ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ

Page 1

‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ ‫‪ -1‬ﻗﻴﺲ ﺧﻂ ﺑﺸﺮﻳﻂ ﻣﻦ اﻟﺘﻴﻞ ﻓﻜﺎن ﻃﻮﻟﻪ )‪ ، (93.75 m‬ﻓﺈذا ﻋﻠ ﻢ أن اﻟﻄ ﻮل اﻹﺳ ﻤﻰ ﻟﻬ ﺬا اﻟ ﺸﺮﻳﻂ ه ﻮ )‪ ، (20.0 m‬واﻟﻄ ﻮل‬ ‫اﻟﺤﻘﻴﻘﻰ ﻟﻪ )‪ (20.01 m‬اﺣﺴﺐ اﻟﻄﻮل اﻟﺤﻘﻴﻘﻰ ﻟﻠﺨﻂ‪.‬‬ ‫اﻟﺤﻞ‬ ‫ﻳﺴﺘﺨﺪم اﻟﺸﺮﻳﻂ ﻟﻠﻘﻴﺎس اﻟﻤﺒﺎﺷﺮ‪ ،‬وﻳﻤﻜ ﻦ أن ﻳﻜ ﻮن ﻣ ﻦ اﻟﻜﺘ ﺎن أو ﻣ ﻦ اﻟ ﺼﻠﺐ‪ ،‬وﻟﻜﻨ ﻪ ﻳ ﺼﻌﺐ اﺳ ﺘﺨﺪاﻣﻪ ﻓ ﻰ ﺗﻴ ﺎرات‬ ‫اﻟﻬﻮاء اﻟﺸﺪﻳﺪة ﻟﺼﻌﻮﺑﺔ ﺷﺪﻩ أﻓﻘﻴ ًﺎ‪.‬‬ ‫اﻟﻄﻮل اﻟﺤﻘﻴﻘﻰ ﻟﻠﺨﻂ = اﻟﻄﻮل اﻟﻤﻘﺎس ×‬

‫اﻟﻄﻮل اﻟﺤﻘﻴﻘﻰ ﻟﻠﺸﺮﻳﻂ )أو اﻟﺠﻨﺰﻳﺮ(‬ ‫اﻟﻄﻮل اﻹﺳﻤﻰ ﻟﻠﺸﺮﻳﻂ )أو اﻟﺠﻨﺰﻳﺮ‬ ‫‪20.01‬‬ ‫‪= 93.7968 m‬‬ ‫* ‪True length = 93.75‬‬ ‫‪20.0‬‬

‫∗∗∗∗∗∗‬ ‫‪ -2‬ﻓﻘﺪت ﻋﻘﻠﺔ ﻣﻦ اﻟﻤﺘﺮ اﻟﺜﺎﻣﻦ ﻣﻦ اﻟﺠﻨﺰﻳﺮ‪ ،‬وآﺎن ﻃﻮل اﻟﺨﻂ اﻟﻤﻘﺎس )‪ . (88.50 m‬اﺣﺴﺐ اﻟﻄﻮل اﻟﺤﻘﻴﻘﻰ ﻟﻠﺨﻂ‪.‬‬ ‫اﻟﺤﻞ‬ ‫اﻟﺠﻨﺰﻳﺮ ﻋﺒﺎرة ﻋﻦ ﻗ ﻀﺒﺎن رﻓﻴﻌ ﺔ ﻣ ﻦ اﻟﺤﺪﻳ ﺪ أو اﻟ ﺼﻠﺐ ﺗﺘ ﺼﻞ ﺑﺒﻌ ﻀﻬﺎ ﻋ ﻦ ﻃﺮﻳ ﻖ ﺣﻠﻘ ﺎت‪ ،‬وﻳﻨﺘﻬ ﻰ ﻃﺮﻓ ﺎ اﻟﺠﻨﺰﻳ ﺮ‬ ‫ﺑﻤﻘﺒﻀﻴﻦ ﻣﻦ اﻟﻨﺤﺎس‪ ،‬واﻟﻄﻮل اﻟﻤﻌﺮوف ﻟﻠﺠﻨﺰﻳﺮ هﻮ )‪ ،(20.0 m‬وﻃﻮل آﻞ ﻋﻘﻠﺔ هﻮ )‪ (20.0 cm‬ﺑﻤﺎ ﻳﺘﺒﻌﻬﺎ ﻣﻦ ﺣﻠﻘﺎت‪.‬‬ ‫اﻟﻄﻮل اﻹﺳﻤﻰ ﻟﻠﺠﻨﺰﻳﺮ = ‪ ، 20.0 m‬اﻟﻄﻮل اﻟﺤﻘﻴﻘﻰ ﻟﻠﺠﻨﺰﻳﺮ = ‪19.80 m = 20.0 – 0.20‬‬

‫‪19.80‬‬ ‫‪= 87.615 m‬‬ ‫‪20.0‬‬

‫* ‪true length = 88.50‬‬

‫∗∗∗∗∗∗‬ ‫‪ -3‬ﻗﻴ ﺴﺖ ﻣ ﺴﺎﺣﺔ أرض ﺑﺎﺳ ﺘﺨﺪام ﺷ ﺮﻳﻂ ﻃﻮﻟ ﻪ )‪ (30.0 m‬ﻓﻜﺎﻧ ﺖ اﻟﻤ ﺴﺎﺣﺔ )‪ ،(656.0 m2‬ﻓ ﺈذا ﻋﻠ ﻢ أن اﻟﻄ ﻮل اﻟﺤﻘﻴﻘ ﻰ‬ ‫ﻟﻠﺸﺮﻳﻂ هﻮ )‪ (29.99 m‬ﻓﺄوﺟﺪ اﻟﻤﺴﺎﺣﺔ اﻟﺤﻘﻴﻘﻴﺔ ﻟﻘﻄﻌﺔ اﻷرض‪.‬‬ ‫اﻟﺤﻞ‬ ‫‪2‬‬

‫اﻟﻤﺴﺎﺣﺔ اﻟﺤﻘﻴﻘﻴﺔ = اﻟﻤﺴﺎﺣﺔ اﻟﻤﻘﺎﺳﺔ ×‬

‫)اﻟﻄﻮل اﻟﺤﻘﻴﻘﻰ ﻟﻠﺸﺮﻳﻂ أو اﻟﺠﻨﺰﻳﺮ(‬ ‫)اﻟﻄﻮل اﻹﺳﻤﻰ ﻟﻠﺸﺮﻳﻂ أو اﻟﺠﻨﺰﻳﺮ(‬

‫‪2‬‬

‫‪2‬‬

‫⎞ ‪⎛ 29.99‬‬ ‫‪2‬‬ ‫⎜ * ‪True area = 656.0‬‬ ‫‪⎟ = 655.562 m .‬‬ ‫⎠ ‪⎝ 30.0‬‬

‫∗∗∗∗∗∗‬ ‫‪ -4‬اﺷﺘﻖ اﻟﻌﻼﻗﺔ ﻟﺘﺼﺤﻴﺢ اﻟﺨﻄﺄ اﻟﻨﺎﺗﺞ ﻋﻦ اﻟﻘﻴﺎس ﻋﻠﻰ أرض ﻣﺎﺋﻠﺔ ﺑﺎﻧﺘﻈﺎم ﺑﺪﻻﻟﺔ‪:‬‬ ‫أ‪ -‬زاوﻳﺔ ﻣﻴﻞ اﻷرض ‪θ‬‬ ‫ب‪ -‬ﻓﺮق اﻟﻤﻨﺴﻮب ﺑﻴﻦ اﻟﻨﻘﻄﺘﻴﻦ‪.‬‬ ‫‪1‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ ‫اﻟﺤﻞ‬ ‫أ‪ -‬ﺑﺪﻻﻟﺔ زاوﻳﺔ اﻟﻤﻴﻞ ‪θ‬‬ ‫درﺟﺔ اﻹﻧﺤﺪار )أو ﻣﻴﻞ اﻷرض( ‪ 1:n‬ﺣﻴﺚ ‪ 1‬اﻟﻤﺴﺎﻓﺔ‬ ‫اﻟﺮأﺳﻴﺔ ‪ n ،‬اﻟﻤﺴﺎﻓﺔ اﻷﻓﻘﻴﺔ‪.‬‬

‫‪H1‬‬ ‫‪θ‬‬

‫‪V1‬‬

‫‪V2‬‬

‫‪L2‬‬

‫‪L1‬‬

‫‪H2‬‬ ‫‪L‬‬ ‫‪2.n 2‬‬ ‫‪Or the Horizontal distance (H) = L . cos θ‬‬

‫= )‪E (Correction‬‬

‫ب‪ -‬ﺑﺪﻻﻟﺔ ﻓﺮق اﻟﻤﻨﺴﻮب )اﻟﺒﻌﺪ اﻟﺮأﺳﻰ(‪:‬‬ ‫‪Data is the inclined distance (L), and level difference (V).‬‬ ‫‪Assume that L2 = V2 + (L-E)2, where E is the correction value.‬‬ ‫⎛‬ ‫⎞ ‪V2 V4‬‬ ‫⎟‬ ‫‪E = L − ⎜⎜ L −‬‬ ‫‪−‬‬ ‫⎠⎟ ‪2.L 8.L3‬‬ ‫⎝‬ ‫‪V2 V4‬‬ ‫=‪E‬‬ ‫‪+‬‬ ‫‪2.L 8.L3‬‬

‫‪ -5‬ﻗﻴﺲ ﺧﻂ ﺑﺸﺮﻳﻂ ﻣﻦ اﻟﺼﻠﺐ ﻃﻮﻟﻪ )‪ (20.0 m‬ﻓﻜﺎن ﻃﻮﻟﻪ )‪ (100.0 m‬وآﺎن ﻣﻘﺪار اﻟﺘﺮﺧﻴﻢ )‪ (5.0 cm‬ﻣﻦ اﻟﻄﻮل اﻟﺤﻘﻴﻘ ﻰ‬ ‫ﻟﻠﺸﺮﻳﻂ )‪ (20.01m‬وآﺎﻧﺖ درﺟﺔ اﻟﺤﺮارة أﺛﻨﺎء اﻟﻘﻴﺎس )‪ (18.0 0C‬وأﺛﻨﺎء اﻟﻤﻌﺎﻳﺮة )‪ (20.0 0C‬وﻣﻌﺎﻣﻞ ﺗﻤﺪد اﻟﺸﺮﻳﻂ ‪(9*10-‬‬ ‫)‪7‬ﻟﻜﻞ درﺟﺔ ﻣﺌﻮﻳﺔ‪ ،‬وزاوﻳﺔ ﻣﻴﻞ اﻟﺸﺮﻳﻂ )‪ (60 0‬اﺣﺴﺐ اﻟﻄﻮل اﻟﺤﻘﻴﻘﻰ ﻟﻠﺨﻂ‪.‬‬ ‫اﻟﺤﻞ‬ ‫‪ -1‬اﻟﻌﻼﻗﺔ اﻟﺘﻰ ﺗﺴﺘﺨﺪم ﻟﺘﺼﺤﻴﺢ اﻟﺘﺮﺧﻴﻢ ﻓﻰ اﻟﺸﺮﻳﻂ‪:‬‬ ‫‪2‬‬

‫‪2‬‬

‫‪8.S‬‬ ‫‪32.S‬‬ ‫‪−‬‬ ‫‪− ....‬‬ ‫‪3.D 15.D 2‬‬

‫‪H = D−‬‬

‫‪Where:‬‬ ‫‪Horizontal distance‬‬ ‫‪length of the measuring tape‬‬ ‫‪sag of the tape‬‬

‫‪2‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬

‫‪H‬‬ ‫‪D‬‬ ‫‪S‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ ‫وﺑﺎﻟﺘﺎﻟﻰ ﻳﻤﻜﻦ ﺣﺴﺎب اﻟﺨﻄﺄ اﻟﻨﺎﺗﺞ ﻣﻦ اﻟﺘﺮﺧﻴﻢ ﻣﻦ اﻟﻤﻌﺎدﻟﺔ‪:‬‬ ‫‪2‬‬

‫‪4‬‬

‫‪8.S‬‬ ‫‪32.S‬‬ ‫‪+‬‬ ‫‪3.D 15.D 3‬‬

‫= ‪E = D−H‬‬

‫وﻳﻤﻜﻦ إهﻤﺎل اﻟﺤﺪ اﻟﺜﺎﻧﻰ ﻣﻦ اﻟﻤﻌﺎدﻟﺔ ﻷﻧﻪ ﺻﻐﻴﺮ ﺟﺪًا‪.‬‬

‫‪Correction of sag:‬‬ ‫‪8 * (0.05) 2‬‬ ‫‪= 0.033 cm.‬‬ ‫‪3 * 20.0‬‬

‫=‪E‬‬

‫‪ -2‬اﻟﺨﻄﺄ اﻟﻨﺎﺗﺞ ﻣﻦ اﺧﺘﻼف درﺟﺔ اﻟﺤﺮارة‪:‬‬ ‫) ‪E = α .H ( d 1 − d‬‬

‫‪Where:‬‬ ‫‪E‬‬ ‫‪α‬‬ ‫‪d1‬‬ ‫‪d‬‬

‫‪Correction due to temperature change‬‬ ‫‪coefficient of thermal expansion‬‬ ‫‪degree of temperature at measuring‬‬ ‫‪degree of temperature at calibration.‬‬

‫*‪E = 9*10-7‬‬ ‫‪ -6‬ﻋﻨﺪ ﻋﻤﻞ رﻓﻊ ﻟﺒﺮآﺔ ﻣﻴﺎﻩ أﺣﻴﻄﺖ ﺑﻤﺜﻠﺚ ‪ ABC‬أﻃﻮال أﺿﻼﻋﻪ آﺎﻵﺗﻰ ‪:‬‬ ‫‪AB = 400.0 m , AC = 250.0 m.‬‬ ‫أﺧﺬت اﻟﻨﻘﻄﺔ ‪ D‬ﻋﻠﻰ اﻟﺨﻂ ‪ BC‬ﺑﺤﻴﺚ آﺎن ﻃﻮل ‪ CD = 150.0 m ،BD = 125.0 m‬اﺣﺴﺐ ﻃﻮل اﻟﺨﻂ ‪ ،AD‬أذا آﺎن ‪:‬‬ ‫أ – ﻃﻮل اﻟﺠﻨﺰﻳﺮ اﻟﻤﺴﺘﻌﻤﻞ ﺻﺤﻴﺤ ًﺎ‪.‬‬ ‫ب – اﻟﺠﻨﺰﻳﺮ اﻟﻤﺴﺘﻌﻤﻞ ﺑﻪ ﻋﻘﻠﺔ ﻣﻔﻘﻮدة ﻓﻰ اﻟﻤﺘﺮ )‪.(15‬‬ ‫اﻟﺤﻞ‬

‫‪C‬‬ ‫‪m‬‬ ‫‪15‬‬ ‫‪0.0‬‬

‫‪m‬‬

‫‪25‬‬ ‫‪0.0‬‬

‫‪θ‬‬

‫‪D‬‬ ‫‪m‬‬ ‫‪12‬‬ ‫‪5.0‬‬

‫‪A‬‬ ‫‪40 0. 0 m‬‬

‫‪3‬‬

‫‪B‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ AD =

( AB) 2 .DC + ( AC ) 2 .DB − BD.DC BC

AD =

(400) 2 .150 + (250) 2 .125 − 125.0 *150.0 = 311.339 m 275

or, ( AC ) 2 + ( BC ) 2 − ( AB) 2 cos(θ ) = 2 * AC * BC cos(θ ) =

(250) 2 + (275) 2 − (400) 2 = 2 * 250 * 275

(AD)2 = (AC)2 + (CD)2 – 2*AC*CD*cos (θ) ‫ وﺿﺢ آﻴﻔﻴﺔ اﻟﺘﻐﻠﺐ ﻋﻠﻰ اﻟﻌﻘﺒﺎت اﻟﺘﻰ ﻧﻮاﺟﻬﻬﺎ ﻓﻰ اﻟﻄﺒﻴﻌﺔ‬-7

:‫ ﻟﻠﺘﻐﻠﺐ ﻋﻠﻰ اﻟﻌﻮاﺋﻖ ﻓﻰ اﻟﻘﻴﺎس ﻳﻤﻜﻦ اﺳﺘﺨﺪام اﻟﻄﺮق اﻵﺗﻴﺔ‬-‫ب‬ -1

1

2 e

d

c

A

3

d

e B A

B

c

f c

4

e

90.0°

f

d

c A A

B

B d

Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.

4


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ ‫‪ -8‬وﺿﺢ آﻴﻔﻴﺔ ﻗﻴﺎس ﺑﺮج ﻳﻤﻜﻦ اﻟﻮﺻﻮل إﻟﻰ ﻗﺎﻋﺪﺗﻪ وﻻ ﻳﻤﻜﻦ اﻟﻮﺻﻮل إﻟﻰ ﻗﻤﺘﻪ ﺑﺎﺳﺘﺨﺪام أدوات اﻟﻘﻴﺎس اﻟﻄﻮﻟﻰ‪.‬‬

‫‪E‬‬

‫‪C‬‬ ‫‪H‬‬ ‫‪F‬‬

‫‪G‬‬

‫‪A‬‬ ‫‪D‬‬

‫‪B‬‬

‫‪ -9‬وﺿﺢ آﻴﻔﻴﺔ ﻗﻴﺎس ﺑﺮج ﻻ ﻳﻤﻜﻦ اﻟﻮﺻﻮل إﻟﻰ ﻗﺎﻋﺪﺗﻪ‪ ،‬وﻻ إﻟﻰ إرﺗﻔﺎﻋﻪ ﺑﺎﺳﺘﺨﺪام أدوات اﻟﻘﻴﺎس اﻟﻄﻮﻟﻰ ﻓﻘﻂ‪.‬‬

‫‪5‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

‫اﻟﻤﺴﺎﺣﺔ ﺑﺎﻟﺒﻮﺻﻠﺔ‬ :‫ﺗﻌﺮﻳﻔﺎت‬ ‫ اﻟﺸﻤﺎل اﻟﻤﻐﻨﺎﻃﻴﺴﻰ‬-1 ‫ اﻟﺸﻤﺎل اﻟﺠﻐﺮاﻓﻰ‬-2 ‫ زاوﻳﺔ اﻹﺧﺘﻼف‬-3 ‫ إﻧﺤﺮاف اﻟﺨﻂ‬-4 ‫ اﻹﻧﺤﺮاف اﻟﺪاﺋﺮى‬-5 ‫ اﻹﻧﺤﺮاف اﻟﻤﺨﺘﺼﺮ‬-6

Summation of internal angles of a closed polygon = (n-2)*180

………. (1)

Where: n

number of polygon’s sides.

Summation of internal angles of a closed polygon (with the help of member’s bearings) = Σ of back bearings - Σ of front bearings + L*360 ………. (2) Where: L number of points whose front bearing is greater than the back bearing of the previous member. .‫ﻋﺪد اﻟﻨﻘﺎط اﻟﺘﻰ ﺑﻬﺎ اﻹﻧﺤﺮاف اﻷﻣﺎﻣﻰ ﻟﻠﺨﻂ اﻟﻼﺣﻖ أآﺒﺮ ﻣﻦ اﻹﻧﺤﺮاف اﻟﺨﻠﻔﻰ ﻟﻠﺨﻂ اﻟﺴﺎﺑﻖ‬ Error of internal angles (Δ) = (n-2)*180 –{ Σ of back bearings - Σ of front bearings + L*360 } Allowable error = K . 2.n Where:

K

constant

The amount of correction for each direction (e) =

Δ 2.n

Examples:

1- A closed polygon (abcd) was created. The bearings of all its members was measured by a compass, and they were as follows: Member Front Bearing Back Bearing

Ab 1800 ...`

bc 2600 40`

Ca 610 50`

cd 3500 30`

Da 850 40`

…0 20`

810 …

2400 40`

1700 40`

2650 30`

Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.

6


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

2- The following observations were taken by a compass for a closed traverse. It is required to adjust the bearings of that traverse by the exact method, and the sides of the traverse by “Bowditch” method (length of side’s method).

Side

Length

Front Bearing

Back Bearing

AB BC CD DE EA

96.23 121.15 79.16 102.77 94.75

64o 16` 128o 17` 201o 03` 288o 46` 324o 16`

244o 20` 307o 51` 22o 36` 107o 59` 144o 12`

Solution :‫ﺧﻄﻮات اﻟﺤﻞ‬ :‫ ﺗﺼﺤﻴﺢ اﻟﺨﻄﺄ اﻟﺰاوى‬-1 :‫ﻣﻦ اﻟﻤﻌﺮوف أن ﻣﺠﻤﻮع اﻟﺰواﻳﺎ اﻟﺪاﺧﻠﻴﺔ ﻷى ﻣﻀﻠﻊ ﻣﻐﻠﻖ ﺗﺴﺎوى‬ ………. (1)

= 180 (n-2)

where n = total number of angles, or sides of the polygon ‫وﻳﻤﻜﻦ ﻣﻌﺮﻓﺔ ﻗﻴﻤﺔ اﻟﺰواﻳﺎ اﻟﺪاﺧﻠﻴﺔ ﻟﻠﻤﻀﻠﻊ ﺑﻤﻌﻠﻮﻣﻴﺔ اﻹﻧﺤﺮاف اﻷﻣﺎﻣﻰ ﻟﺨﻂ واﻹﻧﺤﺮاف اﻟﺨﻠﻔ ﻰ ﻟﻠﺨ ﻂ اﻟ ﺴﺎﺑﻖ آﻤ ﺎ ه ﻮ ﻣﺒ ﻴﻦ‬ :‫ﺑﺎﻟﺮﺳﻢ‬

B

128°17'0"

244°20'0"

A

144°12'00" 64°16'0"

C

201°03'0"

307°51'0"

E

107°59'0"

324°16'00"

22°36'0"

288°46'0"

D

Angle (abc) = 244o 20` - 128o 17` Angle (cde) = 360 – (288o 46` - 22o 36`)

Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.

