CLIMATERESPONSIVESHIPPINGCONTAINERHOME
HOTANDARID
Sunpathdiagramandshading
Southside:Overhangsof2.2 mcanonlybecomean effectiveshading.Hencea verandahof1.5mandan overhangof0.75mis providedtoeffectivelyshade southside.Wintersunis allowedtoenter.
Northside:Verticalshading of25degcanbeeffective EastandWestsides :Both thesesidesaredifficultto shade.
Temperaturerange
Monthlydiurnalaverages
Windwheel
Thereisfrequentwinds fromthenorthwest.They arecoldinwinterandhot insummer.Southeasterly dampwindsspringup betweenJulyandOctober. Hotanddrysouthwinds prevailinspringandearly summer.TheShamal,a northwesterlywind commonduringJuneand July,causesdramatic sandstorms.
Generalfeatures
Kuwait,hasadesertclimate,with mildwintersandveryhotsummers. Thesunusuallyshinesallyear round.ThewinterseasoninKuwait iscolderthanothercoastalcountries intheArabianPeninsula.Summers inKuwaitaresomeofthehotteston earth.Kuwaitisalsolesshumidthan othercoastalregionsintheArabian Peninsula
•Temperature
Summer
Day–40-50deg, Night–25-35deg,
Diurnalvariation–15-20deg (trytoreduce20-25deg)
Winter Day–5-25deg, Night–0-10deg (trytoincrease15deg)
•Cloudlesssky–highsolar radiation
•Strongsunlightreflectedfrom drylightcoloredground
•Lowhumidity25-40%
•Verylessprecipitation<500 mm/yr
•Frequentduststorm.
OrientationandLayout
Enclosed,Compactplan toReduceperimeterto arearatio.
NonHabitableroom (Toilet)placedas thermal barriers,inwestside.
Windowsavoided on westfacade.
Tiltdown trellis asa protectionforwestfaçade.
Verandas –Inducesair movementdueto differentialheating
Deciduoustrees inthesouth toshadewallsandroofs. Plantedinawaynottoblock solarpanelsonroof.
Northsouthorientation ofmainfacades.
Openplan interiorassists crossventilation.
Vegetationandwindflow
North-SouthOrientationofmainfacadesSouthsidewindows
Shadingandopenings
Windowscompriseof 27%ofwallareafor adequate daylight.
Smallledgewalltoplace small indoorplant pots.
Alltheactivitieshavebeen alignedtothenorthside.
Tofacilitate cross-ventilation whendesired,windowsplaced onbothsidesoffacade
NonHabitableroom(Walkin Wardrobe)as thermalbarrier placedineastside
Windowsreduced oneast facadetoavoidheatgains.
Smalleastwindowtocapture easterlytradewinds.
Buildingfacing patioor courtyard
Glassandwindow properties–Verylowgvalue,Low-E,LowU-value
Westside windowsare dif�culttoshade. Hencewindowsare avoided.
Screens providedon windowsforprotection frominsects.
Southside windowsshaded by veranda of1.5mwidth and mashrabiya screens incorporatedtocut glare and radiation during summer.
Doublepaneclear glazingonsouthside.
Doublepanehigh performance(lowE)glazing onnorth
Northside vertical�nsof25ocan effectivelyshadethewindows(climate consultant).Louverstoletinair�ow,but blocktthwestsidesun.
Horizontalelongated windows-formoreday lightandeasytoshade.
Orientationforbreezes: exitopeningslargerthan entranceopenings
Northside Topof openingslevelwithceiling
Daytime -Absenceof openings/leastopenings/ smallopeningslocatedonwalls Night –Largeopeningstoemit heatout
Eastside windowsare dif�culttoshade.External shuttersused.Heavy shuttersmadeofwood (highthermalresistance).
Sliding Mashrabiya screens tocutlightduringday.
Plants/ivys tocutlightand dustfromeastandsouth.
Solarpanelsforenergy generationandactas shadingfortheroof Insulateddoublerooflayer
Containerwall
Framing
1”thickclosedcellrigidinsulation -notcontinuous-inbetween framesandcontainerwallsR6
2”thickclosedcellrigid insulation-continuousR13
Re�ectivemetalsidingtoprevent solarradiationfromenteringinside. Whitepaintedwalls
Recommendedinsulationvalue forlightweightconstruction wallsinKuwaitisR25andfor roofisR37
Lightcoloredwalls/ Re�ectivesurfaces/bright metalsurfacestoreduce heatgain.
Insulatedconstructionwith minimalin�ltration Externalandinternal Insulationtoreducedirect heatgain.
Allwallswellshaded.
Slopetowardssouthto
Framingtoholdboards andotherwiring.
2“Thickclosedcellspray foaminsulationR12
Waterbody inenclosedspace promotes evaporativecooling southeasterlywindsinthehot months.Italsoreduce dust givesvisualandpsychological relief.
Highlyre�ective/white paintedtimberwarmroof R9.7
Adequateslopetodrainthe rainwaterduringoccasional rains.
Projectingroofforshading ofthewalls
Naturallyventilatedroof space.
Finishcoat-White
Gypsumboard Radiantbarrier
2.5“Thickclosedcellspray foaminsulationR16
Mashrabiyascreenscanbekept openduring winter daytimesfor solargainthroughglazing. Use insulatedcurtains to trapheatduringwinter.
Insulate allthesidesofopening using�reresistantsprayfoam tominimizein�ltration.
Psychrometricchart
Allthewindowsare fullyoperable.No �xedpanes.
Externalshutters: Closedduring summerday, Openforventilationat summernight, Openon winterday forsolargain Closedon winternight toreduceheatloss. Shadingdevices Shouldbelowthermal capacitymaterials
Finishcoat
Gypsumboard
½“thickplywood
Containerroof
2“Thickclosedcellspray foaminsulationR12
Framing Framing
½“thickplywood
Gypsumboard
Finishcoat
Insulationtoreducedirect heatgain.
2stageevaporativecoolingbringsmaximumno.ofhours undercomfortconditions(42.1%).Sunshadingof windowscanbring22.9%ofhoursintocomfort.Internal heatgaincanbring23.3%ofhoursundercomfortduring wintermonths,whichshowstheneedofwellinsulated structure.Passivesolardirectgaincanalsocontributeto 10.8%.Directevaporativecoolingcanbring37.9%of hoursundercomfort.Thoughnotingreatpercentages, otherpassivestrategiesalsocontributestothecomfort conditions.Togethertheycancontributetothe comfortableindoorconditionsinagreatway
Solarenergy Othersystems
Floor-Sub�oorinsulated panels.
Hightemperatureandfrequentdusteffectsthe efficiencyofsolarpanels.Onanaverage,Standardpanel sizeof1.6x1mcanproduce1.58Kwh/dayconsidering theefficiencytobe11%.Onworstcastscenario efficiencycanevendropto7.5%.Thenthepanel produces1.08Kwh/day.Sofromthecontainer,roof(30 m2),itispossibletogenerateaminimumof19Kwh/day. Considering330daystoreceivesunlight6270kwh/year couldbegenerated
•2Stageevaporativecooling-Ductlesssystem recommendedtosaveceilingspace.
•Tanklesselectricwaterheaterforuseduring wintermonths.
•Fanforcedventilationduringdayandnightto flushheatout.
•Smartthermostatswithcontroloptions.
•Energyefficientappliancesandfixtures.
CLIMATERESPONSIVESHIPPINGCONTAINERHOME
HOTANDHUMID Location
Sunpathdiagramandshading
Southsidewindows
Thiruvananthapuram,India
Temperaturerange OrientationandLayout
Monthlydiurnalaverages
Thepredominantwind directionduringthe monsoonperiodie,from JunetoSeptember,iswest tosouth-west.Duringthe non-monsoonperiods,the predominantwind directionisfromnorth-east duringthemorningand westduringtheevening, whichshowsinfluenceof landbreeze.
Generalfeatures
•Temperature Summer Day–30-40deg, Night–25-30deg, Winter Day–25-30deg, Night–20-25deg
•Lessdiurnalvariation.No significantcoolingdownat night
•Heavycloud–overcastsky.Sky cover40-80%-cause
unpleasantglareRainfallis
highPrecipitation>1200mm/yr
•Highhumidity70-90%
•Radiationintensity–lessthanin hotdryclimate–diffused radiation–butsignificant sourceofheat
•Sticky
•Dampness
•Insectsandmosquitoesinlarge numbers.
Southside:Overhangof1.5m andverticalfinsinthewest sidecanbecomeaneffective shading.Henceaverandaof 1.5misprovidedtoeffectively shadesouthside.Theregion doesnothavedominant winterseasonandhencesolar gainduringwintermonthis notnecessary
Northside:Verticalshading of25degcanbeeffective EastandWestsides :Both thesesidesaredifficultto shade.
Shadingandopenings
Openplan withoutany obstructionstopromote Northsouthorientationwind�owatbodylevel. ofmainfacades.
Elongated,Narrowplan to assistcrossventilation.
Windowscompriseof40%ofwall areaforadequate daylight. Asper codeminimumrequirementis17%.
Smallledgewalltoplace small indoorplant pots.
Slidingfoldingdoorsonbothsides increasestheperimetertoarearatio–forlargerpossibilityofairmovement.
NonHabitableroom (Toilet)placedas thermal barriers,inwestside.
Tiltdown trellis asa protectionforwestfacade.
Windowsavoided onwest facade.
Verandas –Inducesair movementdueto differentialheating
Verandas –Onallsidesof habitableroomsforadequate shadingandairmovement.
Re�ectiveterracottaclaytile tore�ectsolarradiation, reducingfabricheatgains.
Terracottaclaytilehaslow thermalcapacity.Hencecools downeasily.
Rafters Rigidinsulation
Cement�berboardand�nish coat(belowinsulation).
Roofdesigntopromote stackventilation.Hence moreceilingheightin habitablespaces.
Sloppingrooftodrainrain waterandcutdownpartial solarradiation.
Floor-Sub�oorinsulatedpanels. Buildingonstilts–Forcooledearthand ventilationcoolingof�oor(alsotoprotect against�ooding)
Lightcoloredwalls/ Re�ectivesurfacesto reduceheatgain.
Insulatedconstructionwith minimalin�ltrationto preventlossofenergy whileairconditioned.
Wallsshouldbeshaded.
Finishcoat
Gypsumboard.
½“thickplywood
Singlerowofroomstoallow cross-ventilation
Buildingscanbeorientedto shadefromsunororientedto catchwhateverwind available.Ideallyinlowrise buildings,whenwallsdon’t getmuchradiation, orientationforwindis advisable.Containersurface beingmetal,haspossibilityof gettingoverheated.Hence orientationforavoidanceof sunhasbeenthedecisive factor.
Roomsaccessiblefromopen veranda.
Accordingtotraditionalclimatedesignprinciplesoftheregion(Vasthu),kitchenfacing eastsuchastoreceivethe�rstraysofsunisconsideredtobethebestpractice.
Westside windowsare dif�culttoshade. Hencewindowsareavoided.
Glassandwindow properties–Verylowgvalue,Low-E,LowU-value Screensprovidedonwindows forprotectionfrominsects andmosquitoes.
Southside windowsshadedby verandaof1.5mwidth.
Highceilinginlivingspacesand operablelouversonthetopfor hotairtoescape-Stackeffect.
Fullyopenablesliding foldingdoorstoletinwind fromsouth-westdirection.
Sizeofwindowopenings promoteair�owatbodylevel.
Northside vertical�nsof25oon westcaneffectivelyshadethe windows(climateconsultant).Here verandasprovideampleshading.
Northside Topofopeningslevel withceilingforthehotairtomove outandletinglarefreelight.
No�xedglass panes.Allwindows arefullyopenable.
Slidingfoldingdoors. Horizontalelongated windows-formoredaylight andeasytoshade
Eastside windowsare dif�culttoshade.Hence externaloperableshading devicesareusedinthe balcony.Givesprotection againstsunwhilelettingin breeze.Bamboocurtains hangingdownfromroofsare aneffectivesolution.
Openingsmadeaslargeas possibletomaximizeventilation.
Slopetowardssouthto favorsolarsolarpanels
Principleofthermalstorage cannotbeappliedinthis climate.Hencelightweight constructionofroofs.
Broadoverhangsfor shading
Solarpanelsforenergy generationandactas shadingfortheroof
Insulationtoreduceheat gain.
Wellinsulatedlowmass constructionpreferred.
Whitecolour�nishcoat aboveFibercementboard. PVC/compositedeckboard topreventsolarradiation fromhittingthewall.
Framing
Containerwall
Framingtoholdboardsand otherwiring
Vapourbarrier
ThickRigidinsulation
Asperclimateconsultant40%ofthehoursneedcooling
withthermalmasswithnightventilated,canmaintain workwell.Naturalventilationalongwithfanscanalso greatlycontributetocomfortconditionsinthisclimate.
Solarenergy Othersystems
Hightemperatureandovercastandskyduringmostof
recommendedtosaveceilingspace.
NorthsidewindowsCLIMATERESPONSIVESHIPPINGCONTAINERHOME
TEMPERATE Location
Sunpathdiagramandshading
Southside:Overhangof 80-90cmcanbecomean effectiveshadinginsummer whilelettinginwintersun.
Northside:Verticalshading of25degonthewestcanbe effective
Westside:Thissideis difficulttoshade.Dueto winddirection,windowsare essential.Windowsshaded withlouversarepreferred.
Bangalore,India
Temperaturerange OrientationandLayout
Orientation forbreezes andforsolarcontrol.The planhasbeendividedto2 zonestowelcomeallthe breezesfromeastand west.
Westwindow toletin windfromtheprevailing winddirection.
Northsouthorientation ofmainfacades.
Properventilationitself canbringmostofthe hoursundercomfortzone.
Openplan withoutany obstructionstopromote wind�owatbodylevel.
Monthlydiurnalaverages
Elongated,Narrowplan to assistcrossventilation.
Verandas –Inducesair movementdueto differentialheating
Windowscompriseof 20%ofwallareafor adequate daylight.
Southsidewindows
Shadingandopenings
Slidingfoldingdoorsonbothsides increasestheperimetertoarearatio–forlargerpossibilityofairmovement.
Theaveragehourlywind speedexperiences significantseasonal variationoverthecourseof theyear.Thewindismost oftenfromthewestfor almost5months,fromMay toOctober.Thewindis mostoftenfromtheeastfor almost6-7months,from OctobertoApril.Thereis alsosomewindfromsouth westduringsouthwest monsoonperiods.
Generalfeatures
Duetoitshighelevation,Bangalore usuallyenjoysamoremoderate climatethroughouttheyear, althoughoccasionalheatwavescan makesummersomewhat uncomfortable.Thehotseasonlasts for2.5monthswithanaveragedaily hightemperatureabove32°C.The hottestmonthoftheyearin BengaluruisApril,withanaverage highof34°Candlowof22°C.The coolseasonlastsfor3.3months,from SeptembertoJanuary,withan averagedailyhightemperature
below28°C.Thecoldestmonthof theyearinBengaluruisDecember, withanaveragelowof17°Candhigh of27°C..Bangalorereceivesrainfall fromboththenortheastandthe southwestmonsoons.Humidityis highduringrainyseason.Bengaluru experiencesextremeseasonal variationintheperceived humidity.Themuggierperiodofthe yearlastsfor8.0months,fromApril toDecember,duringwhichtimethe comfortlevelismuggy,oppressive, ormiserableatleast22%ofthetime
Roomsaccessible fromopenveranda.
Roof,Walls,Floor
Finishcoat
Cement�berboard
½“thickplywood
Insofastinsulation-designed forthecorrugationsof containerwalls.Consistsof gapstoaccommodatewiring andotherplumbingworks.
Containerwall
Re�ectivelightcolored paintsontheexposed containerwalls.
Lightcoloredwalls/ Re�ectivesurfacesto reduceheatgain.
Regionexperiences moderatetemperate climate.Henceexternal surfacesarenotinsulated.
Internalinsulationand propershadingofwalls.
Wellinsulatedlowmass constructionpreferred.
Floor-Finish
Floor-Sub�oorinsulatedpanels.
Eastside:Withadequate shading,eastsidewindows canbedesignedonlytoletin comfortableearlymorning sunrays.
Singlerowofroomstoallow cross-ventilation Winddirectionduringwinter seasonisfromeast.Hence planttreestoblockwind.
Westside windowswith louverstocutsolarradiation whilelettinginbreeze.
Buildingscanbeorientedto shadefromsunororientedto catchwhateverwind available.Ideallyinlowrise buildings,whenwallsdon’t getmuchradiation, orientationforwindis advisable.Containersurface beingmetal,haspossibilityof gettingoverheated.Hence orientationforavoidanceof sunhasbeenthedecisive factor.
Glassandwindow properties–Low-E,Low U-value Screensprovidedonwindows forprotectionfrominsects andmosquitoes.
Southside windowsshadedby veranda.
Openingsmadeaslargeas possibletomaximizeventilation.
Fullyopenableslidingfolding doorstoletinwindandincrease perimetertoarearatiowhile open.
Sizeofwindowopenings promoteair�owatbodylevel.
Northside Clearstoreyopenings withoperablewidowsforthehotairto moveoutandletinglarefreelight.
Northside vertical�nsof 25oonwestandeastcan effectivelyshadethe windows(climateconsultant).
No�xedglasspanes. Allwindowsarefully openable.
Slidingfoldingdoors.
Southsideglasswithhighgvalue(withsummershading)for internalheatgaininwinter.
Verandashades East side windows-from summersunwhile lettinginwintersun.
Insulateallthesidesofopening using�reresistantsprayfoamto minimizein�ltration.
Re�ectiveterracottaclay tiletore�ectsolar radiation,reducingfabric heatgains.
Terracottaclaytilehaslow thermalcapacity.Hence coolsdowneasily.
Rafters
Rockwoolsandwichpanels insultation.
Cement�berboard
Woodenpanelingonceiling
Highceilings.
Roofdesigntopromote stackventilationandletin morenorthernlight.
Sloppingrooftodrainrain waterandcutdownpartial solarradiation.
Slopetowardssouthto favorsolarsolarpanels
Broadoverhangsfor shading Solarpanelsforenergy generationandactas shadingfortheroof
Insulationtoreduceheat gain.
Mostofthehighhumidhourslieswithinthecomfort temperaturesitself.Hence,justdehumidificationitself canbring46.8%ofhoursundercomfort.Withpassive designstrategiesitselfwecanalmostbringmorethan 80%ofhoursundercomfortconditions.Sunshadingof windowscancontributeto28.9%.Thermalmassand thermalmasswithnocturnalventilationcantogether contributeto8.9%ofhours.Naturalandfanforced ventilationcantogetherbringanother7.8%ofhours undercontrol.Regionexperiencesmildwiinterand henceinternalheatgainandpassivesolargaincanbring 22.3%ofhoursundercomfort.
Solarenergy
Solarpanelworkbestinmodrateclimates.However, overcastskyduringsomeofthemonthscaneffectthe efficiencyofsolarpanels.Theefficiencyinthisregionis around17%.Onanaverage,Standardpanelsizeof1.6x1 mcanproduce1.9Kwh/dayconsideringtheefficiencyto be17%.Sofromthecontainer,roof(30m2),itispossible togenerateaminimumof29Kwh/day.Considering300 daystoreceivesunlight,approximately9200kwh/year couldbegenerated.
Groundtemperaturesarealmostlimitedwithinthe comfortrange.So, Earthairtunnel canbeagood strategyforthisclimate.Evenatadepthof0.5mthe temperaturesarereallystable.Soevenwitharelatively smallerdepth,earthairtunnelscanbesuccessful.
•2Stageevaporativecooling-Ductlesssystem recommendedtosaveceilingspace.
•Solarwaterheaters.
•Fanforcedventilation
•Rainwaterharvestingsystem.
•Dehumidification-thisonlycanbring46.8%of hoursundercomfort.
Horizontalelongated windows-formore daylightandeasyto shade NorthsidewindowsDISSERTATION-SUMMARY
WINDOWSINTHECLIMATEOFTHEUK
INTRODUCTION
BACKGROUND
Recently,human-inducedclimatechangehashadobservableeffectsonthe environment.Expertsbelievethatiftheglobaltemperaturesarenotlimited wellbelow2°Cabovepre-industriallevels,wewillhavetofacesevere consequencesofclimatechange.Asper"TheParisAgreement",theUKis committedtoreachingnet-zeroenergyby2050.IntheUK,the constructionindustryisresponsiblefor49%ofcarbonemissions;hence,it isnecessarytotakequickactionstodecarbonizethissector.
Toachievenet-zeroby2050,theUKisattemptingtoproducealarge percentageofenergyfromrenewablesourceswhilesimultaneously improvingtheenergyperformanceofallexistingandnewbuildingsto lowerthedemandsofthenewdecarbonizedgrid.Therefore,reducingthe energydemandsofbuildingsisofgreatimportance.Newtechnologiesare developedandintroducedtoimprovebuildingenergyconsumption. Validatingtheperformanceofthesetechnologiesindiverseenvironments isimperative.Onlythencantheactualenergy-savingpotentialofthese technologiesbeunderstood.Therefore,assessingthesetechnologies' performanceintheearlystagesiscrucial.
Electrochromic(EC)windowglazingisonesuchtechnologythatcan dynamicallycontroltheentryofdaylightandsolarradiationintobuildings. Thistechnologyissaidtohelpachieveenergyefficiencybylettinginand shieldingthesundynamicallyinreactiontoclimaticandweather conditions,reducingtheenergyconsumedforheating,cooling,and lighting. Theelectrochromicwindowswereintroducedinthemarketasan alternativetothetraditionalwindowsthatrequireshadingdevices.Itisan electronicallytintableglassthatcandynamicallycontrolglarefromdirect sunorbrightskywhilemaintainingoccupantcomfort,maximizingaccess todaylightandoutdoorviews,reducingenergycosts,andproviding architectswithmoredesignfreedom.Thesewindowsaremorepopularfor theirenergy-savingpotential.Electrochromic(EC)devicesconsistof materialsthatcanchangetheirpropertieswhenelectriccurrentorvoltage isapplied.
Electrochromicwindowsconsistofuniquematerialsthathave ‘electrochromic’properties.Amaterialthatchangescolorwhenenergized byelectricityiscalled"electrochromic".Inthesematerials,electricity initiatesachemicalreaction.Thischemicalreactionchangestheproperties ofthematerial.Thematerialcanbechangedbetweencoloredand transparentstatesinelectrochromicwindowsbyapplyingelectricity. Differentlevelsofvisibilityareavailablewithelectrochromicwindows,just likesuspendedparticledevices
Whystudyonofficebuildings?
Largewindowsandunobstructedexteriorviewsareessentialinanoffice buildingtoensurethehealthandwell-beingoftheemployees.Itis thereforecommonforofficebuildingstohavelargerwindows.Thisalso becomesoneofthereasonswhyofficesarefoundinbuildingswithlarge, glazedfacades.Officeshavebecomeoneofthemostoccupiedtypologiesin mosthigh-risebuildingsinurbancenters.Duetoseveraladvantages,glazed facadesarebecomingthedesigner'sfavoriteforhigh-risebuildingsand skyscrapers.However,astheglazingareaincreases,theyfacilitateheat transferbetweentheinteriorandexterior,whichincreasesthecoolingand heatingloads.
Therefore,inthesetypesofbuildings,thechoiceofglazingtypebecomes extremelyimportant.Hence,officebuildingsbecomeoneofthemost appropriatechoicesoftypologyforthisstudy.
WhyLondonandManchester?
SageGlassbySaint-Gobainisoneoftheworld'sleadingmanufacturersof electrochromicwindows.ThepropertiesofSageGlasselectrochromic windowshavebeenusedinthisstudytoperformsimulation. ElectrochromiccoatingofSageGlassconsistsoffivelayersofceramic material,whicharelessthan1/50ththethicknessofahumanhair.
WhytheUK?
StudieshaveshownthatECwindowsaremoreeffectiveinwarmer climatesasithelpsindynamicsolarcontrol,therebyreducingthecooling loadsdrastically.Electrochromic(EC)windowshavebeenstudied extensivelyfortheirenergyperformance,butahandfularedonefor cooling-dominatedlocations.Researchonheating-dominatedregionsis minimal.Therehasbeenverylittlestudyofthesewindows'impactinthe UKsinceitispredominantlyaheating-dominatedregion.
However,theUKhasbeenwarmerduetoclimatechangeoverthepastfew years.Futureclimatepredictionsshowthatwinterswillbewarmer,and summerswillbehotteranddrier.Currently,thesummersaremuchhotter intheUKthaninpastdecades,andmanybuildingsinthecitiesface overheatingissuesinthesummer.Inaddition,manyofficebuildingsare saidtorequiremechanicalcoolinginthefuture.Therefore,assessingthe performanceofECwindowsinthisclimateishighlyrelevantasitmight becomeanexcellentsolutiontoreducethecoolingloadsorsometimes altogetheravoidairconditioningthatmightbeneededinthefuture.
Accordingtothelistofthe mostpopulatedurban areasintheUnited Kingdom,asdefinedby theOfficeforNational Statistics(ONS),London andManchesterarethe largestandthesecondlargesturbanareasinthe UK.Therefore,boththese locationshavemanyoffice buildings.Thisbecomes oneofthereasonsforthe choiceoflocation.The mostcrucialfactoristhe differencesintheclimate ofbothlocations.London fallsinthesouthernpartof theUKandexperiencesa warmerclimatethanother regionsintheUK.In addition,thecityhasan urbanheatislandeffect.Ontheotherhand,Manchesterliesinthecentral portionoftheUKandhasadifferentclimatethanLondon.Adetailed climaticcomparisonofbothlocationscanbefoundinthenextsection; henceLondonandManchesterhavebeenchosenasthelocationsofstudy. Ideally,otherlocationsinhigherlatitudesshouldalsobeconsideredinthe studytogetacompletepictureoftheperformanceofECwindowsinthe UK.However,consideringthestudy'stimeframe,scopeandextent,the numberoflocationshasbeenlimitedtotwo.
