’s mission is to “cultivate a healthy community by strengthening the local food system and improving access to nuHealthy affordable food is a basic human the goal abilityofto our access tritious, food. ” Theright. main healthyisfood is often skills relatedand to multiple issues and not just design to deliver information for susa result of low income. tainability practioners in the organic food trade. The program attempts Sustainable Food zorkshopto: center’s mission is to “cultivate a 1)healthy affectcommunity positive changes in shopping, by strengthening the localcooking, food system eating habits, and nutrition, and improving access to nutritious, affordable food.” The goaldiet-related of our designdiseases, is to deliver skills and information 2)main reduce for sustainability practioners the organic food trade. 3) promote the health and in development of young The program attempts to: children, 4) place emphasis on local, seasonal, and cultural1) affect positive changes in shopping, cooking, ly-appropriate foods eating habits, and nutrition, 5)2)integrate food systems concepts into its curricreduce diet-related diseases, ulum– suchthe as health shopping at farmers of markets 3) promote and development young and children,one’s own food. growing 4) place emphasis on local, seasonal, and culturallyappropriate foods 5) integrate food systems concepts into its curriculum– such as shopping at farmers markets and growing one’s own food.
FOOD TEAM = a group of people from the same neighbourhood who work for the direct purchase of regional andof seasonal products. Theysame order food on internet via web FOOD TEAM = a group people from the page voedselteam.be and it is then neighbourhood who work for the direct purchase of delivered once a week to the depot of a team.
Sustainable Food zorkshop center’s mission is to “cultivate a healthy community by strengthening the local food system and improving access to nutritious, affordable food.” The main goal of our design is to deliver skills and information for sustainability practioners in the organic food trade. The program attempts to: 1) affect positive changes in shopping, cooking, eating habits, and nutrition, 2) reduce diet-related diseases, 3) promote the health and development of young children, 4) place emphasis on local, seasonal, and culturally-appropriate foods 5) integrate food systems concepts into its curriculum– such as shopping at farmers markets and growing one’s own food.
FOOD TEAM = a group of people from the same neighbourhood who work for the direct purchase of regional and seasonal products. They order food on internet via web page voedselteam.be and it is then delivered once a week to the depot of a team. + minimal transport requirements + no / returnable packaging pricing + fair p + high-quality local and seasonal food + community initiative
regional and seasonal products. They order food on internet via web page voedselteam.be it is then + minimal transportand requirements delivered once a week +tonothe depot ofpackaging a team. / returnable
+ fair pricing + high-quality local and seasonal food + minimal transport requirements + community initiative + no / returnable packaging
+ fair p pricing + high-quality local and seasonal food + community initiative
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB2015
Black coral pea
Black coral pea
Snake vine
Snake vine
Snake vine
kidney weed
kidney weed
kidney weed
- Ornamental Qualiies - Design Purpose - Manageability / Maintainability - Environmental and Societal Effects - Visual Effect - Feeling Effect
Pandorea
- Quality of growth - Ability to adapt to the wall environment - Environmental Tolerances - Temperature Resistance - Drought Tolerance - Wind Tolerance - Solar Exposure Tolerance - Salt Tolerance in Seaside installaaons - Air and Water Polluuon Tolerance - Pest and Disease Resistance - Arrficial Environment Tolerance - Transplantaaon Tolerance - Pruning Tolerance
Black coral pea Black coral pea Pandorea
Pandorea
Factors should be considered when seleccng plants:
Basil
Basil
Basil
Black coral pea
purple coral pea
purple coral pea
purple coral pea
Black coral pea
GREEN WALLS
Factors should be considered when seleccng plants: Factors should be considered when seleccng plants: - Ornamental Qualiies - Quality of growth - Ornamental Qualiies - Design Purpose growth - Ability to- Quality adapt toofthe wall environment - Design Purpose Manageability / Maintainability - AbilityTolerances to adapt to the wall environment - Environmental Manageability / Maintainability - Environmental and Societal Effects - Environmental - Temperature Resistance Tolerances Environmental and Societal Effects - Visual Effect Temperature Resistance - Drought Tolerance - Visual Effect - Feeling Effect - Drought Tolerance - Wind Tolerance - Feeling Effect - Wind Tolerance Tolerance - Solar Exposure - SolarinExposure - Salt Tolerance Seaside Tolerance installaaons Salt Tolerance in Seaside installaaons - Air and Water Polluuon Tolerance Air and Resistance Water Polluuon Tolerance - Pest and-Disease Pest and Disease Resistance - Arrficial-Environment Tolerance - Arrficial Environment Tolerance - Transplantaaon Tolerance - Transplantaaon Tolerance - Pruning Tolerance - Pruning Tolerance
ZIB.2015 | ECO DISTRICT | GENT | B401
ECO DISTRICT | GENT | B401 Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis | GENT | B401 ZIB.2015 | ECO DISTRICT T 42
ZIB2015
ZIB2015
Mechanical Ventilation with Heat Recovery (MVHR)
VE N TIL AT ION
CALCULATION AND SYSTEM
VENTILATION IN GROUPLANS
Heating 10 kwh/ m²a Cooling 4 kWh /m²a Overheating 4,2 %
Extraction of air ECO DISTRICT | GENT | B401
Pulsion of air
T 42
ZIB2015
Mechanical Ventilation with Heat Recovery (MVHR)
MECHANICAL VENTILATION WITH HEAT RECOVERY (MVHR) Up to 95% of the heat can be recovered. The Heat Recovery Unit runs continuously on trickle and can and is boosted when higher rates of ventilation are required e.g. bathing, cooking. ECO DISTRICT | GENT | B401
T 42 In warmer months a summer by-pass function helps ensure comfort levels are maintained in the home. When summer byMechanical Ventilation with Heat Recovery (MVHR) pass is activated, the dwelling continues to be ventilaated and recieve fresh filtered air, however the heat recovery process is intermittently switched off (heat recovery is by-passed).
In-take / Out-take of air
ZIB2015
Extraction of air
outdoor space
18 °C
ECO DISTRICT | GENT | B401 T 42
level 02
18 °C
15 °C Recuperation unit
Pulsion of air
DN
Gilles Plaetinck
Owner
begeleider : Checker
In warmer months a summer by-pass function helps ensure comfort levels are maintained in the home. When summer by-pass is activated, the dwelling continues to be ventilaated and recieve fresh filtered air, however the heat recovery process is intermittently switched off (heat recovery is by-passed)
ZIB BUILDING Enter address here 3 _ level 2
Up to 95% of the heat can be recovered. The Heat Recovery Unit runs continuously on trickle and can and is boosted when higher rates of ventilation are required e.g. bathing, cooking.
schaal : 1 : 100
level 01
Zehnder ComfoSystems Passive Haus accredited produ ZIB2015 suitable for large houses up to 300m2. Designed to ensu Mechanical Ventilation with Heat Recovery low noise, (MVHR) excellent energy performance and heat exchan efficiency. Choice of control options including LCD tou screen display. Can be combine with ComfoCool for option EXTRACT VENTILATION RATES cooling of up to 5 degrees and humidity reduction by 20%
Up to 95% of the heat can be recovered. The Heat Recovery Unit runs continuously on trickle and can and is boosted when higher rates of ventilation are required e.g. bathing, cooking. In warmer months a summer by-pass function helps ensure comfort levels are maintained in the home. When summer by-pass is activated, the dwelling continues to be ventilaated and recieve fresh Up to 95% of the heat canair, be recovered. filtered however the heat recovery The Heat Recovery Unit runs continuprocess is intermittently switched off ously on trickle and can and is boosted (heat recoveryare is by-passed) when higher rates of ventilation required e.g. bathing, cooking.
In warmer months a summer by-pass function helps ensure comfort levels are maintained in the home. When summer by-pass is activated, the dwelling continues to be ventilaated and recieve fresh
Zehnder suitable low nois efficienc screen di cooling o
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB2015
EL ECT RICIT Y
SUMMER DAY - air through recuperation unit, small change of temperature
SHADING SYSTEM As a shading was chozen system Renson Icarus. Lamellas with angle 45째, made in wood.
Summer day air through recuperation unit small change of temperature
Solar roadways-PVpanels
SUMMER NIGHT - cross-ventilation through building
ZONING ACCORDING TO TEMPERATURES
Elevator
Fuse box
heated zone
Summer night not heated zone cross- ventilation through building
+ -
15 째C
18 째C
Battery with transformator
Shutters control system Electricity
LED lights
ZIB.2015 | ECO DISTRICT | GENT | B401
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB2015 ELECTRICITY SCHEME
ENERGY DEMAND OVERVIEW shutters
summer 0,5 kWh/ day winter 0,3 kWh/ day 183 days x 0,5= 91,5 kWh 182 days x 0,3 = 54,6 kWh = 164,1 kWh
elevator
262 kWh
2 fridges
A++fridge: 104 kWh/year 104 x x2 = 208 kWh
2 coffeemakers
900 W x 0,1 hours/ day = 0,9 kWh x 220 days x 2= 198 kWh /a
1 microwave
67 kWh /a
1 owen
0,85x100 days= 85 kWh /a
2 cooking plates
400 kWh x 2 = 800 kWh /a
stereo
150 kWh/ a
ventilation unit
419 kWh/a
electricity transformer (AC to DC) for PV panels + batteries
68 kWh/ a
ENERGY SUPPLY OVERVIEW - FLY-OVER lights
1 spot 56 W/ 10000 = 0,056 KW 4 hours per day, 365 days a year = 1460 h 0,056 x 1460 = 81,76 kWh 10 spots x 81,76= 817,6 kWh /a 1 spot 72 W/ 10000 = 0,072 KW 4 hours per day, 365 days a year = 1460 h 0,072 x 1460 = 105,12 kWh 5 spots x 105,12= 525,6 kWh /a 1 spot 52 W/ 10000 = 0,052 KW 4 hours per day, 365 days a year = 1460 h 0,052 x 1460 = 75,92 kWh 21 spots x 75,92= 1594,32 kWh /a 1 spot 9 W/ 10000 = 0,009 KW 4 hours per day, 365 days a year = 1460 h 0,009 x 1460 = 13,14 kWh 5 spots x 13,14 = 65,7 kWh /a 5423 kWh /a
average only 4 hours of peak daylight hours per day (4 x 365 = 1460 hours per year) - Surface area ( first part) Fly-over : +- 20 000 m² -> 16 000 x 230 Watt = 3 680 000 Watt or 3680 kW only 50 % of fly-over covered with solar roadways -> 3680 kW x 4 h = 7360 kWh /day -> 3680 kW x 1460 h = 2 686 400 kWh /year -> +- 540 households (+- 5000 kWh /year) Tesla Powerwall: There’s a 10 kWh unit at $3,500 -> 737 Tesla Batteries > the Solar Roadway has the ability to cut greenhouse gases by up to 75-percent! > A decentralized, self-healing, secure power grid. IN FRONT OF FLY-OVER - Surface area Fly-over = 16 x 30 m = 480 m² -> 384 x 230 Watt = 88 320 Watt or 88,3 kW only 50 % of fly-over covered with solar roadways -> 44 kW x 4 h = 176 kWh /day -> 44 kW x 1460 h = 64 240 kWh /year -> +- 13 households (+- 5000 kWh /year)
SOLAR ROADWAYS - PV PANELS Energy from the sun 1/ To generate energy for the ZIB building 2/ To generate energy for the surrounding houses 3/ To generate energy for lighting or signs on the road 4/ The panels will also have the capacity to charge electric vehicles while parked
ZIB.2015 | ECO DISTRICT | GENT | B401
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB2015
LIGHTING SYST EM - D I A L ux
B401-Gent
B401-Gent
6/22/2015
6/22/2015
B401-Gent
Site 1 / Building 6 / Storey 1 / Room 13 / Workplane 13 / Results overview
Site 1 / Building 2 / Zib / Room 9 / Workplane 9 / Results overview
6/22/2015
t yp es parts o f light Site 1 / Luminaire list s
B401-Gent
Site 1 / Building 2 / Zib / Room 9 / Workplane 9 / False colours/Perpendicular illuminance (adaptive)
6/22/2015
Site 1 / Luminaire parts list
Workplane 13 / Results 2nd floor overview
f l o o r overview Workplane 19st / Results
B401-Gent
DAYL IGH T - DIAL u x
Quantity
Luminaire (Luminous emittance)
10
3F Filippi 12736 P 202x24W LED OP 196x1231 Luminous emittance 1 Fitting: 1x24W 2xLED Light output ratio: 100% Lamp luminous flux: 5332 lm Luminaire Luminous Flux: 5332 lm Power: 56.0 W Light yield: 95.2 lm/W
6/22/2015
10x
105°
105°
90°
90°
75°
75°
60°
60° 200
45°
Site 1 / Building 2 / Zib / Room 9 / Workplane 9 / False colours/Perpendicular illuminance (adaptive) B401-Gent
400
6/22/2015 30°
Workplane 9 / False colours/Perpendicular illuminance (adaptive) Workplane 9 / False colours/Perpendicular illuminance (adaptive) Result
105 689 0.227
Profile: Offices, Writing, typewriting, reading, data processing B401-Gent
SFN Eclairages 0732360X CLFV 236 Luminous emittance 1 Fitting: 2xT26 36W/840 Light output ratio: 68.89% Lamp luminous flux: 6700 lm Luminaire Luminous Flux: 4615 lm Power: 72.0 W Light yield: 64.1 lm/W
Height of working plane: 0.800 m , Wall zone: 0.000 m
Mean (target) Min Max Min/average Min/max
Perpendicular illuminance [lx] 463 (500)
5
Workplane 13 / False colours/Perpendicular illuminance (adaptive)
0.152
6/22/2015
Result
Mean (target) Min Max Min/average Min/max
Perpendicular illuminance [lx] 388 (500)
69
732 0.178
0.094
15°
cd/klm
Site 1 / Building 6 / Storey 1 / Room 13 / Workplane 13 / False colours/Perpendicular illuminance (adaptive)
Height of working plane: 0.800 m , Wall zone: 0.000 m
45°
300
C0 - C180
6x
0°
15°
30°
η = 100%
C90 - C270
105°
105°
90°
90°
75°
75°
60°
60° 160
45°
45°
240
Profile: Offices, Writing, typewriting, reading, data processing 30°
15°
cd/klm
C0 - C180
Site 1 / Building 2 / Zib / Room 9 / Workplane 9 / Value chart/Perpendicular illuminance (adaptive)
21 Scale: 1 : 100 B401-Gent
6/22/2015
Workplane 9 / Value chart/Perpendicular illuminance (adaptive)
Perpendicular illuminance (Surface)
Scale: 1 : 200
Perpendicular illuminance (Surface) Mean (actual): 463 lx, Min: 105 lx, Max: 689 lx, Min/average: 0.227, Min/max: 0.152,
(actual): 388 lx, Min: lx, Max: Min/average: illuminance 0.178, Min/max: Site Mean 1 / Building 6 / Storey 1 / Room 13 / 69 Workplane 13 /732 Valuelx, chart/Perpendicular (adaptive) 0.094,
Scale: 1 : 200
Workplane 13 / Value chart/Perpendicular illuminance (adaptive)
Perpendicular illuminance (Surface) Mean (actual): 463 lx, Min: 105 lx, Max: 689 lx, Min/average: 0.227, Min/max: 0.152,
SFN Eclairages 332226XX SAM F 2x26W BE Luminous emittance 1 Fitting: 2xTC-DEL 26W/840 Light output ratio: 32.97% Lamp luminous flux: 3600 lm Luminaire Luminous Flux: 1187 lm Power: 52.0 W Light yield: 22.8 lm/W
21x
0°
15°
30°
η = 69%
C90 - C270
105°
105°
90°
90°
75°
75° 40
60°
60° 60
80 45°
45° 100
120
140 30°
15°
cd/klm
C0 - C180
1
Scale: 1 : 200
Perpendicular illuminance (Surface) Perpendicular illuminance463 (Surface) Mean (actual): lx, Min: 105 lx, Max: 689 lx, Mean (actual): 463 lx, Min: 105 lx, Max: 689 lx, Min/average: 0.227, Min/max: 0.152, Min/average: 0.227, Min/max: 0.152,
Signcomplex AR111-009-AW-W-06 AR111 COB 9W 38° White Luminous emittance 1 Fitting: 1xAR111-009-AW-W-06 Light output ratio: 80.78% Lamp luminous flux: 600 lm Luminaire Luminous Flux: 485 lm Power: 9.0 W Light yield: 53.9 lm/W
Scale: 1 : 100 Perpendicular illuminance (Surface)
Mean (actual): 388 lx, Min: 69 lx, Max: 732 lx, Min/average: 0.178, Min/max: 0.094, Perpendicular illuminance (Surface) Mean (actual): 388 lx, Min: 69 lx, Max: 732 lx, Min/average: 0.178, Min/max: 0.094,
1x
15°
30°
η = 33%
105°
105°
90°
90°
75°
75°
60°
60° 800
45°
45°
1200
30°
15°
cd/klm
C0 - C180
C90 - C270
Total lamp luminous flux: 163020 lm, Total luminaire luminous flux: 101807 lm, Total Load: 2021.0 W, Light yield: 50.4 lm/W Page 96
0°
C90 - C270
0°
15°
30°
η = 81%
SUMMER SUNNY 10-42% LUX WINTER SUNNY 10-42% LUX
ZIB.2015 | ECO DISTRICT | GENT | B401
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
WATE R MANAG EMENT
WATER SUPPLY SCHEME AND CALCULATION RAIN WATER GAIN Available roof area
319,7 m2
In Ghent, avarage of 900mm/m2/year
0,9x 319,7 = 287,73 m3/year
RAIN WATER DEMAND 3 toilets Vertical gardening
Tube hybrid Solar panels
Total
300 l /day 150 l / day = 450l/day = 164,25 m3/ year
relative RW usage
140,7 l/day/100m2
RAIN WATER TANK Relative RWT volume Rain water tank volume
3m3/ 100 m2 9591 l > 10 m3
POTABLE WATER DEMAND Sinks Hot water tank
Water taps
toilet - 3x - 0,3l/s kitchen -4x - 0,2l/s
DIMESION OF PIPES City water supply Rainwater tank Rain water tank
178 mm (DN 18 - 15 - 12) 165 mm (DN 17-15)
Rain water collection for vertical harvesting
THE SOLAR ROADWAYS are composed of hexagonal tiles. Rainwater can infiltrate between the gaps from where it goes to rainwatter collector which supplies the vegetation on fly-over
WADI City water supply
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
S EWAG E SYSTEM
WATER DRAINAGE SCHEME AND CALCULATION
WATER DRAINAGE OF DEVICES Toilet: Toilet sink: Kitchen sink:
DU = 2 l/s DU = 0,5 l/s DU = 0,8 l/s
Frequency of usage at the same time K
0,5
DIMESION OF PIPES Black water Grey water
Sinks
Rain water tank
Divided sewer system within building WADI City water supply
110 mm (DU 110) 75 mm (DU 75 - 63)
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015 WATER SUPPLY AND DRAINAGE IN GROUPLANS
WATER CYCLE
WATER SUPPLY In this building a closed water system is applied, which is based on reusing water in multiple was.
