Animal Biodiversity and Conservation issue 32.1 (2009)

Page 1

Formerly Miscel·lània Zoològica

2009

and

Animal Biodiversity Conservation 32.1


Dibuix de la coberta: ximpanzé comú, chimpancé común, common xhimpanzee (Pan troglodytes) de Jordi Domènech. Editor executiu / Editor ejecutivo / Executive Editor Joan Carles Senar

Secretaria de redacció / Secretaría de redacción / Editorial Office

Secretària de redacció / Secretaria de redacción / Managing Editor Montserrat Ferrer

Museu de Ciències Naturals Passeig Picasso s/n 08003 Barcelona, Spain Tel. +34–93–3196912 Fax +34–93–3104999 E–mail abc@bcn.cat

Consell assessor / Consejo asesor / Advisory Board Oleguer Escolà Eulàlia Garcia Anna Omedes Josep Piqué Francesc Uribe

Editors / Editores / Editors Pere Abelló Inst. de Ciències del Mar CMIMA–CSIC, Barcelona, Spain Javier Alba–Tercedor Univ. de Granada, Granada, Spain Antonio Barbadilla Univ. Autònoma de Barcelona, Bellaterra, Spain Xavier Bellés Centre d' Investigació i Desenvolupament–CSIC, Barcelona, Spain Juan Carranza Univ. de Extremadura, Cáceres, Spain Luís Mª Carrascal Museo Nacional de Ciencias Naturales–CSIC, Madrid, Spain Michael J. Conroy Univ. of Georgia, Athens, USA Adolfo Cordero Univ. de Vigo, Vigo, Spain Mario Díaz Univ. de Castilla–La Mancha, Toledo, Spain Ignacio Doadrio Museo Nacional de Ciencias Naturales–CSIC, Madrid, Spain José Antonio Donazar Estación Biológica de Doñana–CSIC, Sevilla, Spain Gary D. Grossman Univ. of Georgia, Athens, USA Damià Jaume IMEDEA–CSIC, Univ. de les Illes Balears, Spain Jordi Lleonart Inst. de Ciències del Mar CMIMA–CSIC, Barcelona, Spain Jorge M. Lobo Museo Nacional de Ciencias Naturales–CSIC, Madrid, Spain Pablo J. López–González Univ de Sevilla, Sevilla, Spain Juan José Negro Estación Biológica de Doñana–CSIC, Sevilla, Spain Vicente M. Ortuño Univ. de Alcalá de Henares, Alcalá de Henares, Spain Miquel Palmer IMEDEA–CSIC, Univ. de les Illes Balears, Spain Oscar Ramírez Inst. de Biologia Evolutiva UPF–CSIC, Barcelona, Spain Montserrat Ramón Inst. de Ciències del Mar CMIMA­–CSIC, Barcelona, Spain Ignacio Ribera Inst. de Biología Evolutiva CSIC–UPF, Barcelona, Spain Pedro Rincón Museo Nacional de Ciencias Naturales–CSIC, Madrid, Spain Alfredo Salvador Museo Nacional de Ciencias Naturales–CSIC, Madrid, Spain José Luís Tellería Univ. Complutense de Madrid, Madrid, Spain Francesc Uribe Museu de Ciències Naturals de Barcelona, Barcelona, Spain Consell Editor / Consejo editor / Editorial Board José A. Barrientos Univ. Autònoma de Barcelona, Bellaterra, Spain Jean C. Beaucournu Univ. de Rennes, Rennes, France David M. Bird McGill Univ., Québec, Canada Mats Björklund Uppsala Univ., Uppsala, Sweden Jean Bouillon Univ. Libre de Bruxelles, Brussels, Belgium Miguel Delibes Estación Biológica de Doñana–CSIC, Sevilla, Spain Dario J. Díaz Cosín Univ. Complutense de Madrid, Madrid, Spain Alain Dubois Museum national d’Histoire naturelle–CNRS, Paris, France John Fa Durrell Wildlife Conservation Trust, Jersey, United Kingdom Marco Festa–Bianchet Univ. de Sherbrooke, Québec, Canada Rosa Flos Univ. Politècnica de Catalunya, Barcelona, Spain Josep Mª Gili Inst. de Ciències del Mar CMIMA–CSIC, Barcelona, Spain Edmund Gittenberger Rijksmuseum van Natuurlijke Historie, Leiden, The Netherlands Fernando Hiraldo Estación Biológica de Doñana–CSIC, Sevilla, Spain Patrick Lavelle Inst. Français de recherche scient. pour le develop. en cooperation, Bondy, France Santiago Mas–Coma Univ. de Valencia, Valencia, Spain Joaquín Mateu Barcelona, Spain Neil Metcalfe Univ. of Glasgow, Glasgow, United Kingdom Jacint Nadal Univ. de Barcelona, Barcelona, Spain Stewart B. Peck Carleton Univ., Ottawa, Canada Eduard Petitpierre Univ. de les Illes Balears, Palma de Mallorca, Spain Taylor H. Ricketts Stanford Univ., Stanford, USA Joandomènec Ros Univ. de Barcelona, Barcelona, Spain Valentín Sans–Coma Univ. de Málaga, Málaga, Spain Tore Slagsvold Univ. of Oslo, Oslo, Norway

Animal Biodiversity and Conservation 32.1, 2009 © 2009 Museu de Ciències Naturals, Institut de Cultura, Ajuntament de Barcelona Autoedició: Montserrat Ferrer Fotomecànica i impressió: Romargraf S. A. ISSN: 1578–665X Dipòsit legal: B–16.278–58 The journal is freely available online at: http://www.bcn.cat/ABC


Animal Biodiversity and Conservation 32.1 (2009)

1

Morphological discrimination between two populations of shemaya, Chalcalburnus chalcoides (Actinopterygii, Cyprinidae) using a truss network A. Bagherian & H. Rahmani

Bagherian, A. & Rahmani, H., 2009. Morphological discrimination between two populations of shemaya, Chalcalburnus chalcoides (Actinopterygii, Cyprinidae), using a truss network. Animal Biodiversity and Conservation, 32.1: 1–8. Abstract Morphological discrimination between two populations of shemaya, Chalcalburnus chalcoides (Actinopterygii, Cyprinidae), using a truss network.— Several body measurement methods used to identify stock have recently been criticized because of inherent biases and weaknesses. As an alternative, a new system of morphometric measurement called the truss network has been increasingly used for stock identification. We studied the morphometric differentiations between two populations and sexes of shemaya fishes (Chalcalburnus chalcoides) using a truss network. Truss distances between 15 landmarks of 66 specimens were measured. Size adjustment transformations were assessed by dividing characters (truss distances) by centroid size of specimen. Multivariate analysis of variance (MANOVA), principal component analysis and discrimination analysis were performed to investigate distinction and patterns of morphological variations between populations and sexes. The MANOVA (Wilks test) indicated a significant difference for mean vectors between populations (Λ = 0.136; F = 47.76; P = 0.001) and sexes (Λ = 0.120; F = 45.32; P < 0.001). Discrimination analysis correctly classified 97% and 89.4% samples to their original groups for population and sex, respectively. Our findings support the use of the truss network to study morphological variation among populations as it provides interesting perspectives for the study of biodiversity patterns. Key word: Morphological discrimination, Chalcalburnus chalcoides, Truss network system, Habitat effect. Resumen Discriminación morfológica entre dos poblaciones del alburno del Danubio, Chalcalburnus chalcoides (Actinopterygii, Cyprinidae), utilizando una red en celosía.— Recientemente se han criticado diversos métodos de medición de parámetros corporales, que se utilizaban en la identificación de los linajes, debido a la debilidad y los sesgos inherentes a ellos. Como alternativa, cada vez se está usando más un nuevo sistema de medición morfométrica denomiado red en celosía, para la identificación de los linajes. Nosotros hemos estudiado las diferenciaciones morfométricas entre dos poblaciones y en los dos sexos del alburno del Danubio (Chalcalburnus chalcoides) utilizando este tipo de red. Se midieron las distancias entre 15 puntos determinados o nudos de la celosía en 66 especímenes. Se evaluaron las transformaciones del ajuste del tamaño dividiendo las características (distancias entre nudos) por el valor del centroide del espécimen. Se llevaron a cabo análisis de varianza multivariante (AMOVA), análisis de componentes principales y análisis de discriminación para investigar la distinción y los patrones de las variaciones morfológicas entre poblaciones y sexos. El AMOVA (test de Wilks) indicaba una diferencia significativa para los vectores medios entre poblaciones (Λ = 0,136; F = 7,76; P < 0,001) y sexos (Λ = 0,120; F = 45,32; P < 0,001). El análisis de discriminación clasificó correctamente el 97% y el 89,4% de las muestras en sus grupos originales de población y sexo, respectivamente. Nuestros resultados respaldan el uso de las redes en celosía para estudiar la variación morfológica entre poblaciones, ya que proporcionan perspectivas muy interesantes para el estudio de los patrones de diversidad. Palabras clave: Discriminación morfológica, Chalcalburnus chalcoides, Sistema de red en celosía, Efecto del hábitat. ISSN: 1578–665X

© 2009 Museu de Ciències Naturals


2

Bagherian & Rahmani

(Received: 10 IV 2007; Conditional acceptance: 3 VII 07; Final acceptance: 16 X 07) Ali Bagherian, Dept. of Biology, Fac. of Sciences, Golestan Univ., Gorgan, Iran.– Hossein Rahmani, Dept. of Fisheries, Mazandaran Univ., Sari, Iran. Corresponding author: A. Bagherian.


Animal Biodiversity and Conservation 32.1 (2009)

Introduction Several techniques have been proposed for stock identification, an interdisciplinary field that involves the recognition of self–sustaining components within natural populations. It is a central theme in fisheries science and management (Cadrin et al., 2004). Stock identification can be viewed as a prerequisite for any fishery analysis, just as population structure is considered a basic element of conservation biology (Thorpe et al., 1995). Stock identification methods have developed in parallel with the advancement of morphometric techniques. The earliest analyses of morphometric variables for stock identification were univariate comparisons, but these were soon followed by bivariate analyses of relative growth to detect ontogenetic changes and geographic variation among fish stocks. As the field of multivariate morphometrics grew, a set of multivariate methods was applied to quantify variation in growth and form among stocks (Cadrin, 2000). More recent advances have been facilitated by image processing techniques, more comprehensive and precise data collection, more efficient quantification of shape, and new analytical tools, landmark–based techniques of geometric morphometrics (Bookstein, 1991; Rohlf, 1990; Rohlf & Marcus, 1993). These techniques pose no restrictions on the directions of variation and localization of changes in shape; furthermore, they and are very effective in capturing information about the shape of an organism (Cavalcanti et al., 1999). Image analysis systems played a major role in the development of morphometric techniques, boosting the utility of morphometric research in fish stock identification (Cadrin & Friedland, 1999). Morphometry based on truss network data has been used for stock identification (Bronte & Moore, 2007; Shao et al., 2007), species discrimination (Palma & Andrade, 2002), ontogeny (Hard et al., 1999; Debowski et al., 1999) and functional morphology (Dean et al., 2006). In this study morphometric differentiation between two populations and sexes of shemaya fishes (Chalcalburnus chalcoides: Cyprinidae) were investigated using the truss network (Strauss & Bookstein, 1982). The shemaya, Chalcalburnis chalcoides (Guldenstadf, 1772), is widely distributed in the river systems of the Black, Caspian and Aral Seas (Bogutskaya, 1997). The species is benthoplagic and it lives in fresh and brackish waters. The populations that live in lakes migrate upstream for spawning from the beginning of May to the end of July (Slastenenko, 1959). There are few investigations about morphologic aspects of shemaya fishes in the south of the Caspian Sea (Abdurakhmanov, 1975; Coad, 1999; Rahmani et al., in press). Little is yet known about the environmental biology of this species (Tarkan et al., 2005; Kiabi et al., 1999). Materials and methods Study area and sampling The shemaya (66 specimens) were collected by cast– netting in May 2005 in the estuaries of the Haraz

3

and Shirud Rivers (fig. 1). During sampling physical factors of water were measured in situ. Locations of sampling were at longitude 52º 21´– 51º 21´ and latitude 33º 26´–36º 42´ from Haraz River and at longitude 50º 48´–50º 49´ and latitude 36º 44´–36º 51´ from Shirud River. Both rivers are supplied by surface and subterranean waters. Data collection Two–dimensional Cartesian coordinates of 15 landmarks were recorded on the right view of each specimen. The locations of the landmarks were chosen according to two criteria: reliability in terms of correspondence between specimens and the ability to best describe the geometry of the form under study and from some reference. The raw data set therefore corresponded to 66 configurations of 15 (x, y) coordinates (fig. 2). Data were digitized from pictures with 2,304 × 1,704 pixel dimensions using tpsDig version 1.4 (Rohlf, 2004). The fitness of the data set for partial warp analysis was tested using tpsSmall version 1.2 (Rohlf, 2003) to ensure that the distribution of the specimens (in terms of Procrustes distance between the specimens) in Kendal shape space was highly correlated with that of the projected specimens in tangent space (Rohlf, 1996). Truss network measurements are a series of measurements calculated between landmarks that form a regular pattern of connected quadrilaterals or cells across the body form. Cells and truss characters are referenced according to the scheme of Strauss & Bookstein (1982); for example, the distance between landmarks 1 and 2 is a truss character in first quadrilateral or cell (landmarks 1, 2, 3, and 4) (fig. 2). Measurements of specimens are made by collecting x–y coordinate data for relevant morphological features. One hundred and four characters were extracted by measuring distances between landmarks. An important stage in the data preparation for morphometric analyses is to eliminate any size effect in the data set when comparing fish of different sizes. Variation should be attributable to body shape differences, and not related to the relative size of the fish. Therefore, transformation of absolute measurements to size–independent shape variables is the first step of the analyses (Reist, 1985). Size adjustment transformations were carried out by division of characters (truss distances) by centeroid size of specimen. Centroid size is the square root of the sum of squared distances from the landmarks to the centroid of the landmarks. Data analysis Multivariate techniques were used to analyse patterns of differentiation between samples and assess similarities. Multivariate analysis of variance (MANOVA) was performed to test for significant differences between the two populations and sexes. The principal component analysis was employed for the multivariate description of morphometric data. The eigenvectors and eigenvalues were obtained


4

Bagherian & Rahmani

Poland

Belarus

Sloveni

Russia

Kazaghstan

Ukraine Moldavi

Romania Serb & Mont Bulgaria

Aral Sea Azov Sea Azerbaidzhan

Caspian Sea Geo. Arm. Azerbaidzhan

Black Sea

Turkmenistan Caspian Sea

Trukey

Greece Mediterranean Sea

Syria

Iran

Iraq

Sefidrud River Shirud River 0

100

200

km

Gorganrud River Haraz River

Tehran

Jordan

Pe

Saudi Arabia Egypt

rsi

an

Gu

ed

R

Scale 1:25,000,000

Oman Sea

360 km

a

Se

0

lf

Fig. 1. Map of the study area and sampling site (square). Fig. 1. Mapa del área de estudio y del área de muestreo (recuadro).

from the covariance matrix, which allowed the representation of the largest part of the variance of original variables in a low number of factors. This enabled the evaluation of the relation between the two species or sexes by means of proximity in the space defined by components. Characters (truss distances) that had higher correlations with components (more than |0.6|) were depicted over landmarks for illustration locations of more variable truss distances. Canonical discrimination analysis (CVA) was performed to discriminate groups (populations and sexes). The distribution pattern of specimens based on first and second discriminate functions is shown in figure 6. CVA grouping results were examined by randomization tests. Randomization tests were performed with 100 random grouping data sets. These randomization tests involve determining the significance level of a test statistic calculated for a set of data by comparing the observed value of the statistic with the distribution of values that is obtained by randomly partitioning and reordering the data, and calculating the desired statistic for each replicated sample (Manly, 1991; Crowley, 1992; Solow, 1990). Results The MANOVA (Wilks test) indicated a significant difference for mean vectors between populations

(Λ = 0.136, F = 47.76, P < 0.001) and sexes (Λ = 0.120, F = 45.32, P < 0.001). Sixteen components accounted for most of the 95% of the total variation. Of these, the first explained 24%, the second 21% and the third 12%, and the other components incorporated 40% of the variance. The projection of specimens in relation to the first and the second principal components (fig. 3) revealed a visual definition of populations and sexes. Truss distances that have more correlation with the first component are depicted over landmarks in figure 4, and those with the second component are shown in figure 5. In discrimination analysis, the first function accounted for 58.8% (Eigenvalue = 3.61, Λ = 0.046, P < 0.000) and the second accounted for 30.5% (Eigenvalue = 1.87, Λ = 0.21, P = 0.013) of the between–group variability. Plotting DF1 and DF2 explained 89.3% of the between–group variation and roughly separated the populations and sexes from each other, showing morphologic differentiation among populations (fig. 6). In the discrimination function analysis, the overall random assignment of individuals into their original population was high (93.9%). The proportions of samples correctly classified to their original groups for population and sex were 97% and 89.4% respectively. The randomization test correctly classified between 47.2 and 69%, with a mean of 57.6%. This shows that classification results can not be estimated randomly.


Animal Biodiversity and Conservation 32.1 (2009)

15

3 1

2

4 7

5

11

5

12 6 8

14

13 9

10

Fig. 2. Locations of the 15 landmarks on the left view of the fish. Fig. 2. Localización de los 15 puntos clave en el lateral izquierdo del pez.

Discussion Results showed populations and sexes separated by three forms of multivariate analysis, MANOVA, PCA and CVA. A clear sexual dimorphism was detected in this study. First principle component scattered most male specimens from the two populations on the left side (with negative scores) of the component scatter plot (fig. 3) and female specimens were scattered on the opposite side (with positive scores). High correlated variables with the first component that were depicted over landmarks (fig. 4) show that female specimens have a larger abdomen body part (high positive correlated trusses between landmarks 2 to 8 with 9–10) and male specimens have longer posterior part of body (high negative correlated trusses between landmarks 11–14 with 9 and 10). Truss–network analysis revealed a sexual dimorphism in shape, in particular for the abdominal region, which appeared to be larger in the females of both populations. This sexual abdominal shape dimorphism, which has been reported for several groups of animals (Adams & Funk, 1997), has been hypothesized to be due to a positive correlation between fecundity and female abdomen size. Hence it may be the result of selection to increase fecundity (Wickman & Karlsson, 1989; Adams & Funk, 1997). Figure 5 shows that anterior part landmarks (landmarks 1 to 8) in both sexes of Shirud samples were smaller (high negative correlation with PCII) while peduncle landmarks (landmarks 3, 5, 6, 8 and 15 with 11, 12 and 13) were more widely spread (high positive correlation with PCII). This deformation caused Shirud samples to be slender compared to samples of both sexes in the Haraz River (fig. 5). Such shape differences are perhaps the consequence of isolation and fragmentation

of the two populations. The Haraz River has a muddy estuary with a low slope and water velocity and high turbidity. The Shirud River has a sandy bottom with high water velocity and high transparency. Concerning biological and environmental conditions in the Shirud, its fish population has a more slender body than that in the Haraz River as it exerts greater resistance against the water flow while swimming. Differences between sexes in shape were clearer in Shirud River specimens than in Haraz River specimens. It may be due to differences in of water velocity in the two rivers; at a higher water velocity the number of males with large abdomen decreases because they have greater resistance to the water flow. Females have a large abdomen for fecundity regardless of water velocity. Therefore, in higher water flow (as in the Shirud River) the males are clearly thinner than females. The two Shemeya populations studied here are anadromous and have a common origin. The difference in shape is likely an environmental effect, but further genetic studies are needed to confirm this. The Truss System can be successfully used to investigate stock separation within a species. In the long term it can provide a better and more direct comparison of the morphological evolution of stocks while using the same set of measurements. Traditional morphometric measurements of these specimens in PCA showed overlapping of the two populations. The first axis had a high correlation with length characters (total, standard and fork length) and the second axis with width characters (body, head and tail stem width). The discrimination analysis classified 68% specimens in correct groups (Rahmani et al., in press). In summary, truss measurements appear to be able to classify and determine patterns of shape variations remarkably better than traditional morphometric measurements.


6

Bagherian & Rahmani

Second principle component

3

2

1

0 Var00110 –1

Shirud female Shirud male

–2

Haraz female –3

Haraz male –3

–2

–1 0 1 2 3 First principle component

4

Fig. 3. Scatterplots for individual scores on the principal components of truss net distances. Fig. 3. Diagrama de dispersión de los valores individuales de las componentes princiales de las distancias de la red en celosía.

15 3 12 4 1

5

11

14

2 13

6 7 8

9

10

Fig. 4. Principal component loading for first component analyses of truss measurement: thick lines indicate dimensions with high positive loadings and thin lines indicate negative loading with this component. Fig. 4. Cargas de la componente principal para los análisis de la primera componente principal en las mediciones de la celosía: las líneas gruesas corresponden a las dimensiones con cargas positivas altas, y las líneas finas a una carga negativa con respecto a dicha componente.


Animal Biodiversity and Conservation 32.1 (2009)

7

15 3

12 4

1

14

5

2

11 13

6 7

8

9

10

Fig. 5. Principal component loading for second component analyses of truss measurement: thick lines indicate dimensions with high positive loadings and thin lines indicate negative loading with this component. Fig. 5. Cargas de la componente principal para los análisis de la segunda componente principal en las mediciones de la celosía: las líneas gruesas corresponden a las dimensiones con cargas positivas altas, y las líneas finas a una carga negativa con respecto a dicha componente.

4

Shirud female Haraz female

Discriminant function 2

2

Haraz male 0

Groups Group centroids

Shirud male –2

Shirud female –4

Shirud male Haraz female

–6 –6

Haraz male –4

–2 0 2 4 Discriminant function 1

Fig. 6. Canonical variation scores of truss characters. Fig. 6. Resultados de la variación canónica de los caracteres de la celosía.

6


8

Reference Abdurakhmanov, Y. A., 1975. Transformation of the diadromous Kura Shemaya Chalcalburnus chalcoides into a land–locked population in the Mingechaur Reservoir. J. of Ichthyology, 15: 189–196. Adams, D. C. & Funk, D. J., 1997. Morphometric inferences on sibling species and sexual dimorphism in Neochlamisus bebbianae leaf beetles: multivariate applications of the thin plate spline. Systematic Biology, 46: 180–194. Bogutskala, N. G., 1997. Contribution of the knowledge of leucosis fishes of Asia Minor. Part 2. An annotated check–list of leucosis fishes (Leuciscinae– Cyprinade) of Turkey with description of a new species and two new subspecies. Mitteilungen avs dem Hamburgischen Zoologischen Museum und Institiut, 94: 161–186. Bookstein, F. L., 1991. Morphometric tools for landmark data. Geometry and biology. Cambridge Univ. Press. Bronte, C. R. & Moore, S. A., 2007. Morphological Variation of Siscowet Lake Trout in Lake Superior. Transactions of the American Fisheries Society, 136: 509–517. Cadrin, S. X., 2000. Advances in morphometric identification of fishery stocks. Reviews in Fish Biology and Fisheries, 10(1): 91–112. Cadrin, S. X. & Friedland, K. D., 1999. The utility of image processing techniques for morphometric analysis and stock identification. Fish. Res., 43: 129–139. Cadrin, S. X., Friedland, K. D. & Waldman J. R., 2004. Stock Identification Methods, Applications in Fishery Science. Academic Press, New York. Cavalcanti, M. J., Monteiro, L. R. & Lopes, P. R. D., 1999. Landmarkbased morphometric analysis in selected species of Serranid fishes (Perciformes: Teleostei). Zool. Stud., 38(3): 287–294. Coad, B. W., 1999. Systematics of the shah mahi, Chalcalburnus chalcoides (Gueldenstaedt, 1772) in the Southern Caspian Sea basin (Actinopterygii: Cyprinidae). J. of Zoology in the Middle East, 12: 65–70. Crowley, P. H., 1992. Resampling methods for computation–intensive data analysis in ecology and evolution. Annual Review of Ecology and Systematics, 23: 405–447. Dean, M. N., Huber, D. R. & Nance, H. A., 2006. Functional morphology of jaw trabeculation in the lesser electric ray Narcine brasiliensis, with comments on the evolution of structural support in the Batoidea. Journal of Morphology, 267(10): 1137–1146. Debowski, P., Robak, S. & Dobosz, S., 1999. Estimation of smoltification of hatchery–reared sea trout (Salmo trutta morpha trutta L.) based on body morphology. Archives of Polish Fisheries, 7(2): 257–266. Hard, J. J., Winans, G. A & Richardson, J. C., 1999. Phenotypic and genetic architecture of juvenile

Bagherian & Rahmani

morphometry in chinook salmon. The Journal of Heredity, 90(6): 597–606. Kiabi, B. H., Abdoli, A. & Naderi, M.,. 1999. Status of the fish fauna in the south Caspian basin of Iran. Journal of Zoology in the Middle East, 18: 57–65. Manly, B. F. J., 1991. Randomization and Monte Carlo Methods in Biology. Chapman and Hall, London. Palma, J. & Andrade, J. P., 2002. Morphological study of Diplodus sargus, Diplodus puntazzo, and Lithognathus mormyrus (Sparidae) in the Eastern Atlantic and Mediterranean Sea. Fisheries Research, 57: 1–8. Rahmani, H., Kiabi, B., Kamali, A. & Abdoli, A., (in press). A Study of Morphological Analysis of Chalcalburnus chalcoides (Gueldenstaedt, 1772) in Haraz River and Shirud River. J. of Agricultural Sciences and Natural Resources. Reist, J. D., 1985. An empirical evaluation of several univariate methods that adjust for size variation in morphometric variation. Can. J. Zool., 63: 1429–1439. Rohlf, F. J., 1990. Morphometrics. Annual Review of Ecology and Systematic, 21: 299–316. – 1996. Morphometric space, shape components and the effect of linear transformations. In: Advance in Morphometrics: 117–129 (L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor & D. E. Slice, Eds.). Plenum Press, New York. – 2003. TpsSmall–Thin Plate Spline Small Variation Analysis, Version 1.2 [Computer software]. Stony Brook: Dept. of Ecology and Evolution, State Univ. of New York. – 2004. TpsDig–Thin Plate Spline Digitise, Version 1.4 [Computer software]. Stony Brook: Dept. of Ecology and Evolution, State Univ. of New York. Rohlf, F. J. & Marcus, L. F., 1993. Arevolution in morphometrics. Trend in ecology and evolution. 8: 129–133. Shao, Y., Wang, J., Qiao, Y., He, Y. & Cao, W., 2007. Morphological variability between wild populations and inbred stocks of a Chinese minnow, Gobiocypris rarus. Zoolog Sci., 24(11): 1094–102. Slastenenko, E. P., 1959. Zoogeographical review of the Black Sea fish fauna. Hydrobiologica, 14(2): 177–188. Solow, A. R., 1990. A randomization test for misclassification probability in discriminant analysis. Ecology, 71: 2379–2382. Strauss, R. E. & Bookstein, F. L.,1982. The truss: body form reconstructions in morphometrics. Syst. Zool., 31(2): 113–135. Tarkan, A. S., Gaygusuz, O., Acipinar, H. & Gursoy, C., 2005. Characteristic of Eurasian cyprinid, Shemaya, Chalcalburnus chalcoides in a mesotrophic water reservoir. Zoo. in the Midlle East, 35: 49–60. Thorpe, J., Gall, G., Lannan, J. & Nash, C., 1995. Conservation of Fish and Shellfish Resources: Managing Diversity. Academic Press, San Diego, CA. Wickman, P.–O. & Karlsson, B., 1989. Abdomen size, body size and the reproductive effort of insects. Oikos, 56: 209–214.