7


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ ‫وﺑﺎﻟﺘﺎﻟﻰ ﻳﺼﺒﺢ ‪:‬‬ ‫ﻣﺠﻤﻮع اﻟﺰواﻳﺎ اﻟﺪاﺧﻠﻴﺔ ﻟﻠﺸﻜﻞ = ﻣﺠﻤﻮع اﻹﻧﺤﺮاﻓﺎت اﻟﺨﻠﻔﻴﺔ – ﻣﺠﻤﻮع اﻹﻧﺤﺮاﻓﺎت اﻷﻣﺎﻣﻴﺔ ‪ +‬ل × ‪360‬‬ ‫………… )‪(2‬‬ ‫ﺣﻴﺚ أن )ل( = ﻋﺪد اﻟﻨﻘﻂ اﻟﺘﻰ ﺑﻬﺎ اﻹﻧﺤﺮاف اﻷﻣﺎﻣﻰ ﻟﻠﺨﻂ اﻟﻼﺣﻖ أآﺒﺮ ﻣﻦ اﻹﻧﺤﺮاف اﻟﺨﻠﻔﻰ ﻟﻠﺨﻂ اﻟﺴﺎﺑﻖ‬ ‫ﻼ ﻧﻘﻄﺔ )‪ (d‬اﻟﺨﻂ اﻟﻼﺣﻖ ﻟﻬﺎ هﻮ )‪ (de‬واﻟﺨ ﻂ اﻟ ﺴﺎﺑﻖ ﻟﻬ ﺎ ه ﻮ )‪ ،(cd‬ﻓ ﺈذا آ ﺎن اﻹﻧﺤ ﺮاف اﻷﻣ ﺎﻣﻰ ﻟﻠﺨ ﻂ )‪ (de‬أآﺒ ﺮ ﻣ ﻦ‬ ‫‪ ،‬ﻣﺜ ً‬ ‫اﻹﻧﺤﺮاف اﻟﺨﻠﻔﻰ ﻟﻠﺨﻂ )‪ (cd‬ﻓﺈن ﻧﻘﻄﺔ )‪ (d‬ﺗﻀﺎف إﻟﻰ اﻟﻨﻘﻂ اﻟﻤﺴﺘﺨﺪﻣﺔ ﻹﻳﺠﺎد ﻗﻴﻤﺔ )ل(‪.‬‬ ‫وﻟﺤ ﺴﺎب ﻗﻴﻤ ﺔ )ل( ﻓ ﻰ اﻟﻤﺜ ﺎل اﻟ ﺴﺎﺑﻖ ﻧﺒ ﺪأ ﺑ ﺎﻹﻧﺤﺮاف اﻷﻣ ﺎﻣﻰ ﻟﺜ ﺎﻧﻰ ﺧ ﻂ )‪ (bc‬وﻧﻘﺎرﻧ ﻪ ﺑ ﺎﻹﻧﺤﺮاف اﻟﺨﻠﻔ ﻰ ﻟﻠﺨ ﻂ‬ ‫اﻟﺴﺎﺑﻖ )‪ (ab‬أى ﻧﻘﺎرن `‪ 1280 17‬ﻣﻊ `‪ ،2440 20‬وهﻜﺬا آﻤﺎ هﻮ ﻣﺒﻴﻦ ﻣﻦ اﻹﺗﺠﺎهﺎت ﻓﻰ اﻟﺠﺪول اﻟﺘﺎﻟﻰ‪:‬‬

‫‪Back Bearing‬‬

‫‪Front Bearing‬‬

‫‪Line‬‬

‫‪Point‬‬

‫`‪244o 20‬‬

‫`‪64o 16‬‬

‫‪AB‬‬

‫‪A‬‬

‫`‪307o 51‬‬

‫`‪128o 17‬‬

‫‪BC‬‬

‫‪B‬‬

‫`‪22o 36‬‬

‫`‪201o 03‬‬

‫‪CD‬‬

‫‪C‬‬

‫`‪107o 59‬‬

‫`‪288o 46‬‬

‫‪DE‬‬

‫‪D‬‬

‫`‪144o 12‬‬

‫`‪324o 16‬‬

‫‪EA‬‬

‫‪E‬‬

‫`‪826o 58‬‬

‫`‪1006o 38‬‬

‫‪Summation‬‬

‫وهﻜﺬا ﻧﺠﺪ أن ﻋﺪد اﻟﻨﻘﻂ اﻟﺘﻰ ﻳﺰﻳﺪ ﻓﻴﻬﺎ اﻹﻧﺤﺮاف اﻷﻣﺎﻣﻰ ﻟﻠﺨﻂ اﻟﻼﺣﻖ ﻋ ﻦ اﻹﻧﺤ ﺮاف اﻟﺨﻠﻔ ﻰ ﻟﻠﺨ ﻂ اﻟ ﺴﺎﺑﻖ ﻳ ﺴﺎوى )‪ (2‬هﻤ ﺎ‬ ‫ل=‪2‬‬ ‫ﻧﻘﻄﺘﻰ )‪ ،(d, e‬ﻣﻊ ﻣﻼﺣﻈﺔ أن اﻹﻧﺤﺮاف اﻷﻣﺎﻣﻰ ﻟﻠﻀﻠﻊ اﻷول ﻳﻘﺎرن ﺑﺎﻹﻧﺤﺮاف اﻟﺨﻠﻔﻰ ﻟﻠﻀﻠﻊ اﻷﺧﻴﺮ‪.‬‬ ‫ اﻟﺨﻄﻮة اﻟﺘﺎﻟﻴﺔ هﻰ إﻳﺠﺎد ﻗﻴﻤﺔ اﻟﺨﻄﺄ اﻟﺰاوى )‪ (Δ‬ﻣﻦ اﻟﻤﻌﺎدﻟﺔ‪:‬‬‫ﻣﺠﻤﻮع اﻟﺰواﻳﺎ اﻟﻤﺤﺴﻮﺑﺔ ﻣﻦ اﻟﻤﻌﺎدﻟﺔ )‪ – (1‬ﻣﺠﻤﻮع اﻟﺰواﻳﺎ اﻟﻤﺤﺴﻮﺑﺔ ﻣﻦ اﻟﻤﻌﺎدﻟﺔ )‪(2‬‬

‫} ‪= 180 (5-2) – { (826o 58` - 1006o 38`) + 2 * 360‬‬ ‫`‪= 540.0 – 540o 20‬‬ ‫`‪= -00o 20‬‬ ‫زﻳﺎدة اﻹﻧﺤﺮاﻓﺎت اﻷﻣﺎﻣﻴﺔ و‬ ‫إذا آﺎن اﻟﺨﻄﺄ )ﺳﺎﻟﺐ( ﻓﺈﻧﻪ ﻳﺠﺐ‬ ‫اﻹﻧﺤﺮاﻓﺎت اﻷﻣﺎﻣﻴﺔ و‬ ‫إذا آﺎن اﻟﺨﻄﺄ )ﻣﻮﺟﺐ( ﻓﺈﻧﻪ ﻳﺠﺐ ﺗﻘﻠﻴﻞ‬

‫‪Δ‬‬

‫ﺗﻘﻠﻴﻞ اﻹﻧﺤﺮاﻓﺎت اﻟﺨﻠﻔﻴﺔ‬ ‫زﻳﺎدة اﻹﻧﺤﺮاﻓﺎت اﻟﺨﻠﻔﻴﺔ‬

‫واﻟﺨﻄﺄ اﻟﻤﺴﻤﻮح ﺑﻪ ﻳﻤﻜﻦ ﺣﺴﺎﺑﻪ ﻣﻦ اﻟﻤﻌﺎدﻟﺔ‪:‬‬ ‫‪Allowable error = k . 2.n , k is constant, n: number of internal angles.‬‬ ‫هﺬا اﻟﺨﻄﺄ ﻳﻮزع ﻋﻠﻰ ﻋﺪد اﻹﺗﺠﺎهﺎت اﻟﻤﺮﺻﻮدة وهﻰ ﺗﺴﺎوى )ﻋﺪد اﻷﺿﻼع × ‪ 10 = 2 × 5 = (2‬اﺗﺠﺎهﺎت‬ ‫ﻗﻴﻤﺔ اﻟﺘﺼﺤﻴﺢ = ﻗﻴﻤﺔ اﻟﺨﻄﺄ ÷ ﻋﺪد اﻹﺗﺠﺎهﺎت ‪ ،‬وﻳﻔﻀﻞ أن ﻳﻜ ﻮن اﻟﺘ ﺼﺤﻴﺢ ﻟﻜ ﻞ إﺗﺠ ﺎﻩ ﻣﻘ ﺪار ﺻ ﺤﻴﺢ ‪ ،‬ﻟ ﺬﻟﻚ إذا آﺎﻧ ﺖ ﻗﻴﻤ ﺔ‬ ‫اﻟﺘﺼﺤﻴﺢ ﻟﻺﺗﺠﺎة اﻟﻮاﺣﺪ آﺴﺮ ﻓﺈﻧﻪ ﻳﺘﻢ اﻵﺗﻰ‪:‬‬ ‫‪Δ‬‬ ‫= )‪error for each direction (e‬‬ ‫)‪, (fraction‬‬ ‫‪2.n‬‬

‫‪ex: assume that n = 5, Δ = 46,‬‬

‫‪8‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

‫‪46‬‬ ‫‪= 4.6‬‬ ‫‪2*5‬‬ ‫‪-1‬ﻧﻌﻴﻦ ﻗﻴﻤﺘﻴﻦ ﺻﺤﻴﺤﺘﻴﻦ ﻟﻠﺨﻄﺄ )‪(e‬أﺻﻐﺮ ﻣﺒﺎﺷﺮة ﻣﻦ ﻗﻴﻤﺔ اﻟﻜﺴﺮ ﺛﻢ ﺗﻠﻚ اﻟﻘﻴﻤﺔ اﻟﺼﺤﻴﺤﺔ ‪1 +‬‬ ‫اﻟﻘﻴﻤﺘﻴﻦ اﻟﺼﺤﻴﺤﺘﻴﻦ ﻟﻠﺘﺼﺤﻴﺢ هﻤﺎ )‪.(4, 4+1‬‬ ‫‪e1 = 4, and‬‬ ‫‪e2 = 5‬‬ ‫‪ -2‬ﻧﻌﻴﻦ ﻋﺪد اﻹﺗﺠﺎهﺎت اﻟﺘﻰ ﺗﺄﺧﺬ اﻟﺘﺼﺤﻴﺢ )‪(e2‬‬ ‫‪d1 = Δ - 2.n.e1‬‬ ‫)‪= 46 – 2*5*4 = 6 directions (takes the correction 5‬‬ ‫‪ -3‬ﻋﺪد اﻹﺗﺠﺎهﺎت اﻟﺘﻰ ﺗﺄﺧﺬ اﻟﺘﺼﺤﻴﺢ )‪(e1‬‬ ‫‪d2 = 2.n – d1‬‬ ‫)‪d2 = 10 – 6 = 4 directions (takes the correction 4‬‬ ‫=‪e‬‬

‫ﺑﺎﻟﻌﻮدة إﻟﻰ اﻟﻤﺜﺎل اﻷﺻﻠﻰ‪:‬‬ ‫‪Δ‬‬ ‫`‪= -20.0 / 10 = -2.0‬‬ ‫‪2.n‬‬

‫=‪e‬‬

‫‪Δ = -20.0`,‬‬

‫ﻳﺘﻢ زﻳﺎدة ﺟﻤﻴﻊ اﻹﻧﺤﺮاﻓﺎت اﻷﻣﺎﻣﻴﺔ ﺑﻤﻘﺪار )`‪ (2.0‬وﺗﻘﻠﻴﻞ ﺟﻤﻴﻊ اﻹﻧﺤﺮاﻓﺎت اﻟﺨﻠﻔﻴﺔ ﺑﻤﻘﺪار )`‪.(2.0‬‬

‫‪Corrected‬‬ ‫‪Back Bearing‬‬

‫‪Corrected‬‬ ‫‪Front Bearing‬‬

‫‪Back Bearing‬‬

‫‪Front Bearing‬‬

‫‪Line‬‬

‫`‪244o 18‬‬

‫`‪64o 18‬‬

‫`‪244o 20‬‬

‫`‪64o 16‬‬

‫‪AB‬‬

‫`‪307o 49‬‬

‫`‪128o 19‬‬

‫`‪307o 51‬‬

‫`‪128o 17‬‬

‫‪BC‬‬

‫`‪22o 34‬‬

‫`‪201o 05‬‬

‫`‪22o 36‬‬

‫`‪201o 03‬‬

‫‪CD‬‬

‫`‪107o 57‬‬

‫`‪288o 48‬‬

‫`‪107o 59‬‬

‫`‪288o 46‬‬

‫‪DE‬‬

‫`‪144o 10‬‬

‫`‪324o 18‬‬

‫`‪144o 12‬‬

‫`‪324o 16‬‬

‫‪EA‬‬

‫`‪826o 48‬‬

‫`‪1006o 48‬‬

‫ﻣﺠﻤﻮع اﻟﺰواﻳﺎ اﻟﺪاﺧﻠﻴﺔ ﺑﻌﺪ اﻟﺘﺼﺤﻴﺢ =‬

‫‪o.k.‬‬

‫‪9‬‬

‫‪Summation‬‬

‫‪= 826o 48` - 1006o 48` + 2 * 360 = 540o‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ ‫‪ -2‬ﺗﺼﺤﻴﺢ اﻹﻧﺤﺮاﻓﺎت ﺑﺎﻟﻄﺮﻳﻘﺔ اﻟﺪﻗﻴﻘﺔ ﻟﻠﺠﺎذﺑﻴﺔ اﻟﻤﺤﻠﻴﺔ‪:‬‬

‫‪δa‬‬

‫‪F1‬‬

‫‪A‬‬

‫‪B δb‬‬ ‫‪F2‬‬ ‫ﻓﻰ اﻟﺸﻜﻞ اﻟﻤﺒﻴﻦ )‪ (δa , δb‬اﻟﻔﺮق ﺑﻴﻦ اﻟﺸﻤﺎل اﻟﺠﻐﺮاﻓﻰ واﻟﺸﻤﺎل اﻟﻤﻐﻨﺎﻃﻴﺴﻰ ﻋﻨﺪ اﻟﻨﻘﻄﺘﻴﻦ )‪ ،(a , b‬ﻓﻰ ﺣﺎﻟﺔ ﻋﺪم‬ ‫وﺟﻮد ﺟﺎذﺑﻴﺔ ﻣﺤﻠﻴﺔ ﻓﺈن اﻟﻔﺮق ﺑ ﻴﻦ اﻹﻧﺤ ﺮاف اﻟﺨﻠﻔ ﻰ واﻷﻣ ﺎﻣﻰ ﻟﻠﺨ ﻂ ﻳ ﺴﺎوى ‪ ،180‬أﻣ ﺎ ﻓ ﻰ ﺣﺎﻟ ﺔ وﺟ ﻮد ﺟﺎذﺑﻴ ﺔ ﻣﺤﻠﻴ ﺔ آﻤ ﺎ‬ ‫ﺑﺎﻟﺸﻜﻞ‪:‬‬

‫‪F2 + δb – 180 = F1 + δa‬‬ ‫)‪………… (3‬‬

‫)‪δb - δa = 180 – (F2 – F1‬‬

‫وﻹﻳﺠﺎد ﻗﻴﻢ )‪ (δa , δb , δc , …….‬ﻧﺘﺒﻊ اﻟﺨﻄﻮات اﻵﺗﻴﺔ‪:‬‬ ‫‪ -1‬ﻧﻴﻌﻦ اﻟﻔﺮق ﺑﻴﻦ اﻹﻧﺤﺮاف اﻟﺨﻠﻔﻰ واﻷﻣﺎﻣﻰ ﻟﻜﻞ ﺧﻂ )ﺑﻌﺪ اﻟﺘﺼﺤﻴﺢ اﻟﺰاوى(‬ ‫‪ -2‬ﻧﻄﺮح اﻟﻔﺮق )ﺑﺪون إﺷﺎرة( ﻣﻦ ‪180‬ﻓﻨﺤﺼﻞ ﻋﻠﻰ ﻋﺪد ﻣﻦ اﻟﻤﻌﺎدﻻت ﻋﻠﻰ اﻟﺼﻮرة‪:‬‬

‫‪δb - δa = k1‬‬ ‫‪δc - δb = k2‬‬ ‫‪δd - δc = k3‬‬ ‫‪..‬‬ ‫………‬

‫وﻳﺠﺐ أن ﻳﻜﻮن ﻣﺠﻤﻮع هﺬﻩ اﻟﻤﻌﺎدﻻت = ﺻﻔﺮ‪ ،‬أى أن‪:‬‬

‫‪k1 + k2 + k3 + ………. = 0.0‬‬

‫‪10‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

Line

Corrected Front Bearing

Corrected Back Bearing

Difference Back - Front

180 - d

AB

64o 18`

244o 18`

180

0.0

BC

128o 19`

307o 49`

179o 30`

0o 30`

CD

201o 05`

22o 34`

-178o 31`

1o 29`

DE

288o 48`

107o 57`

-180o 51`

-00 51`

EA

324o 18`

144o 10`

-180o 8`

-00 8`

δb - δa = 0.0 δc - δb = 0o 30` δd - δc = -1o 29` δe - δd = 0o 51` δa - δe = 00 8`

for check 0o 30` - 1o 29` + 0o 51` + 00 8` = 0.0 δb = δa = 0.0 δc = 00 30` δd = -1o 29` + δc = -1o 29` + 0o 30` = -0o 59` δe = 0o 51` + δd = 0o 51` - 0o 59` = -0o 8`

the last equation is used for check δa - δe = 0.0 – (-0o 8`) = 0o 8`

o.k.

Line

δfront

δBack

AB

0.0

0.0

BC

0.0

0o 30`

CD

0o 30`

-0o 59`

DE

-0o 59`

-0o 8`

EA

-0o 8`

0.0

Corrected Front Bearing

64o 18` + 0.0 = 64o 18` 128o 19` + 0.0 = 128o 19` 201o 05` + 00 30` = 201o 35` 288o 48` - 0o 59` = 287o 49` 324o 18` - 0o 8` = 324o 10`

Corrected Back Bearing

244o 18` + 0.0 = 244o 18` 307o 49` + 0o 30` = 308o 19` 22o 34` - 0o 59` = 21o 35` 107o 57` - 0o 8` = 107o 49` 144o 10` + 0.0 = 144o 10`

Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.

11


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ :(‫ﺗﺼﺤﻴﺢ ﺧﻄﺄ اﻟﻘﻔﻞ )ﻋﻦ ﻃﺮﻳﻖ اﻟﻤﺮآﺒﺎت‬

_ + + East

West

+

_

_ _ +

N.E (North-East) N.W (North-West) S.E (South-East) S.W (South-West)

: ‫ وﺑﺎﻟﺘﺎﻟﻰ ﻧﻌﺮف ﻣﻮﻗﻌﻪ‬،‫ﻧﺤﺪد اﻹﻧﺤﺮاف اﻟﻤﺨﺘﺼﺮ ﻟﻜﻞ ﺿﻠﻊ‬ the Vertical component is (+) and Horizontal component is (+) the Vertical component is (+) and Horizontal component is (-) the Vertical component is (-) and Horizontal component is (+) the Vertical component is (-) and Horizontal component is (-)

Then, The vertical component (V) = L * cos (θ) The horizontal component (H) = L * sin (θ), θ

Where

is the reduced bearing (‫)اﻹﻧﺤﺮاف اﻟﻤﺨﺘﺼﺮ‬

Line

Length

AB BC CD DE EA

96.23 121.15 79.16 102.77 94.75 494.06

Length of error = =

Corrected Front Bearing

Reduced Bearing

64o 18` 128o 19` 201o 35` 287o 49` 324o 10`

N.E 64o 18` S.E 51o 41` S.W 21o 35` N.W 72o 11` N.W 35o 50`

Vertical Horizontal Component Component +41.731 -75.114 -73.61 +31.445 +76.816 +1.2684

∑ (Vertical Components ) + ∑ (Horizontal Components ) 2

+86.711 +95.054 -29.119 -97.841 -55.469 -0.6655 2

(1.2684) 2 + (−0.6655) 2 = 1.4324

Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.

