Megan Sadler PORTFOLIO

Page 1

_ LEARN

MEGA N S A DLE R

U NI T_ 1 0


RESEARCH

_ LEARN

‘AMERICA’S LAST UTOPIAN MAN’

BUCKMINSTER FULLER (1895-1983)

‘MOTIVATED BY A VISION OF HOW TECHNOLOGY COULD HELP HUMANKIND TO REALIZE A MORE PERFECT WORLD.’

AN INVENTOR, DESIGNER, ARCHITECT, THEORIST, DRIVEN BY THE DESIGN PHILOSOPHY

Tensegrity (tensile integrity) systems are characteristic of free-standing nature. ED Tensegrity systems are pin-jointed, as all AIN R ST comonents are only subject to axial force. RE The bars are subjected to tension and G IN compression and the cables tension. In a Buckminster Fuller’s Dymaxion concept of BE & obtaining optimal efficiency was applied to both tensegrity prism all forces are equal and E R each joint is in equilibrium. his dymaxion car and house. The car has an aerodynamic design, efficient use of materials, is ultra light and highly fuel efficient.

‘Dymaxion’

‘FORM GENERATED TENSILE BY NATURE’ of how soap bubbles intersect, shows they MEMEBRANE Adostudy so in a vertical plane which means an arch can put between the two bubbles and the vertical STRUCTURES be plane is always at the intersection. Also tests of

FR OM

A

FULLER, WORKED ON HOUSES, CARS, MAPS, TVTRANSMITTERS & GEODESIC DOMES, ALL OF WHICH WERE DESIGNED TO BE MASS-PRODUCED USING THE SIMPLEST AND MOST SUSTAINABLE MEANS POSSIBLE.

‘TENSEGRITY’

CE NT

“MORE FOR LESS”,

loops of various shapes in a soap solution shows

ENERG YR AD IAT ING

‘Geodesic domes’

A geodesic dome is a spherical shell or lattice shell structure based on a network of great circles (geodesics) on the surface of a sphere. The geodesics intersect to form triangular elements that have local triangular rigidity and also distribute the stress across the structure. When completed to form a complete sphere, it is a geodesic sphere. URE

ED ROC

VE

C TO

EI ONC

FREI OTTO (1925) FREI OTTO DEVELOPED MODELS AND METHODS IN WHICH FORMS GENERATE THEMSELVES IN ORDER TO OBSERVE AND ANALYSE THE PROCESSES BY WHICH MATERIAL OBJECTS ORIGINATE IN ALL REALMS OF NATURE, TECHNOLOGY AND ARCHITECTURE.

findings of a MINIMAL SURFACE for each given boundary because the soap film will always form a minimal surface due to its surface tension. This minimal surface, as tension equilibrium form is the ideal basis for building the most efficient lightweight tension membrane structures with a minimum of mass and materials.

STRUCTURAL LOGIC OF

ECONOMY OF MATERIAL

PP STE BY- N EM P OBL STE LUTIO E PR O H S T STATE A INE RRED E F E DEF R P E THE DEFIN STATE E PRESENT DESCRIBE TH

OBSESSION WITH NONCOLUMN SPACE CREATE AN INVENTORY OF ALTERNATIVES RATIONALLY DESIGN A PREFERRED SYSTEM AND DEVELOP EVALUATION CRITERIA BEAUTIFULLY DEVE

LOP IMPLEM ENTATION ST RATEGIES DEVEL OP AR ITFAC TS

Otto’s designs using memebrane structures, is by a process that utilises the self-organisation of material systems under the influence of extrinsic forces. In membrane structures the displacement of particular BOUNDARY POINTS and the consequent pretensioning force are correlated with the material and form, in that the form of the structure can be found as the state of equilibrium of internal resistances and external forces.

7 6 O

FORM FINDING

FORM-FINDING, AS PIONEERED BY FREI OTTO IS A DESIGN TECHNIQUE THAT UTILISES THE SELFORGANISATION OF MATERIAL SYSTEMS UNDER THE INFLUENCE OF EXTRINSIC FORCES

EXP ‘WHENEVER I DRAW A CIRCLE, I IMMEDIATELY WANT TO STEP OUT OF IT’

0 1 _ R e se a r ch su m m a ry diagram

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN

0 1 _ B U C K M I N ST E R F U L L E R D r i ve n by t h e d e s i g n p h i l o s o p hy o f “ m o r e f o r l e s s ”, Richard Buckminster Fu l l e r (18 9 5 -19 8 3) w o r ke d simultaneously on plans for houses, cars, boats, g a m e s , t e l ev i s i o n t r a n s m i t t e r s a n d g e o d e s i c d o m e s , a l l o f w h i c h we r e d e s i g n e d t o b e m a s s - p r o d u c e d u s i n g t h e simplest and most sustainable means possible.

SO C I A L C A SE S T U D IE S Fu l l e r r e s e a r c h e d a n d t r i e d t o f i n d s o l u t i o n t o m a ny s o c i a l issues including autonomous housing and closed loop sy s t e m s .

TR I TO N CITY

B u c k m i n s t e r Fu l l e r d e s i g n e d t h i s t e t r a h e d r o n a l f l o a t i n g c i t y f o r To k yo b ay i n t h e 19 6 0 ’s . A s a r e s p o n s e t o a h o u s i n g s h o r t a g e. Tr i t o n w a s a c o n c e p t f o r a n a n c h o r e d f l o a t i n g city that would be located just of fshore and connected with bridges and such to the mainland. It was a collection of tet rahedro nal st r uc ture s, w it h apar t ment s w it h out si de living. “ F l o a t i n g c i t i e s p ay n o r e n t t o l a n d l o r d s . T h ey a r e s i t u a t e d o n t h e w a t e r, w h i c h t h ey d e s a l i n a t e a n d r e c i r c u l a t e i n m a ny u s e f u l a n d n o n p o l l u t i n g w ay s . T h ey a r e s h i p s w i t h a l l a n o c e a n s h i p’s t e c h n i c a l a u t o n o my, b u t t h ey a r e a l s o s h i p s t h a t w i l l a l w ay s b e a n c h o r e d . T h ey d o n’ t h ave t o g o a ny w h e r e. T h e i r s h a p e a n d i t s h u m a n - l i f e accommodations are not compromised, as must be the shape of the living quar ters of ships whose hull shapes are c o n s t r u c t e d s o t h a t t h ey m ay s l i p, f i s h l i ke, a t h i g h s p e e d t h r o u g h t h e w a t e r a n d h i g h s e a s w i t h m a x i m u m e c o n o my.”

0 2 _ Tr i to n C i ty

D Y N AM AXIO N HOUS ING

D y m a x i o n (d y n a m i c m a x i m u m t e n s i o n) i s a b r a n d n a m e t h a t B u c k m i n s t e r Fu l l e r u s e d f o r s eve r a l o f h i s i nve n t i o n s . Made from light weight steel, duraluminium and plastic and suspended from a central mast from which the r o o m s r a d i a t e d i n a h ex a g o n a l p l a n , t h e D y m a x i o n H o u s e w a s c o n c e i ve d n o t a s p r i va t e p r o p e r t y, b u t r a t h e r a s t e m p o r a r y, t r a n s p o r t a b l e s p a c e t h a t c o u l d b e r e n t e d .

04_LIVING CIT Y

LIVING CITY

Fu l l e r ’s i d e a s g r e w a n d g r e w, h e c r e a t e d t h e c o n c e p t ‘ L i v i n g c i t y ’, a geodesic dome t wo miles in diameter and one mile high at its centre ove r N e w Yo r k C i t y . D u r i n g a t i m e w h e n a i r- c o n d i t i o n i n g w a s c o m i n g t o m a ny U. S . h o m e s a n d b u s i n e s s e s , M r. Fu l l e r s a i d t h e g i a n t d o m e w o u l d g r e a t l y r e d u c e c o o l i n g c o s t s i n s u m m e r a n d h e a t i n g c o s t s i n w i n t e r by r e d u c i n g t h e r a t i o o f s u r f a c e t o vo l u m e. I n s t e a d o f e a c h b u i l d i n g ’s h av i n g t o b e h e a t e d o r c o o l e d s e p a r a t e l y, t h e e n t i r e d o m e w o u l d b e ke p t a t a ‘ ve r y m o d e r a t e t e m p e r a t u r e l eve l ’ t h r o u g h o u t t h e ye a r.

The house was designed to be light weight and adapted to w i n d y c l i m a t e s . I t w a s t o b e i n ex p e n s i ve t o p r o d u c e a n d p u r c h a s e, a n d a s s e m b l e d e a s i l y. I t w a s t o b e p r o d u c e d u s i n g f a c t o r i e s , w o r ke r s a n d t e c h n o l o g i e s t h a t h a d p r o d u c e d Wo r l d Wa r I I a i r c r a f t . I t w a s u l t r a m o d e r n - l o o k i n g a t t h e t i m e, b u i l t o f m e t a l , a n d s h e a t h e d i n p o l i s h e d a l u m i n u m .