HOT WATER WATER DRAINAGE
Rain water from the roof will be collected in a storage tank situated on the ground floor. This water will be used to flush the toilet and irrigate crops in vertical harvesting system. In case of an overflow, the water will be stored in the constructed wetland near the building. The rainwater can be filtered through a helophyte filter up to drinking water standard. In this building a closed water system is applied, which is
based on reusing water in mullple was. willwaste be collected a storageincludes tank Rain water from the roofThe waterinsystem three types of water: yellow, situated on the ground floor. This water will be used to flush black, and grey water. The yellow water will be stored for the toilet and irrigate crops in verrcal harvessng system. In phosphor, while inthe case of an overflow, theitswater will be stored theblack con- water will be purified into grey water. This water to the quality of rain structed wetland near the building. Thegrey rainwater can is be comparable filtered through a helophyte filterafter up topurification drinking waterbstanwater means of a bio rotor. The remaining dard. The waste water system includes three types of water: residue from the bio rotor, together with the organic waste yellow, black, and grey water. yell harvesting is fermented into biogas that drives a The yellow water will befrom storedthe for its phosphor, while the black water will be purified into turbine grey water.inThis grey to water micro order produce some additional energy. is comparable to the quality rain water aaer purificaaon Theofwaste product derivingbfrom this process will be used as means of a bio rotor. The remaining residue from the bio compost vercal harvesng. This efficient yet complex rotor, together with the organic wasteinfrom the harvessng is system the ulizaon fermented into biogas that drives acloses micro turbine in order tocycle of the building and turns it produce some addiionalinto energy. an efficient vicious circle that can be considered au arkic.
DN
level 02 PHOSPHOR
ENERGY
RAINWATER TANK
ZIB BUILDING
BIO-ROTOR
Enter address here
2 _ level 1
IRRIGATION SYSTEM
HELOPHYTE FILTER
schaal : 1 : 100
level 01
MICRO TURBINE
The waste product deriving from this process will be used as compost in verrcal harvessng. This efficient yet complex system closes the uulizaaon cycle of the building and turns it into an efficient vicious circle that can be considered au arkic.
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
C HAN GE IN DESIG N current orientation/ only night ventilation
CAL CUL AT IONS orientation turned 90° / only night ventilation/ 6 windows less; 52 m²
S U RFAC E AREA
Passive House verification L
Photo or Drawing
Building: Workshop + info point Street:
Postcode/City: Country:
B
H
VOLUME
main 1 main 2
22,6 18,4
7 7
4 3,5
632,8 450,8
core 0 core 0 core 3
6,2 6 2 6,2
5 3
3,5 3 5 2,8
108,5 108 5 52,1
Building Type: non-residential Climate: Ukkel
orientation turned 90° / only night ventilation/ 7 windows less; 60m² (window less at SE side)
1244,2
Home Owner(s) / Client(s): Street: Postcode/City: Architect:
AREA
Street:
current orientation/ only night ventilation/ 6 windows less; 52 m²
Calculation electricity / Internal heat gains
Postcode/City: Mechanical System:
main 1
Building type:
storage wc big wc wc workshop
Street: Internal heat gains
Postcode/City:
2015 1 1244,2
Year of Construction: Number of Dwelling Units: Enclosed Volume Ve:
Passive House verification
20,0 2,0
Interior Temperature: Internal Heat Gains:
Heating load Space cooling
284,0
10 11
Cooling load
Space heating and cooling, dehumidification, household electricity.
Primary Energy
Street:
DHW, space heating and auxiliary electricity
Postcode/City: Country:
Specific primary energy reduction through solar electricity
Building Type: non-residential Climate: Ukkel
Pressurization test result n50
Airtightness
Requirements
m²
kWh/(m2a) W/m
2
-
%
-
kWh/(m a)
24
kWh/(m2a)
21
2
2
kWh/(m a) 1/h
120 kWh/(m²a) -
0,6 1/h
Home Owner(s) / Client(s): Street: Postcode/City: Architect: Street: Calculation electricity / Internal heat gains
Postcode/City: Mechanical System:
Building type:
Street: Internal heat gains
Postcode/City: Year of Construction:
current orientation/ only night ventilation/ 8 windows less; 69 m²
2015 1 1244,2
20,0 2,0
Interior Temperature:
Number of Dwelling Units: Internal Heat Gains: -> orientation turned 90° / only night ventilation/ 9 windows less; 77m² (window less at NW side, Enclosed Volume V : Number of Occupants: 8,0 althought there's less overheating in the case of a window less at SE side, the heating demand Specific building demands with reference to the treated floor area exceeds 15) e
Treated floor area Space heating
Annual heating demand Heating load
Space cooling
284,0
10 11
Overall specific space cooling demand Cooling load Frequency of overheating (> 25 °C)
Utilisation pattern:
W/m 2
Planned number of occupants
8
Requirements
kWh/(m2a)
15 kWh/(m²a)
W/m2
10 W/m²
kWh/(m2a)
15 kWh/(m²a)
W/m2
-
%
-
DHW, space heating and auxiliary electricity
24
kWh/(m2a)
-
Specific primary energy reduction through solar electricity
21
kWh/(m2a)
-
0,6
Design
use: Annual method
m²
kWh/(m2a)
Pressurization test result n50
Fill in worksheet IHG Non-Dom!
Type of values used:
73
Primary Energy
Airtightness
Space heating and cooling, dehumidification, household electricity.
°C
1/h
120 kWh/(m²a)
0,6 1/h
Fulfilled?*
Verification
Annual method
yes
Specific space heating demand, annual method:
-
Specific space heating demand, monthly Method:
yes yes
Design
MAIN 2
The monthly method should be used for building certification
10,3 12,0
kWh/(m²a) kWh/(m²a)
Fulfilled?*
Verification
Annual method
yes
Specific space heating demand, annual method:
-
Specific space heating demand, monthly Method:
info/lounge
92
The monthly method should be used for building certification
10,3 12,0
kWh/(m²a) kWh/(m²a)
staircase storage/ technical
56 22 284
15 kWh/(m²a)
W/m2
73
0,6
15 kWh/(m²a) 10 W/m²
kWh/(m2a)
Overall specific space cooling demand
Frequency of overheating (> 25 °C)
Building: Workshop + info point
Planned number of occupants
use: Annual method
Annual heating demand
Photo or Drawing
Fill in worksheet IHG Non-Dom!
Type of values used:
8
Treated floor area Space heating
current orientation/ only night ventilation/ 7 windows less; 60m² (stays the same for each side)
Utilisation pattern:
W/m 2
8,0
Number of Occupants:
Specific building demands with reference to the treated floor area
orientation turned 90° / only night ventilation/ 8 windows less; 69 m²
°C
3,5 3,5 2 2 103
yes yes
Floor_exterior Roof_exterior
158,2
31
127,2 158,2
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
Climate: Building:
SUPPLY type
amount
debiet Q l/sec
total l/sec
factor Wd (l/s) nominal diameter
total WW l/sec
MAIN LEVEL POTABLE sink toilet sink kitchen
3 2 Total 5 Gelijktijdigheid debiet Q (l/sec) diameter
0,1 0,1
0,3 0,2 0,5 0,5 0,25 1,78
0,3 0,2 0,5 0,5 0,25 1,78
VERTICAL COLLECTOR
sink toilets sink kitchen
cm
3 2 Total 5 factor Wd (l/s) nominal diameter
0,5 0,8
0,5 0,88 75 1,5 1,6 3,1 0,5 0,88 75
Interior Temperature: Building Type/Use:
A B A B A A X A A A P B
unheated basement Windows Exterior Door Exterior TB (length/m) Perimeter TB (length/m) Ground TB (length/m)
DEMAND
Treated Floor Area ATFA:
Temperature Zone
Exterior Wall - Ambient Exterior Wall - Ground Roof/Ceiling - Ambient Floor slab / basement ceiling
mm
HEATING
Ukkel Workshop + info point
Building Element
mm
ANNUAL
Area
U-Value
m²
W/(m²K)
559,5 155,0 31,0
115,4 116,9
Total of All Building Envelope Areas
* * * * * * * * * * * *
kKh/a
* * * * * * * * * * * *
0,094 0,105
0,648 -0,030
* * * * * * * * * * * *
1,00 0,69 1,00 0,69 1,00 1,00 0,75 1,00 1,00 1,00 0,69 0,69
74,3
= = = = = = = = = = = =
74,3 74,3
74,3 74,3
860,9
Transmission Heat Losses QT
type MAIN LEVEL RAIN WATER
amount
toilet
3
debiet Q l/sec 0,1
Total 3 Gelijktijdigheid debiet Q (l/sec) diameter
total l/sec 0,3
total WW l/sec 0
0,3 0,71 0,213 1,65
m²
horizontal roof surface (m²) 444 cm
orientation coeff. 1
angle (°) 0
roofcover 0,8
filter coeff. 0,9
81%
eff
Effective Heat Recovery Efficiency
toevoerend
of Heat Recovery
0%
SHX
Efficiency of Subsoil Heat Exchanger
nV,system
0,105
Ventilation Heat Losses QV
VV
nV
m³
1/h
*
795
cAir
*
kWh/a
FECALIËN amount 3
value 2
Total factor Wd (l/s) nominal diameter COLLECTOR VERTICAL
type toilet
amount 3
value 2
Total factor Wd (l/s) nominal diameter
Total (l/s) 6 0,5 1,22 110 Total (l/s) 6 0,5 1,22 110
DRAIN type HORIZONTAL COLLECTOR
sink toilets sink kitchen
amount 3 2 Total 5
value 0,5 0,8
Total (l/s) 1,5 1,6 3,1
usage ( l/ usage)
persons/ day
frequency
usage/day
yearly usage
toilet use small toilet use big VERTICAL GARDENING TOTAL
3 6
20 20
3 1
180 120 150 450
65700 43800 54750 164250 164,25
mm
TOTAL RAINWATER USAGE RELATIVE RAINWATER USAGE
450 140,7
1. 2. 3. 4.
L/ year m³/ year
5.
Orientation of the Area
Reduction Factor See Windows Sheet
g-Value (perp. radiation)
North East South West Horizontal
0,54 0,58 0,56 0,32 0,63
0,50 0,00 0,50 0,50 0,50
* * * * *
*
1124
)
Radiation HP
m²
kWh/(m²a)
* * * * *
kh/d
Internal Heat Gains QI
Spec. Power qI
d/a
*
0,024
209
2,01
mm
LEEGSTAND relative rainwater usage LEEGSTAND relative volume rainwater tank rainwater tank volume
Ratio of Free Heat to Losses
140,7 7 3 9591
= = = = =
0,058 kWh/a
kWh/(m²a)
1124
4,0
kWh/a
kWh/(m²a)
11860
41,8
suggestion:
50 m² * 0,2 m=
Heat Gains QG
SPECIFIC
ANNUAL
HEATING
Ukkel Building: Workshop + info point
20,0 °C Building Type/Use: non-residential Treated Floor Area ATFA: 284,0 m²
Climate:
10 m³ Building Element
Temperature Zone
Exterior Wall - Ambient Exterior Wall - Ground Roof/Ceiling - Ambient Floor slab / basement ceiling unheated basement Windows Exterior Door Exterior TB (length/m) Perimeter TB (length/m) Ground TB (length/m)
A B A B A A X A A A P B
Area
U-Value
m²
W/(m²K)
155,0 31,0
115,4 116,9
* * * * * * * * * * * *
Temp. Factor ft
284,0
=
kKh/a
0,101
* * * * * * * * * * * *
0,094 0,105
0,648 -0,030
* * * * * * * * * * * *
1,00 0,69 1,00 0,69 1,00 1,00 0,75 1,00 1,00 1,00 0,69 0,69
74,3
= = = = = = = = = = = =
74,3 74,3
74,3 74,3
860,9
m²
eff
of Heat Recovery
SHX
Efficiency of Subsoil Heat Exchanger
0%
nV,system
0,105
Energetically Effective Air Exchange nV VV m³
Ventilation Heat Losses QV
795
* (1 -
*
Orientation of the Area 1. 2. 3. 4. 5.