12


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

‫‪Length of error‬‬ ‫‪1.4324‬‬ ‫=‬ ‫‪= 2.8992*10-3.‬‬ ‫‪Total length of traverse lines 494.06‬‬

‫= ‪% of error‬‬

‫ﺗﻨﺺ اﻟﻤﻮاﺻﻔﺎت ﻋﻠﻰ أﻻ ﻳﺘﺠﺎوز ﻧﺴﺒﺔ ﺧﻄ ﺄ اﻟﻘﻔ ﻞ )‪ (1:100‬ﻓ ﻰ اﻷراﺿ ﻰ اﻟ ﻮﻋﺮة ذات اﻟﻄﺒﻮﻏﺮاﻓﻴ ﺔ اﻟ ﺸﺪﻳﺪة‪ ،‬ﻣ ﻊ‬ ‫اﻟﻘﻴﺎس ﺑﺎﻟﺠﻨﺰﻳﺮ‪ ،‬وأﻻ ﻳﺘﺠﺎوز )‪ (1:500‬ﻓﻰ اﻟﻤﺪن‪.‬‬ ‫ﻳﺘﻢ ﺗﺼﺤﻴﺢ اﻟﻤﺮآﺒﺔ اﻟﺮأﺳﻴﺔ ﻟﻜﻞ ﺧﻂ آﺎﻵﺗﻰ‪:‬‬ ‫ﻃﻮل اﻟﺨﻂ‬ ‫ﻣﺠﻤﻮع أﻃﻮال ﺧﻄﻮط‬ ‫اﻟﻤﻀﻠﻊ‬

‫ﺗ ﺼﺤﻴﺢ اﻟﻤﺮآﺒ ﺔ اﻟﺮأﺳ ﻴﺔ‬ ‫ﻟﻠﺨﻂ =‬

‫× اﻟﻤﺮآﺒﺔ اﻟﺮأﺳﻴﺔ ﻟﺨﻄﺄ‬ ‫اﻟﻘﻔﻞ‬

‫وﻳﺘﻢ ﺗﺼﺤﻴﺢ اﻟﻤﺮآﺒﺔ اﻷﻓﻘﻴﺔ ﻟﻜﻞ ﺧﻂ آﺎﻵﺗﻰ‪:‬‬ ‫ﻃﻮل اﻟﺨﻂ‬ ‫ﻣﺠﻤﻮع أﻃﻮال ﺧﻄﻮط‬ ‫اﻟﻤﻀﻠﻊ‬

‫ﺗﺼﺤﻴﺢ اﻟﻤﺮآﺒﺔ اﻷﻓﻘﻴ ﺔ ﻟﻠﺨ ﻂ‬ ‫=‬

‫× اﻟﻤﺮآﺒﺔ اﻷﻓﻘﻴﺔ ﻟﺨﻄﺄ‬ ‫اﻟﻘﻔﻞ‬

‫وﻧﻼﺣ ﻆ أﻧ ﻪ إذا آﺎﻧ ﺖ اﻟﻤﺮآﺒ ﺔ اﻟﺮأﺳ ﻴﺔ ﻟﺨﻄ ﺄ اﻟﻘﻔ ﻞ ﻣﻮﺟﺒ ﺔ‪ ،‬ﻓ ﺈن ﺗ ﺼﺤﻴﺢ اﻟﻤﺮآﺒ ﺎت اﻟﺮأﺳ ﻴﺔ ﻟﺨﻄ ﻮط اﻟﻤﺮﺑ ﻊ ﺗﻜ ﻮن‬ ‫ﺳﺎﻟﺒﺔ‪ ،‬وهﻜﺬا ﻓﺈن إﺷﺎرة اﻟﺘﺼﺤﻴﺢ ﺗﻜﻮن ﻋﻜﺲ إﺷﺎرة اﻟﺨﻄﺄ‪.‬‬

‫‪Corrected Corrected‬‬ ‫‪Vl. Comp. Hl. Comp.‬‬ ‫‪41.484‬‬ ‫‪86.841‬‬ ‫‪-75.425‬‬ ‫‪95.217‬‬ ‫‪-73.813‬‬ ‫‪-29.012‬‬ ‫‪31.181‬‬ ‫‪-97.703‬‬ ‫‪76.573‬‬ ‫‪-55.341‬‬ ‫‪0.0‬‬ ‫‪0.0‬‬

‫‪Vl.‬‬ ‫‪Corr.‬‬ ‫‪-0.2471‬‬ ‫‪-0.3110‬‬ ‫‪-0.2032‬‬ ‫‪-0.2638‬‬ ‫‪-0.2433‬‬

‫‪Hl.‬‬ ‫‪Corr.‬‬ ‫‪+0.1296‬‬ ‫‪+0.1632‬‬ ‫‪+0.1066‬‬ ‫‪+0.1384‬‬ ‫‪+0.1276‬‬

‫‪Vertical‬‬ ‫‪Horizontal‬‬ ‫‪Component Component‬‬ ‫‪+41.731‬‬ ‫‪+86.711‬‬ ‫‪-75.114‬‬ ‫‪+95.054‬‬ ‫‪-73.61‬‬ ‫‪-29.119‬‬ ‫‪+31.445‬‬ ‫‪-97.841‬‬ ‫‪+76.816‬‬ ‫‪-55.469‬‬ ‫‪+1.2684‬‬ ‫‪-0.6655‬‬

‫‪Length‬‬

‫‪Line‬‬

‫‪96.23‬‬ ‫‪121.15‬‬ ‫‪79.16‬‬ ‫‪102.77‬‬ ‫‪94.75‬‬ ‫‪494.06‬‬

‫‪AB‬‬ ‫‪BC‬‬ ‫‪CD‬‬ ‫‪DE‬‬ ‫‪EA‬‬

‫ﺗﺼﺤﻴﺢ اﻟﺨﻄﺄ ﺑﺎﻟﻄﺮﻳﻘﺔ اﻟﺒﻴﺎﻧﻴﺔ‪:‬‬

‫‪D‬‬

‫‪C‬‬ ‫`‪A‬‬

‫‪A‬‬

‫‪A‬‬

‫‪B‬‬

‫`‪B‬‬

‫‪D‬‬ ‫`‪D‬‬ ‫`‪C‬‬

‫‪13‬‬

‫‪B‬‬

‫‪A‬‬

‫‪C‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

Area: 1- It is required to find the area of the closed traverse, if the coordinates of its corners are as follows: Point XCoordinate YCoordinate

A

B

C

D

E

F

10

45

87

138

104

36

40

77

65

83

3

14

B

D C

A F

E

X

Area = 0.50 { (X1.Y2 + X2.Y3 + X3.Y4 + X4.Y5 + X5.Y6 + X6.Y1) – (Y1.X2 + Y2.X3 + Y3.X4 + Y4.X5 + Y5.X6 + Y6.X1) } = 0.50 { (10 * 77 + 45 * 65 + 87 * 83 + 138 * 3 + 104 * 14 + 36 * 40) – (40 * 45 + 77 * 87 + 65 * 138 + 83 * 104 + 3 * 36 + 14 * 10) = 0.50 * 12123 = 6061.50

Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.

14


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

2- The area by the lines’ components: A

E

B

C

D

Line AB BC CD DE EA

X component 150 175 -65 -160 -100

Y component -275 -135 -130 300 240

Vertical Y1 = -275 2Y1+Y2 = -685 2(Y1+Y2)+Y3 = -950 2(Y1+Y2+Y3)+Y4 = -780 2(Y1+Y2+Y3+Y4)+Y5 = -240

2*Area -41250 -119875 61750 124800 24000 49425

Area = 0.50 * 49425 = 24712.50

Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.

15


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

‫اﻟﻤﺴﺎﺣﺔ اﻟﺘﺎآﻴﻮﻣﺘﺮﻳﺔ‬ ‫هﻰ اﻟﻤﺴﺎﺣﺔ اﻟ ﺴﺮﻳﻌﺔ‪ ،‬وﺗ ﺘﻢ ﺑﺎﺳ ﺘﺨﺪام ﺗﻴﻮدﻳﻠﻴ ﺖ ﻣﺠﻬ ﺰ ﺑ ﺒﻌﺾ اﻹﺿ ﺎﻓﺎت اﻟﺨﺎﺻ ﺔ‪ .‬وﺑﻮاﺳ ﻄﺔ ه ﺬﻩ اﻹﺿ ﺎﻓﺎت وﻣ ﻊ‬ ‫اﺳﺘﺨﺪام ﺑﻌﺾ اﻷﺟﻬﺰة اﻟﻤﺴﺎﻋﺪة ﻳﻤﻜﻦ إﻳﺠﺎد اﻟﻤﺴﺎﻓﺎت اﻷﻓﻘﻴﺔ ‪ ،‬واﻟﺮأﺳﻴﺔ ﺑﺴﺮﻋﺔ وﺑﺪﻗﺔ ﻣﻌﻘﻮﻟﺔ‪.‬‬

‫‪ -1‬ﻃﺮﻳﻘﺔ ﺷﻌﺮات اﻹﺳﺘﺎدﻳﺎ‪:‬‬ ‫وﺗﺘﻢ ﺑﺎﺳﺘﺨﺪام ﺗﻴﻮدﻳﻠﻴﺖ ﻳﺰود دﻟﻴﻠﻪ ﺑﺸﻌﺮﺗﻴﻦ أﻓﻘﻴﺘﻴﻦ إﺿﺎﻓﻴﺘﻴﻦ أﻋﻠﻰ وأﺳﻔﻞ اﻟﺸﻌﺮة اﻟﺮﺋﻴﺴﻴﺔ‪:‬‬ ‫‪X1‬‬

‫‪a1‬‬ ‫‪X2‬‬

‫‪X‬‬

‫‪a‬‬

‫‪H‬‬

‫‪b1‬‬

‫‪o‬‬

‫‪b‬‬

‫‪m‬‬

‫‪c‬‬

‫‪t‬‬ ‫‪k‬‬

‫‪c1‬‬

‫‪D‬‬

‫اﻟﻤﺮآﺰ اﻟﺒﺼﺮى ﻟﻠﻌﺪﺳﺔ اﻟﺸﻴﺌﻴﺔ‬ ‫ﺷﻌﺮﺗﺎ اﻹﺳﺘﺎدﻳﺎ‬ ‫اﻟﺸﻌﺮة اﻷﻓﻘﻴﺔ اﻟﻮﺳﻄﻰ‬ ‫ﺗﻘﺎﻃﻊ ﺷﻌﺮﺗﻰ اﻹﺳﺘﺎدﻳﺎ ‪ ،‬واﻟﺸﻌﺮة اﻟﻮﺳﻄﻰ ﻣﻊ اﻟﻘﺎﻣﺔ‬ ‫اﻟﺒﻌﺪ اﻟﺒﺆرى ﻟﻠﻌﺪﺳﺔ اﻟﺸﻴﺌﻴﺔ‬ ‫اﻟﻤﺴﺎﻓﺔ اﻷﻓﻘﻴﺔ ﺑﻴﻦ اﻟﻘﺎﻣﺔ واﻟﻤﺮآﺰ اﻟﺒﺼﺮى ﻟﻠﻌﺪﺳﺔ اﻟﺸﻴﺌﻴﺔ‬ ‫اﻟﺒﻌﺪ اﻷﻓﻘﻰ ﺑﻴﻦ ﻣﺮآﺰ اﻟﻌﺪﺳﺔ اﻟﺸﻴﺌﻴﺔ ‪ ،‬وﻣﺴﺘﻮى ﺣﺎﻣﻞ اﻟﺸﻌﺮات‬ ‫اﻟﺒﻌﺪ اﻷﻓﻘﻰ ﺑﻴﻦ اﻟﻤﺮآﺰ اﻟﺒﺼﺮى ﻟﻠﻌﺪﺳﺔ اﻟﺸﻴﺌﻴﺔ ‪ ،‬واﻟﻤﺤﻮر اﻟﺮأﺳ ﻰ ﻟ ﺪوران‬ ‫اﻟﻤﻨﻈﺎر‪.‬‬ ‫اﻟﻤﺴﺎﻓﺔ اﻟﻤﻘﻄﻮﻋﺔ ﻋﻠﻰ اﻟﻘﺎﻣﺔ ﺑﻴﻦ ﺷﻌﺮﺗﻰ اﻹﺳﺘﺎدﻳﺎ ‪a1.b1 = ،‬‬ ‫ﺑﺆرة اﻟﻌﺪﺳﺔ اﻟﺸﻴﺌﻴﺔ‬

‫‪m‬‬ ‫‪a,c‬‬ ‫‪b‬‬ ‫‪a1 , b1 , c1‬‬ ‫‪X‬‬ ‫‪X1‬‬ ‫‪X2‬‬ ‫‪t‬‬ ‫‪H‬‬ ‫‪o‬‬ ‫‪X‬‬ ‫)‪+ ( X + t‬‬ ‫‪ab‬‬

‫ﺣﻴﺚ )‪ = (ab‬ﻃﻮل ﺣﺎﻣﻞ اﻟﺸﻌﺮات‬ ‫‪X‬‬ ‫‪= K1‬‬ ‫‪ab‬‬

‫ﻳ ﺴﻤﻰ اﻟﺜﺎﺑ ﺖ اﻟﺘ ﺎآﻴﻮﻣﺘﺮى‬

‫=‬

‫اﻟﺒﻌﺪ اﻟﺒﺆرى ﻟﻠﻌﺪﺳﺔ‬ ‫اﻟﺸﻴﺌﻴﺔ‬ ‫ﻃﻮل ﺣﺎﻣﻞ اﻟﺸﻌﺮات‬

‫وﺗﺘﺮاوح ﻗﻴﻤﺔ ‪ K1‬ﺑﻴﻦ ‪50 , 100 , 200‬‬ ‫‪16‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬

‫‪D = H.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ ‫‪ (X + t ) = K‬ﻳﺴﻤﻰ اﻟﺜﺎﺑﺖ اﻹﺿﺎﻓﻰ = اﻟﺒﻌﺪ اﻟﺒﺆرى ﻟﻠﻌﺪﺳﺔ اﻟﺸﻴﺌﻴﺔ ‪ +‬اﻟﻤﺴﺎﻓﺔ ﻣﻦ ﻣﺴﺘﻮى اﻟﻌﺪﺳ ﺔ اﻟ ﺸﻴﺌﻴﺔ إﻟ ﻰ‬ ‫اﻟﻤﺤﻮر اﻟﺮأﺳﻰ‬ ‫وﻳﺘﺮاوح ﻗﻴﻤﺔ اﻟﺜﺎﺑﺖ اﻹﺿﺎﻓﻰ ﺑﻴﻦ ‪ 60 ، 30‬ﺳﻢ‪.‬‬

‫‪D = H . K1 + K‬‬

‫( ‪……….‬‬

‫اﻟﻤﺴﺎﻓﺔ اﻷﻓﻘﻴﺔ ﺑﻴﻦ ﻧﻘﻄ ﺔ اﻟﺮﺻ ﺪ إﻟ ﻰ اﻟﻘﺎﻣ ﺔ = ﻓ ﺮق ﻗ ﺮاءة اﻟ ﺸﻌﺮﺗﻴﻦ اﻟﻌﻠﻴ ﺎ واﻟ ﺴﻔﻠﻰ × اﻟﺜﺎﺑ ﺖ اﻟﺘ ﺎآﻴﻮﻣﺘﺮى ‪ +‬اﻟﺜﺎﺑ ﺖ‬ ‫اﻹﺿﺎﻓﻰ‪.‬‬ ‫وﻓﻰ ﺣﺎﻟﺔ أﺧﺬ رﺻﺪة ﻣﺎﺋﻠﺔ )زاوﻳﺔ اﻟﻨﻈﺮ ﻣﺮﺗﻔﻌﺔ(‪:‬‬ ‫‪a1‬‬

‫‪H‬‬

‫‪X‬‬

‫‪b1‬‬

‫‪Y‬‬

‫‪c1‬‬

‫‪X1‬‬

‫‪Y1‬‬ ‫‪θ‬‬

‫‪X2‬‬ ‫‪m‬‬ ‫‪a‬‬

‫‪k‬‬

‫‪t‬‬

‫‪b‬‬ ‫‪c‬‬

‫‪D‬‬

‫‪X‬‬ ‫‪. cos 2 θ + ( X + t ). cosθ‬‬ ‫‪ab‬‬

‫( ‪……….‬‬

‫‪D = H . K1 . cos2 θ + K . cos θ‬‬

‫وﻳﻤﻜﻦ إﻳﺠﺎد إرﺗﻔﺎع أو إﻧﺨﻔﺎض اﻟﻨﻘﻄﺔ اﻟﻤﺮﺻﻮدة ﻋﻦ اﻟﻤﺴﺘﻮى اﻻﻓﻘﻰ اﻟﻤﺎر ﺑﺎﻟﺠﻬﺎز )‪(Y‬‬ ‫( ‪……….‬‬

‫‪17‬‬

‫‪D = H.‬‬

‫‪Y = D . tan θ‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

‫ﻣﺜﺎل‪:‬‬ ‫رﺻﺪت ﻧﻘﻄﺔ ﺑﺠﻬﺎز ﺗﻴﻮدﻟﻴﺖ ﻣﺰود ﺑﺸﻌﺮات اﻹﺳﺘﺎدﻳﺎ‪ ،‬وآﺎﻧﺖ زاوﻳﺔ اﻟﻨﻈﺮ أﻓﻘﻴ ﺔ‪ ،‬ﻓﻜﺎﻧ ﺖ ﻗ ﺮاءة اﻟ ﺸﻌﺮات ‪– 2.613‬‬ ‫‪-1‬‬ ‫ﻼ ﺑﺰاوﻳ ﺔ ‪ 7‬درﺟ ﺎت‬ ‫‪ ،4.106‬ﺛ ﻢ ﻗﻴ ﺴﺖ اﻟﻤ ﺴﺎﻓﺔ ﺑﻮاﺳ ﻄﺔ ﺷ ﺮﻳﻂ ﻓﻜﺎﻧ ﺖ ‪ 150‬م ‪ .‬رﺻ ﺪت ﻧﻘﻄ ﺔ أﺧ ﺮى ‪ ،‬وآ ﺎن ﺧ ﻂ اﻟﻨﻈ ﺮ ﻣ ﺎﺋ ً‬ ‫وآﺎﻧ ﺖ ﻗ ﺮاءة اﻟ ﺸﻌﺮات ‪ 3.154 – 1.146‬وﻗﻴ ﺴﺖ اﻟﻤ ﺴﺎﻓﺔ ﺑ ﺸﺮﻳﻂ ﻓﻜﺎﻧ ﺖ ‪ 200‬ﻣﺘ ﺮ‪ ،‬أوﺟ ﺪ اﻟﺜﺎﺑ ﺖ اﻟﺘ ﺎآﻴﻮﻣﺘﺮى‪ ،‬واﻟﺜﺎﺑ ﺖ‬ ‫اﻹﺿﺎﻓﻰ‪.‬‬ ‫‪Solution‬‬

‫ﻓﻰ ﺣﺎﻟﺔ ﺧﻂ اﻟﻨﻈﺮ أﻓﻘﻰ‪:‬‬ ‫‪D = H . K1 + K‬‬ ‫‪150 = (4.106-2.613) . K1 + K‬‬

‫)‪………. (1‬‬ ‫ﻓﻰ ﺣﺎﻟﺔ ﺧﻂ اﻟﻨﻈﺮ ﻳﻤﻴﻞ ﺑﺰاوﻳﺔ ‪ 7‬درﺟﺎت‪:‬‬ ‫)‪………. (2‬‬

‫‪2‬‬

‫‪D = H . K1 . cos θ + K . cos θ‬‬ ‫) ‪200 = (3.154 – 1.146) . K1.cos2 ( 7 ) + K . cos ( 7‬‬

‫ﺑﺤﻞ اﻟﻤﻌﺎدﻟﺘﻴﻦ ‪ 2 ،1‬ﺁﻧﻴًﺎ ﻳﻨﺘﺞ أن‪:‬‬ ‫)اﻟﺜﺎﺑﺖ اﻟﺘﺎآﻴﻮﻣﺘﺮى(‬ ‫)اﻟﺜﺎﺑﺖ اﻹﺿﺎﻓﻰ(‬