0 3 _ D yn a m a xi o n D e p l o ym e n t u n i t u se d a s e m e r g e n cy a cco m m o d a ti o n d u r i n g Wo r l d w a r II

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN

G EO M ET RY A N D S T R U C T U R A L SY ST E M S THE GEODESIC DOME

Geodesic do mes, lat t ic e s hell s t r uc t ur es , c ons t r u c t i o n i s based o n exten din g s om e bas ic pr inc iples t o bu i l d s i m p l e “tensegrity” stru ctu res ( t et r ahedr on, oc t ahedr on, a n d t h e closest pa cking of spher es ) , m ak ing t hem light w e i g h t a n d stable. Ha iled at th e t im e as t he light es t , s t r onges t a n d m o s t cost -effe ctive stru ctu r e, t he geodes ic dom e was d e s i g n e d to cove r the maxim um pos s ible s pac e wit hou t i n t e r n a l supports. The b igg er it is , t he light er and s t r onger it b e c o m e s . T he g eo de sic sy s t em c ons is t s of divi d i n g a sphere into e qu al t r iangles so t hat t he surface struct ure o f a d om e c ould be m or e eas i l y m a d e . T he similarity o f th e t r iangles m ak es t he dom es e a s i e r t o constru ct a nd be ne fits by being s t r uc t ur ally s t r ong. T h e o v e r a l l strength is distribu ted ev enly. Fuller ins is t ed upon t h e m i n i m a l use of ma teria ls. Ther ef or e t he c ons t r uc t ion of th e d o m e s made th em ligh tweig ht , t r ans por t able and eas ily a s s e m b l e d . T he inve ntio n of the geodes ic dom e was a s oluti o n t o t h e pressing h ou sin g p roblem at t he t im e. Ric har d Bu c k m i n s t e r F uller examin ed a ll sor t s of m an- m ade and nat ur al s t r u c t u r e s . H e w as particula rly in tere s t ed in t hings t hat wer e m ade u p o f m a n y smaller but similar parts, each relying on the other to make a whole.

0 5 _ Tr i a n g u l a t i o n o f Ge o d e si c D o m e

TENSEGRITY

Tensegrity, ten sio na l int egr it y or f loat ing c om pr es s i o n , i s a struct ura l p rinciple b as ed on t he us e of is olat ed c o m p o n e n t s in com pre ssion in sid e a net of c ont inuous t ens ion, i n s u c h a w ay t hat the comp ress ed m em ber s ( us ually bar s or s t r u t s ) d o not t ou ch ea ch oth er and t he pr es t r es s ed t ens ioned m e m b e r s (usually cab les o r te ndons ) delineat e t he s y s t em s p a t i a l l y. [ 1 ] T he sim ple st te nseg rit y s t r uc t ur e. Eac h of t hr ee c o m p r e s s i o n membe rs is symmetric wit h t he ot her t wo, and s y m m e t r i c f r o m end t o en d. Ea ch en d is c onnec t ed t o t hr ee c ables whi c h p r o v i d e compressio n an d which pr ec is ely def ine t he pos it ion o f t h a t e n d .

07_Strut tensegrity sphere 0 6 _ L i g h t - w e i g h t G e o d e si c d o m e str u ctu r e ^ G ome z-Jau reg ui (20 10) , Tens egr it y St r uc t ur es and t h e i r A pplication to Arch itec t ur e. “ [ 1] ” , Sant ander : Ser v ici o d e P ublicacio ne s d e la Univ er s idad de Cant abr ia. 296 p p

MEGA N S A DLE R

U NI T_ 1 0


01_RESEARCH

_ LEARN

0 2 _ F R E I O T TO F rei O tto is a n En gin ee r, Ar c hit ec t , inv ent or, nat ur al s c i e n t i s t and ex pe rimen tal ph y s ic is t . O t t o began ex per im e n t i n g i n W W II with te nts for shelt er due t o t he lac k of m at er ia l a n d a n urgent ne ed for h ou sin g. By obs er v ing t he behav iou r o f t h i n membra ne s stre tch ed ov er light f r am es and t heir e x p o s u r e to aero dyna mic fo rce s , he dev eloped his ex per im en t s . O t t o is now the world ’s le ading aut hor it y on light weight t e n s i l e and memb ran e stru ctur es , and has pioneer ed adv a n c e s i n struct ura l math ema tic s and c iv il engineer ing. Otto’s care er d oe s b ar e a s im ilar it y t o Buc k m ins t er F u l l e r ’s archit ectura l expe rim ent s : bot h t aught at Was h i n g t o n U niversity in St. Lo uis in t he lat e 1950s , bot h wer e ar c h i t e c t s of major pa vilio ns a t the M ont r eal Ex po of 1967, bo t h w e r e concer ne d with sp ace f r am es and s t r uc t ur al eff ic ien c y, a n d both exp erime nte d wi t h inf lat able buildings . In 196 4 h e fo un de d t he f am ous I ns t it ut e f or Ligh t w e i g h t S t ructure s a t the Univer s it y of St ut t gar t , ex am ining t h e l i n k betw een fo rm a nd struc t ur e, and t he int r ins ic beaut y o f t h e double curved stru ctu r e .

0 8 _ Op e n - a i r theatre roof, Bad Hersfeld,1968

EX PE R I M E N T S Bubble experiments

Otto deve lop ed soa p f ilm m odels or r eal m em br ane m o d e l s in which fo rms g en era t e t hem s elv es . This pr oc es s a l l o w e d him t o o bserve a nd analy s e t he pr oc es s of load t r a n s f e r and t he d efo rmatio ns of t he c om plex t ens ile s h a p e s w hich he h as con ce iv ed. Soap f ilm s hav e unif or m s t r e s s in every dire ctio n an d r equir e a c los ed boundar y t o f o r m . T hey na tura lly form a m inim al s ur f ac e. As t he s c a l e o f his pro jects increa se d, he pioneer ed a c om put e r - b a s e d procedu re for de term ining t heir s hape and behav i o u r. H e took t hese expe riment s f ur t her in c om plex f r am e s s u c h as tetrah ed ron s o r c ubes , indiv idual m inim al s u r f a c e s may be forme d if e x is t ing f r am e edges ar e no t u s e d .

PNEUMATIC STRUCTURES

Otto’s expe rimen ts wit h s oap f ilm s and bubble s h a v e show n tha t self-g en er at ing and s elf - opt im is ing fo r m s i n tents, ca ble ne t stru ctur es of all t y pes , v ar ious m em b r a n e s and air or wa ter-fille d pneum at ic s hav e been pr o v e n i n enginee ring a nd a re gaining inc r eas ing applic at io n . T h i s idea of pn eu mativs is bor r owed f r om nat ur e, ev er y a n i m a l or plant cell is a pn eu m at ic s t r uc t ur e m ade up of m em b r a n e s and con ten ts.

09_Minimal surfaces

T he Ope n-a ir the atre r oof , Bad Her s f eld, 1968, is an e x a m p l e of F rei Otto p ne uma tic s t r uc t ur es .

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN D i ffe r e n t typ e s o f sp i d e r w e b s i n cl u d e; Orb webs, cobwebs, funnel w e b s ( 3 ) , tu b u l a r w e b s ( w h i ch r u n u p the bases of trees or along the g r o u n d ) , sheet wens and dome webs (4).

Tensile structures Tensile stru ctu re is a c ons t r uc t ion of elem ent s ca r r y i n g only ten sio n, u su ally in t he f or m of c ables . They u s u a l l y are supp orte d b y som e f or m of c om pr es s ion or b e n d i n g elements .

Web construction natural system

S pider ’s o rb web s ar e t ens ile s t r uc t ur es , t he s ilk - t h r e a d becomes the tensile structure, which is supported, by the place the w eb is atta ch ed . It is a ex t r em ely light - weight s tr u c t u r e but very stron g, o wing t o t he m at er ial of t he t hr ead a n d t h e struct ura l a rran ge men t of t he r adii and c onc ent r ic r i n g s . Orb web s a re a syst em in whic h f ibr ous biom a t e r i a l s , silks, are arra ng ed in a c om plex des ign r e s u l t i n g from stere otypical behav ior al pat t er ns , t o p r o d u c e effect ive e ne rgy abs or bing t r aps f or f ly ing p r e y. T he form o f this stru c t ur e is det er m ined by a c o m p l e x interplay be twee n int r ins ic m at er ial pr oper t ies a n d proxim a te be ha vio r. Or b webs hav e v ar ious f or m s , s o m e that ca n trap small ins ec t s , ot her s c an ev en s u p p o r t the w eigh t o f small bir ds . This c om binat ion of s t i c k y capture silk a nd rad ial s uppor t t hr eads , as well a s t h e i r archit ectura l a rran ge m ent pr ov ide a s t able plat f o r m , a n ext remely efficien t str uc t ur e and t her ef or e t he m a x i m u m potential p erfo rman c e as ener gy abs or bing t r a p s .

