1 LandUsePlanninginWaipiʻoValley: ProjectwithKŪ-A-KANAKAinHawaiʻi
20May2021
A
ByJoyDomingo-Kameʻenui,DanielleMoore,PedroReynolds-Cuéllar, andCatherineSaint,incollaborationwithKū KanakaandtheKahakalauʻohana MITSpring2021,IndigenousEnvironmentalPlanning
2 TableofContents ProjectFinalReport:KŪ-A-KANAKA 3 Structure 3 Summary 3 BackgroundInformation 4 LandAcknowledgement 6 LiteratureReview 6 StakeholderInterviews 7 IRRIGATIONPLAN 7 WaterIrrigation 8 WaterTesting 9 INVASIVESPECIESPLAN 9 APPLESNAILS 10 Background 10 ManagementOptions 11 Methods 12 Weeds 14 CALCULATIONS 15 GallonsCalculations 17 RainfallCalculations 18 SolarCalculations 20 KEYCONTACTS 22 CONCLUSION 23 APPENDIX 25 MeteorologicalCalculations 25 Solar/2018GlobalHorizontalSolarIrradiance 31
Project
ThisprojectisincollaborationwithKŪ-A-KANAKA,asocialenterpriseownedand operatedbytheKahakalauʻohana,awell-knownfamily ofculturalpractitioners,educatorsand grassrootsinnovators.Ourteamhasdevelopedalanduseplantoassistintheproductionof wetlandtaro;specifically,theplanhighlightsstrategiesforirrigation,invasivespeciesandwater quality.Thegoaloftheprojectistoassistinoverall, long-termsustainabilityandself-sufficiency forNativeHawaiianfamiliesthroughtraditionaltaro cultivation.IncollaborationwithAuntie
Saint Structure I. Introduction II. IrrigationPlan III. InvasiveSpeciesPlan IV. Calculations-Gallons,Rainfall,andSolar V. KeyContacts VI. Conclusion Summary
3 ProjectFinalReport:KŪ-A-KANAKA
Location
Client:KūKahakalau,Ph.D.,MITSolveFellow :WaipiʻoValley,Hawaiʻi team:PedroReynolds-Cuéllar,DanielleMoore,JoyDomingo-Kameʻenui&Catherine
4 Kū,ourresearchhasfocusedonthetwotopicsidentifiedbyherasmostproblematic:irrigation andinvasivespecies. Background Information KŪ-A-KANAKAplanstocultivate10taropatches,withmultiplevarietiesofHawaiian taro.Unlikeothertarofarmswhorunpoi-makingbusinesses,KŪ-A-KANAKAwillgrowtaro forfamilialandculturalpurposes,aswellasto demonstratethatHawaiianscanstillbe self-sustainingwhenwereturntotakingcareofthe land.KŪ-A-KANAKAisasocialenterprise ownedandoperatedbytheKahakalauʻohana,awell-known familyofculturalpractitioners, educatorsandgrassrootsinnovatorswhoplantousethefarmformultiplepurposesincluding eatingthetaroastable-taro,poi,paʻiʻaiandother taroproductsandsharingitwiththeir extendedfamily.Moreover,theyplantouseitasanincomegeneratingfarmthatwouldpayfor atleastonefull-timeemployee,aswellasmultiple interns.Also,theyaregoingtousethesiteas anoutdoorlearninglaboratoryforEAEcoversitylearners, DOEandprivateschools,cultural practitionersandothersinterestedinlearningculture-based tarocultivation.Inaddition,they anticipateKapapaLoʻioKealiʻikuaʻāinatobeamodel forHawaiianfoodsustainability.Inorder toteachothersabouttheculturalsignificanceof taro,KŪ-A-KANAKAinvitesvolunteers includingstudentsofallagestohelpworkonthefarm. Gettingthefarmtorunsuccessfullyiskeytothe family,aswellasthegreater organization,astheyemphasizedtheimportanceof Hawaiianself-sufficiencythroughcultivating thisleasedlandandgrowingfood.Kū-A-KanakaleasesthelandfromBishopMuseum,which owns5,800acresor80%ofthevalleyfloor.OwnershipofthislandwasassumedbyHighChief CharlesKanaʻinafollowingtheMāheleorLandDivision in1848.Afterseveraltransitions,
5
CharlesReedBishoppurchasedthelandandin1896conveyedittoBishopMuseum,which continuestoleaseitslandtotarofarmers.
Thetaropatchfarmcurrentlyfacesafewproblems: thestreamthatwasusedtotapthe waterthatflowswaterinto/outoftaropatchesmoved significantlyawayfrompatchesduringa 100-yearflood40yearsago,andinvasivespecies(fireants,applesnails)aredominantinthe farmandkillthetaro.Weedsalsorunrampantaround thefarm,blockingkeypathwaysand roadways.Weaimtohelpthemaddresstheinvasive speciesandissueswiththeirrigation system.Wealsohavebeenprovidedwithbackground readingsandoralhistoriesaboutthe land/valley,tarofarming,andlocaleconomy TheseresourcespointtoWaipiʻoValleyasaplace witharichhistoricalbackground, supportinglargenumbersofNativeHawaiiansuntilthelate1900s.Inthepre-Western-contact era,atleast800acresoftarowerecultivatedin thelowerValley.Withadecliningpopulation, taroacreagesufferedadecreaseafterWesterncontact, andtodayonlyabout80acresareintaro production.Duringthemid-nineteenthcenturyperiod,ricewasintroducedintoWaipiʻoValleyas anewcrop.Chineseimmigrantscultivatedricein theValleyaftercompletingtheirplantation contracts.WaipiʻoValleywasalsoanimportantroyal andreligiouscenterinancienttimes.The ValleyservedasabaseforninesuccessivePililine rulers,themostnotedbeingLīloaandhisson Umi-a-Līloa.TheValleycontinuedtoplayanimportant roleasoneofmanyroyalresidences untiltheeraofKamehamehaI.Manyheiauortemples andarchaeologicalsites,includingsome royalfeatures,arelocatedthroughouttheValley. Numerousmythologicalassociationsarealso indicativeofWaipiʻoValley’simportanceinHawaiian historyandculture,whichstressesthe importanceofnaturalelements.Hawaiiansbelieve thattheenvironmentpossessesmana,a spiritualpower.UntiltodayHawaiians’relationship withthenaturalelementsdemonstrateshow
6 physicalandspiritualconnectionsimpactcommunitysuccessandsurvival.Thisincludestheuse ofwater,whichcontinuestobeanimportantresourceforwetlandtaroproduction.Infactmany Hawaiianchantsorolispeakoftheimportanceof waterandillustratethefamilialrelationship betweenNativeHawaiian,theenvironmentandthespiritual world.Itisfromthisindigenous perspectivethattraditionalwaterallocationmanagement andpracticesmustbeunderstood.