‫‪K1 = 103‬‬ ‫‪K = 3.785‬‬

‫‪ -2‬ﻓﻰ ﺟﻬﺎز ﺗﻴﻮدﻟﻴﺖ ﻣﺰود ﺑﺤﺎﻣ ﻞ ﺷ ﻌﺮات آﺎﻧ ﺖ اﻟﻤ ﺴﺎﻓﺔ ﺑ ﻴﻦ آ ﻞ زوج ﻣ ﻦ اﻟ ﺸﻌﺮات ‪ 40/1‬ﺑﻮﺻ ﺔ‪ ،‬واﻟﺒﻌ ﺪ اﻟﺒ ﺆرى ﻟﻠﻌﺪﺳ ﺔ‬ ‫اﻟﺸﻴﺌﻴﺔ )‪ 9 = (X‬ﺑﻮﺻﺔ‪ ،‬واﻟﻤﺴﺎﻓﺔ ﺑﻴﻦ اﻟﻤﺤﻮر اﻟﺮأﺳﻰ ﻟﻠﺠﻬﺎز إﻟﻰ ﻣﺴﺘﻮى اﻟﻌﺪﺳﺔ اﻟﺸﻴﺌﻴﺔ )‪ 4.5 = (t‬ﺑﻮﺻﺔ‪ .‬رﺻﺪت ﻧﻘﻄﺔ‬ ‫ﺑﻮاﺳ ﻄﺔ ه ﺬا اﻟﺠﻬ ﺎز وآ ﺎن ﺧ ﻂ اﻟﻨﻈ ﺮ ﻳﻤﻴ ﻞ ﺑﺰاوﻳ ﺔ ‪ 9‬درﺟ ﺎت‪ ،‬وآﺎﻧ ﺖ ﻗ ﺮاءة اﻟ ﺸﻌﺮات ‪ 2.65 - 2.14 – 1.63‬ﻋﻠ ﻰ ﻗﺎﻣ ﺔ‬ ‫ﻣﻘﺴﻤﺔ ﺑﺎﻟﻘﺪم واﻟﺒﻮﺻﺔ‪ .‬أوﺟﺪ اﻟﻤﺴﺎﻓﺔ اﻷﻓﻘﻴﺔ ﺑﻴﻦ اﻟﺠﻬﺎز واﻟﻨﻘﻄﺔ اﻟﻤﺮﺻﻮدة‪ ،‬وإذا آﺎن ﻣﻨﺴﻮب اﻟﻨﻘﻄﺔ اﻟﻤﺮﺻﻮدة = ‪ 80‬ﻗﺪم‬ ‫‪،‬وإرﺗﻔﺎع ﺧﻂ اﻟﻨﻈﺮ ‪ 4.50‬ﻗﺪم‪ ،‬أوﺟﺪ ﻣﻨﺴﻮب ﻧﻘﻄﺔ اﻟﺮﺻﺪ )اﻟﻨﻘﻄﺔ اﻟﺘﻰ ﺑﻬﺎ اﻟﺠﻬﺎز(‪.‬‬ ‫‪Solution‬‬

‫‪inch‬‬ ‫‪X‬‬ ‫)‪= 9.0 * 20.0 = 180 (dimensionless value‬‬ ‫‪ab‬‬

‫‪Ft‬‬

‫= ‪, then K1‬‬

‫‪inch = 13.50 / 12.0 = 1.125‬‬

‫‪inch‬‬

‫‪X = 9.0‬‬

‫‪K = X + t = 9.0 + 4.50 = 13.50‬‬ ‫‪Ft‬‬

‫‪Ft‬‬

‫‪1‬‬ ‫‪1‬‬ ‫=‬ ‫‪40 20‬‬

‫* ‪ab = 2‬‬

‫‪H = 2.65 – 1.63 = 1.02‬‬

‫‪D = H . K1 . cos2 θ + K . cos θ‬‬ ‫‪= 1.02 * 180 * cos2 (9) + 1.125 * cos (9) = 182.451‬‬

‫اﻟﻤﺴﺎﻓﺔ اﻟﺮأﺳﻴﺔ ﺑﻴﻦ ﺧﻂ اﻟﻨﻈﺮ ‪ ،‬وﺑﻴﻦ اﻟﻨﻘﻄﺔ اﻟﻤﺮﺻﻮدة ‪:‬‬ ‫‪Ft‬‬

‫‪18‬‬

‫‪Y = D . tan θ‬‬ ‫‪= 182.451 * tan ( 9 ) = 28.879‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ ‫‪a1‬‬

‫‪H‬‬

‫‪b1‬‬

‫‪Y1‬‬ ‫‪Y‬‬ ‫‪θ‬‬

‫‪c1‬‬

‫‪a‬‬ ‫‪b‬‬ ‫‪c‬‬

‫‪D‬‬ ‫‪V‬‬ ‫‪.‬‬ ‫ﻓﺮق اﻟﻤﻨﺴﻮب ﺑﻴﻦ ﻧﻘﻄﺔ اﻟﺮﺻﺪ واﻟﻨﻘﻄﺔ اﻟﻤﺮﺻﻮدة‪:‬‬ ‫‪Ft‬‬ ‫ﻣﻨﺴﻮب ﻧﻘﻄﺔ اﻟﺮﺻﺪ‪:‬‬

‫‪= Y – Y1 + V = 28.879 – 2.14 + 4.5 = 31.239‬‬ ‫‪Ft‬‬

‫‪19‬‬

‫‪= 80 – 31.239 = 48.761‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

‫‪ -2‬ﻃﺮﻳﻘﺔ اﻟﻈﻼل‪:‬‬ ‫وﺗﺮﺟﻊ ﺟﺬور هﺬﻩ اﻟﻄﺮﻳﻘ ﺔ إﻟ ﻰ اﻟﻌ ﺎم ‪ ،1850‬وﺑﻮاﺳ ﻄﺔ ه ﺬﻩ اﻟﻄﺮﻳﻘ ﺔ ﻳﻤﻜ ﻦ ﺗﻌﻴ ﻴﻦ اﻟﻤ ﺴﺎﻓﺔ اﻷﻓﻘﻴ ﺔ واﻟﺒﻌ ﺪ اﻟﺮأﺳ ﻰ‬ ‫ﺑﺎﺳﺘﺨﺪام ﺗﻴﻮدﻟﻴﺖ ﻋﺎدى ‪ ،‬وﺗﻮﺟﺪ ﺣﺎﻟﺘﺎن ﻟﻠﺮﺻﺪ ‪:‬‬ ‫أ‪ -‬إذا آﺎﻧﺖ ﻃﺒﻴﻌﺔ اﻷرض ﺗﺴﻤﺢ ﺑﺄﺧﺬ رﺻﺪة أﻓﻘﻴﺔ‪:‬‬ ‫ﻧ ﻀﻊ اﻟﺘﻴﻮدﻟﻴ ﺖ ﻋﻨ ﺪ ﻧﻘﻄ ﺔ اﻟﺮﺻ ﺪ )ﻳﻄﻠ ﻖ ﻋﻠﻴﻬ ﺎ ﻋ ﺎدة اﻟﻨﻘﻄ ﺔ اﻟﻤﺤﺘﻠ ﺔ(‪ ،‬واﻟﻘﺎﻣ ﺔ ﻋﻨ ﺪ اﻟﻨﻘﻄ ﺔ اﻟﻤﺮﺻ ﻮدة‪ ،‬ﺛ ﻢ ﻧﺄﺣ ﺬ‬ ‫ﻗﺮاءة اﻟﻘﺎﻣﺔ ﻋﻨﺪﻣﺎ ﻳﻜﻮن ﺧﻂ اﻟﻨﻈﺮ أﻓﻘﻴﺎً‪ ،‬وﻟﺘﻜﻦ )‪ .(b‬ﺛﻢ ﻧﻤﻴﻞ اﻟﻤﻨﻈﺎر ﺑﺰاوﻳﺔ ﻣﻌﻴﻨ ﺔ )إﻟ ﻰ أﻋﻠ ﻰ أو إﻟ ﻰ أﺳ ﻔﻞ( وﻧﻌ ﻴﻦ ﻗ ﺮاءة‬ ‫اﻟﻘﺎﻣﺔ ﻓﻰ اﻟﺤﺎﻟﺔ اﻟﺜﺎﻧﻴﺔ )‪:(a‬‬

‫‪D‬‬ ‫‪a‬‬ ‫‪H‬‬ ‫‪θ‬‬

‫‪b‬‬

‫‪H=a–b‬‬ ‫‪H‬‬ ‫=‪D‬‬ ‫‪tan θ‬‬ ‫ب‪ -‬ﻋﻨﺪﻣﺎ ﻻ ﺗﺴﻤﺢ ﻃﺒﻴﻌﺔ اﻷرض ﺑﺄﺧﺬ ﻧﻈﺮات أﻓﻘﻴﺔ‪:‬‬ ‫ﻧﻮﺟ ﻪ اﻟﻤﻨﻈ ﺎر إﻟ ﻰ اﻟﻘﺎﻣ ﺔ ﺑﺰاوﻳ ﺔ ﻣﻴ ﻞ‬ ‫ﻣﻌﻴﻨﺔ )‪ (θ1‬وﻧﺄﺧﺬ اﻟﻘﺮاءة ﻋﻠﻰ اﻟﻘﺎﻣﺔ )‪ ،(b‬ﺛﻢ ﻧﻐﻴ ﺮ‬ ‫زاوﻳ ﺔ ﻣﻴ ﻞ اﻟﻤﻨﻈ ﺎر وﻟ ﺘﻜﻦ )‪ ،(φ‬وﻧﺄﺧ ﺬ اﻟﻘ ﺮاءة‬ ‫اﻟﺜﺎﻧﻴﺔ ﻋﻠﻰ اﻟﻘﺎﻣﺔ )‪.(a‬‬

‫‪a‬‬ ‫‪H‬‬ ‫‪θ‬‬

‫‪φ‬‬

‫‪b‬‬

‫‪c‬‬

‫‪D‬‬

‫‪20‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

‫‪ac – bc = H‬‬

‫‪bc = D . tan θ‬‬

‫‪H‬‬ ‫‪tan φ − tan θ‬‬

‫=‪D‬‬

‫‪ac = D . tan φ,‬‬ ‫)‪H = D (tan φ - tan θ‬‬

‫‪ -3‬ﻃﺮﻳﻘﺔ ﻗﻀﻴﺐ اﻟﻤﺴﺎﻓﺎت‪:‬‬

‫‪a‬‬

‫‪θ‬‬

‫‪c‬‬

‫‪b‬‬ ‫‪D‬‬ ‫وﺗﺘﻢ ﻋﻦ ﻃﺮﻳﻖ ﻗﻴﺎس زاوﻳﺔ أﻓﻘﻴﺔ ﻋﻠﻰ ﻃﺮﻓﻰ ﻗﻀﻴﺐ ﻣﻌﺮوف ﻃﻮﻟﻪ ﺑﺪﻗﺔ ﺷﺪﻳﺪة‪ ،‬وﺑﺎﻟﺘﺎﻟﻰ ﻳﻤﻜﻦ ﻣﻌﺮﻓﺔ اﻟﻤﺴﺎﻓﺔ اﻷﻓﻘﻴﺔ ﺑﻴﻦ‬ ‫اﻟﻨﻘﻄﺔ اﻟﻤﺤﺘﻠﺔ واﻟﻨﻘﻄﺔ اﻟﻤﺮﺻﻮدة آﺎﻵﺗﻰ‪:‬‬ ‫‪1‬‬ ‫‪θ‬‬ ‫‪.ab. tan‬‬ ‫‪2‬‬ ‫‪2‬‬

‫‪21‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬

‫=‪D‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

‫ﻣﺴﺎﺋﻞ ﻋﻠﻰ اﻟﻘﻴﺎس اﻟﺘﺎآﻴﻮﻣﺘﺮى‬ ‫‪ -1‬أﺧ ﺬت اﻟﻘ ﺮاءات اﻵﺗﻴ ﺔ ﻋﻠ ﻰ ﻗﺎﻣ ﺔ رأﺳ ﻴﺔ ﻣﻮﺿ ﻮﻋﺔ ﻋﻨ ﺪ ﻧﻘﻄﺘ ﻴﻦ ﺑﻮاﺳ ﻄﺔ ﺟﻬ ﺎز ﺗ ﺎآﻴﻮﻣﺘﺮى ﺑﻐ ﺮض ﺗﻌﻴ ﻴﻦ اﻟﺜﺎﺑ ﺖ‬ ‫اﻟﺘﺎآﻴﻮﻣﺘﺮى‪ ،‬واﻹﺿﺎﻓﻰ‪ .‬ﻋﻴﻦ اﻟﺜﺎﺑﺘﻴﻦ‪:‬‬ ‫اﻟﻤﺴﺎﻓﺔ‬ ‫زاوﻳﺔ‬ ‫ﻗﺮاءات اﻟﻘﺎﻣﺔ‬ ‫اﻷﻓﻘﻴﺔ‬ ‫اﻹرﺗﻔﺎع‬ ‫‪150‬‬ ‫ﺻﻔﺮ‬ ‫‪4.106 3.359 2.613‬‬ ‫‪200‬‬ ‫‪ 7‬درﺟﺎت‬ ‫‪3.154 2.150 1.146‬‬

‫‪1‬‬ ‫‪ -2‬ﺗﺎآﻮﻣﺘﺮ ﻣﺰود ﺑﺜﻼث ﺷﻌﺮات اﻟﻤﺴﺎﻓﺔ ﺑﻴﻦ آﻞ زوج ﻣﻨﻬﺎ‬ ‫‪40‬‬ ‫‪1‬‬ ‫ﻣ ﻦ اﻟ ﺸﻴﺌﻴﺔ ﻟﻠﻤﺤ ﻮر اﻟﺮأﺳ ﻰ ‪ 4‬ﺑﻮﺻ ﺔ‪ .‬وﺿ ﻌﺖ ﻗﺎﻣ ﺔ رأﺳ ﻴﺔ ﻋﻨ ﺪ ﻧﻘﻄ ﺔ ﻣﻨ ﺴﻮﺑﻬﺎ ‪ 80.0‬ﻗ ﺪم ‪ ،‬أﻣﻴ ﻞ اﻟﻤﻨﻈ ﺎر ‪ 9.00‬ﻋﻠ ﻰ‬ ‫‪2‬‬ ‫ﻣﻦ اﻟﺒﻮﺻﺔ‪ ،‬واﻟﺒﻌ ﺪ اﻟﺒ ﺆرى ﻟﻠ ﺸﻴﺌﻴﺔ ‪ 9.0‬ﺑﻮﺻ ﺔ واﻟﻤ ﺴﺎﻓﺔ‬

‫اﻷﻓﻘﻰ‪ ،‬وآﺎﻧﺖ ﻗﺮاءات اﻟﻘﺎﻣﺔ ‪:‬‬ ‫‪(1.63 – 2.14 – 2.65 ) feet‬‬ ‫أوﺟﺪ اﻟﻤﺴﺎﻓﺔ اﻷﻓﻘﻴﺔ ﺑﻴﻦ اﻟﺠﻬﺎز واﻟﻘﺎﻣﺔ‪ ،‬وآﺬﻟﻚ ﻣﻨﺴﻮب ﺧﻂ اﻟﻨﻈﺮ ﻋﻠﻤ ًﺎ ﺑﺄن ارﺗﻔﺎع اﻟﺠﻬﺎز ‪ 4.50‬ﻗﺪم‪.‬‬

‫‪ -3‬ﻋﻴﻦ ﻣﻌﺪل اﻹﻧﺤﺪار ﺑﻴﻦ ﻧﻘﻄﺘﻴﻦ )‪ (A, B‬ﻣﻦ اﻷرﺻﺎد اﻵﺗﻴﺔ اﻟﻤﺄﺧﻮذة ﺑﺘﺎآﻴﻮﻣﺘﺮ ﻣﺠﻬﺰ ﺑﻌﺪﺳﺔ ﺗﺤﻠﻴﻠﻴﺔ )اﻟﺜﺎﺑﺖ اﻹﺿ ﺎﻓﻰ ﻟ ﻪ‬ ‫= ﺻﻔﺮ(‪ ،‬وﺛﺎﺑﺘﻪ اﻟﺘﺎآﻴﻮﻣﺘﺮى ‪.100.0‬‬ ‫اﻟﺰاوﻳﺔ‬ ‫اﻟﻘﺮاءات‬ ‫اﻹﻧﺤﺮاف‬ ‫ﻣﻦ‬ ‫اﻟﺮأﺳﻴﺔ‬ ‫اﻟﺠﻬﺎز‬ ‫`‪+10 o 12‬‬ ‫‪2.80 2.00 1.20‬‬ ‫‪75o‬‬ ‫إﻟﻰ ‪A‬‬ ‫‪o‬‬ ‫‪o‬‬ ‫`‪- 4 48‬‬ ‫‪1.30 2.10 2.90‬‬ ‫‪345‬‬ ‫إﻟﻰ ‪B‬‬

‫‪ -4‬ﻗﻴﺲ ﺧﻂ )‪ (AB‬ﺑﺎﺳﺘﺨﺪام ﻗﻀﻴﺐ اﻹﻧﻔﺎر )‪ ، (Subtense Bar‬وﺧﻂ ﻗﺎﻋﺪة ﻣﺴﺎﻋﺪ ﻋﻤﻮدى ﻋﻠﻰ ﺟﺎﻧﺐ واﺣﺪ ﻣ ﻦ )‪،(AB‬‬ ‫وﻓﻰ ﻣﻨﺘ ﺼﻔﻪ ﺗﻤﺎﻣ ﺎً‪ ،‬ﻓ ﺈذا آ ﺎن ﻃ ﻮل اﻟﺨ ﻂ )‪ (AB‬ه ﻮ ‪ 684.0‬ﻣﺘ ﺮ ‪ ،‬وﻃ ﻮل اﻟﻘﺎﻋ ﺪة اﻟﻤ ﺴﺎﻋﺪ ه ﻮ ‪ 28.0‬ﻣﺘ ﺮ‪ ،‬ﻓﻌ ﻴﻦ اﻟﺰاوﻳ ﺔ‬ ‫اﻷﻓﻘﻴﺔ ﺑﻴﻦ ﻧﻬﺎﻳﺘﻰ اﻟﻘﻀﻴﺐ )زاوﻳﺔ اﻟﺒﺮاﻟﻜﺲ(‪ ،‬واﻟﺰاوﻳﺔ اﻟﻤﻮﺟﻮدة ﻋﻨﺪ ﻧﻬﺎﻳﺔ اﻟﺨﻂ‪.‬‬ ‫وإذا آﺎن ﺧﻂ اﻟﻘﺎﻋﺪة اﻟﻤﺴﺎﻋﺪ ﻳﻨﺼﻒ )‪ ،(AB‬وﻋﻠﻰ ﺟﺎﻧﺒﻴﻪ‪ ،‬ﻓﻤﺎ هﻰ زاوﻳﺔ اﻟﺒﺮاﻟﻜﺲ؟ واﻟﺰاوﻳﺔ اﻟﻤﺮﺻﻮدة ﻋﻨﺪ ﻧﻬﺎﻳﺔ اﻟﺨﻂ‪.‬‬ ‫‪ -5‬ﻗﻤﺔ ﺗﻞ ﻣﻌﻠﻮم إرﺗﻔﺎﻋﻬﺎ ﺑﺄﻧﻪ ‪ 2055‬ﻣﺘﺮ ﻓﻮق ﺳﻄﺢ اﻟﻤﻴﺎﻩ ﻓﻰ ﺑﺤﻴﺮة‪ .‬رﺻﺪت هﺬﻩ اﻟﻘﻤﺔ ﻣﻦ اﻟﺠﺎﻧﺐ اﻵﺧﺮ ﻟﻠﺒﺤﻴﺮة‪ ،‬وآﺎﻧﺖ‬ ‫زاوﻳﺔ إرﺗﻔﺎﻋﻬﺎ ``‪ ، 5o 10‬ﻓﺈذا آﺎﻧﺖ زاوﻳﺔ إﻧﺨﻔﺎض ﺻﻮرة اﻟﻘﻤ ﺔ ﻓ ﻰ ﻣﻴ ﺎﻩ اﻟﺒﺤﻴ ﺮة‪ ،8o 40`` :‬أوﺟ ﺪ اﻟﻤ ﺴﺎﻓﺔ اﻷﻓﻘﻴ ﺔ ﻣ ﻦ‬ ‫اﻟﺠﻬﺎز إﻟﻰ اﻟﺘﻞ‪ ،‬وأوﺟﺪ آﺬﻟﻚ اﻟﻔﺮق ﺑﻴﻦ ﻣﻨﺴﻮﺑﻰ اﻟﻨﻘﻄﺘﻴﻦ )اﻋﺘﺒﺮ أن ﻣﻌﺎﻣﻞ اﻹﻧﻜﺴﺎر ﻟﻠﻤﺎء هﻮ ﻧﻔﺴﻪ ﻟﻠﻬﻮاء(‪.‬‬ ‫‪ -6‬ﻹﻳﺠﺎد ﻣﻨﺴﻮب اﻟﻨﻘﻄﺔ )‪ (A‬ﻣﻦ اﻟﻨﻘﻄﺔ )‪ (B‬اﻟﻤﻌﻠﻮم ﻣﻨﺴﻮﺑﻬﺎ وﺿﻊ اﻟﺘﻴﻮدوﻟﻴ ﺖ ﻓ ﻮق ﻧﻘﻄ ﺔ ﺟﺪﻳ ﺪة )‪ (C‬وأﺧ ﺬت اﻟﻘ ﺮاءات‬ ‫اﻵﺗﻴﺔ ﻋﻠﻰ اﻟﻘﺎﻣﺘﻴﻦ اﻟﻤﻮﺿﻮﻋﺘﻴﻦ رأﺳﻴ ًﺎ ﻓﻮق )‪ (A, B‬ﻓﻜﺎﻧﺖ‪:‬‬ ‫اﻟﻘﺎﻣﺔ‬ ‫‪A‬‬ ‫‪B‬‬