03_Tubular web

E volutio n in so me spec ies has im pr ov ed t he m a t e r i a l qualit y o f th e silk, w hic h enables “ s par s er ” ar c hite c t u r a l design s, a ltern atively s pider s s pinning lower qual i t y s i l k compe n sa te archite ctur ally f or t he inf er ior m at er ial q u a l i t y of their silk. The te nsile s t r engt h of s pider s ilk is gr eate r t h a n the same we igh t o f st eel and has m uc h gr eat er ela s t i c i t y.

0 1 _ Sp i d e r w e b s r e se m b l i n g a ci r cu s str u ctu r e Th e fi b o r o u s str u ctu r e i s e xtr u d e d fr o m th e sp i d e r ’s sp i n n e r e ts. ( 2 ) Ea ch g l a n d p r o d u ce s a th r e a d fo r a sp e ci a l p u r p o se – fo r e xa m p l e a tr a i l e d sa fe ty l i n e , sti cky si l k fo r tr a p p i n g p r e y o r fi n e si l k fo r w r a p p i n g i t. We b s a l l o w a sp i d e r to ca tch p r e y w i th o u t h a vi n g to e xp e n d e n e r g y b y r u n n i n g i t d o w n . Th u s i t i s a n e ffi ci e n t m e th o d o f g a th e r i n g fo o d . H o w e ve r, co n str u cti n g th e w e b i s i n i tse l f a n e n e r g e ti ca l l y co stl y p r o ce ss b e ca u se o f th e l a r g e a m o u n t o f p r o te i n r e q u i r e d , i n th e fo r m o f si l k. In a d d i ti o n , a fte r a ti m e th e si l k w i l l l o se i ts sti cki n e ss a n d th u s b e co m e i n e ffi ci e n t a t ca p tu r i n g p r e y. Sp i d e r s to e a t th e i r o w n w e b d a i l y to r e co u p so m e o f th e e n e r g y u se d i n sp i n n i n g . An e ffi ci e n t r e cycl i n g a n d cl o se d - l o o p syste m . 0 2 _ We b p r o d u c i n g S p i n n a r e t s

MEGA N S A DLE R

04_Dome web

U NI T_ 1 0


_ LEARN

PR O C ES S G EO M ET R I C AL : O rb we b c ons t ru c t i o n F irst ly th e sp ide r b ridges t he open s pac e bet we e n the t wo sticks. The im ages ar e t ak en f r om a l a b experime nt (no wind ) t his is ac hiev ed by at t ac hing t h e dragline at the top of a s t ic k and t hen walk ing t h e detour alo ng the bo tt om of t he s uppor t ing s t r uc t u r e (A ). O utside , brid gin g a gap is us ually ac hiev ed b y letting a th rea d floa t wit h t he wind, and t o t hen wa l k across the ga p a lon g this t hr ead. W hen t he s pider ha s reached the oth er side , it c lim bs up, of t en only par tl y, to a poin t wh ere it tight ens and at t ac hes t he dr agli n e to use it to cro ss b ac k t o t he t op of t he ot her s t ic k . T he spide r th en u su ally t r ies t o m ov e as high u p as possible ; this m ay be ac hiev ed by r eplac in g the orig ina l thre ad or by adding anot her one ( B ) . T he sp ide r no w est ablis hes t he s o- c alled pr oto w eb, a sta r-sh ap ed s t r uc t ur e wher e s ev er al t hr ead s (the proto -rad ii) fastened t o t he s uppor t ing s t r uc t u r e come to ge the r in a s ingle point , t he pr ot o- hub ( C E ). T he sp ide r co ns t r uc t s pr ot o- r adii by at t ac hi n g the dra glin e a t the pr ot o- hub, walk ing out alon g an ex isting pro to-ra dius and t hen walk ing dow n (D ) or le tting itse lf dr op down on a t hr ead ( E ) onto an oth er pa rt of t he s uppor t ing s t r uc t ur e . A new th rea d is the n p ulled in bet ween t he s uppor t i n g struct ure a nd th e pr ot o- hub by at t ac hing t h e dragline a nd u sin g it t o walk bac k t o t he hub. W h e n the spid er h as estab lis hed t his pr ot o- web ( us ua l l y w ith 3-7 p roto -rad ii) it will pr oc eed by building th e first fra me th rea d a t t he t op of t he f ut ur e web ( als o called brid ge th rea d), f ollowed by m ov ing t he pr oto hub into its fina l po s it ion, t ur ning it int o t he hu b . A t t he sa me time the f ir s t pr oper r adius ( alwa y s betw een b ridg e thre ad and hub) is c ons t r uc t ed ( F ) .

Wh e n t h e s p i d e r b u i l d s a s i m p l e ( s e c o n d a ry) r a d i u s , i t w a l k s o u t a l o n g a n e x i s t i n g r a d i u s t o th e frame, then downward a bit along the frame where it attaches the dragline. The spider then goes back to the hub, reeling up the new dragline and simultaneously never above and never with a large g a p w h e r e i t w o u l d l a t e r o n a d d a n o t h e r r a d i us. A d d i t i o n a l l y, i t p r o d u c e s t h e d e f i n i t i v e r a d i u s ( H ) . T h e remains of the first dragline can be seen in a web u n d e r c o n s t r u c t i o n a s f l u ff y w h i t e b a l l s o f s i l k i n th e hub of the web. The order of the construction of the r a d i i f o l l o w s c e r t a i n p a t t e r n s ; t h e s p i d e r a l w a y s p u ts in the new radius immediately below an existing one; a d d s t h e r a d i i i n a n o r d e r a p p a r e n t l y t o b a l a n c e th e f o r c e s i n t h e h u b . Wh e n t h e s p i d e r b u i l d s t h e r a d i i i t k e e p s c i r c l i n g t h e h u b t o f i n d a g a p t o p l a c e t h e n ext radius. This circling then continues after the insertion o f t h e l a s t r a d i u s , t h u s f o r m i n g t h e h u b s t r u c t u r e (I) . T h e c i r c l i n g o f t h e h u b c h a n g e s w i t h o u t i n t e r r u p t i o n i nto the construction of the so-called auxiliary (or temporary) s p i r a l . T h i s s p i r a l i s w i d e l y m e s h e d a n d s e r v e s l a te r A s s c a ff o l d i n g a n d g u i d i n g s t r u c t u r e f o r t h e c o n s t r u c t io n o f t h e s t i c k y ( o r c a p t u r e ) s p i r a l . B e g i n n i n g f r o m th e outside in, the spider will methodically replace this s p i r a l w i t h a n o t h e r, m o r e c l o s e l y s p a c e d o n e o f a d h e s i v e t h r e a d s . I t w i l l u t i l i z e t h e i n i t i a l r a d i a t in g l i n e s a s w e l l a s t h e n o n - s t i c k y s p i r a l s a s g u i d e l i n e s. T h e s p a c e s b e t w e e n e a c h s p i r a l w i l l b e d i r e c tl y p r o p o r t i o n a l t o t h e d i s t a n c e f r o m t h e t i p o f i t s b ack l e g s t o i t s s p i n n e r s . T h i s i s o n e w a y t h e s p i d e r wi l l u s e i t s o w n b o d y a s a m e a s u r i n g / s p a c i n g . Wh i l e th e s t i c k y s p i r a l s a r e f o r m e d , t h e n o n - a d h e s i v e s p i r al s are removed as there is no need for them anymore.

T he next ph ase in the web building is t he c ons t r uc t io n of the frame an d th e r adii. P r im ar y f r am e t hr eads ( i. e . those atta ch ed to a nc hor t hr eads ) and s ec onda r y frame thre ad s (i.e. t hos e at t ac hed t o ot her f r am e threads) are b uilt us ing t he bas ic pat t er n s how n in (G). The sp ide r walk s out along an ex is t in g radius wh ere it atta c hes a t hr ead. Dr agging t h i s thread be hin d, it wa lk s bac k t owar ds t he hub a n d then alon g the n ext lower r adius wher e it at t ac h e s that th rea d. It th en c ont inues along t his newly la i d thread ba ck to the up per r adius and bac k t o t he hu b .