RESEARCHAIMS,OBJECTIVESANDHYPOTHESIS
ResearchAimsandObjectives
ThisresearchaimsatevaluatingtheannualenergyperformanceofofficebuildingswithECwindowsintheclimate oftheUK.TheenergyperformanceofECwindowswillbecomparedwithclear,LoEArgon-filleddoubleandtripleglazedunits.Thestudywillfocusontheeffectofvariousdesignparametersandeachcase'stotal,heating,cooling, andlightingenergyconsumption.Theevaluationswillbedoneforbothcurrentandfutureweatherfilestoassess thelong-termeffect.
TheUKisinacoldtemperatezone,andveryfewstudieshavebeenconductedontheeffectofelectrochromic windows.So,themainquestionsthisresearchaimstoanswerare:
� AreECwindowseffectiveinreducingenergyconsumptionintheclimateoftheUK?
� Inwhichlocation(London/Manchester)dothesewindowsperformbetter,andwhataretheenergy-saving potentials?
� Inwhichorientationsdothesewindowsperformbest?
� Inwhichwindow-to-wallarearatiosdothesewindowsperformbest?
� Whichisthemostinfluentialdesignparameter?
� Comparedtothebasescenario,howmuchdothesewindowsreduceorincreaseenergyconsumption?
Theactualperformanceofanysystemisnotlimitedtothefactorsdiscussedaboveandisdependentonseveralother localfactors.Henceacompletedecisioncannotbemadebasedonthisstudy.However,thisresearchcanactasan initialreferenceforenergyassessorsandsustainablearchitectsbeforeconsideringelectrochromicwindowsin buildings.
Hypothesis
Thehypothesiswasthat,comparedtobasescenarios,
� ECwindowseffectivelyreducetotalannualenergyconsumptionintheclimateoftheUK.
� DuetoLondon'shighertemperaturesthanManchester,ECwindowssavemoreenergyinLondon.
� EnergysavingsofECwindowsaremoreinsouthernorientations.
� ECwindowshelpinreducingcoolingenergy.
� ECwindowsmakesignificantsavingsinlightingenergy.
ResearchGaps
Followingaretheidentifiedgapsintheresearch:
� ItwasfoundthatseveralstudieshavebeendoneonECwindows,andtheirenergy-savingpotentialshave beencalculated,butmostofthemweredoneincooling-dominatedregions.
� Veryfewstudieshavebeendoneinheating-dominatedregions.Forexample,theUKisaheatingdominatedregion,andveryfewresearchershavetriedtoevaluatetheECwindow'seffectivenessinthisclimate.
� NoneofthestudiesdoneintheUKcontexthasdeeplyanalyzedECwindows'totalenergysaving potential.
� Theparametersconsideredinthestudiesarealsoless.Forexample,inthecaseofWWRandorientations, manyresearchpapersreferredhighlightedtheimportanceoftheseparameters.However,thestudieshave consideredonlyoneorthreeWWRsinspecificorientations,whichmaynotgiveacompletepictureofthe performanceofECwindows.OnlyadetailedanalysisofdifferentWWRsandorientationscangiveacomplete pictureoftheeffectivenessofthesewindows.
� ItwasalsoobservedthatmostoftheresearchpapershadcomparedtheperformanceofECwindowswith singlepanewindows.Thiswillshowalargerpercentageofenergysaving.Inarealscenario,designersneedto knowhowfartheyperformbetterthanefficientstandarddouble-glazedortriple-glazedunitsavailableinthe market.
� Thestudiesthatusedsensitivityanalysistoidentifythemostinfluentialdesignparameterhaveconsidered overallbuildingconstructionparameters.Windowparametersjustbecomesomeamongthem.Nostudieshave doneasensitivityanalysisexclusivelyforwindowdesignparametersandstudieditsrelativeimportance.
Mostoftheresearchpapersreferredhadsimilaraimstotheresearchquestionsofthisstudy.Thedifferenceliesin thelocation,climateandtheparametersconsidered.Thisstudyaimstobridgethisgapandcontributetothe knowledgeabouttheperformanceofECwindowsintheclimateoftheUK,whichcanbecomeavaluablereference duringtheearlystagesofthedesign.
METHODOLOGY
LOCATIONS
LondonandManchesterarethetwolocationschosenforthisresearch. Diversityintheirclimatesisoneofthereasonsforthechoiceofthesetwo locations.Asperthe4.5SRESscenario,thecurrentandfutureweatherfiles ofbothlocationsarecomparedandshowninthefollowingfigures.Values fromthe.epwfilesofthelocationsgeneratedusingMeteonormsoftware areusedtocreatethegraphsbelow. TemperaturegraphsclearlyshowthatLondoniswarmerthanManchester. Asperthetemperaturerecordsof2022,thetemperatureinLondonhas goneashighas40degrees.However,futureweatherfilesalsoshowthatthe temperatureswillrise.
RelativeHumidity
GraphsshowthatManchesterismorehumidthanLondon.Inthefuture, forsummermonths,humidityslightlyreducesby2050andthenagain increaseby2080.
Temperature
Wind
Thepredominantwinddirectionsinbothlocationsremainthesamein currentandfutureclimates.Manchesterexperiencescoolerandstronger winds.InLondon,thewinddirectionismainlyfromthewestand southwest;inManchester,thewinddirectionispredominantlysouthwest. Thereisnosignificantchangeinwindspeedinfutureweatherconditions. ManchesterexperiencesstrongerwindsthanLondononanaveragedaily basis.However,onobservingthegraphofrecordedhighandlowwind speeds,itcanbeobservedthattherecordedhighwindspeedsinLondon arehigher.
LondonMETHODOLOGY
LOCATIONS
ThesunshadingchartofLondonsignifiesthenecessityofshadingdevicesforcurrentclimates,whereasin Manchester,thoughshadingmaynotbesignificantinthecurrentscenario,itcanhaveaconsiderableeffectinfuture climates.Thegraphsalsoshowthatconsiderablydeepoverhangscanonlyeffectivelycontrolthesummersunin London.
London
PsychrometricchartManchester
InLondon,theregularcomforthoursrisefrom12.6%inthecurrentclimateto15%in2080.Asthetemperaturerises, morehoursbelowthecomfortzonefallintothecomfortzone.Theeffectivenessofwindowshadingalsoincreases. Theheatingloaddecreasesby2050andrisesby2080,whereasthecoolingloadincreasesby2050andslightly reduceby2080.Theeffectivenessofpassivetechniqueslikedirectevaporativecooling,naturalventilation,fanforcedventilation,etc.,areslightlyreducingovertheyears.Internalheatagainandheatingplayasignificantrolein bringingcomfortableconditions.Passivesolarheatgainsalsohelpinbringingmanyhoursintocomfortable conditions.ThoughECwindowsinclearstatehelpinpassivesolarheatgain,itispossiblethatECwindows performwellintermsofenergysavingsintheseclimates.
InManchester,thepercentageofregularcomforthoursrisesfrom5.6%inthecurrentclimateto6.9%in2080.In London,heatingcouldbring38%ofhoursintothecomfortzone,whereasinManchester,heatingisrequiredto bring49.2%ofhoursintocomfortconditions.Thisshowsthedifferenceintemperaturesinbothlocations.The heatingloadreducesovertheyears;however,inthisregion,coolingisrequiredforafewhoursinthefuture,though itisnotrequiredinthecurrentcondition.
Allthegraphsanalyzedsofarshowthedifferencesintheclimaticconditionsofbothlocations.Inaddition,the temperature,relativehumidity,sunshading,psychrometricchartsandfutureclimaticconditionsshowthatthe temperaturesarerisingandwillcontinuetorise,whichmakestheevaluationofenergy-savingtechnologieslike Electrochromicwindowshighlysignificant.Inaddition,performanceevaluationofECwindowsintheseclimates cangiveapictureofhowfartheyareeffectiveintheclimateoftheUK.
METHODOLOGY
BUILDINGMODELANDPARAMETERSSTUDIED
BuildingModel Parametersstudied
BuildingGeometry
Asquareshaped,six-sidedrepresentativeofficebuildingoflength12m,width12mandheight3mwasmodelledin designbuilder.Oneofthefaçadesconsistedofawindow.Theglazingtemplates,window-to-wallarearatiosand orientationsofthiswindowwerevariedduringsimulations.Asaruleofthumb,daylightpenetratesaroomformost latitudes,roughly2.5timestheheightofthetopofthewindow (IbrahimandHayman2005).Thestandardheight ofthetestcellwas3m.Thedaylightzonemayvaryslightlyfordifferentorientations.Hence,toensurethattheeffect ofnaturaldaylightandartificiallightisquantifiedcorrectly,4timesthewindow'sheight(12m)waschosenasthe dimensionofthesidesoftheroom.Asquareshapewaschosentoensurethatthegains/lossesremainedidentical fromallsides
BuildingConstruction
Defaultstate-of-the-artmedium-weightconstructiontemplatesavailableinDesignBuilderwereusedfortheroof, walls,andgroundfloor.TheU-valuesweremodifiedto0.1W/m2-K.TheLETIstandardhasbeenfollowedhere. LETIsuggestsaU-valuebetween0.13-0.15W/m2-Kforwalls,0.08-0.10W/m2-Kforfloor,and0.10-0.12W/m2-K forRoof.Table1showsthetestcell’sfabricU-values.AspertheLETIstandard,theairtightnessneedstobeless than1m3/h-m2@50Pa.However,thistestcellhasbeenmadeairtightasperthePassivhausstandard(<0.6m3/h-m2 a@50Pa).
Fourmajorparameterswerestudiedandanalyzedinthisresearch.
Location Glazingtype
TounderstandtheeffectoflocationontheperformanceofElectrochromicwindows,2locationswerechosenforthe study.Consideringthetimeframeandextensivenumberofsimulationsinvolvedinthisstudy,thenumberof locationschosenwaslimitedto2.Inadditiontocurrentweatherfiles,futureweatherfilesfor2050and2080asper 4.5SRESscenariowasalsoobtainedforbothlocationsandusedinthesimulations.
Detaileddescriptionsofalltheglazingtypesusedinthestudyaredescribedinthefollowingsections.Thestudy aimstoanalyzeifelectrochromicwindowsareeffectiveintheUKclimateandcomparetheirperformancewith standarddoubleandtriple-glazedunits.So,thebasecaseisaclearLoEArgon-filledglazingtype.Inareal-life scenario,theglazingunitsmayhaveinternalshadingdevicestocontrolexcessiveheatandlightfromthesun.The energyperformanceofthetransparentstatewindowswilldifferfromthosewithinternalblinds.Hence,EC windowsarealsocomparedwithclearLoEArgon-filledwindowswithinternalblinds.
WindowtoWallareaRatio(WWR)
Oneofthevariablesconsideredwasthewindow-to-wallarearatio.Thoughseveralstudieshaveemphasizedthe importanceofWWR,veryfewstudieshaveobservedtheenergyconsumptionofECwindowsindifferentWWRs. So,thisresearchtriedtoanalyzehowtheenergyconsumptionchangesforeachglazingtypefordifferentWWRs. Thechoiceof10ratiosinequalintervalshelpsidentifyhowenergyvariesastheratiosgraduallyincrease.
Orientation
Simulationresultswereobtainedforallmajor8orientations.ThishelpsidentifytheorientationwhereECwindows aremosteffectiveandleasteffective.
METHODOLOGY
SOFTWAREANDSIMULATIONS
Inthisstudy,thecurrentandfutureweatherfilesforthelocationswereobtainedfromMeteonormsoftware.Energy plusweatherdatafiles(.epw)wereusedforsimulations.SimulationsweredoneusingtheDesignBuildersoftware. DesignBuildersoftwarelibrarieshaveseveraloptionsforElectrochromicwindowconfigurations.Thetemplatesfor SageGlassElectrochromicwindows,mainlyusedinthisstudy,areavailableinDesignBuilder.Moreover,Design BuilderalsohasthefeatureofperformingSensitivityanalysis.Thedesignbuilder'sabilitytomodelandconfigure Electrochromicwindowsandperformsensitivityanalysismakesitanidealchoiceforthisstudy.
2240simulationswereperformedforLondonandManchestertostudytheenergyperformanceofdifferentglazing templatesinvariousorientationsandWWRs.Inaddition,20000Simulationrunsweremadeforsensitivityanalysis tofindthemostinfluentialonesamongtheparametersanalyzed.
DifferentsettingsdoneinDesignBuilderforperformingsimulationsareexplainedinthesectionsbelow.
Activity
ThesimulationsusedagenericopenofficeactivitytemplateinDesignbuilderanddefaultsettings.Computers, officeequipmentandothermiscellaneousequipment,wereconsideredONinthiszone.
Lighting
RecessedLEDlightswithlinearcontrolwereusedinsidethetestcell.Targetilluminancewas400lux.Other settingsareshowninthetable5.Exteriorlightingwasturnedon;however,onlytheinternallightingenergywas consideredforthestudyonlightingenergy.Exteriorlightingwascontrolledasperthescheduleandwasconsidered offinthedaytime.
HVAC
Thesimulationsusedanair-to-waterheatpump(ASHP)templatewithconvectorsandnaturalventilation.Default settingswerenotamended.Mechanicalventilation,heatrecovery,heating,cooling,domestichotwater,andnatural ventilationwereturnedON.
Openings
AsthestudyinvolvestheperformanceevaluationofECwindows,6glazingtypeswereused.Theperformanceof double-glazedandtriple-glazedECwindowswascomparedwithstandarddoubleandtriple-glazedclearunits withlowEvalueandargonfilling.Separatetemplateswithandwithoutinternalblindswerecreatedforclear,LowE,Argon-filledunitstoquantifytheenergydifference.Thetemplatesusedforthestudyareshowninthetable below.WWRswerevariedduringthesimulations.
ClearLoEArgonfilled(Basecase1)
Propertiesoftheglazingtypeareshownbelow.
ClearLoEArgonfilled,withinternalblinds(Basecase2)
Alltheglazingdataremainsthesameasabove;however,internalblindswereaddedtodoubleandtriple-glazed units.Inaddition,outsideairtemperatureandhorizontalsolarcontroltypeisusedtoreducezoneheatingand coolingloads.ShadingisoniftheoutsideairtemperatureexceedstheOutsideairtemperaturesetpoint andifthe horizontalsolarradiationonthewindowexceedsthesolarsetpoint.
METHODOLOGY
Electrochromicglazing
TwoSageGlassElectrochromicglazingconfigurations,double-glazedandtriple-glazed,werecreatedinDesign Builder.Bydefault,someSageGlassdoubleandtriple-glazingunitsarealreadydefinedintheDesignBuilderglazing library.Thepropertiesofthechosentemplatesareshownbelow.
Defaultshadingsystemsdefinedinthesoftwarewereusedforthesimulations.However,eachprojectmayadjust andadaptthesevaluestoachieveoptimumperformanceresults.
Theoperationscheduleshownintheactivitysectionwaschosenforthesimulations.Whentheschedulehasavalue of0,tintingcannotoccur,regardlessofanyglareortemperature.Hence‘Heating/coolingoverrideonlyoperated outsideoperationschedule’optionwasturnedON.Thecontroloptionselectedwas‘Fulltintingwhencoolingand notintingwhenheating’.Asperthisoption,whileheatingenergyisdeliveredtothespace,theglazingremainsclear, andwhencoolingisrequired,itbecomesfullytinted.Otherwise,tintingisdeterminedbyincidentsolaras describedbasedondaylightingrequirements.
Inthisstudy,energyperformanceofelectrochromicwindowsisevaluated.Hence,the‘Controlpriority’modeis ‘Energy’.Thepresenceofheatingandcoolingischeckedforbeforethepresenceofglare.Energysavingisprioritized ratherthanglarecontrol.Propertiesofthevarioussetpointsintheshadingtemplatechosenaresummarizedinthe tablebelow
Appropriateshadingsystemswerealsochosen.Bydefault,somewindowshadingoptionsarealsodefinedinthe Design-Builderwindowshadinglibrary.SageGlassClassicSR2.0templatewaschosen,anddetailsareshown below.
METHODOLOGY
SENSITIVITYANALYSIS
Amongalltheparametersdiscussed,itisnecessarytoidentifythemostcriticalones.Hence,sensitivityanalysiswas performedtoidentifythemostinfluentialdesignparameteramongtheparametersanalyzed.Theparameters studiedandthemeasuredoutputsforsensitivityanalysisareshownintablebelow.
Thedistributioncurvesofthedesignparametersareshowninthefollowingfigures.InDesignBuilder,Uncertainty andSensitivityAnalysisaredonesimultaneously.Inthisstudy,theprimaryaimistodosensitivityanalysistofind eachdesignparameter'shierarchyofinfluenceratherthanuncertainty.Hence,eachdesignvariablewasconsidered equalprobability,soallvariableshaveuniformdistributioncurves.LHSsamplingmethodisusedforsettingupthis analysis.Latinhypercubesamplingisahighlyefficientsamplingmethod.Asaruleofthumb,asamplesizeof10 timesthenumberofdesignvariableswillbesufficientforthepopulationmeantobeaccuratelymodeled.So,almost 240simulationswillbeenoughtogetreliableresults.However,toincreaseconfidenceandreliability,asamplesize of2000wasrequestedineachanalysis.Separatesensitivityanalysissimulationsweredonetomeasureeachoutput.
Theregressionsensitivitymethodisusedforthisanalysis.Regressionanalysis(multiplelinearregression)isa statisticalmethodthatestimatestherelationshipsamonginputvariables.Regressionanalysishelpstounderstand howtheoutput'stypicalvaluechangeswheninputvariablesarevaried(assumingthattheinputvariablesare independentofeachother).
RESULTS
ENERGYCOMPARISON-LONDONANDMANCHESTER
2240simulationswereperformed,andthetotal,heating,cooling,andinternallightingenergieswereobtained.The resultswereanalyzedbasedon4majorparameters:Location,glazingtemplates,orientation,andwindow-to-wall arearatio.Inaddition,asensitivityanalysiswasdonewiththese4parameters.20000simulationrunswere performedforsensitivityanalysis.
Doubleglazed-Totalenergy
ItcanbeobservedfromthechartsthattheenergyconsumptioninLondonishigherthanthatofManchester.For standardclearLoEArgonfilleddoubleglazedunits(Basecase),thisdifferenceinenergyvariesbetween5.4%to 9.7%,andfordoubleglazedECwindows,itvariesbetween8.4%to9.7%.TherangeofvariationislesswhenEC windowsareused.Forbasecaseunits,thevariationishighestinthesouthandlowestinthenorth.
Inthissection,thedifferencebetweentheenergyrequirementsofLondonandManchesterarecompared.Total, heating,cooling,andlightingenergiesofdouble-glazedandtriple-glazedunitsarecompared,andthedifferenceis quantified.Thishelpsidentifyhowfarthedifferencesintheclimatesofbothlocationsimpacttheenergy consumptionandwhichonesconsumesmore/lesstotal,heating,cooling,andlightingenergies.
Doubleglazed-Heatingenergy
ThoughthetotalenergyconsumedbythetestcellinLondonismorethanthatofManchester,furthercalculations havebeendone,consideringLondonhasahighervalue.Hencenegativevaluesindicatethattheenergyrequirement ofManchesterishigherthanthatofLondonandpositivevaluesindicatethattheenergyconsumptionofLondonis higher.Onlygraphsofnorthandsouthareshown.
RESULTS
ENERGYCOMPARISON-LONDONANDMANCHESTER
Doubleglazed-Coolingenergy
ThecoolingenergydemandofLondonismorethanthatofManchester.Whenbasecaseunitsareused,London consumes8.5%-27.4%moreenergyforcooling.WhenECglazingisused,theenergydifferencebetweenboth locationsvariesbetween22%and27%.Therangeofdifferenceinenergyishighestforbasecaseunits.Innorth, thereisnosignificantenergydifferencebetweentheglazingtypes.However,inthesouth,thevariationinthe energydifferenceissignificantwhenbasecaseunitsareused.AstheWWRincreases,theenergydifference betweenbothlocationsreduces,andwhenitreaches100%,thereisnosignificantenergydifferenceincooling betweenLondonandManchester.WhenECwindowsareused,theenergydifferencebetweenbothlocationsdoes notvarysignificantly.
Doubleglazed-Lightingenergy
Asdiscussedintheprevioussection,negativevaluesindicatethattheenergyrequirementofManchesterishigher thanthatofLondonandpositivevaluesindicatethattheenergyconsumptionofLondonishigher.
Asageneraltrend,thelightingenergyconsumptionofthetestcellinLondonisupto4.2%morethanthatof Manchester.However,thereareafewexceptions.Forbasecaseunits,inwest,northwest,northandnortheast orientations,forfewwindowstowallarearatios,theconsumptioninManchesterisslightlyhigherthaninLondon. WhenECwindowsareused,exceptfewvariationsinsouthandsouthwestorientations,theenergyconsumption inLondonismorethanthatofManchester.
ENERGYCOMPARISON-LONDONANDMANCHESTER
Trippleglazed-Totalenergy
London - North - DG
London - North - TG
Triple-glazedunitsalsoshowasimilartrendasdouble-glazedunits.TheenergyconsumptioninLondonismore thaninManchester.Thepercentageofdifferencesinenergiesisalsosimilartodouble-glazedunits. TheheatingenergydemandinManchesterishigherthanthatofLondon;however,thereareexceptionsinsouthand southwestorientations.Inbothorientations,forbasecaseunits,forhigherWWRs,theenergydemandinLondon isslightlyhigherthanthatofManchester.Thisreversetrenddoesnotoccurwhendouble-glazedECunitsareused. Forbasecaseunits,theheatingenergyofManchesteris0-20.4%morethanLondonexceptinsouthandsouthwest orientations.WhenECtriple-glazedunitsareused,Manchesterneeds2.3%-17.68%moreenergythanLondonfor heating.TherangeofenergydifferencebetweenbothlocationsislesserforECwindows.
Trippleglazed-Heatingenergy
London East DG
Trippleglazed-Coolingenergy
ThecoolingenergydemandinLondonishigherthaninManchester,andthereareonlyslightdifferencesinthe percentagesofenergydifferencewhencomparedtodouble-glazedunits.Whenclearbasecaseunitsareused, Londonconsumes8.5%-25.9%moreenergyforcooling.Whentriple-glazedECunitsareused,theenergy differencebetweenbothlocationsvariesbetween21.5%and25.5%.Thetrendofenergygraphsremainsthesameas thatofdouble-glazedunits.
Trippleglazed-Lightingenergy
London East TG
London South DG
London - South - TG
Exceptforafewvariationsinwest,northwest,northandnortheastdirections,forbasecaseunits,theenergy consumptionofLondonismorethanthatofManchesterevenwhentriple-glazedunitsareused. Fromallthegraphsofdouble-glazedandtriple-glazedunits,itcanbesummarizedthatthetotalenergy consumptionofLondonismorethanthatofManchester.Whensplittingupoftheenergyisobserved,Manchester consumesmoreenergythanLondonforheating,whereasLondon'scoolingandlightingenergydemandsaregreater exceptinafeworientationsandwindow-to-wallarearatios.TherangeofdifferencesishigherforclearLoEargonfilledunitsthanforelectrochromicunits.
Summary
London West DG
Energyincreaseinfuture
InLondonandManchester,energyuseisexpectedtorisebyupto6%and5%,respectively,inthecomingyears.The increaseofenergyislessinLondonwhenECwindowsareused.However,inManchester,anoppositetrendis observed.Theprobablereasonisthat,asthetemperatureincreases,therearemorecoolingenergysavingsin London,whereasinManchester,asthetemperatureincreases,toavoidglare,theelectrochromicwindowsgoto tintedmodemorethanthecurrentclimate,whichcanleadtoincreaseinlightingenergydemandthanatpresent.
RESULTS
EFFECTOFLOCATIONONENERGY
TheprevioussectionpresentedindetailthedifferenceinenergybetweenLondonandManchester.Thissection quantifiesanddetailsthepercentageofenergysavingsbyelectrochromicwindowscomparedtostandardclearLoE Argon-filledglazingunits(basecase)inLondonandManchester.
Totalenergy
Fordouble-glazedunits,ECwindowscansaveupto21%oftotalenergyinLondonandupto24%inManchester whencomparedtothebasecase.Fortriple-glazedunits,ECwindowscansaveupto18%oftotalenergyinLondon andupto20.7%inManchesterwhencomparedtothebasecase.Electrochromicwindowshavenoconsiderable savingsinnorthwest,northandnortheastorientations.Inaddition,thesewindowsbecomeeffectiveonlyinlarger window-to-wallarearatios.Theexactpercentageofenergysavingsineachorientationandwindow-to-wallarea ratioareclearlygiveninthenextsections.Incontradictiontothehypothesis,itcanalsobeobservedthat electrochromicwindowssavemoreenergyinManchesterthaninLondon.
Thissectiontriestoanalyzetowhatextenttheelectrochromicunitshelpinenergysavingswhencomparedto standardclearLoEargon-filledunitsandinwhichlocationtheseunitsmakethehighestenergysavings.Fordoubleglazed(DG)units,thecomparisonisbetweenDGclearLoEargon-filledunitsandDGelectrochromicunits.For triple-glazed(TG)units,thecomparisonisbetweenTGclearLoEargon-filledunitsandTGelectrochromicunits.