TheHawaiianislandswerefirstsettledbyPolynesian explorers,whobroughtwiththem taroastheirmainstaple.Ratherthanonlygrowing drylandtaro,aswasdoneintherestof Polynesia,Hawaiiansinventedaningeniouswayofplantingtaroinirrigatedpatchesthatwould increaseitsyieldandprovidesuperiortaro.Until 1900,Hawaiʻiwasfullyself-sustainingintaro production.However,sincethe1893illegaloverthrowoftheHawaiianmonarchyandthe subsequentU.S.occupationofHawaiʻi,tarocultivation, aswellasallotherfoodcrops,in Hawaiʻihasdeclined.In2018,3millionpoundsoftarowerecultivatedinHawaiʻi,whileover2 millionpoundsoftaroareimportedtoHawaiʻieach year
Land Acknowledgement
● Kū-a-KanakaBusinessPlan
Literature Review
● USGSWaterUseinWetlandKaloCultivationinHawaiʻi
● TaroSecurityandPurityTaskForce2010Legislative Report
● TheEconomicsofWetlandTaroProductioninHawaiʻi, 1980
Literaturereviewedincludes,butisnotlimitedto thefollowing:
IRRIGATIONPLAN
KāʻeoDuarte-Wediscussedtheirrigationandinvasive speciessituationsonthetarofarm. Kāʻeorecommendedgettingmeasurementsontheelevations ofthevalleystreamandtarofarm andtheamountofgallonsneededtoirrigatethepatches. Kāʻeoalsosuggestedusingintake screensagainstapplesnails.
7 ● NSFCenterforIntegratedPestManagement,CropProfileforTaroinHawaiʻi,2000 ● CommercialTaroProduction,AgriBusiness,1994 ● GlobalInvasiveSpeciesDatabase ● KāʻeoDuarte’sReportsandObservations ● 3DMap ● PicturesandVideosprovidedbyKū-A-Kanaka Stakeholder Interviews
TheKū-A-KanakaisaNativeHawaiianwomenownedand operatedsocialenterprise andfiscalsponsorofEAEcoversity,Hawaiʻiʻsfirst self-sustaining,tuition-freehighereducation andcareertrainingprogramforyoungHawaiiansages15-30.Kū-A-Kanakaalsoiscurrently developinga5-acretaropatchcomplex(ofwhichabout 2+acresthatcanbeusedtogrowtaro) inWaipiʻoValleyonHawaiʻiIsland.Basedonour conversations,wewereabletoidentifytwo majorchallengesthatwecancontributeto.Forone, thereisaneedtotransportwaterfroma nearbyspringtotaropatchesinordertoprovideproperirrigation.Secondly,givenhistorical agriculturalpracticesofothergroupsinthearea, thereisalsoaneedtodeterminethequalityof thewater.Sointhefollowingsection,wehaveproposedhowtoaddressthesetwochallenges.
Thereareseveralwaystomovewaterfromastream orspringtoacentralizedlocation.Thisisa problemthatmanyfarmersandpeoplelivinginrural areasface,andasaresult,thereisasizable amountofinformationdocumentingDIYwaystomove water.Oneofthemostwidespread solutionsarewaterpumps.Thereisalargevariety ofDIYwaterpumpsthatcanbeusedunder differentconditions.Giventhecharacteristicsof thisproject,theneedtomovethewater420ft distancewithanapproximate1-2feetelevation,we initiallyproposedexperimentingwitharam pumpdesign.1 Rampumpswereconsidered,astheyareoneofthemostusedwaterpump designs,giventhefactthattheyoperateusingthe energyofavacuumeffectcreatedbythe pump.Ultimately,rampumpsweredeterminedtobenotfeasibleduetoinconsistencyinwater flowandthedeterminationthatthespringwasthe bestsourceforcool,flowingwater.Instead, wearenowlookingatcreatingenoughpressureatthespringduetothetypeandplacementof pipes,aswellastheuseofareducerandcouplingwhichwillautomaticallyflowwatertothe taropatches.KāʻeoDuarteiscurrentlyworkingwith Kū-A-Kanakaoninstallingone-inchpiping tomovewaterfromthespringintothepatches,andweexpectforthismethodtobethemost effective.Specifically,theyplanonlayingapipe(withavalve)fromthespringpooltothe bottompatches.Thiswouldbeusingasiphonmethod togetwaterintothepatches.Theplanat thispointistotapintoan8”pipewithcoolspringwaterthatisabout400feetuplandofthe patches.BasedonKāʻeoDuarte’sreport,thispipewouldallowthemtobringwaterinto10of the12alreadyexcavatedandpipe-linkedpatches(the top2patchesaretoolow.) does a hydraulic ram pump work
Water Irrigation
1 https://practicalengineering/blog/2019/12/17/how
8
BasedoninformationprovidedbyKūKahakalau,CEOofKū-A-Kanaka,itisourunderstanding thatthespringwatermightcontainchemicalorbiologicalcontaminants.Thisistheresultofthe disposalofagriculturalproductscontainingchemicals byfarmersupstream,andthepotential presenceofanimalwasteandapplesnaileggsrespectively.Bothchemicalsandbiologicalagents canbeharmfulfortaropatchesandeventuallyto humansfollowingtaroconsumption.Thus,the watercan(andshould)betestedforchemicaland biologicalconditions.Solutionsforthesetwo typesoftestingarereadilyavailableinthemarket bothseparatelyandinkitscombiningboth typologies.However,giventhenumberofattributestotestfor,weproposesendingthewater overtoalabfortesting.Werecommendtestingfor specificchemicalsandattributes,like glyphosate(Roundupherbicide),heavymetals,otherpesticidesandherbicides,certainbacterias, andpH.Afterdoinganonlinesearch,wefoundthat PololeiLabsinHilomaybecapableof runningthesewatertests.Iftheyareunavailable, thelocaluniversity,UniversityofHawaiʻi Hilo,isagoodresourcetolookintofortestingintheirlabs.
