INICIACIÓN A LA ELECTRICIDAD Trabajo de los temas 7 y 8 de la asignatura Física y Química Trabajo realizado por: José Pedro Casado Anguita Marta Gómez Sánchez 23/02/2014
1.
Los electrones llevan un sentido, que es del polo negativo al positivo. Responde a estas cuestiones: a) ¿Cómo se denomina ese sentido de la corriente eléctrica? Se llama sentido real. b) ¿Cómo se denomina el sentido opuesto? Se llama sentido convencional.
2.
Vamos a suponer que tenemos una bombilla conectada a un alargador de 2m de longitud para alumbrarnos. El alargador lo conectamos al enchufe. Cuando damos al interruptor, resulta que la bombilla se enciende al instante, pero hay algo que no sabemos y es que los electrones se mueven aproximadamente a 10 cm/s, es decir, que un electrón que salga del enchufe hacia la bombilla, tardará unos 20s en llegar. ¿Cómo es posible que la bombilla se encienda inmediatamente? Razona tu respuesta. Porque si el alargador no tiene algo que disminuya la velocidad de los electrones, va a una velocidad mayor de lo esperada. Como no hay agua por medio, se enciende al instante; como el cable está recto y no está doblado, los electrones no tienen problema para llegar a la bombilla.
3.
Conecta el voltímetro de manera que podamos medir la tensión de la pila:
4.
Conecta el óhmetro para medir el valor de la resistencia:
5.
Si a una resistencia de 100Ω le conectamos una pila de 12,5V, ¿cuántos amperios pasarán por la resistencia? Con la Ley de Ohm calcularemos la intensidad que circula por el circuito. I= V/R ; I=12,5V/100Ω ; I= 0.125 A
6.
Si ahora le cambiamos la pila, de manera que por la resistencia pasen 10 A, ¿de cuántos voltios será la nueva pila? Con la Ley de Ohm se calcula el voltaje. Se despeja para poder realizar la operación. I=V/R ; V=R · I ; V= 100Ω · 10 A ; V= 1000V
7.
¿Qué le pasa a un conductor si le aumentamos la longitud? ¿Y si aumentamos la sección? Si se aumenta la longitud, mayor será la resistencia. Si se aumenta la sección, menor será su resistencia y permitirá más paso de electrones.
8.
Si la resistividad del cobre es de 0,017 y tenemos una bobina de cable de 200m de longitud y 1,5 mm2 de sección, ¿cuál será la resistencia de la bobina? R = P·L/S; R= 0.017Ω · 200m / 1.5mm2; R = 0.017Ω · 133.33; R = 2.27Ω
9.
De la bobina anterior hemos gastado unos cuantos metros, pero no sabemos lo que queda. Al medir con un óhmetro, obtenemos una resistencia de 2Ω. ¿Podrías decir cuántos metros de cable quedan? R = P·L/S; L = R·S/P; L = 2Ω · 1.5mm2 / 0.017 Ω; L = 3/0.017Ω; L = 176.47m
10. Una
nube pasa a 1200 m de altura y sabemos que con la fricción se va cargando con cargas eléctricas de manera que hay una diferencia de potencial entre la nube y la tierra. Si el aire tiene una rigidez dieléctrica de 3 kV/mm, ¿qué diferencia de potencial tendrá que existir entre nube y suelo para que haya un relámpago? 3kV/mm = 3vK / 0.001m = 3000kV/m 1200m · 3000kV/m = 3600000kV = 3600MV
11. Si
por una resistencia de 100Ω pasa una intensidad de 2 A, ¿cuántos vatios de potencia consumirá? Según la Ley de Ohm I = V/R; V = I · R; V = 2A · 100Ω ; V = 200V
12. Tenemos
una calefacción eléctrica que consume 2000 W y la tenemos encendida durante 1 hora para calentar el baño. Suponiendo que el kW·h tenga un precio de 0,37€, ¿cuánto nos va a costar tenerla encendida durante ese tiempo? 1000W = 1kW 2000W = 2kW
13. Si
0.37€ · 1kW · 1h 0.37€ · 2kW · 1h = 0.74€ · h
consideramos el mismo precio del kW·h que en el ejercicio anterior y resulta que hemos puesto en marcha un aparato que no sabemos cuánto consume en W y que nos ha costado 3€ tenerle encendido durante 10 h, sabrías decir ¿Cuántos vatios consume ese aparato? Si además lo hemos conectado a 230 V, ¿cuál será su resistencia? h · kW · € / h = €; kW = € / (h·€/h); kW = 3€ / 10h· 0.37€; kW = 0.81kW 0.81kW = 810.81W P = V2/R; R = V2/P; R = (230)2 / 810.81; R = 65.24Ω
14. Escribe
las características que tiene la asociación en serie de resistencias. - La intensidad que pasa por las tres resistencias es la misma, e igual a la de la Resistencia Equivalente: I = I1 = I2 = I3 - La tensión de la pila se reparte entre las tres resistencias: V = V1 + V2 + V3 - La potencia generada en la pila (P) es consumida por las tres resistencias e igual a la consumida en la Resistencia Equivalente: P = P1 + P2 + P3 - La Resistencia Equivalente es igual a la suma de las que están en serie: R = R 1 + R2 + R 3
15. Escribe
las características que tiene la asociación en paralelo de resistencias. - La intensidad que sale del generador se reparte entre las tres resistencias: I = I1 + I2 + I3 - La tensión de la pila es la misma en las tres resistencias: V = V1 = V2 = V3 - La potencia generada en la pila (P) es consumida por las tres resistencias: P = P1 + P2 + P3 - La Resistencia Equivalente es igual al inverso de la suma de los inversos de las resistencias: 1/Req = 1/R1 + 1/R2 + 1/R3
16. En
el circuito de la figura, sabemos que V = 10 V, R1 = 20Ω y R2 = 30Ω. Calcula la tensión que tendrá R2 y la intensidad que va a pasar por las resistencias. Req = R1 +R2; Req = 20Ω +30Ω; Req = 50Ω I = V/R ; I = 10V / 50Ω; I = 0.2A V = R2· I; V = 30Ω · 0.2A;V = 6V
17. En
el siguiente circuito, V = 20V, R1 = 30Ω y R2 = 30Ω. Calcula la resistencia equivalente y la intensidad que va a circular por cada una de las resistencias. 1/Req = 1/R1 + 1/ R2; 1/Req = 1/30Ω + 1/30Ω; 1/Req = 2/30Ω; 2Req = 30Ω; Req = 15Ω I = V/R; I = 20V / 15Ω; I = 1.33A I = I1+I2; I = 2I1; 1.33A/2 = I1; 0.67A = I1 0.67A = I2
18.
Realiza en la red la actividad Energuy. Imprime la pantalla final con tu resultado (solo cuando sea superior a 11). Está en inglés, pero seguro que te defiendes y así repasas.