0 5 _ M o ve s o f th e sp i d e r a r e i n d i ca te d with grey arrows (light grey = e a r l i e r m o ve s; d a r k g r e y = l a te r m o ve s) . Plain lines show the position o f th e th r e a d s; th e d a sh e d l i n e s sh o w the position of the threads when th e spider had completed the move s

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN VA RIAT I O N: Diff er e n t ty p e s o f w e b s 01_Typic al gar den sp i der ( as ex plained abov e) 02_Cyrtophor a c itr icol a: 03_P sec hr us

01_

02_

03_

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN

Experiments and changing variables D rugs

B ecause sp ide rs webs r es em ble c r y s t al lat ti c e s , toxolog iest ca n e mploy s t at is ic al c r y s t allogr aph y t o gauge a sub sta nce’s t ox ic it y. That m eans analy s in g t h e number of comp lete d c ells , r adii and ot her geom e t r i c struct ure s o n th e we b. The m or e t ox ic a s ubs t anc e , t h e more q ua ntifia bly de for m ed is t he web.

G ravity

S pider web s we re spun in low ear t h or bit , wit h t w o garden spid ers, a s pa r t of an ex per im ent on t he Sk y l a b 3 mission. The a im o f the ex per im ent was t o t es t wh e t h e r the t wo spid ers wo ul d s pin webs in s pac e, and, i f s o , w het her the se we bs would be t he s am e as t hos e t h a t spiders pro du ce d o n Ear t h. W hen s c ient is t s s t udied t h e w ebs, th ey disco ve red t hat t he s pac e webs wer e f i n e r than normal Ea rth we bs , and alt hough t he pat t er ns o f t h e w eb we re no t to tally d is s im ilar, v ar iat ions wer e s po t t e d , and t he re wa s a de finit e diff er enc e in t he c har ac t er i s t i c s of t he web . Ad ditio nally, while t he webs wer e f i n e r overall, th e spa ce web had v ar iat ions in t hic k nes s i n places: some p laces wer e s light ly t hinner, and o t h e r s slightly thicke r. Th is was unus ual, bec aus e E a r t h w ebs ha ve be en ob s er v ed t o hav e unif or m t hic kn e s s .

_ Caf f ine

_LSD

_ T h e f i b r e u s e d i n s p i d e r s w e b i s a l s o t h e sa m e u se d b y si l k w o r m i n b u i l d i n g c o c o o n s . H u m a n si ze d se l f- su p p o r ti n g co co o n .

MEGA N S A DLE R

Bl a ck w i d o w ’s g o ssa m e r fi l a m e n ts ( fi b r e s) a r e a b l e to su sp e n d e xtr e me weights through the use of co m p l e x g e o m e tr y. U l ti m a te l y, th i s cr o ss- l i n ki n g i s w h a t g i ve s th e sp i d er silk threads their enormous te n si l e str e n g th . Th e sm a l l cr ysta l l i te s fi r st fo r m e d i n th e p a r a l l e l cr o ss -linking of the protein chains. Th i s str u ctu r a l syste m sp r e a d i n g th e l o a d u si n g sp i d e r s w e b g e o m e tr y, h a s been mused in many different typ e s o f p r o j e cts: Te n t str u ctu r e s u se th e se te n si l e ca b l e s su ch a s th e Munich stadium by F rei Otto.

U NI T_ 1 0


_ LEARN

Lattice structures EN D Oskelet on Bo n e: Lightw eig h t Cellula r Mate ria l B ones a re rig id or gans t hat c ons ti t u t e part of the e ndos k elet on of v er t ebr a t e s B one tissu e is a ty pe of dens e c onnec t iv e t is s u e . B ones come in a varie t y of s hapes and hav e a c om p l e x internal an d extern al s t r uc t ur e, ar e light we i g h t y et st r o ng an d h ard , and s er v e m ult iple f unc t i o n s . ­ B one is ma de up of a m at r ix ( a bonding of m ul t i p l e fibers an d che mica ls ) of diff er ent m at er ials , inc lu d i n g primarily colla ge n fib er s and c r y s t alline s alt s . Colla g e n fibers of b on e h ave g r eat t ens ile s t r engt h ( t he s t r e n g t h to endure stretchin g f or c es ) , while t he c alc ium s a l t s , w hich a re similar in phy s ic al pr oper t ies t o m ar b l e , have g rea t comp ress ional s t r engt h ( t he s t r engt h t o endure squ ee zin g fo r c es ) . Thes e c om bined pr oper t i e s , plus t he d eg ree o f bondage bet ween t he c olla g e n fibers an d th e crystals , pr ov ide a bony s t r uc t ur e t h a t has both extreme ten s ile and c om pr es s ional s t r en g t h . T hus, bo ne s are con str uc t ed in ex ac t ly t he s am e way t h a t reinf orce d co ncrete is c ons t r uc t ed. The s t eel of r einf o r c e d concre te pro vid es th e t ens ile s t r engt h, while t he c em e n t , sand, a nd ro ck p rov ide t he c om pr es s ional s t r en g t h . H ow eve r, th e co mpre s s ional s t r engt h of bone is gr e a t e r than th at o f even the bes t r einf or c ed c onc r et e, and t h e tensile stre ng th a pp roac hes t hat of r einf or c ed c onc r e t e .

SKULL Most o f th e bo ne tiss ues , es pec ially in lar ger s ong b i r d skulls, are bu ild u p fro m non- dir ec t ional s pongios a c e l l s , w hich mea n the y are c onf igur ed by pneum at iz ed c e l l s that allow a ir vo ids be t ween s olid m at er ial ar eas r edu c i n g the ov e rall we igh t of t he s t r uc t ur e wit hout aff ec t in g i t s streng th . Th e re su ltant c onf igur at ion of t he s y s t e m i s a high ly stro ng an d h ighly light weight m at er ial s ys t e m F illing th e inte rior of the bone is t he t r abec ular bone t i s s u e (an ope n ce ll p oro us net wor k als o c alled c anc ellou s o r spongy bo ne ), which is c om pos ed of a net wor k of r o d and plate -like e leme nt s t hat m ak e t he ov er all o r g a n lighter. In cro ss-se c t ion, t he f iber s r un in oppo s i t e direct io ns in a ltern ating lay er s , m uc h lik e in ply w o o d , assisting in th e b on e’s abilit y t o r es is t t or s ion f o r c e s

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN

IL6: FREI OTTO AND BONE TESTING In the ea rly 1 85 0s, the anat om is t Her m ann v on M ey e r w a s studying the p art of the t high bone t hat ins er t s int o t h e h i p joint. Th e th igh bo ne head ex t ends s ideway s int o t h e h i p socket, an d b ea rs th e body ’s weight off - c ent er. Von M e y e r saw t ha t the inside of t he t high bone, whic h is c apa b l e o f w ithst an din g a weig ht of one t on when in a v er t ic al po s i t i o n , consists no t o f o ne s ingle piec e, but c ont ains an o r d e r l y latticewo rk of tiny rid ges of bone k nown as t r abec ul a e . H e realize d tha t th e bo ne ’s s t r uc t ur e was des igned t o r e d u c e the effe cts of we igh t load and pr es s ur e. The t r ab e c u l a e w ere e ffective ly a se r ies of s t uds and br ac es ar r a n g e d along th e line s of f or c e gener at ed when s t a n d i n g . T he stru ctu ral e lem ent s in of t he Subs t a n t i a spongio sa in th e up per end of t he high bone ( f e m u r ) are orien tate d exactly lik e t he pr inc iple t y pic al s t r e s s tragectorie s in arc hed r od under bending s t r a i n . T here is a similarity to t he dis t r ibut ion of m at er ial d e n s i t y and the traje cto ries of s t r es s , t he ar c hed s t r uc t u r e s ( i n the sub sta ntia spo mgios a of bone) ar e not jus t a g e n e r a feature o f a ll ske letal elem ent s , but a an adap t i o n t o the sp ecific typ e of m ec hanic al s t r es s whic h is s h o w n the arra ng eme nts of bony elem ent s in a v er t eabr a . T h e vert eb ra a re co nstrained by c onc ent r ic pr es s ur e . B o t h the st r ucture an d d is t r ibut ion of t he m at er ial in b o n e i s adapted to th e type and m agnit ude of m ec hanic al s t r a i n .

16_

C LOS E D LOOP : Wh a t I f o u n d f a s c i n a t i n g a n d r e se a r ch e d fu r th e r w a s th a t b o n e s d e ve l o p b y a ‘ C y b e r n e t i c s y s t e m ’ a s y s t e m t h a t t h e y d e ve l o p w i th th e fo r ce s a cti n g o n th e m .