9
INVASIVESPECIESPLAN Fourspeciesaredesignatedasinvasiveinthetaro patchfarmingareaofWaipiʻoValley: applesnails,redants,weeds,andwildhorses.The KŪ-A-KANAKAteamhasstrategicallycome upwithsolutionstoaddressredantsandwildhorses;specifically,ongoing6-weekfireants treatmentincollaborationwiththeHawaiʻiantlab, usinggranularandwetbait,andinstalling physicalbarrierslikefencestohelpkeepwildhorses out.Thus,thisreportincludesproposed strategiesforweedsandapplesnails.
Water Testing
10
APPLESNAILS
Background Theapplesnail,or Pomacea,istaro’smostaggressivepest.Thisspeciesisoneofthe100 world’sworstinvaders,accordingtotheGlobalInvasiveSpeciesDatabase.2 Itproliferatesat 2 http://issgorg/database/
Invasiveplantcontrolmethodsaredividedintofourcategories:mechanical,chemical, biological,andculturaltechniques.Mechanicalmethodsareusedextensivelybystaffand volunteers;theyincludehandpulling,weedwrench,cutting(highandlow,inthecaseofvines), mowing,digging,bushhogging,prescribedburning,brushcuttingandweedwhipping,and pullingwithatractorandchainorBrushBrute.Chemical methodsinvolvetheuseofherbicides. Thedecisiontousechemicalcontrolsisacarefully consideredone.Theexclusiveuseof herbicidesaloneisnotlikelytobeaneffectivelong-termsolutionforcontrollinginvasives. Difficultiesincludecontrollingonlytargetplantsatthecorrecttimeduringtheirlifecycle,and thepotentialhealthriskstoworkersandtheenvironment. Biologicalcontrolinvolvesthe introductionofspecies-specificpredatorsfroma plant’snativehabitat,andremainsthedomain ofuniversitiesandgovernmentagencies.Therisks associatedwithspeciesintroductionarehigh, andonlywellfundedandthoughtfullyresearchedprogramsareeffective.Culturalcontrol looselydescribeschangestothestructureornutrient availabilityofasitetocreateconditions thatdonotfavorinvasivespecies.Thisformofcontrol includes:minimizingtheedgehabitats thatarepronetoinvasion,amendingsoiltotieup excessnutrients,or,forexample,removing multiflorarosefromahabitatasawayofpreventing itfromservingasaladderforvines, preventingaccesstocontrolotherinvasiveplants, replantingwithadiversityofdesirablespecies sothattheycanshadeoutinvasivespecies.
Biologicalcontrolmethodshavebeentriedacross theglobe,includingducks,fishsuchascarp andNiletilapia,andredants(whichfeedoneggs).6 Someplantswithtoxicsubstances,ifgrown inthericepaddiesortaropatches,orleftfloating nearthesnails,willkillthem.Intwosmall areasinMalaysia,aplantproductpesticideandbrackish watersuccessfullycontrolledsnails.No 6 http://wwwcolumbiaedu/itc/cerc/danoff burg/invasion bio/inv spp summ/Pomacea canaliculatahtml
4 https://www.solitudelakemanagement.com/blog/invasive species highlight apple snails/
11 greaterratesinwarmerwatersandspreadsthroughtheliquidconnectionbetweenpatches, makingitextremelydifficulttoeradicatewithoutcontrolmeasuresinsyncupanddownthe system.It’swidelyconsideredtobeoneofthemostinvasiveinvertebratesofwaterwaysand irrigationsystems.Thewarmwater,alongwithpolluted runofffromadjacentresidentialand agriculturallandsinsomecases,hasincreasedthe presenceofStaphylococcus,E.coli,andother bacteriainstreamsandonfarmstolevelsthatendanger thehealthoftarofarmers.3
Applesnailsarealarge,freshwaterspeciesthatarepartofthefamily Ampullariidae
Whenintroducedtonon-nativeareas,theycanrapidly altertheecologicalmakeupofaquatic ecosystemsduetotheiraggressivefeedingstyleand rapidgrowthrate.Theyfeastonmultiple typesofaquaticvegetationandothersnailspecies,whichcandrasticallyalternutrientdynamics inaquaticecosystems.Theyarealsoamphibious,meaning theycansurviveseasonallyinboth terrestrialandaquaticenvironments,includinglakes, pondsandwetlands.Theyhaveanunusual gillandlungadaptation,whichtheyutilizeduring theirreproductivecycles.Inresponseto seasonalchangesinwaterlevels,thisadaptation allowsthemtolayeggsoutsideofthewater column,preventingpredationbynativeaquaticpredators.4 Management Options 5
.