Animal Biodiversity and Conservation 32.1 (2009)

9

Molecular markers for biodiversity analysis of wildlife animals: a brief review I. A. Arif & H. A. Khan

Arif, I. A. & Khan, H. A., 2009. Molecular markers for biodiversity analysis of wildlife animals: a brief review. Animal Biodiversity and Conservation, 32.1: 9–17. Abstract Molecular markers for biodiversity analysis of wildlife animals: a brief review.— Molecular markers are indis� pensable tools for determining the genetic variation and biodiversity with high levels of accuracy and repro� ducibility. These markers are mainly classified into two types; mitochondrial and nuclear markers. The widely used mitochondrial DNA markers with decreasing order of conserved sequences are 12S rDNA > 16S rDNA > cytochrome b > control region (CR); thus the 12S rDNA is highly conserved and the CR is highly variable. The most commonly used nuclear markers for DNA fingerprinting include random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP) and microsatellites. This short review narrates the application of these molecular markers for biodiversity analysis of wildlife animals. Key words: Molecular markers, Biodiversity, Wildlife animals, Conservation. Resumen Uso de los marcadores moleculares para el análisis de biodiversidad de los animales salvajes: una breve revisión.— Los marcadores moleculares constituyen unas herramientas indispensables para determinar la variación genética y la biodiversidad con un alto grado de precisión y reproductibilidad. Dichos marcadores se clasifican principalmente en dos tipos: marcadores mitocondriales y nucleares. Los marcadores de DNA mitocondrial, que se utilizan mucho, son en orden decreciente de secuencias conservadas ADNr 12S > ADNr 16S > citocromo b > región de control (RC); así pues, el ADNr 12S es muy estable y el RC es muy variable. Los marcadores nucleares más utilizados para las huellas genéticas incluyen al ADN polimórfico ampliado al azar (RAPD), el polimorfismo ampliado de la longitud del fragmento (AFLP) y los microsatélites. Esta corta revisión describe las aplicaciones de estos marcadores moleculares en el análisis de la biodiversidad de animales salvajes. Palabras clave: Marcadores moleculares, Biodiversidad, Animales salvajes, Conservación. (Received: 19 IX 08; Conditional acceptance: 25 XI 08; Final acceptance: 12 XII 08) I. A. Arif & H. A. Khan, Molecular Fingerprinting and Biodiversity Unit, Prince Sultan Research Chair Program for Environment and Wildlife, College of Sciences, King Saud Univ., Riyadh, Saudi Arabia. Corresponding author: Haseeb A. Khan, College of Science, Bld 5, Room 2B42, King Saud Univ., P. O. Box 2455, Riyadh 11451, Saudi Arabia. E–mail: khan_haseeb@yahoo.com

ISSN: 1578–665X

© 2009 Museu de Ciències Naturals


10

Arif & Khan

Introduction Conservation genetics or the application of genetics to the preservation of species has received increas� ing attention in recent years (Allendorf & Luikart, 2007; Frankham, 2003). In conservation genetics, knowledge of the relatedness between individuals is particularly important in captive breeding programs that seek to reduce incestuous matings in order to minimize inbreeding and the loss of genetic variation (Frankham et al., 2002). It is well established that a decline in genetic variation reduces the ability of a population to adapt to environmental changes and therefore decreases its long term survival. The loss of genetic diversity also results in lower individual fitness and poor adaptability (Lande, 1988). The fate of small populations is linked to genetic changes. The captive breeding of endangered wildlife animals is often nec� essary for their conservation; however, this strategy potentially increases the chances of inbreeding that, in turn, causes poor fitness of these populations (Ralls & Ballou, 1983; Crnokrak & Roff, 1999). Inbreeding is known to decrease genetic diversity and to reduce reproductive and survival rates leading to increased extinction risk. Genetically impoverished endangered populations often fail to exhibit signs of recovery until crossed with individuals from other populations (Land & Lacy 2000; Westemeier et al., 1998). Moreover, wildlife populations with lower genetic diversity are at greater risk of extinction (Saccheri et al., 1998). Knowledge and studies on genetics can reduce the extinction risk by helping to develop appropriate popu� lation management programs that can minimize the risks implied through inbreeding. Breeding programs are often started assuming that the wild founders ini� tiating the captive population are unrelated. However,

threatened animals brought into captivity often have small population sizes and therefore the founders may be related to each other (Geyer et al., 1993; Haig et al., 1994). Assessment and preservation of biodiversity of wild populations is crucially important to minimize the loss of initial genetic variation as a consequence of inbreeding (Russello & Amato, 2004). Molecular methods play an important role in estimating the genetic diversity among individuals by compar� ing the genotypes at a number of polymorphic loci (Avise, 2004). Several types of molecular markers, including mitochondrial DNA (mtDNA) and nuclear DNA markers, are available but none of them can be regarded as optimal for all applications (Sunnucks, 2000). The characteristic features of various mtDNA and nuclear DNA markers are summarized in tables 1 and 2, respectively. A large number of studies have utilized approaches with mtDNA sequencing; however, mtDNA only represents the geneology of particular genes that are only inherited maternally (some excep� tions do exist as explained in the caption of table 1). Additional markers targeting nuclear DNA therefore need to be used for more accurate interpretation of population genetics and biodiversity. This short review summarizes recent studies on the application of vari� ous molecular markers for the analysis of molecular diversity in wildlife species. Mitochondrial ribosomal RNA markers Animal mitochondria contain two ribosomal RNA (rRNA) genes, 12S rDNA and 16S rDNA. Mitochon� drial 12s rDNA is highly conserved and has been applied to understand the genetic diversity of higher categorical levels such as in phyla. On the other

Table 1. Characteristics of various mtDNA markers: *  Not all mitochondria in animals are inherited maternally. Rare instances of paternal leakage have been found in some species including mice, birds and humans. However, the extent of paternal leakage is thought to be low in most animals, with the exception of certain mussel species which follow double biparental inheritance (Freeland, 2005). Tabla 1. Características de varios marcadores de ADNm: *  En los animales no todas las mitocondrias se heredan por vía materna. Se han hallado algunos casos de un cierto grado de filtración de ascendencia paterna en algunas especies de ratones, aves y en el hombre. No obstante, se cree que dicha filtración es muy pequeña en la mayoría de los animales, a excepción de ciertas especies de mejillones, que siguen un patrón de herencia biparental doble (Freeland, 2005). Molecular marker

Characteristics

mtDNA

Inherited from the mother (maternal lineage); rare exceptions do exist*

mtDNA

Degrades slower than nuclear DNA. It can be used in degraded or old samples

mtDNA

Evolves about 10–fold faster than nuclear DNA

12s rDNA

Highly conserved; used for high–category levels: phyla and subphyla

16S rDNA

Usually used in mid–category differentiation such as families

Protein–coding genes

Conserved; used in low–categories such as families, genera and species

Control region

Hypervariate; used for identification of species and sub–species


Animal Biodiversity and Conservation 32.1 (2009)

11

Table 2. Characteristics of various nuclear DNA markers: *  Dominant markers can identify only one allele (presence or absence of a band) and are therefore unable to determine heterozygosity; co–dominant markers are able to identify both the alleles. ** Multi–locus markers can visualize many genes simultaneously in contrast to only one region amplification by single–locus markers; however, the latter can easily be multiplexed for more reliable fingerprinting. Tabla 2. Características de diversos marcadores de ADN nuclear: *  Los marcadores dominantes sólo pueden identificar un alelo (ausencia o presencia de una banda) y por lo tanto son incapaces de determinar la heterozigosidad; los marcadores codominantes pueden identificar ambos alelos. **  Los marcadores multi–locus pueden visualizar simultáneamente muchos genes, al contrario de los marcadores de un solo locus, que amplifican sólo una región; no obstante, estos últimos pueden multiplexarse para obtener unas huellas genéticas más fiables.

RAPD

AFLP

Microsatellites

Dominant

Dominant

Co–dominant

Multi–locus

Multi–locus

Single locus

DNA required (µg)

0.02

0.50

0.05

PCR–based

Yes

Yes

Yes

Restriction digestion

No

Yes

No (Yes for development)

Reproducibility

Low

High

High

Development cost

Low

Moderate

High

Cost per assay

Low

Moderate

Low

Allelic information* Locus presentation**

hand, the 16s rDNA is often used for studies at mid� dle categorical levels such as in families or genera (Gerber et al., 2001). For molecular analysis, these markers are first amplified by PCR using conserved primers and the amplicons are sequenced. Sequenc� ing data are then aligned and compared using ap� propriate bioinformatics tools. Alvarez et al. (2000) have suggested specific haplotypes of 12S rRNA gene to study the effects of geographical isolation on genetic divergence of endangered spur–thighed tortoise (Testudo graeca). The sequence analysis of a 394–nucleotide fragment of 12S rRNA gene has been used to examine the genetic variation in Testudo graeca using 158 tortoise specimens belonging to the four different subspecies (Van der Kuyl et al., 2005). The mitochondrial DNA haplotyping has suggested that the tortoise subspecies of Testudo graeca graeca and Testudo graeca ibera are genetically distinct with a calculated divergence time in the early or middle Pleistocene; however, other proposed subspecies could not be recognized based upon their mitochon� drial haplotypes (Van der Kuyl et al., 2005). The 12S rRNA fragment of Testudo graeca was found to be somewhat less variable than the D–loop fragment, due to the inherently slower evolutionary rate of rRNA genes than the variable parts of the D–loop (Pesole et al., 1999). Lei et al. (2003) examined the mitochondrial rRNA genes of Chinese antelopes and observed that average sequence divergence values for 16S and 12S rRNA genes were 9.9% and 6.3% respectively. A single base in the 16S rDNA sequences from the endangered species Pinna nobilis was found to be different in all analyzed individuals from a single popu�

lation sample differentiating it from others (Katsares et al., 2008). Mitochondrial 16S rRNA was used to elucidate the pattern of relationships and systematic status of 4 genera, including nine species of skates living in the Mediterranean and Black Seas (Turan, 2008). Molecular studies on endangered Pecoran have shown lower sequence diversity in 16S rRNA gene as compared to cytochrome b gene, both be� tween and within species; however, the 16S rRNA gene harbored a larger number of species–specific mutation sites than cytochrome b gene (Guha et al., 2006). NaNakorn et al. (2006) have assessed the level of genetic diversity in critically endangered Mekong giant catfish species using 570 bp sequences of 16S rRNA from 672 individuals of nine species. In all spe� cies studied, haplotype diversity and nucleotide di� versity ranged from 0.118–0.667 and 0.0002–0.0016, respectively. Four haplotypes were detected among 16 samples from natural populations of Mekong giant catfish. The findings from this study have important implications for conservation of the Mekong giant catfish, especially in designing and implementing artificial breeding program for restocking purposes (NaNakorn et al., 2006). Mitochondrial protein–coding genes markers Due to their faster evolutionary rates compared to ri� bosomal RNA genes, the mitochondrial protein–coding genes are regarded as powerful markers for genetic diversity analysis at lower categorical levels, including families, genera and species. Animal mitochondria


12

contain 13 protein–coding genes; however, one of the most extensively used protein coding genes of the mitochondrial genome for molecular analysis is cytochrome b (cyt b). Mitochondrial cyt b sequences have been used to understand the genetic diversity for better conservation management of Tibetan gazelle (Procapra picticaudata), a threatened species on the Qinghai–Tibet Plateau of China (Zhang & Jiang, 2006). The sequence analysis of 46 samples collected from 12 geographic locations identified 16 cyt b haplotypes, to be used as molecular markers for conservation planning (Zhang & Jiang, 2006). Partial cyt b based molecular analysis of genetic distances has revealed that there is considerable genetic divergence between the Korean goral and the Chinese goral, but virtually none between Korean and Russian gorals (Min et al., 2004). The Korean gorals possessed two haplotypes with only one nucleotide difference between them, while the Japanese serows showed slightly higher sequence diversity with five haplotypes. These data highlight the importance of conservation of the goral populations of these regions, and the need to recon� sider the taxonomic status of Korean and Russian gorals (Min et al., 2004). Another important mito� chondrial protein coding gene, NADH dehydrogenase subunit 5 (318 bp), has been used for phylogenetic analysis of multiple individuals of different species from Felidae family and successfully differentiated eight clades reflecting separate monophyletic evolutionary radiations (Johnson & O’Brien, 1997). Mitochondrial cytochrome oxidase I (COI) gene has recently gained more attention in developing DNA barcodes for species identification and biodiversity analysis; the relevant studies on this topic are discussed below under a separate heading. DNA barcoding DNA barcoding has become a promising tool for rapid and accurate identification of various taxa and it has been used to reveal unrecognized species in several animal groups. Animal DNA barcodes (600–800 base–pair segments) of the mitochondrial cytochrome oxidase I (COI) gene have been pro� posed as a means to quantify global biodiversity. DNA barcoding has the potential to improve the way the world relates to wild biodiversity (Janzen et al., 2005). Moreover, the introduction of DNA barcoding has highlighted the expanding use of the COI as a genetic marker for species identification (Dawnay et al., 2007). Fisher & Smith (2008) evaluated the role of DNA barcoding as a tool to accelerate species identification and description of arthropods. They performed morphological and CO1 DNA barcode analysis of 500 individuals to recognize five species of Anochetus and three species of Odontomachus (Fisher & Smith, 2008). The potential of character– based DNA barcodes has been demonstrated by analyzing 833 odonate specimens from 103 localities belonging to 64 species (Rach et al., 2008). The unique combinations of character states within only one mitochondrial gene region (NADH dehydroge�

Arif & Khan

nase 1) reliably discriminated 54 species and 22 genera. It was concluded that the DNA barcodes are able to identify entities below the species level that may constitute separate conservation units or even species units (Rach et al., 2008). Fleischer et al. (2006) have conducted DNA analysis of seven mu� seum specimens of the endangered North American ivory–billed woodpecker (Campephilus principalis) and three specimens of the species from Cuba to document their molecular diversity. The sequences of these woodpeckers have been shown to provide an important DNA barcoding resource for identifica� tion of these critically endangered and charismatic woodpeckers. Witt et al. (2006) have employed DNA barcoding to examine Hyalella, a taxonomically difficult genus of amphipod crustaceans, from two distant sites. The extent of species diversity was assessed using a species screening threshold (SST) set at 10 times the average intrapopulation COI haplotype divergence. These findings have been suggested to have important implications for the conservation of life in desert springs that are threatened due to groundwater over–exploitation (Witt et al., 2006). The COI–DNA barcode has been testified as a tool for spe� cies identification, biodiversity analysis and discovery for morphospecies of Belvosia parasitoid flies (Smith et al., 2006). Barcoding not only discriminated among all 17 highly host–specific morphospecies of Belvosia, but it also raised the species count to 32 by revealing that each of the three generalist species were actu� ally the arrays of highly host–specific cryptic species. Lorenz et al. (2005) have suggested that depositing barcode sequences in a public database, along with primer sequences, trace files and associated quality scores, would make this technique widely accessible for species identification and biodiversity analysis. Mitochondrial control region markers Mitochondrial DNA contains a non–coding region termed the control region (CR or D–loop) due to its role in replication and transcription of mtDNA. The D–loop segment exhibits a comparatively higher level of variation than protein–coding sequences due to reduced functional constraints and relaxed selection pressure. The length of the D–loop is ap� proximately 1 kb and it can easily be amplified by PCR prior to sequencing to determine the molecular diversity. Sequence analysis of the CR of the sun bear has been used to measure molecular diversity and to identify conservation units for better manage� ment of this species (Onuma et al., 2006). Wu et al. (2006) have sequenced a portion of mitochondrial CR (424 bp) to assess the population structure and gene flow among the populations of black muntjac (Muntiacus crinifrons) using 47 samples collected from three large populations. A total of 18 unique haplotypes (15 of them as population–specific) were defined based on 22 polymorphic sites. It has been suggested that the coexistence of distinct haplotypes in a specific population was induced by historical population expansion after fragmentation and that


Animal Biodiversity and Conservation 32.1 (2009)

the current genetic differentiation should be attrib� uted to the reduction of female–mediated gene flow due to recent habitat fragmentation and subsequent loss (Wu et al., 2006). Hu et al. (2006) have studied the genetic diversity and population structure of the Chinese water deer (Hydropotes inermis inermis) by analyzing the 403 bp fragment of mitochondrial D– loop. They have detected 18 different haplotypes in 40 samples demonstrating the haplotype diversity of 0.923 and nucleotide diversity of 1.318, whereas no obvious phylogenetic structure among haplotypes was found for samples of different origin (Hu et al., 2006). Iyengar et al. (2006) have performed a comparative study of CR sequences from several captive oryx spe� cies and concluded a close grouping of Oryx leucoryx with Oryx gazelle instead of Oryx dammah. Idaghdour et al. (2004) have sequenced the 854 bp of the CR from the houbara bustard (Chlamydotis undulate) to describe the molecular diversity of this threatened cryptic desert bird, whose range extends from North Africa to Central Asia. Zhang & Jiang (2006) have used CR sequences to investigate the genetic diver� sity and evolutionary history of the Tibetan gazelle. A total of 25 CR haplotypes with high frequencies of both CR haplotype and nucleotide diversities were identified. These findings have suggested that the present population structure is the result of habitat fragmentation during the recent glacial period on the Qinghai–Tibet Plateau and it is likely that the present populations of Tibetan gazelle exhibit a pattern remi� niscent of several bottlenecks and expansions in the recent past (Zhang & Jiang, 2006). RAPD markers Random amplified polymorphic DNA (RAPD) markers are analyzed by using PCR to amplify the segments of nuclear DNA. The use of a single primer (usually 8–10 bp long) that attaches to both strands of DNA and low annealing temperatures increase the likeli� hood of amplifying multiple regions representing a particular locus (multi–locus). Although RAPD is a simple and inexpensive technique its major limitation is the inability to differentiate between homozygote and heterozygote; this marker is therefore regarded as a dominant type. Padilla et al. (2000) have analyzed the genetic diversity of the highly endangered Iberian imperial eagle (Aquila adalberti) using 45 arbitrary primers producing about 60% polymorphic bands among the total 614 amplified loci. In contrast to the traditional allozyme analysis, the RAPD method has revealed a high level of heterozygosity in this species (H = 0.267). The genetic distances estimated between 25 eagles can serve to establish more adequate mat� ing in order to preserve genetic variability and to aid conservation efforts to protect this species (Padilla et al., 2000). The genetic diversity and population structure of endangered Blanca Cacereña bovine have been evaluated by RAPD markers comprising 71 primers with relevancy to specific amplification of 1,048 loci (Parejo et al., 2002). RAPD produced a number of polymorphic loci (30.44%) and it has

13

been proved to be a useful method for evaluating polymorphisms in this breed. The findings from this study have been suggested to assist in planning the most adequate mating strategy to maintain the genetic diversity and to improve the efficiency of conservation for the Blanca Cacereña bovine breed (Parejo et al., 2002). Gouin et al. (2001) have studied the genetic diversity among 21 populations of a threatened fresh� water crayfish (Austropotamobius pallipes) native to Europe, using four primers capable of generating six well–resolved polymorphic bands. The genetic diversity within populations of A. pallipes, estimated by Shannon’s diversity index, ranged from 0 to 0.446 with a mean of 0.159. Freitas et al. (2007) have amplified 52 polymorphic loci using five primers to investigate the genetic variation in Pacific white shrimp. The loss of genetic variation observed in this study has been related to probable bottleneck effects and inbreeding. Moreover, the genetic divergence values between the different samples may also reflect the initial founder composition of such stocks, suggesting a putative importance of interbreeding for the establishment of genetic improvement programs for these brood� stocks (Freitas et al., 2007). Thus, genetic variation monitoring using RAPD could play an important role in the gene pool conservation of aquaculture spe� cies. Maciuszonek et al. (2005) have applied the population–specific RADP markers to resolve the genetic group specific bands for four indigenous Polish goose breeds. A total of 102 scorable bands, specific to particular genetic groups, were obtained suggesting their potential application as population–specific mark� ers, especially in ex–situ conservation methods. The same investigators have also suggested that keeping endangered geese as separate flocks is relevant for their preservation (Maciuszonek et al., 2005). RAPD markers have also been used to study the population divergence by analyzing the genetic variation within and between two populations of endangered Pampas deer (Ozotoceros bezoarticus) using 15 primers specific to 105 polymorphic bands (Rodrigues et al., 2007). There was no differentiation and about 96% (P < 0.00001) of the total variance was attributable to variation within populations. The findings of this study have been sug� gested to be potentially useful for the future monitoring of the genetic variation within these populations and for the development of management guidelines for their conservation (Rodrigues et al., 2007). AFLP markers Amplified fragment length polymorphism (AFLP) is a multi–locus technique that involves restriction digestion and PCR amplification. Similar to RAPD, these markers are also dominant. However, the main strengths of AFLP are high specificity and reproduc� ibility due to the use of restriction digestion of DNA, specific adaptors and high annealing temperatures for selective amplification. Recently, an AFLP method has been validated to determine genetic diversity and inbreeding coefficient in old–field mice (Peromyscus polionotus subgriseus), suggesting the usefulness of


14

AFLP markers to estimate the inbreeding coefficient in natural populations (Dasmahapatra et al., 2008). Based on the comparative evaluation of pedigree– based empirical data from 179 wild and captive–bred mice with genetic data from 94 AFLP markers and 12 microsatellites, the inbreeding estimates resulting from both AFLP and microsatellite markers were found to correlate strongly with pedigree–based inbreeding coefficients (Dasmahapatra et al., 2008). Giannasi et al. (2001) have reported the application of AFLP for species determination using 24 specimens of a medi� cally important snake, Trimeresurus albolabris. They have suggested that AFLPs may prove a valuable aid in determining species trees as opposed to gene trees at fine taxonomic levels and this should facilitate the incorporation of molecular data into such activities as antivenom production and conservation management (Giannasi et al., 2001). AFLP markers have also been used to evaluate the genetic diversity in the endan� gered sand tiger shark (Carcharodon taurus) and the great white shark (Carcharodon carcharias) (Zenger et al., 2006). A total of 59 and 78 polymorphic loci were resolved in C. taurus and C. carcharias, respectively. A major constraint to obtaining much needed genetic data from sharks is the time–consuming process of developing molecular markers; the general use of the AFLP technique, however, provides large num� bers of informative loci in these animals (Zenger et al., 2006). Takami et al. (2004) have used AFLP markers to compare the genetic diversity of butterfly species from urban and rural environments and ob� served significant genetic variation among species. Lucchini (2003) has compared the results of AFLP markers with microsatellites and mitochondrial DNA sequences and suggested that the AFLP technique could be very useful for genetic diversity evaluation, especially for conservation management. Thus, owing to their ease of amplification in any species, AFLP markers may prove to be a valuable tool to estimate genetic diversity. Microsatellite markers Microsatellites are multiple copies of short tandem repeats, generally 1–5 bp long, located in both coding and non–coding regions and fairly evenly distributed throughout the eukaryotic genomes. Microsatellites are co–dominant markers with bi–allelic or multi– allelic presentation in an individual or a population, respectively. These markers are highly polymorphic and abundant; they can easily be amplified by PCR, rendering them highly versatile markers for molecular fingerprinting. An optimized characterization of micro� satellite markers has been carried out for molecular profiling and conservation management of wild and captive harpy eagle (Harpia harpyja) (Banhos et al., 2008). Of the 45 microsatellites tested, 24 were polymorphic, six monomorphic, 10 uncharacterizable due to multiple bands and five did not amplify. The gene diversity observed in the analyzed sample of H. harpyja was low. While a large proportion of the microsatellite markers were highly variable, individuals

Arif & Khan

of H. harpyja could be differentiated by a joint analysis of just three or four markers (Banhos et al., 2008). Microsatellite markers have been used to assess ge� netic variation within and among three ostrich breeds (Kawaka et al., 2007). The genetic diversity within the breeds was found to be low. Population analysis showed the highest variability potential for black– necked ostriches (mean diversity = 29.04%, mean heterozygosity = 0.30) and the lowest for the red–neck ostriches. The largest genetic similarity was recorded between red– and blue–necked ostriches, but the greatest genetic distance was between the red– and black–necked ostriches (Kawaka et al., 2007). Chan et al. (2008) have developed 10 microsatellite mark� ers using feather DNA, suggesting the usefulness of isolated loci in studying population genetics of the endangered forest bird, kakerori (Pomarea dimidiata). Seven of the loci were found to be polymorphic in 42 individuals examined while the number of alleles per locus in the polymorphic loci varied from three to five. The observed and expected heterozygosities ranged between 0.57–0.74 and 0.50–0.74, respectively. The investigators believed that these loci will be useful in studying kakerori conservation genetics (Chan et al., 2008). Li et al. (2007) have demonstrated the useful� ness of microsatellite markers for genetic diversity studies on two populations of black tiger shrimp (Penaeus monodon). The two multiplexed systems containing six and seven microsatellites respectively have been developed based on allelic size range and compatibility of the fluorescent labeling dyes. These markers specific to 13 polymorphic loci have detected high levels of genetic variability in both populations. This methodology has been suggested as a significant step in the development of high throughput systems for genetic diversity study, parentage identification and genetic mapping in Penaeus monodon (Li et al., 2007). Ryberg et al. (2002) used microsatellite loci to investigate patterns of genetic variation within and between populations of alligators distributed at coastal and inland localities in Texas. The mean heterozygosi� ties across seven loci for both the populations ranged from 0.50–0.61 revealing similar patterns of variation; however, significant population differentiation among all populations was observed, while each population contained unique alleles for at least one locus. These genetic data have clear implications for management by suggesting considerable subdivision among alliga� tor populations, possibly influenced by demographic and life history differences as well as barriers to dis� persal (Ryberg et al., 2002). Yue et al. (2004) have ap� plied microsatellite and AFLP markers for monitoring of genetic diversity of highly endangered fish species, Asian arowana (Scleropages formosus). Microsatellite analysis of 32 randomly collected individuals from each of the three stocks showed high allelic and gene diversity in all three varieties; the green stock showed higher allele number (100) and higher gene diversity (0.75) than the red (98 and 0.74) and golden ones (85 and 0.71), respectively (Yue et al., 2004). Lougheed et al. (2000) have compared the genetic differentiation among populations of the threatened massasauga rattlesnake using microsatellites and


Animal Biodiversity and Conservation 32.1 (2009)

15

Table 3. Conclusion: which marker is suitable for a particular study? (*  This depends on objective, molecular information, facilities, etc.). Tabla 3. Conclusión: ¿qué marcador es adecuado para cada estudio en particular? (*  Depende del objetivo, de la información molecular, de las facilidades, etc.).