Cybernet ic syst em/equilibriu m B o n e i s a c y b e r n e t i c s y s t e m , a s y s t e m i s a so r t o f i n fo r m a ti o n co n tr o l syste m , a regulatory system. Bones functional str u ctu r e and th e co r r e sp o n d e n ce b e tw e e n m a t e r i a l d i s t r i b u t i o n , s t r a i n d i s t r i b u t i o n a n d th a t fa ct u n d e r p a th o l o g i ca l co n d i ti o n s b o n e a d a p t s i t s e l f t o t h e n e w s i t u a t i o n . Th e str a i n i n i ti a te s th e r e co n str u cti o n ., Th e b u i l d u p a n d d e c o m p o s i t i o n o f b o d y t i s s u e i s co n tr o l l e d b y th e l o ca l str e ss m a g n i tu d e s. E l a s t i c d e f o r m a t i o n t o b e a s t i m u l u s f o r b o n e c e l l s, th e b u i l d u p a n d d e co m p o si ti o n o f b o n e ti ssu e i s i n e q u i l i b r i u m t h e o v e r a l l b o n e i s i n f l o w e q u i li b r i u m . In co n ti n u o u s e xch a n g e , a fe e d b a ck p r o ce ss. I f s t r e s s m a g n i t u d e e x c e e d i d e a l v a l u e , e l a sti c d e fo r m a ti o n a l so i n cr e a se s. Th i s i s a sti m u l u s a n d t h e s u p p o r t i n g c r o s s s e c t i o n o f t h e b o n e i s e n l a r g e a n d g i ve n u n i fo r m fo r ce , th e str e ss m u s t d e c r e a s e a c c o r d i n g l y. T h i s m e a n s t h at th e str e ss m a g n i tu d e w i l l fa l l sh o r t o f th e i d e a l v a l u e w h i c h l e a d s t o a d e c r e a s e i n e l a sti c d e fo r m a ti o n , e n co u r a g i n g th e d e co m p o si ti o n , s u p p o r t i n g c r o s s s e c t i o n d e c r e a s e s i n s i z e . Sti l l w i l l i n cr e a se a n d b o d y ti ssu e o n ce a g a i n i n c r e a s e , t h e q u a n t i t y o f b o d y t i s s u e v a r i e s b e tw e e n b u i l d u p a n d d e co m p o si ti o n , so th a t th e i d e a l m a g n i t u d e o f s t r e s s e s i s r e a c h e d a n d a t t a i n fl o w e q u i l i b r i u m . R i cke ts a b n o r m a l b e n d i n g str a i n .

MEGA N S A DLE R

17_

16_st r ess in plexigla s s mo d e l o f h u ma n f e mu r show in g t h e re s u lt in g d e n s it ie s 17_The sim ilar it y t o d is t rib u t io n o f ma t e ria l a n d c o rre s p o n d in g b o n e 18_Reconst r uct ing t h e 3 D t ra je c t o ria l s u rf a c e s in t h e mo d e l o f a h u ma n f e mu r 19_Schem at ic diagr a m of the s p o n g io u s ar chit ect ur e in t hr ee d if f e re n t s e c t io n a l p la n e s o f t h e h u ma n f e mu r

U NI T_ 1 0


_ LEARN

J APA N E S E PAV IL IO N , E X P O 2 0 0 0 SHIGERU BAN, FREI OTTO

Shigeru Ban is a Japanese Architect who experiments with plyw oo d, textiles a nd paper. He has of t en c ollabor ate d w ith F r e i Otto , he to ok s eek s t o new y et univ er s a l l y applicable ways o f bu ilding t hat will open door s t o t h e constru ctio n syste m a nd dev elop int elligent s y s t em s . T he Jap an ese p avilion des ign is a lat t ic e s t r uc t u r e called a Gridshe ll. The t em por ar y pav ilion us e d recycled p ap er a s t ubes as it s pr im ar y s t r uc t u r a l mat erial, an d a t the en d it c ould be c om plet ely r ec y c le d . T he pa vilio n’s co nstruc t ion m et hod was int egr al t o i t s form. The grid co uld be lif t ed up f r om below t o f or m t h e grid she ll using a fle xi ble joint s y s t em . The joint s we r e made ou t of fa bric an d m et al t ape, in- k eeping wit h t h e pavilion’s th eme o f; ‘Hum ank ind- Nat ur e- Tec hnolog y ’ . T he tape wo uld allo w t he angel bet ween t he t ubes t o open up in o rde r to creat e a t hr ee- dim ens ional c ur v e . Otto a lso p rop osed a f ix ed t im ber f r am e o f ladder a rch es a nd int er s ec t ing r af t er s , wh i c h w ould give fu rthe r s t iff nes s t o t he gr ids h e l l and allo w th e roo f m em br ane t o be at t ac he d .

2 8 _ E ffi c i e n t s tr u c tu r a l s y s te m s _ P a p e r g r i d s h e l l

T he stru ctu re wa s then c ov er ed in a t ens ile r o o f membra ne . Th is min im al us e of paper, s hows jus t h o w efficient maximisin g s t r uc t ur al t ec hniques ar e.

3 1 _ C o n s tr u c ti o n p hoto show i ng structural form

Th e su r fa ce ca n b e m o d e l l e d o n R h i n o o r i n Gr a ssh o p p e r. Th e surface then had to be divided ( D i vi d e d o m a i n ) w i th sl i d e r s so th a t th e n u m b e r o f d i vi si o n s could be altered. T hese panels created then had to be identified (explode) and the 4 corner points found (Surface CP) these points co u l d th e n j o i n e d d i a g o n a l l y, a s w e l l a s h o r i zo n ta l l y, to cr e a te the gridhell structure (CrvSrf) .

3 2 _ Gr a s s h o p per scri pt for subdi vi di ng form surface i nto equal segments

2 9 _ C arboard lattice dividing wall

MEGA N S A DLE R

3 0 _ E x p l o d e d fo r m _ m o d e l l e d Rhino and Grasshopper

using

‘ To d a y ’s A r c h i te c tu r e i s a t a tu r n i n g p o i n t. T h e b i g tr e n d s of the l ast decade are outl i v e d , a n d o n l y a fe w b u i l d i n g s i n th e w o r l d m a n i fe s t A rchi tectural perfecti on w hi l e p a v i n g n e w w a y s i n to th e fu tu r e . Ye t i t i s p r e c i s e l y th e future that hol ds the greatest o p p o r tu n i ty fo r a l l th o s e w h o h e l p p e o p l e s e ttl e o n th i s pl anet and fi nd a beauti ful h o m e. S hi geru B an i s the future.’ F r ei Otto on S hi geru B an, 2003

U NI T_ 1 0


_ LEARN

WE B S _ N ET S_ T E N S ION ST RU C T U R ES I n F r ei Otto ’s research he explored many we b s a n d n e ts in n atural systems. I have furthered m y r e s e a r ch we bs a nd m eshes, to find out the differe n t a r r a n ge ments o f th e tension strings and webs th a t a r e 3 D and th e d ifferent ways they are held i n space. N e t s c a n be radial (1), rhombic meshes (2) o r b r a n c he d (3). S o m e sp ecies b uild web surfaces that are strongl y c u r v e d in space. Web structures can be spanne d f r o m grass (4 ), o thers such as sheet-web spider s a n d orb we avers have tent like forms spanne d b e t w e en twig s (5 ) o r three-dimentional suspensi o n s y s t e m s (6 ). We bs can also be tube-shaped ( 7 ) , t h e s e a re called retreats as spiders constantly li v e i n t h e m. I n w e bs th e MESH is the geometrical element. It i s f o r m e d by th e jo ining together of cables and knot s i n t o c l o sed lines. According to definition there a r e f o u r k in ds of meshes, the trapezoid (8)- fou n d i n o r b webs, square mesh (9)- Cyrtopora spide r, r e c t a n g ular mesh (10) and irregular meshes (11) .

DEVE LO P I NG T HE F OR M

_ Ir r e g u l a r w e b o f a C y r to p fo r a w h e r e w eb i s attached to surroundi ngs at certai n poi nts

Te n s i on lines, radii can then be applied and t o d i ff e r en t forms, to create tent-like structures , h y p e r bo lic p araboloid, or algorithms can be appli e d t o g e n e rate diffe rent patterns.