5 https://conservationtoolsorg/guides/31 invasive species management program
3 https://muse jhu eduezp prod1hulharvardedu/chapter/1490469/pdf
7 https://wwwsolitudelakemanagementcom/blog/invasive species highlight apple snails/
12 chemicalsarecurrentlyknowntobesafe,effectiveandcheapenoughtouseonalargescale, althoughvariousonesareinuse,includingoneswhichhavebeenbannedincountriessuchas Japan,Taiwan,andthePhilippines.
Methods
1. Removalbyhand(laborintensive)
Thefollowingmethodsareconsolidatedfromanumber ofsources,primarilySolitudeLake Management.
a. Themosteffectivecontrolmethod,butalsothemostlabor-intensivemethod.Itis suggestedtousecertainplantattractants,oldnewspapers, orbuildshallowcanals toconcentratesnailsforeasierremoval.8 b. Canenlisthelpofcommunitymembersandinterns, pendingsaferconditionsand triporganization.
7
a. Strategically-placedinwaterinflowsandoutflows canhelpblockinvasivespecies migrationstonewareasandcongregateexistingpopulations formorestreamlined removal.
2. Screensandbarriers
3. Mechanical-hydrorakinga.Utilizedtoremovetheaccumulatedorganicmaterialsettledalongtheground floorlayer.
8 http://wwwcolumbiaedu/itc/cerc/danoff burg/invasion bio/inv spp summ/Pomacea canaliculatahtml
13
4. Strengtheningsurroundingnaturalecosystem
a. Encouragingthegrowthofbeneficialvegetativebuffersofnativegrassesand floweringplantsaroundthetaropatches.
a. Aerationisanin-linepoint-of-entryprocessthatreducestheconcentrationof volatileorganiccompounds.Aerationtreatmentconsists ofpassinglargeamounts ofairthroughwaterandthenventingtheairoutside.Theaircausesthedissolved gasesorvolatilecompoundstoreleasefromthewater.9 AfterconsultingwiththeKŪ-A-KANAKAteam,wewere abletotakeoutmechanical hydrorakingandtheusageofducksasabiologicalcontrol,primarilybasedonsomeofthelegal challengesimposedbytheHawaiʻiDepartmentofLand andNaturalResources.Currently,they prohibitheavymachineryandbiologicalcontrolslike ducks,whichhavemorepermanentand lastingimpacts,suchascross-breeding. https://drinking waterextensionorg/drinking water treatment aeration/#: :text=Aeration%20treatment%20consists %20of%20passing,then%20venting%20the%20air%20outside.&text=Aeration%20devices%20range%20from%20a, tower%20filled%20with%20packing%20material
b. Canrestoreponddepthtoitsoriginaldimensions,resultinginincreasedoverall functionandfloodretentioncapabilitiesoftaro patches.
9
c. Requiresabout1.5feetofwatertooperateefficiently,andcansuccessfully removeorganicmatterrangingfromafewinchestoamaximumof10feet.
5. Introduceaerationsystemsinlocalwaterbodiesto helpcirculatethewaterandimprove desirabledissolvedoxygenlevels
natural remedies get rid weeds permanently/
14
Weeds Weedsaregenerallyusedtodefineanyplantgrowingwhereitisnotwanted.Thetaropatchfarm hasweedsblockingroadways,sheds,andcrucialpathways.Thefollowingmethodshavebeen outlinedtoaddresstheweedinvasivespecies,found from Cultural Weekly: 10
2.Sprayconcentratedmixtureofvinegaranddishsoapdirectlyonweeds Amixtureof5%dishsoap,20%vinegar,and75%water sprayeddirectlyonweeds. Vinegarhasaceticacidwhichactsasadryingagent whenitcomesintocontactwith plantleaves.Whenyousprayvinegaronyoungplants, thevinegarismoreeffective becausetherootsareimmatureandweak.Soapisan excellentaidingardeningandweed removals.Itcompromisesthesurfacesofhairyandwaxyweeds,allowingtheaceticacid ofthevinegartoadheretotheleaves.Afewdrops ofliquidsoapinyourvinegarspray willboostthekillingeffectofthesolution.
10 https://www.culturalweekly.com/5
1.Blanketlayersofcardboardpaperandnewspapers Plantswillgrowwhentheyhavesunshineandwater;cuttingoffthissupplywillstrangle theweeds.Usetheblackandwhitepagesandavoid thecolorpagessothatyoudon’t seepchemicalsfromtheinkintosoil.Layerseven sheetsofnewspaperandwetitdown thoroughlytoanchoritinplace.Coverthenewspaperblanketwithmulchandform anotherblanketlayerofpaperandmulch.Thepaper blanketswillbreakdowntotheir carbonnatureandenrichthesoilwhileinhibiting weedgrowth.
3.Spreadcornglutenmealaroundplants Thisisaby-productofcornstarchandcornsyrupandisacompetentpre-emergent
AfterconsultingwiththeKŪ-A-KANAKAteam,itseems themixtureofvinegar,soapand wateristhepreferredmethodtoridofweeds.
15 techniqueforcontrollingweeds.Itthwartsgerminationsoitmustbeappliedbeforethe weedsstarttogerminate.Applyitaroundtheplants andseedlingsthathavetakenrootin thesoilsothattheweedsdonothavetheopportunitytouseupthenutrientsthatweeds 4.require.Scaldtheweedswithboilingwater
CALCULATIONS
Inadditiontoformingstrategiesforirrigationandinvasivespecies,AuntieKūrequested assistancewithcalculatingtheareaofthepatches andtheamountofwatertheyhold.Basedon whatAuntieKūsaidinanearliermeeting,weused theapproximateestimateof1.5footdepthin thefollowingpatchescalculations.Inaddition,Auntie Kūhasrequestedassistancewith measuringrainfallatKūnaka(Waipiʻo)togaugethesizeofawatercatchmentthatwouldcatch rainfallfromtheroofofourto-be-constructedFarmSheltertobeusedforwashingdishesand cooking.Shealsorequestedhelpwithcalculating theamountofsunatthesite,andthetypeand sizeofsolarpanelsneededtorunlightsatnight,chargephones,andpowercomputers.Sointhe followingsection,welayoutthesecalculationsthat canbeusedinAuntieKū’slater conversationsandplans.