‫اﻟﺰاوﻳﺔ اﻟﺮأﺳﻴﺔ‬ ‫``‪-7o 35` 30‬‬ ‫``‪+10o 50` 30‬‬

‫ﻗﺮاءات اﻟﺸﻌﺮات )ﻣﺘﺮ(‬ ‫‪0.950‬‬ ‫‪1.502‬‬ ‫‪2.055‬‬ ‫‪2.98‬‬ ‫‪2.0‬‬ ‫‪1.018‬‬

‫ﻓﺈذا ﻋﻠﻢ أن اﻟﺠﻬﺎز ﺑﻪ ﻋﺪﺳﺔ ﺗﺤﻠﻴﻠﻴﺔ‪ ،‬واﻟﺜﺎﺑ ﺖ اﻟﺘ ﺎآﻴﻮﻣﺘﺮى = ‪ 100‬وأن ﻣﻨ ﺴﻮب ﻧﻘﻄ ﺔ )‪ -42.03 = (B‬ﻣﺘ ﺮ‪ .‬أوﺟ ﺪ ﻣﻨ ﺴﻮب‬ ‫ﻧﻘﻄﺔ )‪.(A‬‬ ‫‪22‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ ‫‪ -7‬أوﺟﺪ إﻟﻰ أى زاوﻳﺔ رأﺳﻴﺔ ﻳﻤﻜﻦ اﻋﺘﺒﺎر اﻟﻤﺴﺎﻓﺔ اﻟﻤﺎﺋﻠﺔ ﺗﺴﺎوى اﻟﻤﺴﺎﻓﺔ اﻷﻓﻘﻴﺔ ﻓ ﻰ اﻟﻘﻴ ﺎس اﻟﺘ ﺎآﻴﻮﻣﺘﺮ ﺑﺤﻴ ﺚ أن اﻟﺨﻄ ﺄ ﻻ‬

‫‪1‬‬ ‫ﻳﺰﻳﺪ ﻋﻦ‬ ‫‪300‬‬

‫‪ ،‬وﻳﻮﺟﺪ ﺑﺎﻟﺠﻬﺎز ﻋﺪﺳﺔ ﺗﺤﻠﻴﻠﻴﺔ )أى أن اﻟﺜﺎﺑﺖ اﻹﺿﺎﻓﻰ = ﺻﻔﺮ(‪.‬‬

‫‪ -8‬اﻟﺒﻌﺪ اﻟﺒﺆرى ﻟﻠﻌﺪﺳﺔ اﻟﺸﻴﺌﻴﺔ ﻓ ﻰ ﻣﻨﻈ ﺎر ه ﻮ ‪12.0‬ﺑﻮﺻ ﺔ‪ ،‬واﻟﻤﺤ ﻮر اﻟﺮأﺳ ﻰ ﻟﻠ ﺪوران ﻓ ﻰ ﻣﻨﺘ ﺼﻒ اﻟﻤ ﺴﺎﻓﺔ ﺑ ﻴﻦ اﻟﺒ ﺆرة‪،‬‬ ‫واﻟﻌﺪﺳ ﺔ اﻟ ﺸﻴﺌﻴﺔ‪ .‬وﺿ ﻌﺖ ﻗﺎﻣ ﺔ ﻋﻠ ﻰ ﺑﻌ ﺪ ‪ 301.50‬ﻗ ﺪم ﻣ ﻦ اﻟﻤﺤ ﻮر اﻟﺮأﺳ ﻰ ﻟﻠﺠﻬ ﺎز‪ ،‬وآ ﺎن اﻟﺠ ﺰء اﻟﻤﻘﻄ ﻮع ﺑ ﻴﻦ ﺷ ﻌﺮﺗﻰ‬ ‫اﻻﺳﺘﺎدﻳﺎ ﻋﻠﻰ اﻟﻘﺎﻣﺔ = ‪ 3.0‬ﻗﺪم‪.‬‬ ‫ﻣﺎ هﻰ اﻟﻤﺴﺎﻓﺔ ﺑﻴﻦ ﺷﻌﺮﺗﻰ اﻟﺴﺘﺎدﻳﺎ ﻋﻠﻰ ﺣﺎﻣﻞ اﻟﺸﻌﺮات ﻓﻰ اﻟﺠﻬﺎز؟‬ ‫‪ -10‬وﺿ ﻌﺖ ﻗﺎﻣ ﺔ رأﺳ ﻴﺔ ورﺻ ﺪت ﺑﺘﻴﻮدوﻟﻴ ﺖ ﻋ ﺎدى‪ ،‬ورﺻ ﺪت اﻟﺰواﻳ ﺎ اﻟﺮأﺳ ﻴﺔ ﻟﻬ ﺪﻓﻴﻦ ﻋﻠ ﻰ اﻟﻘﺎﻣ ﺔ‪ ،‬ﻓ ﺈذا آﺎﻧ ﺖ اﻟﻤ ﺴﺎﻓﺔ‬ ‫اﻟﺮأﺳ ﻴﺔ ﺑﻴﻨﻬﻤ ﺎ ‪ 4.26‬ﻣﺘ ﺮ‪ ،‬واﻟﻔ ﺮق ﺑ ﻴﻦ ﻇﻠ ﻰ زاوﻳﺘ ﻰ اﻹرﺗﻔ ﺎع = ‪ ، 0.044‬ﻣ ﺎهﻮ ﻣﻨ ﺴﻮب ﻧﻘﻄ ﺔ اﻟﻘﺎﻣ ﺔ إذا آ ﺎن ﻇ ﻞ زاوﻳ ﺔ‬ ‫اﻟﻬ ﺪف اﻟ ﺴﻔﻠﻰ = ‪ 0.161‬واﻹرﺗﻔ ﺎع ﻣ ﻦ اﻷرض ﻟﻠﻬ ﺪف اﻟﻌﻠ ﻮى = ‪ 1.75‬ﻣﺘ ﺮ‪ ،‬وﻣﻨ ﺴﻮب ﺳ ﻄﺢ اﻟﺠﻬ ﺎز ﺗﺤ ﺖ ﺳ ﻄﺢ اﻟﺒﺤ ﺮ‬ ‫ﺑﻤﻘﺪار ‪ 4.0‬ﻣﺘﺮ‪.‬‬ ‫‪ -12‬ﻓﻰ ﺗﺮاﻓﺮس‪ ،‬أرﻳﺪ إﻳﺠﺎد اﻟﻤﺴﺎﻓﺔ ﺑﻴﻦ اﻟﻨﻘﻄﺘﻴﻦ )‪ (A, B‬اﻟﻨﻘﻄﺔ ‪ A‬آﺎﻧ ﺖ ﻇ ﺎهﺮة ﻣ ﻦ ﻧﻘﻄ ﺔ ‪ X‬اﺣ ﺪى ﻧﻘ ﻂ اﻟﺘﺮاﻓ ﺮس‪ ،‬أﻣ ﺎ‬ ‫ﻧﻘﻄﺔ ‪ B‬ﻓﻜﺎﻧﺖ ﻇﺎهﺮة ﻣﻦ ﻧﻘﻄﺔ أﺧﺮى ‪ . Y‬أﺧﺬت أرﺻ ﺎد ﺗﺎآﻴﻮﻣﺘﺮﻳ ﺔ ﻣ ﻦ اﻟﻨﻘﻄﺘ ﻴﻦ )‪ (X, Y‬ﻋﻠ ﻰ ﻗ ﺎﺋﻤﺘﻴﻦ ﻣﻮﺿ ﻮﻋﺘﻴﻦ ﻓ ﻮق‬ ‫اﻟﻨﻘﻄﺘﻴﻦ )‪ (A, B‬وآﺎﻧﺖ اﻷرﺻﺎد آﺎﻵﺗﻰ‪:‬‬ ‫‪Vertical‬‬ ‫‪Hair‬‬ ‫‪angle‬‬ ‫‪Readings‬‬ ‫‪09o 22` 1.50 2.11 2.72‬‬ ‫‪12o 18` 1.80 2.25 2.70‬‬

‫‪Traverse Bearing‬‬ ‫‪Point‬‬ ‫‪A‬‬ ‫`‪326o 42‬‬ ‫‪B‬‬ ‫`‪10o 27‬‬

‫‪Occupied‬‬ ‫‪Co-ordinates‬‬ ‫‪Point‬‬ ‫‪Horizontal‬‬ ‫‪Vertical‬‬ ‫‪X‬‬ ‫‪3800 E‬‬ ‫‪1000 N‬‬ ‫‪Y‬‬ ‫‪3600 W‬‬ ‫‪740 N‬‬

‫اﻟﺠﻬﺎز ﻣﺰود ﺑﻌﺪﺳﺔ ﺗﺤﻠﻴﻠﻴﺔ‪ ،‬واﻟﺜﺎﺑﺖ اﻟﺘﺎآﻴﻮﻣﺘﺮ = ‪ . 100‬اﺣﺴﺐ اﻟﻤﺴﺎﻓﺔ ‪ ،AB‬واﻧﺤﺮاف اﻟﺨﻂ ‪.AB‬‬ ‫‪ -13‬أﺧﺬت ﻗﺮاءات ﻣﻦ ﺟﻬﺎزى ﺗﺎآﻴﻮﻣﺘﺮ ﻋﻨﺪ ﻧﻘﻄﺔ ‪ ،A‬اﻟﺘﻰ ﻣﻨﺴﻮﺑﻬﺎ ‪ 15.05‬ﻣﺘﺮ‪ ،‬إﻟﻰ ﻗﺎﻣﺔ ﻣﻮﺿﻮﻋﺔ ﻓﻮق ‪:B‬‬ ‫اﻟﺠﻬﺎز اﻷول ) ‪ : ( ρ‬ﺛﺎﺑﺘﻪ اﻟﺘﺎآﻴﻮﻣﺘﺮى = ‪ ، 100‬وﺛﺎﺑﺘﻪ اﻹﺿﺎﻓﻰ = ‪ 14.40‬ﺑﻮﺻﺔ‪.‬‬ ‫اﻟﺠﻬﺎز اﻟﺜﺎﻧﻰ ) ‪ : ( φ‬ﺛﺎﺑﺘﻪ اﻟﺘﺎآﻴﻮﻣﺘﺮى = ‪ ، 95‬وﺛﺎﺑﺘﻪ اﻹﺿﺎﻓﻰ = ‪ 15.0‬ﺑﻮﺻﺔ‪.‬‬ ‫وآﺎن ارﺗﻔﺎع اﻟﺠﻬﺎز ) ‪ ( ρ‬ﻋﻨﺪ ﻧﻘﻄﺔ ‪ 1.45 = A‬ﻣﺘﺮ‪ ،‬وزاوﻳﺔ اﻹرﺗﻔﺎع‬

‫‪23‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

‫‪Theory of Errors‬‬ ‫آﻠﻤﺎ وﺟﺪت أرﺻﺎد‪ ،‬آﻠﻤﺎ وﺟﺪت أﺧﻄﺎء‪ ،‬وﺗﺨﺘﻠﻒ ﻃﺒﻴﻌﺔ هﺬﻩ اﻷﺧﻄﺎء‪ ،‬وﻗﺪ ﺗﻌﻮد إﻟ ﻰ اﻟ ﺸﺨﺺ اﻟﺮاﺻ ﺪ أو اﻵﻟ ﺔ اﻟﺘ ﻰ‬ ‫ﻳﺮﺻﺪ ﺑﻬﺎ أو إﻟﻰ ﻋﻮاﻣﻞ ﻃﺒﻴﻌﻴﺔ ﺧﺎرﺟﻴﺔ‪:‬‬ ‫‪1- Types of Errors:‬‬ ‫‪1-1- According to the sources:‬‬

‫‪a- Personal Errors‬‬ ‫‪b- Instrumental Errors‬‬ ‫‪c- Natural Errors‬‬ ‫‪2-1 According to kind‬‬

‫‪a- Systematic Error‬‬ ‫‪b- Un-systematic (random) Error‬‬ ‫‪c- Gross error‬‬ ‫‪2- propagation of Errors‬‬ ‫ﻋﻨﺪ ﻗﻴﺎس ﺧﻂ ﻃﻮﻟﻪ ﻳﺰﻳﺪ ﻋﻦ ﻃﻮل اﻟﺸﺮﻳﻂ ﻋﺪة ﻣﺮات‪ ،‬ﻓﺈن ﻋﺪد ﻣﺮات اﻟﻘﻴﺎس )‪ ،(n‬وإذا وﺟﺪ ﺧﻄﺄ ﻓﻰ اﻟﻘﻴﺎس ﻓﺈﻧ ﻪ‬ ‫ﻳﺘﻜﺮر ﺑﻨﻔﺲ اﻟﻌﺪد ﻣﻦ اﻟﻤﺮات‪ ،‬ﻓﺈذا آﺎﻧﺖ ﻗﻴﻤﺔ هﺬا اﻟﺨﻄﺄ ﻓﻰ اﻟﻤﺮة اﻟﻮاﺣﺪة )‪ ،(E‬ﻓﺈن اﻟﺨﻄﺄ اﻟﻨﺎﺗﺞ ﻓﻰ اﻟﺨﻂ آﻠﻪ = )‪.(n.E‬‬ ‫وﻧﻼﺣﻆ أن اﻟﺨﻄﺄ ﻳﺘﺠﻤﻊ وﻻ ﺗﺘﻐﻴﺮ ﻧﺴﺒﺘﻪ ﺑﺰﻳﺎدة ﻃﻮل اﻟﺨﻂ‪.‬‬ ‫‪3- Random Errors:‬‬ ‫اﻷﺧﻄﺎء ﻟﻬﺎ ﻣﺼﺎدر ﻣﺘﻌﺪدة‪ ،‬وﻹرﺟﺎع اﻟﺨﻄﺄ إﻟﻰ ﻣﺼﺪرﻩ ﺳﻮاء آﺎن ﺷﺨﺼﻰ أو ﻣﻦ اﻟﺠﻬﺎز اﻟﻤﺴﺘﺨﺪم ﻳﺘﻢ اﻵﺗﻰ‪:‬‬ ‫ ﻋﻨﺪ ﻋﻤﻞ ﻣﺠﻤﻮﻋﺔ ﻣﻦ اﻷﺷﺨﺎص ﻋﻠﻰ ﻧﻔﺲ اﻟﺠﻬﺎز ﻓﺈن ﻣﺼﺪر اﻷﺧﻄﺎء ﻳﻜﻮن ﺷﺨﺼﻰ‪.‬‬‫ ﻋﻨﺪ اﺳﺘﺨﺪام ﺷﺨﺺ واﺣﺪ ﻣﺠﻤﻮﻋﺔ ﻣﻦ اﻷﺟﻬﺰة‪ ،‬ﻓﺈن ﻣﺼﺪر اﻟﺨﻄﺄ ﻳﻜﻮن ﻣﻦ اﻟﺠﻬﺎز‪،‬‬‫ﺑﻌﺪ اﻟﺘﺨﻠﺺ ﻣﻦ اﻷﺧﻄﺎء اﻟﻤﻨﺘﻈﻤﺔ‪ ،‬واﻟﺜﺎﺑﺘﺔ ﺗﺒﻘﻰ اﻷﺧﻄﺎء اﻟﻌﺎرﺿﺔ ‪ ،‬وﺗﺘﻤﻴﺰ ﺑﺄﻧﻬﺎ ﺻﻐﻴﺮة ﺟﺪًا‪ ،‬وﻏﻴﺮ ﺛﺎﺑﺘﺔ اﻹﺷﺎرة‬ ‫أو اﻟﻘﻴﻤﺔ‪ ،‬وﻻ ﻳﻤﻜﻦ ﻣﻌﺮﻓﺔ أﺳﺒﺎﺑﻬﺎ أو اﻟﺘﺨﻠﺺ ﻣﻨﻬﺎ‪.‬‬

‫ﺑﻌﺾ اﻟﺘﻌﺎرﻳﻒ اﻟﻬﺎﻣﺔ‬ ‫‪Direct Measure‬‬ ‫‪ -1‬اﻟﻘﻴﺎس اﻟﻤﺒﺎﺷﺮ‪:‬‬ ‫هﻮ اﻟﻘﻴﺎس اﻟﺬى ﻳﺘﻢ ﺑﻮاﺳﻄﺘﻪ ﺗﺤﺪﻳﺪ اﻟﻜﻤﻴﺔ اﻟﻤﻘﺎﺳﺔ ﻣﺒﺎﺷﺮة‪ ،‬ﻣﺜﻞ ﻗﻴﺎس ﻃﻮل ﺧﻂ ﺑﻮاﺳ ﻄﺔ اﻟ ﺸﺮﻳﻂ‪ ،‬أو ﻗﻴ ﺎس ﻗﻴﻤ ﺔ‬ ‫زاوﻳﺔ ﺑﻮاﺳﻄﺔ اﻟﺘﻴﻮدوﻟﻴﺖ‪.‬‬ ‫‪Indirect Measure‬‬ ‫‪ -2‬اﻟﺮﺻﺪ أو اﻟﻘﻴﺎس ﻏﻴﺮ اﻟﻤﺒﺎﺷﺮ‪:‬‬ ‫اﻟﻘﻴﺎس اﻟﻐﻴﺮ ﻣﺒﺎﺷﺮ ﻳﻌﻨ ﻰ اﻟﺤ ﺼﻮل ﻋﻠ ﻰ آﻤﻴ ﺔ ‪ ،‬ﻟ ﻢ ﻳ ﺘﻢ ﻋﻤ ﻞ ﻗﻴ ﺎس ﻣﺒﺎﺷ ﺮ ﻟﻬ ﺎ‪ .‬ﻣﺜ ﻞ ﺣ ﺴﺎب ﻃ ﻮل ﺿ ﻠﻊ ﻓ ﻰ ﻣﺜﻠ ﺚ‬ ‫ﺑﻤﻌﻠﻮﻣﻴﺔ اﻟﻀﻠﻌﻴﻦ اﻵﺧﺮﻳﻦ‪ ،‬واﻟﺰاوﻳﺔ ﺑﻴﻨﻬﻤﺎ‪ ،‬ﻓﺎﻟﻀﻠﻊ اﻟﺬى ﺗﻢ اﻟﺤﺼﻮل ﻋﻠﻰ ﻗﻴﻤﺔ ﻗﻴﺎﺳﻪ ﻟﻢ ﻳﺴﺘﺨﺪم اﻟﺸﺮﻳﻂ ﻓﻰ ﻗﻴﺎﺳﻪ‪ ،‬وإﻧﻤﺎ‬ ‫اﺳﺘﺨﺪﻣﺖ ﻋﻼﻗﺔ ﺧﺎﺻﺔ ﺗﺮﺑﻂ أﺿﻼع اﻟﻤﺜﻠﺚ‪.‬‬ ‫‪ -3‬اﻟﻘﻴﻤﺔ اﻷﻛﺜﺮ اﺣﺘﻤﺎﻻ ً‪:‬‬

‫‪The most probable value‬‬

‫ﻳﺘﻌﺬر اﻟﺘﺨﻠﺺ ﺗﻤﺎﻣ ًﺎ ﻣﻦ اﻷﺧﻄﺎء اﻟﻌﺎدﻳﺔ واﻟﻤﻨﺘﻈﻤﺔ‪ ،‬آﻤﺎ ﻳﺘﻌﺬر أﻳﻀ ًﺎ أﺧﺬ ﻋﺪد ﻻ ﻧﻬ ﺎﺋﻰ ﻣ ﻦ اﻷرﺻ ﺎد ﻟﻠﺤ ﺼﻮل ﻋﻠ ﻰ‬ ‫اﻟﻘﻴﻤﺔ اﻟﺤﻘﻴﻘﻴﺔ ﻟﻠﻜﻤﻴﺔ اﻟﻤﻘﺎﺳﺔ‪ .‬وﺑﻔﺮض أن اﻷﺧﻄﺎء اﻟﻌﺎدﻳﺔ واﻟﻤﻨﺘﻈﻤﺔ ﺗﻼﺷﺖ إﻟﻰ أﻗﺼﻰ ﺣﺪ ﻣﻤﻜﻦ ﺑﺤﻴﺚ ﻳﻤﻜﻦ اهﻤﺎﻟﻬﺎ‪ ،‬ﻓﺈن‬ ‫أﻓﻀﻞ ﻗﻴﻤﺔ اﺣﺘﻤﺎﻟﻴﺔ ﺗﻜﻮن هﻰ اﻟﻘﻴﻤﺔ اﻟﺘﻰ ﻳﺤﺘﻤﻞ ﺻﺤﺘﻬﺎ أآﺜﺮ ﻣﻦ ﻏﻴﺮهﺎ ﺗﺒﻌ ًﺎ ﻟﻨﻈﺮﻳﺔ أﻗﻞ ﻣﺠﻤﻮع ﻟﻤﺮﺑﻌﺎت اﻟﺘﺼﺤﻴﺢ‪.‬‬ ‫‪24‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ ‫ﻟﺬﻟﻚ ﻓﺈن اﻟﻘﻴﻤﺔ اﻟﻤﺘﻮﺳﻄﺔ ﻟﻸرﺻﺎد اﻟﻌﺪﻳﺪة ﻟﻠﻜﻤﻴﺔ اﻟﻤﻄﻠﻮﺑ ﺔ ﻳﻄﻠ ﻖ ﻋﻠﻴﻬ ﺎ اﻟﻘﻴﻤ ﺔ اﻷآﺜ ﺮ اﺣﺘﻤ ﺎﻻً‪ ،‬وﻳﻘ ﺼﺪ ﺑ ﺬﻟﻚ أﻧﻬ ﺎ أﻗ ﺮب ﻣ ﺎ‬ ‫ﻳﻤﻜﻦ ﻟﻠﻜﻤﻴﺔ اﻟﺤﻘﻴﻘﻴﺔ‪.‬‬ ‫‪ -4‬اﻟﺨﻄﺄ اﻟﺤﻘﻴﻘﻰ‪:‬‬