Heatingenergy
Insouth,southeast,andsouthwestorientations,electrochromicwindowsarenotsoeffectiveinsavingheating energy.Inallotherorientations,ECwindowshelpinsavingheatingenergy.Fordouble-glazedunits,ECwindows cansaveupto17%ofheatingenergyinLondonandupto20%inManchesterwhencomparedtothebasecase.For triple-glazedunits,ECwindowscansaveupto9.6%ofheatingenergyinLondonandupto12%inManchester whencomparedtobasecase.TheenergysavingsarehigherinManchesterthanthatinLondon.Theexact percentageofheatingenergysavingsineachorientationandWWRsareclearlygiveninthenextsections.
RESULTS EFFECTOFLOCATIONONENERGY
Coolingenergy Lightingenergy
ThegraphsshowthatECwindowsareeffectiveinsavingcoolingenergy.Innorthwest,northandnortheast orientations,forsmallerWWRs,ECwindowsarenoteffective.Inallotherorientations,thereareconsiderable savingsincoolingenergywhenECwindowsareused.AstheWWRincreases,theenergysavingsalsoincrease.For double-glazedunits,electrochromicwindowscansaveupto42.4%ofcoolingenergyinLondonandupto51.2%in Manchester.Fortriple-glazedunits,ECwindowscansaveupto39.9%ofcoolingenergyinLondonandupto47.7% inManchestercomparedtothebasecase.TheenergysavingsinManchesterishigherthanthatofLondon.The exactpercentageofcoolingenergysavingsineachorientationandWWRsareclearlygiveninthenextsections.
ECwindowsarenoteffectiveinsavinglightingenergyinbothlocations.Theprobablereasonisthatwhenthe priorityisgiventoenergysavings,theglazingunitsgototintedstatewhenthereismoresunshine.Thiscanleadto anincreaseinlightingenergyconsumption.
FromallthegraphsitcanbesummarizedthatECwindowsaremoreeffectiveinManchesterthaninLondonincase ofsavingtotalenergy.ThoughECwindowsarenoteffectiveinsmallerwindow-to-wallarearatios,ithelpsin savingenergyconsiderablyforlargerwindow-to-wallarearatios.ECwindowshelpsavebothcoolingandheating energies;however,theydonothelpsavelightingenergy.Thepercentageofcoolingenergysavingsarelarger.
RESULTS
EFFECTOFGLAZINGTYPEONENERGY
Inthissection,acomparativeanalysisismadebetweenthetestcellsthatusedouble-glazedandtriple-glazedunits. Thisanalyseshowfartriple-glazedunitssaveenergywhencomparedtodouble-glazedunitsandquantifythesame. TheanalysisisdoneforbothLondonandManchester.
Itisgenerallysaidthattriple-glazedunitsaremoreeffectiveinsavingenergythandouble-glazedunits.Hence,here calculationshavebeenperformedconsideringthatenergiesfromdouble-glazedunitshavehighervalues.Sopositive valuesindicatethattriple-glazedunitsareeffectiveandnegativevaluesindicatethattheyarenoteffective.
London
Manchester
Inbothlocations,forclearLoEargon-filledunits,forlargerWWRs,thetriple-glazedunitsareseentobemore effectivethandouble-glazedunits.AstheWWRincreases,theeffectivenessoftriple-glazingincreases.However, forECwindows,triple-glazingunitsdonotmakeanysavingsinbothlocations.Thispointstothefactthattripleglazedelectrochromicunitsareineffectiveintheseclimates.Double-glazingunitsthemselvescanhelpinenergy savings.
Acomparisonwasmadebetweendouble-glazedECwindowsandtriple-glazedLoEargon-filledwindows.For LargerWWRs,ECwindowsperformedbetter,andmoresignificantsavingsweremadeinManchester.
Doubleglazedunit
Fromthestudiesitwasfoundthat,forlowerWWRs,clearLoEargons-filledunitsperformbetter.Whereaswhen theWWRsarelarger,ECwindowsaremoreeffective.Thegraphsforthepercentageofenergysavingsineach orientationandWWRforbothlocationscanbefoundintheprevioussection.Theexactpercentageofsavingsand theWWRsabovewhichECwindowsbecomeeffectivecanbefoundinthenextsections. Triple-glazedunitsalsoshowasimilartrendtodouble-glazedunits.ForlowerWWRs,clearLoEargon-filledunits performbetter,andforlargerWWRs,ECwindowsperformbetter.However,whencomparingdouble-glazedand triple-glazedunits,triple-glazedECwindowsdonotperformbetterthandouble-glazedECwindows.However,on comparingdouble-glazedECwindowsandtriple-glazedLoEargon-filledwindows,forLargerWWRs,EC windowsperformedbetter.
Trippleglazedunit
Unitswithinternalblinds
ThisstudycomparedtheECwindowswithclearloEargon-filledwindows.Thecomparisonwasdonewiththe clearstateofthewindows.However,inarealscenario,thesewindowsmayhaveinternalblindsorexternalshading devices.Theseshadingdeviceshelpinreducingoverheating.Inaddition,itmayalsoinfluencetheamountof daylightreceivedinsidetheroom.Theeffectoftheexternalshadingdeviceitselfisaseparatelargetopictobe studiedastherearevarioustypesofexternalshadingdevices.So,consideringthescopeandextentofthisstudy, onlytheeffectofinternalblindswasstudied.Thereareseveraltypesofinternalblinds.Inthisstudy,internalblinds withhighreflectivityslatscommonlyseeninofficebuildingsintheUKwerechosen.Simulationswererunforclear LoEargon-filledwindowswithinternalblinds,anditsresultswerecomparedwithitsclearstateandECwindows. Itwasanticipatedthattheenergyconsumptionofunitswithblindswouldbemuchhigher;hence,whencompared withthat,ECwindowscanmakelargesavings.However,onrunningsimulations,itwasfoundthatthereisonlya slightincreaseinenergythanthetransparentstate,andhencenosignificantchangeinthepercentageofenergy savingswasobserved.
RESULTS
EFFECTOFORIENTATIONONENERGY
Doubleglazed
ThegeneraltrendinbothglazingtypesisthatthelowesttotalenergyisforNorth,followedbyNorthwestand Northeast;EastandWest;Southeast,Southwest,andSouth.
ThegraphaboveshowsthatforclearLoEargon-filledunits,WWRsarecrucialbecausethereisaconsiderable variationinenergiesbetweendifferentWWRs.Inallorientations,theenergiesdropuntilacertainWWRandthen increase.Theratiotowheretheenergiesdropisdifferentfordifferentorientations.Energyperformanceinthe northeastandnorthwest,eastandwest,arealmostthesame.Thelinesofsoutheast,south,andsouthwestalso mergeatseveralpoints.Atotaloffourdifferentenergytrendscanbeobserved,andtheenergydifferencebetween thesefourtrendsincreasesastheWWRincreases.Thereisasignificantdifferencebetweentheseenergytrendsat largerWWRs.
InECwindowsalso,theseenergytrendscanbeobserved.However,theenergydifferencebetweenthese orientationsisnotverylarge.TheenergydifferencebetweenorientationsisnegligibleatlowerWWRs,andit slightlyincreasesastheWWRincreases.ThevariationofenergiesbetweendifferentWWRsisnotassignificant asinclearLoEargon-filledunits.However,thereisaclearpatternintheenergytrendsofdifferentorientations whenECwindowsareused.ThegeneraltrendisthattheenergiesdroptoaWWRof70%,slightlyincreaseto80%, andthendropagainto100%.ThelowestenergiesareforaWWRof70%.
Trippleglazed
Exceptfortheenergyvaluedifference,theenergytrendsoftriple-glazedunitsaresimilartothatofdouble-glazedunits.
RESULTS
EFFECTOFWINDOWTOWALLAREARATIOONENERGY
Totalenergy
WWRABOVEWHICHECWINDOWSBECOMESEFFECTIVE
TotalenergieswereplottedagainstWWRs.TheenergylinesofbothglazingtypescrossaboveacertainWWR,and ECwindowsbecomeeffectivebeyondthatratio.
PERCENTAGEOFTOTALENERGYSAVINGSBYECWINDOWSINDIFFERENT WWRANDORIENTATIONS
Inthetablesbelow,blankcellsrepresentnoenergysavingsbyECwindowsinthoseWWRs.Tablesclearlyshow largersavingsforhigherWWRsinsouthwest,south,andsoutheastorientations.Inaddition,theenergysavingsby ECdouble-glazedunitsaremuchmoresignificantthantriple-glazedunits.
London-Doubleglazed
Manchester-Doubleglazed
London-Trippleglazed
ItcanbeobservedfromthetablebelowthatthereisnosignificantdifferencebetweentheratiosofLondonand Manchester.ForManchester,whichisatahigherlatitudethanLondon,ECwindowsbecomeeffectivefromslightly lowerWWRthaninLondon.
London
Doubleglazed
North NorthEast
Trippleglazed
North NorthEast
Manchester
Doubleglazed
North NorthEast East
Trippleglazed
North NorthEast East
Manchester-Trippleglazed
RESULTS
EFFECTOFWINDOWTOWALLAREARATIOONENERGY
Heatingenergy
Theenergylinesofbothglazingtypesdonotcrosseachotherinnorth.ECwindowsperformbetterinthat orientation.However,inthesouth,thelinesmeetatlowerWWRsanddivergeathigherWWRs.Thisdenotesthat therearenosignificantheatingenergysavings.
PERCENTAGEOFHEATINGENERGYSAVINGSBYECWINDOWSINDIFFERENT WWRANDORIENTATIONS
TablesclearlyshowlargersavingsforhigherWWRsandinnorthwest,northandnortheastorientations.However, theenergysavingsbyECdouble-glazedunitsaremuchmoresignificantthantriple-glazedunits.Inthesouth, southeastandsouthwestorientations,ECwindowsdonothelpsaveheatingenergyforlargerWWRs.
London-Doubleglazed
Manchester-Doubleglazed
London-Trippleglazed
Manchester-Trippleglazed
RESULTS
Coolingenergy
ThegraphsbelowshowtherearesignificantcoolingenergysavingsbyECwindows
Thetablesbelowshowthatthelargestcoolingenergysavingsareinthesouth,southeastandsouthwest orientations.Thepercentageofcoolingenergysavingsislargerthanheatingenergysavings.So,itisevidentthatEC windowsaremoreeffectiveinreducingcoolingenergy.
London-Doubleglazed
Manchester-Doubleglazed
London-Trippleglazed
Manchester-Trippleglazed
RESULTS
EFFECTOFWINDOWTOWALLAREARATIOONENERGY
Lightingenergy
Asdiscussedearlier,thegraphsshowthatECwindowsareineffectiveinreducinglightingenergy.
Fromthestudies,itcanbesummarizedthatECwindowshelpreducetotalenergy,heating,andcoolingenergiesat largerWWRs.However,itismoreeffectiveinreducingcoolingloadsbutnotinreducinglightingenergy.
RESULTS
SENSITIVITYANALYSIS
Theprevioussectionsdiscussedthefourcrucialdesignparametersconsideredinthisstudy.Toidentifythemost influentialdesignparameter,sensitivityanalysiswasdoneofthefourparametersdiscussed.Atotalof20000 simulationrunswereperformedwiththehelpoftheOptimization+Uncertainty/Sensitivityanalysistoolavailable inDesignbuilder.Theanalysiswasdonein3mainsectionsand5subsections.Thefirstsetofanalysesconsidered allfourparameterstogether.Separatesimulationsweredonefortotal,heating,cooling,lightingenergiesand operationalcarbon.ThenextsetofanalyseswasdoneforLondonandManchesterseparately.Sothosesetsof studiesincludeonlythreedesignparameters.
Inthesensitivityanalysis,theadjustedRsquaredvaluerepresentsthegoodnessoffitofthecompletemodel.It indicateshowtheinputvariablesexplainmuchvariationintheoutput.Inalltheanalysesperformed,theadjusted Rsquaredvaluesarelow,suggestingthatthecurrentinputvariablescannotusefullyexplaintheuncertaintyinthe output.Othermoreinfluentialinputvariablesmightexistandcanbeincludedtoimprovetheresults,orthenumber ofsimulationrunscanbeincreased.Here,manynumberofsimulationrunswereperformed;hence,thisaspectdoes notbecomeareasonforasmallervalue.So,itcanbeunderstoodthatapartfromtheparametersdiscussedinthis study,othermoreinfluentialparametersexist,andsofurtherstudiescanbedoneinfuturetoidentifythesame.
Inaddition,thep-valuetellsiftheinputvariablehasastatisticallysignificanteffectontheoutput.Forexample,in alltheanalysisrunsperformed,alltheinputvariableshaveap-valuelessthan0.05,whichshowsthattheseinput variablesaresignificantandthatthereisahighconfidencelevelintheirrespectiveregressionresultvalues.These regressionresultscanrankthemostandtheleastsensitiveinputvariables.
AnothercriticalaspectistheStandardizedregressioncoefficient(SRC).Thisvaluetellstherelativesensitivityof theinputvariablestotheoutput.Itsabsolutevaluerankstheinputvariablesinorderofsensitivity/importance,and thesignidentifiesiftherelationshiptotheoutputisdirectorinverse.Finally,thelistranksthevariablesin decreasinglevelofimportance.(HighImportance: Green,MediumImportance: Yellow,LowImportance: Red).
Here,certainparameters'directorinverserelationsaredifficulttojustify.Inthisstudy,parameterslikeWWR,site orientationandglazingtemplatesarechallengingtobeanalyzedwithjustpositiveornegativevalues.Forexample, itisnotentirelycorrecttosaythatthetotalenergyconsumptionreduceswhentheWWRincreases.Becausethere arespecificorientationswherethereversehappens,thistrendmayalsobedifferentwithdifferentglazingtypes.So, itisimpossibletodetermineiftherelationshipbetweentheoutputandtheinputparameterisdirectorinversejust bylookingatthepositiveornegativeSRCvalue.However,thiscanstillhelpunderstandtheoveralleffectofall factorsconsideredinthestudy.
Withlocationtemplate
Thefirstsetofanalysesconsideredallfourdesignparameters.Separatesensitivityanalysiswasdonefortotal, heating,cooling,lightingenergiesandoperationalcarbon.Asaruleofthumb,10timesthenumberofparameters, 240,cangiveaconsiderablyfairresult.However,toincreasethereliabilityoftheresults,2000simulationrunswere performedforeachsetofanalyses.
Totalenergy
Whentotalenergyisconsidered,thelocationbecomesthemostcrucialdesignparameter.Thenegativeresult showsthat,aslatitudeincreases,thetotalenergyconsumptionreduces.ThisfactwasevidentwhentheLondonManchesterenergycomparisonwasmade.TheothertwoparametersWWRandsiteorientation,haveonlymedium importance,andthechoiceofglazingtypehasminorimportance.Theenergy-savingpotentialofECwindowsand variousotherglazingtypeswasdemonstratedintheprevioussections.However,otheraspectsbecomemore criticalwhentheoverallscenarioisconsidered,andtheglazingtypehastheleastprominence. Inthisanalysis,whentheorientationdegreeis0,thewindowfacesthesouthside;hence,0degreesrepresentthe south.Otherorientationsareconsideredintheclockwisedirection:45–south-west,90–west,135–north-west, 180–north,225–north-east,270–eastand315–south-east.So,theincreaseinorientationdegreesrepresentsthe changeinorientationsfromsouthtosoutheast.However,asdifferentorientationshaveadifferentrelationshipwith
theenergyconsumptiontrend,positiveornegativevaluesofthisparameterinthegraphcannotclearlysayits relationshipwiththeoutputparameter.
Thesamehappenswithglazingtypes.Glazingtypeswerearrangedasdouble-glazedunits,followedbytripleglazedunits.Theincreasingtrendjustdenotesthechangefromdouble-glazedtotriple-glazed.Betterperformance caneitherbebyECwindowsorclearLoEargon-filledunits.So,withthisparameteralso,positive,ornegative valuesindicateifdouble-glazedortriple-glazedperformsbetter.
Heatingenergy
Location,WWRandglazingtypebecomesessentialparameterforheatingenergy.Thelocationtemplateshowsa positiverelation,whichmeansthat,asthelatitudeincrease,theheatingenergyincreases.WWRalsoshowsadirect relationship.Theglazingtypeshowsanegativerelation,pointingoutthattriple-glazedunitshelpinsavingheating energycomparedtodouble-glazedunits.Siteorientationhasonlymediumimportanceinsavingheatingenergy.
RESULTS
SENSITIVITYANALYSIS
Coolingenergy
Likeheatingenergy,location,WWRandglazingtypebecomeessentialparametersforcoolingenergy.Different fromthegraphforheatingenergy,locationshowsanegativerelationshipwhichmeansthatasthelatitudeincrease, thecoolingenergydemandreduces.WWRshowsadirectrelationship.Itwasclearlyobservedfromthegraphsin theprevioussectionsthat,astheWWRincreases,heatingandcoolingdemandincreases.
Lightingenergy
WWRandglazingtypesbecomethemostcruciallightingenergyparameter,unlikeotheroutputs.AstheWWR increases,lightingenergyreduces.Theglazingtypeshowsadirectrelationship,whichshowsthattriple-glazed unitsincreaselightingenergydemands.Locationandorientationbecomeleastimportantparameters.
OperationalCarbon
ApartfromslightchangesinSRCvalues,theoperationalcarbongraphshaveasimilartrendasthetotalenergy graph.Therefore,thelocationtemplateisthemostcriticalparameter,andallotherparametershavemedium importance.
RESULTS
SENSITIVITYANALYSIS
LondonandManchester
ThissetofanalyseswasdoneseparatelyforLondonandManchesterandhenceconsideredonly3designparameters.Aseparateanalysiswasperformedforbothlocations'totalheating,cooling,lightingenergiesandoperationalcarbon. 1000simulationrunswereperformedforeachanalysis.
Totalenergy
ApartfromaslightvariationinSRCvalues,allthreeparametersbecomeessentialinbothlocations.ThemostimportantisWWR,followedbytheglazingtypeandsiteorientation. Bothlocationshaveasimilartrendinthecaseofheatingenergy.Alltheparametersbecomeessential.Theorderofimportanceissimilartothetotalenergy.However,thereisachangeintherelationshiptrendofeachparameter.All parametersbecomeessentialinManchester,whereassiteorientationhasonlymediumimportanceinLondon.
Heatingenergy
RESULTS SENSITIVITYANALYSIS
Coolingenergy
Coolingenergygraphsalsoshowasimilartrendinbothlocations.WWRbecomesthemostcriticalparameter,followedbytheglazingtypeandsiteorientation.However,thereisadifferenceintheimportanceoftheseparametersin bothlocations.Forexample,WWRandglazingtypehashighimportance,andsiteorientationonlyhasmediumimportanceinLondon.However,alltheparametersbecomeimportantinManchester.
Lightingenergy
Theorderofprominenceofparametersremainsthesameasforotheroutputs,however,siteorientationbecomesleastimportantwhenitcomestolightingenergy.
RESULTS SENSITIVITYANALYSIS
OperationalCarbon
Inallotheroutputparameters,LondonandManchesterhadasimilartrendintheorderofprominenceoftheparameter.However,thatisdifferentinthecaseofoperationalcarbon.WWRbecomesthemostinfluentialparameterinboth locations.InLondon,followingasimilartrendasthetotalenergygraph,glazingtypeandsiteorientationbecomethenextimportantparameters.However,siteorientationbecomesManchester'snextinfluentialdesignparameter, followedbyglazingtype.
ThoughthisstudydoesnothelpidentifytheeffectivenessofECwindows,ithelpsdeterminetheinfluentialparametersandtheirorderofprominence.Withthehelpofthesegraphs,designerscanmakedecisionsbasedonthelocations andpriorities.
Thisstudyevaluatedtheenergyperformanceofofficebuildingswithelectrochromicwindowsintheclimateofthe UK.Thestudywasperformedin2locations–LondonandManchester.LondonandManchesterexperience differentclimaticconditions.Adetailedclimaticanalysisandenergycomparisonwasmadeintheinitialstagesof thestudy.ArepresentativeofficetestcellwasmodelledinDesignBuilder,andatotalof2240simulationswere performed.Theannualtotalenergy,heating,cooling,andlightingenergieswereobtainedforacombinationof parameterslikelocation,glazingtype,window-to-wallarearatioandorientation.Theperformanceofdoubleand triple-glazedelectrochromicwindowswascomparedwithdoubleandtriple-glazedclearLoEargon-filled windows.Followingarethekeyfindingsofthestudy:
� ECwindowsareeffectiveintheclimateoftheUKwhenwindow-to-wallarearatiosarelarger.
� Incomparingtheenergydemandofthetwolocations,thetotalenergydemandinLondonishigherthanin Manchester.CoolingenergydemandwashigherinLondon,whereasheatingenergydemandwashigherin Manchester.
� LondonhasawarmerclimatethanManchester.AsmostofthereviewedliteratureonECwindows showedthattheyaremoreeffectiveinwarmerclimates,itwasanticipatedthatECwindowswouldsavemore energythanthebasecaseinLondon.However,contradictingthehypothesis,itwasfoundthatManchester'stotal energysavingswerehigher.
� ECwindowssavedupto21%oftotalannualenergyinLondonand23.9%inManchestercomparedtothe basecase.
� ECwindowscansaveupto17%ofheatingenergyinLondonand20%inManchestercomparedtothebase case.
� When42.4%ofcoolingenergyissavedinLondon,upto51.2%issavedinManchestercomparedtothe basecase.
� Contradictingthehypothesis,itwasobservedthatECwindowsmadenosignificantlightingenergy savings.
� Thestudywasperformedwithcurrentandfutureweatherfiles(2050,2080-4.5scenario).Therewillbea 5-6%increaseinenergydemandinthefuture.Forfutureweather,theeffectivenessofECwindowsincreasesfor London,whereasitdecreasesforManchester.
� Triple-glazedECwindowsareineffectiveinthisclimatecomparedtothebasecase.
� Comparingdouble-glazedelectrochromicwindowsandtriple-glazedclearLoEargon-filledunits, electrochromicwindowsperformedbetterinhigherWWRs.
� Totalenergysavingswerehighestinsouth,southeastandsouthwestorientations.Theseorientationsmade themostsignificantsavingsincoolingenergyandtheleastsavingsinheatingenergy.
� Generally,itwasfoundthatECwindowsareineffectiveintheNorthorientation,thoughconsiderable heatingenergyissaved.
� ThemostenergyefficientWWRfortheECwindowis70%.
� Inthefirstsetofsensitivityanalysisthatconsideredallfourparameters,‘Location’wasidentifiedasmost
crucialparameter.
� InthesecondsetofsensitivityanalysisperformedonLondonandManchesterseparately,‘WWR’was identifiedasthemostinfluentialparameter.
Asmentionedabove,resultsshowedthatECwindowsmadenoenergysavings.Itistobenotedthat,inthisstudy, ECwindowswerecomparedwiththeclearstateofLoEargon-filledwindows.However,inarealscenario,these windowsmayhaveinternalblindsorexternalshadingdevices.Hence,theenergyperformanceofwindowswith internalblindswasalsoobtainedthroughsimulations.However,itwasfoundthatthereisonlyaslightincreasein energythanthetransparentstate,andhencenosignificantchangeinthepercentageofenergysavingswasobserved. Here,thedefaultsettingsinDesignBuilderwereusedinthesimulation.Inreallife,theblindsmayremainunfolded forextendedperiods.So,performingsimulationswithalgorithmsmoresimilartomanualoperationspatternsmay yieldapositiveresult.
LimitationsandFutureResearch
Consideringthetimeframeandextensivenumberofsimulationsinvolved,thestudywaslimitedtocertainaspects ofECwindows.Manyotheraspectscouldnotbeincludedinthestudy.However,futureresearchworks,andmore extensivestudiescanconsidersomeaspectsnotdiscussedhere.
Thereareseveralpossibilitiesforfutureresearchonthissubject.Someofthemare:
� IncludingmorelocationsinthehigherlatitudesoftheUK.AclearpictureoftheeffectivenessofEC windowscanbeobtainedonlywhenotherlocationswithinthecountrythatliesinhigherlatitudesareincluded.
� Thesamestudycouldbedonetovalidatetheresultsusingothersoftwarepackages.
� Onlykeydesignparametershavebeenconsideredinthisstudytoanalyzeenergyconsumption.However, otherdesignparameterscaninfluencetheseenergiesmorethanthoseconsideredhere.Moreextensivestudiescan considerandcomparetherelativeinfluenceofdifferentotherdesignvariables.
� Annualenergyperformanceshaveonlybeencomparedinthisstudy.Thestudyhasnotincludedaseparate analysisofthesummerandwinterperiods.
� Inthisstudy,thecontrolprioritywasenergy.Infutureworks,theresultsofothercontrolstrategiescould beanalyzed.
� Currently,ECwindowsthataredividedintodifferentzones,eachofthemhavingdifferentcontroloptions, areavailableinthemarket.Studiescanbedoneonthoseupdatedversions.
� TheCO2savingpotentialscouldbestudiedandcomparedwithotherglazingtypes.
SEMESTER2
INTRODUCTION
PROJECTBRIEF|ABSTRACT|AIMS&OBJECTIVES
Project444isasustainablesocialhousingschemedesignedforOneManchester.Theschemeconsistsofindividualreplicablerowseachconsistingof4StudioApartments,41-BedroomApartments,and42-Bedroomduplexhomes,allarrangedwithinaterracedhousingformat.
Thehousingsectoraloneisresponsiblefor17%oftheUK'scarbonemissions.Theoperationalcarbonofbuildingshighly contributestoglobalwarming.Theaimofthisprojectistodesigncompactandenergyefficienthomes.Theembodied carbonandcostoftheprojectwasalsoconsidered.Thesustainabilitystrategyincludesthecreationofacomfortable andhealthyenvironmentwithinthehousesbyusingefficienttechnologysolutionsandrenewablesourcesofenergyin ordertoachievehighbuildingenergyefficiency.Theenergydemandwasreducedbytheuseofpassivestrategies,and anincreaseintheenergyefficiencyoffacilitiesanduseofrenewableresourcesavailableonsite.