Pouringwaterfromaboilingkettleontotheweedswillburnthemup.Thismethodis especiallyusefulonwalkwaysandpavedsurfacessincethewatergetsintoallthecracks andspacesquitequickly.
16
17 Gallons Calculations PatchA=2,436sqft *15sqft=3,654cubicft 1cubicfoot=748052USliquidgallon Gallons=3,654cubicft* 748052=27,33382gallons PatchB=2,436sqft *15sqft=3,654cubicft 1cubicfoot=748052USliquidgallon Gallons=3,654cubicft* 748052=27,33382gallons PatchC=2,150sqft *15sqft=3,225cubicft 1cubicfoot=748052USliquidgallon Gallons=3,225cubicft* 748052=24,12467gallons PatchD=2,150sq.ft.*1.5sq.ft=3,225cubicft 1cubicfoot=7.48052USliquidgallon Gallons=3,225cubicft* 7.48052=24,124.67gallons PatchE=2,150sq.ft.*1.5sq.ft=3,225cubicft 1cubicfoot=7.48052USliquidgallon Gallons=3,225cubicft* 7.48052=24,124.67gallons (based on map, we estimate this patch to be a bit bigger) PatchF=2,150sq.ft.*1.5sq.ft=3,225cubicft 1cubicfoot=7.48052USliquidgallon Gallons=3,225cubicft* 748052=24,12467gallons PatchG=2,150sqft *15sqft=3,225cubicft 1cubicfoot=748052USliquidgallon
18 Gallons=3,225cubicft* 748052=24,12467gallons PatchH=2,150sqft *15sqft=3,225cubicft 1cubicfoot=748052USliquidgallon Gallons=3,225cubicft* 748052=24,12467gallons (based on map, we estimate this patch to be a bit bigger) PatchI=2,150sqft *15sqft=3,225cubicft 1cubicfoot=748052USliquidgallon Gallons=3,225cubicft* 748052=24,12467gallons (based on map, we estimate this patch to be a bit smaller) PatchJ=2,150sq.ft.*1.5sq.ft=3,225cubicft 1cubicfoot=7.48052USliquidgallon Gallons=3,225cubicft* 7.48052=24,124.67gallons (based on map, we estimate this patch to be a bit smaller) PatchK=9,464sq.ft.*1.5sq.ft=14,196cubicft 1cubicfoot=7.48052USliquidgallon Gallons=14,196cubicft* 7.48052=106,193.46gallons (A)27,333.82gallons+(B)27,333.82gallons +(C)24,124.67gallons+(D)24,124.67gallons+(E)24,124.67 gallons+ (F)24,12467gallons+(G)24,12467gallons+(H)24,12467gallons+(I)24,12467gallons+(J) 24,12467gallons+(K)106,19346gallons TOTALGALLONS=353,858.46gallons Rainfall Calculations NumbersherearebasedoncurrentGreenFarmShelter design(20x40).Withthesedimensions, theroofshouldcover800squarefeet,sothatisusedinthefollowingcalculations.Accordingto
19
NOAAdataoverthelast10years,thefiveclosestweatherstationstoWaipiʻoValleyannual rainfallhasrangedfrom42.67into143.06in.11 Sincethisisawiderange,somecalculations belowaremadetoseewhattheaverageannualrainfall mightbeforthesite. Soforthefirststep,wewentinandaveragedeachofthefivesite’srainfalloverthe years.Fromthis,wegotPuʻukapuHomestead’syearlyaverageas52.26inches;Honokaʻa2.7 ESE’syearlyaverageas112.75inches;Honokaʻa2.5SSW’syearlyaverageas120.85inches; HonokaʻaTown’syearlyaverageas89.72inches;and Kalōpā’syearlyaverageas95.46inches. Next,weaveragedouttheserainfallsbetweenthe fivesites.Theresultcameoutas94.208 inchesperyeartobethebestestimateforWaipiʻo Valley.Ofcourse,thisnumberwillchange eachyearfromavarietyoffactors(climatechange, drought,hurricanes,etc.),butitisaveraged outon10yearsofdata,soitshouldbeagoodestimateofwhattoexpectovertime. Sotakingthatyearlyrainfallestimateandtheroof size,youcanexpecttocollectabout 47,000gallonsofrainwaterayear.12 Thatcomesouttoabout3,916gallonsamonth,and126 gallonsaday.BasedontheCaliforniaLegislature’sNonpartisanFiscalandPolicyAdvisor, Californiansusedabout85gallonsofwaterperpersonperdayin2016.Overtheyear,average usageincreasedtoabout110gallons/dayduringsummermonthsanddownto60gallons/day duringthewinter.OnekeypointtonoteisthatCaliforniansarehigherusersofwater,especially duringthesummer,andthesecalculationsincludedallurbanhouseholdwateruseslikeshowers, clotheswashing,watering,andcleaning. 13 SoevenwithconsideringpeaksummerCalifornia
13 https://lao.ca.gov/Publications/Report/3611#:~:text=Average%20Residential%20Water%20Use%20in,person%20pe r%20day%20in%202016 12 https://wwwgardenerscom/how to/rain barrel for rainwater collection/5497html& https://wwwwatercachecom/resources/rainwater collection calculator 11 PuʻukapuHomestead192.9,HIUSUSC00518386;Honokaʻa2.7ESE,HIUSUS1HIHI0034;Honokaʻa2.5 SSW,HIUSUS1HIHI0033;HonokaʻaTown215,HIUSUSC00511856; Kalōpā2168,HIUSUSC00512982
wcB& https://wwwntotankcom/275gallon nto white rebottled ibc
IsAGxFX8CbKZr6PLnGbaXTmvadnG8 Q8p1mzTrqlIVH
15 https://wwwncdcnoaagov/sites/default/files/attachments/CCD 2018pdf 14 https://wwwntotankcom/200gallon norwesco
tank x7738443
20 usage, Kū-A-KanakaandtheKahakalauʻohanawouldstillmeetthatthresholdof110 gallons/daywiththeamountofrainwatertheywould collect(estimateof126gallons/day).From whattheyhavetoldustheexpectedrainwaterusage tobe(washingandcooking),theirprojected usagewouldbeeasilycoveredbytheexpectedrainfall collection.