>>

8_

1_

4_

5_

6_

7_

9_

10_

11_

2_

3_

MEGA N S A DLE R

S k e tc h _ M e s h s t ru c t u re h e ld in s p a c e

U NI T_ 1 0


_ LEARN

3 D S U S P E N S I ON S Y S T E MS _ SU R FA C E S H E L D IN S PA C E . I w a n te d to te st o ut how meshes worked whe n s u s p e nd ed in sp ace and the different arrangement s g e n e r ate d. I d e s i gned a fra me with moveable notches ( 1 ) s o t h e tension lines, which suspend the mesh i n s p a c e co uld b e a ltered, manipulating the shape. I u s e d double layers to see the type of space a n d e n v i r o n ment cre ated inside. This also create d i n t e r e stin g Moire effects which I will go on later t o t a l k a bo ut. Using mesh also allowed observing t h e a m o u nt o f stre ss a s the mesh behaves in differe n t w a y s to stress. 2 _ M e sh suspended from the four main corner s . T h i s t w o -dimentional web construction is seen i n O r b w eb s. 3 _ Te nt like form 4 _ M o delling a three-dimentional suspension syste m

4 _ M o d e l l i n g a th r e e - d i m enti onal suspensi on system

2_

1 _ frame with moveable notches

2 _ Tw o D i m e n s i o n a l O r b We b

MEGA N S A DLE R

3_Tent l i ke form

U NI T_ 1 0


_ LEARN

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN

T h e s e fu rther suspension systems, shows ho w v e r s a t ile th e me sh is with the tensile fibres. I n e v e r y experiment the mesh has varied amount o f t e n s i o n d epending on when it meets the tensi l e f i b r e s . Th e notches and overall frame is t h e c o m p r essio nal element in the equilibrium of th e s t r u c t u re. Th e cocoon system (05) suspende d h o r i z o n tally cre ates a large internal space and i s f u l l y s u pported just via these few tensile cable s .

5 _ S u s p e n s i o n s y s te m _ c a c o o n s y s te m

6 _ S u s p e n s i o n s y s te m _ D o m e w e b

7 _ S u s p e nsi on system_Tensi l e fi bres

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN

AN A LYS I S _ M o ire a n d s tres s pa tte rn s

_ m o i r e p a tte r n w h e n u n d e r s l i g h t e q u a l s tr e s s m e a n s th e tw o l a y e r s n a tu r a l l y fa l l o n to p o f e a c h o th e r

A p a r t fro m cre ating interesting dorms, and ver y e ff i c i e n t structures with two sheets of membran e a n d t e nsion ca bles, the experiment also reveal e d i n t e r e stin g results about stress. The mesh allo w s a n o bservation about the magnitude of stres s a p p l i e d a s th e me sh stretches and behaves i n d i ff e r en t ways to stress. U s i n g the tunnel experiment (08) I will analysi s e t h e s t re ss le vels a nd the affects on the moire an d mesh.

Moire patte r n a n d m a t e r i a l distribution i s d e n s e s h o w i n g a large magni t u d e o f s t r e s s

_ m o i r e p a tte r n w h e n u n d e r a l a r g e r s tr e s s m e a n s th e tw o l a y e r s b u n c h to g e th e r i n c r e a s i n g th e m a te r i a l

7 _ S u s p e n s i o n s y s te m _ F u n n e l w e b

Under little tension, material may be slack

Under a level amount of tension

_using the moire pa t t e r n t o a n a l y s i s e s t r e s s

M oire pattern and material distribution is dens e s howing a large magnitude of stress _ M A P P IN G T E N S ION _ a s tr e s s m a p u s i n g th e m o i r e e ffe c t to a n a l y i s e s tr e s s m a g n i tu d e

MEGA N S A DLE R

Under large amount of tension, material fully stretched

U NI T_ 1 0


_ LEARN

8 5

8

6

8

_Ana l y s i s _ m o i r e p a t t e r n r e g i o n s

6 7 3

7 2

5 2

4

5

1 1

2

6 3

4

_ A n a l y s i s _ m o i r e p a tte r n r e g i o n s _ N u m b e r s c o r r e s p o n d to s i mi l ar stress regi ons

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN

DI G IT I S I N G T EN S IL E ME S H To digitise my p hysical ex per im ent at ion wit h m es h, I first t ried an arb itrary s hape t o t es t out G r as s hoppe r plug-in Ka ng aro o. _F irstly a me sh was c r eat ed in Rhino, us ing a box polygo n p rimatives replic at ed t o get a wor k able shape. The en d side s of t he box es ar e delet ed t o form t he bo un da ry o r anc hor point s . _01_MESH_ The mesh c an t hen be input ed in Grassho pp er. _02_WEAVERBIRD E DG ES_This c r eat es an out line o f the me sh ed ge s, wh ic h c an t hen be bak ed and us ed .

_ B A K E D _ O u tp u t m e s h

_03_DECOMPOSER_This ident if ies all of t he v er t ic e s on the mesh, so th at t hey c an bak ed int o r hino and used as diffe ren t an c hor point s . _04_NAKED EDGES_ This t ool f inds t he point s on the edge of th e me sh , s o t hes e c an bec om e anc hor points. (L ike in th e p hy s ic al m odel, t he t ens ile s t r in g s w hich sup po rt the mes h and ar e at t ac hed t o t he frame). _05_ITEM_ Th is a llow s t he point s t o be input ed int o kangaro o.

_11

_06_SPRINGS_This c ont r ols I t em allows t he membra ne mesh a nd it s pr oper t ies s uc h as s t iff nes s . _07_KANGEROO the n s t ar t s , t he f or c es and properties of th e me s h. _08_ MESH_The ou tput is c r eat ed t o t hen be able t o be bake d, o r to fu rthe r t es t t he m es h. _09_POINT_ the po int t ool is us ed if t he anc hor points d o n ot wa nt to be jus t s im ply t he boundar y points see n in the image abov e, s pec if ic point s c an be chosen (using a b ak ed dec om pos er ) . _E C O TECT_ Th is o utp ut c an t hen be plugged in t o E cotec t to wo rk o ut its env ir onm ent al pr oper t ies s u c h as sun pa th.

_02 _06

_01

_07

_08

_03

F or t he p ractise mod el I t hen bak ed t he out put m es h to f orm th is solid sh ape, jus t as I would wit h c ov er i n g the physica l mod el wi t h r es in.

_05 _04

_09

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN

DI G IT I S I N G E X P E R IME N T CO C O O N

I th e n u se d th i s syste m to digitise my p h ysi ca l m e sh experiments. Th e i m a g e s b e l o w sh o w s the steps i n o r d e r to r e cr e a te my particular e xp e r i m e n t. In ste a d o f the naked e d g e s I w a n te d to p i ck certain points, l i ke th e o n e s i n u se d i n m y frame, this w a s d o n e b y b a ki n g th e decompose, to tu r n a l l th e ve r ti ce s on in rhino, th e n th e p a r ti cu l a r p o i n ts can be set. Wh e n I fi r st se t th e kangaroo, the d e fa u l t se tti n g s m e a n t th e mesh was n o t sti ff e n o u g h _ 1 0 . To i mprove this I a d d e d ca b l e r i d g e s, u si n g a curve from ce r ta i n p o i n ts a n d i n p u tti ng that curve i n to th e sp r i n g s, th e n i n to kangaroo_11.

_Analysis using Ecotect

_10_Intial mesh properties

PR O C E S S

_I m p roving accu rac y m es h pr oper t ies

_M e s h

MEGA N S A DLE R

_ A l l v e r t i c e s o n t o a l l o w t h e c e r t a i n p o i n ts to b e picked

_ Wi th th e c a b l e ti e s , s ta r ti n g k a n g a r o o

>>

_ W h e r e the mesh fal l s.

U NI T_ 1 0


_ LEARN

DI G IT I S I N G E X P E R IME N T 3D WE B

_10_Mesh

_Mesh

_ I n t i al study th e mesh was too l a r g e , so I multiplied the mesh faces by 3.

MEGA N S A DLE R

_ A n c h o r p o i n ts

_ a p p l y m e s h p r o p e r ti e s , K a n g e r o o

>>

>> U NI T_ 1 0


_ LEARN

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN 15

16

14 13

17

12 11 15

14

13

10

12 11

16

9 10 8 09

18

7

08 17

6

07

345° 330° 315°

N

15°

30°

45°

60° 75° 1 s t 1J sutl A u g1 s t S e p

90° 1st Oc t

105° 1 s t N o v1 s t D e c

120° 135° 150°

300°

165°

1 s t J un

285°

18

1st May

1 s t A pr

1st Mar 19

U NI T_ 1 0

MEGA N S A DLE R

1st Feb


_ LEARN

DI G IT I S I N G E X P E R IME N T F U N N EL

>>

_ In th e i n i ti a l s tu d y the mesh w as too stretchy, I c r e a te d c a b l e r i d g e s surroundi ng the top of the m e m b r a n e to i n c r e a s e the sti ffness of the mesh, so i t was more representational to my physical experiment _ S h o w s th e m e s h m oi re and the areas i n most te n s i o n