North East South West Horizontal
37,8
10736
Reduction Factor See Windows Sheet
g-Value
0,54 0,58 0,56 0,32 0,63
* * * * *
=
kWh/a
+
=
1124
=
74,3
)
=
1,0
Area
Radiation HP
m²
kWh/(m²a)
0,50 0,00 0,50 0,50 0,50
* * * * *
27,00 4,40 48,60 32,16 3,24
* * * * *
163 197 314 254 317
Spec. Power qI
ATFA
d/a
W/m²
m²
*
kWh/a
kWh/(m²a)
1124
4,0
kWh/a
kWh/(m²a)
11860
41,8
35 30 25
209
*
2,01
*
284,0
= = = = =
15
Losses Gains Heating energy balance Exterior Wall - Ambient 14,7234373
7119
Roof/Ceiling - Ambient
3,81903529
Floor slab / basement ceiling
0,58811509
4,0
Ventilation
3,95818713
10,2516636 10,0951487 Effective 25,0668423
Thermal bridge credit
0,91126837
Select:
kWh/a
kWh/(m²a)
10,1
QS + QI = QF / QL =
9986
=
Total Heat Losses QL Losses
35,2
4. 5. 6.
10,0951487 25,0668423
Thermal bridge credit
0,91126837
North East South West Horizontal Sum Opaque Areas
7119
25,1
kWh/a
kWh/(m²a)
2867
10,1
46,324923
8949
31,5
kWh/a
kWh/(m²a)
2911
10
Internal Heat Gains QI
10,1
Exterior Wall - Ground
0,0
Gt
W/K
kKh/a
Exterior Wall - Ambient
0,9
Gains
52,5
* *
103 105
Thermal Bridge Heat Loss
Apr 12,1 12,0 1838 39 372 7,9 212 0 577 303 57 13 411 5,5
May 9,2 10,6 1393 35 629 7,2 286 0 681 385 79 18 425 6,6
Jun 7,3 8,3 1117 27 720 6,6 298 0 644 378 79 19 411 6,4
Jul 5,7 6,3 871 21 880 6,2 298 0 681 370 80 19 425 6,6
Aug 5,9 5,4 904 18 865 6,3 255 0 658 347 69 16 425 6,2
Sep 8,2 5,8 1245 19 658 6,8 178 0 532 256 47 11 411 5,1
Oct 10,9 7,1 1660 23 499 7,7 116 0 416 177 30 7 425 4,1
Nov 14,0 8,6 2123 28 234 8,4 54 0 242 91 14 3 411 2,9
Dec 16,0 10,9 2432 36 126 9,1 35 0 171 60 9 2 425 2,5
Year 136 113 20612 370 5366 92,8 1998 0 5601 2785 533 126 5001 56,5
Utilisation Factor Losses
29%
39%
52%
69%
84%
88%
82%
88%
73%
53%
34%
27%
58%
0 0,0
0 0,0
4 0,0
30 0,1
142 0,5
192 0,7
417 1,5
192 0,7
40 0,1
4 0,0
0 0,0
0 0,0
1021 3,6
Useful Cooling Energy Dem Spec. Cooling Demand
=
795
kWh/a
kWh/(m²a)
= =
1013 0
3,6 0,0
Roof/Ceiling - Ambient
1,36
1/h
22,0
°C
kWh/a
kWh/(m²a)
5172
18,2
kWh/a
kWh/(m²a)
6185
21,8
kWh/a
kWh/(m²a)
21092
74,3
Exterior Wall - Ground QL,ext
10,3
Exterior Wall - Ambient QL,ground
kWh/a Thermal Bridge Heat kWh/a Loss
1013
+
0
0,9
Gains g-Value
+
5172
QT
QV
kWh/a
kWh/a
14907
Reduction Factor
QL,summer
kWh/a
+
Area
6185
=
=
0,31 0,61 0,30 0,25 0,35
* * * * *
0,50 0,00 0,50 0,50 0,50
kWh/(m²a)
* * * * *
462 578 707 654 913
Sum Spec. Loads Solar + Internal
8 7 6 5 4 3 2 1 0
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
kWh/a
= = = = =
1918 0 5211 2646 513 121
Total
0,024
*
Length Heat. Period
Spec. Power qI
ATFA
d/a
W/m²
m²
303
*
2,0
*
284,0
=
Month Days
10409
36,7
kWh/a
kWh/(m²a)
4151
14,6
kWh/a
kWh/(m²a)
51,3
QS + QI
=
14560
QL / QF
=
1,45
G * QL
QF - QV,n
=
64%
=
13539
47,7
kWh/a
kWh/(m²a)
1021
4
=
15
(Yes/No)
Requirement met?
yes
8,2
Temperature Amplitude Summer
kWh/(m²a)
Utilisation Factor Heat Losses G
HPP, Cooling
Sum Spec. Heat Losses
kWh/(m²a)
1
K 2
3
4
5
6
7
8
9
10
11
12 Annual Total
31
28
31
30
31
30
31
31
30
31
30
31
Ambient Temp.
2,50
2,70
5,72
8,28
12,75
14,87
17,37
17,07
13,69
10,39
5,68
3,56
9,6
North Radiation
10,6
19,5
32,9
49,4
66,7
69,7
71,2
59,9
41,9
27,5
12,9
8,7
471
East Radiation
14,6
26,6
45,2
69,8
93,7
94,0
98,8
85,1
57,4
38,2
17,9
12,3
654
South Radiation West Radiation Hori. Radiation
31,1 15,5 20,0
44,0 26,1 36,9
64,5 47,1 66,2
78,6 70,7 102,1
91,2 92,6 139,8
85,8 92,6 141,0
89,8 89,6 141,8
88,5 81,9 123,4
73,3 58,0 84,2
57,9 38,2 53,5
34,1 18,3 24,3
24,1 11,6 15,6
763 642 949
-7,50
-7,30
-4,28
-1,72
2,75
4,87
7,37
7,07
3,69
0,39
-4,32
-6,44
-0,4
8,05
6,76
6,86
8,30
10,72
13,45
16,47
17,76
16,96
15,52
13,10
10,37
12,1
Tsky
kKh kWh kWh kWh kWh/m² kWh kWh kWh kWh kWh kWh kWh kWh/m²
kWh/m²
9
Global Radiation
m²
27,0 4,4 48,6 32,2 3,2
* * * * *
Ratio of Losses to Free Heat Gains
yes
Spec. Cooling Demand
10
kKh
kWh
(perp. radiation)
Sum Heat Loads QF
Ventilation
Roof/Ceiling - Ambient
Losses
14907
Heating Degree Hours - Ex Heating Degree Hours - G Losses - Exterior Losses - Ground Losses Summer Ventilatio Sum Spec. Heat Losses Solar Load North Solar Load East Solar Load South Solar Load West Solar Load Horiz. Solar Load Opaque Internal Heat Gains Sum Spec. Loads Solar +
Mar 14,4 13,5 2189 44 244 8,7 141 0 464 213 37 9 425 4,5
Ground Temp
not useful heat gains
unheated basement
10,3
kWh/(m²a)
m²
Feb 15,0 12,3 2286 40 71 8,4 81 0 315 125 21 5 384 3,3
m³
Minimum Acceptable Indoor Temperatu
kh/d
Thermal bridge credit
Floor slab / basement ceiling
0
2,80
Heat Transfer Coef Ventilation
10,1
kWh/(m²a)
Annual Heating Demand
Windows
10 5
1182 0 4287 1327 323
46,324923
0,0
0,0
*
Available Solar Heat Gains QS
90%
–––––––––––
(for window ventilation: at 1 K temperature difference indoor - outdoor)
0,0
3.
-358
Mechanical, Automatically Controlled Ventilation
Ventilation Heat Losses QV
internal gains
internal gains passive solar gains
0,6 3,8
284
not useful heat gains
m
unheated basement
Heat Losses Summer Ventilation
1.
7690
Corresponding Air Change Rate
(Yes/No)
Requirement met?
Total
1500 294
Window Night Ventilation, Manual
0,0
kWh/(m²a)
0,84
103
Floor slab / basement ceiling
10
Floor Area
5782
°C
284
Building Type/Use: non-residential
Jan 16,8 12,6 2553 41 67 9,4 44 0 218 79 11 3 425 2,8
Windows
Additional Summer Ventilation
0,0 0,6 X 3,8
103
Thermalm²bridge credit
9,9 Exterior0,0 Door
Ground
passive solar gains
25,1 10,2516636
Cross check sum
46,324923 Exterior
20
per m² Treated
25
Treated Floor Area ATFA:
Interior Temperature:
Building: Workshop + info point
m²
Annual AHeating Demand Clear Room Height TFA
Air Volume VV
46,324923
103 90
internal gains
internal gains passive solar gains Cross check sum
= = = = = = = = = = = =
passive solar gains
3,95818713
19,6
25
0
2867
-0,030
Annual Heating Demand
Limiting Value
Annual Heating Demand
19,6
3,65267499
Climate: Ukkel
°C
kWh/a
103
kWh/(m²*a)
19,5834732
3,65267499
116,9
0,648
Useful Cooling Demand QK
Exterior Door Thermal0,0 Bridge Heat Loss not useful heat gains
115,4 19,5834732
0,094 0,105
kKh/a
* * * * * * * * * * * *
kWh/a
3,7
Windows
3,81903529 155,0 0,58811509 31,0
1,00 1,00 1,00 1,00 1,00 1,00 0,75 1,00 1,00 1,00 1,00 1,00
* * * * * * * * * * * *
284,0
Gt
Mon. Red. Fac.
W/(m²K)
25,1 Transmission Losses QT (Negative: Heat Loads)
30
5
25,1
0,101
Useful Heat Losses QV,n
Exterior Wall - Ground
14,7
kWh/(m²a)
=
Ventilation
Exterior Door
20
kWh/a
Total
0,024
0,058
40
(perp. radiation)
Length Heat. Period kh/d
795,2
1/h
0,038
Available Solar Heat Gains QS
Internal Heat Gains QI
kWh/(m²a)
Reduction Factor Night/Weekend Saving
QV
(
-0,91 0,00
10736
kKh/a
*
0,33
kWh/a
19,58
-259
Gt
Wh/(m³K)
0,058 QT
Total Heat Losses QL
)+
cAir
1/h
*
0,81
5562
–––––––––––––-
1/h
nV
35
12.
unheated basement
nV,Res
HR
1/h
50
3,82 0,59
m³
2,80
11.
4,0
Data for heating balance diagram
45
m
*
284,0
81%
14,72
Clear Room Height
ATFA
Effective Heat Recovery Efficiency
4181 1085 167
Total
Effective Air Volume, VV
kWh/a
15
10.
2.
QL - QG =
Limiting Value
9.
* * * * * * * * * * * *
of the Area
kWh/(m²a) per m² Treated Floor Area
Gt
Transmission Heat Losses QT
Ventilation System:
Annual Heating Demand QH
40
8.
m²
U-Value
559,5
25
Building Type/Use: non-residential
Treated Floor Area ATFA:
Gains
3,7
Orientation
m²
*
G * QF
Interior Temperature:
559,5
Total of All Building Envelope Areas
DEMAND
6.
14,7
1182 0 4287 1327 323
kWh/a
Passive House verification
5.
15
kWh/(m²a)
(1 - ( QF / QL )5 ) / (1 - ( QF / QL )6 ) =
Utilisation Factor Heat Gains G
L/ day/ 100 m² % m³/ 100 m² Liter
37,8
795,2
kWh/a
Free Heat QF
4.
ATFA
W/m²
*
2.
Losses Area
Exterior Wall - Ambient A Exterior Wall - Ground Exterior Wall - Ground B Roof/Ceiling --Ambient Roof/Ceiling Ambient A Floor slab / basement ceiling Floor slab / basement ceil B A A unheated basement unheated basement X Windows A Windows Exterior A Exterior Door Door Exterior TB (length/m) A Thermal0,0 Bridge Heat Loss Perimeter (length/m) P not usefulTB heat gains Ground TB (length/m) B
kWh/a
163 197 314 254 317
Total Length Heat. Period
L/ day L/ day/100m²
=
1,0
Area
27,00 4,40 48,60 32,16 3,24
* * * * *
=
Reduction Factor Night/Weekend Saving
kWh/a
+
=
74,3
Available Solar Heat Gains QS
Heat flows [kWh/(m²a)]
COLLECTOR HORIZONTAL
type toilet
Type
10736
10736
Gt
QV
(
0,038
1.
3.
kWh/(m²a)
1/h
kKh/a
0,33
QT
Total Heat Losses QL
)+
0,81 Wh/(m³K)
0,058
RAIN WATER USAGE
=
1/h
* (1 -
50
-0,91 0,00
m³
2,80
Building Element
19,58
nV,Res
HR
1/h
Energetically Effective Air Exchange nV
319,7
–––––––––––––-
m
*
284,0
Effective Air Volume, VV
Heating energy balance Exterior Wall - Ambient 14,7234373 Temperature Zone
7.
-259
Interior Temperature Summer:
Wh/(m²K) (Enter in Summer worksheet.)