Soforstoragetankideas,webelievethatanywhereupwardsofa200to275gallon storagetankwouldbemorethanenoughtofittheirneeds.14 Thesemedium-sizedstoragetanks wouldholdmorethanenoughforafewdaysofwater.Theyalsowouldbefilledupinabouttwo dayswithrain.Fromafewsearches,wefoundtanksofthissizeforsaleatNTOTank,Home Depot,andotherhardwarestores. Solar Calculations Asstatedabove,Auntie Kūrequestedassistancewithdeterminingthefeasibilityofsolaronthe proposedfarmshelter.AccordingtoNOAA’s 2018ComparativeClimaticData,theirHiloairport weatherstationreportedonaverage(over50years)36cleardays,132partlycloudydays,and 197cloudydays.Inaddition,theaveragepercentageofdaytimesunshineovertheyearsand monthswas41%.Forthisstatistic,NOAAstatesit as“Thetotaltimethatsunshinereachesthe observingstationisexpressedasthepercentageof themaximumamountpossiblefromsunrise tosunsetinclearskyconditions.”
15 Betweenthe12monthsoftheyear,averagesunshine percentagesrangedfromalow36%inApriltoahigh 47%inSeptember.Also,theyrecordedan averageof276daysoftheyearthathadprecipitation. Soallthisdatashowsthattherearesome black vertical water tank x2419829?gclid=Cj0KCQjwkZiFBhD9AR Ns0RH1cNpygMovGh0aAle0EALw tote
However,solarenergyshouldstillbefeasibletoserveKū-A-KanakaandtheKahakalauʻohana’s energyneeds.Fromwhattheyhavetoldustheexpectedenergyusagetobe(primarilylightsand chargingelectronics),theirprojectedusageshouldbecoveredbyasmall2to3kWsolarsystem. A3kWsystemisonthesmallerend,andrequires about9panelsthatareusuallyinstalledonthe roof. 17 Also,a3kWsystemismorethanenoughto powerasmallhomeanditstypical appliances.SinceWaipiʻoValley’sclimatecanbe morecloudythansunny,wedefinitely 17 https://gosolarquotes.com.au/what can a 3kw solar system run/& https://wwwomsolarin/3kw solar system price features and advantages/ 16 https://wwwnrelgov/gis/assets/images/solar annual ghi 2018 usa scale 01jpg
21 sunny,drydaysinHiloandsimilarlyWaipiʻoValleythroughouttheyear,butthatitismore likelytoberainyandcloudyonanygivenday The mapbelowshowsthe2018NationalSolar RadiationDatabasePhysicalSolarModelfortheislands.16 Comparedtothecenteroftheisland andtheSouthwestUnitedStates,WaipiʻoValleyhasasmallerannualaverageofsolarresources.
UniversityofFlorida–InstituteofFoodandAgricultural Services Regardedasthebestentomologydepartmentinthe U.S.,workwithmanyexternalpartnersand engageinsoilandinsectresearch.
EmilyBell:(904)314-0455
Dr.PieroGenovesi Chair,InternationalUnionforConservationofNature(IUCCN)
UniversityofAuckland(NewZealand) SchoolofBiologicalSciences CentreforBiosecurityand S.Pagad@Auckland.Ac.NzBiodiversity
UniversityofHawaiʻiMānoa–RubinoffLab
22 recommendlookingintobatterystoragesotherewillbepoweravailableforcloudydays.It definitelyisworthlookingintogettingestimates fromsolarinstallersontheislandandasking themmoreaboutasmallersystemtopowertheirneeds. KEYCONTACTS
ShyamaPagad DeputyChair-Information,IUCNSSCInvasiveSpeciesSpecialistGroup
TheRubinoffLabconductsresearchonabroadrangeofinsectsacrossadiversityoffields includingevolution,ecologyandconservation,workingonquestionsinvolvingthepreservation ofendangeredspeciesinHawaiʻiandelsewhere,but alsoworktomitigatethedamagecausedby invasivespeciesandagriculturalpests.
