IFPAC Cogdill 04

Page 1

Practical Examples of Calibration Transfer and Method Comparison

IFPAC 2004 Robert P. Cogdill James K. Drennen, III January 15, 2004


Calibration Transfer for Imaging Spectrometers

IFPAC 2004 Robert P. Cogdill James K. Drennen, III January 15, 2004


Outline • • • • •

3

Introduction to Chemical Imaging Transferability in Chemical Imaging Calibrated Internal Standardization Results Discussion/Further Investigation


Chemical Imaging: Introduction

Š Spectral Dimensions, Inc. 2004 4


Chemical Imaging: Equipment

5


Chemical Imaging: Current Method Calculation of Reflectance Image Hypercube sample data

dark data

Reflectance Cube

Y X

= (

)

Wavelength

â˜ş Dr. Carl Anderson, 2004, All Rights Reserved 6

reference data

dark data


Chemical Imaging: Application • • • • • •

Microscopy High-throughput analysis Small volume analysis Particle sizing Crystallography Future prospects… …All in Wonder Instrument

7


Chemical Imaging: Limitations • Performance – Spatial – Spectral

• Throughput – Data acquisition – Computation

• Data Analysis – Knowledge extraction

• Transferability 8

• Development/

Continuity of Spectral Databases • Propagation of methods •Upgradeability


Chemical Imaging: Transferability • Image Transfer – Resolution – Format

• Spectroscopic Transfer – Spatial: Transferability among pixels – Temporal: Stability of pixels’ spectral response – Inter-Instrument: imaging and non-imaging transfer

9


Spatial Transferability -3

10 1.2

20 40

1.1

60

1

80

0.9

100 0.8 120 0.7

140

0.6

160 180 50

100

150

200

250

0.5

Standard Deviation (Reflectance)

9

x 10

Standard Deviation vs. Wavelength (mili-reflectance units)

8 7 6 5 4 3 2 1300

1350

1400

1450

1500

1550

Wavelength ( nm )

1600

• Image of Teflon® standard @ 1489 nm • Combination of sample and reference heterogeneity 10

1650

1700


Temporal Transferability Extracted Spectra, 1 Tablet, Imaged during 3 days 1.6

Reflectance

1.4

1.2

1

0.8

Transient errors in reference or sample images

0.6 1300

1350

1400

1450

1500

Source Variation/ Re-collection of References 1550

W a v e le n g th ( n m ) 11

1600

1650

1700


Inter-Instrument Transferability

12


Inter-Instrument Transferability 1.5

9 tablets, Imaged on same day 1.4 1.3

Reflectance

1.2 1.1 1 0.9 0.8 0.7 0.6 1300

1350

1400

1450

1500

1550

W a v e le n g th ( n m ) 13

1600

1650

1700


Chemical Imaging: Current Method

sample data

dark data

Reflectance Cube

Y X

=(

)

Wavelength

reference data

14

dark data


Calibrated Internal Standardization

sample data

Reflectance Image

=

Y

X Wavelength

15

Internal dark signal

x internal bright signal

Internal dark signal

Bias Cube

Slope Cube

+


Calibrated Internal Standardization

16


Calibration Materials 0.62

Teflon® NIR Reflectance Spectrum

0.6

Reflectance

0.58 0.56 0.54 0.52 0.5 0.48

• 2-Point calibration

0.46 1300

1400

1500

– Teflon® (diffuse reflector) – Stainless steel (specular reflector) 17

1600

1700

1800

Wavelength ( nm )

1900

2000


Internal Calibration 1 0.15

20

0.9

20

40

0.8

40

60

0.7

60

80

0.6

80

-0.05

100

0.5

100

-0.1

120

0.4

120

-0.15

140

0.3

140

160

0.2

160

180

0.1

0.1 0.05 0

-0.2 -0.25 -0.3

50

100

150

200

250

Pixel-to-pixel Slope @ 1489 nm

0

180

-0.35 50

100

150

200

Pixel-to-pixel Bias @ 1489 nm

• Light source fixed-pattern, filter aberrations, detector artifacts 18

250


External Calibration (Inter-Instrument) • Relative gain between instruments is matched during internal calibration – Pixel-level regression using “global” references

• Determine relative baseline between instruments using extracted sample spectrum – Internal standardization enables use of “local” reference (e.g.- tablet) for instrument matching calculations

19


Addition of Baseline Correction

sample data

Reflectance Image

=

Y

X Wavelength

20

Internal dark signal

x internal bright signal

Internal dark signal

Bias Cube

Slope Cube

+ + Baseline Correction


Experimental Materials • Spectral Dimensions, MatrixNIR – 1300-1681 nm, 3 nm increment (128 image planes) – 128 ms integration time, 4 co-adds – 256x320 pixels, 2x magnification, ~5.5x7.0 mm

• Brimrose Luminar – Automated tablet transport mechanism – Spectra truncated to MatrixNIR parameters

• Tablet Samples – 1 baseline correction tablet – 9 test tablets 21


Results: Spatial Transferability -3

10 1.2 20 1.1

40 60

1

80

0.9

100 0.8 120 0.7 140 0.6

160 180

50

100

150

200

250

0.5

Standard Deviation (Reflectance)

9

x 10

Standard Deviation vs. Wavelength (mili-reflectance units)

8 7 6 5 4 3 2 1300

1350

1400

1450

1500

1550

1600

Wavelength ( nm )

• Standardized image of Teflon® @ 1489 nm • Reduction in scale, intensity of heterogeneity 22

1650

1700


Results: Temporal Transferability Extracted Spectra, 1 Tablet, Imaged during 3 days 1.6

Reflectance

1.4

1.2

1

0.8

0.6 1300

1350

1400

1450

1500

1550

W a v e le n g th ( n m ) 23

1600

1650

1700


Results: Inter-Instrument Transfer 1.3

9 tablets, Imaged on same day

1.2

Reflectance

1.1 1 0.9 0.8 0.7 0.6 0.5 1300

1350

1400

1450

1500

1550

W a v e le n g th ( n m ) 24

1600

1650

1700


…with additional preprocessing 2 1.5

Arbitrary Units

1 0.5 0 -0 . 5 -1 -1 . 5

SNV Preprocessing -2 1300

1350

1400

1450

1500

1550

W a v e le n g th ( n m ) 25

1600

1650

1700


Results: Inter-Instrument Transfer • Transferability of regression models, PCA example: 2.5 2 1.5 1

PC 2

0.5 0 -0.5 -1 -1.5 -2 -2.5 -4 26

-3

-2

-1

0

PC 1

1

2

3

4


Summary (good news) • Increased ability to merge databases • Diminished need for on-going scanning of reference materials • Fewer sub-scans required for equivalent SNR • Increased robustness • External standards can be replaced (e.g.- loss, breakage, contamination)

27


Summary (not quite as good news) • May reduce active field of view (FOV) • Difficult to implement in some situations – High magnification

• Longevity of Internal Calibration is currently unknown (days? months?..) • Correction is still imperfect – Sub-optimal internal reference, calibration materials – Some nonlinearity not accounted for 28


Further Investigation • Test applicability to samples of significantly different composition • Investigate internal wavelength accuracy measurement • Application of other instrument matching procedures (PDS, Direct Orthogonalization) • Evaluate long-term stability impact on prediction • Develop routines for image transfer 29


Acknowledgements • Spectral Dimensions – www.spectraldimensions.com • Duane Mann (construction of reference stage) • Duquesne Center for Pharmaceutical Technology

– www.pharmacy.duq.edu/DCPT/home.html

30


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.