Data for heating balance diagram
3,82 0,59
Clear Room Height
ATFA Ventilation System:
14,72
60
Spec. Capacity:
45
Total
Toevoerend ROOF SURFACE
4181
5562
(This page displays the sums of the monthly method over the cooling period))
Climate: Ukkel
kWh/a
1085 167
Passive House verification SPECIFIC USEFUL COOLING DEMAND MONTHLY METHOD
Building: Workshop + info point
per m² Treated Floor Area
Gt
Temp. Factor ft
0,101
20,0 °C non-residential 284,0 m²
Heat flows [kWh/(m²a)]
SPECIFIC
Passive House verification SPECIFIC USEFUL COOLING DEMAND MONTHLY METHOD
Specific losses, loads, useful cooling demand [kWh/(m² month)]
Passive House verification
WAT E R
365
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
Passive House verification
Passive House verification Climate: Ukkel
°C 20 Building Type/Use: non-residential Treated Floor Area ATFA: m² 284,0
Interior Temperature:
Building: Workshop + info point
60
Spec. Capacity: Overheating limit:
25
Wh/K pro m² TFA °C
Area
Building Element 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
Temperature Zone
Exterior Wall - Ambien Exterior Wall - Ground Roof/Ceiling - Ambient Floor slab / basement unheated basement Windows Exterior Door Exterior TB (length/m) Perimeter TB (length/m Ground TB (length/m)
A B A B A A X A A A P B
m²
559,5 155,0 31,0
115,4 116,9
Red. Factor fT,Summer
U-Value
0,094 0,105
0,648 -0,030
= = = = = = = = = = = =
1,00 1,00 1,00 1,00 1,00 1,00 0,75 1,00 1,00 1,00 1,00 1,00
Summer Ventilation
1/h
1/h
+
X
Angle Factor
4. 5. 6
* * * * *
142,2
W/K
3,3
W/K
m²
m
*
=
795
0,00
0,000
* (1 -
)
+
1/h
0,038
=
0,038
Orientation Orientation of the of Area the Area
*
0,038
*
0,33
=
9,9
W/K
795
*
0,000
*
0,33
=
0,0
W/K
1,36
1/h
g-Value Dirt 0,95 0,95 0,95 0,95 0,95
8,2
K
Area
78 78 78 78 54 54
78 78 78 78
kWh/a kWh/a
= = = = = = = = = = = =
= = = = = = = = = = = =
0% 0% 0% 0%
0,50 0,00 0,50 0,50 0,50
m²
* * * * *
27,0 4,4 48,6 32,2 3,2
* * * * *
82% 71% 82% 76% 78%
Internal Heat Gains QI
Specif. Power qI
ATFA
W/m²
m²
2,01
Frequency of Overheating hmax
4,2%
*
284
22,0
m
kWh/(m²a) kWh/(m²a)
11313 11313
39,8 39,8
1000
Wh/(m²K)
/(
60
m³
2,80 = = * 2,80 nV,Res nV,Res
1/h 1/h
kKh/akKh/a
1/h 1/h
0,058 0,058 0,000 0,000 kWh/a kWh/a
kWh/(m²a) kWh/(m²a)
*
*
0,058 0,058
*
*
0,330,33
*
*
78 78
= =
1185 1185
4,2 4,2
795795
*
*
0,000 0,000
*
*
0,330,33
*
*
55 55
= =
0 0
0,0 0,0
Total Total
(
(
Reduction Reduction Factor Factor SeeSee Windows Windows worksheet worksheet
0,54 0,54 0,58 0,58 0,56 0,56 0,32 0,32 0,63 0,63
* * * * *
* * * * *
11313 11313
QV QV kWh/a kWh/a
+ +
g-Value g-Value
1185 1185 ) *) * 1,0 1,0 AreaArea
= =
1185 1185
4,2 4,2
kWh/a kWh/a
kWh/(m²a) kWh/(m²a)
12497 12497
44,0 44,0
Global Global Radiation Radiation
(perp.(perp. radiation) radiation)
0,50 0,50 0,00 0,00 0,50 0,50 0,50 0,50 0,50 0,50
m²
* * * * *
* * * * *
m²
27,0 27,0 4,44,4 48,6 48,6 32,2 32,2 3,23,2
kWh/(m²a) kWh/(m²a)
* * * * *
* * * * *
208208 250250 398398 323323 403403
kWh/a kWh/a
= = = = =
= = = = =
Length Length Heat. Heat. Period Period Spec. Spec. Power Power qI qI kh/d kh/d
Internal Internal Heat Heat Gains Gains QI QI
AprApr 8,5 8,5 8,4 8,4 1335 1335 28 28 4,8 4,8 371371 0 0 1069 1069 391391 104104 13 13 411411 8,3 8,3 57% 57% 9 9
MayMay 5,4 5,4 6,9 6,9 856856 23 23 3,1 3,1 500500 0 0 1261 1261 497497 143143 18 18 425425 10,0 10,0 31% 31% 0 0
JunJun 3,7 3,7 4,7 4,7 589589 15 15 2,1 2,1 520520 0 0 1194 1194 489489 144144 19 19 411411 9,8 9,8 22% 22% 0 0
Jul Jul 2,0 2,0 2,6 2,6 316316 9 9 1,1 1,1 520520 0 0 1263 1263 478478 145145 19 19 425425 10,0 10,0 11% 11% 0 0
AugAug 2,2 2,2 1,7 1,7 350350 5 5 1,3 1,3 445445 0 0 1220 1220 448448 126126 16 16 425425 9,4 9,4 13% 13% 0 0
SepSep 4,6 4,6 2,2 2,2 722722 7 7 2,6 2,6 311311 0 0 986986 331331 86 86 11 11 411411 7,5 7,5 34% 34% 0 0
OctOct 7,2 7,2 3,3 3,3 1132 1132 11 11 4,0 4,0 202202 0 0 771771 229229 55 55 7 7 425425 5,9 5,9 67% 67% 19 19
NovNov 10,4 10,4 5,0 5,0 1630 1630 16 16 5,8 5,8 94 94 0 0 448448 118118 25 25 3 3 411411 3,9 3,9 98% 98% 564564
DecDec 12,3 12,3 7,2 7,2 1931 1931 23 23 6,9 6,9 62 62 0 0 318318 77 77 16 16 2 2 425425 3,2 3,2 100% 100% 1057 1057
Year Year 92 92 kKhkKh 70 70 kKhkKh 14433kWhkWh 14433 227227 kWhkWh kWh/m² 51,6 kWh/m² 51,6 3490 kWhkWh 3490 0 0 kWhkWh 10377 10377kWhkWh 3597 kWhkWh 3597 968968 kWhkWh 126126 kWhkWh 5001 5001 kWhkWh kWh/m² 83,0 kWh/m² 83,0 48% 48% 3419 3419 kWhkWh
2,0 2,0
0,5 0,5
0,0 0,0
0,0 0,0
0,0 0,0
0,0 0,0
0,0 0,0
0,0 0,0
0,1 0,1
2,0 2,0
3,7 3,7
kWh/m² 12,0 12,0 kWh/m²
Sum Sum Spec. Spec. Gains Gains Solar Solar + Internal + Internal
1505 1505 0 0 5440 5440 1685 1685 411411 55 55 9095 9095
d/a d/a
0,024 0,024 *
*
242242
W/m²W/m²
*
*
2,02,0 *
ATFAATFA m²
=
FreeFree HeatHeat QF QF
4,2 0,0 7,4 4,0 0,6
0,3
0,06
W
W/m²
571
2,0
5. OSB -plaat 6. Eurothane G
7. Plaster insulating
m²
kWh/a kWh/a
kWh/(m²a) kWh/(m²a)
3315 3315
11,7 11,7
kWh/a kWh/a
kWh/(m²a) kWh/(m²a)
Month Month
12411 12411
43,7 43,7
Days Days
2
8 8
1. bitumenmembraam 2.
2 2
3. EPS 4. OSB -plaat
FebFeb
MarMar
AprApr
MayMay
JunJun
Jul Jul
AugAug
SepSep
OctOct
NovNov
5. cellulose 6. OSB -plaat
DecDec
7. regelwerk hout 5 8. gipskartonplaat 3419 3419 2911 2911
12,0 12,0 10,3 10,3
kWh/a kWh/a kWh/a kWh/a
284
Percentage of Sec. 3
11. 12.
70
13.
1
1
31 31
2
2
28 28
3
3
31 31
4
4
5
5
6
6
7
7
8
8
9
9
10 10
11 11
Heating Heating Period Period 12 12 Annual Annual TotalTotal Method Method 365 365
Radiation: North
°C
Temperature Zone
Exterior Wall - Ambient Exterior Wall - Ground Roof/Ceiling - Thickness Ambient Air Layer Floor slab / basement ceiling
Direction of
Heat Flow
unheated basement (check only one Windows Exterior Door
field)
Exterior TB (length/m)
Perimeter TB (length/m) Ground TB (length/m)
5
°C
East
South
West
Horizontal
5
20
10
10
0,107
interior Rsi :
[W/(mK)]
0,230
A B 30 A B A AX X A A A P B I
Area
U-Value
m²
W/(m²K)
Factor Always 1 (except "X")
559,5
0,101 * * 155,0 0,094 mm * 31,0 0,105 * Upwards * Horizontal * * Downwards 115,4 0,648 * * 116,9 -0,030 * * * *
* * * *h a * * hr * * * * * * *
House/DU Partition Wall
0,130
cm
0,130
Air Layer Thickness Direction of Efficiency of Heat Recovery of the Heat Exchanger
30 30
31 31
30 30
31 31
31 31
30 30
31 31
30 30
31 31
8,288,28
12,75 12,75
14,87 14,87
17,37 17,37
17,07 17,07
13,69 13,69
10,39 10,39
5,685,68
3,563,56
9,6 9,6
5,2 5,2
49,449,4
66,766,7
69,769,7
71,271,2
59,959,9
41,941,9
27,527,5
12,912,9
8,7 8,7
471 471
209 209 163 163
= =
73% 73% kWh/a kWh/a
kWh/(m²a) kWh/(m²a)
EastEast Radiation Radiation South South Radiation Radiation West West Radiation Radiation
14,614,6 31,131,1 15,515,5
26,626,6 44,044,0 26,126,1
45,245,2 64,564,5 47,147,1
69,869,8 78,678,6 70,770,7
93,793,7 91,291,2 92,692,6
94,094,0 85,885,8 92,692,6
98,898,8 89,889,8 89,689,6
85,185,1 88,588,5 81,981,9
57,457,4 73,373,3 58,058,0
38,238,2 57,957,9 38,238,2
17,917,9 34,134,1 18,318,3
12,312,3 24,124,1 11,611,6
654 654 763 763 642 642
197 197 314 314 254 254
Heat Heat Gains Gains QGQG
G *G Q*F QF = =
9078 9078
32,0 32,0
Hori.Hori. Radiation Radiation
20,020,0
36,936,9
66,266,2
102,1 102,1
139,8 139,8
141,0 141,0
141,8 141,8
123,4 123,4
84,284,2
53,553,5
24,324,3
15,615,6
949 949
317 317
kWh/a kWh/a
kWh/(m²a) kWh/(m²a)
TskyTsky Ground Ground Temp Temp
-7,50 -7,50 8,058,05
-7,30 -7,30 6,766,76
-4,28 -4,28 6,866,86
-1,72 -1,72 8,308,30
2,752,75 10,72 10,72
4,874,87 13,45 13,45
7,377,37 16,47 16,47
7,077,07 17,76 17,76
3,693,69 16,96 16,96
0,390,39 15,52 15,52
-4,32 -4,32 13,10 13,10
-6,44 -6,44 10,37 10,37
-0,4-0,4 12,112,1
9,8 9,8
Annual Annual Heating Heating Demand Demand QHQH
QL Q- L Q-G QG = =
[W/(mK)]
Area section 3 (optional)
Area section 1
1. PIR dekvloer 2. gipskartonplaat 3. gespoten pur 4. OSB -plaat
5. cellulose 6. houtvezel Celit 4D 7. regelwerk hout 6
[W/(mK)]
0,023
Percentage of Sec. 3
0,094
0,039
K
23,1 13,2 13,2 3,0
0,16
Clear Room Height m
284,0
m³
1/h
nL
nL
Downwards 1/h 0,114
ha
nV ,Res (Heating Load)
Horizontal *
2,80
*
22,2 13,2 13,2 3,0
Total
=
W/(mK)
22,2 22,2 22,2 22,2 22,2
W
1299 337 43
1728 -80
or
hr +
or or or or or or or or or or or or or
0,81
*(1-
4,17 W/(m²K)
0,33
Efficiency SHX
23,1
0%
0,16
Supply Air per m² Living Area
m³/h
1,50 m³/h/m²
m³/h
324 43
1661 -77
A B D B A A X A A A A A I
Windows Exterior Door Exterior thermal bridges (Length/m) Perimeter Thermal Bridges (Length/m) Floor Slab Thermal Bridges (Length/m) House/DU Partition Wall
m²
65,0 0,0 88,0 0,0
48,0
5,0 20,0
0,81
or
0,10 0,09 0,11
0,65
K
or
691
=
3. South 4. West
5. Horizontal
15
g-Value
m²
27,0 4,4 48,6 32,2 3,2
2. East
350
Reduction Factor
(perp. radiation)
* * * * *
0,5 0,0 0,5 0,5 0,5
0%
2
1/h
or
0,114 PV 2 W
or
Transmission Heat Losses Concentrated leakages Insulation to other rooms, better R = 1.5 m²K/W open staircase TOTAL of the Risk Summands Interior doors predominantly closed
0 1 0 0 1
PT,Room W PSupply Air W
1061
1386
Ratio
Risk Summand
0,77
-0,23 0,00 0,50
( 2 = no thermal contact except door)
0,00 0,00 0,27 Risk Factor
0,5 0,6 0,6 0,3 0,6
11 8 28 19 20
* * * * *
W/m² or or or or or
cm
W/m²
1,6
[W/(mK)]
41 0 247 68 10
Total
=
575
or
367
PI 1
W
or
PS + PI
=
1029
PL - PG
=
2989
=
= 48mm°C
48 Upwards °C
Air Temperature Without Heating ha Supply 0,8333 W/(m²K)
hr 4,17 W/(m²K) Heat Flow Horizontal For Comparison: Heating Load Transportable by Supply Air. PSupply Air,Max X (check only one field) Downwards
0,15
Supply,Min W/(mK) 886
=
W
n? Total
53,0
specific:
W/(m²K) cm
FINAL ZIB FILE CALCULTIONS PHPP.xls PHPP, U-Values
n?
Heat Flow
Heat Flow
n?
X
mm Upwards
ha
1,25 W/(m²K)
Horizontal
hr
FINAL ZIB FILE CALCULTIONS PHPP.xls 4,17 W/(m²K)
0,16
W/(mK)
(check only one field) Secondary Calculation: EquivalentDownwards Thermal Conductivity of Still Air Spaces
Air Layer Thickness Direction of cm
30
(check only one field)
30
X
mm Upwards Horizontal Downwards
ha 0,8333 W/(m²K) hr 4,17 W/(m²K)
W
10,7
W/m²
3,1 (Yes/No)
cm
Air Layer Thickness Direction of
3042
°C
Secondary Calculation: Equivalent Thermal Conductivity of Still Air Spaces
5
or
3042
15,7
15
Percentage of Sec. 3
821
15,6
350 30
W
or
°C
Supply Air Heating Sufficient?
15
0,15
454 PG 2
W
30 Air Layer Thickness Input Max. Supply Air Temperature Max. SupplyDirection Air Temperature of Supply,Max
100
he right
0,078
PI 2
W
454
=
Heating Load PH
Thickness [mm]
ers and
Percentage of Sec. 2
W
or or or or or
Heating power (gains) PG
5
0,286
PS 2
W
284
Secondary Calculation: Equivalent Thermal Conductivity of Still Air Spaces
3864
77 0 378 100 20
PG 1
W/(m²K) n?
[W/(mK)]
Area section 3 (optional)
or
= = = = =
m²
*
W
6 3 18 13 10
ATFA
Spec. Power
Internal heating power PI
PL 2
W
PS 1
W/(mK)
No
2,00
664
PL 1 4019
=
Radiation 2
W/m²
(see Windows worksheet)
* * * * *
12
50,0
Radiation 1
Solar heating power PS
30 Total
Area
1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Room Trans. Loss W
K
* * * * * * * * * * * * *
23,1 13,2 23,1 13,2 23,1 23,1 23,1 23,1 23,1 23,1 23,1 23,1 3,0
= = = = = = = = = = = = =
=
Room is on the ground floor.
W
22,2
* * * * * * * * * * * * *
3200
SHX
PV 1
TempDiff 2
or
1
0,114
)=
Always 1 (except "X")
W/(m²K)
* * * * * * * * * * * * *
151 191 0
719
–––––––––––-
or
W/(mK) 1/h
HR
K
*
m²
Temperature Zone
Aboveground Exterior Wall Belowground Exterior Wall Roof/Ceiling Underground Floor Slab
Enter: 1 = Yes 0 = No SHX
TempDiff 1
Wh/(m³K)
*
Building Element
1249
795
HR
cAir
1/h
0,114
=
1,25 W/(m²K) 1/h
0,105
3328
-67
m³
0%
nV,system
100 150
PT 2
W
= = = = = = = = = = = = =
22,2 13,2 22,2 13,2
Specific Heating Load PH / ATFA
U-Value:
PHPP, U-Values
1,00 1,00 1,00 1,00
Heat Recovery Efficiency SHX
0,094
the Area 1. North
0,17 0,04
0,149
0,160
0,75 1,00 1,00
23,1 23,1 23,1 23,1 23,1
K
or or or or or or or or or or or or or
PT + PV
10
hout FJI beam
81%
mm Upwards
Orientation
x
0,028
0,048
VL
(check only one field)
5
0,290 0,130
Heat Flow
Ventilation Heating Load PV
Interior insulationn?