‫‪True error‬‬

‫هﻮ اﻟﻔﺮق ﺑﻴﻦ اﻟﻘﻴﻤﺔ اﻟﺤﻘﻴﻘﻴﺔ ﻟﻠﻜﻤﻴﺔ اﻟﻤﺮﺻﻮدة )وهﻰ ﻳﺘﻌﺬر او ﻳﺴﺘﺤﻴﻞ اﻟﺤ ﺼﻮل ﻋﻠﻴﻬ ﺎ( وﺑ ﻴﻦ اﻟﻘﻴﻤ ﺔ اﻟﻤﺮﺻ ﻮدة ﻟﻬ ﺎ‪ .‬وﻟﻤ ﺎ‬ ‫آﺎن اﻟﺤﺼﻮل ﻋﻠﻰ اﻟﻘﻴﻤﺔ اﻟﺤﻘﻴﻘﻴﺔ ﻣﺴﺘﺤﻴﻞ‪ ،‬ﻓﺈن اﻟﺤﺼﻮل ﻋﻠﻰ اﻟﺨﻄﺄ اﻟﺤﻘﻴﻘﻰ ﻣﺴﺘﺤﻴﻞ أﻳﻀ ًﺎ‪.‬‬ ‫اﻟﺨﻄﺄ اﻟﺤﻘﻴﻘﻰ = اﻟﻘﻴﻤﺔ اﻟﻤﺮﺻﻮدة – اﻟﻘﻴﻤﺔ اﻟﺤﻘﻴﻘﻴﺔ‬ ‫‪ -5‬اﻷﺧﻄﺎء اﻟﺒﺎﻗﻴﺔ‪:‬‬

‫‪Residual error‬‬

‫هﻮ اﻟﻔﺮق ﺑﻴﻦ اﻟﻘﻴﻤﺔ اﻟﻤﺮﺻﻮدة‪ ،‬وﺑﻴﻦ اﻟﻘﻴﻤﺔ اﻷآﺜﺮ اﺣﺘﻤﺎ ًﻻ ﻟﻬﺎ‬ ‫اﻟﺨﻄﺄ اﻟﺒﺎﻗﻰ = اﻟﻘﻴﻤﺔ اﻟﻤﺮﺻﻮدة – اﻟﻘﻴﻤﺔ اﻷآﺜﺮ اﺣﺘﻤﺎ ًﻻ‬

‫‪ -6‬اﻟﻤﺘﻮﺳﻂ اﻟﺤﺴﺎﺑﻰ‪Arithmetic mean :‬‬ ‫ﻋﻨﺪﻣﺎ ﻳﻘﻮم اﻟﺮاﺻﺪ ﺑﺮﺻﺪ آﻤﻴﺔ ﻣﺎ ﻋﺪد ﻣ ﻦ اﻟﻤ ﺮات = ‪ ،n‬ﻓﺈﻧ ﻪ ﻳﺤ ﺼﻞ ﻋﻠ ﻰ ﻧﺘ ﺎﺋﺞ ﻣﺨﺘﻠﻔ ﺔ‪ ،‬وﻣﺘﻮﺳ ﻂ ه ﺬﻩ اﻷرﺻ ﺎد‬ ‫ﻳﺴﺎوى اﻟﻤﺠﻤﻮع اﻟﻜﻠﻰ ﻟﻸرﺻﺎد ÷ ﻋﺪد ﻣﺮات اﻟﺮﺻﺪ‪.‬‬ ‫وﻟﻠﻤﺘﻮﺳﻂ اﻟﺤﺴﺎﺑﻰ ﻋﺪة ﺧﻮاص أهﻤﻬﺎ‪:‬‬ ‫أ‪ -‬ﻣﺠﻤﻮع اﻷﺧﻄﺎء اﻟﺒﺎﻗﻴﺔ ﻳﺴﺎوى ﺻﻔﺮ )ﻷن اﻟﺨﻄﺄ اﻟﺒ ﺎﻗﻰ = اﻟﻘﻴﻤ ﺔ اﻟﻤﺮﺻ ﻮدة – اﻟﻘﻴﻤ ﺔ اﻷآﺜ ﺮ اﺣﺘﻤ ﺎ ًﻻ(‪ ،‬وﻟﻤ ﺎ آﺎﻧ ﺖ اﻟﻘﻴﻤ ﺔ‬ ‫اﻷآﺜﺮ اﺣﺘﻤﺎ ًﻻ ﺗﻤﺜﻞ اﻟﻤﺘﻮﺳﻂ اﻟﺤﺴﺎﺑﻰ ﻓﺈن ﻣﺠﻤﻮع اﻷﺧﻄﺎء اﻟﺒﺎﻗﻴﺔ ﻟﻸرﺻﺎد = ﺻﻔﺮ‪.‬‬ ‫ب‪ -‬ﻣﺠﻤﻮع ﻣﺮﺑﻌﺎت اﻷﺧﻄﺎء اﻟﺒﺎﻗﻴﺔ أﻗﻞ ﻣﺎ ﻳﻤﻜﻦ‬ ‫‪ -7‬اﻟﺨﻄﺄ اﻟﺘﺮﺑﻴﻌﻰ اﻟﻤﺘﻮﺳﻂ‪:‬‬

‫)‪Mean square error (MSE‬‬

‫ﻟﺘﻘﺪﻳﺮ دﻗﺔ اﻷرﺻﺎد ﻟﻜﻤﻴﺔ ﻣﺎ ﻣﻌﻠﻮم ﻗﻴﻤﺘﻬ ﺎ اﻟﺤﻘﻴﻘﻴ ﺔ ﻳ ﺴﺘﺨﺪم اﻹﻧﺤ ﺮاف اﻟﻤﻌﻴ ﺎرى أو ﻣ ﺎ ﻳ ﺴﻤﻰ ﻓ ﻰ ﻧﻈﺮﻳ ﺔ اﻷﺧﻄ ﺎء‬ ‫ﺑﺎﻟﺨﻄﺄ اﻟﺘﺮﺑﻴﻌﻰ اﻟﻤﺘﻮﺳﻂ )‪.Mean Square Error (M.S.E‬‬ ‫‪ -‬اﻟﺨﻄﺄ اﻟﺘﺮﺑﻴﻌﻰ اﻟﻤﺘﻮﺳﻂ ﻟﻠﺮﺻﺪة اﻟﻮاﺣﺪة‪:‬‬

‫‪MSE of a single observation‬‬

‫) ‪∑ (X i − X‬‬ ‫‪n‬‬

‫‪2‬‬

‫‪i =1‬‬

‫‪n −1‬‬

‫=‪σ‬‬

‫ اﻟﺨﻄﺄ اﻟﺘﺮﺑﻴﻌﻰ اﻟﻤﺘﻮﺳﻂ ﻟﻠﻤﺘﻮﺳﻂ اﻟﺤﺴﺎﺑﻰ‪MSE of the arithmetic mean :‬‬‫ﻣﻦ اﻟﻤﻌﻠﻮم أن دﻗﺔ ﺗﻌﻴﻴﻦ اﻟﻜﻤﻴﺔ اﻟﻤﺠﻬﻮﻟﺔ ﺑﺎﺳﺘﺨﺪام اﻟﻤﺘﻮﺳﻂ اﻟﺤﺴﺎﺑﻰ أآﺒﺮ ﻣﻦ ﺗﻌﻴﻴﻨﻬﺎ ﺑﺎﺳﺘﺨﺪام أى رﺻﺪة أﺧ ﺮى‪.‬‬ ‫وﺑﺎﻟﺘﺎﻟﻰ ﻓﺈن اﻟﺨﻄﺄ اﻟﺘﺮﺑﻴﻌﻰ اﻟﻤﺘﻮﺳ ﻂ ﻟﻠﻤﺘﻮﺳ ﻂ اﻟﺤ ﺴﺎﺑﻰ أﻗ ﻞ ﻣ ﻦ اﻟﺨﻄ ﺄ اﻟﺘﺮﺑﻴﻌ ﻰ اﻟﻤﺘﻮﺳ ﻂ ﻟﻠﺮﺻ ﺪة اﻟﻮاﺣ ﺪة‪ ،‬واﻟﻌﻼﻗ ﺔ ﺑ ﻴﻦ‬ ‫اﻟﺨﻄﺄ اﻟﺘﺮﺑﻴﻌﻰ اﻟﻤﺘﻮﺳﻂ ﻟﻠﺮﺻﺪة اﻟﻮاﺣﺪة‪ ،‬وﺑﻴﻦ اﻟﺨﻄﺄ اﻟﺘﺮﺑﻴﻌﻰ اﻟﻤﺘﻮﺳﻂ ﻟﻠﻤﺘﻮﺳﻂ اﻟﺤﺴﺎﺑﻰ هﻰ‪:‬‬

‫‪σ2‬‬ ‫‪n‬‬ ‫‪the mean square error of the arithmetic mean‬‬

‫‪where σo‬‬

‫‪σ‬‬ ‫‪n‬‬

‫‪25‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬

‫= ‪σ o2‬‬

‫= ‪σo‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

∑ (X i − X ) n

σo =

2

i =1

n.(n − 1) Relative error

:‫ اﻟﺨﻄﺄ اﻟﻨﺴﺒﻰ‬-8

‫ ﻓﺈﻧ ﻪ ﻣ ﻦ‬،‫ﻼ ﻃ ﻮل وزاوﻳ ﺔ( واﻟﻤﻄﻠ ﻮب ﻣﻌﺮﻓ ﺔ أﻳﻬﻤ ﺎ أدق ﻓ ﻰ اﻟﻘﻴ ﺎس‬ ً ‫ﻋﻨﺪ اﺧﺘﻼف اﻟﻜﻤﻴﺎت اﻟﻤﻘﺎﺳﺔ ﻓﻰ اﻟﻮﺣﺪات )ﻣﺜ‬ .‫ ﻟﺬﻟﻚ ﺗﻌﻴﻦ آﻤﻴﺔ ﺗﺴﻤﻰ اﻟﺨﻄﺄ اﻟﻨﺴﺒﻰ ﻟﻠﻤﻘﺎرﻧﺔ ﻟﺘﺤﺪﻳﺪ أى اﻷرﺻﺎد أدق‬،‫اﻟﺨﻄﺄ ﻣﻘﺎرﻧﺔ اﻷﺧﻄﺎء ﻓﻰ اﻟﺤﺎﻟﺘﻴﻦ‬

Re lative Error =

σ X Mean error

:‫ اﻟﺨﻄﺄ اﻟﻤﺘﻮﺳﻂ‬-9

:‫ وﻗﺪ أﻣﻜﻦ اﺛﺒﺎت أن‬،(η) ‫ وﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ‬،‫وهﻮ ﻳﺴﺎوى اﻟﻤﺘﻮﺳﻂ اﻟﺤﺴﺎﺑﻰ ﻟﻸﺧﻄﺎء ﻣﺠﺮدة ﻣﻦ اﻹﺷﺎرة‬

η=

2

π

.σ = 0.7979 σ

Probable error

:‫ اﻟﺨﻄﺄ اﻟﻤﺤﺘﻤﻞ‬-10

‫ ﻟ ﺬﻟﻚ ﻓﻬ ﻮ ﻳﻤﺜ ﻞ اﻟ ﺮﻗﻢ اﻷوﺳ ﻂ ﻓ ﻰ ﺗﺮﺗﻴ ﺐ‬،‫ ﻣﻦ وﻗﻮع ﺟﻤﻴ ﻊ اﻷﺧﻄ ﺎء‬50% = ‫هﻮ اﻟﺨﻄﺄ اﻟﺬى ﻳﻜﻮن اﺣﺘﻤﺎل وﻗﻮﻋﻪ‬ :‫ وﻗﺪ أﻣﻜﻦ اﺛﺒﺎت أن اﻟﺨﻄﺄ اﻟﻤﺤﺘﻤﻞ ﻳﻤﻜﻦ ﺗﻌﻴﻨﻪ ﻣﻦ‬،‫اﻷﺧﻄﺎء اﻟﺒﺎﻗﻴﺔ‬ r = 0.6745 σ example: 3- A distance was measured eight times and the observations were as follows: 118.167 m 118.750 m 118.273 m 118.266 m 118.165 m 118.167 m 118.760 m 118.280 m a- calculate the mean value ( X ) of this distance, and the mean square error (MSE) of the observations (σx) of a single measurement. b- Calculate the (MSE) of the arithmatic mean (σx). c- Calculate the relative error. d- Find the mean error (a) and the probable error (r) from the above observations, then check their relations with (σ) e- Supposing that if the true value of that distance was 118.248 m, what would you comment upon these observations?

Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.

26


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ Solution No.

Observation

1 2 3 4 5 6 7 8

118.167 118.750 118.273 118.266 118.165 118.167 118.760 118.280 Σ = 946.828

Residual error

Xi − X -0.1865 0.3965 -0.0805 -0.0875 -0.1885 -0.1865 0.4065 -0.0735

error Sorting

True error

Xi − Xt

error Sorting

0.0735 0.0805 0.0875 0.1865 0.1865 0.1885 0.3965 0.4065

-0.081 0.502 0.025 0.018 -0.083 -0.081 0.512 0.032

0.018 0.025 0.032 0.081 0.081 0.083 0.502 0.512

n

∑Xi a- mean value =

i =1

n

=

946.828 = 118.3535 m 8

∑ (X i − X ) n

- mean square error of a single observation (σn-1) =

i =1

σo =

= 0.252725

n −1

∑ (X i − X ) n

b- MSE of the arithmetic mean =

2

2

i =1

n.(n − 1)

=

σ n−1 n

=

0.252725 = 0.08935 8

c- relative error : Re =

σ n−1 X

=

0.252725 = 0.002135 118.3535 n

∑ Xi − X d- Mean error (a) =

i =1

n

=

1.606 = 0.20075 8

check of mean error value with (σn-1) a = 0.7979 σ = 0.7979 * 0.2527 = 0.2016 d- Probable error: ‫ إذا آ ﺎن ﻋ ﺪد اﻷرﺻ ﺎد ﻓﺮدﻳ ﺔ ﻓ ﺈن اﻟﺨﻄ ﺄ رﻗ ﻢ‬،‫ ﺑ ﺪون اﻟﻨﻈ ﺮ إﻟ ﻰ اﻹﺷ ﺎرة‬،‫ﻳﺘﻢ ﺗﺮﺗﻴﺐ اﻷﺧﻄﺎء ﻣﻦ اﻷﺻﻐﺮ إﻟ ﻰ اﻷآﺒ ﺮ‬ .‫ﻳﻤﺜﻞ اﻟﺨﻄﺄ اﻷآﺜﺮ اﺣﺘﻤﺎ ًﻻ‬

n +1 2

n n + 1 ( ‫وإذا آﺎﻧﺖ ﻋﺪد اﻷرﺻﺎد زوﺟﻴﺔ ﻓﺈن اﻟﺨﻄﺄ اﻷآﺜﺮ اﺣﺘﻤﺎ ًﻻ = ﻣﺘﻮﺳﻂ اﻟﺨﻄﺄﻳﻦ رﻗﻤﻰ‬ 2 2

. ) ,

Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.

27


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

‫‪0.1865 + 0.1865‬‬ ‫‪= 0.1865‬‬ ‫‪2‬‬

‫=‪r‬‬

‫‪r = 0.6745 σ = 0.6745 * 0.2527 = 0.1704‬‬ ‫‪e- if the true value = 118.248, then, it can be concluded that both observations (118.750, and‬‬ ‫‪118.760) contains random errors, and must be excluded.‬‬ ‫‪ -11‬اﻷوزان‪:‬‬ ‫ﻼ اﻟﺸﺨﺺ اﻟﺪﻗﻴﻖ ﻟﻪ أرﺻ ﺎد ﻟﻬ ﺎ وزن‪ ،‬وﺑﺎﻟﺘ ﺎﻟﻰ ﻓ ﺈن اﻷرﺻ ﺎد اﻟﺘ ﻰ ﻟﻬ ﺎ وزن‬ ‫وﻳﻘﺼﺪ ﺑﻬﺎ ﻣﺪى اﻹﻋﺘﺪاد ﺑﺎﻟﺮﺻﺪة‪ ،‬ﻣﺜ ً‬ ‫ﻋﺒﺎرة ﻋﻦ أرﺻﺎد ﻟﻬﺎ ﺛﻘﺔ ﻧﺴﺒﻴﺔ‪.‬‬

‫‪1‬‬

‫‪σ2‬‬

‫= ‪weight‬‬ ‫‪Where:‬‬

‫‪Standard deviation‬‬

‫‪σ‬‬

‫) ‪∑ (X i − X‬‬ ‫‪n‬‬

‫‪2‬‬

‫‪i =1‬‬

‫‪n −1‬‬

‫=‪σ‬‬

‫واﻹﻧﺤﺮاف اﻟﻤﻌﻴﺎرى ﻳﻤﺜﻞ إﻧﺤﺮاف اﻟﺮﺻﺪة اﻟﻮاﺣﺪة ﻋﻦ اﻟﻘﻴﻤﺔ اﻟﻤﺘﻮﺳﻄﺔ ﻟﻸرﺻﺎد آﻠﻬﺎ‪ .‬وﺑﺎﻟﺘﺎﻟﻰ آﻠﻤﺎ ﻗﻞ اﻹﻧﺤﺮاف‬ ‫اﻟﻤﻌﻴﺎرى ﻟﻠﺮﺻﺪة آﻠﻤﺎ زداد وزﻧﻬﺎ‪.‬‬ ‫‪ -12‬ﺧﻮاص ﻣﻨﺤﻨﻰ اﻷﺧﻄﺎء )ﻣﻨﺤﻨﻰ ﺟﺎوس(‪:‬‬ ‫ﻋﺒﺎرة ﻋﻦ ﻣﻨﺤﻨﻰ ﻳﻤﺜﻞ ﻓﻴﻪ اﻟﻤﺤﻮر اﻷﻓﻘﻰ اﻟﻘﻴﻤﺔ اﻟﻌﺪدﻳﺔ واﻟﺠﺒﺮﻳﺔ ﻟﻸﺧﻄﺎء‪ ،‬وﻳﻤﺜﻞ اﻟﻤﺤﻮر اﻟﺮأﺳﻰ اﺣﺘﻤﺎل وﻗﻮع‬ ‫اﻟﺨﻄﺄ أو ﻋﺪد ﻣﺮات ﺣﺪوﺛﻪ‪.‬‬ ‫ﻼ إذا ﻗﺴﻨﺎ آﻤﻴﺔ ﻣﺎ ﻋﺪد آﺒﻴﺮ ﺟﺪًا ﻣﻦ اﻟﻤﺮات‪ ،‬ﺛﻢ ﺣﺪدﻧﺎ اﻟﺨﻄﺄ اﻟﺒﺎﻗﻰ وﻳﺴﺎوى اﻟﻔﺮق ﺑﻴﻦ اﻟﻘﻴﻢ اﻟﻤﺮﺻﻮدة وﺑﻴﻦ اﻟﻘﻴﻤﺔ‬ ‫ﻓﻤﺜ ً‬ ‫اﻷآﺜﺮ اﺣﺘﻤﺎﻻً‪ ،‬ﺛﻢ ﺗﻢ ﺗﺮﺗﻴﺐ اﻟﻨﺘﺎﺋﺞ ﻓﻰ ﺟﺪول آﺎﻟﺘﺎﻟﻰ‪:‬‬

‫‪28‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

:‫ﻣﺜﺎل‬ 1- the angle (ABC) was measured 25 times, with equally accuracy. By taking the arithmetic mean of the observations, the most probable value of the angle was (94o 04` 20.55``). The values of observations are listed in the following table: No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Observations o

Residual Error

+V

-V

1.80 1.45 1.45 1.20 0.95 0.70 0.70 0.70 0.40 0.30 0.15 0.05

1.80 1.50 1.50 1.05 1.00 0.80 0.55 0.55 0.30 0.05 0.05 0.05 0.05

Xi − X

94 04` 20.85`` 94o 04` 20.50`` 94o 04` 20.60`` 94o 04` 20.50 94o 04` 20.70`` 94o 04` 19.05`` 94o 04` 20.50 94o 04` 22.00`` 94o 04` 19.55`` 94o 04` 19.75`` 94o 04` 20.50`` 94o 04` 19.05`` 94o 04` 18.75`` 94o 04` 20.00`` 94o 04` 20.00`` 94o 04` 21.25`` 94o 04` 21.25`` 94o 04` 22.00`` 94o 04` 21.50`` 94o 04` 19.50`` 94o 04` 21.75`` 94o 04` 22.35`` 94o 04` 20.95`` 94o 04` 20.35`` 94o 04` 21.25``

0.30 -0.05 0.05 -0.05 0.15 -1.50 -0.05 1.45 -1.0 -0.80 -0.05 -1.50 -1.80 -0.55 -0.55 0.70 0.70 1.45 0.95 -1.05 1.20 1.80 0.40 -0.20 0.70

:‫( ﺛﻢ ﻧﺤﺪد ﻋﺪد اﻷﺧﻄﺎء ﻓﻰ آﻞ ﻓﺘﺮة آﺎﻟﺘﺎﻟﻰ‬0.50``) ‫ﻧﻘﺴﻢ اﻷﺧﻄﺎء إﻟﻰ ﻓﺘﺮات وﻟﺘﻜﻦ ﻗﻴﻤﺔ اﻟﻔﺘﺮة‬ Period

2.0-1.5 1.5-1.0 1.0-0.5 0.5-0.0 0.0-(-0.5) -0.5-(-1.0) -1.0-(-1.5) -1.5-(-2.0)

No. of Errors 1 3 4 4 5 4 3 1

،‫ وﻳﻤﺜ ﻞ ارﺗﻔﺎﻋ ﻪ ﻋ ﺪد ﻣ ﺮات ﺗﻜ ﺮار اﻟﺨﻄ ﺄ‬،‫ ﺑﺤﻴ ﺚ ﺗﻤﺜ ﻞ ﻗﺎﻋ ﺪة اﻟﻤ ﺴﺘﻄﻴﻞ ﻓﺘ ﺮة اﻟﺨﻄ ﺄ‬،‫ﺛﻢ ﻳﺘﻢ رﺳﻢ ﻋ ﺪة ﻣ ﺴﺘﻄﻴﻼت ﻣﺘﺠ ﺎورة‬ :‫وﻳﻼﺣﻆ ﻓﻰ هﺬا اﻟﻤﻨﺤﻨﻰ اﻟﺬى ﻳﺴﻤﻰ ﻣﻨﺤﻨﻰ اﻟﺘﺠﻤﻴﻊ اﻟﺘﻜﺮارى اﻵﺗﻰ‬ .‫ اﻷﺧﻄﺎء ذات اﻟﻘﻴﻤﺔ اﻟﻮاﺣﺪة ﻳﺘﺴﺎوى ﻋﺪد اﻟﻤﻮﺟﺐ ﻣﻨﻬﺎ ﻣﻊ ﻋﺪد اﻟﺴﺎﻟﺐ‬-1 Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.