Thisreportbeginswillexaminationofcasestudiestolearnfromprevioussustainablesocialhousingschemes.Thesite, whichislocatedintheBradforddistrictofEastManchester,isevaluated.ThesiteanalysiswillbefollowedbyathoroughanalysisoftheclimaticconditionsofManchestercurrentlyalongwithanevaluationofManchester’sfutureclimaticconditionsfor2030,2050,and2080basedonRCP4.5(RepresentationConcentrationPathway)Scenario.
Thedesigndevelopmentsectionisadetailedaccountofallthedesigndeliberationsbasedonqualitativeresearchand quantitativeinvestigationandcalculationsbasedondatafromDesignBuilder.Thefinalplansfortheprojectweredevelopedwiththeoptimumform,shape,andfloorplans.Thewindowsandshadingwereoptimisedtomaximisesolar gainanddaylightingwhilelimitingoverheating,forwhichadetailedstudywascarriedout.Further,thematerialsused wereevaluatedandabriefoverviewofbuildingconstructiondetailsweredrafted.
TheLifeCycleanalysisofthebuildingwascarriedouttohelpascertaintheembodiedcarbonandlifecyclecostofthe buildingfollowedbycalculationsforsolarpanels.Thesustainabilitystrategiesimplementedinthisbuildingalongwith theefficientfabricandformmakesthisaCarbonNegativebuildingwhichwasdesignedmeticulouslywithnotonly environmentalaspectsustainabilityinmindbutalsothesocialandeconomicaspect.Thisschemewouldhelpcreateup to24comfortable,healthy,andharmoniouscommunitytoliveinformanydecadestocome.
CASESTUDIES
1.KNIGHT’SPLACE-EXETER
Client: ExeterCityCouncil
Architect: GaleandSnowden
Theholisticdesignstrategyallowstheunitstobeoperatedwithoutaconventionalheatingsystem.
Atthesametime,itwillavoidoverheatinginthesummerandaimstohaveaminimalenvironmental impact.Thequalityofmaterials,designandlandscapingoffersresidentsasenseofplacewithadistinctivemoderncharacterwhichtheycantakeprideinoverthelongterm.
ProjectSummary
•18Units
•15-monthconstructionprogramme
ProjectDrivers
•FuelPoverty
•EnergySustainability
•FutureClimateChange
•LowMaintenance
•Downsizing
•HealthyBuildings
•BuildingdesignisbasedonthePassivhausmethod.
•Designedtomeetfutureclimatechange.
•Designedtomeet code4 ofthe CSH
•Fullycompliantwithlifetimehomestandards.
•Privategardensdesignedusing permacultureprinciples.
•Solarpanelsservingeachindividualunits.
•Designedtomeetbestpracticedaylightlevels.
•100%energyefficientlightfittingsthroughout.
•Independentlyassessedunderthebuildingforlifestandardwithafinalscoreof18.5outof20.
•Usinglowwaterusefittings,thewaterconsumptionwasreducedtolessthan80litres/person/day
SITELAYOUTPLAN
EnergyPerformance
CASESTUDIES
2.KILLYNUREGREEN,CARRYDUFF,NORTHERNIRELAND
Client:ChoiceHouseAssociation
Architect:PDPLondon
Description
SocialandAffordableZeroCarbonHousingScheme. CIBSEprojectoftheyearaward2018.
Overview
LocatedintheurbanareaofCarryduffandalongabusy commuterroad,thisbrownfieldsiterequiredsignificant cutandfillgroundworksalongwiththeinstallationof multipleretainingstructures.Theaimofthisprojectwas toprovidethermallyefficienthomesthatwouldleadthe wayforfuturedevelopments.
Bycombiningafabricfirstapproach,complimentedwith sustainabletechnologies,eachhomewasdesignedto achieveanimprovementof60%moreoncurrentbuildingregulations.
SpecialFeatures
Thedevelopmentswasdesignedtomeetminimumcode 5oftheCodeofSustainablehomes,utilizingmodern methodsofconstruction.ItwastobethefirstCodeLevel 5schemeinNorthernIrelandandoneofthelargestinthe UK.
TopographyInfluence
Thebuildingsarecarefullypositionedtofollowthenaturalundulationsofthesite,withshorthousingterraces tieredacrosstheexistingsitelevelsandcontours.The designsoughttotakeadvantageoftheslopingsiteby spacingthedwellingstomaximisedaylightandcollection.
Design,ConstructionandDeliveryprocess
•Fabricfirstapproachwasadoptedtoreduceenergyconsumption.
•Prefabricatedstructuralsystemwasutilizedtoachievehighlevelsofthermal insulationandairtightness.
•Timberframedwintergardenswasdesignedasapassivesolution,aninsulatedbufferfortheresidentsfromoutsideconditions.
•Airtightnesstestswerecarriedoutatanearlystageasaqualitycheckandthe wintergardensweremodelledinIESatdesignstagetoensureoptimumsolar gain.
CASESTUDIES
3.EMHHOMES,TOWNSTREET,SANDIACRE,NORTHERNIRELAND
BuildingServices
BuildingServices
• Gascondensingboilertoprovide
ildingServices
spaceanddomestichotwater
Gascondensingboilertoprovide
• Radiatorsystemsignificantly reducedtoonlyupperandground floorbathrooms
Overview
SocialandAffordablepassivehousingwithextremely lowenergybills.Oneofthefirstpassivhausprojectsin theUK ThisdevelopmentatTownstreet,Sandiacreconsists ofthirty-sixhousesandfourflatsalltothesame passivhausfabricspecification.Fouroftheseare passivhauscertified,whiletheresthavebeenconstructedtothesamespecification.
SpecialFeatures
Theprojectteamincludedapassivhausconsultant,an architectandahousebuilderandtimberframesupplier. Byengagingthesupplychainearlywithintheproject, bothproductandprocessimprovementshavebeen usedtodeliverhighlyenergyefficienthomesatacost viableforsocialhousingproviders.
ProjectChallenge
Oneofthecentralchallengeswastoworkwiththeselectedmanufacturerofaconventionaltimberframed housingsystemtoraiseitsenergyefficiencyperformancetopassivhausstandard.Thisrepresentedadesign challengeforbotharchitectsandconsultants.There wasalsoandup-skillingchallengeforthecontractorto deliverarobuststrategyforthedeliveryofairtightconstruction.
Costofradiatorsinallhousetypeswasreducedbyusingtheventilationsystemtodistributetheminimal amountofheatrequired.
TheoptiontoachieveCodeforSustainableHomes
Level4 wasamajorchallenge.
GroundFloorPlan
GroundFloorPlan
DeliveryProcessandConsiderations
• Mechanicalventilationwithheat recoveryMVHRsystems.
•
DeliveryProcessandConsiderations
• Option1-FabricFirstenergydemand reductions
KeyLessons
DeliveryProcessandConsiderations
• Option1 FabricFirstenergydemand reductions
• Option2-Technologyfirstlowandzero carbonenergygeneratingsystems.
•EnergyefficientapproachtomeetCode5forsustainablehomes.
• Option1-FabricFirstenergydemand reductions
• Option2-Technologyfirstlowandzero carbonenergygeneratingsystems.
•Decarbonizationwasinfocusfromtheonset.
• Fabricfirstapproachintheformof passivhausspecificationwasadopted Itwas amorerobust,long-termsolutionforthe development.
• Option2-Technologyfirstlowandzero carbonenergygeneratingsystems.
•Innovativeproductsandsystemstoachievehigh levelsofthermalinsulationandairtightness.
• Fabricfirstapproachintheformof passivhausspecificationwasadopted.Itwas amorerobust,longtermsolutionforthe development.
•Factoryfittedstructuralsystemsandcomponents forhighlevelaccuracyinassembling.
• Standardtimberframeconstruction
• Standardtimberframeconstruction
• Highinsulationandairtightnesslevels
• Fabricfirstapproachintheformof passivhausspecificationwasadopted Itwas amorerobust,long-termsolutionforthe development.
•LowembodiedenergymaterialswithlowUvalues.
Productsandsystems
• Standardtimberframeconstruction
• Nothermalbridges,thermalby-passorair leakages.
• Nothermalbridges,thermalbypassorair leakages.
Highinsulationandairtightnesslevels
• Highinsulationandairtightnesslevels
PRODUCTSANDSYSTEMS
PRODUCTSANDSYSTEMS
•TimberFramewith140mmmineral
wool,100mmPIR,50mmcavity withbrickorblockouterleaf
Client:NorwichCityCouncil
Architect: MikhailRiches
Description
GoldsmithStreetinNorwich,thewinnerofthe2019Stirlingpriceisa100%socialhousingdevelopmentforNorwichCityCouncil.Itcomprisesof93Passivhaushomesspreadacross7blocks alignedin4simplerowsonatraditionalstreetpattern.
SITELAYOUTPLAN
EARLYCONSIDERATIONS
Costsavingsweremadeearly inthedesignprocessbymaking significantalterationstothe brickwork,roofandfoundation packages,whichdidn’taffect energyperformance.
ARLYCONSIDERATIONS
ThermalEnergyDemand
ThermalEnergyLoad
PrimaryEnergyDemand
SITELAYOUTPLAN
SITELAYOUTPLAN
EARLYCONSIDERATIONS
EarlyConsiderations
ThermalEnergyDemand
=123k
SITELAYOUTPLAN
Contemporarymaterialsinclude blackglazedpantilestraversing fromrooftowall,contrasting lightcolouredbrickand perforatedmetalbrisesoleil.
tsavingsweremadeearly hedesignprocessbymaking ificantalterationstothe ckwork,roofandfoundation ckages,whichdidn’taffect rgyperformance.
LYCONSIDERATIONS
Costsavingsweremadeearly inthedesignprocessbymaking significantalterationstothe brickwork,roofandfoundation packages,whichdidn’taffect energyperformance.
Costsavingsweremadeearlyinthe designprocessbymakingsignificantalterationstothebrickwork,roofand foundationpackages,whichdidn’taffectenergyperformance.
ENERGYPERFORMANCE
SITESECTION:
Contemporarymaterialsincludeblack glazedpantilestraversingfromroofto wall,contrastinglightcolouredbrick andperforatedmetalbrisesoleil.
Airtightness
=0.56ACH@50pascals
temporarymaterialsinclude ckglazedpantilestraversing mrooftowall,contrasting tcolouredbrickand oratedmetalbrisesoleil.
blackglazedpantilestraversing fromrooftowall,contrasting lightcolouredbrickand perforatedmetalbrisesoleil.
Narrowstreets,carefullyconsideredwindowplacement,andcleverlyslopedroofs maximizedaylightintoadensedevelopmentthatdoesnotfeeloppressiveorunsafe. Parkinghasbeenpushedtotheperimetertohelpmaintainopenness.
ENERGYPERFORMANCE
ThermalEnergyLoad
Airtightness
=0.56ACH@50pascals
RGYPERFORMANCE
savingsweremadeearly hedesignprocessbymaking icantalterationstothe work,roofandfoundation ages,whichdidn’taffect gyperformance. emporarymaterialsinclude glazedpantilestraversing rooftowall,contrasting colouredbrickand
Primary EnergyDemand
SITESECTION:
CASESTUDIES
SUMMARY-VALUESFORREFERENCE
CO2emissions Airtightnesslevels Energydemands Walls–Uvalues Floor–Uvalues Roofs–Uvalues Glazing–Uvalues ThermalBridging
Fabricenergy efficiency
StandingsCourtsocial housingdevelopment -
PassivhausandCSH level4standards
StandingsCourtsocial housingdevelopment–CSHLevel5
EMHHomes–Townstreet,Sandiacre Tobepassivhaus certified
Knightsplace–Rowan house,ExeterCity Council
PassivhausandCSH level4standards
DER=10.23kg/m2/year <0.6ACH <120kWhper/m2/year 0.11W/m2K 0.08W/m2K 0.10W/m2K 0.9-1.0W/m2K
DER:-0.2kg/m2/year,Net CO2 emmisions:9.7kg/ m2/year 0.25ACH 1,270.7kWh/year/dwelling 0.14W/m2K 0.1W/m2K 0.1W/m2K 0.9-1.0W/m2K
12.5kg/m2/year 0.49–1.5m3/hm2 SpaceHeatDemand =11 kWh/m²peryear PeakHeatLoad =10W/m² 0.11W/m2K 0.12W/m2K 0.10W/m2K 0.84W/m2K G=0.61–Trippleglazed Y<0.07W/m2K(average) 29kWh/m2/year
<0.6ACH <0.12W/m2K <0.10W/m2K <0.11W/m2K <0.85W/m2K Thermalbridgefree
KillynureGreenlow energyhousing CSHlevel5 3.38to10.11kg/m2/year 1–3m3/hm2 35kWhper/m2 0.13W/m2K 0.13W/m2K 0.9W/m2K Y=0.04W/m2K
WimbishPassivhaus–SaffronWalden,Essex PassivhausandCSH
Lisnahullterrace, dungannon PassivhausandCSH level4standards
ConnellGardens
ManchesterCity Council’sregeneration planfortheGortonarea
GoodHomesAlliance OneBrighton Retrofit
Peaksarenomorethan 1200ppm 0.45ACHaverage
104÷111kWh/m2a(<120 kWh/m2aPassivHaus), Heatdemand--South facing=12kWh/m2a(<15 kWh/m2aPassivHaus) -Northfacing=19kWh/ m2a
0.09W/m2K 0.07W/m2K 0.08W/m2K
Windows–0.77W/m2K Doors–0.80W/m2K
<0.6ACH <120kWhper/m2/year 0.125W/m2K 0.143W/m2K 0.133W/m2K
Camdenpassivhaus London’sfirstcertified passivhausbuilding
Virido CodeforSustainable HomesLevel5
Passivefishermen's cottagesonNorfolk
coast
CodeforSustainable HomesLevel4
2/85m3/h/m2at50Pa, betterthanthetargetof 5m3/h/m2at50Pa.
un-bridgedU-valuesof 0.21W/m2Kandbridged U-valuesof0.25W/m2K
U-value-0.19W/m2K
U-value-0.80W/m2K. g-value-0.46 tripleglazedandlow-E coated
≤0.6ACHat50Pa 99kWh/(m2a)
Lower0.125W/m2K, Upper0.116W/m2K 0.103W/m2K
Flatroof0.067W/m2K, Slopingroof0.116W/m2K Terrace0.139W/m2K
U-value:windows0.76 W/m2K U-value:doors0.78W/m2 K
Zerocarbon(operational) 1.5m³/h/m²@50Pa
FabricEnergyEfficiency (FEES):39and46kWh/ m²/yr EnergyUseIntensity (EUI):70kWh/m²/yr (RIBA2025)
0.60ACH 108kWh/m2/yr
0.12W/m²K 0.1W/m²K 0.1W/m²K
Brick-cladwalls-0.096 W/m²K
Timbercladwalls:0.104 W/m²K 0.078W/m²K
Door–0.62W/m²K Windows–0.9W/m²K average
Mainroof:0.079W/m²K Pitchedroof,sloping ceilings:0.079W/m²K 0.85W/m²K
CASESTUDIES
CaseStudySimilarities SummaryofDesignStrategies
•Timberconstruction
•MVHRsystems
•Fabricfirstapproachemphasized
•Lowu-valuematerials
•Naturalventilationprioritized
•Compactbuildings,lowformfactor
•Dualaspectconsiderations
•Avoidanceofsingleaspectfacingunits
•Phasedconstruction
•Maximumofthreefloors
•Avoidanceofovershadowing
•Carefulselectionofconstructionmethod-toensurerepeatability.
Thestrategiesusedinthisproposalforasocialhousingat
Manchesterincludeacombinationofenvironmental,social,and economicfactorsaimatimprovingsocialinclusiveness,cohesion, andintegration.Thesefactorsaregenerallyoutlinedintheconsiderationsgivenbelow.
LIGHTING
•Naturallightingprioritized
•Energyefficientsystems
•Energysavingfeatureslikedaylightsensors,absencedetection
•Southfacingfaçadeandgardens
•Permaculturelandscapingprinciples
•Parkinginfrontofbuilding
SITE BUILDINGORIENTATION
•East-westorientation
•Sizingwindowsforsolargains
•Ventilationprioritized
•Entrancedoorfromstreets
•Noovershadowingwithadjacentbuildingonsite
•Viewtoparking
BUILDINGFABRIC
•Fabricfirstapproachprinciples
•Thermallyefficientbuildingfabric,lowembodiedcarbonmaterials
•Simplebuildingformforimprovedformfactor
•Lowmaintenance
•Locallysourcedmaterials
•Lesstransomsandmullionsinwindows
•Demountablepartition
CARBON
•Cycleroutesandfootpathsforreducedemissionsfromuseof vehicles
•lowembodiedcarbonmaterialsuse
•accesstopublictransportroute
•biodiversitypromotedthroughlandscaping
•EVChargingspotsprovided
•Treeplanting
•Renewableenergygeneration
VERTICALMOVEMENT
•Staircaseprioritizedovermechanicallifts
COOLING
•Sitelandscapingaids
•Shadingdevices
•Recessedbalconies
•Naturalventilation
•Roofoverhangs
•Setpointscoolingsysteminstallation
VENTILATION
•Mixedmodeventilationsystem.CombinesNaturalandmechanical
•Lowroomheight
•Airtightnessof3m3/m2h@50pa
ENERGYUSEANDEFFICIENCY
•Performancetargetforenergyconsumption
•PVpanelsintegrationwithgrid
•Airsourceheatpumps
•Meteringdevices
•Electricvehicleintegrationpoweredusingsolarpanels.
•WATER
•Rainwaterharvesting
•greywaterreuse/recycling
•Energyefficientsystems
•Energysavingfeatureslikedaylightsensors,absencedetection
STANDARDS
SUMMARY
Eachoftheprojectsdiscussedinthecasestudies,havefollowedvariousstands.Henceitwasnecessarytomakeadetailedstudyofthesestandsandmakeacomparisonsothatwhiledesigning,eachof theaspectscouldbebenchmarked.Tableshowsthesummaryofcomparisonofvariousstandards.
LETI
Manchester standard Passivhaus standard
Fabricvalues
Walls 0.13-0.15
Futurehomesstandard
UKGBCNetZero Wholelifecarbon AECBBuilding Standard RIBAStandards (notional building) (dwellingbuilt withaheatpump)
Externalwalls 0.13-0.15 0.18 0.18
Semi-exposed walls 0.18 0.18
Partywalls 0.16-0.18(eg.dwelling/ corridor) 0(refertable) 0(refertable)
Floor 0.08-0.10 0.08-0.10(GF) 0.13 0.13
Roof 0.10-0.12
Flatroof-0.10-0.12, Pitchedroof0.10-0.12 0.11 0.11
Roofwindows 1.2(wheninvertical position) 1.2(wheninvertical position)
Rooflights 1.7 1.7
Exposedceiling/floors
0.13-0.18 0.13-0.15(exposed soffit)
Windows 0.80(Trippleglazing)
≤0.80W/m2K (WindowinstalledU value≤0.85W/m2K) Trippleglazed(0.8-1)
Doors 1 ≤0.80W/m2K
Opaquedoor
1(<30%glazingarea) 1(<30%glazingarea)
Semi-glazeddoor 1(30-60%glazing area) 1(30-60%glazing area)
Efficiencymeasures
Airtightness
Thermalbridging
Gvalueofglass
Ventilationsystem
<1(m3/h.m2)@50Pa
≤0.6ac/h(n50) 5m3/(h.m2)@50Pa 5m3/(h.m2)@50Pa
0.04(yvalue) psi≤0.01W/mK
0.6-0.5 ≥0.5
MVHR-90% efficiency-≤2m (ductlengthfrom untiltoexternalwall)
MVHR-heatrecovery efficiency-≥75%, electricalefficiency≤ 0.45Wh/m3
Naturalventilation withintermittent extractfans
Naturalventilation withintermittent extractfans
≤1.5h -1 (≤3h -1)
Psiexternal<0.01 W/mK(Calculatedif> 0.01W/mK
STANDARDS
SUMMARY
Windowtowallarea
ratio
Orientation
Daylighting
Energyconsumption
LETI Manchesterstandard Passivhausstandard
Futurehomesstandard
UKGBCNetZero Wholelifecarbon AECBBuilding Standard RIBAStandards (notionalbuilding) (dwellingbuiltwitha heatpump)
Sameasforactual dwellingnotexceedinga totalareaofopeningsof 25%oftotalfloorarea
North 10-15% 10-15%
East 10-15% 10-20%
South 20-25% 20-30%
West 10-15% 10-20%
Within30degofdue south
Sameasforactual dwellingnotexceedinga totalareaofopeningsof 25%oftotalfloorarea
35KWh/m2/yr
<60KWh/m2/yr<35 KWh/m2/yr(future uplift)
≤120KWh/m2/yr
PassivhausClassic-≤60 KWh/m2/yr
PassivhausPlus-≤45 KWh/m2/yr
PassivhausPremium-≤30 KWh/m2/yr
Spaceheatingdemand
Spacecoolingdemand
Renewableenergy
Formfactor
Embodiedcarbon
15KWh/m2/yr 15KWh/m2/yr
15KWh/m2/yr
100%
1.7to2.5(refertable)
2021-2025-20%ofGF space2025-PV installation40%GFspace
PassivhausPremium-≥ 120KWh/(m2ground*a) PassivhausPlus-≥60 KWh/(m2ground*a)
≤3Areato Volumeratio≤0.7m²/m³
PVsystem:KWp=40%of GFareaincluding unheatedspacces/6.5
35-40KWh/m2/yr(From 2025-Regulated+ Unregulated) VariesKWh/(m2.a)
>2%av.daylightfactor,0.4 uniformity
Operationalenergy Businessasusual–120 KWh/m2/yr
2025targets-<60KWh/ m2/yr
2030targets-<35KWh/ m2/yr(min50% reductionfromcurrent business-as-usual baselinefigures) Currentgoodpractice (2021)–60KWh.m2/y (GIA)nogasboilers
15KWh/m2/yr
≤40KWh/(m2.a)DeliveredHeatand cooling
2.6KWPVinstallation on80%ofnewhomes from2020-2050 ≤75KWh/(m2.a)
<500KgCO2/m2
<500KgCO2e/m2<300 KgCO2e/m2(from2028)
Businessasusual–1200 KgCO2e/m2
2025targets-<800 KgCO2e/m2
2030targets-<625 KgCO2e/m2 Currentgoodpractice (2021)-LETIBandD 1000KgCO2e/m2
STANDARDS
SUMMARY
LETI Manchesterstandard Passivhausstandard
Heatingandhotwater
Potablewateruse
Summeroverheating
CO2levels
VOCs
Formaldehyde
Futurehomesstandard
Wholelifecarbon AECBBuilding Standard RIBAStandards (notionalbuilding) (dwellingbuiltwitha heatpump)
UKGBCNetZero
Fuel Fossilfuelfree Fossilfuelfree Mainsgas Mainsgas Lowcarbonheating systems
Heating 10w/m2peakheatloss (includingventilation)
SpecificPeakload≤10 w/m2
Boilerandradiators, Centralheatingpump 2013orlater,inheated space,Designflow temperature=55degC
Airsourceheatpumpand radiators,Designflow temperature=45degC, Spaceheatingefficiency= 250%
lowcarbonheating(eg: heatpumpsor connectionstonon-fossil fueldistrictheat networks
Hotwater
Maxdeadlegof1lfor hotwaterpipework
DHW peak 6w/m2
Waste Water heat recovery (WWHR)
20%demandreduction (comparedtoPartL2013)
Heatedbyboiler(regular orcombi),separatetime controlforspaceand waterheating.Boiler efficienceySEDBUK2009 =89.5%
Waterheatingefficiency= 250%.Storedhotwater incylinder,heatedbyair sourceheatpummpwith back-upimmersion heating.separatetime controlforspaceand waterheating.
>25degC≤10%ofyear (recommended<5%)
Allshowersconnectedto WWHR,including showersoverbaths. InstantaneousWWHR with36%recovery efficiencyutilisationof 0.98
None
Businessasusual–125l/ p/day(Building regulationsEnglandand Wales)
2025targets-<95l/p/day
2030targets-<75l/p/day Currentgoodpractice (2021)–110l/p/day
<10%(<5%recommended) 25-28oCmaximumfor 1%ofoccupiedhours
<900ppm
<0.3mg/m3
<0.1mg/m3
STANDARDS
SUMMARY
LETI
Materials
Siteemissions
Manchester standard Passivhaus standard
Futurehomesstandard
UKGBCNetZeroWholelife carbon AECBBuilding Standard RIBAStandards (notionalbuilding) (dwellingbuiltwitha heatpump)
•20%reductioninmaterial usagethroughdesignefficiency by2050
•10%reductioninmaterial demandby2040through increasedmaterialreuse
•80%reductionin constructionsiteemissionsby 2050
•50%reductionin constructionmaterial transportationemissionsby2050
Lighting Fixedlightingcapacity(lm) =185xtotalfloorarea, Efficacyofallfixedlighting =80lm/w
Acousticcomfortcriteria
Maximumsoundfrom
MVHRunit
35dB(A)
Maximumtransfersoundin occupiedrooms 25dB(A)
Fixedlightingcapacity(lm)= 185xtotalfloorarea,Efficacy ofallfixedlighting=80lm/w
SITEANALYSIS
Historically,thedistrictofBradfordwasaforestedareawhichbloomedduringtheindustrialrevolution.Theareahadcoalpitswhichisthemainenergysourcethatpoweredironmills,brickworks,cottonmills,andchemicalworks.Duringtheindustrialrevolution,manyterracedhouses werebuiltinthisarea.TheconstructionoftheEthihadstationalongwiththeNaturalCycling CentreveledromeandtheAsdaSuperstorehashelpedregenerateBradfordwhichwaspreviously derelict.Bradfordwouldbeperfectforthedevelopmentofasocialhousingcommunityasitisanup andcomingareaandhasgreatpotentialforgrowth.