Molecular marker

Suitable for*

mtDNA markers

Useful to study evolutionary relationship and biodiversity

RAPD and AFLP

Do not require prior molecular information

AFLP

Has greater differentiation power than RAPD

RAPD

Is a simple method and is the least–expensive

Microsatellite and AFLP

Are highly powerful in determining genetic diversity

Microsatellites

Are best for parentage and strain analysis

RAPD. Both types of markers have been found to be suitable for defining broad–scale genetic structures in snake populations and can provide important inputs into conservation initiatives of focal taxa; however, microsatellites are superior for detecting structure at limited spatial scales (Lougheed et al., 2000). Conclusion There are several molecular markers for biodiversity analysis of wildlife animals; however, their selection depends on the objective, molecular information sought and the facilities available. The important aspects of various molecular markers, particularly in answer to the question "which marker is suitable for a particular study?" are summarized in table 3. It is virtually sensible to consider the expected level of variability when choosing a marker as some ge� netic regions are expected to evolve more rapidly than others and the desired variability will depend on the question that is being asked. Mitochondrial DNA markers are particularly useful for studying evolutionary relationship among various taxa. DNA barcoding based on mitochondrial genes (most often COI) has emerged as a powerful strategy for species identification. Among the nuclear markers, AFLP has greater differentiation power than RAPD, though RAPD is a comparatively more simple and least–expensive method. Both microsatellite and AFLP are highly powerful markers in determining the genetic diversity. Microsatellites are rarely used for high–level systematics however, but are the best for parentage and strain analysis. References Allendorf, F. W. & Luikart, G., 2007. Conservation and the genetics of populations. Blackwell Publishing, Malden, Massachusetts.

Alvarez, Y., Mateo, J. A., Andreu, A. C., Diaz– Paniagua, C., Diez, A. & Bautista, J. M., 2000. Mitochondrial DNA haplotyping of Testudo graeca on both continental sides of the Straits of Gibraltar. Journal of Heredity, 91: 39–41. Avise, J. C., 2004. Molecular markers, natural history and evolution. Sinauer Associates, Sunderland, Massachusetts. Banhos, A., Hrbek, T., Gravena, W., Sanaiotti, T. & Farias, I. P., 2008. Genomic resources for the conservation and management of the harpy eagle (Harpia harpyja, Falconiformes, Accipitridae). Genetics and Molecular Biology, 31: 146–154. Chan, C. H., Zhao, Y., Cheung, M. Y. & Chambers, G. K., 2008. Isolation and characterization of mi� crosatellites in the kakerori (Pomarea dimidiata) using feathers as source of DNA. Conservation Genetics, 9: 1067–1070. Crnokrak, P. & Roff, D. A., 1999. ������������������ Inbreeding depres� sion in the wild. Heredity, 83: 260–270. Dasmahapatra, K. K., Lacy, R. C. & Amos, W., 2008. Estimating levels of inbreeding using AFLP mark� ers. Heredity, 100: 286–295. Dawnay, N., Ogden, R., McEwing, R., Carvalho, G. R. & Thorpe, R. S., 2007. Validation of the barcoding gene COI for use in forensic genetic species identification. Forensic Science International, 173(1): 1–6. Fisher, B. L. & Smith, M. A., 2008. A revision of Malagasy species of Anochetus mayr and Odontomachus latreille (Hymenoptera: Formicidae). PLoS ONE, 3(5): e1787. Fleischer, R. C., Kirchman, J. J., Dumbacher, J. P, Bevier, L., Dove, C., Rotzel, N. C., Edwards, S. V., Lammertink, M., Miglia, K. J. & Moore, W. S, 2006. Mid–Pleistocene divergence of Cuban and North American ivory–billed woodpeckers. Biology Letters, 2: 466–469. Frankham, R., 2003. Genetics and conservation biol� ogy. Comptes rendus Biologies, 326: S22–S29. Frankham, R., Ballou, J. D. & Briscoe, D. A., 2002. Introduction to Conservation Genetics. Cambridge


16

Univ. Press, New York. Freeland, J. R., 2005. Molecular Ecology. John Wiley and Sons, West Essex, UK. Freitas, P. D., Calgaro, M. R. & Galetti Jr, P. M., 2007. Genetic diversity within and between broodstocks of the white shrimp Litopenaeus vannamei (Boone, 1931) (Decapoda, Penaeidae) and its implication for the gene pool conservation. Brazilian Journal of Biology, 67: 939–943. Gerber, A. S., Loggins, R., Kumar, S. & Dowling, T. E., 2001. Does nonneutral evolution shape observed patterns of DNA variation in animal mito� chondrial genomes? Annual Reviews of Genetics, 35: 539–566. Geyer, C. J., Ryder, O. A., Chemnick, L. G. & Thomp� son, E. A., 1993. Analysis of relatedness in the California Condor, from DNA fingerprints. Molecular Biology and Evolution, 10: 571–589. Giannasi, N., Thorpe, R. S. & Malhotra, A., 2001. The use of amplified fragment length polymorphism in determining species trees at fine taxonomic levels: analysis of a medically important snake, Trimeresurus albolabris. Molecular Ecology, 10: 419–426. Gouin, N., Grandjean, F., Bouchon, D., Reynolds, J. D. & Souty–Grosset, C., 2001. Population genetic structure of the endangered freshwater crayfish Austropotamobius pallipes, assessed using RAPD markers. Heredity, 87: 80–87. Guha, S., Goyal, S. P. & Kashyap, V. K., 2006. Ge� ��� nomic variation in the mitochondrially encoded cytochrome b (MT–CYB) and 16S rRNA (MT– RNR2) genes: characterization of eight endangered Pecoran species. Animal Genetics, 37: 262–265. Haig, S. M., Ballou, J. D. & Casna, N. J., 1994. Identification of kin structure among Guam rail founders: a comparison of pedigrees and DNA profiles. Molecular Ecology, 3: 109–119. Hu, J., Fang, S. G. & Wan, Q. H., 2006. Genetic di� versity of Chinese water deer (Hydropotes inermis inermis): implications for conservation. Biochemical Genetics, 44: 161–172. Idaghdour, Y., Broderick, D., Korrida, A. & Chbel, F., 2004. Mitochondrial control region diversity of the houbara bustard Chlamydotis undulata complex and genetic structure along the Atlantic seaboard of North Africa. Molecular Ecology, 13: 43–54. Iyengar, A., Diniz, F. M., Gilbert, T., Woodfine, T., Knowles, J. & Maclean, N., 2006. Structure and evolution of the mitochondrial control region in oryx. Molecular Phylogenetics and Evolution, 40: 305–314. Janzen, D. H., Hajibabaei, M., Burns, J. M., Hallwachs, W., Remigio, E. & Hebert, P. D., 2005. Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philosophical Transactions of the Royal Society London B: Biological Sciences, 360: 1835–1845. Johnson, W. E. & O’Brien, S. J., 1997. Phylogenetic Reconstruction of the Felidae Using 16S rRNA and NADH–5 Mitochondrial Genes. Journal of Molecular Evolution, 44: S98–S116. Katsares, V., Tsiora, A., Galinou–Mitsoudi, S. & Imsiri�

Arif & Khan

dou, A., 2008. Genetic structure of the endangered species Pinna nobilis (Mollusca: Bivalvia) inferred from mtDNA sequences. Biologia, 63: 412–417. Kawaka, M., Horbanczuk, J. O., Sacharczuk, M., Zieba, G., Lukaszewicz, M., Jaszczak, K. & Parada, R., 2007. Genetic characteristics of the ostrich population using molecular methods. Poultry Science, 86: 277–281. Land, D. E. & Lacy, R. C., 2000. Introgression level achieved through Florida panther genetic restora� tion. Endangered Species Updates, 17: 99–103. Lande, R., 1988. Genetics and demography in biologi� cal conservation. Science, 241: 1455–1460. Lei, R., Jian, Z., Hu, Z. & Yang, W., 2003. �������� Phyloge� netic relationships of Chinese antelopes (Subfamily Antilopinae) based on mitochondrial Ribosomal RNA gene sequences. Journal of Zoology, 261: 227–237. Li, Y., Wongprasert, K., Shekhar, M., Ryan, J., Dier� ens, L., Meadows, J., Preston, N. P., Coman, G. J. & Lyons, R. E., 2007. Development of two mic� rosatellite multiplex systems for black tiger shrimp Penaeus monodon and its application in genetic diversity study for two populations. Aquaculture, 266: 279–288. Lorenz, J. G., Jackson, W. E., Beck, J. C. & Hanner, R., 2005. The problems and promise of DNA bar� codes for species diagnosis of primate biomaterials. Philosophical Transactions of the Royal Society London B: Biological Sciences, 360: 1869–1877. Lougheed, S. C., Gibbs, H. L., Prior, K. A. & Weath� erhead, P. J., 2000. A comparison of RAPD versus microsatellite DNA markers in population studies of the massasauga rattlesnake. Journal of Heredity, 91(6): 458–463. Lucchini, V., 2003. AFLP: a useful tool for biodiversity conservation and management. Comptes rendus Biologies, 326: S43–S48. Maciuszonek, A., Grajewski, B. & Bednarczyk, M., 2005. RAPD–PCR analysis of various goose populations. Folia Biologics, 53: 83–85. Min, M. S., Okumura, H., Jo, D. J., An, J. H., Kim, K. S., Kim, C. B., Shin, N. S., Lee, M. H., Han, C. H., Voloshina, I. V. & Lee, H., 2004. Molecu� lar phylogenetic status of the Korean goral and Japanese serow based on partial sequences of the mitochondrial cytochrome b gene. Molecular Cells, 17: 365–372. Na–Nakorn, U., Sukmanomon, S., Nakajima, M., Taniguchi, N., Kamonrat, W., Poompuang, S. & Nguyen, T. T. T., 2006. MtDNA diversity of the critically endangered Mekong giant catfish (Pangasianodon gigas Chevey, 1913) and closely re� lated species: implications for conservation. Animal Conservation, 9: 483–494. Onuma, M., Suzuki, M. & Ohtaishi, N., 2006. Possible conservation units of the sun bear (Helarctos malayanus) in Sarawak based on variation of mtDNA control region. Japanese Journal of Veterinary Research, 54: 135–139. Padilla, J. A., Martínez–Trancón, M., Rabasco, A., Parejo, J. C., Sansinforiano, M. E. & Guijo, M. I., 2000. Genetic variability in the Iberian imperial


Animal Biodiversity and Conservation 32.1 (2009)

eagle (Aquila adalberti) demonstrated by RAPD analysis. Journal of Heredity, 91: 495–499. Parejo, J. C., Padilla, J. A., Rabasco, A., Sansinfori� ano, M. E. & Martinez–Trancón, M., 2002. Popula� tion structure in the endangered Blanca Cacereña bovine breed demonstrated by RAPD analyses. Genes and Genetic Systems, 77: 51–58. Pesole, G., Gissi, C., De Chirico, A. & Saccone, C., 1999. Nucleotide substitution rate of mammalian mitochondrial genomes. Journal of Molecular Evolution, 48: 427–434. Rach, J., Desalle, R., Sarkar, I. N., Schierwater, B. & Hadrys, H., 2008. Character–based DNA barcod� ing allows discrimination of genera, species and populations in Odonata. Proceedings: Biological Sciences, 275: 237–247. Ralls, K. & Ballou, J., 1983. Extinctions: lessons from zoos. In: Genetics and conservation: A reference for managing wild animal and plany populations: 64–184 (C. M. Schonewald–Cox, S. M. Chambers, B. MacBryde & L. Thomas, Eds.). Benjamin Cum� mings Publishing Company, Inc., California. Rodrigues, F. P., Garcia, J. F., Ramos, P. R., Bor� tolozzi, J. & Duarte, J. M., 2007. Genetic diversity of two Brazilian populations of the Pampas deer (Ozotoceros bezoarticus, Linnaeus 1758). Brazilian Journal of Biology, 67: 805–811. Russello, M. A. & Amato, G., 2004. Ex situ population management in the absence of pedigree informa� tion. Molecular Ecology, 13: 2829–2840. Ryberg, W. A., Fitzgerald, L. A., Honeycutt, R. L. & Cathey, J. C., 2002. Genetic relationships of American alligator populations distributed across different ecological and geographic scales. Journal of Experimental Zoology, 294: 325–333. Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W. & Hanski, I., 1998. Inbreeding and extinction in a butterfly metapopulation. Nature, 392: 491–494. Smith, M. A., Woodley, N. E., Janzen, D. H., Hall� wachs, W. & Hebert, P. D., 2006. DNA barcodes reveal cryptic host–specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proceedings of National Academy of Sciences USA, 103: 3657–3662.

17

Sunnucks, P., 2000. Efficient genetic markers for population biology. Trends in Ecology and Evolution, 15: 199–203. Takami, Y., Koshio, C., Ishii, M., Fujii, H., Hidaka, T. & Shimizu, I., 2004. Genetic diversity and structure of urban populations of Pieris butterflies assessed using amplified fragment length polymorphism. Molecular Ecology, 13: 245–258. Turan, C., 2008. Molecular Systematic Analyses of Mediterranean Skates (Rajiformes). Turkish Journal of Zoology, 32: 1–6. Van der Kuyl, A. C., Ballasina, D. L. P. & Zorgdrager, F., 2005. Mitochondrial haplotype diversity in the tortoise species Testudo graeca from North Africa and the Middle East. BMC Evolutionary Biology, 5: 29. Westemeier, R. L., Brawn, J. D., Simpson, S. A., Es� ker, R. W., Jansen, R. W., Walk, J. W., Kershner, E. L., Bouzat, J. L. & Paige, K. N., 1998. Tracking the long–term decline and recovery of an isolated population. Science, 282: 1695–1698. Witt, J. D., Threloff, D. L. & Hebert, P. D., 2006. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology, 15: 3073–3082. Wu, H. L., Wan, Q. H. & Fang, S. G., 2006. Population structure and gene flow among wild populations of the black muntjac (Muntiacus crinifrons) based on mitochondrial DNA control region sequences. Zoological Science, 23: 333–340. Yue, G. H., Li, Y., Lim, L. C. & Orban, L., 2004. Moni� toring the genetic diversity of three Asian arowana (Scleropages formosus) captive stocks using AFLP and microsatellites. Aquaculture, 237: 89–102. Zhang, F. & Jiang, Z., 2006. Mitochondrial phyloge� ography and genetic diversity of Tibetan gazelle (Procapra picticaudata): implications for conserva� tion. Molecular Phylogenetics and Evolution, 41: 313–321. Zenger, K. R., Stow, A. J., Peddemors, V., Briscoe, D. A. & Harcourt, R. G., 2006. Widespread utility of highly informative AFLP molecular markers across divergent shark species. Journal of Heredity, 97: 607–611.


"La tortue greque" Oeuvres du Comte de Lacépède comprenant L'Histoire Naturelle des Quadrupèdes Ovipares, des Serpents, des Poissons et des Cétacés; Nouvelle édition avec planches coloriées dirigée par M. A. G. Desmarest; Bruxelles: Th. Lejeuné, Éditeur des oeuvres de Buffon, 1836. Pl. 7

Editor executiu / Editor ejecutivo / Executive Editor Joan Carles Senar

Secretaria de Redacció / Secretaría de Redacción / Editorial Office

Secretària de Redacció / Secretaria de Redacción / Managing Editor Montserrat Ferrer

Museu de Zoologia Passeig Picasso s/n 08003 Barcelona, Spain Tel. +34–93–3196912 Fax +34–93–3104999 E–mail mzbpubli@intercom.es

Consell Assessor / Consejo asesor / Advisory Board Oleguer Escolà Eulàlia Garcia Anna Omedes Josep Piqué Francesc Uribe

Editors / Editores / Editors Antonio Barbadilla Univ. Autònoma de Barcelona, Bellaterra, Spain Xavier Bellés Centre d' Investigació i Desenvolupament CSIC, Barcelona, Spain Juan Carranza Univ. de Extremadura, Cáceres, Spain Luís Mª Carrascal Museo Nacional de Ciencias Naturales CSIC, Madrid, Spain Adolfo Cordero Univ. de Vigo, Vigo, Spain Mario Díaz Univ. de Castilla–La Mancha, Toledo, Spain Xavier Domingo Univ. Pompeu Fabra, Barcelona, Spain Francisco Palomares Estación Biológica de Doñana, Sevilla, Spain Francesc Piferrer Inst. de Ciències del Mar CSIC, Barcelona, Spain Ignacio Ribera The Natural History Museum, London, United Kingdom Alfredo Salvador Museo Nacional de Ciencias Naturales, Madrid, Spain José Luís Tellería Univ. Complutense de Madrid, Madrid, Spain Francesc Uribe Museu de Zoologia de Barcelona, Barcelona, Spain Consell Editor / Consejo editor / Editorial Board José A. Barrientos Univ. Autònoma de Barcelona, Bellaterra, Spain Jean C. Beaucournu Univ. de Rennes, Rennes, France David M. Bird McGill Univ., Québec, Canada Mats Björklund Uppsala Univ., Uppsala, Sweden Jean Bouillon Univ. Libre de Bruxelles, Brussels, Belgium Miguel Delibes Estación Biológica de Doñana CSIC, Sevilla, Spain Dario J. Díaz Cosín Univ. Complutense de Madrid, Madrid, Spain Alain Dubois Museum national d’Histoire naturelle CNRS, Paris, France John Fa Durrell Wildlife Conservation Trust, Trinity, United Kingdom Marco Festa–Bianchet Univ. de Sherbrooke, Québec, Canada Rosa Flos Univ. Politècnica de Catalunya, Barcelona, Spain Josep Mª Gili Inst. de Ciències del Mar CMIMA–CSIC, Barcelona, Spain Edmund Gittenberger Rijksmuseum van Natuurlijke Historie, Leiden, The Netherlands Fernando Hiraldo Estación Biológica de Doñana CSIC, Sevilla, Spain Patrick Lavelle Inst. Français de recherche scient. pour le develop. en cooperation, Bondy, France Santiago Mas–Coma Univ. de Valencia, Valencia, Spain Joaquín Mateu Estación Experimental de Zonas Áridas CSIC, Almería, Spain Neil Metcalfe Univ. of Glasgow, Glasgow, United Kingdom Jacint Nadal Univ. de Barcelona, Barcelona, Spain Stewart B. Peck Carleton Univ., Ottawa, Canada Eduard Petitpierre Univ. de les Illes Balears, Palma de Mallorca, Spain Taylor H. Ricketts Stanford Univ., Stanford, USA Joandomènec Ros Univ. de Barcelona, Barcelona, Spain Valentín Sans–Coma Univ. de Málaga, Málaga, Spain Tore Slagsvold Univ. of Oslo, Oslo, Norway

Animal Biodiversity and Conservation 24.1, 2001 © 2001 Museu de Zoologia, Institut de Cultura, Ajuntament de Barcelona Autoedició: Montserrat Ferrer Fotomecànica i impressió: Sociedad Cooperativa Librería General ISSN: 1578–665X Dipòsit legal: B–16.278–58


Animal Biodiversity and Conservation 32.1 (2009)

19

Populational status of the endangered mollusc Patella ferruginea Gmelin, 1791 (Gastropoda, Patellidae) on Algerian islands (SW Mediterranean) F. Espinosa

Espinosa, F., 2009. Populational status of the endangered mollusc Patella ferruginea Gmelin, 1791 (Gastropoda, Patellidae) on Algerian islands (SW Mediterranean). Animal Biodiversity and Conservation, 32.1: 19–28. Abstract Populational status of the endangered mollusc Patella ferruginea Gmelin, 1791 (Gastropoda, Patellidae) on Algerian islands (SW Mediterranean).— Patella ferruginea is the most endangered endemic marine invertebrate on the Western Mediterranean coasts according to the European Council Directive 92/43/EEC. A total of 1,017 individuals were recorded in the present study along western Algerian islands, with mean densities ranging from 0.8 to 35.3 ind/m per linear transect and averages of 4.8 ind/m per linear transect for Western Habibas Island and 22 ind/m for Plane Island, making these islands a hot spot for the species in the Mediterranean. The expected total number of specimens in Habibas would therefore be 50,400. The mean size of P. ferruginea on the Habibas Islands (4.45 cm) was significantly (p < 0.001) greater than on Plane Island (2.78 cm). Recruitment was high in Plane Island and the northern sector of the western Habibas Islands. Large adults had very conical shells. The fact that Habibas Islands is now a marine reserve could explain these differences in populations. Conservation of these populations should be a priority in order to avoid extinction of the species. Key words: Patella ferruginea, Algeria, Conservation, Limpet. Resumen Estado de las poblaciones del molusco protegido Patella ferruginea Gmelin, 1791 (Gastropoda, Patellidae) en las islas argelinas (SO Mediterráneo).— Patella ferruginea es el invertebrado marino endémico más amenazado de las costas del Mediterráneo occidental según la Directiva 92/43 de la Unión Europea. En este estudio se registraron un total de 1.017 ejemplares en las islas occidentales argelinas, con densidades medias de 0,8 a 35,3 ind/m de transecto linear y valores medios de 4,8 ind/m en la isla Habibas occidental y de 22 ind/m en la isla Plana. Estas poblaciones representan un "punto caliente" de la especie a nivel de todo el Mediterráneo. La estima de población para las islas Habibas es de 50.400 individuos, uno de los más elevados para la especie. La talla media de P. ferruginea fue significativamente (p < 0,001) mayor en la isla Habibas occidental (4,45 cm) que en la isla Plana (2,78 cm). El reclutamiento fue muy elevado en la isla Plana y en el sector norte de la isla Habibas occidental. Los ejemplares de mayor talla muestran conchas muy cónicas. El establecimiento de una reserva marina en las islas Habibas podría explicar las diferencias halladas entre las poblaciones. La conservación de estas poblaciones debe ser una prioridad para evitar la definitiva extinción de la especie. Palabras clave: Patella ferruginea, Argelia, Conservación, Lapa. (Received: 4 VII 08; Conditional acceptance: 17 X 08; Final acceptance: 20 I 09) Free Espinosa, Lab. de Biología Marina, Depto. de Fisiología y Zoología, Fac. de Biología, Avda. Reina Mercedes 6, C. P. 41012, Sevilla, España (Spain).

ISSN: 1578–665X

© 2009 Museu de Ciències Naturals


20

Espinosa

Introduction

Material and methods

Patella ferruginea Gmelin, 1791, endemic to the Mediterranean, is the most endangered marine invertebrate on Western Mediterranean rocky shores according to European Council Directive 92/43/EEC on the Conservation of Natural Habitats and of Wild Fauna and Flora, 1992 (Ramos, 1998), and it is presently under serious threat of extinction (Laborel– Deguen & Laborel, 1991; Templado & Moreno, 1997). This is a long–lived protandrous hermaphrodite (Espinosa et al., 2008) that achieves sexual maturation as a male from 20–30 mm and then changes to female around 42–60 mm, although males can be observed up to 80 mm (Espinosa et al., 2006; Guallart et al., 2006a). It requires clean waters and medium–strong wave action (Espinosa, 2006). Study of the population status of the species and relevant pressure factors indicate better management and conservation measures are essential. Population size structures, in the sense of distribution of body size within particular populations, are affected by environmental changes, ecological interactions and, in many cases, human exploitation. These structures are an important indicator of the population status and can be used comparatively across sites and through time to identify the forces controlling population dynamics. Size structures also have been used to track losses of large individuals from populations which are often the target of exploitation by humans (Rochet & Trenkel, 2003), as occurs with limpets, which are collected as food or as fishing bait because of their large muscular foot (Pombo & Escofet, 1996). Human exploitation can also decrease the reproductive output of intertidal invertebrate populations in which there is an increase in individual fecundity with body size (Levitan, 1991; Tegner et al., 1996), and such is the case with P. ferruginea Gmelin, 1791 (see Espinosa et al., 2006). All of these considerations are especially true for broadcast spawners such as limpets that depend on high gamete concentrations to increase the probability of successful fertilisation (Hockey & Branch, 1994) and avoid the ‘Allee’ effect (Courchamp et al., 2008). The Western Algerian Islands (Rachgoun, Habibas and Plane) are sites of high ecological value given the number of endemic and endangered Mediterranean marine species living there (Bachet et al., 2007). Important populations of the endangered mollusc P. ferruginea Gmelin, 1791 have been recorded on Rachgoun (Frenkiel, 1975) and Habibas Islands (Boumaza & Semroud, 2001). The latter islands were declared a Marine Natural Reserve in 2003 by the Algerian Government (decree nº 03.147, 29 March) (Ben Haj & Bernard, 2005). The aim of this study was to determine the population parameters (size frequencies and density) of the P. ferruginea population at the Western Habibas and Plane Islands. Such information would be useful in order to detect future changes produced by pressure factors such as human collecting or predation.