29


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ ‫‪ -2‬ﻳﺰداد ﻋﺪد اﻷﺧﻄﺎء آﻠﻤﺎ ﺻﻐﺮت‪ ،‬وﻳﻘﻞ ﻋﺪدهﺎ آﻠﻤﺎ آﺒﺮ اﻟﺨﻄﺄ‪.‬‬ ‫‪ -3‬ﻳﺰداد اﻟﻤﺘﻮﺳﻂ اﻟﺤﺴﺎﺑﻰ ﻗﺮﺑ ًﺎ ﻣﻦ اﻟﻘﻴﻤﺔ اﻟﺤﻘﻴﻘﻴﺔ آﻠﻤﺎ ازداد ﻋﺪد اﻷرﺻﺎد‪.‬‬ ‫‪6‬‬ ‫‪5‬‬

‫‪3‬‬ ‫‪2‬‬

‫‪Repetation of Error‬‬

‫‪4‬‬

‫‪1‬‬

‫)‪(1.5 to 2.0‬‬

‫)‪(1.0 to 1.5‬‬

‫)‪(0.5 to 1.0‬‬

‫)‪(0.0 to 0.5‬‬

‫)‪(-0.5 to 0.0‬‬

‫)‪(-1.0 to -0.5‬‬

‫)‪(-1.5 to -1.0‬‬

‫)‪(-2 to -1.5‬‬

‫‪0‬‬

‫‪Period of Error‬‬

‫وﻓﻰ اﻟﺸﻜﻞ اﻟﺴﺎﺑﻖ‪ ،‬إذا ﻗﻠﺖ اﻟﻔﺘﺮة إﻟﻰ أﻗﻞ ﻣﺎ ﻳﻤﻜﻦ‪ ،‬وزاد ﻋﺪد اﻷرﺻﺎد إﻟﻰ أآﺒﺮ ﻣﺎ ﻳﻤﻜﻦ ﻓﺈﻧﻨ ﺎ ﻧﺤ ﺼﻞ ﻋﻠ ﻰ ﻣﻨﺤﻨ ﻰ‬ ‫اﻷﺧﻄﺎء‪ ،‬واﻟﺬى ﻳﻄﻠﻖ ﻋﻠﻴﻪ )ﻣﻨﺤﻨﻰ ﺟﺎوس( ‪ ،‬وهﻮ ﻳﺸﺒﺔ ﻣ ﻦ ﺟﻤﻴ ﻊ اﻟﻮﺟ ﻮﻩ ﻣﻨﺤﻨ ﻰ اﻹﺣﺘﻤ ﺎﻻت وذﻟ ﻚ ﺑﻌ ﺪ اﺳ ﺘﺒﺪال اﻹﺣ ﺪاﺛﻰ‬ ‫اﻟﺮأﺳﻰ ‪ ،‬ﻓﺒﺪ ًﻻ ﻣﻦ )‪ (n‬اﻟﺘﻰ ﺗﺪل ﻋﻠﻰ ﻋﺪد ﻣﺮات ﺣﺪوث اﻟﺨﻄﺄ ﻧﻀﻊ )‪ (y‬اﻟﺘ ﻰ ﺗ ﺪل ﻋﻠ ﻰ اﺣﺘﻤ ﺎل ﺣ ﺪوث ﻧﻔ ﺲ اﻟﺨﻄ ﺄ اﻟ ﺴﺎﺑﻖ‪،‬‬ ‫وﻳﻄﻠﻖ ﻋﻠﻴﻪ ﻓﻰ هﺬﻩ اﻟﺤﺎﻟﺔ )ﻣﻨﺤﻨﻰ اﺣﺘﻤﺎل ﺣﺪوث اﻟﺨﻄﺄ(‪ ،‬وﺗﺘﻀﺢ ﻣﻦ هﺬا اﻟﻤﻨﺤﻨﻰ اﻟﺤﻘﺎﺋﻖ اﻟﺘﺎﻟﻴﺔ‪:‬‬ ‫‪ -1‬اﺣﺘﻤﺎل ﺣﺪوث اﻷﺧﻄﺎء اﻟﻤﻮﺟﺒﺔ ﻣﺜﻞ اﺣﺘﻤﺎل ﺣﺪوث اﻷﺧﻄﺎء اﻟﺴﺎﻟﺒﺔ اﻟﺘﻰ ﻟﻬﺎ ﻧﻔﺲ اﻟﻘﻴﻤﺔ اﻟﻌﺪدﻳﺔ ‪.‬‬ ‫‪ -2‬اﻷﺧﻄﺎء اﻟﺼﻐﻴﺮة أآﺜﺮ ﺣﺪوﺛ ًﺎ ﻣﻦ اﻷﺧﻄﺎء اﻟﻜﺒﻴﺮة‪ -‬أى ﻳﻘﻞ اﺣﺘﻤﺎل ﺣﺪوث اﻟﺨﻄﺄ آﻠﻤﺎ ازدادت ﻗﻴﻤﺘﻪ‪.‬‬ ‫‪ -3‬اﻷﺧﻄﺎء اﻟﻜﺒﻴﺮة ﻧﺎدرة اﻟﺤﺪوث‪ ،‬وﻟﻬﺬا ﻓﺈن اﻟﻤﻨﺤﻨﻰ ﻳﻘﺎﺑﻞ ﻣﺤﻮر )‪ (X‬ﻓﻰ ﻣﺎﻻﻧﻬﺎﻳﺔ‪.‬‬ ‫)‪G(e‬‬

‫‪Error‬‬

‫‪30‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

‫اﻟﻤﻌﺎدﻟﺔ اﻟﻌﺎﻣﺔ ﻟﻤﻨﺤﻨﻰ اﻹﺣﺘﻤﺎل‪:‬‬ ‫أوﺟﺪ ﺟﺎوس اﻟﻌﻼﻗﺔ اﻵﺗﻴﺔ ﻟﻤﻨﺤﻨﻰ اﻹﺣﺘﻤﺎل‪:‬‬ ‫) ‪.X 2‬‬

‫‪2‬‬

‫‪.e ( − h‬‬

‫‪h‬‬

‫‪π‬‬

‫= ) ‪G (ε‬‬ ‫‪Where:‬‬

‫)‪Probability of error X (for the Y-axis‬‬ ‫)‪natural logarithmic base (2.71828‬‬ ‫‪the error‬‬

‫)‪G(ε‬‬ ‫‪e‬‬ ‫‪X‬‬

‫= ‪is a constant (h‬‬

‫‪h‬‬

‫)‪the standard deviation (MSE‬‬

‫‪σ‬‬

‫‪1‬‬ ‫)‬ ‫‪σ. 2‬‬

‫واﻟﺨﻄﺄ اﻟﺘﺮﺑﻴﻌﻰ اﻟﻤﺘﻮﺳﻂ ﻣﻘﺪار ﺛﺎﺑ ﺖ )‪ (σ‬ﺑﺎﻟﻨ ﺴﺒﺔ ﻟﻠﻤﻨﺤﻨ ﻰ اﻟﻮاﺣ ﺪ‪ ،‬وﻳﺘﻮﻗ ﻒ ﻗﻴﻤﺘ ﻪ ﻋﻠ ﻰ دﻗ ﺔ اﻷرﺻ ﺎد‪ ،‬واﺧ ﺘﻼف‬ ‫ﻗﻴﻤﺘﻪ ﻳﺆﺛﺮ ﻓﻰ ﺷﻜﻞ اﻟﻤﻨﺤﻨﻰ آﻤﺎ هﻮ ﻣﻮﺿﺢ ﻓﻰ اﻟﺸﻜﻞ اﻟﺘﺎﻟﻰ‪:‬‬ ‫‪ -‬آﻠﻤﺎ ازدادت دﻗﺔ اﻷرﺻﺎد ‪ ،‬آﻠﻤﺎ ﻗﻠﺖ ﻗﻴﻤﺔ )‪ ،(σ‬وﺑﺎﻟﺘﺎﻟﻰ ازداد ﺗﺤﺪب اﻟﻤﻨﺤﻨﻰ‪.‬‬

‫)‪G(e‬‬ ‫أرﺻﺎد دﻗﻴﻘﺔ‬

‫أرﺻﺎد ﻏﻴﺮ دﻗﻴﻘﺔ‬

‫‪Error‬‬ ‫إن ﻣﻌﻨﻰ اﺣﺘﻤﺎل ﺣﺪوث ﺷﻲء ﻣﺎ هﻮ ﻧﺴﺒﺔ ﺣﺪوﺛﻪ وﻳﻌﺒﺮ ﻋﻨﻪ ﺑﻜﺴﺮ ﻋﺸﺮى ﻗﻴﻤﺘﻪ ﺑﻴﻦ اﻟﺼﻔﺮ واﻟﻮاﺣﺪ اﻟﺼﺤﻴﺢ‪ ،‬وﺑﻌﺮض‬ ‫ﻓﻜﺮة ﻣﺒﺴﻄﺔ ﻋﻦ ﻧﻈﺮﻳﺔ اﻹﺣﺘﻤﺎﻻت ﻧﻌﺮض اﻟﻤﺜﺎل اﻟﺘﺎﻟﻰ‪:‬‬

‫إﺣﺘﻤﺎل ﺣﺪوث ﺷﻲء ﻣﺎ أو ﺧﻄﺄ ﻣﺎ =‬

‫‪31‬‬

‫ﻋﺪد ﻣﺮات ﺗﻜﺮار اﻟﺤﺪث‬ ‫اﻟﻌﺪد اﻟﻜﻠﻰ ﻟﻸﺣﺪاث‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ ‫ﻼ اﺣﺘﻤﺎل إﺧﺮاج آﺮة ﺣﻤﺮاء ﻣﻦ ﺻﻨﺪوق ﺑﻪ ‪ 10‬آﺮات ﺣﻤﺮاء‪ ،‬و ‪ 15‬آﺮة ﺳﻮداء‪ ،‬و ‪ 25‬آﺮة ﺑﻴﻀﺎء هﻮ‪:‬‬ ‫ﻓﻤﺜ ً‬

‫‪10‬‬ ‫‪1‬‬ ‫‪= = 20%‬‬ ‫‪10 + 25 + 15 5‬‬ ‫وﺑﺎﻟﺘﺎﻟﻰ ﻓﺈن اﻟﻤﺴﺎﺣﺔ ﺗﺤﺖ ﻣﻨﺤﻨﻰ ﺟﺎوس = ‪ ،1‬ﻷﻧﻬﺎ ﺗﻤﺜﻞ ﻣﺠﻤﻮع اﺣﺘﻤﺎﻻت ﺣﺪوث ﺟﻤﻴﻊ اﻷﺧﻄﺎء‪.‬‬

‫‪.dx = 1‬‬

‫‪.X 2‬‬

‫‪2‬‬

‫‪.e −h‬‬

‫‪h‬‬

‫‪π‬‬

‫∞‪+‬‬

‫∫‬

‫= ‪Area under the (Gauss) curve‬‬

‫∞‪−‬‬

‫وﻟﻴﺲ ﻣﻦ اﻟﻤﻌﺘﺎد أن ﻳﺤﺴﺐ وﻗﻮع ﺧﻄﺄ ﻣﻌﻴﻦ‪ ،‬وإﻧﻤﺎ ﻳﺤﺴﺐ اﺣﺘﻤﺎل وﻗﻮع ﺧﻄﺄ ﺑﻴﻦ ﻗﻴﻤﺘﻴﻦ )‪(X1 , X2‬‬

‫)‪G(e‬‬

‫‪X1‬‬

‫‪X2‬‬ ‫‪X2 X1‬‬

‫‪Error‬‬

‫‪X1 X2‬‬

‫اﺣﺘﻤﺎل وﻗﻮع ﺧﻄﺄ ﺑﻴﻦ ﻗﻴﻤﺘﻴﻦ )‪= (X1 , X2‬‬ ‫‪.X 2‬‬

‫‪32‬‬

‫‪2‬‬

‫‪.e −h‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬

‫‪h‬‬

‫‪π‬‬

‫‪X2‬‬

‫∫‬

‫‪X1‬‬

‫=‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ ‫ﻣﻘﺎرﻧﺔ ﻣﻌﺎﻳﻴﺮ دﻗﺔ اﻷرﺻﺎد‪:‬‬ ‫ﻣﻌﻨﻰ اﻟﺨﻄﺄ )اﻟﻤﺤﺘﻤﻞ ﺣﺪوﺛﻪ أآﺜﺮ ( أﻧﻪ ﻓﻰ أى ﻣﺠﻤﻮﻋﺔ ﻣﻦ اﻷرﺻ ﺎد ﻳﻜ ﻮن ﻋ ﺪد اﻷرﺻ ﺎد اﻟﺘ ﻰ ﺑﻬ ﺎ أﺧﻄ ﺎء أﺻ ﻐﺮ‬ ‫ﻣﻦ اﻟﺨﻄﺄ اﻟﻤﺤﺘﻤﻞ ﺗﺴﺎوى ﻋﺪد اﻷرﺻﺎد اﻟﺘﻰ ﺑﻬﺎ أﺧﻄﺎء أآﺒﺮ ﻣﻨﻪ – آﻤﺎ وﺿﺤﻨﺎ ذﻟﻚ ﻓﻰ ﺗﻌﺮﻳﻒ )‪. (Probable Error‬‬

‫‪r = 0.6745 σ‬‬ ‫وآﺬﻟﻚ اﻟﺨﻄﺄ اﻟﻤﺘﻮﺳﻂ )‪:(η‬‬

‫‪η = 0.7979 σ‬‬

‫وﻳﺘﻤﻴﺰ آﻞ ﻣﻦ اﻟﺨﻄﺄ اﻟﺘﺮﺑﻴﻌﻰ اﻟﻤﺘﻮﺳﻂ )‪ ، (σ‬واﻟﺨﻄﺄ اﻟﻤﺤﺘﻤﻞ ﺑﺎﻵﺗﻰ‪:‬‬ ‫‪ -1‬ﻻ ﻋﻼﻗﺔ ﻟﻜﻞ ﻣﻨﻬﻤﺎ ﺑﺈﺷﺎرة اﻟﺨﻄﺄ ﻓﻴﻤﺎ ﻟﻮ آﺎﻧﺖ ﺳﺎﻟﺒﺔ أو ﻣﻮﺟﺒﺔ )ﻟﻮﺟﻮد اﻟﺘﺮﺑﻴﻊ(‪.‬‬ ‫ﻼ ﻣﻦ )‪ (σ‬و )‪ (r‬ﻓﻰ ﻗﻴﺎس دﻗ ﺔ اﻷرﺻ ﺎد‬ ‫‪ -2‬ﻳﻈﻬﺮ ﻓﻴﻬﻤﺎ ﺗﺄﺛﻴﺮ اﻷﺧﻄﺎء ﻣﺒﻜﺮًا ‪ ،‬وذﻟﻚ ﻷن اﻟﺘﺮﺑﻴﻊ ﻳﺰﻳﺪ اﻟﻘﻴﻤﺔ ‪ ،‬ﻟﺬﻟﻚ ﻳﺴﺘﺨﺪم آ ً‬ ‫واﺳﺘﺒﻌﺎد اﻟﻐﻴﺮ ﺻﺎﻟﺢ ﻣﻨﻬﺎ وﻳﻔﻀﻞ اﺳﺘﺨﺪام اﻟﺨﻄﺄ اﻟﺘﺮﺑﻴﻌﻰ اﻟﻤﺘﻮﺳﻂ ‪ MSE‬ﻋﻨﺪ رﻓﺾ ﺑﻌﺾ اﻷرﺻﺎد اﻟﻐﻴﺮ ﻣﺤﺘﻤﻠ ﺔ اﻟﻮﻗ ﻮع‬ ‫ﺗﺤﺖ ﻣﻨﺤﻨﻰ اﻷﺧﻄﺎء‪.‬‬ ‫ﺣﺪ اﻷﺧﻄﺎء اﻟﺘﻰ ﻳﻘﻊ ﻓﻴﻬﺎ )‪ (50%‬ﻣﻦ اﻷرﺻﺎد‪:‬‬

‫‪r = ± 0.6745 σ‬‬

‫)‪G(e‬‬

‫‪r‬‬

‫‪0.6745 σ‬‬

‫‪0.6745 σ‬‬

‫‪Error‬‬

‫‪r‬‬

‫وآﻤﺎ ﺳﺒﻖ أن أﺷﺮﻧﺎ أن اﺣﺘﻤﺎل وﻗﻮع ﺧﻄﺄ ﺑﻴﻦ ﻗﻴﻤﺘﻴﻦ )‪= (X1 , X2‬‬ ‫‪.X 2‬‬

‫‪33‬‬

‫‪2‬‬

‫‪.e −h‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬

‫‪h‬‬

‫‪π‬‬

‫‪X2‬‬

‫∫‬

‫‪X1‬‬

‫=‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ ‫واﻟﺨﻄﺄ اﻷآﺜﺮ اﺣﺘﻤﺎﻷ ) ‪ ( r‬ﻧﺴﺒﺔ ﺣﺪوﺛﻪ )‪:(50%‬‬ ‫‪.r 2‬‬

‫‪2‬‬

‫‪.e −h‬‬

‫‪r‬‬

‫‪h‬‬

‫∫‬

‫‪π‬‬

‫= ‪0.50‬‬

‫‪−r‬‬

‫وآﺬﻟﻚ ﻳﻤﻜﻦ إﺛﺒﺎت اﻟﺘﺎﻟﻰ‪:‬‬ ‫‪ -1‬اﺣﺘﻤﺎل ﺣﺪوث ﺧﻄﺄ ﻳﻘﻊ ﺑﻴﻦ )‪ (-σ , +σ‬ﻳﺴﺎوى ‪0.683‬‬

‫‪= 0.683‬‬

‫‪.σ 2‬‬

‫‪2‬‬

‫‪.e −h‬‬

‫‪h‬‬

‫‪π‬‬

‫‪ -2‬اﺣﺘﻤﺎل ﺣﺪوث ﺧﻄﺄ ﻳﻘﻊ ﺑﻴﻦ )‪ (-2σ , +2σ‬ﻳﺴﺎوى ‪0.953‬‬

‫‪= 0.953‬‬

‫‪.( 2σ ) 2‬‬

‫‪2‬‬

‫‪.e −h‬‬

‫‪h‬‬

‫‪π‬‬

‫‪= 0.997‬‬

‫‪.( 3σ ) 2‬‬

‫‪2‬‬

‫∫‬

‫‪−σ‬‬

‫‪+2σ‬‬

‫∫‬

‫‪− 2σ‬‬

‫‪ -3‬اﺣﺘﻤﺎل ﺣﺪوث ﺧﻄﺄ ﻳﻘﻊ ﺑﻴﻦ )‪ (-3σ , +3σ‬ﻳﺴﺎوى ‪0.997‬‬

‫‪h‬‬

‫‪.e −h‬‬

‫‪+σ‬‬

‫‪π‬‬

‫‪+3σ‬‬

‫∫‬

‫‪−3σ‬‬

‫وﻣﻦ اﻟﻤﻌﺎدﻟﺔ اﻟﺴﺎﺑﻘﺔ ﻳﺘﻀﺢ أن اﺣﺘﻤﺎل ﺣﺪوث أﺧﻄﺎء ﺗﺰﻳﺪ ﻋ ﻦ ‪ ± 3σ‬ﺗ ﺴﺎوى )‪ (100-99.7‬أى ﺣ ﻮاﻟﻰ ‪،0.30 %‬‬ ‫وﻟ ﺬﻟﻚ ﻓ ﺈن وﺟ ﻮد أرﺻ ﺎد ﺗﺰﻳ ﺪ أﺧﻄﺎؤه ﺎ اﻟﺒﺎﻗﻴ ﺔ )اﻟﻘﻴﻤ ﺔ اﻟﻤﺮﺻ ﻮدة – اﻟﻘﻴﻤ ﺔ اﻷآﺜ ﺮ اﺣﺘﻤ ﺎ ًﻻ( ﻋ ﻦ ‪ ± 3σ‬ﻳﻠ ﺰم رﻓ ﻀﻬﺎ ﻣ ﻦ‬ ‫ﻣﺠﻤﻮﻋﺔ اﻷرﺻﺎد‪.‬‬ ‫‪Example:‬‬ ‫‪2- A distance was measured 40 times from which the standard deviation was found to be ±12‬‬ ‫‪mm. How many of these forty observations containing errors that lie between –15 mm, and‬‬ ‫?‪+10 mm‬‬ ‫‪Solution‬‬

‫‪σ = 12.0 mm‬‬

‫‪= 0.683‬‬

‫‪.X 2‬‬

‫)‪e F ( x‬‬ ‫= ‪.dx‬‬ ‫)‪F `( x‬‬ ‫‪2‬‬

‫‪2‬‬

‫‪e −h . X‬‬ ‫=‬ ‫‪.‬‬ ‫‪π − 2h 2 . X‬‬ ‫‪h‬‬

‫وﺑﺎﻟﺘﻌﻮﻳﺾ ﻓﻰ اﻟﻤﻌﺎدﻟﺔ اﻟﺴﺎﺑﻘﺔ ﻋﻦ ﻗﻴﻤﺔ ‪ X‬ﺑـ ‪± 12‬‬ ‫‪34‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬

‫‪2‬‬

‫‪.e −h‬‬

‫)‪F ( x‬‬

‫‪h‬‬

‫‪π‬‬

‫‪∫e‬‬

‫‪−h2 . X 2‬‬

‫‪+σ‬‬

‫∫‬

‫‪−σ‬‬

‫‪but‬‬

‫‪∫e‬‬

‫‪h‬‬

‫‪π‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

−1 0.683 = 2h π

⎛ e −h2 (12)2 e −h2 ( −12)2 ⎜ − ⎜ 12 − 12 ⎝

−1 0.683 = 2h π

⎛ e −144h2 ⎜ ⎜ 6 ⎝

⎞ ⎟ ⎟ ⎠

(

⎞ ⎟ ⎟ ⎠

h = 0.0688 * e −144 h

2

)

:‫ ﺗﺴﺎوى‬± 12 ‫ﻋﺪد اﻷرﺻﺎد اﻟﺘﻰ ﺑﻬﺎ ﺧﻄﺄ ﻳﺘﺮاوح ﺑﻴﻦ‬

= 0.683 * 40 = 27 observations

G(e)

A = 0.683

σ σ

σ σ

Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.