Location
Thebuildingsaroundthesitearemostlylowriseresidentialrowhouses.ThesitehasplentyofvegetationandislocatedoppositeBradfordpark.ThesiteislocatedinBradford,2.5kmfrom ManchesterPiccadillyStation.Itiswellconnectedtotherestofthecityduetoitscloseproxmity totheEthihadStatdium.
SunpathandWinddirection
PredominantwindsflowfromtheSouthWestwhichisalsotheareamostpronetoexcessivesolarSITEANALYSIS
Access
ETHIHADSTADIUM
BRADFORDPARK
Althoughtheentrancetothesiteisonaminorroad,thesiteislocatedclosetomanyprimaryandmainroadsthat connecttotherestofthecity.Therearemanybusstopsandstationsaroundthesite.VeloparkTrainstationisashort 12minutewalkfromthesite.
Sound
TheEthihadstadium,theTownleyPub,andtheBradfordParkhavepotentialto produceloudnoisesbutontheotherhand,thesiteissurroundedbytreeswhichare noisebuffers.
Materials Vegetation
Mostofthebuildingsaroundthesiteareresidentialterracehousescladindifferent typesofbrick,somewhichhaveconcretewalls.Thegreypanelsandglassfromthe Stadiumosalsovisiblefromthesite.
ThesitehastreecoverontheWestandtheSouth-East.Thetreesaredeciduousand shedtheirleavesintheWinterwhichwillallowsolargain. Sincethetreesarewelldeveloped,theywillprovideprotectionformwinds throughouttheyear.
Floodrisk
Thesiteislocatedfar awayfromanypotential floodzonesandhenceis notatrisk.Thesitehas plentyofgreenspaces thatimprovedrainage. Permeablepavements andarainwaterharvestingsystemwillbeincorporatedtofurtherimprovedrainageand futureproofthesite againstflooding.
CLIMATEANALYSIS
Temperaturerange Monthlydiurnalaverages
Temperaturesinthisregionfluctuatebetween10°Cto29°Cinthesummersand15°Cto-3°Cinthe winters.Variationindiurnaltemperatureisrelativelylow(between5°Cto10°C).Thebuildingwill requiremechanicalheatingforduringwinterandwillneedtobehighlyinsulated.
Bothtemperaturesandsolarradiationarequitelowinthisregion.Thehousewillneedtomaximize solargainduringwintermonths.Thereisasignificantdifferenceindiurnaltemperarureshence thermalmassmayproveusefultohelpregulatetemperatureinthemicroclimate.
RadiationrangeIllumination
Thereisanopportunitytodecreasetheheatingloadbyincreasesolargainbythroughexposuretothe Southduringthewintermonths.
Illuminationisquitelowinthisregion,eseciallyduringthewintermonths.Largewindowsand skylightswouldhelpmaximizedaylighting.
CLIMATEANALYSIS
ShadingChartWindData
CLIMATEANALYSIS
AverageAnnualTemperature:11°C
HighestTemperature:29°CLowestTemperature:-3.5°C
AverageAnnualTemperature:12°C
HighestTemperature:30.5°CLowestTemperature:-3°C
AverageAnnualTemperature:11.5°C
2020 2030 2050 2080
HighestTemperature:30°CLowestTemperature:-3°C
AverageAnnualTemperature:12°C
HighestTemperature:31°CLowestTemperature:-2°C
CLIMATEANALYSIS
Thereisagradualincreaseincomforthoursfrom4.6%ofhoursto8.3%from2020to2080andrequirementforshadingisalsoshowntoincrease.Thenumberofhoursthatabuildingcanmaintaina comfortableindoortemperaturebasedoninternalheatgainsaloneisshowntoincreasefrom32%ofhoursto38%.Thedemandforheatingissettodecreasefrom51.4%to42%by2080whichalsoresults inanincreasedneedforcooling.Passivesolargainwillsignificantlyreducetherequirementformechanicalheating.
CLIMATEANALYSIS
DESIGNDEVELOPMENT
INITIALDESIGNPLAN
CASESTUDYINFERENCE
SITEPLAN
Terracedhouseswithcompactfloorplans
Fabricfirstapproach
Increasethermalefficiencyofthebuildingtoreduceenergyconsumption
BUILDINGDESIGN PASSIVESYSTEMS
Largeshadedwindowstomaximizedaylightingbutalsolimit
overheatingduringthesummermonths
Gardenandlivingspacesorientedtowardsthesouth
OTHERSYSTEMS
MVHRsystemforheatingandventilation
Solarpanelsforenergyproduction
Rainwatercollection
REDUCINGEMBODIEDCARBON
Useofprefabricatedunits
Useoflocallysourced,sustainablematerialswithlowembodied carbon
Lowwaterusefittingstoreducewaterconsumption
CONSTRUCTIONANDPOSTCONSTRUCTION
Constructionshouldbecarriedoutinanefficientandsystematic mannerusingmany.Prefabricatedcomponentsthatcouldeasily beputtogetheronsite,ensuresrepeatability.
Airtightnesstestsandthermalscansandotherpostconsttruction evaulationsshouldbecarriedouttoensureenvelopefficiency.
50m
52m
Thesitehasacommunitycentrewhichisstillusedbythecommunity.Thememorialgarden,communitycentreandtheparking spacesthatcomewithitwillberetained.
The50mby52marealocatedontheSouth-Westcorneroftheplotwillbeusedfortheconstructionoftworowsofterracedhouses consistingof1-Bedroomflatsand individualduplex2-Bedroomhouse.
Areacalculations
Savecirculationspaces
Canaccommodatemorenumberofunitswith1500m2,ifitisa housingscheme.
Orientation&Ventilation
Inanapartment,lotofspaceswithin1500m2islostascirculation spaces.Whereashousingschemewillhaveunitsonlyinthewhole 1500m2.
Toavoidelevators
Totakeadvantagesofthesouthexposureofsite.Splittingas2blocks allowssouthexposuretoallbuildings.Whereasinanapartment schemeorientationofsomeoftheunitswillbecompromised. (Single aspectNorthfacingunit).Schemealsoallowsbetterventilation. Dualaspectunits aredifficulttoachieveinapartmetscheme.
Elevatorsincreasestheenergyconsumption.Adoptionofahousing schemehelpsinavoidinglifts,therbyreducingenergyconsumption.
Reducestructuralloads Placemaking
Morenumberoffloorsneedmorestructuralelementsandstronger foundations.Limitingthefloornumberscouldhelpreducestructural loads.
Surroundingbuildingsintheareaaremostlyofresidentialcharacter andbuildingrarelyexceed2floors.Introducingaapartmentblockof 3to4floorsmightbeoutofcontext.
Phasingadvantages
Splittingas2blocksallowshavinggardenforallunits.Socialhousing isknowntobeinflexibleandistraditionallymeantforindividualsor familieswithyoungerkids.Individualrowhousesgivesfamiliesroom togrow.
Initiallyoneblockcouldbeconstructedandtenantscouldmoveinto generateincome.Lessonslearntfromthisblockcouldbeappliedto thenextblock.
NoOvershadowing
Design Strategies
Affordability
SOCIALHOUSINGSTUDY
WhatisSocialHousing?
Socialhomesareprovidedbyhousingassociations(notfor-profitorganisationsthatown,let,andmanagerented housing)oralocalcouncil.Asasocialtenant,yourent yourhomefromthehousingassociationorcouncil,who actaslandlord.
Socialhousingisalsosometimesreferredtoascouncil housing,althoughthesetypesofhomesareslightlydifferentintermsofthetypeoftenancyagreementyousign, andtherightsyouhavetopropertyasaresult.
Theideabehindsocialhousingisthatit: ismoreaffordablethanprivaterenting usuallyprovidesamoresecure,long-termtenancy
Thisgivessocialrentersbetterrights,morecontrolover theirhomes,andthechancetoputdownroots. 17%ofhouseholdsinEnglandliveinsocialhousingasa whole
TypesofRent
SocialRent(SR)
Targetrentsaredeterminedthroughthenationalrentregime.
AffordableRent(AR)
Wheretherenttobepaidbytenantscanbenomorethan 80%ofthemarketvaluefortheproperty.
RenttoBuy(RB)
Whereadiscountofupto20%ofallmarketrentisappliedforasinglerentalperiodbetween6monthsand5 years.Duringandafterthatperiod,thetenantisoffered firstchancetopurchasetheproperty(eithersharedownershiporoutright)atfullmarketvalue.
HowSocialHousingWorks
Affordability
Socialhomesaretheonlytypeofhousingwhererents arelinkedtolocalincomes,makingthesethemostaffordablehomesinmostareasacrossthecountry.
Rentsforsocialhomesaresignificantlylowerthan privaterents.Rentincreasesarealsolimitedbythegovernment,whichmeanshomesshouldstayaffordable long-termsopeoplearen’tpricedoutoftheircommunitiesbyrisingrents.
Whilethewaysocialrentsaresetisn’tperfect,webelievetheyshouldalwaysbeaffordabletolocalpeople,includingpeopleonlowincomes.
Quality-controlled
Onaverage,socialhomesaremorelikelytomeetthe standardfor‘decent’housing.Theyarebetterinsulated, moreenergyefficient,andmorelikelytohaveworking smokealarmsthanothertypesofhousing.
Overtheyears,investmentinmaintainingandimprovinghomeshasbeenpatchy,andsocialhousingtodayis farfromperfect.That’swhywewillkeepfightinguntil thecountryhasenoughdecenthomesforall.
HouseholdComposition
Stability
Peopleinsocialhousingusuallyhavesecuretenancies,givingthemmuchgreater protectionfromevictionandenhancedrightscomparedtothoserenting privately.Thismeansfamiliescanputdownroots,planforthefutureandmake theirhouseahome.
Asocialhomecanprovidethefoundationpeopleneedtogetoninlife.While somerecentgovernmentshavetakenstepstoreducethesecurityofsocialtenancies,Shelterwillcontinuetofightforallrenterstohavethesecuritytheyneed.
It’sthereforpeoplewhoneedit
Socialhousingshouldbethereforanyonewhoneedsit.Atpresent,thelawstates whoisentitledtosocialhousing,andshouldgetpreferenceonthewaitinglist. Butcouncilshavelotsofflexibilityonwhoqualifieslocallyandsociallandlords canrefusetolettopeopleiftheychooseto.
Thereareoveramillionhouseholdscurrentlyonsocialhousingwaitinglistsin England.Unfortunately,thecurrentchronicshortageofsocialhomesmeans therearen'tevenenoughforpeoplewhourgentlyneedit,suchasstreethomeless peopleandhomelessfamilies.
Webelievethatgood-qualitysocialhousingshouldbethereforanyonewho needsit,includinghomelessfamiliesandindividuals,strugglingprivaterenters, andotherswhocan’tfindasuitablehome.
Source: https://england.shelter.org.uk/support_us/campaigns/what_is_social_housing
StatisticalRelease:SocialHousingLettings:ApriltoSeptember2020,EnglandMinistryofHousing,communities&LocalGovernment
FLOORPLANS-OPTIONAPPRAISAL IDENTIFICATION-BESTORIENTATIONANDFORM
Basedontheanalysisfromthestudyonsocialhousing,itwasidentifiedthatthehighestnumberofneedy populationisconstitutedbysingleadults,followedbysingleadultandchildren,couples,coupleand children.Henceitwasdecidedtoinclude,studio,1bedroomand2bedroomunitsinthisdevelopment.
theimages.Simulationswererunforeachoftheseoptions.Basedonthefiguresfromthese simulations,finallayoutwaschosenanddevelopedfurther.DefaulttemplatesinDesign Builderwereusedforsimulations
Tostartwiththemostenergyefficientlayouts,fewoptionsofthefloorplansweremadetoidentifythebest formandorientations.2bedroomswillcomprisethemaximumareainthedevelopmentandhencethestudy beganbyanalyzingvariouspossibleoptionsfor2bedrooms.Thefloorplanswerecategorizedasshownin
NarrowHorizontal
Square
Squarelayouts.Equalexposuretoall sides.Bufferspacesalignedtonorthin oneoptionandtosideinotheroption.
NB:Floorplansshowninthisstudyarenotfinaloptionsandisjustamodifiedversionsofthe zoning.Theyweresolelydevelopedforanalyticalpurposes. Longsideexposedtosouthandnorth.Bufferspacesallignedtonorthin1optionandoneithersidesinnextoption.
NarrowVertical
Intheseoptions,theshortersidesareexposedtonorthandsouth.In oneoptionthezonesaredividedbypartitionsandintheotheran openlayoutisfollowedtoanalyzewhichoftheseperformsbetter.
CourtyardOption
Thisoptionconsiderstheeffectofhavingcourtyardinthis climate.Courtyardisintroducedinbetween2narrowvertical unitstoincreaseventilation.
FLOORPLANS-OPTIONAPPRAISAL
FLOORPLANS-OPTIONAPPRAISAL
FloorPlan-Type2a FloorPlan-Type2b
FLOORPLANS-OPTIONAPPRAISAL
FloorPlan-Type3a FloorPlan-Type3b
FLOORPLANS-OPTIONAPPRAISAL
FLOORPLANS-OPTIONAPPRAISAL
TOTALENERGY(KWh/M2)
WITHCOOLINGOFF(KWh/M2)
COOLINGENERGY
Bldg1a 69.96 2.86 72.82 2.06 74.88 -0.61 74.27 Bldg1a 55.78 0.07 55.85 0.04 55.89 -1.26 54.63 Bldg1a 14.18 16.97 18.99 19.64
Bldg1b 71.63 3.32 74.95 2.15 77.1 -0.68 76.42 Bldg1b 55.48 0.2 55.68 -0.11 55.57 -1.46 54.11 Bldg1b 16.15 19.27 21.53 22.31
Bldg1c 72.24 -1.42 70.82 2.15 72.97 0 72.97 Bldg1c 52.85 1.45 54.3 -0.04 54.26 0 54.26 Bldg1c 19.39 16.52 18.71 18.71
Bldg2a 66.97 2.27 69.24 1.21 70.45 -1.14 69.31 Bldg2a 58.58 0.23 58.81 -0.24 58.57 -1.64 56.93 Bldg2a 8.39 10.43 11.88 12.38
Bldg2b 75.26 2.06 77.32 1.05 78.37 -0.86 77.51 Bldg2b 67.39 0.27 67.66 -0.27 67.39 -1.3 66.09 Bldg2b 7.87 9.66 10.98 11.42
Bldg3a 65.95 2.44 68.39 1.68 70.07 -0.9 69.17 Bldg3a 54.09 0.12 54.21 -0.04 54.17 -1.32 52.85 Bldg3a 11.86 14.18 15.9 16.32
Bldg3b 65.95 1.55 67.5 1.41 68.91 -0.98 67.93 Bldg3b 54.82 0.19 55.01 -0.17 54.84 -1.46 53.38 Bldg3b 11.13 12.49 14.07 14.55
Bldg4 69.62 1.14 70.76 0.39 71.15 -1.43 69.72 Bldg4 67.21 -0.1 67.11 -0.68 66.43 -1.59 64.84 Bldg4 2.41 3.65 4.72 4.88
Thetableaboveshowsthesummaryofsimulationsrunforallthefloorplansshownintheprevious pages.GenerallyManchesterisaheatingdominatedregionandhouseshaveonlyheatingfacilities. Currentlyduetoclimatechangebuildingsmayneedairconditioninginfuture.Hence,Annual
energy(Kwh/m2/yr),AnnualenergyifthebuildingisnotcooledandEnergyrequiredforcooling wasseparatelynotedtomakeanalysisfromthesevalues.Theresultsoftheanalysisaregiveninthe followingpages
FLOORPLANS-OPTIONAPPRAISAL
AnnualEnergy-Whenbuildingisnotcooled
ENERGY(COOLINGEXCLUDED)(KWh/M2)
Current Diff
Bldg1c 52.85 1.45 54.3 -0.04 54.26 0 54.26
Bldg3a 54.09 0.12 54.21 -0.04 54.17 -1.32 52.85
Bldg3b 54.82 0.19 55.01 -0.17 54.84 -1.46 53.38
Bldg1b 55.48 0.2 55.68 -0.11 55.57 -1.46 54.11
Bldg1a 55.78 0.07 55.85 0.04 55.89 -1.26 54.63
Bldg2a 58.58 0.23 58.81 -0.24 58.57 -1.64 56.93
Bldg4 67.21 -0.1 67.11 -0.68 66.43 -1.59 64.84
Bldg2b 67.39 0.27 67.66 -0.27 67.39 -1.3 66.09
Theresultsshowstheannualenergyrequiredforthe buildingwhencoolingloadsarenotconsidered.So, generallywhichmeansthattheseresultscontainthe energyrequiredforheating,lightingandothers.Itis notedthat,inallthebuildings,exceptinbuilding1cand 4,thereisslightincreaseintheenergyby2030andthen slightlyreducesby2050andthenagainreducesby2080. Thisshowsthatbuildingsneedlessenergyforheatingas thetemperaturerisesupandmanymorehourswillfall undercomfortzone.
Itisfoundthatbuilding1cwithmoresouthexposure performsbest,thensquareshapedonesfollowedby otherlongnarrowhorizontallayouts.Narrowvertical onesdoesnotperformwellintermsofheating. Courtyardoptionandplanwithopenlayoutperforms worstintermsofheating.Thisshowsthatmore compartmentalizedplansperformsbetterinefficiently heatingthespaces.
Forbuilding4(courtyardoption),itcanbeseenthatthe
temperatureconsistentlyreducesoveryears.Thisshows thattheeffectivenessofwellventilatedbuildingsin reducingtheoverallenergywhenthetemperaturerises up.
Adifferenttrendformotherbuildingsisshownby building1c.Forthisbuilding,thetemperaturereduces farmorethanotherbuildings,in2030andthenrisesby 2050andagainslightlyincreasesby2080.Thisbuilding hasmoresouthexposureandhencethebuildinggets overheatedandsotheincreaseoftheenergiesin2050 and2080isjustified.However,thereasonforthe buildingtobecomelotmorecoolerthanallother buildingswasnotunderstood.Theonlyprobablereason assumedwasthepresenceoflongnorthfacingwindows inthecorridorinfirstfloor,whichmakesthisspace coolerandfurtherhelpstokeepthewholebuildingcool. Thedifferenceintrendofbuilding1ccanbeclearlyseen fromthegraphonleftsidethatonlyplotsthedifferences inenergyoveryears.
FLOORPLANS-OPTIONAPPRAISAL
Energyrequiredtocoolthebuilding
COOLINGENERGY
Current 2030 2050 2080
Bldg4 2.41 3.65 4.72 4.88
Bldg2b 7.87 9.66 10.98 11.42
Bldg2a 8.39 10.43 11.88 12.38
Bldg3b 11.13 12.49 14.07 14.55
Bldg3a 11.86 14.18 15.9 16.32
Bldg1a 14.18 16.97 18.99 19.64
Bldg1b 16.15 19.27 21.53 22.31
Bldg1c 19.39 16.52 18.71 18.71
Generallyitcanbeseenthattheoptionsthatperformedbestinheatingthebuilding,performs worstincoolingthebuilding.Option4(Courtyard)performsthebestofall.Thelongnarrow verticalbuildingsalsoneedverylessenergytocoolthebuilding.Outofthattheonewithopen partitionsperformsbetterthantheoneswithclosedpartitions.Squareshapedlayoutscomesinthe middle.Narrowhorizontalonesperformstheworstintermsofcoolingenergy.
Thedifferenceinthetrendofbuilding1ccanbeclearlyobservedfromthegraphabove.Itcanbe notedthatthecoolingdemandofallthebuildingsincreasesoveryears.Rateofincreaseismoretill 2050andthenthereisareductionintherateofincrease.
Cooling Energy
Fromtheheatingandcoolingenergygraphs,itcanbenotedthatthecompactand compartmentalizedplanningisbestforretainingheatinsidebuilding,whereasforcooling,more openplanlayoutsarepreferred.Manchesterisaheatingdominatedregion,socompact compartmentalizedlayoutsweretraditionallyadoptedintheregion.However,duetotheclimate changethetemperaturesarerisingupandthispointsouttotheneedofconsideringcooling energiesaswell.Thebuildingsthatwerehistoricallydesignedgivingprominencetoheatingenergy nowneedtoconsiderreducingcoolingloadsaswell.
Soalayoutthatcanbalancebothheatingandcoolingenergyispreferred.
FLOORPLANS-OPTIONAPPRAISAL
Annualenergy
TOTALENERGY(KWh/M2)
WITHCOOLINGOFF(KWh/M2)
COOLINGENERGY
Bldg3b 65.95 1.55 67.5 1.41 68.91 -0.98 67.93 Bldg3b 54.82 0.19 55.01 -0.17 54.84 -1.46 53.38 Bldg3b 11.13 12.49 14.07 14.55
Bldg3a 65.95 2.44 68.39 1.68 70.07 -0.9 69.17 Bldg3a 54.09 0.12 54.21 -0.04 54.17 -1.32 52.85 Bldg3a 11.86 14.18 15.9 16.32
Bldg2a 66.97 2.27 69.24 1.21 70.45 -1.14 69.31 Bldg2a 58.58 0.23 58.81 -0.24 58.57 -1.64 56.93 Bldg2a 8.39 10.43 11.88 12.38
Bldg4 69.62 1.14 70.76 0.39 71.15 -1.43 69.72 Bldg4 67.21 -0.1 67.11 -0.68 66.43 -1.59 64.84 Bldg4 2.41 3.65 4.72 4.88
Bldg1a 69.96 2.86 72.82 2.06 74.88 -0.61 74.27 Bldg1a 55.78 0.07 55.85 0.04 55.89 -1.26 54.63 Bldg1a 14.18 16.97 18.99 19.64
Bldg1b 71.63 3.32 74.95 2.15 77.1 -0.68 76.42 Bldg1b 55.48 0.2 55.68 -0.11 55.57 -1.46 54.11 Bldg1b 16.15 19.27 21.53 22.31
Bldg1c 72.24 -1.42 70.82 2.15 72.97 0 72.97 Bldg1c 52.85 1.45 54.3 -0.04 54.26 0 54.26 Bldg1c 19.39 16.52 18.71 18.71
Bldg2b 75.26 2.06 77.32 1.05 78.37 -0.86 77.51 Bldg2b 67.39 0.27 67.66 -0.27 67.39 -1.3 66.09 Bldg2b 7.87 9.66 10.98 11.42
Sortingthebuildingsaccordingtotheannualenergy consumptioninallyearsshowsthatbuilding3b performsthebestofall.Thesquareshapedplanswere foundtobeperformingbestannually.Narrow horizontaloneswerenotfoundtobeperformingbest annuallythoughtheyperformsbetterintermsofheating
Notthebestperformersintheheatingandcooling energiesbecomesthebestperformersannually.A balancedplanperformsbetterannually.Squareshape thathasequalexposuretoalldirections,withample exposuretosouthandnorth,withbufferspacesinthe sidesperformsbetter.Thisalsoshowsthataligningthe bufferspacesliketoilets,storeetccompletelytothe northsidemaynotbegoodinacoldtemperatezonelike Manchesterthoughitmayworkwellwithextremecold climates.Followingaresummaryofanalysis.
•Openplanneedslessenergytocoolthehouse,but comparativelyneedshighenergytoheataswell.
•Buildingswithlessexposuretonorthandsouthrequires lessenergytocool.
•Buildingssquareshape–requiresoptimumenergyfor cooling
•Buildingswithlongexposuretosouthandnorthneeds highenergytocool.
•Buildingwithcourtrequireshighenergytocool–(check)
•Theenergyrequiredforcoolingslightlyincreasesover years
•Squareplansandplanswithmoresouthernexposure needtheleastenergytoheatthehouse
•Planwithcourtrequireshighenergytoheatthehouse
•Narrowplanwithlessexposuretonorthandsouth requireshighenergytoheatthehouse
•Openplanrequireshighestenergytoheat
•Theenergyrequiredforheatingslightlydecreasesover years
FLOORPLANS
2BEDROOM,1BEDROOM,STUDIO
Planning Studios
Basedonanalysisfromthestudyon socialhousing,energyanalysisfor orientationandformstudy,itwas decidedthatschemewillhave2blocks andeachblockwillhave4unitsof2 bedrooms,4unitsof1bedroomand4 unitsofstudiorooms.Thatiswhythe projectisnamedas444byOne Manchester.
2Bedroom
Aspertheinferencesfromenergy analysis,squarelayoutwaschosenfor2 bedroomunits.Entrytotheunitisfrom northside.Afoyerspacehasbeengiven asbufferspace.Allthebufferspaceslike foyer,stairwell,storeroomandtoilethas beenalignedtotheside.Inbetween livingdiningandkitchen,solidsliding foldingdoorshavebeenprovided.In winterdoorscanbekeptclosedto preventairflowandandinsummerthese doorscanbekeptopentoallowcross ventilation.Apocketdoorhasbeen providedatthestairarea.Inwinterthis canbeclosedwhereasinsummer,itcan bekeptopen.Allthegardensaresouth facingandcanbeaccessedfromdining area.
2studiounitseachareplacedon eithersidesof2bedrooms. Everystudiounitsgetsaccessto privatesouthfacinggardens. Entrytotheblockisfromnorth side.Thereiscommonstairway thatleadstofirstandsecond floors.
1Bedroom
Every1bedroomsunitshavea balconyastheseunitsdon’t haveaccesstoprivategardens.2 unitsof1bedroomunitsare placesoneithersidesof2 bedroomunits,abovestudio units.