Study area The study was conducted during April 2008 on the Western Habibas and Plane Islands. Located off the West coast of Algeria (fig. 1), these islands are under the influence of the Atlantic waters from the Alborán Sea (Robinson et al., 2001) and they are located at the southern end of the Almería–Orán oceanographic front (see Templado et al., 2006). The approximate perimeter of the Habibas Islands is 10,500 m and the substrate is composed of rocky shores of volcanic origin (Ben Haj & Bernard, 2005), without presence of sandy or boulder beaches. The shoreline is twisting with several separate small islets. The distance from Habibas Islands to the nearest mainland is 9.5 km, whereas for Plane Island the distance to the nearest mainland is about 5 km. The distance between the two islands is 20 km. Sampling methods Four sectors were considered in Western Habibas Island (East, South, West and North) and three delimited transects were established inside each sector (fig. 1, table 1). In Plane Island two transects were located, approximately in the West and North areas, because the reduced size and regular shape of the island made it difficult to establish different sectors. The transects were 10 metres in length (Laborel–Deguen & Laborel, 1991; Guerra–García et al., 2004), of similar slope (30º–60º) and were measured with a tape measure to follow the coast profile. Collected P. ferruginea specimens were measured with a calliper to the nearest mm on their longitudinal axis (Guerra–García et al., 2004). All individuals found above or under the transect tape were recorded and measured. As small individuals are difficult to detect (Guallart et al., 2006b), care was taken to observe this fragment of population. Data analysis As with many ecological impact data (Clarke & Warwick, 2001), the assumptions for parametric statistics are not met by some of our data, which have severe departures from normality and equal variances. The ANOVA test is, however, robust for deviation from normality and if the number of cases is high and balanced between groups it is possible to undertake the analysis even if the condition of equal variances is not met (Underwood, 1997). Only one ANOVA test without equal variances was performed with the large dataset pooled in the Habibas and Plane sites for mean sizes. The rest of the analyses performed were checked for homogeneity of variances by means of the Levene test and the use of logarithmic transformation when required to satisfy homocedasticity. Differences between means were examined a posteriori with the Student–Newman–Keuls test. Reduction of data only to summary statistics such as mean sizes greatly reduces the information available for comparisons


Animal Biodiversity and Conservation 32.1 (2009)

Habibas Island

21

Cape Falcon Plane Island Orán 35º 44' Eastern Island

N

50 m

North

Western Island West

East

South

35º 43'

500 m 7º

Fig. 1. Map of the study site showing the location of Habibas and Plane Islands. In Western Habibas Island the perimeter was divided into four sectors: East, South, West and North (spots indicate the sampling sites for Patella ferruginea). Fig. 1. Mapa del área de estudio, mostrando la situación de las islas Habibas y de la isla Plana. El perímetro de la isla Habibas occidental se dividió en cuatro sectores: este, sur, oeste y norte (los círculos negros indican los lugares de muestreo para Patella ferruginea).

(Sagarin et al., 2007). Therefore, multivariate MDS (non–metric multidimensional scaling) statistics were additionally used, based on the UPGMA method (Unweigh Pair–Group Method using arithmetic averages) and the Bray–Curtis similarity index to test for differences in size structures between sites. Kruskal’s stress coefficient was used to test ordination (Kruskal & Wish, 1978). Multivariate analysis was carried out with the PRIMER© 6.0 package. Results A total of 1,017 individuals of P. ferruginea were recorded and measured on the different transects. From these, 577 were found in Western Habibas Island (120 m of shoreline surveyed) and 440 in Plane Island (20 m of shoreline surveyed). Mean densities varied greatly depending on the transect (table 2) from 0.8 ind/m to 35.3 ind/m per linear transect, with averages of 4.8 ind/m per linear transect for Western Habibas and 22 ind/m for Plane Island. There were no differences between sectors on Western Habibas Island in terms of densities (F3,8 = 1.97; p = 0.197) owing

to the extreme variability within sectors, although the North sector showed the greatest densities of P. ferruginea. The whole population at Habibas Islands was estimated at some 50,400 individuals (recruits included). Mean sizes were 4.45 cm (± 2.59) in Western Habibas Island and 2.78 cm (± 1.63) in Plane Island, with a range from 2.4 cm (Plane 2) to 7.5 cm (E1) (see table 2). Size structures for each island (Habibas and Plane) showed a different shape; Habibas showed many larger sized individuals, while these were very scarce or absent at Plane Island (figs. 2A, 2B) despite the notable recruitment on both islands. The adults found on Western Habibas Island had a mean size of 6.11 cm, compared to 4.19 cm for adults on Plane Island Differences in size between the two populations were statistically significant (F1,015 = 140; p < 0.001). Additionally, two different and significant skews were detected (table 3): a negative skew for the Habibas population (many large specimens) and a positive skew for Plane Island (many small specimens). Nevertheless, a bimodal distribution was observed for both populations owing to the intense recruitment. The size frequency distribution,


22

Espinosa

however, was platykurtic (wide and flattened) in both populations. Size frequencies at each site were highly variable (fig. 3). Nevertheless, there were a lot of large individuals throughout and many recruits were found in the sites N1 and N3, as well as in Plane 2. Conversely, large specimens were scarce at sites Plane 1 and particularly in Plane 2. Furthermore, differences in mean size through sites in Habibas were detected (F11,565 = 32.8; p < 0.001) and the SNK test showed different subsets of sites:

Table 1. Location of sampling sites: T. Transect. Tabla 1. Localización de los lugares de muestreo: T. Transecto. Sector

T

Habibas Island East 1 East 2 East 3 South 1 South 2 South 3 West 1 West 2 West 3 North 1 North 2 North 3 Plane Island 1 2

Coordinates 35º 35º 35º 35º 35º 35º 35º 35º 35º 35º 35º 35º

43.562' 43.497' 43.237' 43.154' 43.155' 43.322' 43.439' 43.518' 43.572' 43.653' 43.649' 43.665'

N / 1º N / 1º N / 1º N / 1º N / 1º N / 1º N / 1º N / 1º N / 1º N / 1º N / 1º N / 1º

07.640' W 07.759' W 07.844' W 07.970' W 08.112' W 08.215' W 07.988' W 07.981' W 08.056' W 07.635' W 07.588' W 07.597' W

E1 S3 W1 S2 N2 E3 W2 S1 W3 E2 N1 N3 (underlined sites belong to the same subset and are ordered by decreasing size from E1 to N3). Recruits (< 3 cm, see Frenkiel, 1975; Espinosa et al., 2006) were more abundant in Plane Island (47.72%) than in Western Habibas (32.75%) (table 3), whereas inside Western Habibas the North sector showed a higher number of recruits (fig. 3). Multivariate analysis clearly separated the populations of Plane Island and those settled on the North sector of Western Habibas due to the presence of high recruitment at these sites and, subsequently, the different shape on size–frequency distributions (fig. 4). Empty shells from 6 to 7.5 cm were observed in terrestrial areas of the Western Habibas Island near seagull nests (mainly Larus cachinnans). The shell– shape (both in live and dead specimens) was very conical, specially for larger individuals.

35º 46.291' N / 0º 54.174' W 35º 46.290' N / 0º 54.066' W

Table 2. Population datasets from each site. Transects are 10 m in length: *  Numbers in brackets indicate number of specimens, densities, mean sizes and SD taking into account only the adults (> 3 cm). Tabla 2. Conjunto de datos poblacionales para cada localización. Los transectos son de 10 m de longitud: *  Los números entre paréntesis indican los especímenes, las densidades, los tamaños medios y las DE que tienen en cuenta sólo a los adultos (> 3 cm).

Site

Number of specimens*

Density* (ind/m)

E1

9 (9)

0.9 (0.9)

Mean size* (cm) 7.5 (7.5)

1.57 (1.57)

SD*

E2

8 (7)

0.8 (0.7)

5.1 (5.7)

1.91 (0.64)

E3

44 (43)

4.4 (4.3)

6.2 (6.4)

1.35 (1.07)

S1

32 (28)

3.2 (2.8)

5.6 (6.2)

1.95 (1.14)

S2

58 (55)

5.8 (5.5)

6.5 (6.8)

1.68 (1.15)

S3

9 (9)

0.9 (0.9)

7.1 (7.1)

1.07 (1.07)

W1

10 (10)

1 (1)

6.8 (6.8)

1.54 (1.54)

W2

13 (13)

1.3 (1.3)

5.6 (5.6)

1.48 (1.48)

W3

45 (38)

4.5 (3.8)

5.5 (6.5)

2.41 (1.27)

N1

65 (47)

6.5 (4.7)

3.8 (5)

1.99 (0.91)

N2

31 (31)

3.1 (3.1)

6.4 (6.4)

0.83 (0.83)

N3

253 (98)

25.3 (9.8)

2.8 (5.7)

2.33 (0.94)

Plane 1

87 (72)

8.7 (7.2)

4.2 (4.8)

1.67 (0.98)

Plane 2

353 (158)

35.3 (15.8)

2.4 (3.9)

1.42 (0.59)


Animal Biodiversity and Conservation 32.1 (2009)

A

23

Number of specimens

150

100

147

106

50

106

77 62 40 22

0

2

11

5

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 Size (cm)

Mean = 4.45 SD = 2.598 N = 577

B 200

Number of specimens

150

100

189

100

50

49

31

0

6

15

6

4

Mean = 2.78 SD = 1.634 N = 440

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 Size (cm)

Fig. 2. Size frequencies: A. Western Habibas Island; B. Plane Island. The data were pooled. Fig. 2. Frecuencias de tama単os: A. Isla Habibas occidental; B. Isla Plana. Los datos se han agrupado.


24

Espinosa

Table 3. Summary statistics for Patella ferruginea sizes (cm) by sites for all samples: N. Number of specimens (percentage of recruits, < 3 cm); M. Mean; SD. Standard deviation; S. Skewness (*  skewness is considered significant when its absolute value is greater than 2*SE of skewness); SES. SE skew; K. Kustosis (**  kurtosis is considered significant when its absolute value is greater than 2*SE of kurtosis); SEK. SE kurtosis; Kt. Kurtosis type. (Values in brackets only for adults, > 3 cm.) Tabla 3. Resumen de las estadísticas de los tamaños de Patella ferruginea (en cm) según localización: N. Número de especímenes (porcentaje de reclutas, < 3 cm); M. Media; SD. Desviación estándar; S. Asimetría estadística (*  la asimetría estadística se considera significativa cuando su valor absoluto es mayor que 2*EE de la asimetría estadística); SES. EE de la asimetría estadística; K. Curtosis (**  la curtosis se considera significativa cuando su valor absoluto es mayor que 2*EE de la curtosis); SEK. EE de la curtosis; Kt. Tipo de curtosis. (Los valores entre paréntesis corresponden a adultos, > 3 cm.) Site

N

(%)

Max

Mean

SD

S

SES

K

SEK

Kt

Habibas 577 32.75 9.7 4.45 (6.11) 2.59 (1.24) –0.284* 0.102 –1.408** 0.203 Platykurtic Plane

440

47.72 7.2 2.78 (4.19) 1.63 (0.84) 0.312*

Discussion The densities of P. ferruginea Gmelin, 1791 found in Western Habibas and Plane Islands, 4.8 individuals per lineal metre (ind/m) and 22 ind/m respectively, are among the highest in the Mediterranean. Data available in the literature indicate 0.79 (ind/m) of linear transect in Corsica (Laborel–Deguen & Laborel, 1991), 0.7 ind/m in Zembra Island, Tunisia (Boudouresque & Laborel–Deguen, 1986), 0.06 ind/m in Alborán Island (Paracuellos et al., 2003), 0.23 ind/m in Cala Iris Islet, National Park of Al Hoceima, Morocco (Bazairi et al., 2004), 0.08–0.14 ind/m in Algeciras Bay, Spain (Espinosa et al., 2005), 3.95 ind/m (only adults > 30 mm) in Chafarinas Islands (Guallart et al., 2006b), 5.39 ind/m in Melilla (González–García et al., in Guallart et al., 2006b), 0.67 ind/m as an average in Ceuta (Guerra–García et al., 2004), 1.86–6.86 ind/m in some areas of Ceuta (Espinosa et al., in press). These data show the Western islands of Algeria (together with the nearby sites of Chafarinas Islands and Melilla, and the further away site of Ceuta) are a hot spot of the species in the Mediterranean, taking into account the dense populations settled also in Rachgoun Island (Frenkiel, 1975; Fabrice Bernard, pers. comm.). The densities of P. ferruginea, however, decrease to the east because only one specimen was observed all around the Sridjina Island on Eastern Algeria (Fabrice Bernard, pers. comm.), and the densities in Tunisia are also very low (unpub. data). In order to preserve the species at a global scale, the conservation of all these hot spot populations is a priority. Direct removal of organisms will have major effects at both local and regional scales and is likely to increase over the next 25 years, especially in developing countries where rapidly expanding human populations will put further pressure on resources

0.116 –1.105** 0.232 Platykurtic

(Thompson et al., 2002). The future of P. ferruginea Gmelin, 1791 populations on Algerian coasts is therefore compromised unless conservation measures and good management programs are established. Moreover, the presence of small oil spills (pers. obs.) along the shoreline indicates populations such as P. ferruginea Gmelin, 1791 in intertidal zones are at risk of catastrophic events. The population at Habibas Islands has stabilised in recent years. The study undertaken by Boumaza & Semroud (2001) in summer 1997 showed a mean density of 4.5 ind/m per linear transect (over 100 m of shoreline) and abundance of large specimens. Eleven years later the mean density was 4.8 ind/m per linear transect (over 120 m of shoreline) and marked presence of large specimens was noted. Habibas Islands was declared a marine reserve area in 2003 (decree nº 03.147, 29 March) (Ben Haj & Bernard, 2005) and this might have played a main role in the stabilisation of the species, taking into account the regression found in other populations throughout Mediterranean (Laborel–Deguen & Laborel, 1991). Furthermore, Keough et al. (1993) found that three species of intertidal molluscs were significantly larger at the protected sites and one of these species was markedly less abundant at heavily visited sites. The percentage of larger specimens (> 6 cm) with regard to the range (2–9 cm) differs considerably between populations: 15% in Ceuta and Melilla (under high urban and anthropogenic pressure), 30% in Chafarinas and 53.5% in Habibas (both marine protected areas) In a study on limpets, Branch & Odendaal (2003). described the benefits of marine protected areas to preserve large and more fecund species that act as a focus for larval export via the rebalance of sex–ratio. The presence of large specimens in Habibas island guarantees the success of reproduction, taking into consideration that the expected sex–ratio would be


Animal Biodiversity and Conservation 32.1 (2009)

1 0­­–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Size (cm)

6 4 2 0­­–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Size (cm)

Number of specimens

6 4 3 2 1

0­­–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Size (cm)

Number of specimens

20 18 16 14 12 10 8 6 4 2 0

Number of specimens

35 30 25 20 15 10 5 0

1 0

0­­–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Size (cm)

18 16 14 12 10 8 6 4 2 0

6

3 2 1 0­­–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Size (cm)

N1

0­­–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Size (cm)

Plane 1

0­­–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Size (cm)

16 14 12 10 8 6 4 2 0

200 180 160 140 120 100 80 60 40 20 0

3 2 1 0

0­­–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Size (cm)

W3

8 6 4 2 0

0­­–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Size (cm)

N2

0­­–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Size (cm)

S3

4

14 12 10

4

0

5

W2

5

E3

0­­–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Size (cm)

S2

0­­–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Size (cm)

W1

5

0

2

Number of specimens

8

3

S1

10

0

4

Number of specimens

12

Number of specimens

0

5

16 14 12 10 8 6 4 2 0

Number of specimens

2

E2

Number of specimens

3

6

160 140 120 100 80 60 40 20 0

Number of specimens

4

Number of specimens

5

Number of specimens

E1

Number of specimens

6

Number of specimens

Number of specimens

25

N3

0­­–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Size (cm)

Plane 2

0­­–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Size (cm)

Fig. 3. Size frequencies for each sampling site. Fig. 3. Frecuencias de los tamaños para cada lugar de muestreo.

in the range 2–2.7:1 (males:females) in Habibas but 7.3–20:1 in Plane Island, according to the distribution of sexes through sizes reported for the species (Guallart et al., 2006a, 2006b; Espinosa et al., 2008) in two different populations from the Mediterranean. Human foraging of intertidal invertebrate resources has occurred since prehistoric times (Mannino

& Thomas, 2002). Although technological advances have enabled access to sites further away, the impact on intertidal populations continues due to increases in human population densities (Pombo & Escofet, 1996; Castilla, 1999), and such impacts are expected to increase in the future (Thompson et al., 2002). Furthermore, the sex distribution through sizes in P. ferruginea Gmelin, 1791 makes


26

Espinosa

Stress 0.06

S2

W1 N2

E1 S3

E3 W3 S1

W2

N3 Plane 1 N1

Plane 2

E2

Fig. 4. MDS (Multidimensional Scaling) analysis based on size frequencies for the sampling sites under study.

Fig. 4. Análisis MDS basado en las frecuencias de los tamaños en los lugares de estudio.

this species extremely vulnerable to poaching (see Espinosa et al., 2006), since the depletion of large, more fertile individuals, and a higher proportion of females, could bias the reproductive output towards a complete collapse. Moreover, recent studies from fisheries have shown that exploitation of larger and older females can have disproportionate effects on populations (Berkeley et al., 2004; Palumbi, 2004). In fact, catching of large limpets will be more important if these animals contribute disproportionately to reproductive effort in a local population (Keough et al., 1993) as happens with P. ferruginea Gmelin, 1791 (see Espinosa et al., 2006). In both fishes and invertebrates, the reserve effect has been shown to favour an increase in the mean size of specimens (Edgar & Barrett, 1999). The population of Western Habibas Island appears to be highly reproductive (large breeders and high recruitment), showing a good size–frequency distribution (balance between small and large individuals). However, the population at Plane Island, although extremely dense, shows a relative absence of large specimens and this could compromise the viability of the population in the next future. The presence of many recruits on Plane Island in spite of the shortage of larger sized specimens could be explained by the fact that the Algerian Current flows intensely from west to east between 1º W and 4º E at a mean speed of 40 cm/s (peaks of 80 cm/s), whereas the superficial current flow continues eastward to Straits of Sicily with some instability and anti–cyclonic eddies (Arnone et al., 1990; Perkins & Pistek, 1990; Robinson et al., 2001). The larvae could therefore be transported from Habibas to Plane Island

and further east. Indeed, to the east of Plane Island on the Stidia shores (mainland Argelia) there is a high density (9.75 ind/m) of relatively small specimens (with a well–defined mode of 33.5 mm and a maximum length of 51 mm), according to Mezali (2005). This possibility should be verified by genetic studies. As compared to Habibas Islands, Plane Island is in close proximity to the mainland, it has no legal protection as a marine reserve, and there are large towns on the coast in front of this island. With these differences in mind it could be expected that the size distribution would be the result of human pressure by collecting. Other forces controlling population dynamic of P. ferruginea Gmelin, 1791 on the Algerian islands could be predation by marine birds such as seagulls. There are large populations of Larus cachinnans and Larus audouinii: 1,340 and 690 individuals, respectively, in Habibas Islands (Ben Haj & Bernard, 2005). Although predation by seabirds over P. ferruginea Gmelin, 1791 has not been corroborated, Laborel– Deguen & Laborel (1991) indicated that seagulls could be significant predators of the species. Guallart et al. (2006b) found shells of P. ferruginea Gmelin, 1791 several metres from the intertidal zone in the Chafarinas Islands and put forward the hypothesis of predation by seagulls. Further studies on genetic and ecological topics of Algerian populations are required to elucidate whether the patterns observed in other populations are consistent throughout the distributional area of the species. Additionally, conservational measures should be be implemented to prevent this endangered mollusc becoming extinct.


Animal Biodiversity and Conservation 32.1 (2009)

Acknowledgements This work was supported by Conservatoire de l’espace littoral et des rivages lacustres (République Française), Fondation Nicolas Hulot and Commissariat National du Littoral (République Algérienne Démocratique et Populaire) under the international program Petites Iles de Méditerranée 2008 (PIM). References Arnone, R., Wiesenburg, D. & Saunders, K., 1990. The origin and characteristics of the Algerian Current. Journal of Geophisical Research, 95: 1587–1598. Bachet, F., Benhaj, S., Bernard, F., Delauge, J., Harmelin, J., Mante, A., Pascal, M., Tillmann, M., Vela, E. & Vidal, P., 2007. Réserve des Iles Habibas. Notes naturalistes. Petites Îles de Méditerranée. Conservatoire de l’espace littoral et des rivages lacustres. République Française. www.conservatoire–du–littoral.fr Bazairi, H., Salvati, E., Benhissoune, S., Tunesi, L., Rais, C., Agnesi, S., Benhamza, A., Franzosini, C., Limam, A., Mo, G., Molinari, A., Nachite, D. & Sadki, I., 2004. Considerations on a population of the endangered marine mollusc Patella ferruginea Gmelin, 1791 (Gastropoda, Patellidae) in the Cala Iris islet (National Park of Al Hoceima–Morocco, Alboran Sea). Bolletino Malacologico, 40: 95–100. Ben Haj, S. & Bernard, F., 2005. Schema d’amenagement et d’orientations de gestion de la reserve marine des Iles Habibas. Conservatoire de l’espace litoral et des rivages lacustres. République Française. www.conservatoire–du–littoral.fr Berkeley, S. A., Hixon, M. A., Larson, R. J. & Love, M. S., 2004. Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries, 29: 23–32. Boudouresque, C. F. & Laborel–Deguen, F., 1986. Patella ferruginea. In: Le benthos marin de l’ile de Zembra (Parc National, Tunisie): 105–110 (C. F. Boudouresque, J. G. Harmelin & A. Jeudy de Grissac, Eds.). GIS Posidonie Publishers, Marseille. Boumaza, S. & Semroud, R., 2001. Inventaire de la population de Patella ferruginea Gmelin, 1791 des iles Habibas (Ouest Algerien). Rapport du Congres de la Commission Internationale pour l’Exploration Scientifique de la Mer Mediterranée, 36: 361. Branch, G. M. & Odendaal, F., 2003. The effects of marine protected areas on the population dynamics of a South African limpet, Cymbula oculus, relative to the influence of wave action. Biological Conservation., 114: 255–269. Castilla, J. C., 1999. Coastal marine communities: trends and perspectives from human–exclusion experiments. Trends in Ecology and Evolution, 14: 280–283. Clarke, K. R. & Warwick, R. M., 2001. Change in marine communities: an approach to statistical analysis and interpretation. Primer–E, Plymouth.

27

Courchamp, F., Berec, L. & Gascoigne, J., 2008. Allee Effects in Ecology and Conservation. Oxford Univ. Press. Oxford, UK. Edgard, G. J. & Barrett, N. S., 1999. Effects of the declaration of marine reserves on Tasmanian reef fish, invertebrates and plants. Journal of Experimental Marine Biology and Ecology, 242: 107–144. Espinosa, F., 2006. Caracterización biológica del molusco protegido Patella ferruginea Gmelin, 1791 (Gastropoda: Patellidae): bases para su gestión y conservación. Ph. D. Thesis, Univ. of Sevilla. Espinosa, F., Fa, D. & Ocaña, T. M. J., 2005. Estado de la especie amenazada Patella ferruginea Gmelin, 1791 (Gastropoda: Patellidae) en la bahía de Algeciras y Gibraltar. Iberus, 23(2): 39–46. Espinosa, F., Guerra–García, J. M., Fa, D. & García– Gómez, J. C., 2006. Aspects of reproduction and their implications for the conservation of the endangered limpet, Patella ferruginea. Invertebrate, Reproduction and Development., 49: 85–92. Espinosa, F., Rivera–Ingraham, G., Fa, D. & García– Gómez, J. C., in press. Effects of human pressure on population size structures of the endangered ferruginean limpet: towards future management measures. Journal of Coastal Research. DOI: 10.2112/08–1005.1 Espinosa, F., Rivera–Ingraham, G. & García–Gómez, J. C., 2008. Gonochorism or protandrous hermaphroditism? Evidence of sex change in the endangered limpet Patella ferruginea. JMBA 2 Biological Records (on line version). http://www.mba.ac.uk/jmba/biodiversityrecords. php Frenkiel, L., 1975. Contribution à l’étude des cycles de reproduction des Patellidae en Algérie. Publicazione di la Stazione Zoologica di Napoli., 39: 153–189. Guallart, J., Calvo, M. & Cabezas, P. 2006a. Biología reproductora de la lapa Patella ferruginea (Mollusca: Patellidae), especie catalogada "en peligro de extinción". Programa y Resúmenes XIV Simposio Ibérico de Estudios de Biología Marina. Barcelona: 61–62. Guallart, J., Templado, J., Calvo, M., Cabezas, P., Acevedo, I., Machordom, A. & Luque, A. A., 2006b. Inventario y seguimiento de Patella ferruginea en España, así como la elaboración de una propuesta de estrategia de conservación de la especie. Informe final. Ministerio de Medio Ambiente, Madrid. Guerra–García, J. M., Corzo, J., Espinosa, F. & García–Gómez, J. C., 2004. Assessing habitat use of the endangered marine mollusc Patella ferruginea (Gastropoda, Patellidae) in northern Africa: preliminary results and implications for conservation. Biological Conservation., 116: 319–326. Hockey, P. A. R. & Branch, G. M., 1994. Conserving marine biodiversity on the African coast: implications of a terrestrial perspective. Aquatic Conservation: Marine and Freshwater Ecosystems, 4: 345–362. Keough, M. J., Quinn, G. P. & King, A., 1993. Correlations between human collecting and intertidal mollusc populations on rocky shores. Conservation


28

Biology, 7: 378–390. Kruskal, J. B. & Wish, M., 1978. Multidimensional scaling. Sage Publications, Beverly Hills, California. Laborel–Deguen, F. & Laborel, J., 1991. Statut de Patella ferruginea Gmelin en Méditerranée. In: Les Espèces marines à protéger en Méditerranée: 91–103 (C. F. Boudouresque, M. Avon & V. Gravez, Eds.). GIS Posidonie Publishers, Marseille, France. Levitan, D. R., 1991. Influence of body size and population density on fertilization success and reproductive output in a free–spawning invertebrate. Biological Bulletin. (Woods Hole), 181: 261–268. Mannino, M. A. & Thomas, K. D., 2002. Depletion of a resource? The impact of prehistoric human foraging on intertidal mollusc communities and its significance for human settlement, mobility and dispersal. World Archaeology, 33: 452–474. Mezali, K., 2005. On the presence of Patella ferruginea (Gmelin, 1791) on the western Algerian coast (Stidia, Algeria). Abstracts 40th European Marine Biology Symposium, Vienna. Palumbi, S., 2004. Why mothers matter. Nature, 430: 621–622. Paracuellos, M., Nevado, J. C., Moreno, D., Giménez, A. & Alesina, J. J., 2003. Conservational status and demographic characteristics of Patella ferruginea Gmelin, 1791 (Mollusca: Gastropoda) on the Alboran Island (Western Mediterranean). Animal Biodiversity and Conservation, 26.2: 29–37. Perkins, H. & Pistek, P., 1990. Circulation in the Algerian Basin during June 1986. Journal of Geophysical Research, 95: 1577–1585. Pombo, O. A. & Escofet, A., 1996. Effect of exploitation on the limpet Lottia gigantea: A field study in Baja California (Mexico) and California (USA). Pacific Science, 50: 393–403.