>>

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN

DI G IT I S I N G WE B MA K IN G _ KN I T T I N G _ WE AVI N G Knitectonics

A MAr c h t hes is pr o j e c t a t th e A A b y Sa n hi ta Chatur v edi, E s t eba n C o l me n a re s a n d T h i a go Mu ndim . T he pr oje c t i s i n s p i re d b y th e b e a uty of n at ur e s y s t em s w i th th e i r i n h e re n t e ffi c i e n cy and per f or m anc e. T h e p ro j e c t e x p l o re d onsi te f abr ic at ion o f m o n o c o q u e s s tru c tu re s, there by int egr at in g skin and s tru c tu re, al o ng wit h s er v ice s a n d i n fra s tru c tu re , wi th a h ous ehold t ec hn i q u e l i k e k n i tti n g . It thus emb odies a s elf o rg a n i z e d m i c ro s y s te m of textu r es and a m a c ro s y s te m o f s tru c tu re. The pr ojec t inv lo v e d re s e a rc h i n to Kn i tting and tr ans lat ing it s p o te n ti a l i n to a c o n s tru c tion ma ter ial. A K nit t in g m a c h i n e w a s d e s i g n i ng, ‘ th e d igit al m ac hin i c s y s te m i mp a rts th e o pp ortu nit y t o env is on k n i tti n g a s a p ri n c i p l e of co nstruc t ion. T he m a c h i n e h a s a o n e to o ne re al ti ons hip t o t he ma te ri a l re s u l t, a s th e re i s no m anipulat ion in v o l v e d i n th e p ro c e s s . In ord er t o v is ualis e i t a s a fo rm a l l a n g u a g e for a p ro gr am m able arc h i te c tu re , i t w a s c ri ti c a l to exp l o r e t he t hr ee d i m e n ti o n a l a n d to p o l o g i cal asp ec t of k nit t ing . By d e fi n i ti o n , to p o l o g i cal su rfa c es ar e s mo o th m a n i fo l d s , s o thei r co nstruc t ion, s huld h a v e n o s e a m s , th i s ma kes kn i tti ng a pot ent ia l to o l , w i th i ts c o n ti n u o us ya rn s int er loc k ing to fo rm c o mp l e x s u rfa c e s.

_Creating interior spaces in my m e s h s y s t e m s

MEGA N S A DLE R

_ D oubl e ski n kni tti ng techni que

_ M o d e l l i n g d i g i ta l l y _ p a r a m e te r s _ s tr e s s _ s e q u e n c e

_ C r e a ti n g i n te r i o r s p a c e s th r o u g h m a c h i n e p r o to ty p i n g

U NI T_ 1 0


_ LEARN How to s t r ut ur al s u p p o rt th i s fa b ri c s u c h a s t he tensi on c abling s y s te m, o r i n te rn a l s tru c tu ral syste m bet ween t h e tw o l a y e rs o f me mb rane needs t o be f ur t her re a s e a rc h e d :

_ CA B L E N E T S

C able ne t is system a is t ens ile s y s t em , per haps t h e closest system to a web s y s t em in nat ur e. Thes e ca n be a sysmetric circula r plan ( 01) or a f r ee- f or m pl a n (02).

_ ST R U C T U R AL G R ID S U sing the id ea o f mo ir e and a double lay er s y s t em . . led on to resea rch ing s pac e s t r uc t ur es , a s t r uc t u r a l system tha t involves t hr ee dim ens ions .

_ 2 _ F r e e fo r m r a d i a l c a b l e s tr u c tu r e

_03_A ‘g rid’ is a struc t ur al s y s t em inv olv ing one o r more p lan ar la ye rs o f elem ent s . _04_A ‘do ub le layer gr id’ c ons is t s of t wo ( nom inal l y ) parallel layers o f e lem ent s t hat ar e int er c onnec t e d toget her with ‘web ’ elem ent s . A double lay er gr id o f a diff eren t kin d is sh own in Fig. 3c . Her e, t he to p and bottom la ye rs a re of an ident ic al s hape and a r e posit io ne d such th at t heir plan v iews ar e c oinc ide n t . A lso, in th is ca se a ll t he web elem ent s lie in v er t i c a l planes . Th e re su lt is a double lay er gr id t hat eff ec t ive l y consists of a nu mbe r of int er s ec t ing plane t r us s es. A grid of this typ e is re fer r ed t o as a ‘t r us s gr id’. A pr im a r y double la ye r grid pa tter n, s uc h as t he one s hown in F i g . 3a, is ofte n used a s a bas is f or t he c r eat ion of v ar io u s ‘reduce d forms’ by re m ov ing a num ber of elem ent s . A n examp le of th is is sh own in Fig. 3d.

_2_ Circular radial cable structure p l a n

MEGA N S A DLE R

_05_A ‘ barrel vaul t’ i s obtai ned by ‘ar ching’ a gr id al ong one di recti on [2]. The res ult is a cylindr ical form that may i nvol ve one, tw o or m or e layer s of el ements.

U NI T_ 1 0


_ LEARN

DOUBLE LAYER TENSEGRITY GRID To begin to start resear c hing and ex per im ent ing w i t h double layere d memb r anes , I f ir s t want ed t o look a t a st ructura l system, whic h was r igid enough t o s p a n large spa n an d ha ve s om e of t he s t r uc t ur al s y s t em s of tenseg rity. I be ga n look ing at a double lay er e d tensegrity grid . T his unlike the sta nd ar d r ules of t ens egr it y, is c all e d ‘Rigid ten se grity’. Th is s y s t em is als o c alled t he ‘ V expand er ’. It is co nst it ut ed by t wo s t r ut s , eac h o n e conver gin g to a p in jo int ed node, plac ed r es pec t ive l y on eit her g rid’s flexible lay er. The ex pander ’s ax i s , joining th is co up le of nodes , is nor m al t o t he lay e r ’s surf ace . an active ca ble m at er ializ es t he ex pande r ’s axis. By red ucing its lengt h, it is t ens ioned a n d introduces a p re-stress ( s elf - s t r es s ) s t at e. T he system ha s zig z ag s haped c hains of t r us s es i n double g rid con fig ura t ions . The s epar at e c hains o f trusses do no t tou ch one anot her, s o t he c hains a r e still floatin g in ten sio n m ak ing t hem t r ut h t ens egr it ie s .

_ D o u b l e l a y e r te n s e g r i ty g r i d

_ s tr u c tu r a l s y s te m , w i th a m e m b r a n e , to fo r m a r o o f s y s te m

RI G ID I T Y C O NT R OL G R ID In t his system the ca ble whic h r uns v er t ic al bet w e n t h e opposite V stru ts, act s as a r igidit y c ont r oller. I ncr e a s i n g the t en sio n on th is ca ble, inc r eas es t he c om pr es s ion o n t h e struct s a nd th e ten sio n in t he c ables , m ak ing t he s tr u c t u r e more rig id.

_ R i di dty control tensi on cabl e.

_plan

MEGA N S A DLE R

_ In th i s s tr u c tu r e th e V c o m p o n e n ts a r e th e c o m p r e s s i v e e l e m e n ts , th e s e p u t to g e th e r fo r m a tr u s s , th e s e tr u s s e s d o n o t to u c h ( te n s e g r i ty ) . T h e c a b l e s i n th e s y s te m a r e i n te n s i o n , th e s e c a n b e r e p l a c e d w i th te n s i l e m e m b r a n e .

U NI T_ 1 0


_ LEARN

_ M embrane

_plan

_ m e m b r a n e l a y e r s a tta c h e d to p o i n ts o f g r i d

_ Wi th th e m e m b r a n e a t th e e n d o f th e r o d s , th e m e m b r ane becomes the te n s i o n e l e m e n ts , m a k i n g th e h o r i z o n ta l c a b l e s u s e l e s s , so these can be r e m o v e d . T h i s i m a g e s u g g e s t h o w th e m e m b r a n e w o u l d be stressed.

_ In c r e a s i n g th e te n s i o n ( d e c r e a s i n g th e s i z e ) o f th e c e n tr e c a b l e , p u l l s th e m e m b r ane, i n c r e a s i n g th e r i g i d i ty o f th e m e m b rane.

MEGA N S A DLE R

U NI T_ 1 0


01_RESEARCH

_ LEARN

FAB R I C M E M B R A N E A N D S PA C E FRA M E S Many stru ctu res su ch as bone hav e been des igned to have a rigid ou ter s hell and s of t m at er ial ins ide. I have de cid ed to re ve r s e t his and t es t out a s t r uc t ur e w hich is even more m at er ial eff ic ient . To app ly a stru ctu ral s y s t em wit hin a double lay er e d membra ne , I first re se ar c hed pr ec edent s whic h us e d diff eren t stru ctu ral sy s t em s . _01_She nzhe n airp or t by Fuk s as , a s t eel t r us s base d system .