Error

35


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬ ‫اﻟﺨﻮاص اﻟﻬﻨﺪﺳﻴﺔ ﻟﻤﻨﺤﻨﻰ )ﺟﺎوس(‪:‬‬

‫‪ -1‬اﻟﻤﻨﺤﻨﻰ ﻋﺒﺎرة ﻋﻦ داﻟﺔ زوﺟﻴﺔ )ﻣﺘﻤﺎﺛﻠﺔ ﺣﻮل ﻣﺤﻮر‪ ( Y‬وذﻟﻚ ﻷن‪:‬‬

‫)‪Y(x) = Y(-x‬‬ ‫‪ -2‬أﻗﺼﻰ ﻗﻴﻤﺔ ﻟﻠﺪاﻟﺔ ﺗﺤﺪث ﻋﻨﺪ )‪:(X = 0.0‬‬

‫‪h‬‬

‫‪π‬‬

‫= ‪.e 0‬‬

‫‪h‬‬

‫‪π‬‬

‫= ) ‪G (ε‬‬

‫‪at X = 0.0,‬‬

‫‪ -2‬اﻟﻤﻨﺤﻨﻰ ﻟﻪ ﻧﻘﻄﺘﻰ اﻧﻘ ﻼب )ﻧﻘﻄ ﺔ اﻹﻧﻘ ﻼب ه ﻰ اﻟﻨﻘﻄ ﺔ اﻟﺘ ﻰ ﻳﻐﻴ ﺮ ﻓﻴﻬ ﺎ اﻟﻤﻤ ﺎس اﺷ ﺎرﺗﻪ(‪ ،‬وﻟﺘﺤﺪﻳ ﺪ ﻧﻘﻄ ﺔ اﻹﻧﻘ ﻼب ﻧﻔﺎﺿ ﻞ‬ ‫اﻟﺪاﻟﺔ ﻣﺮﺗﻴﻦ ﺑﺎﻟﻨ ﺴﺒﺔ ﻟ ـ ‪ X‬وﻧ ﺴﺎوى اﻟﻨ ﺎﺗﺞ ﺑﺎﻟ ﺼﻔﺮ ﻓﻨﺤ ﺼﻞ ﻋﻠ ﻰ ﻗﻴﻤ ﺔ ‪ X‬اﻟﺘ ﻰ ﻳﺤ ﺪث ﻋﻨ ﺪهﺎ اﻹﻧﻘ ﻼب‪ ،‬ﺛ ﻢ ﻧﻌ ﻮض ﻋ ﻦ ﺗﻠ ﻚ‬ ‫اﻟﻘﻴﻤﺔ ﻓﻰ ﻣﻌﺎدﻟﺔ اﻟﻤﻨﺤﻨﻰ‪ ،‬ﻓﻨﺤﺼﻞ ﻋﻠﻰ ﻗﻴﻤﺔ )‪ G(ε‬اﻟﻤﻘﺎﺑﻠﺔ ﻟﻬﺎ‪ .‬وﻟﺘﻌﻴﻴﻦ ﻧﻘﻄﺘﻰ اﻹﻧﻘﻼب رﻳﺎﺿﻴ ًﺎ ﻧﻔﺎﺿﻞ اﻟﻤﻌﺎدﻟﺔ ﻣﺮﺗﻴﻦ‪:‬‬

‫‪d‬‬ ‫‪d h −h2 . X 2‬‬ ‫= )‪G ( x‬‬ ‫‪.e‬‬ ‫‪dx‬‬ ‫‪dx π‬‬

‫‪.X 2‬‬

‫‪2‬‬

‫‪. X .e −h‬‬

‫‪* 1) = 0.0‬‬

‫‪.X 2‬‬

‫‪− 2h 3‬‬

‫‪π‬‬ ‫‪2‬‬

‫) ‪.(−2h 2 X‬‬

‫=‬

‫‪* −2h 2 . X + e −h‬‬ ‫‪*1‬‬

‫‪.X 2‬‬

‫‪2‬‬

‫‪.X 2‬‬

‫‪2‬‬

‫‪.X 2‬‬

‫‪2‬‬

‫‪.e −h‬‬

‫‪.( X * e −h‬‬

‫‪* 2h 2 . X = e − h‬‬

‫‪h‬‬

‫= `‪G‬‬

‫‪π‬‬

‫‪− 2h 3‬‬

‫= ``‪G‬‬

‫‪π‬‬ ‫‪.X 2‬‬

‫‪2‬‬

‫‪X * e −h‬‬

‫‪2h 2 . X 2 = 1‬‬ ‫‪1‬‬ ‫‪h. 2‬‬ ‫‪1‬‬ ‫‪h. 2‬‬

‫‪−h 2 .‬‬

‫‪.e‬‬

‫‪h‬‬

‫‪π‬‬

‫= ‪and that point is corresponding to Y‬‬ ‫‪−h‬‬ ‫‪2‬‬

‫‪ -4‬اﻟﻤﺴﺎﺣﺔ ﺗﺤﺖ اﻟﻤﻨﺤﻨﻰ ﻣﻦ ﻧﻘﻄﺔ )∞‪ (-‬إﻟﻰ ﻧﻘﻄﺔ )∞‪1= (+‬‬

‫‪36‬‬

‫=‪X‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬

‫‪.e‬‬

‫‪h‬‬

‫‪π‬‬

‫=‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

‫‪Precision and Accuracy‬‬ ‫ﻟﻨﻌﺮف اﻟﻔﺮق ﺑﻴﻦ )‪ (Precision & Accuracy‬ﻧﺴﻮق اﻟﻤﺜﺎل اﻟﺘﺎﻟﻰ‪:‬‬ ‫أراد ﺷﺨﺺ أن ﻳﻘﺲ زاوﻳﺔ ﻗﻴﻤﺘﻬﺎ اﻷﻗﺮب اﺣﺘﻤﺎ ًﻻ آﺎﻧﺖ )``‪ (75o 12` 40‬ﻓﻜﺎﻧﺖ أرﺻﺎدﻩ آﺎﻟﺘﺎﻟﻰ‪:‬‬

‫``‪70o 12` 42‬‬ ‫``‪70o 12` 40‬‬

‫``‪70o 12` 39.5‬‬ ‫``‪70o 12` 41‬‬

‫``‪70o 12` 39‬‬ ‫``‪70o 12` 39.5‬‬

‫``‪70o 12` 40.5‬‬ ‫``‪70o 12` 41.5‬‬

‫``‪70o 12` 41‬‬ ‫``‪70o 12` 40‬‬

‫ﻓﺈذا أردﻧﺎ أن ﻧﻌﻠﻖ ﻋﻠﻰ هﺬﻩ اﻷرﺻﺎد ﻓﻤﺎذا ﻧﻘﻮل؟ ﻧﺠﺪ أن اﻷرﺻﺎد ﻣﺘﻘﺎرﺑﺔ ﺟﺪًا ﻣﻦ ﺑﻌﻀﻬﺎ اﻟﺒﻌﺾ ‪ ،‬وﻟﻜﻨﻬﺎ ﺑﻌﻴﺪة‬ ‫ﻋﻦ اﻟﻘﻴﻤﺔ اﻟﺤﻘﻴﻘﻴﺔ ﻟﻠﻜﻤﻴﺔ اﻟﻤﺮﺻﻮدة‪ ،‬وﺑﺎﻟﺘﺎﻟﻰ ﻓﺈن هﺬﻩ اﻷرﺻﺎد ﻳﻘﺎل ﻋﻠﻴﻬﺎ )‪.(Precise but not Accurate‬‬ ‫‪Precision:‬‬ ‫وﻧﻘﻴﺲ ﺑﻬﺎ دﻗﺔ اﻷرﺻﺎد ﻣﻦ ﺣﻴﺚ إرﺗﺒﺎﻃﻬﺎ ﺑﺒﻌﻀﻬﺎ اﻟﺒﻌﺾ‪.‬‬ ‫‪Accuracy:‬‬ ‫وﻧﻘﻴﺲ ﺑﻬﺎ دﻗﺔ اﻷرﺻﺎد ﻣﻦ ﺣﻴﺚ إﻗﺘﺮاﺑﻬﺎ ﻣﻦ اﻟﻘﻴﻤﺔ اﻟﺤﻘﻴﻘﻴﺔ ﻟﻠﻜﻤﻴﺔ اﻟﻤﺮﺻﻮدة‪.‬‬ ‫وﻳﻤﻜﻦ ﺗﻌﺮﻳﻒ اﻷرﺻﺎد ﻣﻦ ﺣﻴﺚ اﻟﺪﻗﺔ ﻓﻰ أرﺑﻌﺔ ﻣﺠﻤﻮﻋﺎت آﺎﻟﺘﺎﻟﻰ ‪:‬‬ ‫ﻧﺘﺨﻴﻞ ﻟﻮﺣﺔ رﻣﺎﻳﺔ ﺗﻤﺜﻞ اﻟﺪاﺋﺮة اﻟﺪاﺧﻠﻴﺔ ﻓﻴﻬﺎ اﻟﻘﻴﻤﺔ اﻟﺤﻘﻴﻘﻴﺔ ﻟﻠﻜﻤﻴﺔ اﻟﻤﺮﺻﻮدة ‪ ،‬وﺗﻜﻮن اﺣﺘﻤﺎﻻت اﻃﻼق اﻟﺮﺻﺎص ﻋﻠﻰ‬ ‫اﻟﻬﺪف‪:‬‬ ‫‪ -1‬ﻃﻠﻘﺎت اﻟﺮﺻﺎص ﻣﺘﻘﺎرﺑﺔ ﻣﻦ ﺑﻌﻀﻬﺎ اﻟﺒﻌﺾ وﻟﻜﻨﻬﺎ ﺑﻌﻴﺪة ﻋﻦ اﻟﻬﺪف‪:‬‬ ‫‪Precise but not Accurate‬‬

‫‪ -2‬ﻃﻠﻘﺎت اﻟﺮﺻﺎص ﻗﺮﻳﺒﺔ ﻣﻦ اﻟﻬﺪف وﻟﻜﻨﻬﺎ ﻣﺘﺒﺎﻋﺪة ﻋﻦ ﺑﻌﻀﻬﺎ اﻟﺒﻌﺾ‪:‬‬ ‫‪Accurate but not Precise‬‬

‫‪ -3‬ﻃﻠﻘﺎت اﻟﺮﺻﺎص ﻗﺮﻳﺒﺔ ﻣﻦ ﺑﻌﻀﻬﺎ اﻟﺒﻌﺾ وﻗﺮﻳﺒﺔ ﻣﻦ اﻟﻬﺪف‪:‬‬ ‫‪Precise and Accurate‬‬

‫‪ -4‬ﻃﻠﻘﺎت اﻟﺮﺻﺎص ﺑﻌﻴﺪة ﻋﻦ ﺑﻌﻀﻬﺎ اﻟﺒﻌﺾ وﺑﻌﻴﺪة ﻋﻦ اﻟﻬﺪف‪:‬‬ ‫‪Not Accurate and Not Precise‬‬

‫‪37‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

‫‪Precise and Accurate‬‬

‫‪Precise but not Accurate‬‬

‫‪Not Accurate & Not Precise‬‬

‫‪Accurate not Precise‬‬

‫)‪Coefficient of Coronation (CC‬‬

‫‪∑ X .Y‬‬ ‫‪∑ X 2 .∑ Y 2‬‬

‫= ‪Cc‬‬

‫‪Variances and co-variances‬‬

‫وهﻰ ﻋﺒﺎرة ﻋﻦ ﻋﻼﻗﺔ اﻷرﺻﺎد اﻟﻐﻴﺮ ﻣﺘﺮاﺑﻄﺔ ‪ ،‬وﺗﺤﺪث ﻓﻰ ﺣﺎﻟﺔ وﺟﻮد أرﺻﺎد آﺜﻴﺮة ﺟﺪًا واﻟﻤﺠﻬﻮل آﻤﻴﺔ واﺣﺪة‪.‬‬ ‫‪Co-variance:‬‬ ‫هﻮ اﻟﺬى ﻳﻮﺿﺢ اﻟﻌﻼﻗﺔ ﺑﻴﻦ ﻧﻮﻋﻴﻦ ﻣﻦ اﻟﺮﺻﺪات‬ ‫ﺧﻮاص ﻣﺼﻔﻮﻓﺔ اﻟـ ‪Variance‬‬ ‫‪ -1‬اﻟﻤﺼﻔﻮﻓﺔ ﻗﻄﺮﻳﺔ وﻋﻨﺎﺻﺮ اﻟﻘﻄﺮ اﻟﺮﺋﻴﺴﻰ ﺗﺴﺎوى )‪ (σ12 , σ22 , σ32 , σ42 , …….‬واﻟﺒﺎﻗﻰ أﺻﻔﺎر‪.‬‬ ‫ﺧﻮاص ﻣﺼﻔﻮﻓﺔ اﻟـ ‪Co-variance‬‬ ‫‪ -1‬اﻟﻤﺼﻔﻮﻓﺔ ﻣﺮﺑﻌﺔ )اﻟﺼﻔﻮف ﻣﺴﺎوﻳﺔ ﻟﻸﻋﻤﺪة(‬ ‫‪ -2‬اﻟﻤﺼﻔﻮﻓﺔ ﻟﻬﺎ ﻣﻌﻜﻮس ﺿﺮﺑﻰ أى أن ﻣﺤﺪدهﺎ ﻻ ﻳﺴﺎوى ﺻﻔﺮ‪.‬‬ ‫‪ -3‬ﻋﻨﺎﺻﺮ اﻟﻘﻄﺮ اﻟﺮﺋﻴﺴﻰ ﻣﻮﺟﺒﺔ داﺋﻤﺎً‪ ،‬وﺑﺎﻗﻰ اﻟﻌﻨﺎﺻﺮ ﻣﺘﻤﺎﺛﻠﺔ ﺣﻮل اﻟﻘﻄﺮ اﻟﺮﺋﻴﺴﻰ‪.‬‬ ‫‪38‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


‫ﻣﺴﺎﺋﻞ ﻓﻰ اﻟﻤﺴﺎﺣﺔ اﻟﻤﺴﺘﻮﻳﺔ‬

‫ﺗﻄﺒﻴﻘﺎت ﻋﻠﻰ اﻟﺘﺒﺎﻳﻦ )‪:(Varianc‬‬ ‫ﻓﻰ ﺣﻠﺔ وﺟﻮد أرﺻﺎد ﻏﻴﺮ ﻣﺘﺮاﺑﻄﺔ ‪ ،‬واﻟﻤﻄﻠﻮب إﻳﺠﺎد آﻤﻴﺔ ﻣﺠﻬﻮﻟﺔ ﺑﺎﺳﺘﺨﺪام هﺬﻩ اﻟﺮﺻﺪات‪:‬‬ ‫‪ -1‬ﻧﻌﻴﻦ اﻟﻤﻌﺎدﻟﺔ اﻟﻌﺎﻣﺔ اﻟﺘﻰ ﺗﺮﺑﻂ هﺬﻩ اﻟﻜﻤﻴﺔ اﻟﻤﺠﻬﻮﻟﺔ ﺑﺎﻷرﺻﺎد ﻣﺜﻞ ﺣﺴﺎب إرﺗﻔﺎع ﻣﺜﻠﺚ ﻣﻦ زاوﻳﺔ وﺿﻠﻊ آﺎﻟﻤﺜﺎل اﻟﺘﺎل‪:‬‬ ‫) ‪H = L . tan (θ‬‬

‫‪H‬‬ ‫‪θ‬‬ ‫ﺗﻢ ﻗﻴﺎس اﻟﺰاوﻳﺔ واﻟﻄﻮل ﻋﺪة ﻣﺮات ﺛﻢ‪L‬آﺎﻧﺖ اﻟﻘﻴﻢ اﻣﺘﻮﺳﻄﺔ واﻹﻧﺤﺮاف اﻟﻤﻌﻴﺎرى آﺎﻟﺘﺎﻟﻰ‪:‬‬ ‫‪ -2‬ﻳﺤﺴﺐ ﻗﻴﻤﺔ اﻟﻤﺠﻬﻮل ﺑﺎﺳﺘﺨﺪام اﻟﻘﻴﻢ اﻟﻤﺘﻮﺳﻄﺔ ﻓﻘﻂ ﺑﺪون ‪σ‬‬

‫‪θ → θ ± σθ‬‬ ‫‪L → L ± σL‬‬ ‫) ‪H = L . tan (θ‬‬

‫‪ -3‬اﻟﻤﻌﺎدﻟﺔ اﻟﻌﺎﻣﺔ ﻟﺤﺴﺎب ‪: σ‬‬ ‫‪2‬‬

‫‪2‬‬

‫⎞ ‪⎛ ∂H‬‬ ‫⎞ ‪⎛ ∂H‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫⎜=‬ ‫⎜ ‪⎟ .(σ L ) +‬‬ ‫) ‪⎟ .(σ θ‬‬ ‫⎠ ‪⎝ ∂L‬‬ ‫⎠ ‪⎝ ∂θ‬‬

‫) ‪(σ H‬‬

‫‪2‬‬

‫ﺛﻢ ﻧﻔﺎﺿﻞ اﻟﻤﻌﺎدﻟﺔ اﻟﻌﺎﻣﺔ وﻧﻌﻮض ﺑﻘﻴﻢ اﻟﻤﺘﻮﺳﻄﺎت ﻓﻨﺤﺼﻞ ﻋﻠﻰ ﻣﻌﺎدﻟﺔ ﺗﺮﺑﻂ ﺑﻴﻦ‪:‬‬ ‫‪σH , σL , σθ‬‬ ‫‪ -4‬ﺗﻮﺣﻴﺪ اﻟﻮﺣﺪات ‪: Scaling‬‬

‫‪π‬‬ ‫‪180‬‬

‫إذا آﺎﻧﺖ اﻟﻮﺣﺪات ﻣﺨﺘﻠﻔﺔ )أﻃﻮال وزواﻳﺎ( ﻧﺤﻮل آﻞ اﻟﺰواﻳﺎ إﻟﻰ اﻟﺘﻘﺪﻳﺮ اﻟﺪاﺋﺮى ‪:‬‬

‫* ‪σθ → σθ‬‬

‫ﻧﻌﻮض ﻓﻰ اﻟﻤﻌﺎدﻟﺔ ﻓﻨﺤﺼﻞ ﻋﻠﻰ ‪(σH → H ± σH) σH‬‬

‫‪39‬‬

‫‪Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg.‬‬


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.