Espinosa

Ramos, M. A., 1998. Implementing the Habitats Directive for mollusc species in Spain. Journal of Conchology Special Publication, 2: 125–132. Robinson, A., Leslie, W., Theocharis, A. & Lascaratos, A., 2001. Mediterranean Sea Circulation. Ocean Currents. DOI: 10.1006/rwos.2001.0376. Rochet, M. J. & Trenkel, V. M., 2003. Which community indicators can measure the impact of fishing? A review and proposals. Canadian Journal of Fisheries and Aquatic Science, 60: 86–99. Sagarin, R. D., Ambrose, R. F., Becker, B. J., Engle, J. M., Kido, J., Lee, S. F., Miner, C. F., Murray, S. N., Raimondi, P. T., Richards, D. V. & Roe, C., 2007. Ecological impacts on the limpet Lottia gigantea populations: human pressure over a broad scale on island and mainland intertidal zones. Marine Biology., 150: 399–413. Tegner, M. J., Basch, L. V. & Dayton, P. K., 1996. Near extinction of an exploited marine invertebrate. Trends in Ecology and Evolution, 11: 278–280. Templado, J. & Moreno, D., 1997. La lapa ferrugínea. Biológica, 6: 80–81. Templado, J., Calvo, M., Moreno, D., Flores, A., Conde, F., Abad, R., Rubio, J., López–Fé, C. M. & Ortiz, M., 2006. Flora y fauna de la reserva marina y reserva de pesca de la isla de Alborán. Ministerio de Agricultura, Pesca y Alimentación. Secretaría General de Pesca Marítima. Madrid. Thompson, R. C., Crowe, T. P. & Hawkins, S. J., 2002. Rocky intertidal communities: past environmental changes, present status and predictions for the next 25 years. Environmental Conservation, 29: 168–191. Underwood, A. J., 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge Univ. Press, New York.


Animal Biodiversity and Conservation 32.1 (2009)

29

Area selection for conservation of Mexican mammals L. B. Vázquez, C. G. Bustamante–Rodríguez & D. G. Bahena Arce

Vázquez, L. B., Bustamante–Rodríguez, C. G. & Bahena Arce, D. G., 2009. Area selection for conservation of Mexican mammals. Animal Biodiversity and Conservation, 32.1: 29–39. Abstract Area selection for conservation of Mexican mammals.— Three sets of priority cells for mammal conservation in Mexico were identified using distributional data. A complementarity approach was implemented through linear integer programming. The minimum set of sites required for the representation of each mammal species varied between 38 (5.4%) grid cells for at least one occurrence, 110 (15.6%) grid cells for at least three occurrences, and 173 (24.5%) grid cells for at least five occurrences. The complementary analyses mainly highlighted three regions of particular concern for mammal conservation in Mexico: (i) the trans–Mexican Volcanic Belt and natural provinces of the Pacific Coast, (ii) Sierra Madre del Sur and the Highlands of Chiapas, and (iii) the northern portion of the Sierra Madre Occidental. The results reported here did not indicate absolute priority locations for conservation activities, but rather identified locations warranting further investigation at finer resolutions more appropriate to such activity. Key words: Priority areas, Complementarity, Mammal conservation, Mexico. Resumen Selección de zonas para la conservación de mamíferos en México.— Mediante el uso de datos de distribu� ción geográfica se pudieron identificar tres series de áreas prioritarias para la conservación de mamíferos en México. Se llevó a cabo un estudio de complementariedad mediante programación lineal entera. La cantidad mínima de series de áreas requeridas para la representación de cada especie de mamífero variaba entre 38 (5,4%) celdas para al menos una presencia, 110 (15,6%) celdas para al menos tres presencias, y 173 (24,5%) celdas para al menos cinco presencias. Los análisis de componentes principales destacaron tres regiones de una particular importancia en la conservación de los mamíferos en México: (i) el Eje Neovolcánico Transversal y las provincias naturales de la costa del Pacífico, (ii) la Sierra Madre del Sur y los Altos de Chiapas y (iii) la parte norte de la Sierra Madre Occidental. Los resultados del presente estudio no señalaron ninguna localidad con prioridad absoluta para las actividades de conservación, sino más bien identificaron las zonas que serían más apropiadas para llevar a cabo investigaciones futuras con una mayor resolución para proyectar acciones más concretas de conservación. Palabras clave: Complementariedad, Conservación de mamíferos, México, Zonas prioritarias. (Received: 5 IX 07; Conditional acceptance: 10 XII 07; Final acceptance: 30 I 09) L. B. Vázquez, El Colegio de la Frontera Sur, Depto. Ecología y Sistemática Terrestres, Área Conservación de la Biodiversidad, Unidad San Cristóbal de las Casas, Carretera Panamericana y Periférico Sur s/n., Maria Auxiliadora San Cristóbal de las Casas, Chiapas, México.– C. G. Bustamante–Rodríguez, Inst. Tecnológico de Cd. Victoria, Blvd. Emilio Portes Gil No. 1301, C. P. 87010, Cd. Victoria, Tamaulipas, México.– D. G. Bahena Arce, Unidad Académica de Ciencias Agropecuaraias y Ambientales / UAG, Periférico Poniente s/n., C. P. 40020, Iguala, Gerrero, México. Corresponding author: Luis Bernardo Vázquez. E–mail: l.b.vazquez@gmail.com

ISSN: 1578–665X

© 2009 Museu de Ciències Naturals


30

Introduction While the global protected area network for early 2003 comprises some 102,100 sites, covering 18.8 mil� lion km2 (Chape et al., 2003), there is huge variation in the development in different countries. Of particular concern are the networks in the so–called "megadiver� sity" countries, in which the vast majority of the world’s terrestrial and freshwater species reside (Mittermeier et al., 1999). Taken together, these countries contain over 50% of the global land area under protection. Nonetheless, there remain serious gaps in the pro� tected area networks of megadiverse countries in their representation of ecosystems and for a considerable numbers of species (Mittermeier et al., 1999). In Mexico, one of the most species–rich countries, more than 500 protected areas have been officially created since 1917, including one of the oldest such areas in the world (Desierto de los Leones National Park; Simonian, 1995). Together, these areas cover more than half the country’s land area. Unfortunately, however, most of these areas no longer retain this protection status because of a lack of planning before they were created, unresolved land tenure issues, and lack of funds for management. Although close to 9% of the Mexican territory (154 protected areas) falls within the IUCN management categories only 53 of these 154 protected areas have designated management programs or policies for their use (CONANP, http://www. conanp.gob.mx [accessed May 2005]). Few studies have evaluated the effectiveness or efficiency of the existing national protected area network in terms of biodiversity protection (e.g. Cantú et al., 2004; Vázquez, 2005; Ceballos, 2007). Such studies have indicated that the present Mexican reserve network is inadequate to ensure the conservation of several important spe� cies and biodiversity features. Actions to increase the number of protected areas in the country are urgently required. This is particularly problematic because high levels of loss and fragmentation of natural habitat, hu� man population growth, demand for agricultural land, and a scarcity of funding for conservation activities severely reduce opportunities to expand the existing protected area network in Mexico and consequently compromise the long–term maintenance of biodiversity (Vázquez & Gaston, 2006). Recent efforts have been made to identify areas of high conservation value across Mexico (e.g. Arita et al., 1997; Ceballos et al., 1998; Villaseñor et al., 1998; Perez–Arteaga et al., 2005; Torres & Luna, 2006; Ceballos, 2007). The most important scheme, proposed in 1996 and 1999 by the National Com� mission for Knowledge and Use of Biodiversity (CONABIO), was a priority–setting initiative for ter� restrial and marine regions, identifying conservation priorities based on the biological characteristics of specific areas. One hundred and fifty–one terrestrial and 70 marine regions were recognised throughout the country as priority areas for conservation of bio� diversity (Arriaga et al., 2000). The terrestrial regions (covering 504,634 sq km) were defined according to natural features of the landscape, including topogra� phy, watersheds, soil, and vegetation types, together

Vázquez et al.

with the occurrence of certain key species. However, priorities were established on a site–by–site basis and not selected to function as a network. To supplement this methodology, in this study we applied a systematic conservation planning approach (Margules & Pressey, 2000) to identify priority areas for mammal conservation in Mexico. To do this we em� ployed principles of representation, complementarity and irreplaceability (Pressey et al., 1993), identifying sets of sites that, in combination, capture a minimal target representation of biodiversity features. Mexican mammals are one of the best studied groups of organisms in Mexico. They make an in� teresting case study for several reasons: first, the taxonomy and distribution of Mexican mammals are relatively well known. Mexico is an internationally significant reservoir of mammal biodiversity due to its varied habitats, high species diversity and high degree of endemism (Arita & Ceballos, 1997). There are currently 525 species, of which 30% are endemic (Ceballos et al., 2002). Second, a large number of these species have extremely narrow distributions, 131 (31%) of all species occurring in areas of less than 114,000 sq km (Arita et al., 1997). Third, mam� mals are important economically and because of their emotional appeal and effects on ecosystems. Fourth, this group could serve as a model system on which to base initial policy and management decisions be� cause some patterns of diversity and many problems of conservation can be generalised to other groups of organisms. Finally, they are the subject of legitimate conservation concern, because many species have gone extinct and many more are endangered. Methods Information on mammal distributions was obtained from an established data set on the distribution of 833 mammal species across North America compiled by the Mexican Commission on Biodiversity (Arita & Rodríguez–Tapia, 2004). Details of the method used to build the database are presented elsewhere (Arita et al., 1997), but briefly, range maps were drawn for all species, using as a starting point the maps of Hall (1981); these were scored at a spatial resolu� tion of a half–degree, but information was updated with new taxonomic and distributional data published up to the end of 2002 (Reid, 1997; Wilson & Ruff, 1999; Ceballos et al., 2002). Presence data were referenced onto a grid of 823 half–degree cells. The size of each cells averaged 53.25 km on each side, corresponding to an area of 2,835.8 sq km. To avoid bias in terms of the contribution of coastal land–area to the complementary models, grid cells with less than 25% land–cover were omitted from the final dataset. For the purpose of this study, the analyses were restricted to land mammals, with introduced and insular species excluded. In consequence, a total of 423 mammal species were analysed within a grid of 705 cells (86% of total grid–cells). Protected area data were obtained from the World Database on Protected Areas (WDPA Consortium,


Animal Biodiversity and Conservation 32.1 (2009)

31

A

Country borders Mexican protected areas B

Country borders CONABIO's priority areas

Fig. 1. Maps illustrating: A. Mexican protected areas; B. Priority areas proposed by CONABIO. Fig. 1. Mapas que ilustran: A. Las zonas protegidas mexicanas ya existentes; B. Las zonas prioritarias propuestas por CONABIO.

2005). The geographical limits of proposed terres� trial protected areas were obtained from CONABIO (available at http://www.conabio.gob.mx). Informa� tion on the size and location of all current mainland protected areas and proposed protected areas were obtained throughout the country. All existing protected areas (until 2005) used in the analyses correspond to IUCN management categories I, II, IV and IX, these being strict nature reserves, national parks, managed nature reserve/wildlife sanctuaries, and biosphere reserves, respectively. Although category IX (Biosphere Reserve) is not commonly used in conservation assessments of this kind, because of the inclusion of human settlement and activities within such areas, we included this category because it has been shown that these areas play a role in the con� servation of important biodiversity features in Mexico (Gómez–Pompa & Dirzo, 1995). Indeed, more than 60% of the protected land in the country falls under this category. We used protected area polygon data to calculate the percentage of each half–degree grid

cell covered by these areas, using ArcView 3.2a (ESRI, 2000). Although protected areas are almost invariably smaller in extent than entire half–degree grid cells, this resolution can be useful to seek out areas in need of conservation attention (Larsen & Rahbek, 2003). Data for 113 mainland protected areas and 151 proposed protected areas were available (fig. 1). The protected areas were located within 169 half–degree grid cells, each covering 0.2–100% of the respec� tive grid cell area. Proposed protected areas were located within 416 grid cells. For the purpose of this study we considered that a cell was protected only if their surface covered ≥ 10% of its total area. For these grid cells, we assumed the protected area to have the same characteristics as the entire grid cell in which they reside. Complementarity exercises usually use species ranges, often in grid–based spatial data, in their analyses (see Williams et al., 1996; Williams, 1996). Species ranges, however, are abstractions of where


32

specimens are actually collected, often considering ecological continuity or its surrogates to extrapolate from known localities to unsampled areas (Brown et al., 1996). The data available for generating spe� cies ranges, and hence for conservation analyses, are necessarily incomplete (Kodric–Brown & Brown, 1993; Winker, 1996). Despite such limitations (see Rodrigues et al. 2003 for a discussion), we consider they do not reduce the importance of our study. The principle of complementarity (Pressey et al., 1993) is an efficient way of representing particular biodiversity features in a set of sites. The comple� mentarity approach used in this paper is a modified minimum set cover problem (Pressey et al., 1997; Pressey & Taffs, 2001). Originally developed for operations research, this mathematical priority area selection method aims to represent all natural fea� tures (e.g. species or habitats) a given number of times in the smallest possible area, fewest numbers of sites, or with the lowest overall cost (Rodrigues et al., 2000). The conservation importance of any individual area is, therefore, the extent to which it complements the others in a network of such areas, by contributing to the attainment of the conservation goals predefined for that network (Williams, 2001). Typically, analyses of this type have concentrated on the identification of the minimum set of sites required to represent all species at least once (e.g. Margules et al., 1988; Saetersdal et al., 1993; Pressey et al., 1997; Howard et al., 1998). However, for the present analysis, complementary networks were obtained to meet representation targets of 1, 3 and 5 grid cell occurrences of each species (where possible). Throughout the study, optimal solutions were obtained using C–PLEX Linear Optimiser 7.1 soft� ware (ILOG, 2001). Given the numbers of species and areas included in the site–selection algorithms, multiple optimal solutions are inevitable (Arthur et al., 1997); we obtained 100 optimal solutions for each representation target. For each specific target, each time a solution was sought an additional constraint was added to the problem that excluded the solution previously found (Rodrigues et al., 2000). In this way, the optimisation algorithm finds another optimum solution (if it exists). As an indicator of the overall contribution of a grid cell in achieving a desired conservation target, we calculated a measure of irreplaceability (Ferrier et al., 2000). We considered irreplaceability as the likelihood that the cell will be required as part of a conserva� tion system that achieves the representation target (Pressey et al., 1994). The irreplaceability of a cell was measured as the percentage of all representative combinations of cells in which that cell occurs (Pressey et al., 1994), based on the frequency of the cell in the possible combinations within the 100 set solutions (Csuti et al., 1997). A cell that is 100% irreplaceable must be included within the set of priority cell if all targets are to be achieved (Ferrier et al., 2000). If an irreplaceable cell is not selected, one or more targets will not be attained unless a larger number of cells are selected, thus compromising the efficiency of the resulting set.

Vázquez et al.

Additionally, we used the major vegetation types (fig. 2) and land use information (Dinerstein et al., 1995; SEMARNAT, 2000) to determine some biological and physical characteristics within the irreplaceable cells selected in the analyses. The percentage of each vegetation type was calculated for all irreplaceable cells obtained for the three representation targets explored.

Results and discussion Patterns in the distribution of species richness for dif� ferent subsets of mammals are illustrated in figure 3. The richness of all terrestrial mammals, including bats, peaked in southern Mexico, with high values following the distribution of tropical moist forest (fig. 3). Areas of lowest richness were found in the Baja California Peninsula and the Sonora Desert. Non–volant mam� mals showed a more dispersed richness pattern with a consistent trend towards greater species richness in southern highlands (fig. 3D). Endemic species were generally concentrated in areas with intermediate values of overall species richness (fig. 3B). The most endemic rich areas were along the trans–Mexican Volcanic Belt, the Pacific Coast and the Sierra Madre del Sur, while the most endemic–poor areas were in the Sonora and Chihuahua deserts and the eastern slopes of the Sierra Madre Oriental. Similar patterns are reported by other studies (Ceballos & Navarro, 1991; Ramírez–Pulido & Castro–Campillo, 1993; Fa & Morales, 1998; Escalante et al., 2002). Complementarity analysis showed that the mini� mum set of sites required for the representation of each mammal species varied between 38 (5.4%) grid cells for at least one occurrence, 110 (15.6%) grid cells for at least three occurrences, and 173 (24.5%) grid cells for at least five occurrences. Ninety–three, 126 and 193 grid cells were identified within the 100 optimal solutions for the representation of each mam� mal species one, three and five times, respectively. Selected complementary cells were spread across the country. Generally, complementary cells for the three–representation scenario tended to cluster in the same regions, highlighting the conservation relevance of these areas (fig. 4). The first of these regions was located across central and western Mexico (Trans Volcanic Belt and Pacific Coast natural provinces). This region mainly consists of pine, pine–oak, and tropical dry forest. Some previous studies suggested that the region is centre of endemism for different taxa (Escalante et al., 1993; Flores–Villela, 1993). The region supports intermediate values of mammal species richness, high values of endemic species richness (fig. 3B), and have the highest concentra� tion of rare endemic species (Ceballos et al., 1998; Escalante–Espinosa, 2003). The second region of conservation priority was located in southern Mexico (Sierra Madre del Sur and the Highlands of Chiapas). For mammals, this was the most species–rich region in the country (fig. 3). Although this region is considered key for the conservation of Mexican tropical habitats, and also is


Animal Biodiversity and Conservation 32.1 (2009)

33

Water bodies Desert and xeric shrublands Mangroves and flooded grassland Grasslands and savannas Tropical and subtropical coniferous forest Tropical dry broadleaf forest Tropical moist broadleaf forest Fig. 2. Maps illustrating major vegetation types in Mexican protected areas (modified from Dinerstein et al., 1995). Fig. 2. Mapas que ilustran los tipos principales de vegetación en las áreas protegidas de México (modificado a partir de Dinerstein et al., 1995).

recognised as an important hotspot (Mittermeier et al., 1999; Andelman & Willig, 2003), in this region the conservation status for all biodiversity is poor. The third region corresponded to the northern arid and semi–arid lands and the northern portion of the Sierra Madre Occidental. These regions are generally characterised by the presence of xeric formations but temperate coniferous forest also occurs. Because of its high vulnerability and endemism, these regions are recognised as an important "wilderness" area with relevant conservation importance (Escalante– Espinosa, 2003; Mittermeier et al., 2003). However, this northern region is poorly represented within the national protected areas network (Riemann & Ezcurra, 2005). Overall, protected areas and complementarity– cells presented a poor spatial–overlap. So that each mammal species was represented at least once, 19 (20.4%) and 59 (63.4%) of the complementary grid cells overlapped with CPA and TPA cells, respectively. At higher representation the coincidence between complementary sets and protected areas was similar. Twenty–two (17.5%) and 77 (61.1%) complementary cells overlapped with CPA and TPA cells, respectively, for the representation of each mammal species for at least three occurrences. For the representation of each species by at least five occurrences, 37 (19.7%) and 120 (62.2%) complementary cells contained some of the CPA and TPA sites, respectively. Spatial congruence between protected areas and complementary cells was not consistently distributed across different regions of Mexico. Some regions showed a better overlap, which was also more evi� dent for TPA protected areas (fig. 4). For example, in

southern Mexico (Sierra Madre del Sur and Chiapas Highlands) between 85% and 90% of complementary cells overlapped with cells containing TPAs at the three representation scenarios analysed. In northern Mexico, complementary cells and protected areas overlapped poorly; only a single protected cell (con� taining Vizcaino Biosphere Reserve, in Baja California Peninsula, which is completely desert habitat) and 10 TPAs overlapped with complementary sites for the single–site scenario. For the scenario of at least three occurrences, four CPA cells and 18 TPA cells over� lapped with the complementary sets, while 10 CPA cells and 22 TPA cells corresponded with complemen� tary cells in the five–occurrence scenario. A total of 173 irreplaceable cells (determined as grid cells with ≥ 90% of occurrence within 100 optimal solutions) were identified as priorities for mammal conservation across Mexico for the three conservation scenarios explored. For the target of one representa� tion of each species, 17% of the total complementary grid cells showed high irreplaceability, accounting for nearly half of the minimum set of 38 cells required (figs. 4A–4B). The proportion of irreplaceable grid cells in the minimum set increased the higher the target representation (figs. 4C–4F). One hundred and four (ca. 94%) and 166 (96%) grid cells were irreplaceable for 3–unit and 5–unit scenarios, respectively. To evaluate the potential use of the irreplace� able cells identified for conservation purposes, we examined predominant land–use practices. This study was based on the types of vegetation within these cells and how they matched the proposed priority areas for the conservation of biodiversity in Mexico (fig. 2).


34

Vázquez et al.

A

B

37–58 59–72 73–83 84–98 99–115 116–132 133–151

C

10–20 21–29 30–39 40–50 51–60 61–71 72–86

D

21–31 33–40 41–45 46–50 51–56 57–65 66–82

E

1–2 3 4 5 6 7–8 9–11

0–2 3–6 7–10 11–14 15–19 20–24 25–29

F

4–7 8–9 10–11 12–13 14–16 27–23 24–42

Fig. 3. Patterns of distribution of richness of: A. All mammal species; B. Endemic species; C. Bat species; D. Non–volant species; E. IUCN threatened species; F. Threatened species listed in the Mexican Red List. Fig. 3. Patrones de distribución de riqueza de especies: A. Todas las especies de mamíferos; B. Las especies endémicas; C. Las especies de murciélagos; D. Las especies no voladoras; E. Especies amenazadas incluidas en la IUCN; F. Especies amenazadas incluidas en la NOM–059.

Irreplaceable cells (or priority sites) occurred within six terrestrial ecoregions present in Mexico (fig. 5). Thirty percent of the 173 priority sites cor� responded to coniferous forests, followed by desert and xeric shrub–lands (27%), tropical dry–forest (24%), tropical moist forest (12.8%), mangroves (5.4%), and montane grasslands (0.71%). Overall, cells requiring conservation attention lay mostly in central Mexico, mainly across the Trans–Mexican

Volcanic Belt, Mexican Plateau and the Oaxaca and Guerrero highlands regions, all regions characterised by intermediate values of mammal richness and high endemic species richness, and also considered to be the most populous areas in Mexico (Vázquez & Gas� ton, 2006). These results seem to concur with those of other studies, which highlights the fact that areas of importance to biodiversity are also very productive regions facing large human threats (Balmford et al.,


Animal Biodiversity and Conservation 32.1 (2009)

A

35

B

1–15 16–38 39–59 60–89 90–100

1–15 16–38 39–59 60–89 90–100

C

D

2–12 13–34 35–50 51–89 90–100

E

2–14 15–46 47–76 77–89 90–100

2–12 13–34 35–50 51–89 90–100

F

2–14 15–46 47–76 77–89 90–100

Fig. 4. Spatial location of all complementarity optimal solutions (100 complementary sets) obtained to the problem of finding the minimum number of sites which represents all species of mammals across Mexico: A–B. Each species at least once; C–D. Each species at least three times; E–F. Each species at least five times. Darkest squares are irreplaceable cells. Polygons represent: existing protected areas (CPA) in the left–hand column and CONABIO’s Terrestrial Priority Areas (TPA) in the right–hand column. Fig. 4. Localización espacial de todas las soluciones óptimas de complementariedad (100 series complementarias) obtenidas para hallar un número mínimo de lugares que representen a todas las especies de mamíferos de México: A–B. Cada especie al menos una vez; C–D. Cada especie al menos tres veces; E–F. Cada especie al menos cinco veces. Los cuadrados más oscuros representan células insustituibles. Los polígonos representan: las áreas protegidas ya existentes (CPA) en la columna de la izquierda, y las áreas terrestres prioritarias de CONABIO (TPA) en la columna de la derecha.

2001; Chown et al., 2003; Valenzuela–Galván et al., 2008). Another important area for high irreplaceability scores is in northern Mexico, characterised by desert

and temperate forest ecoregions, supporting low and intermediate values of species richness and endemic species (fig. 4).


36

Vázquez et al.

Percentage of representation

35 30 25 20 15 10 5 0

A

B

C D Ecoregions

E

F

Fig. 5. Representation of ecoregions (modified from Dinerstein et al., 1995) within irreplaceable grid cells: A. Tropical and subtropical coniferous forest; B. Desert and xeric shrublands; C. Tropical dry broadleaf forest; D. Tropical moist broadleaf forest; E. Flooded grasslands; F. Grassland and savannas. Fig. 5. Representación de las ecorregiones (modificado a partir de Dinerstein et al., 1995) de las celdas insustituibles: A. Bosques de coníferas tropicales y subtropicales; B. Desierto y matorral xerofítico; C. Selva tropical seca de hoja ancha; D. Selva tropical húmeda de hoja ancha; E. Praderas inundadas; F. Praderas y sabanas.

