Materials Australia Magazine | September 2020 | Volume 53 | No 3

Page 46

INDUSTRY NEWS

BREAKING NEWS Unusual State of Matter in New Material Holds Promise for Transformative Quantum Technologies

Spin-Gapless Semiconductors Review: More Candidates for Next-Generation Low Energy and High Efficient Spintronics

ANSTO has provided supporting experimental evidence of a highly unusual quantum state, a quantum spin liquid (QSL), in a two-dimensional material as reported by an international collaboration led by Tokyo University of Science. Materials with quantum spin liquid states could be used in the development of spintronic devices, quantum computers and other transformative quantum technologies. In a quantum spin liquid, an elusive state of matter that is the subject of much investigation worldwide, the electron spins, in a magnetic material, never align, but continue to fluctuate even at the lowest temperatures. This phenomena has been described as a fluctuating liquid-like state. Low energy spin excitations, evidence of a QSL, were detected at a range of very low temperatures during experiments in Japan. Importantly, the expected spin ordering or freezing was not detected in the inelastic neutron scattering spectra. Scientists Dr Richard Mole and Dr Dehong Yu used inelastic neutron scattering, a spectroscopic technique to detect the vibrations of atoms. “When we analysed the Pelican data at 25K, 15K and 48mK, we could see the same spin excitations and they persisted to the lowest temperature, which is only slightly above absolute zero,” Dr Mole said. In order to create these low-temperature environments, a special type of cryostat, called a dilution insert, was optimised on the Pelican instrument. “A quantum spin liquid state possesses extensive many-body entanglements, a kind of correlation, or a link between all the spins. As an analogy, think of a bucket of water with several fishing floats on the surface. If you disturb one float, all the floats will also be disturbed,” Dr Yu explained.

The University of Wollongong recently published an extensive review of spin-gapless semiconductors (SGSs). SGSs are a new class of zero gap materials that have fully spin polarised electrons and holes. The study enhances the search for materials that would allow for ultra-fast, ultra-low energy spintronic electronics, with no wasted dissipation of energy from electrical conduction. The defining property of SGS materials relates to their ‘bandgap’ – the gap between the material’s valence and conduction bands – which defines their electronic properties. In general, one spin channel is semiconducting with a finite band gap, while the other spin channel has a closed (zero) band gap. The band structures of the SGSs can have two types of energymomentum dispersions: Dirac (linear) dispersion or parabolic dispersion. The new review investigates both Dirac and the three sub-types of parabolic SGSs in different material systems. For Dirac type SGS, the electron mobility is two to four orders of magnitude higher than in classical semiconductors. Very little energy is needed to excite electrons in an SGS, charge concentrations are very easily ‘tuneable’. The Dirac type spin gapless semiconductors exhibit fully spin polarised Dirac cones, and offer a platform for spintronics and low-energy consumption electronics through dissipation-less edge states, driven by the quantum anomalous Hall effect. In a spin-gapless semiconductor, conduction and valence band edges touch in one spin channel, and no threshold energy is required to move electrons from occupied (valence) states to empty (conduction) states. This property gives these materials unique properties, as their band structures are extremely sensitive to external influences such as pressure or magnetic field. Most SGS materials are all ferromagnetic materials with high Curie temperatures.

Inelastic neutron scattering data of KCu6AlBiO4(SO4)5Cl. Pelican measurements plotted at h. Image courtesy of ANSTO.

46 | SEPTEMBER 2020

BACK TO CONTENTS

LEFT: The band structures of parabolic and Dirac type SGS materials with spin-orbital coupling, which leads to the quantum anomalous Hall effect. ABOVE: FLEET Chief Investigator Professor Xiaolin Wang

WWW.MATERIALSAUSTRALIA.COM.AU


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Materials for Energy and the Environment

31min
pages 52-62

Materials Australia - Short Courses www.materialsaustralia.com.au/training/online-training

3min
pages 63-64

Breaking News

18min
pages 46-51

University Spotlight: University of Adelaide

6min
pages 44-45

AXT and Delmic Install Unique Cathodoluminescence and CLEM Solution at UTS

1min
page 42

Plasma FIB-SEMs – Advantages and Applications

1min
page 43

Miscibility Gap Alloys: Commercialising A ‘Missing Link’ For Renewable Energy

5min
pages 40-41

New Desktop SEM Helps Improve Quality Control, Production Efficiency and Material Cleanliness

9min
pages 36-39

Ultrathin Nanosheets Separate Ions from Water

3min
page 35

Innovative New Ship Cladding Creates Jobs and Reduces Emissions

3min
page 34

Five Things You May Not Know About Choosing a Batch Glass Melt Furnace

2min
page 33

Flexible Phone Screen Chemicals Kick Off New Industry Partnership for South Korea and Australia

3min
page 28

Look For The Simple Things

2min
pages 31-32

Liquid Metal Synthesis for Better Piezoelectrics: Atomically-Thin Tin-Monosulfide

3min
page 30

Women in the Industry Professor Julie Cairney

5min
pages 26-27

Our Certified Materials Professionals (CMatPs

3min
page 22

Why You Should Become a CMatP

2min
page 23

CMatP Profile: Dr Evelyn Ng

8min
pages 20-21

Reports

4min
page 3

WA Branch Technical Meeting - 13 July 2020

2min
page 16

WA Branch Technical Meeting - 10 August 2020

4min
page 17

Enhancing Protection from COVID-19

4min
page 18

VIC & TAS Branch Technical Meeting

4min
page 19

WA Branch Technical Meeting - 8 June 2020

6min
pages 14-15

Professor Simon Ringer Wins Materials Australia Silver Medal

2min
page 10

MAMAS 2020

2min
pages 12-13
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.