23
RiccardoScalera ProgrammeOfficer,IUCNSSCISSG Scalera.Riccardo@gmail.com
AsmuchasweprovidedforAuntieKūandKū-a-Kanaka, wealsolearnedmuchfrom themaboutdevotiontoeducation,“AlohaʻĀina”and “MālamaʻĀina”,andHawaiianculture, specificallyrelationsofHawaiiansandtaro.Welearned aboutKū-a-Kanaka’sdevotionto educationthroughitsconnectionwithEAEcoversity, whichisHawaiʻiʻsfirstself-sustaining, tuition-freehighereducationandcareertraining programforyoungHawaiiansages15-30.After ourexperienceofworkingwithKū-a-KanakaandourIndigenousEnvironmentalPlanningclass,
HeadofWildlifeService ISPRA(InstituteforEnvironmentalProtectionand Research),Italy
RobertHutchison Teacher,APBiology,APEnvironmentalScience,Human AnatomyandPhysiology
KamehamehaSchoolsKapālamaHighSchool rohutchi@ksbe.edu
Piero.Genovesi@Isprambiente.It
CONCLUSION
NathanNishimura Teacher,ConservationBiology,Ethnobotany KamehamehaSchoolsKapālamaHighSchool nanishim@ksbe.edu
24 webelievestudents,whetherinpreschool,K-12,oratcolleges/universities,shouldhavemore accesstoindigenousenvironmentaleducationalopportunities likeEAEcoversity Thiseducation wouldincludethevaluesof“AlohaʻĀina”and“Mālama ʻĀina”,whichmeans“lovetheland” and“carefortheland”,respectively.Webelieve thepurposeofourprojectis“AlohaʻĀina”and “MālamaʻĀina”thuswelearnedmuchaboutthesevalues aswewentthroughthisproject, carefullylookingintowaystoaddressthechallenges onthetarofarm.Wewantedtomakesure thatthesuggestionswechosewouldnotjusthelpwiththetarofarm’sefficiency,butalsonot harmthenaturalecosystemofWaipiʻoValley.The “AlohaʻĀina”and“MālamaʻĀina”values areahugeaspectofHawaiianculture,especially whenitcomestorelationsbetweenHawaiians andtaro.AsweworkedwithKū-a-Kanaka,welearned aboutthestoryofHāloanaka,thefirst taroplant,andhislittlebrother,Hāloa,thefirsthumanintheHawaiianpolytheisticreligion.And welearnedabouttheunfortunatedeclineoftarocultivation inHawaiʻisincethe1890s,buttaro cultivationisbeingmaintainedbyKū-a-Kanakaand othertarocultivatinggroupsinHawaiʻi. WeareveryhappytohaveworkedwithKū-a-Kanakaonthisproject,aswelearnedso muchfromtheexperience.Wehopeourconnections withKū-a-Kanakawillcontinueandthat wecontinuetobuildmoreconnectionswithIndigenouspeoples.
25 APPENDIX Meteorological Calculations 18 Station:HILOINTERNATIONALAIRPORT87,HIUSUSW00021504 Dates:January1,2020-May8,2021 ● January2020 ○ TotalPrecipitation(in):15.89 ○ AverageDailyPrecipitation(in):0.512 ● February2020 ○ TotalPrecipitation(in):5.62 ○ AverageDailyPrecipitation(in):0.193 ● March2020 ○ TotalPrecipitation(in):27.95 ○ AverageDailyPrecipitation(in):0.901 ● April2020 ○ TotalPrecipitation(in):7.75 ○ AverageDailyPrecipitation(in):0.258 ● May2020 ○ TotalPrecipitation(in):3.45 ○ AverageDailyPrecipitation(in):0.111 ● June2020 ○ TotalPrecipitation(in):4.46 ○ AverageDailyPrecipitation(in):0.148 ● July2020 ○ TotalPrecipitation(in):5.27 ○ AverageDailyPrecipitation(in):0.17 ● August2020 ○ TotalPrecipitation(in):4.25 ○ AverageDailyPrecipitation(in):0.137 ● September2020 ○ TotalPrecipitation(in):8.79 ○ AverageDailyPrecipitation(in):0.293 18 CustomordereddatafromNOAAhere: https://gis.ncdc.noaa.gov/maps/ncei/cdo/annual.PDFsofalldataare locatedintheprojectsharedfolder
26 ● October2020 ○ TotalPrecipitation(in):4.82 ○ AverageDailyPrecipitation(in):0.155 ● November2020 ○ TotalPrecipitation(in):18.79 ○ AverageDailyPrecipitation(in):0.626 ● December2020 ○ TotalPrecipitation(in):14.42 ○ AverageDailyPrecipitation(in):0.465 ● January2021 ○ TotalPrecipitation(in):17.47 ○ AverageDailyPrecipitation(in):0.582 ● February2021 ○ TotalPrecipitation(in):13.13 ○ AverageDailyPrecipitation(in):0.468 ● March2021 ○ TotalPrecipitation(in):24.99 ○ AverageDailyPrecipitation(in):0.806 ● April2021 ○ TotalPrecipitation(in):7.80 ○ AverageDailyPrecipitation(in):0.260 ● May2021(inprogress/8daysavailable) ○ TotalPrecipitation(in):1.52 ○ AverageDailyPrecipitation(in):0.19 Station:HILOINTERNATIONALAIRPORT87,HIUSUSW00021504 Dates:May1,2020-May31,2020 ● ForthewholemonthofMaylastyear,itrainedon24of31days.Itwasmisty13outof 31days. ● Mostoftherainoccurredfrom3amto10am,andbetween6pmandmidnight. ● Theraintotalforthemonthwas4.67incheslessthanthenormalaveragefor1981-2010. Report:MONTHLYCLIMATICDATAFORTHEWORLD,MAY2018