The spatial location of priority sites for the three– and five–occurrence representation scenarios oc� cupied similar regions to those found in the comple� mentary sets at the same representation targets (see above). The congruence between priority cells and CPA and TPA protected areas for all representation targets was variable. For the single–occurrence conservation scenario, three and nine priority cells overlapped with cells containing CPA and TPA, respectively. One of the priority areas located in Southern Mexico (Chiapas) included three protected areas (Chankin, Lacan–Tún, and Montes Azules), all considered key conservation areas for Mexican tropical regions and considered internationally important as a hotspot (Andelman & Willig, 2003). Another two protected areas (Sierra de Manantlán Biosphere Reserve and La Malinche) are located along the Trans–Mexican Volcanic Belt covered mainly by coniferous forest and tropical dry–forest. Unfortunately, 75% of these priority cells do not include much of the currently designated reserve network. Indeed, only two cells selected included currently designated reserves, suggesting that the inclusion of other reserves would substan� tially raise the human population density included in the network. Most agricultural and populated areas in Mexico are concentrated within or near priority areas. A recent study in Mexico found that an important number of small–size protected areas are located

where the highest human population density also occurs (Vázquez & Gaston, 2006). The limited size of these protected areas, their progressive isolation because of constant agricultural expansion, and a high concentration of human population density in their surroundings are causes for concern (Parks & Harcourt, 2002). We raise several some caveats in the interpreta� tion of our results: (i) the distributional data used here are too general. The distributions of the spe� cies we used were based on the historical extent of occurrence maps. It is known that the distribution range of several species in Mexico decrease by more than 20% in relations to their historical ranges (Laliberte & Ripple, 2004). This kind of information tends to overestimate the real distribution of those mammal species with more complex distributional patterns. Naturally, any complementary process is affected by identity as well as number of species involved in the analytical process; consequently, results as shown here are affected, for example, by the way taxonomical criteria are used or the way in which the geographical distribution of each species is estimated. It is clear that new distribution maps are needed. (ii) The complementarity analysis we present here could be refined by adding other variables such as vegetative cover, estimation of real land costs or connectivity with other reserves (Balmford et al. 2000; Briers, 2002). Further re� finement would be possible if species specific


Animal Biodiversity and Conservation 32.1 (2009)

information were available, such as species density or abundance, the fraction of its population inside each planning unit, life history details or likelihood of persistence (Mace et al., 2007). (iii) Detection data used in our analyses does not account for possibly biases from non–detection of species, which may be heterogeneous over space and between species. A finer–scale analysis would require dealing with this issue, e.g., via occupancy analysis (MacKenzie et al., 2006). Finally, the implementation of conservation strate� gies in the real world frequently implies much more than the proposal of an optimal set of areas to be protected. Final decisions should ideally be based on comparing alternatives and involving several institu� tions and individuals (Pressey et al., 1997). Acknowledgements We are grateful to L. Cantú, G., B. Goettsch, D. Valenzuela and two anonymous reviewers who provided useful comments on the manuscript. C. G. Bustamante and D. G. Bahena were funded by the Academia Mexicana de las Ciencias. L.–B. Váz� quez has been awarded a CONACYT repatriation fellowship. References Andelman, S. J. & Willig, M. R., 2003. Present patterns and future prospects for biodiversity in the Western Hemisphere. Ecology Letters, 6: 818–824. Arita, H. T. & Ceballos, G., 1997. Los mamíferos de México, distribución y estado de conservación. Revista Mexicana de Mastozoología, 2: 33–71. Arita, H. T., Figueroa, F., Frisch, A., Rodriguez, P. & Santos–del–Prado, K., 1997. Geographic ranges size and the Conservation of Mexican Mammals. Conservation Biology, 11: 92–100. Arita, H. T. & Rodríguez–Tapia, G., 2004. Patrones geográficos de diversidad de los mamíferos terrestres de América del Norte. Instituto de Ecología, UNAM. Base de datos SNIB–Conabio proyecto Q068. México DF. Arriaga, L., Espinoza, J. M., Aguilar, C., Martínez, E., Gómez, L. & Loa, E., 2000. Regiones terrestres prioritarias de México. CONABIO, México. Arthur, J. L., Hachey, M., Sahr, K. Huso, M. & Kiester, A. R., 1997. Finding all optimal solutions to the reserve site selection problem: formulation and computational analysis. Environ. Ecol. Stat., 4: 153–165. Balmford, A., Gaston, K. J., Rodrigues, A. S. L. & James, A., 2000. ������������������������������ Integrating costs of conserva� tion into international priority setting. Conservation Biology, 14: 597–605. Balmford, A., Moore, J. L., Brooks T., Burgess, N., Hansen, L. A., Williams, P. & Rahbek, C., 2001. Conservation conflicts across Africa. Science, 291: 2616–2619. Briers, R., 2002. Incorporating connectivity into re�

37

serve selection procedures. Biological Conservation, 103: 77–83. Brown, J. H., Stevens, G. C. & Kaufman, D. M., 1996. The geographic range: size, shape, boundaries, and internal structure. Annual Review in Ecology and Systematic, 27: 597–623. Cantú, C., Wright, G. R., Scott, M. J. & Strand, E., 2004. Assessment of current and proposed na� ture reserves of Mexico based on their capacity to protect geophysical features and biodiversity. Biological Conservation, 115: 411–417. Ceballos, G., 2007. Conservation priorities for ma� mmals in magadiverse Mexico: the efficiency of reserve networks. Ecological Application, 17: 569–578. Ceballos, G., Arroyo–Cabrales, J. & Medellín, R. A., 2002. The mammals of Mexico: composition, distribution, and conservation status. Occas. Pap. Mus. Tex. Tech., 218: 1–28. Ceballos, G. & Navarro, D., 1991. Diversity and con� servation of Mexican mammals. In: Latin American Mammals. (M. Mares & D. Schmidly, Eds.). Univ. of Oklahoma Press, Norman, OK, USA. Ceballos, G., Rodriguez, P. & Medellín, R. A., 1998. Assessing conservation priorities in megadiverse Mexico: mammalian diversity, endemicity, and en� dangerment. Ecological Application, 8: 8–17. Chape, S., Fish, L., Fox, P. & Spalding, M., 2003 United Nations List of Protected Areas. IUCN/ UNEP, Gland, Switzerland and Cambridge, UK. Chown, S. L., Van Rensburg, B. J., Gaston, K. J., Rodrigues, A. S. L. & Van Jaarsveld, A. S., 2003. Species richness, human population size and en� ergy: conservation implications at a national scale. Ecological Application, 13: 1223–1241. Csuti, B., Polasky S., Williams, P. H., Pressey R. L., Camm, J. D., Kershaw, M., Kiester, A. R., Downs, B., Hamilton, R., Huso, M. & Sahr, K.,1997. A comparison of reserve selection algorithms using data on terrestrial vertebrates in Oregon. Biological Conservation, 80: 83–97. Dinerstein, E., Olson, D., Graham, D., Webster, A., Primm, S., Bookbinder, M. & Ledec, G., 1995. A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. The World Bank, Washington DC. Escalante, T., Llorente, J. & Morrone, J. J., 2002. Patrones Geográficos de las especies de mamíf� eros terrestres de México: ¿Que es lo que se conoce? Acta Zoológica Mexicana (nueva serie), 87: 47–65. Escalante, P., Navarro, A. G. & Peterson, A. T.,1993. A geographic, ecological and historical analysis of land birds in Mexico. In: Biological Diversity of Mexico: Origins and Distribution: 319–361 (T. P. Ramamoorthy, R. Bye, A. Lot & J. Fa, Eds.). Oxford Univ. Press, Oxford, UK. Escalante–Espinosa, T., 2003. Determinación de prioridades en las áreas de conservación para los mamíferos de México, empleando criterios biogeográficos. Anales del Instituto de Biología (UNAM), 74: 211–237. ESRI, 2000. ArcView 3.2 GIS. ESRI technology. USA.


38

Fa, J. E. & Morales, L. M., 1998. Patterns of mam� malian diversity. In: Biological Diversity of Mexico: Origins and Distribution: 319–361 (T. P. Rama� moorthy R. Bye, A. Lot & J. Fa, Eds.). Oxford Univ. Press, Oxford, UK. Ferrier, S., Pressey, R. L. & Barret, T. W., 2000. A new predictor of the irreplaceability of areas for achieving a conservation goal, its application to real–world planning, and a research agenda for future refinement. Biological Conservation, 93: 303–325. Flores–Villela, O., 1993. Herpetofauna of Mexico: distribution and endemism. In: Biological Diversity of Mexico: Origins and Distribution: 253–280 (T. P. Ramamoorrthy, R. Bye, A. Lot & J. Fa, Eds.). Oxford Univ. Press, Oxford, UK. Gómez–Pompa, A. & Dirzo, R., 1995. Las Reservas de la Biosfera y Otras Areas Naturales Protegidas de México. SEMARNAT–CONABIO, México DF. Hall, E. R., 1981. The mammals of North America. Second edition. John Wiley & Sons, New York. Howard, P. C., Viskanic, P., Davenport, T. R. B., Kig� enyi, F. W., Baltzer, M. C., Dickson, C. J., Lwanga, J., Matthews, R. A. & Balmford, A., 1998. ������� Comple� mentarity and the use of indicator group for reserve selection in Uganda. Nature, 394: 472–475. ILOG., 2001. CPLEX 7.1™. In: ILOG. Gentilly, France. Kodric–Brown, A. & Brown, J. H., 1993. Incomplete data sets in community ecology and biogeogra� phy: a cautionary tale. Ecological Applications, 3: 736–742. Laliberte, A. S. & Ripple, W. J., 2004. Range contrac� tions of North American carnivores and ungulates. Bioscience, 54: 123–138. Larsen, F. W. & Rahbek, C., 2003. Influence of scale on conservation priority setting– a test on African mammals. Biodiversity and Conservation, 12: 599–614. Mace, G., Possingham, H. P. & Leader–Williams, N., 2007. Prioritizing choices in conservation. In: Key topics in conservation biology: 17–34 (D. W. M������������������������������������������������ acDonald & K. Service, Eds.). ������������������ Blackwell Publish� ing, Oxford, UK. Mackkenzie, D. I., Nicols, J. D., Royle, J.A., Pol� lock, K. H., Bailey, L. L. & Hines, J. E., 2006. Occupancy estimation and modelling: inferring patterns and dynamics of species occurrence. Elsevier–Academic. Margules, C. R., Nicholls, A. O. & Pressey, R. L., 1988. Selecting networks of reserves to maximise biological diversity. Biological Conservation, 43: 63–76. Margules, C. R. & Pressey, R. L., 2000. Systematic conservation planning. Nature, 405: 243–253. Mittermeier, R. A., Meyers, N., Robles–Gil, P. & Mitter� meier, C. G., 1999. Hotspots – Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX/Conservation International, The Univ. of Chicago Press, Chicago, USA. Mittermeier, R. A., Mittermeier, C. G., Brooks, T. M., Pilgrim, J. D., Konstant, W. R., Da Fonseca, G. A. B. & Kormos, C., 2003. Wilderness and biodiversity

Vázquez et al.

conservation. Proccedings of the National Academy of Scieces, USA, 100: 10309–10313. Parks, S. A. & Harcourt, A. H., 2002. Reserve Size, Local Human Density, and Mammalian Extinctions in U. S. Protected Areas. Conservation Biology, 16: 800–808. Pérez–Arteaga, A., Jackson, S. F., Carrera, E. & Gaston, K. J. 2005. Priority sites for wildfowls conservation in Mexico. Animal Conservation, 8: 41–50. Pressey, R. L., 1999. Systematic conservation plan� ning for the real world. Parks, 9: 1–16. Pressey, R. L., Humphries, C. J. Margules, C. R. Vane–Wright, R. I. & Williams, P. H., 1993 Beyond opportunism: key principies for systematic reserve selection. Trends in Ecology and Evolution, 8: 124–129. Pressey, R. L., Johnson, I. R. & Wilson, P. D., 1994. Shades of irreplaceability: towards a measure of the contribution of sites to a reservation goal. Biodiversity and Conservation, 3: 242–262. Pressey, R. L., Possingham, H. P. & Day, J. R., 1997. Effectiveness of alternative heuristic algorithms for identifying indicative minimum requirements for conservation reserves. Biological Conservation, 80: 207–219. Pressey, R. L. & Taffs, K. H., 2001. Sampling of land types by protected areas: three measures of ef� fectiveness applied to western New South Wales. Biological Conservation, 101: 105–117. Ramírez–Pulido, J. & Castro–Campillo, A., 1993. Diversidad mastozoológica de México. Revista de la Sociedad Mexicana de Historia Natural, Vol. Esp., (XLIV): 413–427. Reid, F. A., 1997. A field guide to the mammals of Central America and Southeast Mexico. Oxford Univ. Press. Riemann, H. & Ezcurra, E., 2005. Plant endemism and natural protected areas in the peninsula of Baja California, Mexico. Biological Conservation, 122: 141–150. Rodrigues, A. S. L., Cerdeira, J. O. & Gaston, K. J., 2000. Flexibility, efficiency, and accountability: adapting reserve selection algorithms to more complex conservation problems. Ecography, 23: 565–574. Seatersdal, M., Line, J. M. & Birks, H. J. B., 1993. How to maximize biological diversity in nature reserve selection: vascular plants and breeding birds in deciduous woodlands, Western Norway. Biological Conservation, 66: 131–138. SEMARNAT, 2000. Inventario Forestal Nacional 2000. México. Simonian, L., 1995. Defending the land of the jaguar: a history of conservation in Mexico. The Univ. of Texas Press, Texas. Torres, M. A. & Luna, V. I., 2006. Análisis de trazos para establecer áreas de conservación en la faja volcánica transmexicana. Interciencia, 31: 849–855. Valenzuela–Galván, D., Arita, H. T. & Macdonald, D. W., 2008. Conservation priorities for carnivores considering protected natural areas and human


Animal Biodiversity and Conservation 32.1 (2009)

population. Biodiversity and Conservation, 17: 539–558. Vázquez, L. B., 2005. Distribution and conservation priorities for mammals in Mexico. Ph. D. Thesis, Univ. of Sheffield, UK. Vázquez, L. B. & Gaston, K. J., 2006. People and mammals in Mexico: conservation conflicts at a national scale. Biodiversity and Conservation, 15: 2397–2414. Vázquez, L. B. & Valenzuela–Galván, D., 2009. ¿Que tan bien representados están los mamíferos mexicanos en la red federal de áreas protegidas del país? Revista Mexicana de Biodiversidad, 80: 249–258. Villaseñor, J. L., Ibarra–Manriquez, G. & Ocaña D., 1998. Strategies for the conservation of Asteraceae in Mexico. Conservation Biology, 12: 1066–1075. WDPA Consortium, 2005. World Database on Protected Areas 2005. PNUMA–WCMC.

39

Williams, P., 2001. Complementarity. In: Encyclopedia of Biodiversity: 813–829 (S. Levin, Eds.). Academic Press, Salt Lake City, UT, USA. Williams, P. H., 1996. Biodiversity value and taxonomic relatedness. In: The genesis and maintenance of biological Diversity: 261–277 (M. E. Hochberg, J. Colbert & R. Barbault, Eds.). Oxford Univ. Press, Oxfor, UK. Williams, P. H., Gibbons, D., Margules, C., Rebelo, A., Humphries, C. & Pressey, R., 1996. A comparison of richness hotspots, rarity hotspots, and comple� mentary areas for conserving diversity of British birds. Conservation Biology, 10: 155–174. Wilson, D. E. & Ruff, S., 1999. The Smithsonian book of North American mammals. Smithsonian Institution Press, Washington. Winker, K., 1996. The crumbling infrastructure of biodiversity: the avian example. Conservation Biology, 10: 703–707.


"La tortue greque" Oeuvres du Comte de Lacépède comprenant L'Histoire Naturelle des Quadrupèdes Ovipares, des Serpents, des Poissons et des Cétacés; Nouvelle édition avec planches coloriées dirigée par M. A. G. Desmarest; Bruxelles: Th. Lejeuné, Éditeur des oeuvres de Buffon, 1836. Pl. 7

Editor executiu / Editor ejecutivo / Executive Editor Joan Carles Senar

Secretaria de Redacció / Secretaría de Redacción / Editorial Office

Secretària de Redacció / Secretaria de Redacción / Managing Editor Montserrat Ferrer

Museu de Zoologia Passeig Picasso s/n 08003 Barcelona, Spain Tel. +34–93–3196912 Fax +34–93–3104999 E–mail mzbpubli@intercom.es

Consell Assessor / Consejo asesor / Advisory Board Oleguer Escolà Eulàlia Garcia Anna Omedes Josep Piqué Francesc Uribe

Editors / Editores / Editors Antonio Barbadilla Univ. Autònoma de Barcelona, Bellaterra, Spain Xavier Bellés Centre d' Investigació i Desenvolupament CSIC, Barcelona, Spain Juan Carranza Univ. de Extremadura, Cáceres, Spain Luís Mª Carrascal Museo Nacional de Ciencias Naturales CSIC, Madrid, Spain Adolfo Cordero Univ. de Vigo, Vigo, Spain Mario Díaz Univ. de Castilla–La Mancha, Toledo, Spain Xavier Domingo Univ. Pompeu Fabra, Barcelona, Spain Francisco Palomares Estación Biológica de Doñana, Sevilla, Spain Francesc Piferrer Inst. de Ciències del Mar CSIC, Barcelona, Spain Ignacio Ribera The Natural History Museum, London, United Kingdom Alfredo Salvador Museo Nacional de Ciencias Naturales, Madrid, Spain José Luís Tellería Univ. Complutense de Madrid, Madrid, Spain Francesc Uribe Museu de Zoologia de Barcelona, Barcelona, Spain Consell Editor / Consejo editor / Editorial Board José A. Barrientos Univ. Autònoma de Barcelona, Bellaterra, Spain Jean C. Beaucournu Univ. de Rennes, Rennes, France David M. Bird McGill Univ., Québec, Canada Mats Björklund Uppsala Univ., Uppsala, Sweden Jean Bouillon Univ. Libre de Bruxelles, Brussels, Belgium Miguel Delibes Estación Biológica de Doñana CSIC, Sevilla, Spain Dario J. Díaz Cosín Univ. Complutense de Madrid, Madrid, Spain Alain Dubois Museum national d’Histoire naturelle CNRS, Paris, France John Fa Durrell Wildlife Conservation Trust, Trinity, United Kingdom Marco Festa–Bianchet Univ. de Sherbrooke, Québec, Canada Rosa Flos Univ. Politècnica de Catalunya, Barcelona, Spain Josep Mª Gili Inst. de Ciències del Mar CMIMA–CSIC, Barcelona, Spain Edmund Gittenberger Rijksmuseum van Natuurlijke Historie, Leiden, The Netherlands Fernando Hiraldo Estación Biológica de Doñana CSIC, Sevilla, Spain Patrick Lavelle Inst. Français de recherche scient. pour le develop. en cooperation, Bondy, France Santiago Mas–Coma Univ. de Valencia, Valencia, Spain Joaquín Mateu Estación Experimental de Zonas Áridas CSIC, Almería, Spain Neil Metcalfe Univ. of Glasgow, Glasgow, United Kingdom Jacint Nadal Univ. de Barcelona, Barcelona, Spain Stewart B. Peck Carleton Univ., Ottawa, Canada Eduard Petitpierre Univ. de les Illes Balears, Palma de Mallorca, Spain Taylor H. Ricketts Stanford Univ., Stanford, USA Joandomènec Ros Univ. de Barcelona, Barcelona, Spain Valentín Sans–Coma Univ. de Málaga, Málaga, Spain Tore Slagsvold Univ. of Oslo, Oslo, Norway

Animal Biodiversity and Conservation 24.1, 2001 © 2001 Museu de Zoologia, Institut de Cultura, Ajuntament de Barcelona Autoedició: Montserrat Ferrer Fotomecànica i impressió: Sociedad Cooperativa Librería General ISSN: 1578–665X Dipòsit legal: B–16.278–58


Animal Biodiversity and Conservation 32.1 (2009)

41

Nuevos datos sobre Otiorhynchus (Lixorrhynchus) zariquieyi (Clermont, 1949) (Coleoptera, Curculionidae) J. Agulló, F. Fadrique, G. Masó & M. Prieto

Agulló, J., Fadrique, F., Masó, G. & Prieto, M., 2009. Nuevos datos sobre Otiorhynchus (Lixorrhynchus) zariquieyi (Clermont, 1949) (Coleoptera, Curculionidae). Animal Biodiversity and Conservation, 32.1: 41–48. Abstract New data on Otiorhynchus (Lixorrhynchus) zariquieyi (Clermont, 1949) (Coleoptera, Curculionidae).— This paper discusses the discovery of new specimens of Otiorhynchus (Lixorrhynchus) zariquieyi (Clermont, 1949). Until now, the species was known by its type specimen, a male captured in an endogean environment in 1928. Four live males, eight live females and some remains were collected from two further localities in Spain, the Tassana and the Bora Major caves (Alt Empordà, Girona). The species is redescribed, giving new details of its morphology, in particular the genitalia of both sexes. Some remarks about the ecology and distribution are also provided. It is the first time this species has been found in a cave habitat. Key words: Otiorhynchus zariquieyi, Curculionidae, New records, Cave habitat, Description, Spain. Resumen Nuevos datos sobre Otiorhynchus (Lixorrhynchus) zariquieyi (Clermont, 1949) (Coleoptera, Curculionidae).— En este artículo se da a conocer el hallazgo de nuevos ejemplares de Otiorhynchus (Lixorrhynchus) zariquieyi (Clermont, 1949). Hasta ahora, la especie era conocida por su espécimen tipo, un macho capturado en medio endogeo en 1928. Cuatro machos y ocho hembras capturados vivos, además de algunos restos, fueron recolectados en dos nuevas localidades de España, las cuevas Tassana y de la Bora Major (Alt Empordà, Girona). Se redescribe la especie, aportándose nuevos detalles de su morfología, en particular, la genitalia de ambos sexos. También se comentan algunos aspectos relativos a su ecologia y distribución. Es la primera vez que se documenta la presencia de la especie en hábitat cavernícola. Palabras clave: Otiorhynchus zariquieyi, Curculionidae, Nuevas citas, Hábitat cavernícola, Descripción, España. (Received: 14 X 08; Conditional acceptance: 12 I 09; Final acceptance: 23 II 09) J. Agulló, F. Fadrique, G. Masó & M. Prieto, Museu de Ciències Naturals de Barcelona, Passeig Picasso s/n., 08003 Barcelona, Espanya (Spain). Corresponding author: J. Agulló. E–mai: jagullov@bcn.cat

ISSN: 1578–665X

© 2009 Museu de Ciències Naturals


42

Introducción Troglorrhynchus zariquieyi (Clermont, 1949) fue descrita sobre un único ejemplar recolectado en septiembre de 1928 por el Dr. R. Zariquiey al lavar tierra de una parcela dedicada al cultivo de geranios, en la villa de Cadaqués, província de Girona (Español, 1949). Posteriores búsquedas del Dr. Zariquiey en el medio endogeo de los alrededores de Cadaqués solo aportaron un abdomen, en tierra procedente de raíces de olivo (Español, 1945). Desde entonces no se ha vuelto a documentar nuevas capturas. La transferencia de la especie de Troglorrhynchus a Otiorhynchus, subgénero Lixorrhynchus, fue efectuada por Magnano (1998), en su revisión del género Otiorhynchus. Los escasos datos reunidos hasta el momento no aportan indicios de la presencia de esta especie en un entorno cavernícola, a diferencia de lo que sucede con otros representantes del subgénero Lixorrhynchus (Hustache, 1924; Hoffmann, 1950; Osella, 1976, 1978; Bellés, 1978; Osella & Abbazzi, 1985; Abbazzi et al., 1992; Magrini et al., 2003). Tal posibilidad, anticipada por Bellés (1978), ha sido confirmada con la recolección del material objeto del presente estudio, que incluye tanto ejemplares vivos como abundantes restos. En total, y refiriéndonos a las capturas de material vivo, se han hallado 12 ejemplares en el transcurso de varias prospecciones bioespeleológicas efectuadas en la comarca del Alt Empordà. Dos de estos ejemplares proceden de la cueva de la Bora Major, situada en el municipio de Terrades. La segunda estación cavernícola, la cueva Tassana, está ubicada en el mismo término municipal de Cadaqués. El propio Zariquiey efectuó repetidas prospecciones en esta cueva desde el año 1919, fruto de las cuáles fue el hallazgo de una nueva especie de coleóptero troglobio, al que llamó Anillochlamys raholai (Zariquiey, 1922), nombre validado actualmente como Pseudospeonomus raholai (Comas et al., 2006). La omisión por parte del autor de indicaciones precisas para la localización de la cueva, situada en un acantilado de difícil acceso, ha imposibilitado su exploración durante varias décadas. Sólo recientemente ha sido posible reencontrar la cueva Tassana, grácias al esfuerzo invertido desde los años 70 por bioespeleólogos vinculados al Museo de Zoología de Barcelona (actualmente Museu de Ciències Naturals de Barcelona). La exploración de esta cueva ha proporcionado un total de 10 ejemplares, la mayoría de los cuales capturados en dos expediciones efectuadas en el marco de un proyecto para la optimización del banco de tejidos y materiales biológicos de interés genético del Museo. Material y métodos El material citado a continuación se halla depositado en el Museu de Ciències Naturals de Barcelona; toda la información relativa a cada uno de los especímenes está documentada e informatizada en la base de datos de la colección.

Agulló et al.