FLOORPLANS
FLOORPLANS
2BEDROOM-CONVERTIBLEOPTIONS
Theproposedschemeconsistoffour2bedroomunits,four1-bedroomunitsand fourstudiounits.However,forthefamilies livingin2bedrooms,theymightneed separateroomsforkidswhentheygrowup. Inthatcaseitwon’tbeaffordableforthem tomovetoanewplace.So,considering socialsustainabilityinlongterm,alternate convertiblelayoutsof2bedroomsarealso proposed.Intheselayouts,itiseasierfor thetenantstoconverttheexisting2 bedroomto3bedroomwithminimal interventions(addingpartitions). Developercanchoosebetweenthe3 optionsof2bedroomsavailable.
Option1
Option2
ELEVATIONS
open partitions
AftergivingrightUvaluesforthe fabric,glazingandchoosing appropriatelightingandhvac system,theunitswereanalyzed inviduallytoseehowitperformed andhowcantheybefurther improved.
Theeffectofseasonalopenand closedpartitions,wereclearly understoodfromtheprevious energyanalysis.However,for furthersimulations,thebuilding anhaveitherclosedoropen partition.Sosimulationswere donetoseewhichofthese performedbetterannually.Itwas foundthatannuallyopen partitionsperformedbetter.
Foldabledoorscanbekeptclosed duringthewinterperiodtoreduce theheatingenergy,andthose doorscanbekeptopentofoster crossventillationduringthe summerperiods.Thiswillhelpin reducingthecoolingloads.
Overallperformance
Annual Performance
ENERGYANALYSIS-OVERHEATING
Overheating Groundfloor Firstfloor
OneManchesterfollowsCIBSEguidance,which statesthatoverheatingisdeemedtooccur:
•Forlivingareas,ifmorethan1%oftheoccupied hoursareover28ºC.
•Forbedrooms,ifmorethan1%oftheoccupied hoursareoveratemperatureof26ºC.
•Thebestpracticesummerindoorcomfort temperatureis25ºC.
Hencethetemperaturesofallthesezoneswere analyzedtoseeifthereisoverheating.Zoneswith overheatingneedsfurtherchangesindesignto limitthenumberofoverheatedhours
Technicallyasthereisnohoursthatgoesabove28deginanyof theyears,thisspacehasnoriskofoverheating.However,more than5%ofhoursgoesabove25degandhencedesigndetails shouldtrytolimitthesehours.
Asopenpartitionsare useddiningkitchenand livingroom,Design Buildertreatsthesezones asmergedzones.Hence resultsaresameforall areas.
Riskassessmentswere doneforlivingareasinthe groundfloorandSouth andNorthbedroomsin firstfloor.Percentageof hoursabovethethreshold werecalculatedtoidentify overheatedspaces
TEMPERATURE
First
South Bedroom
FF North Bedroom
Asmorethan1%ofthehoursgoesabove25,26and28degreesin alltheyears,thisspaceisattheriskofoverheating.Window sizesmustbeoptimizedandshadingtobeintroducedtobring thetemperaturesintocomfortband.
Asthenumberofoverheatedhoursareverylow,thiszoneisnot undertheriskofoverheatingandhencenofurtherinterventions needtobedone.
2BEDROOMSUNITS
AFTER
Inordertolimitthenumberofoverheatedhoursinsidethebuilding,severalwindowoptionsweretried. Differentshapesandsizesweretriedoutduringsimulationstoidentifywhichofthemperformsbetter. Separatesimulationswererunforgroundfloorandfirstfloorwindows.Alltheoptionstriedareshownin theleftsideandthefinalizedoptionisshownabove.
CalculationofShading
Asperthechartsinclimateconsultant,thereno mucheffectforoverhangsinthecurrentclimate. However,asyearspassbytherearemore uncomfortablehoursandhencetheshadingbecomes important.Theeffectofshadingismoreinthefuture years.Whencalculatingthedegreesasperclimate consultant,itisseenthatthehorizontalanglevaries between48-55degrees.Whencalculatingthe overhangsbasedontheseangles,itvariesbetween11.8m.Thisdistanceisdifficulttoshade.
EffectofOverhang
Effect of overhang
Twooptionsweretried.Only withoverhangandwith overhangsandfins.Simulations weredonewithdifferentlengths ofoverhang.Whenthelengthof overhangsincreasesbeyonda limit,iteffectsdaylight.Hence 0.7moverhangwhichkeepsa balancebetweenenergieswas chosen.
Fromthegraphsitisclear that,thereisreductioninthe overallenergydemandwith theintroductionofoverhangs. Plottingthedifferencesit makesoveryearsshowsthat overhangsbecomemore effectiveinthefutureclimate scenarios.Howeverthe reductionenergyinenergyis onlyasmallfigure.
Theeffectofoverhangsinthe overallenergyisanalyzed.But themostimportantfunction isprovidecomfort temperaturesinsidebuilding. So,theeffectofoverhangson thenumberofoverheated hoursneedtobequantifiedto assessitscompleteeffect.
Withoverhangandfins
Ground floor Overhangs
Graphsclearlydemonstratestheeffectof overhang.Bothingroundandfirstfloorthe numberofoverheatedhoursdrasticallyreduces whenoverhangsareintroduced.Ingroundfloor, withtheintroductionofoverhangsmorehours fallwithincomfortableband.Inthefirstfloor, the%ofhoursmorethan26degreeisgreater than1%inallthescenario.Withthe
introductionofoverhangs,thepercentageof hoursabove26degreecanbeboughtdownin currentand2030scenario.However,thereare stilloverheatingproblemsin2050and2080.The percentageofhoursabove28degreeshavebeen effectivelyreducedbyoverhangs.Furthersteps needtobetakentoavoidoverheatingthatwill probablyoccurin2050and2080.
First floor Overhangs
Thoughclimateconsultant chartsdoesnotshowthefins tobereallyeffectiveinthis sccenario,tolimitthenumber ofoverheatedhours,finswere alsoaddedalongwith overhang.Ingroundfloorsome morehourscomesunder comfortableband.Whereasin firstfloor,the%ofhoursabove 26degreecomesdownbelow 1%inallthescenarioswiththe additionoffins.Soboth overhangsandfinstogether helpstoreduceoverheated hoursofthisunit.
2BEDROOMSUNITS
STUDIOUNITS
Eastsidestudios
Thebuildingis6degrees rotatedfromcardinalsouth directionandhencethe southeastcornergetsalot exposedtosun.Hencethe chancesofoverheatingare moreinthiszone.Climate consultantchartsbelow showsthathorizontal overhangsthoughnotfully effectivecancutfewofthe overheatedhours. However,operablelouvers canbemoreeffectiveineast side.Allthewindow shapesandsizesof windowstriedoutforeach sidesareshowninthe imagesbelow.
Severalwindowoptionsweresimulatedtoseewhichofthem performsbest.Initialdesignhadwindowsonbothsouthand eastfacades.However,therewerelotofoverheatedhours insidetheroomsandhenceaspartofreducingoverheatedhours onlykitchenwindowintheeastfacadecouldberetained.Final optionofthewindowsareshownabove
CalculationofShading
STUDIOUNITS
Westsidestudios
Asthebuildingis6degrees rotatedfromcardinalsouth direction,Westsideismore orientedtowardsnorth.So thezonesinthisside performsmuchbetterthan southeastside.Which allowstohavesome windowsinthewestside. Though1bedroomunits couldhavewindowsonthis side,instudiounit,adding windowsleadsto overheatingandhenceitwas avoided.Theoptionstried onwestsideisshownbelow. Theelevationtosouthside wasmaintainedsameaseast sideforsymmetry.
Finaloptionofthewindowsforthewestsideareshownabove. Climateconsultantchartsbelowshowsthatthesewindows cannotbeeffectivelyshadedbyhorizontaloverhangssolouvers arethebesttoshadethesewindows.
CalculationofShading
Eachzonesinthe1bedroomunitswereanalyzedtoseethe spacesthatareoverheated.Graphsshowstheoverheating analysisdoneforeachspaces.Thenumberofhoursthatgoes
abovetargettemperaturesandthe%oftheexceededhours werecalculated.Basedontheseresultswindowwere optimizedforthisunit.
Asthegraphsclearly shows,onlybedroomsin this1bedroomunithave overheatingproblems. Thoughthisbedroom doesn'thaveany overheatingissuesinthe currentclimate,more than1percentageof hoursgoesabove26 degreesfrom2030 onwards.Sothe openingsandshadings mustbeadjustedto reducethenumberof overheatedhours.
Nootherzonesinthis unithaveoverheating issues.Thereareno hoursthatgoesabove26 degreesinthesezones. However,therearefew hoursabove25degrees. Thesecanbereducedby introducingshading.
East 1BHK FF Bedroom
Asthegraphsclearlyshows,aftermaking adjustmentstothewindowsizesand introducingoverhangs,thenumberof overheatedhoursinthebedroomhas drasticallyreduced.Thepercentageofhours thatgoesabove26degreescomesbelow1% inalltheyearsandtherearenohoursthat goesabove28degrees.However,when windowswereoptimizedtoaddress overheatingissues,ithasleadtoaslight increaseintheoverallenergyofthebuilding. Thisisbecausewhenwindowsizesare reducedandshadingisintroduced,itleads toslightincreaseinthelightingenergyand heatingenergies.Whenwindowsizesare reducedbeyondacertainthreshold,itwill leadtoincreaseinenergy.Henceitis essentialtokeepabalancebetweenthem.
East 1 BHK FF Bedroom
Energy comparison
West 1BHK
Bedroom
OvershadowingofGardens
fectondaylightandsunlighttoneighbouringproper-
lightbytheadjacentbuildingaccordingtotheimage
dowwasusedasthereferencepointforthetest.Ifthe
likelytobeasubstantialeffectondaylightandsun-
HEATINGANDHOTWATERSYSTEM-OPTIONAPPRAISAL GSHP,ASHPANDCHPCOMPARISON
GroundSourceHeatPump AirSourceHeatPump CHP(CombinedHeat&Power)
GSHPsabsorbheatfromthegroundthroughpipeswithanantifreezeliquidburiedundergroundwhichisthencompressed andusedtoheatindoor.Thesystemtransferstheheatabsorbed towaterwhichisdistributedthroughunderfloorheating.
WhenlandisavailableGSHPsystemsarelaidinhorizontal trenchesthatareapproximately1-2metresdeep.Verticalboreholesareamoreexpensivealternativewhereholesaredugupto around150m.
Advantages
Providesheatingandhotwater
LongerlifespanthanASHPs
Easytomaintain potentialincomethroughtheUKgovernment’sRenewable HeatIncentive(RHI)
Disadvantages
Highsetupcost
Requireslotsofspace
Heatproduceddependsonthedensityandtypeofsoilandbedrock
ASHPsabsorbheatfromoutsideairwhichisthencompressed andusedtoheatindoorspacesandwater.
TherearetwotypesofASHPsystems,AirtoAirandAirtoWater.AirtoAirprovideswarmairandventilationwhichiscirculatedbyfansthroughducts.AirtoWatersystemstransferthe heatabsorbedtowater,whichissuitedtounderfloorheating andradiators.
Advantages
Providesheatingandhotwater
Lowersfuelbills
Easytomaintain potentialincomethroughtheUKgovernment’sRenewable HeatIncentive(RHI)
EnergyEfficient
Disadvantages
Canonlybeusedalongsideanotherheatingsysteminmost buildings
Canbenoisy
CHPisanenergyefficientmethodandmakesuseoffueltogenerateelectricityandheat.Electricityisproducedonsiteanthe excessheatgeneratedasaresultofburningfuelisusedtoheat buildingsandtoprovidehotwater.
Advantages
Providesheatingandhotwaterinadditiontoelectricity
Reducesenergycost
Reducedemissions
Energysecurity
Reducestransmissionlossfromthegrid
Makesuseofexcessheatproducedasaby-productofelectricity production
Disadvantages
Highsetupcost
Takesnon-renewablefueltorun
Suitableforlargecommunities
Needsconstantsupplyoffuel
Seasonal
Wallsintheliving spacescanbecollapsed duringthesummerto promoteairflow
WaterManagement
RainwaterCollection
Theslopingroofswillbeconstructedusingclaystep tileswhichwillhelpchannelrainwaterintopipes. Rainwaterwillbestoredintanksbelowgroundand willbeusedforgardeningandflushingtoilets.
Greywater
WasteWaterHeatRecovery
HeatfromgreywaterwillberecoveredviaanEcoDrain whichtransfersheatenergyfromthehotshowerwater totheincomingfreshwatersupply.
WaterEfficientFittings
Shading
Dual-flushtoiletsandfaucetaeratorswillbefittedtoreducewater
HeatingCooling&HotWater
AirSourceHeatPumpswillbeusedtoprovideheating andhotwatertothecommunity.Theyalsocanprovide coolinginthesummer.AirSourceHeatPumpsareareliablesourceofheatwhichworkswellintheUKclimate.Thecostofinstallationislowercomparedto GroundSourceHeatPumpsandCHPplants.Usually, AirSourceHeatPumpsareusedtosupplementanexistingheatingsystem.However,sincethebuildingsaredesignedtoachievepassivhausstandards,verylessheatingwillberequiredforwhichAirSourceHeatPumps aremorethansufficient.
Ventilation
MechanicalVentilationwithHeatRecovery
AnMVHRsystemfiltersairthatentersabuildingwhile recoveringheatfromstaleairthatleavesthebuilding.It helpsmaintaintheindoorairtemperatureandisanessentialsystemusedinpassivehouses.Features:
•Recoversupto95%ofheatthatisnormallylost, helpsreduceheatingcost.
•Moiststaleairisextractedfromkitchensandbathrooms,lowershumidityandcondensation.
•Improvesairquality,createshealthylivingenvironment.
Electricity
SolarPanelswillbeplacedontheslopedroofandwill besupplementedbyelectricityfromthegridwhennecessary.Theelectricityproducedwillbeusedtopower homesandcars.Electriccarchargingstationswillbe placedintheparkinglots.
TripleGlazedTimber
FrameAluminium
Panel(SlopingComponent)
Panel(FlatComponent)
1.VinylFloorFinish
Panels
CONSTRUCTIONMATERIALS
StructurallyInsulatedPanels(SIPs)
Structuralinsulatedpanels(SIPs)areahigh-performancebuilding systemforresidentialandlightcommercialconstruction.Thepanels consistofaninsulatingfoamcoresandwichedbetweentwostructuralfacings,typicallyorientedstrandboard(OSB).SIPsaremanufacturedunderfactorycontrolledconditionsandcanbefabricatedto fitnearlyanybuildingdesign.Theresultisabuildingsystemthatis extremelystrong,energy-efficientandcost-effective.
ThermalPerformance
Onceinstalled,SIPpanelsdeliverunrivaledinsulationandairtightness,whichreducesenergycostsoverthebuilding’slifetime.SIPsare knowntobeabout50%moreenergy-efficientthantraditionaltimber framing.ASIPbuildingenvelopehasminimalthermalbridgingand deliversexcellentairtightness,whichlendsitselfideallytoLEEDand net-zero-readybuildingstandards.
IndoorAirQuality
ASIPbuildingallowsbettercontroloverindoorairqualitybecause theairtightbuildingenvelopelimitsincomingairtocontrolledventilationwhichfiltersoutcontaminantsandallergens.TheSIPenvelopedoesn’thavethevoidsorthermalbridgingofconventionalframingthatcancausecondensationleadingtopotentiallyhazardous mold,mildeworrot.
Sustainability
SIPsarehighlyenergy-efficientandthereforecontributepositivelyto theenvironmentbyreducingCO2levels.Theyalsousesignificantly lessenergyduringthemanufacturingprocesscomparedtotraditionalconstructionmethodsandhavelowerembodiedenergythan traditionalconstructionmaterials,suchassteel,concreteandmasonry.
ConstructionProcesses
SIPwallsandroofsaredesignedandpreciselymanufacturedoffsite. Thisallowsthebuildingtobeassembledonsitequicklyandmade watertightinamatterofdays.Thisreducescostssuchasproject management,scaffolding,framinglaborandmuchmore.SIPpanels reducejobsitelaborneedsby55%.
BrickCladding
BrickisthemostcommonlyusedexternalcladdingmaterialusedintheUK andisproducedlocallycountrywide.It createsasenseoffamiliarityaandhomelikewarmthwhichisanimportantconsiderationforasocialhousingcommunity.
ClayBricksareweatherproof,fireresistant,longlasting,andareeasytomaintain.Theyhaveagenerallylowembodiedcarbonastheyaremadefom
ClayRoofTiles
ClaytilesareastapleinUKandcan withstandharshclimaticconditions (evenbetterthanconcretetiles).They arealsolonglasting,durable,andare easytoinstall.Theyaremadeusingclay whichisanaturallyoccuringmaterial andhencehavealowembodiedcarbon. Theyarewidelyavailablethroughout theUKandcanbesourcedlocally.
RockWoolInsulation
RockWoolinsulationisusedwithinthe internal,non-loadbearingwallsinthe apartments.Rockwoolismadeusing basaltandsteelslag.Itissustainableand wideleyavailable.Itshighdensitygives italowu-valueandlowerssoundtransmissionsandairflow.Itrepelswater whichmakesitmoldandmildewresistant.Unlikefibreglass,rockwoolinsulationdoesntcauseanyskinirritation.It isalsoknowntokeeprodentsaway.
ExpandedPolystyreneInsulation
ExpandedPolystyreneInsulation (EPS)comesinrigidboardsthatcanbe applieddirectlyabovetheDPMlayerbelowtheconcreteslab.Itprovidesexcellentthermalinsulationandis exteremelydurableandmoisture reistant.ESPcosteffectiveandefficent. Itisalsoeasytotransportaandishighly versatile.
LIFECYCLEASSESSMENTFOR1ROW
Theembodiedcarbonofonerowofhousingconsistingof4StudioFlats,4OneBedroomFlatsand 4TwoBedroomFlatsis456TonsofCO2e.
Therowhasagrossinternalfloorareaof840m2 andisbuiltusingStructurallyInsulatedPanelsandisexternallycladwithclaybricks.ThefoundationisinsulatedwithExpandedPolystyreneInsulationandadditionalglasswoolinsulationis usedtoinsulatetheatticspaces.AllmaterialsusedaregenericandaremanufacturedintheUK whichsignificantlyreducesembodiedcarbonofproductionandtransportation. TherowofhousingwillbeconstructedusingStructruallyInsulatedPanels(SIPs)withaBrick cladding.Thestructureis3floorshighandhasaslopingroofwithanatticspace.
GWP:GlobaWarmingPotential
AP:Acidification
EP:Eutrophication
ODP:OzoneLayerDepletion
POCP:FormationofOzoneofLowerAtmosphere
TUOE:TotalUseofPrimaryEn
Bio-CO2:biogenicCarbonStorage
Acidification
Acidificationoccurswhensulphur,nitrogen, andcarboncompoundscontaminatelandand oceanscausingthemtoacidify.
Eutrophication
Eutrophicationistheprocessbywhichanentirebodyofwater,orpartsofit,becomesprogressivelyenrichedwithmineralsandnutrients,particularlynitrogenandphosphorus.
BiogenicCarbonStorage
Biogeniccarbonisthecarbonthatisstoredin biologicalmaterials,suchasplantsorsoil.UsingmaterialssuchastimberwithhighBiogeniccarbonstoragehelpskeepcarbonoutof theatmosphere.
Thelifecycleofrawmaterialsusedandtheoperationalenergyhavethehighestimpacton theenvironment.ThetimberusedinStructurallyInsulatedPanelscontributepositivelyto Biogenicstorageofcarbon.Therearemany otheraspectstothisdesignwhichwillnegativelycontributetotheenvironmentthrough acidification,eutrophication,ozonelayerdepletion,andincreaseglobalwarming.
Theprimarybuildingmaterials usedinthisbuildinghasthe highestamountofembodied carbon.Thebuildingsmakeuse ofStructurallyInsulatedPanels (SIPs)whichwerenotavailable intheOneClickLCAcatalogue.SIPspanelsconsistofRigidpolyurethaneinsulationsandwiched betweenorientedstrandboards.Sincethesecomponentswerecalculatedindividually,thereisa chancetheydisplayhigherembodiedcarbonvaluesthanactualSIPspanels.
OtherthanthePolyurathaneinsulation,thebrick facade,rooftiles,andEPSinsulationusedinthe foundationseemtohavehighembodiedcarbon values.
Theapartmentsarepoweredfullybyelectricity andhavealowoperationalenergyconsumptionof 20kWhpersquaremeterperannum.Thesolar panelsrequiredtopowerthebuildingwascalculatedinthenextstageanditwasfoundthatthe kwp(kiloWattPotential)forpanelsexceededthe requiredamountwhichpotentiallymakestherow carbonnegative
EMBODIEDCARBON&LIFECYCLEASSESSMENT
LIFECYCLEASSESSMENTFOR1ROW
Theembodiedcarbonofthebuildingcanbesignificantlyreducedbyreplacingsomematerialswith oneswithalowerlifecycleemissions.
ExtrudedPolystyreneInsulation(EPSinsulation canbereplacedwithExpandedPolystyreneInsulation(XPS)insulation;theVinylFlooringcanbe replacedwithCeramictiles;andnaturalstone couldbeusedinsteadofbricktocladtheexterior.
Additionally,alltheelectrictytopowertherow couldbeoffsetbyinstallingsolarpanelswhich wouldbeconnectedtothegridinordertoensure areliablesupplyofelectricty.
Theserowhousesaredesignedtobereplicable. Onerowofhousingcanbebuiltandtestedbefore theconstructionforthesecondrowcanbegin. Furtherchangesonmaterialsandbuildingtechniquescanbemadeafterthepost-construction evaluationtoimprovethelifecyclecarbonandthe overallperformanceoftherowofapartments.
EPSvsXPS
EPS:46tons
XPS:31tons
CarbonSavings:15tons
15tons ofcarbonemmissionscanbereducedifthefoundation isinsulatedusingExtrudedPolystyreneInsulation(XPS)insteadofExpandedPolystyreneInsulation(EPS).BothEPSand XPShavegreatthermalpropertieswhichmakesthemsuitable forinsulatinggroundslabsdirectly,XPShasgreatercompressivestrengththanEPSwhichmakesitmoreefficient.XPSalso performsbetterinregionswithawetclimateasithasahigher vapourdiffusionresistancevalue.
VinylFloorvsCeramicTiles
VinylFloor:1.9tons
1.859tons
flooringisreplacedwithceramicfloortileswhichisabetter conductorofheatandismoresuitedtoworkincombination withunderfloorheating.Vinylfloors,althoughcheapandeasy toinstall,arenotentirelydurableandcanemitvolatilecompounds(VOCs).Ceramictilesareaffordable,versatile,andfire resistant.Theyarealsohighlydurableanddonotcauseany harmtothehealthoftheoccupants.
BrickvsNaturalStoneCladding
BrickCladding:69tons
NaturalStone:41tons
CarbonSavings:28tons
28tons ofcarbonemmissionscanbereducediftheexternal claybrickcladdingcanreplacedwithanaturalstonecladding whichhasahighthermalmassandverylowembodiedcarbon. NaturalstonesareavailablewidelythroughouttheUKand havebeenusedinconstructionforcenturies.Theyareweather resistantandoffersimilaradvantagesthatbrickdoes.Itisnaturallyoccuringandtheonlycarboncostinvolvedisthecostof extractionandtransportationwhereasclaybricksneedtofuel tobebaked.
SOLARPANELCALCULATIONS
PERFORMANCEOFGRIDCONNECTEDPVPANELS
Thetypicalwattageofaresidentialsolarpanelperunitisaround300w,thisfigurecouldbemoreorless thanthisvalue.Theannualenergyconsumptionoftheproposedbuildingisestimatedtobe20kwh/ m2/yr.thisvaluetranslatestobeapproximately15,580kwh/yr,consideringthetotalfloorareaof779 sqm.
Fromthetablebelow,itwasestimatedthateachunitinabuildingblockwouldneed2kwp(kilowatt peak)ofsolarPVsystemconsistingof8(250w)panels.
Consequently,acombinedtotalof24kwpofsolarPVsystemconsistingof96(250w)panelswouldbe neededtogenerateelectricityforthe12units,inabuildingblockforaperiodofoneyear.Estimatedannualenergyoutputbycalculationis20,200kwh.
ThisassumptionformsthebasisforthePV(gridconnected)resultspresentedbelow.
SUMMARY
FabricUValues(W/m2.K)
Walls 0.09
Floor Ground 0.08
Intermediate 0.13
Roof 0.08
Windows 0.78(Trippleglazed)
FormFactor Energyconsumption
Thermalenvelope/Heatlossarea(HLA)SQM
Wall Roof Adjoiningwall
North 316.42 137.14
South 316.42 137.14
West 75.67 21.40
East 75.67 21.40
Total 784.18 274.28 42.80
Window-to-wallarearatio
North 16.31
East 1.09
South 25.71
West 4.14
Efficiencymeasures
Airtightness 0.4(m3/h.m2@50Pa)
HLA 1101.26
GrossFloorAreaSqm
Treatedfloor
Floors Area Total 75%Grossfloor
Ground 351.66 778.62 First583.97 351.66
Second 75.30
Form Factor= HLA/TreatedFloorArea 1.89
Formfactoris theratioofsurfaceareathatcanloseheat(thethermalenvelope)tothefloorareathatgetsheated(TFA).Inotherwords,theHeat LossFormFactorisausefulmeasureofthecompactnessofabuilding. Andthemorecompactabuildingis,theeasieritistobeenergyefficient.