Area section 2 (optional)
1,00
4,17 1,00
PT 1
TempDiff 2
Thickness [mm]
cm
Floor
exterior Rse:
X
HR
Energetically Effective Air Exchange nV
18
0,286
interior Rsi :
1,25
23,1 13,2 23,1 13,2
1
Room floor area
K
* * * * W/(m²K) * W/(m²K) * * * * * * * *
( 1= Yes / 0 = No)
Building Satisfies Passive House Criteria
8,9%
Total Room Risk
Percentage of Sec. 2
Heat transfer resistance [m²K/W]
°C
Planned ambient air quantity for the room
Total Heating Load PL
Assembly No. Building assembly description
3
30
795,2
0,177
0,290
1,00 1,00 1,00 1,00
m²
Effective Air Volume, VV
70
hout FJI beam
20
Planned ambient air quantities for the remaining rooms
TempDiff 1
ATFA
W/(m²K)
0,036
0,039
Interior Temperature:
m²
–––––––––––––-
Ventilation System:
0,10 0,04 [W/(mK)]
Area section 2 (optional)
284,0
Workshop room
W/m²
Transmission Heat Losses PT
Total
30,0
Risk Determination of Group Heating for a Critical Room
Secondary Calculation: Equivalent Thermal Conductivity of Still Air Spaces
x
2,6%
0,0
10.
Interior insulationn?
U-Value:
8. afwerking hout
)=
9.
10
kWh/(m²a) kWh/(m²a) Reference Reference to habitable to habitable areaarea
m²
*
8.
15
0,100
2,6%
5,725,72
yesyes
7.
140
0,023
kWh/(m²a) kWh/(m²a) Reference Reference to habitable to habitable areaarea
32,932,9
Requirement Requirement met? met?
30
n?
Roof
Area section 1
4 4
2,702,70
12 12
6.
18
0,286
exterior Rse :
19,519,5
15 15
hout FJI beam
5.
17
he right
6 6
2,502,50
Limiting Limiting Value Value
0,023
0,130
4.
Thickness [mm]
ers and
0,158
0,048
Heat transfer resistance [m²K/W]
10,610,6
3419 3419
[W/(mK)]
Area section 3 (optional)
2,6%
Ambient Temp. Ambient Temp.
(Yes/No) (Yes/No)
2.
[W/(mK)]
Area section 2 (optional)
Sum Sum Spec. Spec. Losses Losses
North North Radiation Radiation
kWh/(m²*a) kWh/(m²*a)
0,160
6,8
Building Element 1.
Assembly No. Building assembly description
JanJan
Treated Floor Area ATFA :
8.
Annual Annual Heating Heating Demand: Demand: Comparison Comparison
* 284,0 284,0 = =
m²/m²
16,4
3. houtvezel celit 4D 4. Eurowall
0,99 0,99
Utilisation Utilisation Factor Factor HeatHeat Gains Gains G G
[W/(mK)]
Area section 1
-2,2
Ground Design Temp.
3.
1. hout gevel 2. regelwerk hout
LOAD Building Type/Use: non-residential
Climate (HL): Ukkel
Weather Condition 2:
0,13 0,04
U-Value:
PHPP, PHPP, Heating Heating Period Period Method Method
QS Q+S Q +I Q=I =
interior Rsi : exterior Rse :
QF Q / FQ/L Q=L =
RatioRatio FreeFree HeatHeat to Losses to Losses
x
Heat transfer resistance [m²K/W]
HEATING
Secondary Calculation: Equivalent Thermal -3,1 10 10Conductivity 30 15 of Still 20 Air Weather Condition 1: °C W/m² Spaces
Interior insulationn?
Exterior wall
SPACE
Building: Workshop + info point
still air spaces -> Secondary calculation to thhe right
10 10
0 0
32,0 32,0
SPECIFIC
Design Temperature
1
kWh/(m²a) kWh/(m²a) Total Total
Workshop + info point
Assembly No. Building assembly description
MarMar 10,7 10,7 9,8 9,8 1679 1679 32 32 6,0 6,0 246246 0 0 860860 275275 68 68 9 9 425425 6,6 6,6 84% 84% 134134
Spec. Spec. Heating Heating Demand Demand
Passive House verification
ELEMENTS Wedge shaped building element layeers and
12 12
795795
Reduction Reduction Factor Factor Night/Weekend Night/Weekend Saving Saving
BUILDING
Percentage of Sec. 2
Gt Gt
Wh/(m³K) Wh/(m³K)
m²
FebFeb 11,7 11,7 8,9 8,9 1836 1836 29 29 6,6 6,6 142142 0 0 583583 162162 38 38 5 5 384384 4,6 4,6 98% 98% 580580
795795
1/h 1/h
°C
m²
OF
m³
nV,equi,fraction nV,equi,fraction
0,81 )+ )+ 0,038 0,038 = = )*(1)*(1- 0,81 0,81 ) ) *(1-*(1- 0,81 = = cAir cAir
3,7 3,7
°C
non-residential non-residential Building Building Type/Use: Type/Use:
Treated Treated FloorFloor AreaArea ATFAA : TFA : 284284
ATFA
Spec. Capacity 1/k
*
-273 -273
JanJan Heating Heating Degree Degree Hours Hours - E - E 13,1 13,1 Degree Degree Hours Hours - G- G 8,9 8,9 Heating Heating Losses - Exterior 2056 Losses - Exterior 2056 Losses Losses - Ground - Ground 29 29 Sum Spec. Losses Sum Spec. Losses 7,3 7,3 Solar Gains - North Solar Gains - North 78 78 Solar Gains - East 0 0 Solar Gains - East Solar Gains - South 405405 Solar Gains - South Solar Gains - West Solar Gains - West 103103 Solar Gains - Horiz. 20 20 Solar Gains - Horiz. Solar Solar Gains Gains - Opaque - Opaque 3 3 Internal Heat Gains 425425 Internal Heat Gains Sum Spec. Gains Solar Sum Spec. Gains Solar + + 3,6 3,6 Utilisation Utilisation Factor Factor 100% 100% Annual Annual Heating Heating Demand Demand 1055 1055
EN 13790 EN 13790 Monthly Monthly Method Method
m²
= = = = =
If the "frequency over 25°C" exceeds 10%, additional measures to protect against summer heat waves are necessary.
kWh/d
5861 5861
m
Available Available Solar Solar Heat Heat Gains Gains QS QS
°C
at the overheating limit max = 25 °C
Solar Load
1143 1143 175175
––––––––––– –––––––––––
(perp. radiation)
* * * * *
4406 4406
Clear Clear Room Room Height Height
HR HR
nV,equi,fraction nV,equi,fraction
per per m² m² Treated Treated FloorFloor AreaArea
Spec. Spec. Heating Heating Demand Demand
m²
Interior Interior Temperature: Temperature: 20 20
Workshop Workshop + info + info point point Building: Building:
m²
Building:
Aperture
Portion of Glazing
Total
0,0
North North East East South South West West Horizontal Horizontal SumSum Opaque Opaque Areas Areas
Wh/(m³K)
795
Temperature amplitude summer
* * * * * * * * * * * *
284284 *
SHX SHX
Total Total Heat Heat Losses Losses QL QL
cAir
1/h
m²
QT QT
0,808
kKh/akKh/a
* * * * * * * * * * * *
Total Total
kWh/a kWh/a
1/h
1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,75 0,75 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Ventilation Ventilation Heat Heat Losses Losses QV QV
nV,Rest
HR
Solar Aperture
Daily Temperature Swing due to Solar Load
-0,030 -0,030
m³
Ukkel Ukkel Climate: Climate:
°C
m²
––––––––––– –––––––––––
1/h
(for window ventilation: at 1 K temperature difference indoor - outdoor)
* * * * *
0,648 0,648
* * * * * * * * * * * *
ATFAATFA
m³
2,80
* * * * * * * * * * * *
0,094 0,094 0,105 0,105
0,105 0,105 *(1-*(10,105 0,105 * *
°C
Gt Gt
Month. Month. Red.Red. Fac.Fac.
W/(m²K) W/(m²K)
0,101 0,101
* * * * * * * * * * * *
Effective Effective Air Volume Air Volume VRAXVRAX
Effective Effective Air Change Air Change RateRate Ambient Ambient nV,e nV,e Effective Effective Air Change Air Change RateRate Ground Ground nV,g nV,g
Mechanical, Automatically Controlled Ventilation
0,44 1,00 0,43 0,39 0,52
U-Value U-Value
m²
Transmission Transmission Heat Heat Losses Losses QT QT
Corresponding Air Change Rate
Summer
m²
20 20
non-residential non-residential Building Building Type/Use: Type/Use:
Treated Treated FloorFloor AreaArea ATFAA : TFA : 284,0 284,0
–––––––––––
Window Night Ventilation, Manual
Shading Factor
AreaArea
559,5 559,5 * * 155,0 155,0 * 31,0 31,0 * * * * 115,4 115,4 * * 116,9 116,9 * * *
1/h 1/h
Minimum Acceptable Indoor Temperature
3.
-3,5
Clear Room Height
284,0
nV,equi,fraction
Additional Summer Ventilation for Cooling
2.
74,8
Ventilation Ventilation Losses Losses Ambient Ambient QV QV Ventilation Ventilation Losses Losses Ground Ground QV,eQV,e
nV,system
m³
Summer
unheated unheated basement basement Windows Windows Exterior Exterior Door Door Exterior Exterior TB TB (length/m) (length/m) Perimeter Perimeter TB TB (length/m) (length/m) Ground Ground TB TB (length/m) (length/m)
A B A B A A X A A A P B
m³
nL,nat
0,000
Ventilation Transm. Ambient HV,e Ventilation Transm. Ground HV,g
North 0,9 East 0,9 South 0,9 West 0,9 Horizontal 0,9 Sum Opaque Areas
14,6 3,3
A B A B A A X A A A P B
VRAXVRAX
VV
1.
Exterior Exterior Wall Wall - Ambient - Ambient Exterior Exterior Wall Wall - Ground - Ground Roof/Ceiling Roof/Ceiling - Ambient - Ambient Floor Floor slab slab / basement / basement ceiling ceiling
X with HR (check if applicable)
1/h
Energetically Effective Airchange Rate nV
Orientation of the Area
Building Building Element Element
56,3
continuous ventilation to provide sufficient indoor air quality
Mechanical Ventilation Summer:
Interior Interior Temperature: Temperature:
nV,system nV,system
Air Change Rate by Natural (Windows & Leakages) or Exhaust-Only Mechanical Ventilation, Summer:
Select:
Ukkel Ukkel Climate: Climate:
0%
SHX
SHX Efficiency
Effective Air Volume VV
81%
(This (This page page displays displays the the sums sums of the of the monthly monthly method method overover the the heating heating period) period)
Temperature Temperature ZoneZone
* * * * * * * * * * * *
ATFA HR
SS PP EE CC I FI F I CI C A A NN N UU AA L L HH EE AA T T DD EE MM AA NN DD MM OO NN TT HH LL Y Y MM EE TT HH OO DD
Workshop Workshop + info + info point point Building: Building:
HSummer Heat Conductance
Exterior Thermal Transmittance, HT,e Ground Thermal Transmittance, HT,g
Heat Recovery Efficiency
SS PP EE CC I FI F I CI C A A NN N UU AA L L HH EE AA TT I NI N GG D D EE MM AA NN DD MM OO NN TT HH LL Y Y MM EE TT HH OO DD
Spec. Spec. Capacity: Capacity: 60 60 Wh/(m²K) Wh/(m²K) (Enter (Enter in "Summer" in "Summer" worksheet.) worksheet.)
W/(m²K)
0,101
* * * * * * * * * * * *
Passive PassiveHouse Houseverification verification
Specific losses, gains, Specific losses, gains, heating demand [kWh/(m² month)] heating demand [kWh/(m² month)]
SUMMER
U-VALUES
Passive PassiveHouse Houseverification verification
W/m²
Appraisal and Advice
normally no problem
1061
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
Passive House verification CALCULATING
SHADING
FACTORS
Climate: Ukkel Building: Workshop + info point
50,8
Latitude:
Quantity
Glazing area m²
rS
North
22,18
81%
East
3,14
100%
South
39,92
85%
°
Angle of Deviation from Inclination from North the Horizontal
Description
Orientation
Degrees
Orientation
Glazing width
Degrees
Glazing height
m
m
wG
24,37
53%
Horizontal
2,53
100%
Height of the shading object
Glazing area
Horizontal distance
m
hG
3 5 1 9 1
Door glass window_NW window_SW window SE Door elev.
250 340 250 160 250
90 90 90 90 90
West North West South West
0,99 1,59 0,39 1,59 1,59
1,99 2,79 2,79 2,79 1,99
5,9 22,2 1,1 39,9 3,2
2 1 1
Door glass Door_Ext Door elev.
250 70 250
90 90 90
West East West
0,99 0,81 1,59
1,99 1,95 1,99
3,9 1,6 3,2
2 1 1 1
Door glass Door_Ext Door elev. skylight
250 70 250 250
90 90 90 0
West East West Horizontal
0,99 0,81 1,59 1,59
1,99 1,95 1,99 1,59
3,9 1,6 3,2 2,5
m
hHori
AG
Reduction factor
West
Window reveal depth m
dHori
0,60 4,20
7,50
4,20
Ventilation dimensioning for systems with one ventilation unit
DATA
Workshop + info point
Treated floor area A TFA
m²
Room height h
m
Room ventilation volume (A TFA*h) =
Distance from glazing edge to reveal
Distance from Additional shading Horizontal shading upper glazing reduction factor reduction factor edge to overhang
Overhang depth
m
m
oover
%
dover
0,060 0,060 0,060 0,060 0,060
4,20
0,50
4,20
0,50
0,060 0,060 0,060
4,20 12,00 4,20
%
rother
4,20 1,00 1,00
0,060 0,060 0,060 0,060
VV
284 2,8 795
m³
Reveal Shading Reduction Factor
Overhang shading reduction factor
%
Total shading reduction factor
%
x
Balanced PH ventilation
Please Check
Climate:
Annual heating demand:
Average air change rate calculation
rR
rO
rS
100% 100% 100% 100% 100%
100% 81% 100% 85% 100%
51% 100% 58% 100% 39%
51% 81% 58% 85% 39%
26% 100% 26%
100% 100% 100%
60% 27% 39%
16% 27% 10%
100% 100% 100% 100%
100% 100% 100% 100%
100% 100% 100% 100%
100% 100% 100% 100%
Wind protection coefficients e and f Coefficient e for screening class No screening Moderate screening High screening Coefficient f
One side exposed 0,03 0,02 0,01 20
for Annual Demand:
for Heating Load:
15
0,10 15
0,04
Wind protection coefficient, e Wind protection coefficient, f Air Change Rate at Press. Test
Several sides exposed 0,10 0,07 0,04 15
n50
1/h
1/h nV,Res
1/h
0,60
0,60
for Annual Demand:
for Heating Load:
0,00
0,00
0,038
Type of operation
Maximum Standard Basic Minimum
Global radiation (cardinal points)
Shading
Dirt
Nonperpendicular incident radiation
maximum:
kWh/(m²a)
0,75
0,95
0,85
0,95
0,85
0,95
0,85
0,95
0,85
0,95
0,85
0,95
0,85
160 222 321 225 317
0,81 1,00 0,85 0,53 1,00
Glazing inclination ≠ 90°: Please check Ug value manually
Description
PHPP, Shading
WINDOW
Deviation from north Degrees
250 340 250 160 250
U-VALUE
X
Heating degree hours:
kWh/(m²a)
74,3
Glazing fraction
g-Value
0,822 0,714 0,822 0,758 0,780
Total or Average Value for All Windows.
Quantity
RADIATION,
Angle of inclination from the horizontal Degrees
Window rough openings
Orientation
Width
90 90 90 90 90
West North West South West
1,200 1,800 0,600 1,800 1,800
2,200 3,000 3,000 3,000 2,200
West East West
1,200 1,000 1,800
2,200 2,200 2,200
West East West Horizontal
1,200 1,000 1,800 1,800
2,200 2,200 2,200 1,800
3 5 1 9 1
Door glass window_NW window_SW window SE Door elev.
2 1 1
Door glass Door_Ext Door elev.