0 1 _ F u k s a s , S h e n z e n a i r p o r t_ s te e l c u r v e d tr u s s s y s te m

FAB R I C M E M B R A N E A N D TEN S E G R I T Y F R A ME S

_ P r i n c i p l e o f s o ft o u te r s h e l l w i th s tructural support

U sing th e id ea of Tens egr it y t o f or m t he s t r uc t u r a l part, e xp erime ntin g wit h s t r et c hed f abr i c . E xample s tha t h ave f ollowed a s im ilar idea inc lu d e F uksas Sh en zh en air por t a double- lay er s k in w i t h internal structura l su ppor t , and P r ar ie hous e, O r am b r a . T he pra irie h ou se is a pr ojec t t hat us es ac t ua t e d tensegrity syste ms, in c onjunc t ion wit h new c ladd i n g system s, to pro du ce a hous e t hat is es t im at ed t o e m i t less t han h alf of the car bon of a t y pic al hous e in I llino i s .

1_

_ _ O R A M B R A _ m e m b r a n e ski n w i th tensegri ty support

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN

Ri g i d t e n s e g r itie s _ Ac tu a t e d Te n s e g rity S tru c tu re s T he Ten sa rch pro ject in M ont pellier has been hom e t o import ant re se arch o n eff ic ient t ens egr it y s t r uc t ur e s . E specially the effo rts of Rene M ot r o and Vinic i u s R aduca nu h ave be en im por t ant f or dev elopm ent o f rigid ten se gritie s. As par t of t heir r es ear c h a bas i c module ca lled th e “2V ex pander ” was applied t o v ar io u s geometries. In th is module, t wo t r us s es ar e c onnec t e d to a sin gle no de , making it a s t r uc t ur e of “ t ens egr i t y class 2”. The most c om m on s t r uc t ur es bas ed on t h e 2V expa nd er are cha rac t er iz ed by t heir z igz ag s hap e d chains of tru sses in double gr id c onfi gur at ions . T h e separate ch ain s o f trus s es do not t ouc h one anot h e r, so the cha ins a re still fl oat ing in t ens ion m ak ing t he m trut h te nseg rities. T he stru ctu ral p rinciple St er k us es t o c ont r ol t h e shape o f ten se grity str uc t ur es is t he loc al adapt abil i t y of rigidity. Th e rigid ity of t ens egr it y s y s t em s is c lose l y relat ed to the ir se lf-str es s . I n t he Tens ar c h s t r uc t ur e s , self- stress is pro vid ed f or by s panner s in t he v er t i c a l cables (p erp en dicula r t o t he plane of t he gr id) . T h e rigidit y of th e structur e inc r eas es along wit h t he s e l f stress. Sterk e mplo y s t his t ec hnique by int egr at i n g act uat ed “mu scles” a t t he v er t ic al c ables whic h c a n control th e self-stress of t he s t r uc t ur e on dem and.

The simplest actuated unit of a tensegrity structure, made m o r e r i g i d b y p u l l i n g e a c h a p e x t o w a r d s i t s o p p o s i t e , fo r ci n g e a c h ‘ t r i p o d ’ l e g o u t w a r d u n t i l t h e c a b l e s a r e ti g h t.

Th e si m p l e st a ctu a te d u n i t o f a te n se g r i ty str u ctu r e , b u t th i s ti m e sh o w n w i th a ca b l e co n fi g u r a ti o n th a t e n a b l e s th e u n i t to b e m u l ti p l i e d o u t i n to a m u ch l a r g e r str u ctu r e .

1 . L o w e r str u ctu r e m u st b e more ridged to support loads w i th o u t co l l a p se . 2 . U p p e r structure can be less ridged. 3. By a d j u sti n g th e te n si o n a n d rigidity of the structure physical m o ve m e n ts a r e e n a b l e d . 4 . W hen coordinated with other r e sp o n si ve e l e m e n ts ( i e . a n i nternal partition) the functional a b i l i ti e s o f b u i l dings may be further extended.

T he type o f te nseg r it y s y s t em pr opos ed f or us e b y this pap er con sists o f a r epeat ed m odule in whi c h three c omp ressio n mem ber s m eet t o f or m what c an b e simply de scribe d as a t r ipod whos e legs ar e t et her e d by t en sion cab les—a s depic t ed ( 01) . Repeat ing th i s module in a reg ula r p at t er n, r es ult s in t he f or m at i o n of tw o memb ran es th at hav e v ar iable and c ont r ollab l e rigidit y (0 2). In prin c iple t he ac t of c ont r olling th e rigidit y of th ese tw o m em br anes r es ult s in th e possibility o f pro du cin g s t r uc t ur es whos e s hapes c a n alter. Th us by actua ting t he s t r uc t ur e, in t he c or r e c t locat io ns, a d efo rmab le, r es pons iv e, s t r uc t ur e c an b e made.

_ e x p e r i m e n ta l m o d e l s_ e xp e r i m e n ti n g a d a p ta b i l i ty o f r i g i d i ty

MEGA N S A DLE R

1 . Th e i n n e r ( l o w e r ) ca b l e co nfiguration is sheathed with an i n su l a te d m e m b r a n e . 2 . Th e compression members separate e a ch m e m b r a n e . 3 . Th e o u te r (upper) cable configuration is sh e a th e d with a waterproof membrane.

U NI T_ 1 0


_ LEARN

D EP L O YA B L E S Y S T E MS B uckm in ste r Fu ller ’s wor k in t ens egr it y and geome tric sha pe s has led on t o m any m in m a l st ructure s th at ca n be deploy ed/ f olded ( 1 ) . F rei Otto ’s P neum at ic t ec hnology (2) represen ts o ne a ppr oac h t o c r eat ing deploy a b l e st ructure s, rap idly ex t ended t hr ough inf lat i o n . A noth er ap pro ach to c r eat ing deploy able s t r uc t u r e s utilises mecha nisms t hat s im ply unf old f r om a compact sta rting f or m t o an enlar ged s ha p e . B iological e xa mple s inc lude t he hor nbeam leaf ( 3 ) . T his k ind of stru ctu re would be good f or a t em por a r y shelter. Min g Tan ha s em ploy ed a deploy able s t r uc tu r e in her pro ject in w hic h s he dev eloped t em por a r y shelters for th e h om eles s af t er t he ear t hquak e i n Chian. The she lters hav e a k inet ic s t r uc t ur e t h a t exhibits ch ara cte ristic s of um br ella and f olded f a n s , wit h th e p ote ntia l of a r r anging t hem s elv es int o v ar i o u s cont exts a nd d welli ng r equir em ent s . We nam ed i t as B amb oo + p ap er Hous e, a s elf r ec ons t r uct i v e st ructure for in sta nt ins t allat ions , whic h, ac c or d i n g t o th e ch an gin g int er nal r equir em ent s and s i t e t opog rap hy, ca n pro duc e pot ent ially inf init e s c enar i o s .

_ 2 _ F r e i Otto d e p l o y a b l e u m b r e l l a s y s te m

D EP L O YA B L E S Y S T E MS _ FOLDING

_ M i n g Ta n d epl oyabl e temporary shel ters 4_

F olding g eo metric shapes r es ult s in s y s t em s t hat c a n be packe d awa y. L ot s of t he geom et r ic s hapes a r e inspired by n atu re. Thes e c an t hen be dev eloped i n t o larger sca le an d ins t ead of paper diff er ent m at er i a l s experimen ted with . Si m ple deploy able s y s t em s c an w o r k on a larg e sca le to c r eat e c lean f old away s t r uc t ur e s .

_3

_1 _Folding techniques applied to 1:1 scale

MEGA N S A DLE R

>>

U NI T_ 1 0


_ LEARN

DE PL O YA B L E S Y S T E MS _ FO LD I N G F olding g eo metric sha pes r es ult s in s y s t em s t hat ca n be packe d awa y. L ots of t he geom et r ic s hapes a r e inspire d b y na ture . Thes e c an t hen be dev eloped in t o larger sca le an d instead of paper diff er ent m at er i a l s experime nte d with. Sim ple deploy able s y s t em s c an wo r k on a la rge scale to cr eat e c lean f old away s t r uc t ur e s . _01_D ep loyab le Ho rbeam leaf _02_ Sun flowe r do me s t r uc t ur al s y s t em .

_ M o d e l s h o w i n g s t r u c tu r a l fo l d i n g s y s te m

>>

4_

_02

_01

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN

MEGA N S A DLE R

U NI T_ 1 0


_ LEARN

CO M B I N I N G S Y S T E MS _ DE VE L O PM E N T

_01

_Concep t s k e t c h _02

0 1 _ P anel clo sed, m ore material, less s u n l i gh t 0 2 _ P anel deployed, less material, more s u n l i gh t

_01

MEGA N S A DLE R

_02

U NI T_ 1 0


_ LEARN

LIGHT CONTROL. U s i n g Te n s i o n a n d o p a c i t y to co n t r o l l i g h t , a n d a n al y s i n g t h e e ff e c t s

_REGULAR MEGA N S A DLE R

_HORIZONTAL

_DIAGONAL

U NI T_ 1 0


_ LEARN

MEGA N S A DLE R

U NI T_ 1 0


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.