Cadaqués (província de Girona): IX 1928, R. Zariquiey leg., holotypus ♂, recolectado en raíces de geranio (número de registro 78–0833). Cova Tassana, Cadaqués: 28 II 1999, F. Fadrique & O. Escolà leg., 1♀ (nº reg. 99–0137); 7 VI 2004, J. Agulló, F. Fadrique, G. Masó & M. Prieto leg. 2♂♂ y 2♀♀ (nº reg. 2004–0901/0903; 2004–0473); 26 VII 2004, J. Agulló, F. Fadrique & M. Prieto leg., 2♂♂ y 3♀♀ (nº reg. 2004–0904/0908). Cova de la Bora Major, Terrades (província de Girona): 3, 4 VII 2002, F. Fadrique leg. 2♀♀ (nº reg. 2002–0597). Han sido también examinados numerosos restos, la mayoria hallados por los autores durante las prospecciones de junio y julio de 2004, a los que hay que añadir el abdomen obtenido por Zariquiey en 1943. Todo el material se conserva en seco, excepto dos ejemplares (nº reg. 2004–0473 y 2004–0908) preservados, respectivamente, en alcohol absoluto y alcohol de 70º. Las genitalias se conservan en dimetil hidantoína formaldehido (DHMF), sobre lámina de acetato, montadas junto a los correspondientes ejemplares en seco. Las mediciones de los ejemplares se llevaron a cabo con ayuda de un estereomicroscopio Motic SMZ–68, utilizando un ocular micrométrico. Los dibujos de las genitalias fueron realizados a partir de observaciones efectuadas con un microscopio Kyowa Unilux 12. La redescripción de la especie se ha efectuado a partir del material reunido y el holotipo, que también se ha examinado. En los resultados se detalla la morfometría de la especie, obtenida a partir de los ejemplares capturados vivos y preservados en seco (siete hembras y cuatro machos, incluido el holotipo). Para cada dimensión se han hallado los valores promedio e intervalos de variabilidad correspondientes a ambos sexos y a la muestra en su conjunto. Asimismo, y a modo de comparación, se han incluido por separado las dimensiones del holotipo. Resultados Hábitat La cueva Tassana está situada dentro de los límites del parque natural del Cabo de Creus, en el paraje de La Reparada, bahía de Jóncols (42º 16' 20'' N, 3º 16' 23'' E), a unos 70 metros sobre el nivel del mar. Dista aproximadamente 4 km en línea recta de la localidad típica, la villa de Cadaqués. Excavada en terreno calcáreo del cambro–ordoviciano (Carreras et al., 1994), está formada por tres cámaras prácticamente alineadas, comunicadas por estrechos conductos, sin apenas desnivel, con una longitud total de unos 30 m. Los ejemplares fueron capturados en distintos puntos de la última cámara deambulando por las paredes, a escasa altura del suelo, en zonas húmedas y resguardadas de la ventilación. La cueva Bora Major o de la Moneda Falsa se halla en el municipio de Terrades, a unos 35 km en línea recta de Cadaqués, en la vertiente sur de la montaña


Animal Biodiversity and Conservation 32.1 (2009)

43

1,0 mm Fig. 1. Otiorhynchus (Lixorrhynchus) zariquieyi, habitus. Fig. 1. Otiorhynchus (Lixorrhynchus) zariquieyi, habitus.

de Santa Magdalena (42º 19' 15'' N, 2º 49' 36'' E; 347 m sobre el nivel del mar). Situada en terrenos calcáreos del ilerdiano y con un recorrido de 35 m, consta de tres cámaras alineadas en pendiente, con un desnivel de 15 m (Borràs et al., 1978). Los ejemplares fueron hallados, de nuevo, en la cámara más profunda, en circunstàncias similares a las ya indicadas en el caso de la cueva Tassana. Las raíces que afloran de paredes y bóvedas, especialmente abundantes en la cueva de la Bora Major, evidencian el carácter epitelial de ambas cavidades. Asimismo han sido hallados abundantes restos (principalmente abdómenes, pero también ejemplares enteros desarticulados), muchos de los cuales en buen estado

de conservación, siempre en las cámaras donde se recolectaron los ejemplares vivos. Redescripción de la especie Cuerpo alargado y subparalelo, deprimido, de color pardo rojizo brillante. Superfície poblada de sedas cortas amarillentas, más largas y abundantes en los apéndices. Especie anoftalma. Longitud total: 3,29–4,21 mm (fig. 1). Cabeza globular, apenas impresa en el vértex por puntos pequeños y muy dispersos. Rostro cónico, más largo que ancho, con la máxima amplitud de los pterigios al nivel de la inserción de las antenas; base


44

Agulló et al.

A

B

0,5 mm

C

Fig. 2. Otiorhynchus (Lixorrhynchus) zariquieyi, genitalia masculina: A. Edeago, vista ventral; B. Edeago, vista lateral; C. Spiculum gastrale. Fig. 2. Otiorhynchus (Lixorrhynchus) zariquieyi, male genitalia: A. Aedeagus, ventral view; B. Aedeagus, lateral view; C. Spiculum gastrale.

cubierta por un anillo denso de escamas amarillentas. Márgenes del rostro delimitados por sendas carenas oscuras, muy marcadas, que se prolongan hacia delante rodeando los pterigios. La superficie dorsal del rostro se halla dividida en diferentes áreas por un conjunto de relieves careniformes y surcos, alineados de forma más o menos paralela. Márgenes orlados con sedas orientadas hacia la línea media del rostro; dirigidas hacia delante, más abundantes y largas, en el ápice y en la superficie inferior. Antenas gráciles, que alcanzan extendidas la base del pronoto. Escapo largo, levemente claviforme, con margenes apenas sinuosos. Los dos primeros artejos del funículo aproximadamente dos veces más largos que anchos, de forma cónica, a diferencia de los cinco siguientes, semejantes entre sí, tan largos como anchos. Maza elíptica, apuntada en su extremo, tan larga como los cuatro últimos artejos precedentes juntos.

Pronoto más largo que ancho (1,18 veces en promedio), observándose la máxima amplitud hacia la mitad. Base rectilínea, margen anterior apenas convexo; ambos con un reborde oscuro bien visible. La base muestra, además, relieves irregulares dispuestos paralelamente, que le confieren un aspecto rugoso. Lados redondeados. Superficie deprimida, en brusco declive hacia los lados, y provista de puntos redondeados, de los cuáles emergen sedas orientadas hacia la línea media del pronoto, semierectas en el disco, aplicadas contra el tegumento en los lados. Escudete pequeño, de forma triangular. Élitros el doble de largos que anchos, cóncavos en su base, alcanzando su mayor amplitud por detrás de los húmeros; a partir de ahí discurren paralelos hasta el último tercio de su longitud, estrechándose a continuación hasta el ápice. Disco deprimido, con fuerte declive a los lados y en el quinto apical. Puntos de la superficie redondeados, mejor definidos e im-


Animal Biodiversity and Conservation 32.1 (2009)

0,1 mm

B

0,5 mm

A

45

C

Fig. 3. Otiorhynchus (Lixorrhynchus) zariquieyi, genitalia femenina: A. Spiculum ventrale; B. Detalle del spiculum ventrale; C. Espermateca. Fig. 3. Otiorhynchus (Lixorrhynchus) zariquieyi, female genitalia: A. Spiculum ventrale; B. Detail of the spiculum ventrale; C. Spermatheca.

presos, en general, que los del pronoto, y alineados para formar estrías, dispuestos a intervalos regulares en cada una de ellas. De las interestrías emergen sedas alineadas, orientadas hacia atrás, sin que el extremo de cada una de ellas alcance la base de la siguiente. Fémures inermes, abultados hacia la parte distal para formar una maza y provistos de pequeños dientes a modo de lima, más perceptibles en la parte interna del engrosamiento. Tibias casi rectilíneas en su lado externo, sinuosas en el margen interno, éste último denticulado; estructuras pectinadas del ápice, así como los espolones del lado interno, bien desarrollados. Tarsos con el primer artejo cónico, más largo que ancho; el segundo corto y transverso; el tercero fuertemente hendido; oniquio largo y fino, con dos uñas robustas. Parte ventral con las epipleuras curvadas al nivel de las coxas posteriores. Esternitos abdominales

primero y segundo soldados, más largos que el resto, con una puntuación marcada y dispersa. Tercer, cuarto y quinto esternitos más cortos y menos punteados Lóbulo medio del edeago corto y ancho, con las apófisis basales delgadas y el ápice romo, apenas anguloso. Spiculum gastrale largo y fino, con el extremo curvado en arco semicircular (fig. 2). Spiculum ventrale y espermateca ilustrados en la figura 3. Discusión En el material reunido (holotipo incluido) no se aprecian diferencias morfológicas importantes, salvo en la puntuación de los tegumentos, más o menos impresa. Tampoco se observan diferencias significativas al comparar las genitalias en ambos sexos, en particular, la forma del edeago, que se mantiene constante en


46

Agulló et al.

Tabla 1. Morfometría de Otiorhynchus (Lixorrhynchus) zariquieyi. Los valores promedio e intervalos de variabilidad han sido obtenidos a partir de los ejemplares capturados vivos y preservados en seco: siete hembras y cuatro machos, incluido el holotipo (las medidas de éste último figuran, además, por separado). Todas las dimensiones se expresan en milímetros. Table 1. Morphometry of Otiorhynchus (Lixorrhynchus) zariquieyi. Average values and ranges of variability are given for the specimens captured alive and dry preserved: four males (holotype included), and seven females. Measurements of the holotype are also indicated. All dimensions in mm. Dimensiones

Holotipo ♂

Longitud total

4,01

Longitud élitros Amplitud máxima élitros

Total muestra

♂♂

♀♀

3,82 (3,29–4,21)

3,70 (3,29–4,01)

3,92 (3,53–4,21)

2,20

2,02 (1,73–2,25)

1,98 (1,73–2,20)

2,05 (1,84–2,25)

1,15

1,01 (0,88–1,19)

0,98 (0,88–1,15)

1,03 (0,90–1,19)

Long. élitros / Ampl. élitros

1,91

2,01 (1,91–2,15)

2,03 (1,91–2,15)

2,00 (1,94–2,10)

Longitud pronoto

0,86

0,90 (0,77–1,02)

0,85 (0,77–0,97)

0,94 (0,86–1,02)

Amplitud máxima pronoto

0,83

0,76 (0,67–0,89)

0,74 (0,67–0,83)

0,78 (0,70–0,89)

Long. pronoto / Ampl. pronoto

1,04

1,18 (1,04–1,24)

1,15 (1,04–1,22)

1,21 (1,15–1,24)

Longitud cabeza y rostro

0,94

0,76 (0,68–0,94)

0,77 (0,68–0,94)

0,75 (0,68–0,84)

Amplitud máxima cabeza

0,53

0,49 (0,42–0,54)

0,47 (0,42–0,53)

0,50 (0,47–0,54)

Amplitud máxima rostro

0,41

0,39 (0,33–0,43)

0,37 (0,33–0,41)

0,40 (0,38–0,43)

Longitud escapo

0,78

0,68 (0,59–0,78)

0,68 (0,59–0,78)

0,68 (0,64–0,71)

Longitud funículo

0,73

0,65 (0,54–0,73)

0,64 (0,54–0,73)

0,65 (0,60–0,69)

Longitud maza

0,32

0,31 (0,29–0,35)

0,32 (0,29–0,35)

0,31 (0,30–0,32)

todos los casos (el buen estado de conservación de los restos ha permitido el examen del aparato genital masculino del material de la Bora Major, cuyos dos únicos ejemplares capturados vivos son hembras). En promedio, las hembras de la muestra son de mayor tamaño que los machos, como puede deducirse también comparando los límites de los intervalos de variabilidad (tabla 1). Las únicas dos hembras capturadas vivas en la cueva Bora Major, muestran valores que se ajustan a los obtenidos a partir del material procedente de la cueva Tassana (cinco hembras), observándose diferencias relativas inferiores al 4% en todas las dimensiones. Las circunstancias en que se hallaron el tipo y los restos obtenidos con anterioridad al presente estudio, caracterizan a la especie como endogea y de régimen rizófago. Tal condición se atribuye a las especies del subgénero Lixorrhynchus y afines, anteriormente incluidos en el género Troglorrhynchus (Peyerimhoff, 1913; Hustache, 1924; Hoffmann, 1950, 1956; Osella, 1976, 1983; Osella & Zuppa, 1998; Magrini et al., 2003). También constituye una constante la presencia de estos coleópteros en cuevas epiteliales, accesibles a la penetración de su fuente de alimento (Vives, 1975–76; Bellés, 1978, 1987; Osella, 1978; Osella & Abbazzi, 1985; Abbazzi et al., 1992). Existen abundantes ejemplos al respecto, hasta el punto de que no pocas especies —y obviando el

menor interés que se ha dedicado, en general, a la exploración del medio endogeo adyacente— han sido halladas exclusivamente en este dominio (Osella & Zuppa, 1998), incluyendo todos los representantes de la franja sublitoral del noreste ibérico (Español, 1945, 1949, 1978; Vives, 1975–76; Bellés, 1978, 1987) Las cuevas Tassana y Bora Major reúnen las características ecológicas que favorecen la actividad de la especie durante periodos más o menos largos. Los ejemplares fueron capturados en las cámaras más internas, aquéllas que proporcionan, además de alimento, condiciones estables de temperatura, aislamiento relativo frente a los efectos de la ventilación, y, sobre todo, la humedad que requieren por su elevada higrofilia (Osella & Zuppa, 1998). De hecho, la biocenosis en la que se integra la especie cuenta con elementos considerados troglobios en sentido estricto. Entre ellos, y pertenecientes también al orden de los Coleópteros, destacan dos especies de Leiódidos, la ya mencionada Pseudospeonomus raholai (cueva Tassana) y Parvospeonomus delarouzeei (Bora Major), ésta última muy abundante en diferentes sectores de la cámara final. En la línea de lo ya indicado por otros autores (e.g., Osella, 1973), y refiriéndonos a las capturas más recientes en la cueva Tassana, cabe señalar que temperaturas elevadas como las que se registran en los meses de junio y julio, en una zona árida y expuesta a fuertes vientos,


Animal Biodiversity and Conservation 32.1 (2009)

Alt Empordà

47

España

Francia Portbou Llancà Cova Bora Major Terrades

Figueres

Mediterráneo

Pla de l'Estany 5

10 km

Cadaqués Cova Tassana

Castelló d'Empúries

Garrotxa

0

Roses

l'Escala

Baix Empordà Gironès

Fig. 4. Mapa de distribución de la especie Otiorhynchus (Lixorrhynchus) zariquieyi (Alt Empordà, Girona, España): villa de Cadaqués (localidad típica), cueva Tassana y cueva de la Bora Major (las tres localidades subrayadas en el mapa). Fig. 4. Distribution map of the species Otiorhynchus (Lixorrhynchus) zariquieyi (Alt Empordà, Girona, Spain): town of Cadaqués (type locality), Tassana cave, and Bora Major cave (all three localities underlined on the map).

como es el caso, pueden propiciar el desplazamiento desde el medio subterráneo superficial hacia zonas más profundas y húmedas, e incrementarse así la probabilidad de localizar ejemplares en el interior de la cueva. Esto quizas justifica la abundancia relativa del material conseguido en dichas prospecciones en relación con los resultados obtenidos anteriormente, en una cavidad, por lo demás, visitada desde su redescubrimiento con cierta asiduidad en distintas epocas del año por miembros del Museo de Zoología y, en su día, por el mismo Zariquiey. Las dos estaciones cavernícolas suponen nuevas citas para la especie, ampliándose su área de distribución (fig. 4), restringida hasta el momento a la localidad típica. La ausencia de diferencias morfológicas destacables entre los individuos de las tres localidades sugiere la continuidad de la especie a través del medio subterráneo. Agradecimientos Las campañas de recolección de artrópodos cavernícolas han sido financiadas por la Dirección de Investigación Científica (Ministerio de Ciencia y Tecnología, España) a través del proyecto de refencia REN2002–11643–E/GLO, para la optimización del

banco de tejidos y materiales biológicos de interés genético del Museu de Ciències Naturals de Barcelona. Se agradece también al Departament de Medi Ambient de la Generalitat de Catalunya la concesión de los permisos necesarios para la captura de los especímenes estudiados en el marco del mencionado proyecto. Referencias Abbazzi, P., Bartolozzi, L. & Osella, G., 1992. Una nuova specie di Troglorhynchus Schmidt, 1854 del Parco Naturale della Maremma (Coleoptera Curculionidae). Boll. Soc. Ent. Ital., Genova, 124(1): 37–42. Bellés, X., 1978. Los Troglorrhynchus hipogeos de la Península Ibérica (Col. Curculionidae). Misc. Zool., 4(2): 137–145. – 1987. Fauna cavernícola i intersticial de la Península Ibèrica i Illes Balears. Consell Superior d’Investigacions Científiques–Editorial Moll, Mallorca. Borràs, J., Miñarro, J. & Talavera, F., 1978. Catàleg Espeleològic de Catalunya, 4. Editorial Políglota, Barcelona. Carreras, J., Losantos, M., Palau, J. & Escuer, J.,


48

1994. Instituto Tecnológico Geominero de España, segunda serie, primera edición: hoja 259. Madrid. Comas, J., Fresneda, J. & Salgado, J. M., 2006. Pseudospeonomus nom. nov. para sustituir Pseudochlamys Comas, 1977, non Pseudochlamys Lacordaire, 1848 (Coleoptera: Leiodidae: Cholevinae: Leptodirini). Elytron, 20: 123–124. Español, F., 1945. Coleópteros nuevos o interesantes para la fauna Ibero–Balear. Eos, 21(1): 83–105. – 1949. Dos nuevos Troglorrhynchus ibéricos (Col. Curculionidae). Eos, 25(1–2): 7–13. – 1978. Sobre un nuevo Troglorrhynchus cavernícola del levante español (Col. Curculionidae). Speleon, 24: 55–57. Hoffmann, A., 1950. Coléoptères Curculionides (première partie). In: Faune de France, 52: 1–486 (P. Lechevalier, Ed.). Paris. – 1956. Curculionides nouveaux de l’Espagne centrale: Bull. Soc. Ent. France, 61: 43–47. Hustache, A., 1924. Curculionidae Gallo–Rhénans. Ann. Soc. Entomol. Fr., 93: 31–124. Magnano, L., 1998. Notes on the Otiorhynchus Germar, 824 complex (Coleoptera; Curculionidae). In: Taxonomy, ecology and distribution of Curculionoidea (Coleoptera: Polyphaga). XX International Congress of Entomology (E. Colonnelli, S. Louw & G. Osella, Eds.). Mus. reg. Sci. nat., Torino: 51–80. Magrini, P., Meoli, C., Cirocchi, F. & Abbazzi, P., 2003. Due nuove specie endogee di Otiorhynchus (Lixorrhynchus) Reitter, 1914 dell’Italia Centrale (Coleoptera Curculionidae). Redia, 86: 107–113.

Agulló et al.

Osella, G., 1973. Alcune considerazioni sulla distribuzione dei Curculionidi Endogei ciechi o microftalmi della fauna paleartica (Coleoptera). In: Livre du cinquantenaire de l’Institut de Spéologie "Émile Racovitza": 369–383 (Academie des Sciences de la Republique Socialiste de Roumanie, Ed.). Bucarest. – 1976. Curculionidi nuovi o poco conosciuti della fauna appenninica (Coleoptera). Boll. Mus. Civ. St. Nat. Verona, 3: 179–203. – 1978. Una nuova specie di Troglorhynchus Schmidt dell’Umbria. Boll. Mus. Civ. St. Nat. Verona, 5: 395–400. – 1983. I Troglorhynchus del gruppo baldensis Czwalina, 875 (Insecta: Coleoptera: Curculionidae). Studi Trentini di Scienze Naturali, 60: 95–123. Osella, G. & Abbazzi, P., 1985. Quattro nuove specie di Curculionidi dell’Apennino (Coleoptera). Redia, 68: 467–484. Osella, G. & Zuppa, A. M., 1998. Coleoptera Curculionoidea. In: Encyclopaedia Biospeologica, II: 1123–1130 (C. Juberthie & V. Decu, Eds.). Soc. Biospéol. Moulis–Bucarest. Peyerimhoff, P. M. de, 1913. Nouveaux Coléoptères du Nord–Africain (dix–septième note: faune cavernicole du Djurjura). Bull. Soc. Ent. France: 472–476. Vives, E., 1975–76. Coleópteros cavernícolas nuevos o interesantes de la Península Ibérica y Baleares. Speleon, 22: 159–169. Zariquiey, R., 1922. Bathysciinae Catalanes. Butll. Ins. Cat. Hist. Nat., 2(9): 159–162.


Animal Biodiversity and Conservation 32.1 (2009)

Forum

Improving the efficiency of manuscript selection A. Martínez–Abraín

Martínez–Abrain, A., 2009. Improving the efficiency of manuscript selection. Animal Biodiversity and Conservtion, 32.1: 49–50. Science relies strongly on the publication of articles in scientific journals and it is clear that decisions concerning which papers merit publishing should be based on a process of manuscript selection that is as objective, repeatable, reliable and transparent as possible. Manuscript selection, however, has many practical downfalls. There is considerable controversy concerning issues such as whether or not the process should be blind both for authors and reviewers in order to prevent biased selection in relation to country of origin (Budden et al., 2008), sex (Young et al. 2008) or research topic (Michaels, 2008). Another critical point is the imbalance between supply and demand of manuscripts as this likely leads to biased selection (Young et al., 2008). Also important is the issue that following rejection, the editor and reviewers of the new journal selected for wouldbe publication by the authors start the process from scratch, as if the opus had not already passed through a thorough process of peer review. Such rules of play seem to promote the role of sheer luck in the process of manuscript selection. Authors of a rejected paper have the growing hope of "greater luck" the next time regarding reviewer assignment as they believe in the quality of their work. For the correct advancement of science I consider there should be a common global database available to editors, where each manuscript which has been subjected to an SCI journal is recorded. It should include a copy of the editor’s and reviewers’ comments, and also the authors’ replies. Hochberg et al. (2009) recently expressed their concern regarding the fact that authors usually think that manuscript submittal is a stochastic process, whereas in fact reviewers usually focus on the same set of criticisms. To solve this problem they suggest a) having colleagues reviewing a manuscript before submission, and b) requiring authors to state in a cover letter that reviewer comments from the previous submittal were taken into account. Option b is suggested as an alternative to obliging authors to declare whether or not their submission was previously rejected by another journal, because they think this could prejudice the evaluation of the new submission. However, I believe that the system I propose here would prevent prejudiced evaluations because authors would have the opportunity to upload the response to reviewer’s comments so that second-round reviewers would have the chance to see both the problems previously detected in the manuscript and the defence offered by authors. Although not a perfect system its benefits would probably outweigh the caveats. Such a system would improve the quality of the final paper and facilitate the work load for second–round reviewers and editors. Indeed, some journals already seem to be implementing a solution which is fairly similar to our proposal, asking authors of rejected papers for permission to forward reviewer reports to the new journal chosen by the authors to submit the revised work (see Hochberg et al., 2009). Proposals to reward or punish reviewers depending on their rapidity to elaborate their reports (Hauser & Fehr, 2007) does not foster accumulated quality improvement. Science quality would undoubtedly gain from making previous information concerning a manuscript’s review available to new reviewers, as in a Bayesian framework of inference (Martin et al., 2005) because starting a new each time, as if previous information did not exist, is simply not an efficient way to proceed in science. (Received: 25 II 09; Final acceptance: 26 II 09) Alejandro Martínez–Abrain, IMEDEA(CSIC–UIB), c/Miquel Marqués 21, 07190 Esporles, Mallorca, Espanya (Spain). E–mail: a.abrain@uib.es

ISSN: 1578–665X

© 2009 Museu de Ciències Naturals


50

References Budden, A. E., Tregenza, T., Aarssen, L., Koricheva, J., Leimu, R. & Lortie, C., 2008. Double–blind review favors increased representation of female authors. Trends Ecol. Evol., 23: 4–6. Hauser, M. & Fehr, E., 2007. An incentive solution to the peer review problem. PLoS Biol., 5: e107. Hochberg, M. E., Chase, J. M., Gotelli, N. J., Hastings, A. & Naeem, S., 2009. The tragedy of the reviewer commons. Ecol. Lett., 12: 2–4.

Martínez–Abrain

Martin, T. G., Kuhnert, P. M., Mengersen, K. & Possingham, H. P., 2005. The power of expert opinion in ecological models using Bayesian methods: impact of grazing on birds. Ecol. Appl., 15: 266–280. Michaels, P. J., 2008. Evidence for publication bias concerning global warming in Science and Nature. Energy & Environment, 19: 287–301. Young, N. S., Ioannidis, J. P. A. & Al–Ubaydli, O., 2008. Why current publication practices may distort science. PLoS Med., 5: e201.