250 70 250
90 90 90
2 1 1 1
Door glass Door_Ext Door elev. skylight
250 70 250 250
90 90 90 0
m
Height
Reduction factor for solar radiation
Net Air Volume for Press. Test
1244
Vn50
Air permeability
0,87
m³
m³/(hm²)
Average global radiation
Transmission losses
Heat gains solar radiation
m2
W/(m 2K)
m2
kWh/(m 2a)
163 197 314 254 317
kWh/a
kWh/a
0,62 1,29 0,62 0,63 0,59
22,2 3,1 39,9 24,4 2,5
0,48
0,49
115,40
0,65
92,1
in Area in the Areas worksheet Select: Wall main Wall main Wall main Wall main
Glazing
Nr.
5 5 5 5
Select glazing from the WinType worksheet Select: INTERPANE iplus INTERPANE iplus INTERPANE iplus INTERPANE iplus
Frame
2 2 2
5
INTERPANE iplus
2
Wall core 0
7
INTERPANE iplus
2
Wall core 0 Wall core 0
7 7
Door _wooden
Wall core 3 Wall core 3 Wall core 3
8 8 6 0 0 0 0
1
batimet batiment TA batimet batiment TA batimet batiment TA
3 3 3
batimet batiment TA
3
batimet batiment TA
3
Wooden frame
2
INTERPANE iplus
2
batimet batiment TA
3
INTERPANE iplus
2
batimet batiment TA
3
0 8
g-Value
Select window from the Nr. Nr. WinType worksheet Select: 2 batimet batiment TA 3
Wall main
Roof
Glazing area
27,00 4,40 48,60 32,16 3,24
Installed
m
Window U-Value
0,54 0,58 0,56 0,32 0,63
0
Door _wooden INTERPANE iplus INTERPANE iplus
1 2 2 0 0 0 0
0
Wooden frame batimet batiment TA batimet batiment TA
2 3 3 0 0 0 0
Perpendicular Radiation
Glazing
Frames (centre)
-
W/(m2K)
W/(m2K)
0,71 0,71 0,71 0,71 0,71
0,50 0,00 0,50
0,49 1,40 0,49
0,50 0,00 0,50 0,50
0,49 1,40 0,49 0,49
0,50 0,50 0,50 0,50 0,50
0,49 0,49 0,49 0,49 0,49
1243 423 2237 1517 143
Heat recovery
input
efficiency SHX
1/h
1/h
[-]
Wh/m³
83
0,10
0,00
81,8%
0,29 SHX
0,0% 0%
mfoAir ComfoAir19 350 - Zehnder
350 - Zehnder
Conductance value of outdoor air duct Length of outdoor air duct Conductance value of exhaust air duct Length of exhaust air duct Temperature of mechanical services room (Enter only if the central unit is outside of the thermal envelope.) Effective heat recovery efficiency
0,84
W/(mK)
m W/(mK)
m °C
Nominal width: Insul. Thickness x
Results (unhide cells to make U- & -values from WinType worksheet visible)
Installation
Right 1/0
Bottom 1/0
Top 1/0
0,028 0,028 0,028 0,028 0,028
0 1 0 1 0
0 1 0 1 0
1 0 1 0 1
1 0 1 0 1
0,71 0,59 0,71
0,028 0,049 0,028
0 0 0
0 0 0
1 1 1
1 1 1
0,71 0,59 0,71 0,71
0,028 0,049 0,028 0,028
0 0 0 0
0 0 0 0
1 1 1 0
0 0 0 0
installation installation installation installation installation left right bottom top Average value W/(mK)
W/(mK)
W/(mK)
W/(mK)
W/(mK)
0,040 0,040 0,040 0,040 0,040
Glazed Window Glazing U-Value Fraction Area Area Window per Window PHPP.xls % m2 FINAL ZIB m2FILE CALCULTIONS W/(m2K)
7,9 27,0 1,8 48,6 4,0
5,91 22,18 1,09 39,92 3,16
0,65 0,62 0,70 0,62 0,62
75% 82% 60% 82% 80%
0,040 0,005 0,040
5,3 2,2 4,0
3,94 1,57 3,16
0,65 1,29 0,62
75% 71% 80%
0,040 0,005 0,040 0,000
5,3 2,2 4,0 3,2
3,94 1,57 3,16 2,53
0,63 1,29 0,60 0,59
75% 71% 80% 78%
Reflective? Please mark with an "x"! Yes No Thermal conductivity Nominal air flow rate Exterior duct diameter Exterior diameter -Interior Surface -value
Surface temperature difference
0,338
0,30 0,23 0,16 0,00
Average air change rate (1/h)
83
0,10
Specific power input [Wh/m³]
0,29
Application range [m³/h]
71 - 293
Frost protection required
Unit noise level < 35dB(A)
yes
no
See calculation below
0,8
0,338 1,5
See calculation below Room Temperature (°C) Av. Ambient Temp. Heating P. (°C) Av. Ground Temp (°C)
20 5,9 10,6
81,8%
HR,eff
SHX
SHX efficiency Heat recovery efficiency SHX
7119
1/h
240 185 130 0
0,35
Heat recovery efficiency Unit HR
SHX
0% Secondary calculation
-value supply or ambient air duct
Left 1/0
W/(mK)
Specific power
m³/h
Air change rate
m³/h
Central unit within the thermal envelope.
Secondary calculation
Spacer spacer (centre)
Mean
Air Change Rate (Extract air system) efficiency Unit
Air flow rate
Average air flow rate (m³/h)
Effective heat recovery efficiency subsoil heat exchanger
1182 0 4287 1327 323
5562
U-Value
(Sheet Additional Vent) Sheet Extended ventilation (Multiple ventilation units, non-residential buildings)
Mean
20
1,00 0,77 0,54
Central unit outside of the thermal envelope.
Effective heat recovery
40
0 0 0
WC 3 20
Selection of ventilation unit with heat recovery
X
Extract air excess
Bathroom (shower only)
Factors referenced to maximum
8,0 4,0 12,0
Ventilation unit selection
Air exchange
Daily operation duration h/d
Bathroom
q50
0,094
SHX efficiency
Window area
0,50 0,00 0,50 0,50 0,50
Ventilation unit / Heat recovery efficiency design (Sheet Ventilation see below) Sheet Ventilation (Standard design)
m³/h
Average value
The PHPP offers two methods for dimensioning the air quantities and choosing the ventilation unit. Fresh air or extract air quantities for residential buildings and parameters for ventilation sys can be determined using the standard planning option in the 'Ventilation' sheet. The 'Additional Vent' sheet has been created for more complex ventilation systems and allows up to 10 differen Furthermore, air quantities can be determined on a room-by-room or zone-by-zone basis. Please select your design method here.
Ukkel
Window area orientation
North East South West Horizontal
10
240
m³/(P*h)
Design air flow rate (maximum)
Infiltration air change rate
%
rH
Passive House verification Building: Workshop + info point
m³/h
Supply air per person
Quantity
(Annual Heating Demand worksheet)
Selection of ventilation data input - Results
SOLAR
m³/h
P
Extract air rooms
(Annual Heating Demand worksheet)
Pure extract air
Infiltration air change rate
FACTOR
m³/h
Total Extract Air Requirement
m²/P
Number of occupants Supply air requirement
(Areas worksheet)
Type of ventilation system
Excess extract air
REDUCTION
Extract air requirement per room
36 8,0 30 240 Kitchen 2 60 180
Occupancy Building:
dReveal
0,60
7,50
VENTILATION
m
oReveal
STANDARD INPUT FOR BALANCED VENTILATION
Passive House verification
-value extract or exhaust air duct
200 mm 50 mm
Nominal width: Insul. Thickness: x
0,03 W/(mK) 83 m³/h 14 0,200 0,300 4,16 2,52 0,338 2,002
K m m W/(m²K) W/(m²K) W/(mK) K
200 mm 50 mm
Reflective? Please mark with an "x"! Yes No 0,03 W/(mK) Thermal conductivity Nominal air flow rate 83 m³/h Exterior duct diameter Exterior diameter -Interior Surface -value
Surface temperature difference
14 0,200 0,300 4,16 2,52 0,338 2,002
K m m W/(m²K) W/(m²K) W/(mK) K
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
Passive House verification
Passive House verification
Passive House verification
Passive House verification Building:
VENTILATION
Workshop + info point
Building Type/Use:
795
Day_ 50%
Fraction of Opening Duration Climate Boundary Conditions Temperature Diff Interior - Exterior
4 1
Wind Velocity
1,80 2,70
Clear Width Clear Height Tilting Windows?
0,200
Opening Width (for tilting windows)
Building: Workshop + info point
UNITS
25 °C Building Type/Use: non-residential Treated Floor Area ATFA: 284,0 m²
Night 50%
ATFA
1 0
Effective Air Volume VV
K m/s
nV,system 1/h
0,000
Hygrically Effective Mech. Air Change Rate Summer
16 1,80 2,70 X 0,200
m m m
Direct Ambient Air Change Rate Summer
m²
80%
nV,Res
nNight,Windows
1/h
1/h
1/h
+
*
0,038
+
2,603
Deviation from North Angle of Inclination from the Horizontal Height of the Collector Field
=
795
m
Tilting Windows? Opening Width (for Tilting Windows)
m
Difference in Height to Window 1
m
Single-Sided Ventilation 2 - Airflow Volume Cross Ventilation Airflow Volume Contribution to Air Change Rate
0 0 0 0,00
=
0,000
0,000
Total
Description Ventilation Type
Night time Window Ventilation Daytime Window Ventilation
Daily Average Air Change Rate
1,36 0,00
8,0 0,8
2545
0 0 0 0,00
0 0 0 0,00
m³/h m³/h
Supply Air Cooling check as appropriate On/Off Mode (check as appropriate) Minimum Temperature of Cooling Coil Surface
X 0
2
Minimum Temperature of Cooling Coil Surface
m³/h
Volume Flow Rate
1/h
x 10 150
° ° m
Humidity Sources Humidity Capacity Building Humidity at Beginning of Cooling Period
1/h
X Panel Cooling check as appropriate
Useful Cooling Demand
8
sensible
3,6 ,
Covered Fraction of DHW Demand
9
kWh/a
3021
kWh
1571
kWh
(Verification sheet)
2911
kWh
(PE Value worksheet)
100%
(DHW+Distribution)
5183
kWh
2638
kWh
(Separate Calculation)
(SolarDHW worksheet)
48%
49%
(Data worksheet)
QUse
Useful Heat Provided
litre litre
Specific Heat Losses Storage (total)
2,0
W/K
Typical Temperature DHW
60
°C
20
(Project)
CO2-Emissions Factor (CO2-Equivalent)
Zonneboiler 200200 Zonneboiler
litre
60
Max. Heating Power Required for Heating the Building Length of the Heating Period Length of DHW Heating Period
°C
24 80
Boiler Type Primary Energy Factor
oved gas Improved gascondensing condensing boiler boiler 1,1
kWh/kWh
250
g/kWh
4209
kWh/a
3,04
kW
tHP
5022
h
tDHW
8760
h
PBH
(Heating Load worksheet)
W
Use characteristic values entered (check if appropriate)?
°C
Total Monthly Heating Load DHW Production
m³/h
Installation of Boiler (Outdoor: 0, Indoor: 1)
Radiation on Tilted Collector Surface
g/kg g/(m²h) g/(g/kg)/m² g/kg
latent
0,0
kWh/(m²a)
Dehumidification
kWh/(m²a)
3,6
kWh/(m²a)
0,0 0,0
kWh/(m²a)
1,0
900
0,9
800
0,8
700 600 500
0,5
400
0,4
300
0,3
100
0,1
0
0,0
March
April
May
June
July
August
September
October
November
December
kWh/(m²a)
104%
104%
95%
95%
Standby Heat Loss Boiler at 70 °C
qB,70
(Manufacturer)
1,4%
1,4%
Average Return Temperature Measured at 30% Load
30%
(Manufacturer)
Average Fraction of Heat Output Released to Heating Circuit Temperature Difference Betw. Power-On and Power-Off
Brink
April
May
June
July
August
September
October
November
December
Radiation on Tilted Collector Surface
198
326
535
725
883
835
864
835
643
453
230
153
kWh/Month
0,18
0,31
0,49
0,64
0,75
0,72
0,74
0,72
0,58
0,42
0,21
0,13
-
432
432
432
432
432
432
432
432
432
432
432
432
kWh/Month
Monthly Heating Load Covered by Solar
77
133
212
277
325
311
319
310
250
181
92
58
kWh/Month
0 = FR*(ta)
k1
k2
C
Kdir(50°)
Kdfu
Output
-
W/(m²K)
W/(m²K²)
kJ/(m²K)
-
-
kWh/(m²a)
0,0
8,1
1,0
488,0
Module VTC / FPC Area (Aperture) m² please enter
2,0
Comments
FPC
Insert new
Insert new rows ABOVE this row only in order to maintain the integrity of references
3,5 3,37 0,395
0,02 0,0104 0,02
6,4 4,7 11,53
0,9 0,97 0,95
0,8 0,94 0,9
300 546 487
70%
SO
(Manufacturer)
zHC,m
(Manufacturer)
(Manufacturer)
K
30
K
0
m²
Input field
0,4
Useful Heat Output per Basic Cycle
QN,GZ
(Manufacturer)
kWh
22,5
kWh
QN,m
(Manufacturer)
kW
15,0
kW
Utilisation Factor Heat Generator DHW & Heating
x
2 2,6 1,2
FPC FPC VTC
FK AD FK AD AR FK AD RK AD
QHE,GZ
(Manufacturer)
kWh
kWh
kWh
Pel,SB
(Manufacturer)
W
W
W
hH,g,K =f*k'' hTW,g,K =100%/fTW hg,K
86% 87%
87% kWh/a
Final Energy Demand Space Heating
QFinal, HE QH,wi* eH,g,K QFinal, DHW QWW,wi* eTW,g,K
kWh/(m²a)
1821 3030
Annual Primary Energy Demand
4851 5336
17,1 18,8
kg/a
kg/(m²a)
Annual CO2-Equivalent Emissions
1213
4,3
columns BEFORE this
0,77 0,854 0,62
60%
m²
Total Final Energy Demand
column 6 Standard Flat Plate Collector 7 Improved Flat Plate Collector 8 Vacuum Tube Collector
(Manufacturer)
(Project)
Utilisation Factor Heat Generator DHW Run
Monthly Solar Fraction
3,5
GZ
Ainstall
Heating energy demand for a basic machine cycle
March
0,8
30 Standard Values
Unit with regulation (no fan / no starting aid)
February
F3-Q
95%
2,0%
For Interior Installations: Area of Mechanical Room
Final Energy Demand DHW
1 2 3 4 5 6 7 8 9 10 11 12
°C
Project Data
Input field
99%
Heat generator without pellets conveyor
Total Monthly Heating Load DHW Production
Brief Description
3 1
Standard Values
(Manufacturer)
Efficiency of Heat Generator in Constant Operation
January
Selection List Solar Collectors Manufacturer
Project Data
30
Input field
kW
0
(Manufacturer)
Utilisation Factor Heat Generator Heating Run Monthly Solar Fraction
15
Efficiency of Heat Generator in Basic Cycle
0,2
kW
100%
Average Power Output of the Heat Generator
200
Standard Values
15 0
Input Values (Biomass Heat Generator)
0,6
February
(Rating Plate)
Boiler Efficiency at Nominal Output
Boiler Efficiency at 30% Load
0,7
January
Pnominal
Input Values (Oil and Gas Boiler)
1000
100,0%
2
W
Project Data
kWh/(m²a)
0,0
100%
kWh/(m²a)
Design Output
Recirculation Cooling
Unsatisfied Demand
m²
(DHW+Distribution)
QDHW,Wi=QDHW *(1-Solar, DHW )
Monthly Heating Load Covered by Solar
Sensible Fraction
3,6
Solar, DHW
Solar Fraction for DHW
m²/Pers
140
Total Storage Heat Losses
Supply Air Cooling
Total
QgDHW
Total Heating Demand of DHW system
Persons
Volume Solar Part (below)
Storage Heat Losses (Standby Part Only)
of which
Remaining for Panel Cooling
QH
Space Heating Demand without Distribution Losses
284
(PE Value worksheet)
QH,Wi=QH*(1-Solar, H)
Effective Annual Heating Demand
m
Monthly Solar Fraction
12 2 700
Solar, H
Solar Fraction for Space Heat
Volume Standby Part (above)
Room Temperature
°C
QH+QHS:
Space Heating Demand + Distribution Losses
m²
Selection:
200
Recirculation Cooling check as appropriate On/Off Mode (check as appropriate)
VTC
Secondary Calculation of Storage Losses Selection of DHW storage from list (see below):
1/h 1/h
Building Type/Use: non-residential
Covered Fraction of Space Heating Demand
from Climate Data worksheet
Effective DHW Demand
1/h
(GAS, OIL, WOOD)
49%
2,641 2,64
Tube Collector 88 Vacuum Vacuum Tube Collector
%
Solar Contribution to Useful Heat
=
° Selection:
m
1/h
+
8 6,00 180 45 0,5
aHori
Estimated Solar Fraction of DHW Production
nNight,mechanical
Ambient Air Change Rate Summer
X Additional Dehumidification check as appropriate Max. Humidity Ratio
Summary of Summer Ventilation Distribution
Building: Workshop + info point
m²
from DHW+Distribution worksheet
rother
Specific Collector Area
Sola radiatiion, heating load, DHW generation, heating load covered by solar [kWh/month]
m
2161 0 2161 1,36
284,0
kWh/a
Additional Reduction Factor Shading
Total Storage Volume
Clear Height
0 0 0 0,00
GENERATION
Treated Floor Area ATFA:
Horizontal Distance
Occupancy
1/h
)
hHori
Height of Horizon m³
2,80
HR Efficiency Humidity Rec.