27 PREPAREDINCOOPERATIONWITHTHEWORLDMETEOROLOGICAL Dates:ORGANIZATIONMay1,2018-May31,2018 Station:91285HILO/GEN.LYMAN,HAWAIʻI ● ForthewholemonthofMayin2018,itrainedon21of31days. ● Theraintotalforthemonthwas231mm,whichisabout9.094inches.Thiswas20mm lessthanaverage. Report:GlobalSummaryoftheYear2010-2019 Station:PUʻUKAPUHOMESTEAD192.9,HIUSUSC00518386(closesttolocation) Dates:2010,2011,2013,2019 ● 2010 ○ TotalPrecipitation(in):61.04 ○ DaysofPrecipitation:277 ● 2011 ○ TotalPrecipitation(in):56.40 ○ DaysofPrecipitation:287 ● 2013 ○ TotalPrecipitation(in):42.67 ○ DaysofPrecipitation:242 ● 2019 ○ TotalPrecipitation(in):49.23 ○ DaysofPrecipitation:229 AVERAGE:52.26 Station:HONOKAʻA2.7ESE,HIUSUS1HIHI0034 Dates:2015,2016,2019 ● 2015 ○ TotalPrecipitation(in):143.06 ○ DaysofPrecipitation:209
Dates:
○
28 ● 2016 ○
TotalPrecipitation(in): DaysofPrecipitation:
TotalPrecipitation(in):100.93 DaysofPrecipitation:
TotalPrecipitation(in):148.09 DaysofPrecipitation:
224 ● 2019 ○
126.78 ○
○
79.51 ○
303 ● 2017 ○
Station:HONOKAʻA2.5SSW,HIUSUS1HIHI0033 2014,2015,2016,2017,2018,
262 ● 2015 ○
TotalPrecipitation(in): ofPrecipitation:
● 2010 ○
TotalPrecipitation(in):135.31 DaysofPrecipitation:
133.50 ○ Days
TotalPrecipitation(in): ofPrecipitation:
Dates:
284 ● 2016 ○
85.85 ○
227 ● 2018 ○
TotalPrecipitation(in): DaysofPrecipitation: 120.85 Station:HONOKAʻATOWN215,HIUSUSC00511856 2010,2011,2012,2013,2014,2015,2016,2017 TotalPrecipitation(in):63.57
2019 ● 2014 ○
174 AVERAGE:
281 AVERAGE:
TotalPrecipitation(in): DaysofPrecipitation: 112.75
○
109.36 ○ Days
300 ● 2019 ○
29 ○ DaysofPrecipitation:165 ● 2011 ○ TotalPrecipitation(in):68.78 ○ DaysofPrecipitation:157 ● 2012 ○ TotalPrecipitation(in):46.75 ○ DaysofPrecipitation:173 ● 2013 ○ TotalPrecipitation(in):67.64 ○ DaysofPrecipitation:141 ● 2014 ○ TotalPrecipitation(in):128.70 ○ DaysofPrecipitation:192 ● 2015 ○ TotalPrecipitation(in):136.79 ○ DaysofPrecipitation:198 ● 2016 ○ TotalPrecipitation(in):108.78 ○ DaysofPrecipitation:209 ● 2017 ○ TotalPrecipitation(in):96.82 ○ DaysofPrecipitation:164 AVERAGE:89.72 Station:Kalōpā216.8,HIUSUSC00512982 Dates:2011,2012,2013,2014,2015,2019 ● 2011 ○ TotalPrecipitation(in):85.55 ○ DaysofPrecipitation:158 ● 2012 ○ TotalPrecipitation(in):51.31 ○ DaysofPrecipitation:164 ● 2013 ○ TotalPrecipitation(in):78.93 ○ DaysofPrecipitation:136 ● 2014
16,17,22,25,25,25,27,27,23,24,23,21,
MEANNUMBEROFDAYSWITHPRECIPITATION0.01INCHOR MORE | JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG| SEP|OCT|NOV|DEC|ANN HILO,
Thistableshowsthemeannumberofdayspercategory ofcloudiness.Thecategoriesare determinedfordaylighthoursonly.Cleardenoteszeroto3/10averageskycover.Partlycloudy denotes4/10to7/10averageskycover.Cloudydenotes8/10to10/10averageskycover. BeginningwithJuly1996skycoverageisreportedtoeighths(oktas).Clearindicates0-2oktas, partlycloudyindicates3-6oktasandcloudyindicates 7-8oktas.
Thecloudinessdataareunchangedfromyeartoyear Updatestothecloudinessdataendedwith thetransitiontoAutomatedSurfaceObservingStations atNationalWeatherService(NWS) sites.Inthe1990scloudmeasurementstakenbytrained observersbegantobephasedoutin favorofautomatedsensorsthatmeasuredcloudsbelow 12,000feet. HI194910-201812| 276 https://wwwncdcnoaagov/sites/default/files/attachments/CCD
J.Cloudiness-MeanNumberofDays-Clear(CL),PartlyCloudy(PC),Cloudy(CD)
2018pdf
30 ○ TotalPrecipitation(in):136.57 ○ DaysofPrecipitation:179 ● 2015 ○ TotalPrecipitation(in):141.13 ○ DaysofPrecipitation:168 ● 2019 ○ TotalPrecipitation(in):79.31 ○ DaysofPrecipitation:158 AVERAGE:95.46 Report:2018ComparativeClimaticData 19 I.Sunshine-PercentageofPossible
Thetotaltimethatsunshinereachestheobserving stationisexpressedasthepercentageofthe maximumamountpossiblefromsunrisetosunsetinclearskyconditions.TheNWShasphased outthesunshinesensorsomostofthestationsinthispublicationhaveperiodsofrecordthat haveended.
19 https://www.ncdc.noaa.gov/ghcn/comparative climatic data,
31 SUNSHINE-AVERAGEPERCENTAGEOFPOSSIBLE | JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG| SEP|OCT|NOV|DEC|ANN HILO,HI196501-200612|47,45,39,36,40,45,41,44,47,38,35,37,41 CLOUDINESS-MEANNUMBEROFDAYS:CLEAR,PARTLYCLOUDY, CLOUDY YRS | JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG |SEP|OCT|NOV|DEC|ANN CLPCCD HILO,HI | 50YRS|6,11,13| 5,10,13|3,10, 18|1,9,20|1,11,19| 2,11,17|1,12,18|2, 12,17|3,12,15|3,12,16|3,10,17|5,11,15|36,132,197| Solar/2018 Global Horizontal Solar Irradiance 20 20 https://wwwnrelgov/gis/assets/images/solar annual ghi 2018 usa scale 01jpg