TheHeatLossFormFactorisanumbergenerallybetween0.5and5,with alowernumberindicatingamorecompactbuilding.Passivhausbuildings aimtoachieve3orless.Herethebuildinghasaformfactorof1.89which isreallyagoodvalue.
Energyper totalbuilding area(Kwh/m2/ year)
Energyper conditioned buildingarea (Kwh/m2/year)
2bedrooms 19.78 20.48
Eastside
Studio(Total) 26 29.36
Studio1(inner) 29.70 29.70
Studio2(outer) 31.31 31.31
1bedroomFF 21.62 24.71
1bedroomSF 25.71 29.44
Westside
Studio(Total) 26.02 29.38
Studio1(inner) 29.69 29.69
Studio2(outer) 31.33 31.33
1bedroomFF 22.18 25.34
1bedroomSF 25.83 29.58
Thetypicalunitvaluesareasshownabove.However,onoverall simulation,designbuildershowedanannualenergyperformance of17Kwh/m2/yrforthewholeblock.Thevaluesshownabovewere receivedwhenthesimulationsweredoneseperatelyforeachunits.
RENDEREDVIEW
RENDEREDVIEW
CONCLUSIONS
Thisprojectrequiredextensiveresearchandmodellingtodeterminethebestpossiblebuildingsolutionsthatwould helpcreateanenvironmentally,socially,andeconomicallysustainabledesign.Thebuildingisanetzerocarbon (possiblycarbonnegative)andhasalowlifecyclecarbon.Theenergyconsumptionisalsoquitelow,at approximately20kWhperm2perannum.
Thedesignbeganwiththeoptimizationoffloorplansandwindowstoreduceenergyconsumptionbymodelling themonDesignBuilder.Sustainabledesignstrategiesandpassivestrategieswereimplementedtoconsolidatethe design.Thebuildinghasacompactformfactorof1.8andthelowu-values.Thebuildingismostlyheatingdominated andwillbeheatedusingAirSourceHeatPumpsalongwithanMVHRsystem.Duetothehighefficiencyofthefabric andsystems,verylittleenergywillbespentonheatingthebuilding.AirSourceHeatPumpscanalsobeusedfor coolingonhotsummerdays.Thereareotherpassivestrategiesinplacetotackleoverheatingduringthesummer, suchasretractableshadingdevices.TheprojectmakesuseofPVpanelstopowerthebuilding. Thisprojectisveryefficientandmakesuseofsafematerialsthatarelocallyavailableandeasytotransport.Withthe useofSIPsPanels,constructionisalsomadeeasy.Thebuilding’ssimpledesignandstandardfloorplansensuresits replicability.Thisschemewouldhelpcreateatightknitsocialhousingcommunitywhereresidentscouldlivea comfortable,healthy,andself-sufficientlifestylewithoutanyworryaboutpriceofenergy.
INTRODUCTION
Introduction
Theglobalclimateischangingandwillcontinuetochangeoverthenext severaldecades.Inordertocopewiththesechanges,buildingsmustbe resilientandadaptabletofutureclimaticandweathercondition.
Improvingtheenergyperformanceofbuildingswillgreatlyhelpmitogate climatechangeaslessfossilfuelswillbeburntand,asaresult,therewillbe areductioninCO2emmissions.
UnitedKingdomliesinatemparateregionandisstillmostlyheating dominatedbutduetoclimatechange,thesummersarebecomingwarmer andcombinedwithothermicroclimaticfactorssuchgasurbanheatisland effect,manybuildingsexperienceoverheating.Londonandsomeofits surroudingcountiesseetheworstofthis.Fuelpovertyisalsoabigproblem manyhouseholdsfaceduringwinters.
Thisreportaimstoupgradetheenergyperformanceofanofficebuilding situatedinWycombe,UK.
Thefirstsectionofthisreportwillbrieflyreviewanthropogenicclimate change,thestudyofclimatethroughcomputermodelling,andfuture climatescenariosanditsimplicationsonbuildings.
Next,asiteanalysiswillbeconductedontheofficebuildingfollowedbya thoroughclimateanalysisbasedonthecurrentandfutureRepresentation ConcentrationPathwayscenariosofRCP2.6,RCP4.5,andRCP8.5fprthe yearsfor2050and2080.
TheLETIretrofitmanualwillbeusedasaguidelineforthisproject.The officebuildingwillbemodelledonDesignBuilderandretofitted componentswillbeaddedoneatatimeandthebuilding’sperformancewill beanalysedandassessed.
AnthropogenicClimateChange ComputerModelling
Historically,climatechangehasalwaysoccurredslowlyovermillionsof years.Studiesonclimatechangehaveconsistentlyshownthathuman activityhasbeentheleadingcauseoftherapidincreaseinglobal temperatures.TheTheoryofAnthropogenicClimateChangewasbacked byconcreteprooffrommanyground-basedreportsandsatellite measurementsoflandandocean.Thereisevidencethatmostofthecurrent changestoclimateisduetoburningfossilfuels,whichtendtoemitlarge amountsofgreenhousegasesthattrapshortwaveradiationemittedfrom thesunwithintheEarth’satmosphere.Othercausesincludeuseof aerosols,changesinreflectanceduetolanduseandmeltingicecaps, agriculture,anddeforestation.
Variationsintheclimatesystembecomegreaterduetoglobalwarming. Theyincludeincreasesinthefrequencyandintensityofhotextremes, marineheatwaves,heavyprecipitation,and,insomeregions,agricultural andecologicaldroughts;ariseintheamountofseveretropicalcyclones; andadecreaseinArcticseaice,snowcoverandpermafrost.
ThesixthIPCCassessmentreportstatesthatbuildingsaresolely responsiblefor21%ofglobalgreenhousegasemissionsofwhich57%were indirectlyemittedfromoffsitegenerationofheatandelectricity,24%were directemissions,and18%wereembodiedemissionsfromproductionof cementandsteel.
Generalcirculationmodels(GCMs)arecomputermodelsthatwere developedtounderstandthefutureclimatechangeandnaturalclimate changesthathaveensuedoverthecourseofhistory.
Coupledatmosphere–oceanglobalcirculationmodels(AOGCMs),also knownasanearthsystemmodelsimulatethephysical,chemicaland biologicalprocessesoftheentireglobalclimatesystemincludingthe atmosphereandoceans.Thefactorsthatareaccountedforinclude atmosphericandoceaniccirculationpatterns;effectsofclouds,water vapour,landandseaice,greenhousegases,atmosphericaerosols;impactof volcaniceruptions;andtheuptakeofCO2bytheoceansandbiosphere.
ClimatemodellingcentresworldwidemakeuseofAOGCMstogenerate climatechangeprojectionswhicharesynthesisedandsummarisedbythe IPCC.
Computermodelscalculatethedifferentpropertiesofclimatesuchas atmospherictemperature,pressure,wind,andhumidityonmanydifferent pointsoftheearth’sonathreedimensionalgrid.Thegridsquareswhich wereformerlyaround200kmby200kmarenow25kmby25kmallowing scientiststoobserveindividualweathersystemssuchasstorms.
Scientistsrelyonclimatemodelsastheyaretestedandtheirresults comparedandverifiedwithdatacollectedfromtherealworld.The simulationscreatedbyclimatemodelsarecomparedwithactualclimate datafromtheearth’satmospheretotesttheaccuracyoftheseclimate modelswhicharethenusedtopredictthefutureclimate.Climatemodels arealsotestedthroughsimulationofpastevents.Theseclimatemodelsare basedonphysicsandscientificprinciplessuchastheconservationof energy.Althoughthereisalwaysasmallmarginoferrorthatisexpected whenitcomestopredictingclimate,computersimulationshavebeenused toaccuratelypredictclimateoccurrencessuchastheelniñophenomenon.
Theeffectofglobalwarmingontheearth’sclimatecanbesimulatedand calculatedfordifferentscenariosusingcomputermodelswithgreat accuracy.Thesemodelsareofhighimportanceinthefieldofarchitectureas buildingsmustbedesignedwiththefutureclimateinmindiftheyareto lastforatleast50to100yearswhilebeingclimateresilient,sustainable,and adaptabletoachangingclimate.
WYCOMBE-EXISTINGBUILDING
CLIMATECHANGECAUSEDBYBUILDINGS
Oneofthefundamentalfunctionsofbuildingsistomodifytheexternal climateandprovideacomfortableplaceforhumanstoinhabit.Climatehas animportantroleinthedesignofabuilding.Climateisprojectedtochange duetoanthropogenicactivitiesandinordertodesignbuildingsthatare resilienttoclimatechangeandadaptabletofuturescenarios,itisvitalto understandwhatfutureclimatesmaylooklike.
Thedevelopmentofclimatechangescenariosbeganwithemissions scenarioswhicharebestdescribedasstorylinesforfutureemissionsof greenhousegasesandotheranthropogenicfactorsaffectingtheclimate.
SpecialReportonEmissionScenarios
SpecialReportonEmissionScenarios(SRES)wereusedinearlyIPCC reportstorepresentarangeofconceivablefuturescenariosforglobal greenhousegasemissionlevels.Thesesixscenarioswerecreatedbasedon assumedprojectionsforpopulationgrowth,technologicaladvancement, globalizationandsocietalvalues.
TheA1scenarioassumesafutureofglobalizationandrapideconomicand technologicalgrowthincludingfossilfuelintensive(A1FI),non-fossilfuel intensive(A1T),andbalanced(A1B)versions.TheA2scenarioassumesa dividedworldwithgreateremphasisonnationalidentities.TheB1andB2 scenariosassumeasustainableutopia,B1withaglobal-focusandB2witha moreregional-focus.
Whilesomeofthesescenarioscompriseofgenericnotionsofsustainability andenvironmentalprotection,thescenariosdonotenvisionexplicit attemptstostabilizeCO2concentrationsatanyparticularlevel.Dueto theirsocialcomponent,thesescenariosaredifficulttoaccuratelymodel.
RepresentationConcentrationPathways
TheRepresentationConcentrationPathways(RCPs)replacedSRESinthe FifthAssessmentReportin2013.Thesepathwayscouldpotentiallybe realizedwithmultiplesocioeconomicscenariostakeintoconsideration climatechangemitigationpoliciestolimitemissions.Theywerecreated with'integratedassessmentmodels'whichincludeclimate,economy,land use,demographic,andenergy-usageeffects.Carboncyclemodelswerethen usedtoturntheirgreenhousegasconcentrationsintoanemissions trajectory.
TheRCP2.6scenariorequiresextrememeasurestomitigationof greenhousegasconcentrations.Itpeaksduringthe2040sandgradually declinesby2100.TheRCP4.5andRCP6.0scenariosstabilizeafter2100.
TheRCP4.5andSRESB1scenariosarequitesimilar.RCP6.0issomewhere betweentheSRESB1andA1Bscenarios.TheRCP8.5scenarioistheclosest tocontinuingwithoutmakinganychangesinfossilfuelusageandissimilar toSRESA2by2100.
Inallthepathways,globalpopulationlevelsofforstartstodeclineby2100, withapeakvalueof12billioninRCP8.5.Grossdomesticproduct(GDP) increasesinallcases.TheRCP2.6pathwayhasthehighestGDP,although ithastheleastdependenceonfossilfuelsources.CO2emissionsinall pathwaysotherthantheRCP8.5scenariopeakby2100.
TheSpecialReportonEmissionScenarios(SRES),usedintheUKCP09 projections,didnotincludeanypoliciestolimitclimatechangeandhence
didnotconsiderafuturewithclimatechangemitigation.Theincreasing relevanceofmitigationscenariosledtothedevelopmentofanewsetof scenarios,theRCPs.
RCPseasecollaborationandcommunicationbetweenthescientific communitiesworkingonclimatechange,adaptationandmitigation. UnlikewithSRES,RCPsenablethecostsandbenefitsoflongtermclimate goalstobeevaluated.RCPsarereferredtoas‘pathways’astheyarenot definitiveandunravelviamorethanoneunderlyingsocioeconomic scenario.
ClimateChangeintheUK
Climatechangewillhaveadireeffectontheoperationalenergy consumptionofbuildings.Naturallyventilatedbuildingsmayexperience overheating,consequently,lowenergycoolingsystemsmaynotbeable createacomfortableinternalatmosphere.Mostbuildingsaredesignedto withstandtheclimateformanydecadesandprovideacomfortableindoor climate.Itisimportanttoaddressclimatechangeandtheeffectoffuture climateonpresentbuildingstoextendthelifespanofnewandexisting buildings.
Ithasbeenestimatedthatbuildingsaccountforabout45%ofthetotal energyconsumptionintheUK.Thereissubstantialneedandpotentialto reduceemissions.UKisstillacoolingdominatedcountryandalthough manyregionsexperienceoverheatingduringsummers,it’snotentirely economicallyorenvironmentallyfeasibletoaddmechanicalcoolingto buildings.Thefabricofthebuildingmustbetackledinordertogain controloftheinternalclimateandpreventanyinfiltration.Passive measuressuchasstrategicshadingandoperablewindowscanbeaddedto furtherdecreaseoverheating.TheuseofMechanicalVentilationandHeat Recoveryunitsalongwiththeuseofheatpumpshavebecomeincreasingly commontechnologyinUK,especiallyinenvironmentallyconscious buildings.MVHRsystemsareastapleinanylowenergybuildingasthey increasetheefficiencyofheatingandcoolingsystems.
SiteAnalysis CaseStudies
Thebuildingislocatedinagatedofficepark communityinWycombe,UK.Thebuildingisoriented towardsthewestwhereitrecievessunlight throughouttheyearandwillexperienceatheeffects ofwind.ShadingwillberequiredalongtheSouthand Westtopreventsummeroverheating.Theopenings onthewestwillbeusefulltomaximisenaturalcross ventilationduringwarmermonths.Thebuildingfabric mustbeupgradedtokeepthebuildingwarmduring winter.
SWOTAnalysis
Strengths
•FormFactor–compactbuilding
Opportunities
•Toreduceheatingandcoolingdemandby
tripleglazing
•TointroduceanMVHRsystemtoimproveenergy efficiencywiththeaddedbenefitof
•Toreducedependencyonfossilfuelpowered heatingsystembyintroducingaHeatPump
•Useanon-renewableenergysource,solarpanels, topowerthebuilding
Weaknessess
HarvardHouseZero
ZetlandRoad
Threats
HarvardHouseZeroisaretrofittedpre-1940stimberframedofficebuilding.Theprojectaimedtocreateone oftheworld’smostambitioussustainablebuildings withrigidperformancetargets,suchas100%natural ventilation,100%daylightautonomy,andalmostzero energyrequiredforheatingandcooling.Theresultwill beaprototypeforultra-efficiency,reducingrelianceon energy-intensivetechnologywhilstcreatinga comfortableindoorenvironment.
ApairofVictoriansemi-detachedhousesinZetland Road,Manchester,receivedEnerPHitPlus certificationinNovember2018.Thelowenergy demandforspaceheatingachievedbyhighlevelsof insulationandairtightnessissupplementedwithan 11kWPVinstallation.Incombinationwithenergy efficientappliancesfurtherreducingdemand,the housesgeneratemoreenergythantheyconsume.The focusoftheretrofitwasonminimizingtheu-value whileincreasingsolargainalongwithairtightness.The buildingmakesuseofanMVHRsystemwithanadded woodburningstoveasabackup.
DesignApproach
TheLETIretrofitstandardsuggestsahierarchicalapproachtoreduce operationalenergyofanexistingbuilding:1.Reducethespaceheatingdemand andEnergyUseIntensityasfarasispracticableforthebuilding.2.Remove fossilfuelheatsourcesandreplacewithlowcarbonalternatives.LETIbelieves thatthemainoptionforthisoveratleastthenextdecadewillbeheatpumps. And3.Generaterenewableenergyonsitewhereverfeasible.
Afabricfirstapproachwillbefollowedinthisretrofitproject.Thewalls, floors,andceilingswillbefittedwithefficientmineralwoolinsulation.Any andallgapsandthermalbridgesintheenvelopewillbeinsulatedusingspray foaminsulation.Allwindowswillbefittedwithtriple-glazedelectrochromic windowswhichhelpsmaintaintheindoortemperatureandprevents overheating.TheheatingsystemwillbereplacedwithHeatPumpsandthe HVACsystemwillbeupgradedtoanMVHRsystemwhichwillrecover 70-90%oftheheatfromstaleairleavingthebuilding.AnMVHRsystem wouldalsoprovideacontinuoussupplyofpollution,pollen,anddustfree freshairandwouldalsoridtheinternalspacesofair-bornemicroorganisms. Theexistingthermalmasswillbeusefulinregulatingthemicroclimateofthe building.Duringthesummer,nightpurgingmayhelpcoolthebuildingforthe nextdayandthestairwellwillbeusedtoremoveexcessheatusingstack ventilation.
OPTIONAPPRAISAL
SprayFoam
InsulationMaterial HeatPumps
MineralWool
Advantages DisadvantagesAdvantages
•Expandsquicklyandfills smallcracksandcrevices withease
•Bestforcrawlspaces,knee walls,basementrimjoists
•Actsasanairsealantand preventsinfiltration
•HighR-valueofabout R-2.72percm
•Waterandsagresistant
•Long-lasting
•Expensive
•Propertymustbevacated foratleast12hoursduring installation
•Poorlymixedchemicals canpotentiallyleadto healthrisksandineffective insulation
•Naturallymoistureresistantandretainsits insulatingqualitieseven whenwet.
•Soundinsulating properties
•Burnsataveryhigh temperaturethusactsasa firebarrier
Disadvantages
•Protectivegearmustbe wornwheninstalling.
•Inhalinganyparticlesof mineralwoolcancause lungdisease.
AirSourceHeatPumps
Air-to-waterheatpumpstransferheatfromtheoutsideairinto waterwhichisthenusedtoheatbuildingsthroughradiatorsor underfloorpipes.Theyareextremelyefficientandcost-effective. Theyabsorblow-temperatureheatfromtheambientairdownto atleast-15degreesCelsiusandcanbeupto350%moreefficient thanfossilfuelboilers.Themechanismofanair-to-airheat pumpissimilartothatofanair-to-waterheatpumpandcan helptoheatandcoolaproperty.Thiskindofunittakesinheat fromtheoutsidewhichisthenamplifiedwithacompressor.The airisthenreleasedintothebuildings.
AlthoughbothEPSandXPShavegreatthermalpropertieswhichmakesthemsuitableforinsulatinggroundslabsdirectly,XPShas greatercompressivestrengththanEPSwhichmakesitmoreefficient.XPSalsoperformsbetterinregionswithawetclimateasithas ahighervapourdiffusionresistancevalue.
Disadvantages
andbedrock
GroundSourceHeatPumps
tifreezeliquidburiedundergroundwhichisthencompressed andusedtoheatindoor.Thesystemtransferstheheatabsorbed towaterwhichisdistributedthroughunderfloorheating. WhenlandisavailableGSHPsystemsarelaidinhorizontal trenchesthatareapproximately1-2metresdeep.Verticalboreholesareamoreexpensivealternativewhereholesaredugupto around150m.
Advantages
Advantages Disadvantages
andbedrock
WYCOMBE
CLIMATEANALYSIS
TemperatureRange
Graphshowsthatthisisaheating dominatedclimate.Theaverage highandlowtemperaturesare recordedinthemonthofJulyand January.FewhoursinMay,June, AugustandSeptemberfalls withincomfortzone.Whereas January,February,March, NovemberandDecemberarethe monthswithlowestrecorded temperatures.
RadiationRange
IlluminationRange
Thegraphcomparesthehighesttemperaturerangesof2050 and2080inthreescenarios(2.6,4.5,and8.5)tothecurrent temperaturerange
Incomparisonto2050and2080, theaveragehighesttemperature rangeincurrentscenariosis relativelylow.
2050: Themeanhighest temperaturesarerecordedinthe monthofJuneJulyand August.Thelowesttemperatures arerecordedin2.6scenario.The highesttemperatureisrecordedin 8.5scenario.
2080: 8.5scenariohasthehighest temperaturesofthescenarios.
Highintensityradiationsareresponsibleforrisein temperature.Theradiationofthehourlyaverageis showninthefigureabove.TherangeofDirectNormal RadiationisgreaterthanthatofGlobalHorizontaland TotalSurfaceRadiation.Thegraphdepictsthosehigh radiationsareonlyduringthemonthofMay,June,July andAugust.
Illuminationrangegraph-2022
Thegraphcomparesthelowesttemperaturerangesof2050 and2080inthreescenarios(2.6,4.5,and8.5)tothecurrent temperaturerange
Incomparisonto2022and2050, theaveragelowesttemperature rangein2080isrelativelylow.
2050: Thelowesttemperatureis recordedin4.5scenario.
2080: Thelowesttemperatureis recordedin8.5scenario. Thereisnosignificantdifference betweenlowesttemperaturesin 2050and2080asper2.6and4.5 scenarios.Howeverin8.5 scenario,thereisagradual progression
Thegraphshowstheradiationrangesof2050 and2080inthreescenarios(2.6,4.5,and8.5)tothecurrent
Theaveragehighestradiationrangein2050(2.6)is relativelylowincomparisonto2022and2080.
Thehighestradiationisintheyear2080(4.5)
Thegraphshowsthehighestilluminationrange
Highestilluminationisintheyears2050in2.6 and8.5scenariosandin2080in4.5scenario.
Thegraphshowsthehighestilluminationrange
Lowestilluminationisintheyear2050in2.6and 8.5scenarios
SkyCoverRange
Theaveragehighestandlowestsky coverin2022areinthemonthof OctoberandAugust.Whereas,in 2050and2080itchangeswith3 differentscenarios,i.e.
2050:2.6:Highest-November,
Lowest-August
4.5:Highest-December
Lowest-August
8.5:Highest-January
Lowest-July 2080:2.6:Highest-December
Lowest-August
4.5:Highest-March
Lowest-July
8.5:Highest-November
Lowest–August
Thewindvelocityhasremains consistentovertheyears,with nosignificantchanges.Even thoughthereisaslight increaseintheyear2080inthe south-eastdirection.
WindChart
Thegraphshowsthehighestskyrange
Themeanhighestskycoverwillbein2050 (4.5)and2080(2.6).
PsychometricChartAnalysis
Bycomparingthepsychrometricchartof2022,2050and2080in differentscenarios,itisclearthattherewillbeasignificant increaseincomforthoursasthetemperatureincreasesandmore hoursfallintocomfortzone.Thereisnosignificanteffectforsun shadingofwindowsinthecurrentand2050s.However,shading becomesimportantin2080sespeciallyin8.5-2080scenario.As thetemperatures,risesupinternalheatgainitselfcanbringlotof hoursundercomfort.Itbecomesoneoftheimportantdesign strategy.Highmassbuildingsperformsslightlybetterthanlow massones.Significanceofprotectingfromwindisreducedin futurescenarios.Thereisalargereductioninheatingdemandin futurewhereasthecoolingdemandisincreased.
Current 8.5-2080
TotalEnergy Heating Cooling
Heating
Itisobservedthatin2.6 scenariothetotalenergy demandofthebuildingreduces by2050andthenslightly increasesby2080.Thisis becauseinthisscenarioitis expectedthatquickactionare takenagainstclimatechange andthetemperaturesstarts improving.Inallother scenarios,theenergydemand decreasesoveryears.Therateof decreaseismoreforthe8.5 scenario.
Cooling
Heating
4.5 Heating
Cooling
Cooling
Itcanbeseenthat,by2080,the energyrequiredtoheatthe buildingreducesfrom36972 KWhto29632KWhin4.5 scenarioandfrom36972KWh to24901KWhin8.5scenario. Thetrendisslightlydifferentin 2.6scenario.Thereisno significantdifferencebetween 2050and2080inthisscenario. Because,thisscenarioexpects thatnecessaryactionsaretaken againstglobalwarmingandso therewon’tbesignificantrisein temperature.
Cooling
Itcanbeseenthat,by2080,the energyrequiredtocoolthe buildingincreases.Thebuilding thatrequiredlessthana1000 KWhtocool,requiresmore than3000Kwhin2080asper 4.5scenarioandgreaterthan 7000Kwhasper8.5scenario.A similartrendasbeforeisseenin 2.6scenario.Thoughtheenergy requiredforcoolingincreasesin 2050,itthenstaysalmostthe samein2080.
Overheating
In2006,TheCharteredInstituteofBuilding ServicesEngineers(CIBSE)definedoverheatingas conditionswhenthecomfortableinternal temperaturethresholdof28°Cissurpassedfor morethan1%ofoccupied(working)hoursor where25°Cissurpassedfor5%ofoccupied (working)hours.
Schedule
Month Monday
January 8to18 8to18 8to18 8to18 8to18 8to18
February 8to18 8to18 8to18 8to18 8to18 8to18
March 8to18 8to18 8to18 8to18 8to18 8to18
April 8to18 8to18 8to18 8to18 8to18 8to18
May 8to18 8to18 8to18 8to18 8to18 8to18 Off
June 8to18 8to18 8to18 8to18 8to18 8to18 Off
July 8to18 8to18 8to18 8to18 8to18 8to18 Off
August 8to18 8to18 8to18 8to18 8to18 8to18 Off
September 8to18 8to18 8to18 8to18 8to18 8to18 Off
October 8to18 8to18 8to18 8to18 8to18 8to18 Off
November 8to18 8to18 8to18 8to18 8to18 8to18 Off
December 8to18 8to18 8to18 8to18 8to18 8to18 Off
No.Ofholidays-8days
Groundfloor
Accordingtothisrule,thoughtherearefewhours ineachzonethatgoesabove25degrees,thereare nozoneshasmorethan5%oftheoccupiedhours abovethistemperature.Thegraphaboveshows the%ofhoursthatgoesabove25degrees.Hence groundfloordoesn’thaveoverheatingissuesboth incurrentandanyofthefuturescenariosaswell.