nV,nat 0,000
m
284
* (1 -
Solar Collector Area
Clear Room Height
5183 50,8
Selection of collector from list (see below):
Interior Temperature Summer:
Building: Workshop + info point
Clear Width
0 0 0 0,00
qgDHW
Latitude:
Climate: Ukkel
m³
Window Group 2 (Cross Ventilation) Quantity
Single-Sided Ventilation 1 - Airflow Volume
HEAT
Building Type/Use: non-residential Treated Floor Area ATFA:
Heating Demand DHW
Note: for summer night ventilation please set a temperature difference of 1 K and a wind velocity of 0 m/s otherwise the cooling effects of the night ventilation will be overestimated! Window Group 1 Quantity
COOLING
OF
Solar Fraction with DHW demand including washing and dish-washing
non-residential
Building Volume
Description
COMPRESSOR
EFFICIENCY
Solar fraction[-]
SUMMER
SOLAR HOT WATER GENERATION
QFinal QFinal,DHW + QFinal,HE
Kasra Haji Hassandokht | Mahgol Motallebie | Gilles Plaetinck | Petra Ross | Evangelos Stavrakakis
ZIB.2015 | ECO DISTRICT | GENT | B401
ZIB2015
Passive House verification
kh/a
*
795,2
m³
=
kh/a
*
1
=
130 0 32
considered in heat recovery efficiency no summer contribution to IHG
*
1,0
/
5,02
=
6
337 0 82
7%
circulation 2 reception a
workshop room b reception b
9% 9% 9%
18% 9%
Workshop
500
50%
1
3,5
10,5
2,8
2,7
WC, Sanitary
200
0%
0
2,0
4,5
2,8
2,7
none
300
0%
0
4,0
5,8
2,8
2,7
none
50%
1
1,4
11,6
2,8
2,7
0%
0
1,8
5,5
2,8
2,7
70
East
10,0
good
34
Kitchen, Storage, Preparation Circulation Area
100
39
Storage, Services
100
Circulation Area
100
250
West
50%
1
1,4
11,6
2,8
2,7
11,0
good
Secondary Areas
100
70
East
50%
1
3,5
3,8
2,8
2,7
3,6
good
Workshop
500
250
West
50%
1
3,5
10,5
2,8
2,7
10,0
low
Secondary Areas
100
250
West
50%
1
3,5
3,8
2,8
2,7
3,6
low
38 38 37
41
37
70
East
11,0
good none
12 12 12 12 12 12 12 12 12
W W
Office Equipment
*
1 00 1,00
*
0 35 0,35
kh/a
*
1
=
Data entries in worksheet Boiler. Auxiliary energy demand including possible drinking water product
14
*
0
*
10 1,0 1,0
/ /
5 02 5,02 5,02
= =
0 0
36 0
PC 1 PC in Energy Saving Mode
DHW system Enter Average Power Consumption of Pump
1
Circulation Pump
0
29 29
Enter the Rated Power of the Pump Storage Load Pump DHW
1
0
Boiler Electricity Consumption at 100% Load
DHW Boiler Aux. Energy
1
0
Enter the Rated Power of the Solar DHW Pump
Solar Aux Electricity
Misc. Aux. Electricity Misc. Aux. Electricity
1 0
0 0
W
1 15 15
30
W
*
1,00
*
5,5
kh/a
*
1
=
160
Secondary Areas
0,6
/
8,76
=
0
416
W
*
1,00
*
0,3
kh/a
*
1
=
23
*
1,0
/
5,02
=
0
61
kWh/a
Divide by Living Area:
PC in Energy Saving Mode
Workshop
*
1,00
*
0,2
kh/a
*
1
=
0
*
1,0
/
5,02
=
0
0
*
1,00 1,00
* *
1,8 1,0
kh/a
*
*
1 1
= HH
=
26 0
1,8
*
*
0,6 1,0
/ /
8,76 8,76
= =
0 0
6
68
1
*
0
*
1
1
0
1
1
* *
1
*
1
*
1
0 1349
Kitchen / Aux. Electricity
Predominant Utilisation Pattern of Building
1 1
Telephone System
HPP, Electricity Non-Dom
2 2
1
Server in Energy Saving Mode
1 1
1
Printer in Energy Saving Mode
0 0
1
Printer
1 1
1
Copier
4,7
*
1
1
Monitor in Energy Saving Mode
Server
*
1
1
Copier in Energy Saving Mode
W W
PC 2
1
1
41
Monitor 2
519 kWh/(m²a)
*
W
Total Specific Demand
Monitor in Energy Saving Mode
W
67 1
37
2
Monitor 1
W
12,0 12,0 12,0 12,0 12,0 12,0 12,0
3 3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1 1
* * * * * * * * * * * * * *
80 2,0 28 2,0 80 2,0 28 2,0 400 30 300 2 100
9
20
*(
2750
* (1-
*
2750
*
*(
0
* (1-
18
0,9 )
=
0,9
=
0
)
=
0
)
=
0
*
0
*
*(
2250
* (1-
=
*
2250
*
*(
0
* (1-
*
0
*
*(
0
*
0
*(
0
*
0
=
*(
0
=
*(
8760 8760
0
=
0
)
=
0 -
=
0
)=
0
)=
-
0
=
)=
*
*
*
=
*
*
*
=
*
*
*
=
*
*
*
=
*
*
*
=
*
*
*
=
22 5 0 0 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Automatic, not permanently on Automatic, not permanently on Automatic, not permanently on Automatic, not permanently on Automatic, not permanently on Automatic, not permanently on Automatic, not permanently on Automatic, not permanently on Automatic, not permanently on Manual
0,0
Manual
0,0
Manual
0,0
Manual
0,0
Manual
0,0
Manual
0,0
Manual
0,0
Manual
0,0
Manual
0,0
Manual
0,0
Manual
0,0
Manual
0,0
Manual
Additional Demand
348
Useful Energy (kWh/a)
0
Electric Fraction
=
Duration of Utilisation in Energy Saving Mode (h/a)
5,02
Non-Electric Fraction
/
relative absenteeism
1,0
Useful Energy (kWh/a)
*
Utilisation Hours per Year (h/a)
134
Norm Consumption
=
Power Rating (W)
1
Number of Meals per Utilisation Day
*
Quantity
0
kh/a
Utilisation Days per Year (d/a)
0
5,0
Existing/Planned ? (1/0)
Aux. Energy - Wood fired/pellet boiler
40
*
Existing/Planned? (1/0)
0
0,7
In the thermal envelope? (1/0)
1
*
In the thermal envelope? (1/0)
Aux. Energy - Heat. Boiler
W
Room Category
Boiler Electricity Consumption at 30% Load
36 40
Room Category
0
1
W
Room Category
1
Circulation Pump
36
12,0
h/a
0 0 0,0
Controlled/Uncontrolled (1/0) Enter the Rated Power of the Pump
12,0
Utilisation Hours per Year [h/a]
W/m²
Lighting Control
W/m²
Motion Detector with/without (1/0)
m
With Motion With Motion With Motion With Motion With Motion With Motion With Motion With Motion With Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion Without Motion
9
2250 2750 3900 2750 2750 2750 2750 2250 2750
Primary Energy Demand (kWh/a)
=
technical room
circulation 1
m
h/a
h/a
kWh/a
kWh/(m²a)
kWh/a
8
8,0
4,9
0,1
12,8
8,0
1,6
0,1
4,3
8,0
4,1
0,1
10,6
8,0
2,5
0,1
6,4
3,0
0,7
0,0
1,9
8,0
2,5
0,1
6,4
8,0
2,5
0,1
6,4
8,0
4,9
0,1
12,8
8,0
2,5
0,1
6,4
8 8 8 3 8 8 8 8
00 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 =
22,0
=
5,0
=
0,0
0,0 0,0
=
0,0
0,0
=
180,0
0,0
=
0,0
=
0,0
0,0
=
0,0
=
0,0
=
0,0
=
0,0
=
0,0
=
0,0
=
0,0
=
0,0
=
0,0
=
0,0
=
0,0
=
0,0
=
0,0
Primary Energy Demand (kWh/a)
m³
15%
m
57 13 0 0 468 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Primary Energy Demand (kWh/a)
795,2
storage
41
35
m
Spec. Electricity Demand (kWh/(m²a))
*
6%
m
Electricity Demand (kWh/a)
h-1
kh/a
18%
-
Electricity Demand (kWh/a)
244
*
5,0 3,7 0,1
wc
Degrees
15
Full Load Hours of Lighting
*
W
* * *
workshop room a
Lux
2
User Determined: Lighting Full Load Hours
Wh/m³
1
h
Primary Energy Demand (kWh/a)
0,31
1
0,10 0,00 1,00
11
Internal Heat Source (W)
*
10
Used During Time Period (kh/a)
Reference Size
Wh/m³
9
Available as Interior Heat
Period of Operation
0,31
8
Electricity Demand (kWh/a)
Utilization Factor
1
1
-1
7
Electricity Demand (kWh/a)
Heating System
6
Other Primary Energy Demand (kWh/a)
Defroster HX
5
Solar Fraction
Summer Ventilation
4
Marginal Performance Ratio
Winter Ventilation
3
Norm Demand
Ventilation System
2
Within the Thermal Envelope? (1/0)
Application
1
Used ? (1/0)
Room / Zone
Column Nr.
Lighting Control
°C
Room Geometry: Input of a Typical Room or Room by Room Installed Lighting Power (Standard)
Lighting / Non-Domestic
kWh/a
0,82 0,71 0,82 0,76
User Data: Installed Lighting Power
55
Design Flow Temperature
kW
0,85
Daylight Utilisation
5183
DHW System Heating Demand
kWh/(m2a)
0,95
Glazing Fraction
Input Warning
15
0,81 1,00 0,85 0,53
Window Width
10
Boiler Rated Power
kWh/kWh
NonPerpendicular Radiation
Lintel Height
m³
Annual Space Heating Demand
-1
h °C
Facade with Windows
Dirt Factor
Room Height
-2,0
kh/a
2,6
kWh/kWh
49%
Shading
Room Width
Defrosting HX from
Primary Energy Factor - Electricity
kWh/kWh
Existing window (1/0)
HH
0,10
kh/a
0,7
North East South West
kWh/kWh
Orientation
Air Change Rate
ELECTRICITY
2,6 1,1
Light Transmission Glazing
1244
5 Enclosed Volume
Operation Vent. System Summer
m³
kWh/a
Deviation from North
1
4 Dwelling Units
d
5,02 3,74
510,3
D E M A N D Non-Domestic Use
Window Properties (from Windows worksheet):
Nominal Illuminance Level
795
3 Air Volume
Operation Vent. System Winter
Auxiliary Electricity Demand:
Room Category
209
2 Heating Period
m²
m²
Room Category
284
1 Living Area
AUXILIARY
Workshop + info point
284,0
Fraction of Treated Floor Area
Building:
Treated Floor Area ATFA:
Primary Energy Factors: Electricity: Gas: Energy Carrier for DHW: Solar Fraction of DHW Marginal Performance Ratio DHW:
Passive House verification
ELECTRICITY
Workshop + info point
Room Depth
Building:
FINAL ZIB FILE CALCULTIONS PHPP.xls
8 kWh / Meal
PHPP, Aux Electricity
FINAL ZIB FILE CALCULTIONS PHPP.xls
Electricity
1
41
Workshop
2
2
Dishwashing Cold Water Connection
* *
1
250 250
2
2
365
coffee machine Mixer
1 1
1 1
250 200
vacuum cleaner
1
1
35
Refrigerating
Total Auxiliary Electricity
Total Specific Demand
* *
10
*
10
*
0,25
=
1250
kWh / Cover
0 10 0,10
* =
0,53
0,00 0,00 0,20
=
0%
*
0
*
kWh/d
0,30
*
387 0 1 1 0 7 0 0 0 510 2389
0%
* * * * * * * * *
kWh
100%
=
100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
0 00 0,0
= * (1+
0,30 ) *
1,20
*(1-
0,49
)=
3250 0 0 0 1006 0 2 2 0 18 0 0 0 1327
1250,0
=
Hot Water NonElectric Dishwashing
Cooking
0
=
386,9
=
0,0
=
0,8
=
0,6
=
0,0
=
7,0
=
0,0
=
0,0 0,0
=
510,3
0
0
2389
0,0
0,0
8
kWh/a kWh/(m²a)
6210
22
kWh/a kWh/(m²a)
ZIB2015
PP, IHG Non-Dom
Passive House verification INTERNAL
Passive House verification
G A I N S Non-domestic Use
HEAT
Workshop + info point
Building:
Utilisation Pattern:
HEAT
2,01
Other
2,17 W/m²
W/m²
Manual entry:
PHPP Calculation: Non-residential buildings
Interior Temperature:
2,0
Treated Floor Area ATFA:
Number of Residences:
W/m²
Annual Heating Demand qHeating Length of Heating Period: Marginal Utilisability of Additional Heat Gains:
37
Secondary Areas
Persons F
3
2
2 2
Persons G
>10 yr., standing light work >10 yr., standing light work >10 yr., standing light work >10 yr., standing light work
or
1
or
1
or
1
or
1 1
> 10 yr., sitting
1
> 10 yr., sitting
1
> 10 yr., sitting
{
6
{ { { {
2
{
or
{
*
no
}*
or
{
*
no
}*
or
{
*
no
}*
or
{
*
no
}*
or
{
*
no
*
no
*
no
}*
{
or
}* 51
{
or
{
Lighting
3850
Office Applications (Within Therm. Envelope)
207
Cooking
625
(Within Therm. Envelope)
100
*
*
1,00
}*
100Space*Heat Distribution 0 *
}*
100
}*
80
}*
154
/
8760
=
0
1,00
/
8760
=
Heat m Pipe * Loss0Coefficient * per 1,00
/
8760
=
* 2750 * 0,10 Design Flow Temperature
/
8760
=
Length of Distribution Pipes
Temperature of the Room Through Which the Pipes
80
Design System heating load
80
Design Return 0 Temperature 1,00
0
*
*
1,00
Flow Temperature Control (check)
*
*
-15
Possible Utilization * Factor0,10 of Released/Heat * 2750
8760
=
8760
=
DHW Non-Electric Wash and Dish
qDHW
1,00
/
8,76
=
1,00
/
8,76
=
8,76
=
8,76
=
/
8,76
= td
* / 1,00 Circulation period of operation per year
8,76
=
DHW Distribution and Storage *
Length of Circulation Pipes (Flow + Return)
*
0,50
Heat Loss Coefficient per m Pipe
8
Design Return Temperature
/
0,30
Temperature of the *Room Through Which / the Pipes
1,00
* of operation. Daily circulation period
=
Annual Heat Released per m of Pipe
2
Workshop
3
DISTRIBUTION 8
250
Building: Workshop + info point
Interior Temperature:
20
*(
Annual Heat Loss
Treated Floor Area ATFA:
Occupancy: Number of Residences: Annual Heating Demand qHeating
Heat Available From Internal Sources
Length of Heating Period:
-11
Average heating load Pave: Marginal Utilisability of Additional Heat Gains:
Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Design Flow Temperature Design System heating load
Annual Heat Emission per m of Plumbing Possible Utilization Factor of Released Heat
Total Heat Losses of the DHW System
209
Specif. Losses of the DHW System
d/a
(Project) X Mechanical Room dist Flow, Design Value Pheating (exist./calc.) dist-20)+20
q*HL QHL
= LH · q*HL · (1-G)
qHL
= QHL / ATFA
ea,HL
qDHW
DHW Distribution and Storage
11
ea,WL
=(cpH2OVH2O+cpMatVMat)(dist-X)
= nPers . 3 . 365 / nLU .
0
0
109
12,0 10,6 0
2008 = QDHW / ATFA
Cold Region
Total
= 365 tdCirc
kWh/a
mX) tCirc
=t /365d * G kWh/(m²a) heating 0,4 = LHS · q*Z ·(1-GDHW) -
GDHW QZ
104% LU (Project) (Project)
qIndividual 10,6 nTap 0 qU
Litre/Person/d °C kWh/a
2008 QU
G_S
°C
QWL
h/d
= QWL / ATFA
ea,WL
h/a
= (qTWW + qWV) / qTWW
QgDHW
-
q57 gDHW
kWh/a
kWh/a
7,1
kWh/a
7,1
5,51 W/(m²K) 0,350 W/(mK) Total 29,996 K
h/a
57
0 0%
57
0
m W/m/K °C °C h/d
kWh/m/a -
57
kWh/a
50,00 0,018
m m
0,4557
kWh/tap opening
8760
Tap openings per year kWh/a
34%
-
2652
kWh/a Total 1,2,3
80
Secondary Calculation Storage Losses
W
34% 466
466
kWh/a
Specific Heat Losses Storage (total) Typical Temperature DHW
= QDHW+QWL
3175
kWh/a
Room Temperature
kWh/(m²a)
258,1% 5183
= QgDHW / ATFA
11,2
kWh/a kWh/(m²a)
18,3
kWh/tap opening Tap openings per year
2652
Thermal Conductivity
kWh/a Total 1,2,3
18 mm mm
0,43 W/(mK)
3175
30 K 0,01800 m 0,02025258,1% m 0,02025 m
Surface -Value
5,51 W/(m²K) 0,350 W/(mK)
5183
29,996 K
Secondary Calculation Storage Losses
W
466
Interior Pipe Diameter: Exterior Pipe Diameter Exterior Pipe Diameter
FINAL ZIB FILE CALCULTIONS PHPP.xls
Litre/Person/d
kWh/a
m
0,4557
Surface Temperature Difference
kWh/a
2008
Litre/Person/d °C
m
No
°C
= QZ+QU+QS
°C
2652
0,4
0,43 W/(mK) 10,6 m 0,01800 0,02025 m 0 0,02025 m
Total 1,2,3
qWL
kWh/m/a
0,4
-
12,030 K
°C
50,00 0,018
80 Nominal Width Insulation =theating/8760*G 34% Thickness: Reflective? Please mark with an "x"! = PS·8.760 kh·(1-G_S) x Yes466
-
=theating/8760*G
W/m/K = PS·8.760 kh·(1-G_S)
kWh/a
0
3992
m
QS
°C kWh/(m·a)
kWh/(m²a)
104%
kWh/a
Specific Heat Losses Storage (total) Typical Temperature DHW
Total 1,2,3
kWh/a kWh/(m²a)
Room Temperature
11,2
kWh/a kWh/(m²a)
18,3
5,51 W/(m²K) 0,350 W/(mK) 29,996 K
-
4380
2652
kWh/a
= (qTWW + qWV) / qTWW
.
Surface Temperature Difference
kW
°C
34%
30 K 0,01800 m 0,02025 m 0,02025 m
°C
3
55
0,43 W/(mK)
°C
0,0 0,000 0,0 0,0 0,0
= nTap qIndividual
-
= QWL / ATFA
= nPers . 3 . 365 / nLU
Total PS
8760 Calculation: -Values of Plumbing Secondary
= QZ+QU+QS
=(cpH2OVH2O+cpMatVMat)(dist-X)
W/(mK)
1,5 0,350 20 60,0 12,0
=theating/8760*G kWh/(m²a) 7,1 = qU ·(1-G_U)
kWh/a
G_U
34%
kWh/a
kWh/(m²a)
q*Z 109
-
3992
= QgDHW / ATFA
kWh/(m²a)
104%
tCirc
kWh/(m·a)=0.875*(dist-20)+20
=theating/8760*G
= QDHW+QWL
°C
Total 1,2,3
= nTap qIndividual
qgDHW
kWh/(m·a)
R
°C
= qU ·(1-G_U)
-
= ( qH + qHL) / qH
Warm Region
57 0 Total Heating Demand of DHW system =theating/365d * G 34% 0% Total Spec.57 Heating Demand = LHS · q*Z ·(1-GDHW ) 0 of DHW System
QgDHW
Total 1,2,3
tdCirc (Project)
4380ratio DHW-distribution 0 Performance + storage
kW
(Electricity worksheet)
QDHW
= 365 tdCirc
°C
DW Temperature of Drinking Water (10°)
Specif. Useful Heat - DHW
2,2
qWL
dist Flow, Design Value
Annual Heat Loss of Individual Pipes
°C
53 109
Possible Utilization Factor of Released Heat
mX) tCirc
W/(mK)
VDHW (Project or Average Value 25 Litres/P/d)
Useful Heat - DHW
Total
QWL
618
°C
X Mechanical Room kW
Specif. Losses =0.875*(dist-20)+20 55 of the DHW 3System
m
DHW: Standard Useful Heat Average Cold Water Temperature of the Supply
W/m²
59%
Annual Losses
DHW Consumption per Person and Day (60 °C)
QS
45,0
mX) tHeating*0.024
G
DHW Non-Electric Wash and Dish
G_S
kWh/(m²a)
-24
PS
5,00 0,350 20 55,0 3,0 50,00
LH (Project)
R
QU
=
W
Performance ratio DHW-distribution + storage Parts Total Heating Demand of DHW system Warm Region Cold Region Total Spec. Heating Demand of DHW System 1 2 3
Specif. Losses 'Performance ratio of heat distribution
365
/
Possible Utilization Factor of Released Heat
Flow Temperature Control (check) Design Return Temperature
)*
Annual Heat Losses from Storage
Space Heat Distribution Length of Distribution Pipes
1,00
+ Average Heat Released From Storage
m² Pers
kWh/a d kW
qU G_U
Annual Heat Loss of Individual Pipes
-23
°C
284 8,0 1 2911 209 0,6 59%
nTap
°C
(Project)
d
Amount of tap openings per year
dU_Pipe (Project) qIndividual
W/(mK) LHS (Project)
Surface -Value
m
kWh/(m²a) Surface -Value Warm Region Cold Region Surface Temperature Difference
m
U_Pipe 12,0
Heat loss per tap opening
18 mm mm
109
= QDHW / ATFA
3
20 0,0 60,0 0,0 Total Heat Losses of the DHW System 12,0 0,0
(Project)
6
2
Exterior Pipe Diameter
LU (Project)
Heat A NPossible D Utilization D H Factor W of Released SYS TEM
Building Type/Use: non-residential
Specific Demand
Availability
Loss Nighttime [W]
Loss Daytime [W]
Heat loss per tap opening
Amount of tap openings per year Passive House verification
HEAT
-8
Total
Occupied Days per Year [d/a]
Temp.
- Room
3
Temp. [K]
T: Cold Water
Number of WCs (calculation value)
Number of WCs: Use standard value for schools (X)
(user data)
Number of WCs
on/off (1 / 0)
41
QZ
Annual Heat Loss from Circulation Lines
Exterior Pipe Diameter
0 1
Total qDHW
(Electricity worksheet)
Possible Utilization Factor0,0 of Released Heat 1,5
X Mechanical Room
q*Z
QDHW
Warm Region Specif. Useful Heat - DHW Cold Region
Total 1,2,3
Interior Pipe Diameter: Exterior Pipe Diameter Exterior Pipe Diameter
DW Temperature of Drinking Water (10°)
Annual Heat Losses from Storage 0,350 0,000
dist Flow, Design Value
tCirc
= ( qH + qHL) / qH
53 59% Nominal Width 109 0 0 Insulation Thickness: Reflective? Please mark with an "x"! x Yes No Thermal Conductivity
VDHW (Project or Average Value 25 Litres/P/d)
DHW Non-Electric Wash and Dish Parts Useful Heat - DHW
Warm Region Region Average Heat Released FromCold Storage
36 0
ea,HL
Annual Heat Loss = QDHW / ATFA
(Project)
R
= QHL / ATFA
Total Length of Individual Pipes
LHS (Project)
Circ
= LH · q*HL · (1-G)
qHL
Released per 0 m of Pipe = LH · q*HL · (1-G) Annual Heat 109 0 Possible Utilization Factor of Released Heat = QHL / ATFA Annual Heat Loss from Circulation Lines = ( qH + qHL) / qH
24
GDHW
Possible Utilization Factor of Released Heat
Total Length of Individual Pipes
440
QHL
18 mm mm
Total 3
45,0
mX) tHeating*0.024
Annual Losses
Circulation59% period of operation per year
(Electricity worksheet)
QDHW
R
G
mX) tHeating*0.024 53 Temperature Design Return
DW Temperature of Drinking Water (10°)
Specif. Useful Heat - DHW
dist-20)+20
q*HL
dist-20)+20 Daily circulation 45,0 period of operation.
VDHW (Project or Average Value 25 Litres/P/d)
Useful Heat - DHW
*
-24
G
ea,HL
Average Cold Water Temperature of the Supply
0
(Data transfered from Electricity Non-Dom worksheet; input kitchen)
0
qHL
DHW Consumption per Person and Day (60 °C)
Auxiliary Appliances (See Aux Electricity Worksheet)
5 0
S Y S T E M
Specif. Losses
1
0
q*HL
DHW
5,00 DHW Distribution and Storage 0,350 20 Length of Circulation Pipes (Flow + Return) Heat Loss55,0 Coefficient per m Pipe 3,0 Temperature of the Room Through Which the Pipes 50,00 Design Flow Temperature
dist Flow, Design Value
R
X Mechanical Room dist Flow, Design Value
Average Cold Water Temperature of the Supply
(Project)
=
AND
Design Return Temperature
Cold Region 2
5,00 0,350 20 55,0 Secondary Calculation: -Values of Plumbing 3,0 50,00
Pheating (exist./calc.)
DHW Consumption per Person and Day (60 °C)
X Mechanical Room
QHL
DHW: Standard Useful Heat
(Project)
DHW: Standard Useful Heat
0
Annual Losses
'Performance ratio of heat distribution
Heat Loss Coefficient per m Pipe
'Performance ratio of heat distribution
LH (Project)
Specif. Losses
Other (Within Therm. Envelope)
1
/
1
LH (Project)
Flow Temperature Control (check)
Interior Pipe Diameter: Exterior Pipe Diameter Exterior Pipe Diameter
Parts
Annual Heat Emission per m of Plumbing
Pheating (exist./calc.)
8760
/
Annual Heat Emission per m of Plumbing
Cooling (Within Therm. Envelope)
Cold Water Due to Flushing WC
Average Heat Emitted by Persons (W)
=
Design Flow Temperature
(calculation from column AJ)
Used in Time Span (h/a)
Relative Presence
}*
8760
0
kWh/a d kW
Possible Utilization Factor of Released Heat
Building: Workshop + info point
*
}*
DISTRIBUTION
Interior Temperature:
100
0
Predominant Utilisation Pattern of Building
Nominal Width Insulation Thickness: Reflective? Please mark with an "x"! x Yes No Thermal Conductivity
m² Pers
Temperature of the Room Through Which the Pipes
20 °C Building Type/Use: non-residential Treated Floor Area ATFA: 284 m² 8,0 Occupancy: Pers 1 Number of Residences: 2911 Annual Heating Demand qHeating kWh/a 9 18Length of Heating Period: 209 d Average heating 0,6 kW 2250 * 1,00 / load Pave: 59% Marginal Utilisability of Additional Heat Gains:
Dishwashing (Within Therm. Envelope)
Heat Loss Due to Cold Water
HEAT
}*
*
Lighting / Equipment / Aux. Electricity
Utilisation Hours per Year [h/a]
Heat Emitted per Person (W)
Average Occupancy (Persons / m²)
Floor Area of Utilisation Zone (m²) }*
Useful Ene ergy [kWh/a]]
Evaporation (person specific)
planning with # of persons Enter # of persons or floor area Enter # of persons or floor area Enter # of persons or floor area planning with # of persons Enter # of persons or floor area Enter # of persons or floor area
27 standard value standard value standard value standard value standard value standard value standard value
284 8,0 1 2911 209 0,6 59%
Length of Distribution Pipes
Flow Temperature Passive House Design verification Design System heating load
Average H Heat Release e
Persons D
SYSTEM
°C
Space Heat Distribution
W
Average Power Cold Water
3
Persons C Persons E
3
Planning with the number of persons or via floor area of utilisation zone (planning via area only if the occupancy is available for this utilisation pattern). Pers./Area (1 / 0)
6,3
Internal Heat Gains Aux. Electricity:
Used in Tiime Period (kh h/a)
Persons B
3
Heating Period: 209,2693 d/a
20
Warm Region
°C
Used in Period (d/a)
Workshop
Select
Select 41
284
20
Room Temperature:
Availabiliity
Persons A
Utilisation Pattern
Column Nr.
P m²
Number of Occupants
TF Area:
8,0
Activity of Persons
Persons:
Persons
DHW
Building Type/Use: non-residential
Carefully complete the Electricity Non-Dom worksheet!
Average heating load Pave:
Calculation Internal Heat
AND
Building: Workshop + info point
Occupancy:
Type of Values Used:
DISTRIBUTION
Secondary Calculation: -Values of Plumbing
Total Storage Heat Losses
2,5
W/K
60
°C
20
°C
100
W
Total Storage Heat Losses
2,5
W/K
60
°C
20
°C
100
W
ZERO IMPACT BUILDING MA (SCI) ARCHITECTURE KU LEUVEN 路 SINT LUCAS GROUP 42 路 GENT 漏2015