Aspertheschedule,totalnumberofoccupied hoursinayearis3024.Thesimulationsand analysiswererunonlyforthisoccupiedtime period.
Inthecurrentscenario,thereareveryfewhours thatgoesabove25degreesandnohoursgoes above28degrees.Butby2080sasper8.5scenario, fewhoursgoesabove25degrees.Butstillstays lessthan2%.
of hours above 25 deg
Overheated zones
OVERHEATINGANALYSIS
FirstFloor
Asperthethreshold,therearemanyzonesin1st floorthathas morethan5%ofhoursabove25degrees.Butthenumberof hoursabove28degreesstayslessthan1%incurrentandall thefuturescenarios.
NohoursinZone7andZone9goesabove25degrees.Few hoursinZone8and10goesabove25degrees,butthereareno overheatingissuesas%ofhoursstaysbelow5%.Zone 1,2,3,4,5,6,11,12,13and15hasoverheatingissues.Forzone1 and13overheatingissuesoccuronlyin8.5scenariosand mostlyin2080.ButforZone2,3,11,12,13and15,thoughthere arenooverheatingissuesinthecurrentscenario,thereis problemsfrom2050sinallthescenarios.Whereas,Zones 4,5and6areoverheatedrightfromthecurrentscenario.
Thezonesthatfacesoverheatingissuesarehighlightedinred inthebottomrightcorner.Fromthisitcanbeobservedthat thesidethatfacessouth-westdirectionhasthemost overheatedhours,followedbythesouth-eastside.
Thereforestrategieshavetobedevelopedinordertoreduce theoverheatedissues.
Overheated zones
WYCOMBEBUILDING-RETROFITOPTIONS
ROOF
Theeffectofafloorabovewasobservedfromthetemperatureanalysis ofthebuilding.Groundfloordidn’thaveanyoverheatingissues, whereasfirstfloorhadsevereoverheatingissues.So,thefirstretrofit optionconsideredwas,changesinroof.Addingatrussroofontopof theexistingroofwasthefirstoptionconsidered.
Itwasobservedfromthepreviousgraphsthatthezonewith maximumoverheatingproblemisZone6.Henceeffectofeachroof optionswerequantifiedbasedonchangesinZone6.Also,theyear thathasmostnumberofoverheatedhoursis2080in8.5scenario.In additiontothattheoverallenergydemandwasthehighestforthe currentscenario.Hencetheeffectsofallretrofitoptionstothe buildingiscomparedinthese2scenarios.
Thefirstoptionconsideredwasaddingatrussroofontopof theexistingroof.Thesidesoftheaddedspaceconsistsof operablewindows.
Option1 Option3
Inthisoption,insulationlayersareaddedtotheexistingflat rooftoimprovetheUvalue.ThenewUvalueisasperLETI exemplarretrofittarget-0.12W/m2.K.
Thenextoptionhasthesametrussroofonthetopofthe existingroof,butthesidesoftheaddedspaceiskept completelyopen.
Option2 Option4
Inthisoption,isthecombinationofOption1and3.The existingroofisimprovedtoaUvalueof0.12andinadditionto thattrussworkisalsoadded.
Thenewlyaddedspacewasnotaddedinthethermal calculations,becausetheprimaryaimwastoassesstheeffect ofthisnewlyaddedspaceinthefirstfloor.Theenergy consumptionofthebuildingswerecomparedwithexisting energyconsumptionandtheoverheatedhourswerecompared withthe8.52080scenario.Thefirst2optionshadsimilar performancebothinenergyconsumptionandoverheated hours.Theyhelpinimprovingenergyconsumptionand overheatedhours.Butthebestperformanceintermsofenergy andoverheatedhoursisgivenbyOption3.Inoption3the energycomesdownto128.64Kwh/m2/yearfrom168.73Kwh/ m2/year.Withthisimprovement,thereisnooverheatedhours in2080scenario.Hence,theaimofoption4wastoaddtruss rooftoOption3,tocombineadvantagesofboth.Butno significantreductioninenergyandoverheatedhourswastobe foundevenafteraddingtruss.SoOption3seemstobethebest.
WYCOMBEBUILDING-RETROFITOPTIONS
Energy Comparison
Ofalltheoptions consideredforroof, Option3performs better.Option4of addingtrussroofon topofretrofitted roofhelpsin reducingenergy, butveryless(2 KWh/m2/year).
Thisisnotasignificantreductionandsoaddingtruss roofdoesnotmakeaconsiderableimpact.Hence Option3waschosenforthefurtherstudy.Thelayers ofretrofittedroofisasshownabove.
Roof Walls
Thenextoption consideredwas improvingthewall insulationinthe interiorlayers.LETI exemplarretrofit targetforwallsis 0.15W/m2.K.Hence wallswere improvedtoachieve thisUvalue.
Insulatingthewallsandmakingthestructureairtight hasbeenfoundtolowerenergydemand.However, differentfromotheroptions,theenergydemandin 8.5-2080scenarioishigherthancurrentdemand whenbuildingismadeairtight.Furtherstudieswere donetoidentifythereasonforthisshiftinpattern.
Abovegraphquantifiestheeffectofboththeoptionsonthepercentageofoverheated hours.WhentheUvaluesofthewallsareimproved,ithelpsinfurtherreducingthe numberofoverheatedhours.Butwhenthebuildingismadeairtightthenumberofhours above25degreesincreases.Thisisbecause,theimprovedair-tightnessmakesthe buildingwarm.Thiswillleadtotheincreaseincoolingloads.Figuresalsopointsoutto theimportanceimplyingproperventilationstrategiesforsuchairtightbuildings.
Uvalue-0.15W/m2.K
PURpolyurethaneboardsareusedforthesimulations, howeverotherinsulationoptionsarealsodiscussedin thisstudy.Referpage5. Afterimprovingwallinsulationandanalyzing changes,theairtightnessofthebuildingwas improvedtomeetLETIexemplarretrofittarget-0.1 ach@50Pa.Theeffectofimprovingairtightnesswas analyzedseparately.
AirTightness
2optionswerestudiedtoquantifytheeffectof improvingUvaluesofthewallsandimprovingair tightnessofbuildings.Inoption1,onlytheUvaluesof thewallswereimproved.WhereasinOption2,both Uvaluesofthewallsandair-tightnessofthebuilding wereimproved.
Acomparisonofimprovedwallandimprovedwall&air-tightness optionsweredoneinbothcurrentand8.5-2080scenariostoidentify thereasonfortheincreaseinoverallenergyin8.5-2080scenariowhen thebuildingwasmadeairtight.Itcanbeclearlyobservedfromthese graphsthattheoverallheatingdemanddrasticallyreducesandthe coolingloadisincreasedwhentheair-tightnessofthebuildingis improved.Inadditiontothatcoolingloadsincreasein2080s.Different fromotheroptions,thisleadstoslightlyincreasethetemperaturein8.52080thancurrentscenario.
Boththe‘improvedwall’and‘improvedwall&air-tightness’options werecomparedseparately.Forbothcurrentand2080scenarios, improvingtheair-tightnessofthebuildinghassignificanteffectin reducingheatingdemands.Thereisnegligibleeffectoncoolingloads andnoeffectonotheraspects.Thisshowsthatifthebuildingsaremade airtight,properventilationstrategiesmustbeemployed.Elsethatwill leadtooverheatingandincreaseinenergyconsumption.
WYCOMBEBUILDING-RETROFITOPTIONS
FLOORS-GROUNDFLOOR
Groundfloor
Energy comparison
Energy comparison
Thenext interventionwas madetoground floor.Generally uninsulated groundfloorsare responsiblefor largenumberof coldhoursinthe building.So improvingground floorcanhave significanteffect onthebuilding. So,insulationwasaddedtothegapsbelowthe existinggroundfloorslabtoachieveLETIexemplar retrofittargetforfloors-0.15W/m2.K.Theeffectof thisimprovementinenergyperformanceandover heatedhourswerequantified.Theresultsare comparedwiththeresultsofthepreviousintervention toseewhatdifferencethisbringstothebuilding.
Uvalue-0.150W/m2.K
Improvingthegroundfloorhasconsiderableeffectsonheatingand coolingloads.Itdrasticallyreducestheheatingdemandbothincurrent and8.5-2080scenario.However,thecoolingloadisslightlyincreased incurrentscenarioanddrasticallyincreasedin2080scenario.
First floor %
Improvingthegroundfloorinsulationreducestheenergydemandin thecurrentscenarioto101.43Kwh/m2.However,theenergy demandinthe8.5-2080scenarioincreases.Theincreaseisevenmore thanthepreviouscondition. Improvingthegroundfloorinsulationhadasignificanteffectontheoverheatedhoursin eachfloors.Plottingtheoverheatedhoursshowsthat%ofhoursabove25degrees drasticallyincreased.Theincreaseisevenmorethantheperformanceofexistingbuildingin 8.5-2080scenario.Thisresultspointsouttotheneedofobservingtheeffectofthis interventioningroundfloortemperaturesaswell.
Whentheoverheatedhoursingroundfloorwasplottedagainsttheperformanceofexistingbuilding,itis observedthatthebuildingfacesseriousoverheatingproblems.Therewasnooverheatinginthebuilding previously.Thisshowsthattheuninsulatedgroundfloorwasresponsibleforcoolertemperaturesinsidethe building.Whenitisproperlyinsulated,ithelpsinreducingtheheatingdemand.However,itleadsto overheatedhoursinsummersandfuturescenarios.Thisissueneedstobeaddressedinfurtherinterventions.
WYCOMBEBUILDING-RETROFITOPTIONS
INTERNALPARTITIONS
Internalpartitions
Uvalue-0.858W/m2.K
Theeffectof improving internal partitionswere analyzed.10mm insulationboards wereaddedon eithersideof existing partitionsto improvetheU valuefrom 1.639 W/m2.Kto0.858W/ m2.K.
Theeffectofthisinterventionisquantifiedand comparedwiththepreviousintervention.
Energy comparison
Annualenergygraphshowsthattheoverallenergyslightlyincreases bothincurrentand8.5-2080scenarios.Inthecurrentscenarioit increasesfrom101.43KWh/m2to101.69KWh/m2.In8.5-2080 scenario,itincreasesfrom111.65KWh/m2to111.74Kwh/m2.
Energybreakdownshowsthat,thisinterventionslightlyincreasesthe heatingdemandincurrentand8.5-2080scenarios.Coolingdemandis slightlyseentoreduceinbothcurrentandfuturescenarios.Onlya negligibleeffectisseenwiththisimprovementininternalpartitions.
Overallitcanbeobservedthat,improvingtheinternalpartitions,slightlyincreasesthenumberofover heatedhoursinsomezone.Anegligibledecreaseisalsofoundinsomezones.Howevermostofthehours liesjustabove25degreesandthenumberofhoursabove26degreesandtemperatureabovethatisslightly reduced.
Firstflooralsoshowsthesametrendbyimprovingtheinternalpartitions.Overallheated hoursincreases,butmostofthehoursliesin25degreesband.Thisisthereasonforhaving increasednumberofoverheatedhours,butslightreductioninthecoolingdemandsin currentandfuturescenarios.
WYCOMBEBUILDING-RETROFITOPTIONS
OPENINGS
Windows
Uvalue-0.780W/m2.K
LETIexemplarretrofittargetforwindowsis0.8W/ m2.K.Hencetheexistingdoubleglazedwindowsthat hadaUvalue-2.761wasreplacedwithtrippleglazed unitswithUvalue-0.780W/m2.K.Theeffectof trippleglazedwindowsineachzoneswereanalyzed andcompared.
Makingthewindowstrippleglazedbringsdownthecurrentenergy demandfrom101.69KWh/m2to87.78KWh/m2.However,thereis verylessenergyreductionin8.5-2080scenario.Differencebetween theenergiesincurrentand8.5-2080scenarioalsoincreases.
Trippleglazedwindowshelpsinreducinglightingenergydemand bothincurrentandfuturescenarios.Thereisdrasticreductionin heatingdemandwhereasthecoolingloadalsoincreasesaccordingly. Thisbecomesthereasonforincreasedenergydemandin8.5-2080.
Makingthewindowstrippleglazedhastremendouseffectonthenumberofoverheatedhoursinthe building.Thefiguresarealmostdoubledthanthepreviousoptionsandthisleadstotheincreasedcooling demand.Thereinincreaseinthe%ofhoursthatgoesabove28degreesaswell.
Firstfloortemperaturesalsoshowasimilarincrease.Thesefiguresalsopointsouttothe necessityofimplementingproperventilationstrategiesandshadingstrategiesinsummerto avoidoverheating.
WYCOMBEBUILDING-RETROFITOPTIONS LIGHTING
Lighting
Energy comparison
Energy comparison
TheexistingbuildingconsistsofmostlyT12 Fluorescent,halophosphate,lowfrequencycontrol lights.Thelightswerereplacedwithhighefficiency LEDlightswithlinearcontroltosaveenergy.Lighting hadconsiderablecontributiontotheinternalheatgain inthebuilding.Henceitsimpactwasquantifiedinall theaspects.
Thereisconsiderablereductionintheenergydemandbothin currentand8.5-2080scenarios.Thisshowsthatlightingstrategies haveastrongimpactintheenergyconsumptioninthebuildingsand thisimprovementcanbringahugedifference.
Lightingdemandconsiderablyreducesbothincurrentandfuture scenarios.Improvingthelightingslightlyincreasestheheatingdemand lowersthecoolingdemand.Reductioninthelightingenergy contributestotheoverallenergyreduction.
Improvingthelightingstrategiesconsiderablybringsdownthenumberofoverheatedhoursin groundfloor.However,itisstillhigherthantheexistingbuildingconditionsandhencefurther strategiesmustbeexploredtotacklethisissue.Alargedifferenceisseeninthezoneswith southwestexposure.
Numberofoverheatedhourshaveconsiderablereductioninthefirstflooraswell.Thispointsoutto thefactthattherewaslotofheatgainfromthelightingsystemsandimprovingthemhavea considerableeffectinreducingenergyconsumption.Improvinglightingstrategieshaveaconsiderable effectinenergyconsumptionandhenceitisanimportantstepwhenretrofittingbuildings.
WYCOMBEBUILDING-RETROFITOPTIONS
Option3performsbestofall
inreducingthenumberof overheatedhours. Percentageofoverheated hoursisreducedlessthan 5%inmostofthezones exceptZone11,whichhas southeastexposurealso.But stillthehoursaremorethan theoverheatedhoursinthe existingbuilding.The shadingiseffectivefor buildingonlyinthefuture scenarios.Theydon’tshow significantimpactinthe currentscenario.
InOption3,operablelouvershavebeenaddedtosouthwestside,thatcanbe deployedinthesummerperiodandsoutheastsideremainssameasoption2.
Option3performsbest ofall.Totalenergy almostremainssame forboththeconditions. Thereisslightincrease inlightingandheating energyinboth scenarios.Thereisa slightreductionfor coolingdemandin currentscenario, whereasthecooling demandisdrastically reducedinthe8.5-2080 scenario.
Asingroundfloor,Option3 performsbestinreducing numberofoverheatedhours. Overheatingisnot completelysolvedinanyof thezone,howeverthehours arecloserto5%exceptin zone11and15thathasgot south-eastandnorthwest exposuresrespectively.But differentfromgroundfloor, thenumberofoverheated hourshavecomedown drasticallythaninthe existingbuilding.
Groundfloor
ExceptinZone11, percentageofoverheated hourscomesbeloworcloser to5%.Zone11alsohave significantreductionin overheatedhoursfromthe previoussimulation.Further stepsneedtobetakento reducethenumberof overheatedhoursinZone11. Thoughshadingdoesn’t haveasignificantrolein currentscenario,theyare veryimportantinfuture scenarios.
EastOption3(E3)
NorthOption1(N1)
Inthisoption,anadditionalfinhasalsobeen addedtoshadefromsouthsun.
ThoughOption3performs best,thereisnosignificant differencefromOption2. Whentheenergyreducesfor the8.5-2080scenario,the energyincreasesforcurrent scenario.Abalancebetween boththeseisexpectedand henceOption2ischosenas thefinaldesign.Thereis slightincreaseinheatingand lightingdemandsinboththe scenariosandcoolingdemand reducesin8.5-2080.
Firstfloor
Asingroundfloor,shading helpsinbringingdown overheatedhoursinfirst floor.However,stillhours aregreaterthan5%.When comparedwithexisting building,performanceis improved.Itcanbeseenthat allthezoneshavesignificant reductioninthenumberof overheatedhoursthanthe previoussimulations.This showstheimportanceof shaddinginbringingdown overheatedhoursinwell insulatedbuildings.
WYCOMBEBUILDING-RETROFITOPTIONS
NorthSide
Lookingatallthegraphsit canbeobservedthatthereis nosignificantincreaseor decreaseintheenergy demandswhenshadingis introducedinthenorthside. Thereisnegligibledecrease andincreaseofenergy demandin8.52080and currentscenarios respectively.Lighting,heating andcoolingdemandsalso haveslightvariations.
Groundfloor Firstfloor
The%ofoverheatedhours arereducedinZone1, Howeverthepercentageof overheatedhoursarevery highbecausecoolingwas turnedoffduring simulationsasitisa bathroomspace.Thehours comesdownbelow5%in zone15andZone6alsohave animprovedperformance afteraddingshading.
Summary
Theeffectofallshadingstrategiesongroundflooraresummarizedinthisgraph.Zones1,2,11,12 and18stillhaveoverheatedhoursmorethan5%inthisworstcasescenarioof8.52080.Thehours aremorethanthehoursinexistingbuilding.
Sameasingroundfloor Zone1isToiletspaceand hencecoolingwasturned offduringsimulations.Both thezoneshavereductionin overheatedhours,however, thepercentageof overheatedhoursarestill higherthan5%.Further increasingtheshadingwill leadtoincreaseinlighting energy.
floor
Theeffectofallshadingstrategiesinfirstflooraresummarizedinthisgraph.Exceptzones7,8,9,10and 13allotherzonesstillhaveoverheatedhoursmorethan5%inthisworstcasescenarioof8.52080. Howeverthereissignificantimprovementinthanoverheatedhoursintheexistingbuilding.
WYCOMBEBUILDING-RETROFITOPTIONS
ElectrochromicWindows
Itisanelectronicallytintableglass,thatcan dynamicallycontrolglarefromdirectsunor brightskywhilemaintainingoccupantcomfort, maximizingaccesstodaylightandoutdoorviews andreducingenergycosts.Withasufficiently largerangebetweenclearandfullytinted,EC glazinghasthepotentialtocontrolglarefrom directsunorbrightpatchesofskythereby greatlyreducingorperhapseveneliminatingthe needforadditionalinternalorexternalshading.
Theenergysavingpotentialofthesewindowswere testedinthisproject.Twooptionsweretriedout. Option1consideredusingdoubleglazed electrochromicwindowsandoption2,considered trippleglazedelectrochromicwindows.Triiple glazedwindows performedbetter.Itwasseenthat thesewindowshelpedinreducingenergydemand by5.34Kwh/m2/yearincurrentscenarioandby 3.62Kwh/m2/yearin8.52080scenariowithlarge savingsinlightingenergydemand.
ShadedOption Option1,2
Energy comparison
Observations&Limitations
TheprojectfollowedtheguidelinesofLETIexemplar retrofittarget.ThetargetenergyasperLETIbestpractice retrofitis50Kwh/m2/yearandasperLETIexemplar retrofitis40Kwh/m2/year.Fabricandothercomponents ofthebuildingwereimprovedtomeettheseenergy targets.However,itisseenthatevenafterfollowingall theguidelines,theenergyofthisbuildinghasonlycome downto64Kwh/m2/yearincurrentscenarioand72 Kwh/m2/yearinextremeworsescenior(8.5-2080).Some ofthefollowingaspectshavenotbeenquantifiedin designbuilder.
Systemsandappliances :Analysisshowsthatthereis significantheatgainfromappliancesandcomputers.So thehighlyefficientsystemsandappliancesmustbeused. Therelimitationstoquantifytheeffectsofthesechanges indesignbuilder.
HVACsystems :Thesimulationsindesignbuilder showsmostenergysavingswhenusinggasboilerswhich weknowisnottrue.Maybeitisbecauseofthesystem design.ThoughdesigningHVACsystemstemplatesdoes notcomeunderthescopeofthisproject,theeffectof otherHVACsystemshavenotbeenquantified.
Hotwater :Aspectsmentionedaboveneedtobetaken careofduringretrofit.
Electro-chromicwindowsslightly helpsinreducingtheoverallenergy demand.Comparedtotheshaded windowoption,savingsinlighting energyishigher.Thereisnosavingsin heatingandcoolingenergy.Though totalenergysavingsbyECwindowsare notsignificant,thereisasignificant reductionintheoverheatedhours. Overheatinginallthezonesare elliminatedevenin8.52080scenario, exceptin2zonesthatarenotair conditioned.
WYCOMBEBUILDING-RETROFITOPTIONS
SENSITIVITYANALYSIS
Intheinterventionssofar,theUvaluesandother specificationsasperLETIexemplarretrofitstandard wasfollowed.However,theenergytargethasnotyet beenachieved.Thisdemandsforimprovingthe specificationsmuchmorethanthedemandsofthe standard.ImprovingtheUvaluesorother specificationsofalltheaspectscanleadtolarge increaseinthecost.Itisimportanttoknowwhichof theparametersarethemostinfluentialinreducingthe energydemand.Henceasensitivityanalysiswas performedtoidentifythemostinfluentialparameter.
SensitivityAnalysis
Inthisstudy,theprimaryaimistodosensitivity analysistofindeachdesignparameter'shierarchyof influenceratherthanuncertainty.Hence,eachdesign variablewasconsideredequalprobability,soall variableshaveuniformdistributioncurves.
Lhssamplingmethodisusedforsettinguptheanalysis. Latinhypercubesamplingisahighlyefficientsampling method.Asaruleofthumb,asamplesizeof10times thenumberofdesignvariableswillbesufficientforthe populationmeantobeaccuratelymodelled.So,almost 200simulationswillbeenoughtogetreliableresults. However,toincreaseconfidenceandreliability,a samplesizeof250wasrequestedineachanalysis.
Theregressionsensitivitymethodisusedforthis analysis.Regressionanalysis(multiplelinear regression)isastatisticalmethodthatestimatesthe relationshipsamonginputvariables.Regression analysishelpstounderstandhowtheoutput'stypical valuechangeswheninputvariablesarevaried (assumingthattheinputvariablesareindependentof eachother).
Results
Recently,sensitivityanalysistechniqueshavegaineda lotofattentionasamethodofidentifyingthemost influentialvariablesinbuildingdesign.Sensitivity Analysiscanquantifytheeffectofeachbuilding envelopeparameteranddiscovercriticaldesignchoices toimprovethethermalenvironmentandminimize energyconsumption. ResultsshowsthatusageofECwindows,and improvingtheUvaluesofexternalwallsandroofscan helpinreducingenergysignificantly.Followingsection explainstheresultsindetail.
Netsiteenergyconsumption ismoststrongly influencedbyGlazingtemplate,howeverthere isaninverserelationship.Whichmeans, trippleglazedECwindowshelpsreduce energy.Netsiteenergyconsumptionisalso stronglyinfluencedbyExternalwall construction.Totalenergyisalsomoderately influencedbyflatroofconstruction.Ground floorconstruction,Partitionconstruction, InternalfloorconstructionandAirtightnessdo nothaveanotableinfluenceonNetsiteenergy consumption,therefore,theseinputscanbe
ignoredinfurtheranalysisofNetsiteenergy consumptionforthismodel. AdjustedR-squaredvalue: Itrepresents goodnessoffitofthecompletemodel.It indicateshowmuchvariationoftheoutputis explainedbytheinputvariables.Forthe output:'Netsiteenergy(Netsiteenergy consumption)',the'adjustedR-squared'value of'0.9995'ishigh,suggestingthatmostofthe keysensitiveinputvariableshavebeen identified.Onlyafewinputvariablesmightbe
Outputparameters Inputparameters
leftthatcanimprovetheresults.Thecurrent resultscanbeusefullyconsideredtoidentify mostandleastsensitiveinputvariables.
p-value: Thisvaluetellsiftheinputvariable hasastatisticallysignificanteffectonthe output.Someinputvariableshaveap-value morethan0.05,suggestingthatthereislow levelofconfidenceintheirrespective regressionresultvalues.Theyarethe following:
1.Airtightness(0.1478)
Externalwallconstruction U-0.13 U-0.15 U-0.17
Flatroofconstruction U-0.10 U-0.12 U-0.14
Groundfloorconstruction U-0.13 U-0.15 U-0.17
Partitionconstruction U-0.78 U-0.80 U-0.82
Totalenergy
Glazingtemplate
Trippleglazedclear LoEArgonfilled Sageglasstripple glazedElectrochromic
Internalfloorconstruction U-0.18 U-0.20 U-0.22
Airtightness 0.80 1 1.2
Currentscenario
Existingbuilding
Retrofitbuilding
Currentscenarioand extremeworse condition(8.52080) hasbeenchosenfor comparisonbetween existingandretrofit buildings.Theretrofit buildingshows considerablereduction inallthefuelsenergies. Temperaturegraphs revealthatthebuilding hasbecomemuchmore warmerand comfortable. Infiltrationhasbeen reduced,andlightingis alsoimproved.Heating demandisalsoreduced. Howeverthereis increaseincooling demand.Computer equipments contributestolotheat gainandhenceefficient systemsmustbeused.
8.5-2080scenario
Existingbuilding
Retrofitbuilding
In8.52080,thereis significantreductionin lightingandheating demand.However thereisincreasein coolingdemand.The reductioninheating energyandincreasein coolingenergyisfar higherthaninthe currentscenario.Total freshairtothebuilding isalsoimproved.