Animal Biodiversity and Conservation 32.1 (2009)

51

Lianas as a food resource for brown howlers (Alouatta guariba) and southern muriquis (Brachyteles arachnoides) in a forest fragment M. M. Martins

Martins, M. M., 2009. Lianas as a food resource for brown howlers (Alouatta guariba) and southern muriquis (Brachyteles arachnoides) in a forest fragment. Animal Biodiversity and Conservation, 32.1: 51–58. Abstract Lianas as a food resource for brown howlers (Alouatta guariba) and southern muriquis (Brachyteles arachnoides) in a forest fragment.— Lianas, woody vines, are abundant and diverse in tropical forests, but their relative contribution as a source of food for herbivores has been neglected. I compared feeding rates on lianas and trees of two sympatric primates, A. guariba and B. arachnoides, in Southeastern Brazil. Availability of liana foods was gathered in parallel with primate behavioral data collection. Liana represented 33.9% and 27.3% of food sources for A. guariba and B. arachnoides, respectively. Foods coming from trees, rather than from lianas, were significantly more consumed by B. arachnoides. However, both species took advantage of the continuously renewable and ephemeral food resources provided by liana. Availability of liana flowers correlated positively with A. guariba feeding proportions. The nutritional supply provided by lianas is apparently beneficial, or at least unharmful, but experiments comparing primate choices in forests with different liana abundances will help to shed light on their possible negative effect on communities. Key words: Lianas, Primates, Diet, Forest fragmentation. Resumen Las lianas como recurso alimentario para el mono aullador (Alouatta guariba) y el muriqui meridional (Brachyteles arachnoides) en un área forestal.— Las lianas (enredaderas leñosas) son muy abundantes y presentan una gran diversidad en las selvas tropicales; sin embargo no se ha tenido en cuenta su contribución relativa como fuente de alimento para los herbívoros. En el presente estudio se comparan las tasas de consumo a base de lianas y de árboles de dos especies de primates simpátridas, A. guariba y B. arachnoides, en el sudeste de Brasil. Se llevó a cabo un estudio de la disponibilidad de lianas como recurso alimentario, paralelamente a la recolección de datos sobre la conducta de los primates. Las lianas representaron el 33,9% y el 27,3% de los recursos de A. guariba y B. arachnoides, respectivamente. El consumo de alimentos procedentes de los árboles, en vez de las lianas, fue significativamente mayor en B. arachnoides. Sin embargo, ambas es� pecies aprovechaban los recursos continuamente renovables y efímeros que proporcionaban las lianas. La disponibilidad de las flores de las lianas se correlacionaba positivamente con las proporciones de consumo por parte de A. guariba. Aparentemente, el suministro alimentario proporcionado por las lianas es beneficioso o al menos inocuo, pero futuros experimentos en que se compare la elección de los primates en selvas con distintas abundancias de lianas ayudarán a aclarar su posible efecto negativo sobre las comunidades. Palabras clave: Lianas, Primates, Dieta, Fragmentación forestal. (Received: 30 VI 08; Conditional acceptance: 25 XI 08; Final acceptance: 23 II 09) Milene Moura Martins, Post–graduate Program, Biological Science (Zoology), Depto. de Zoologia, Inst. de Biociências, Univ. de São Paulo (USP), CP 11461, CEP 05422–970, São Paulo, SP, Brazil. Current address: Lab. de Biodiversidade Molecular e Citogenética, Depto. de Genética e Evolução, Univ. Federal de São Carlos (UFSCar), São Carlos, SP, Brazil. E–mail: milenemartins@terra.com.br ISSN: 1578–665X

© 2009 Museu de Ciències Naturals


52

Introduction Lianas are woody climbing vines (sensus Gentry, 1991) that rely on other plants for support. They en� compass 25% of species diversity in tropical systems (Schnitzer & Bongers, 2002). There is a growing body of evidence pointing to an increase in abundance of lianas in forests (Phillips et al., 2002; Wright et al., 2004; Swaine & Grace, 2007). Liana diversity and abundance has been shown to increase following disturbance in comparisons between forest edges and interiors (Oliveira–Filho et al., 1997; Laurance et al., 2001) and between secondary and old growth forests (DeWalt et al., 2000). By producing many rooting stems, lianas are able to rapidly colonize disturbed areas, thereby increasing their chances of survival (Schnitzer & Bongers, 2002). It has been suggested that lianas are important to forest–dwelling animals because they provide food resources and pathways (Emmons & Gentry, 1983). However, investigations reporting on the relative contribution of lianas as a food source in comparison to other life forms are lacking. Because Neotropical primates have undergone a broad adaptive radiation towards arboreal lifestyle and folivorous / frugivorous habits (Cowlishaw & Dunbar, 2000), it would be expected that lianas would play a substantial role in their feeding preferences.The protein/fiber ratio and tannin content, for instance, are determinants of food choices of predominantly folivorous primates (Milton, 1979; Ganzhorn, 1992). As they rapidly colonize for� est gaps, lianas might be more effective providers of young leaves with favorable protein/fiber ratio and lower concentration of digestion–inhibitors when compared to trees. Also, since the production of foods offered by lianas fluctuates in a seasonal pattern (Putz & Windsor, 1987; Opler et al., 1991; Morellato & Leitão–Filho, 1996) and lianas reproduce during periods unfavorable to trees (Morellato & Leitão–Filho, 1996), it might be advantageous for primates to rely on food items provided by woody climbers. Whether higher rates of consumption of liana products lead to an increase in primate population size is an unresolved question because of the scarcity of data. One of the few studies on the effects of liana abundance, carried out in African forests, found evidence of a positive association between Colobus guereza densities and lianas in the larger size classes (Preece, 2006). The brown howler (Alouatta guariba) and the south� ern muriqui (Brachyteles arachnoides) are primate species of the Atelidae family (Groves, 2001) living sympatrically in some Atlantic Forest fragments in Southeastern Brazil. The contribution of lianas to the overall diet of these two species is rarely mentioned in studies of their feeding habits. Thus, current available information is mainly anecdotal. After finding that 41% of leaves consumed by a group of A. guariba came from lianas, Chiarello (1994) suggested that habitat disturbance resulted in the proliferation of lianas, which was beneficial for howlers. Mendes (1989) reported that liana leaves represented 11.3% of the leaf diet of another howler group. B. arachnoides was observed feeding on leaves of two liana species

Martins

(Torres de Assumpção, 1983). Woody vines made up 37–47% of feeding time of a B. arachnoides group studied by Milton (1984). Data on other congeneric species is also scanty: the liana Forsteronia glabrescens was the second most consumed species by A. caraya in Northern Argentina (Zunino, 1989). In a three–month study, Fonseca (1985) recorded 14% of liana leaves in the diet of B. hypoxanthus. Asensio et al. (2007) ���������������������������������������������� suggested that the high population den� sity and increased rate of depletion of primary food sources are forcing groups of howlers in a Mexican forest fragment to forage on alternative resources, such as vines, lianas, shrubs and herbs. Howlers and muriquis differ in terms of locomotion. While howlers walk in a predominantly quadrupedal, slow–motion fashion (Mendel, 1976), muriquis prac� tice brachiation, hanging by their long arms and tail to swing among crowns of adjacent trees. Muriquis are therefore able to cover a larger area in compari� son to howlers, and within the same period of time they can visit a higher number of widely dispersed food patches, such as flowering and fruiting trees. I investigated the feeding ecology of sympatric groups of A. guariba and B. arachnoides in a forest patch in Southeastern Brazil, where they occur at densities of 27 and 35 ind/km2, respectively (Martins, 2005). I compared the species in terms of feeding on resources available from trees and lianas. I also compared them for their intake of liana leaves, flowers and fruit on a monthly basis. I predicted that: 1) because muriquis move faster from one resource patch to another than howlers, they would feed less on lianas, and 2) food resources provided by lianas would be consumed by both species of primates in accordance with their availability. Methods Study site The study was carried out at the Fazenda Barreiro Rico (22o 41' S, 48o 06' W), a cattle ranch located in the eastern range of the central Plateau, in the state of São Paulo, Southeastern Brazil. Low topographic relief and poor, sandy soils characterize the central Plateau region, which is bordered by the humid Atlantic Forest in the coastal eastern range and the Cerrado domain to the west. I collected data in a 1,450 ha semideciduous forest fragment. Seventy–six species of trees and 21 species of vines were recorded at the site (Assumpção et al., 1982). There is a profu� sion of canopy gaps and considerable abundance of lianas, as 32.8% of 400 phenologically censused trees bore lianas (unpubl. data). This probably re� sulted from many decades of selective logging in this patch. Large, emergent trees still remain in old, regenerated logged areas. The predominant climate is mesothermic. Mean annual rainfall is 1,284.5 mm (data from a local climatological station), with rains falling mostly between January and March. A moder� ate to severe drought (< 70 mm of monthly rainfall) occurs from April to September.


Animal Biodiversity and Conservation 32.1 (2009)

Study groups Two groups of A. guariba and B. arachnoides (one species each) were habituated to the presence of observers before data collection. These groups were randomly selected in respect to the proportion of trees infested by lianas in their ranging areas. Like other groups observed in the population sur� vey, the ranging area of study groups comprised regions with higher and lower visibility on account of lianas. The group of A. guariba comprised six members: one adult male, one sub–adult male, two adult females, a juvenile male, and an infant male. The non–cohesive, ever–changing social units of B. arachnoides averaged 3.25 ± 1.65 individuals. While the members of the A. guariba group were easily recognized by their natural markings, only 13 adult females and dependent young B. arachnoides could be reliably identified. The muriqui group probably contained 25 to 30 members, a group size estimated by adding the total number of adult females, their offspring, and the largest clump (11) recorded for males on an incomplete day of observation. Sampling of feeding behavior From June 2001 to May 2002, observations were carried out on four to five consecutive days per month (from dawn to dusk) for A. guariba and B. arachnoides groups, totaling 40 and 38 full days, respectively. During this year–long period, I col� lected 2,038 feeding records for A. guariba and 2,122 for B. arachnoides. To collect feeding data, I used an instantaneous scan sampling technique: scans lasted one minute followed by an interval of five minutes. The behavior of all the animals that came into view was assigned to one of the following categories: moving, resting, eating, or interacting socially. Whenever individuals were eat� ing, I recorded whether the food source was leaves, flowers, or fruits. I also recorded whether the food source had been obtained from a liana or a tree. Although individual recognition of B. arachnoides was constrained by the absence of natural markings, I took care about not recording the same animal twice per observation session. Phenology of resources I selected 131 bunches of lianas that were hanging on tree branches. I considered a strict definition of liana, i.e., climbers that germinate on the forest floor and produce true wood (see Gerwing et al., 2006). Due to the difficulty of collecting and identifying lianas, each bunch was considered as a single sampling unit, regardless of how many and which species it was composed of. If more than one bunch was being supported by the tree, one of them was randomly se� lected. The bunch was sampled regardless of whether the lianas climbed the tree directly or came from the crown of an adjacent tree. These bunches of lianas were carefully observed at three–weekly intervals in parallel with sampling of the behavior. Abundance of

53

resources (leaves, flowers and fruits) was evaluated using a scale of degree of availability that ranged from 0 to 4 (0 = total absence, 4 = full crown). To avoid the subjectivity associated with the classifica� tion, I did not distinguish between mature and young leaves, nor between ripe and unripe fruits. An index of availability (IA) was calculated monthly for each food resource using the formula: Sum of degrees of availability IA = x 100 Total degree of availability Percentages of monthly IA for all three food items were calculated. Voucher specimens were collected whenever possible and deposited at the Herbarium of the University of São Paulo. Identification, whenever possible, was carried out to the species level. Data analyses Mean annual and monthly percentages of food re� sources in the diet of the primates were calculated using only the feeding records gathered on complete days of observation. I calculated daily proportions of food resources that the primates collected from each source (trees or lianas) by dividing the number of records for that source by the total daily number of feeding records. The same procedure was carried out to calculate the daily proportions of leaves, flowers, and fruits that primates collected from lianas. Feed� ing proportions for a given month were obtained by dividing the sum of proportions by the number of the full days of observation in that month. Differences between the species relative to the daily proportions of feeding on resources provided by trees and lianas was tested by two–way ANOVA. The data set was previously tested for homogeneity of variances by means of Levene’s test (Zar, 1999). Interactions between monthly proportions of feeding on leaves, flowers, and fruits gathered from lianas and availability indexes were tested by Spearman rank correlation test. The software STATISTICA v.5.0 was used to carry out the tests, and the significance level was set at 0.05. Results Resources from liana represented 33.9% (691/2,038) of total feeding records for howlers and 27.3% (579/2,122) for muriquis over the 12 month study period. A. guariba and B. arachnoides fed on at least 12 and 10 species of lianas, respectively. Taxonomic determination was possible for only nine species (table 1), mostly because plant specimens grew in inaccessible places high in the tree canopies. The significant difference between sources (trees and lianas) in the diet of the primates (F = 9.95; P = 0.00) along with the significant interaction (F = 9.73; P = 0.02) between species and sources indicated that foods coming from trees are consid� erably more consumed by B. arachnoides when compared to foods coming from lianas (fig. 1).


54

Martins

Table 1. Liana species in the diet of Alouatta guariba (Ag) and Brachyteles arachnoides (Ba): C. Consumer. Tabla 1. Especies de liana de las dietas de Alouatta guariba (Ag) y Brachyteles arachnoides (Ba). C. Consumidor. Species

Family

C

Adenocalymma sp.

Bignoniaceae Ag

Diclidanthera sp.

Polygalaceae Ag, Ba

Dolichandra unguis–cati Bignoniaceae Ba Fridericia samydoides

Bignoniaceae Ag

Lundia obliqua

Bignoniaceae Ba

Pereskia aculeata

Cactaceae

Serjania sp.

Sapindaceae Ag

Stizophyllum riparium

Bignoniaceae Ba

Tanaecium selloi

Bignoniaceae Ag

Ag, Ba

Difference between the species in terms of relative contribution of the two sources was not significant (F = 0.0; P = 1.0). Availability of liana leaves followed a regular pat� tern (fig. 2A), as illustrated by the proximity of the

minimum and maximum IA values (74.8 and 85.1). Availability of flowers and fruits followed seasonal patterns (figs. 2C, 2E). Flower production peaked at the beginning of the wet season (September), and availability values were high throughout the first months of the season (October and Novem� ber). There was a small, second peak in May. High abundance (8–9%) of liana fruits occurred in November–December, dropping sharply after that (fig. 2E). Fruit production remained below 4% during the rest of the year. The percentage of total feeding records for a given month varied widely among food items consumed by each species (fig. 2). While leaves were the staple food item throughout the year both for howlers and muriquis, flowers and fruits were consumed much less or not consumed at all. On a monthly basis, the percentage of liana leaves in the howlers’ diet varied widely in comparison to that in the muriquis’ diet. This food item composed a minimum of 7% of the diet of A. guariba, but peaked at 49% in August (fig. 2A). Unlike howlers, the maximum leaf consumption of muriquis remained at intermediate levels, such as 28% (fig. 2E). Liana leaves were consumed less by B. arachnoides from January to March, following the overall tendency of reduced leaf consumption, probably as a response to higher fruit availability during the wet season. The highest percentages of liana flowers in the diet of A. guariba and B. arachnoides were 23% and 17%, recorded in February and September, respectively (figs. 2C, 2D). The explosive consumption shown by howlers in February, in discordance with availability, would

Proportion of feeding records

0.75 Brachyteles arachnoides 0.65

Alouatta guariba

0.55 0.45 0.35 0.25

Tree

Liana Sources

Fig. 1. Mean annual proportions of feeding records on tree and liana by Alouatta guariba and Brachyteles arachnoides. Fig. 1. Proporciones anuales medias de los registros alimentarios de Alouatta guariba y Brachyteles arachnoides de árboles y lianas.


Animal Biodiversity and Conservation 32.1 (2009)

55

Alouatta guariba

Brachyteles arachnoides

85

80

85

60

80

60

80

40

75

40

75

20

70

20

70

65

0

J

J

A S

O

N

D

J

F

M A

M

C % feeding records

90

80

0

50

10

40

8

30

6

20

4

10 0

J

J

A

S

O

N

D

J

F

M

A

M

rs = 0.537; P = 0.071

60

J

J

A

S O

N

D

J

F M

A

M

12

rs = 0.497; P = 0.999

50

10

40

8

30

6

20

2

10

0

0

4 2 J

J A

S

O

N D J

F

M A M

rs = 0.482; P = 0.112

60

10

8 6 4

20 0

2 J

J

A

S

O

N

Total feeding records

D

J

F

M

A

M

0

F 10

40

65

D 12

rs = 0.687; P = 0.013*

E

% feeding records

rs = 0.631; P = 0.845

100

% availability

% feeding records

90

0

8 40

6 4

20 0

Feeding records on lianas

2 J

J

A

S O

N D

J

F M

A

M

% availability

rs = –0.298; P = 0.346

100

B

% availability

A

0

Availability of liana resources

Fig. 2. Monthly percentage of feeding records by Alouatta guariba and Brachyteles arachnoides and percentage of availability index of leaves, flowers, and fruits of lianas. Spearman correlations are between monthly proportions of feeding records on liana foods and availability indexes of lianas: * Significant at 0.05. Fig. 2. Porcentaje mensual de registros alimentarios de Alouatta guariba y Brachyteles arachnoides e índice del porcentaje de disponibilidad de hojas, flores y frutos de las lianas. Las correlaciones de Spearman se aplican entre la proporciones mensuales de registros de consumo de alimentos de las lianas y los índices de disponibilidad de las lianas: * Significativo en 0,05.

have led to a negative relationship had February not been an exception to the rule. On one day in this month, the group twice visited an unidentified species of flowering liana and devoured almost all the flowers. Even so, the percentage of consump�

tion varied significantly in accordance with avail� ability (fig. 2C). A. guariba showed an opportunistic behavior during the two blooms of liana flowers, in the early wet and in the dry season. In contrast, B. arachnoides fed substantially on liana flowers during


56

the first peak of availability in September, but not during the second flowering in May (fig. 2D). Feed� ing on liana fruits peaked in December (55%) for A. guariba and peaked twice (June and December, both 29%) for B. arachnoides. (figs. 2E, 2F). The primate species shared a seasonal pattern of fruit consumption: June–July and December. In these periods both primate species mainly consumed the fruits of two liana species: Pereskia aculeata in the former period and Diclidanthera sp. in the latter period. Both of these plant species were abundant and easily recognized by the unique morphology and color of their fruit. The yellow–colored fruits of Pereskia aculeata bore spines on the epicarp, but these did not seem to be a deterrent to the animals. Fruits of Diclidanthera sp. were juicy, violet drupes. The monthly patterns of flower and fruit feeding by the two primate species revealed opposite phases: higher relative feeding rates on flowers were recorded during periods in which fruits were eaten less or not eaten at all and vice–versa. Only the availability of liana flowers presented a positive significant correla� tion with consumption by howlers. Discussion The mean annual percentage of lianas in the diet of A. guariba (27%) is similar to that of B. arachnoides (33%). However, on a daily basis, the latter rely much more on resources from trees than from lianas. The greater quantity of trees in the muriquis’ diet matches expectations as they can reach widely disperse areas by brachiation. It is not yet known whether muriquis would replace resources from trees with those from lianas if the latter became more abundant as the result of habitat disturbance. Lianas may outcompete trees through the combined effects of shading and nega� tive impact on sapling growth (Putz, 1984; Schnitzer et al., 2005). If muriquis are unable to make such a replacement due to constraints of dietary requirements changes in their feeding rates would be expected in the long–term. It appears that A. guariba would consume a greater amount of lianas the greater their abundance, but this would likely not be the case of B. arachnoides unless the tree resources they rely on have their growth, fecundity and/or recruitment rates negatively affected by lianas. On a monthly basis, liana resources were present in the diets of both A. guariba and B. arachnoides. It is known that atelines are flexible in terms of food choice (Chapman, 1987) and high dietary flexibility of both ateline species was evident in this study, illustrated by the consumption of resources from plants with different growth habits. Food choices also showed a temporal pattern of flexibility. The monthly fluctuation of flower and fruit availability favored the shift from one resource to another in consecutive months. Fleshy fruits supply non–structural, easily digested carbohydrates, the major components of the pulp (Waterman, 1984). Flowers eaten by primates provide protein and minerals (Castellanos & Chanin, 1996; Silver et al., 2000). By shifting between these

Martins

foods, primates can fulfill their requirements at any time of the year. With the exception of flower consumption by A. guariba, no significant correlations were found between the availability of food resources and the monthly proportion of feeding records for either A. guariba or B. arachnoides. This finding suggests that attributes other than abundance might govern consumption. The howlers’ recognized strategy of maximizing protein intake (Milton, 1979) might have favored their reliance on a patchily distributed re� source such as flowers. Flowering trees are perhaps distributed further apart from each other, on average, than lianas, and this would limit the consumption of their flowers by A. guariba, a species that moves in a quadrupedal, slow–motion fashion. The same limitation would be expected for fruit, since they do not fulfill the howlers’ high protein requirements as well as flowers (and leaves) do. In the case of B. arachnoides, however, brachiation would not prevent them from opportunistically exploiting liana flowers. Differential nutritional demands and abilities to deal with secondary compounds possibly underlie the distinct findings for howlers and muriquis. However, there may be other explanations. Researchers have failed to find correlations between consumption by primates and availability of food resources (e.g. Chapman, 1987; Maisels et al., 1994; Peres, 1994; Stoner, 1996; Heiduck, 1997; Kaplin et al., 1998). It seems that whenever the pool of surveyed plants harbors few individuals of the species consumed, the temporal variability in the abundance of these species’ resources remains hidden within the overall pattern. Indeed, this may be the case for liana spe� cies in the present study. Here, a bunch composed of perhaps two or more species, rather than a single species as usually carried out in tree phenological assessments, was selected as a sample unit. Thus, it is hard to tell whether liana species preferred by howlers and muriquis were poorly represented in the phenological sample, except for those bearing flowers and fruits with specific traits as mentioned above. It is clear that lianas play an important role in the feeding patterns of howlers and muriquis at the present study site. This may be the result of two environmental factors, rainfall and forest disturbance, either alone or in combination. A high abundance of liana has been reported in areas of Ghana, Africa, where the rainfall is low (Swaine & Grace, 2007) and also in fragmented forests or those woodlots where timber harvesting has prevailed for years (DeWalt et al., 2000). The study site receives less than 1,300 mm of rainfall annually. Moreover, se� lective logging has been carried out for decades at Barreiro Rico, although rates are currently lower. Howlers and muriquis take advantage of continu� ously renewable (leaves) and ephemeral (flowers and fruits) liana resources. This plant group may be contributing to the growth of populations, because both species present moderate population density at the study site. Whether food items from liana have been continuously increasing in the diet of A. guariba


Animal Biodiversity and Conservation 32.1 (2009)

and B. arachnoides at the study site as a response to liana abundance is difficult to know, given the lack of long–term monitoring of their feeding choices. Although the food supplied by lianas is apparently beneficial, or at least unharmful in the setting of the mesic forest and the disturbed nature of the study site, experiments comparing primate choices in forests with different rates of liana infestation would help to shed light on the possible negative effects of such consumption in these communities. Acknowledgements I am grateful to Dr. Paulo Nogueira–Neto for his sup� port and advice. I also thank José C. de Oliveira for helping in the field and Lúcia Lohmann for determin� ing liana species. Two anonymous referees provided valuable insights to the earlier version of the manu� script. Funding for this research was provided by Fundação de Amparo à Pesquisa do Estado de São Paulo (No. 99/06217–2), Margot Marsh Biodiversity Foundation, and Primate Conservation, Inc. References Asensio, N., Cristobal–Azkarate, J., Dias, P. A. D., Vea, J. J. & Rodríguez–Luna, E., 2007. Foraging habitats of Alouatta palliata mexicana in three forest fragments. Folia Primatologica, 78: 141–153. Assumpção, C. T., Leitão–Filho, H. F. & Cesar, O., 1982. Descrição das matas da Fazenda Barreiro Rico, Estado de São Paulo. Revista Brasileira de Botânica, 5: 53–66. Castellanos, H. G. & Chanin, P., 1993. Seasonal dif� ferences in food choice and patch preference of long–haired spider monkeys (Ateles belzebuth). In: Adaptive Radiations of Neotropical Primates: 451–466 (M. A. Norconk, A. L. Rosenberger & P. A. Garber, Eds.). Plenum Press, New York. Chapman, C. A., 1987. Flexibility in the diets of three species of Costa Rica primates. Folia Primatologica, 49: 90–105. Chiarello, A. G., 1994. Diet of the brown howler monkey Alouatta fusca in a semi–deciduous for� est fragment of southeastern Brazil. Primates, 35(1): 25–34. Cowlishaw, G. & Dunbar, R. I. M., 2000. Primate Conservation Biology. Univ. of Chicago Press, Chicago. DeWalt, S. J., Schnitzer, S. A. & Denslow, J. S., 2000. Density and diversity of lianas along a chrono� sequence in central Panamanian lowland forest. Journal of Tropical Ecology, 16: 1–9. Emmons, L. H. & Gentry, A. H., 1983. Tropical forest structure and the distribution of gliding and prehen� sile tailed vertebrates. The American Naturalist, 121: 513–524. Fonseca, G. A. B., 1985. Observations ������������������������� on the ecol� ogy of the muriqui (Brachyteles arachnoides E. Geoffroy 1806): Implications for its conservation. Primate Conservation, 5: 48–52.

57

Ganzhorn, J. U., 1992. Leaf chemistry and the bio� mass of folivorous primates in tropical forests. Oecologia, 91: 540–547. Gentry, A. H., 1991. The distribution and evolution of climbing plants. In: The biology of vines: 3–52 (F. E. Putz & H. A. Mooney, Eds.). Cambridge Univ. Press, Cambridge. Gerwing, J. J., Schnitzer, S. A., Burnham, R. J., Bongers, F., Chave, J., DeWalt, S. J., Ewango, C. E. N., Foster, R., Kenfack, D., Martínez–Ramos, M, Parren, M., Parthasarathy, N., Pérez–Salicrup, D. R., Putz, F. E. & Thomas, D. W., 2006. A standard protocol for liana censuses. Biotropica, 38(2): 256–261. Groves, C. P., 2001. Primate Taxonomy. Smithsonian Institution Press, Washington. Heiduck, S., 1997. Food choice in masked titi monkeys (Callicebus personatus melanochir): Selectivity or opportunism? International Journal of Primatology, 18(4): 487–502. Kaplin, B. A., Munyaligoga, V. & Moermond, T. C., 1998. The influence of temporal changes in fruit availability on diet composition and seed handling in blue monkeys (Cercopithecus mitis doggetti). Biotropica, 30(1): 56–71. Laurance, W. F., Pérez–Salicrup, D., Delamônica, P., Fearnside, P. M., D’Angelo, S., Jerozolinski, A., Pohl, L. & Lovejoy, T. E., 2001. Rain forest fragmentation and the structure of Amazonian liana communities. Ecology, 82: 105–116. Maisels, F., Gautier–Hion, A. & Gautier, J. P., 1994. Diets of two sympatric colobines in Zaire: More evidence on seed–eating in forests on poor soils. International Journal of Primatology, 15(5): 681–701. Martins, M. M., 2005. Density of primates in four semi–deciduous forest fragments of São Paulo, Brazil. Biodiversity and Conservation, 14(10): 2321–2329. Mendel, F., 1976. Postural and locomotor behavior of Alouatta palliata on various substrates. Folia Primatologica, 26: 36–53. Mendes, S. L., 1989. Estudo ecológico de Alouatta fusca (Primates: Cebidae) na Estação Biológica de Caratinga, MG. Revista Nordestina de Biologia, 6: 71–104. Milton, K., 1979. Factors influencing leaf choice by howler monkeys: a test of some hypotheses of food selection by generalist herbivores. The American Naturalist, 114: 362–378. – 1984. Habitat, diet, and activity patterns of free– ranging wolly spider monkeys (Brachyteles arachnoides E. Geoffroy, 1806). International Journal of Primatology, 5(5): 491–513. Morellato, L. P. C. & Leitão–Filho, H. F., 1996. Repro� ductive phenology of climbers in a southeastern Brazilian forest. Biotropica, 28(2): 180–191. Oliveira–Filho, A. T., De Mello, J. M. & Scolforo, J. R. S., 1997. Effects of past disturbance and ed� ges on three community structure and dynamics within a fragment of tropical semideciduous forest in south–eastern Brazil over a five–year period (1987–1992). Plant Ecology, 131: 45–66.


58

Opler, P. A., Baker, H. G. & Frankie, G. W., 1991. Seasonality of climber communities: a review and example from Costa Rica dry forest. In: The biology of vines: 377–392 (F. E. Putz & H. A. Mooney, Eds.). Cambridge Univ. Press, Cambridge. Peres, C. A., 1994. Primate responses to phenolo� gical changes in an Amazonian terra firme forest. Biotropica, 26(1): 98–112. Phillips, O. L., Martinez, R. V., Arroyo, L., Baker, T. R., Killeen, T., Lewis, S. L., Malhi, Y., Mendonza, A. M., Neill, D., Vargas, P. N., Alexiades, M., Ceron, C., Fiore, A. D., Erwin, T., Jardim, A., Palacios, W., Saldias, M. & Vincent, B., 2002. Increasing dominance of large lianas in Amazonian forests. Nature, 418: 770–774. Preece, G. A., 2006. Factors influencing variation in the population densities of Colobus guereza within selectively logged forest at the Budongo Forest Reserve: the importance of lianas during a subsis� tence diet. In: Primates of Western Uganda: 23–43 (N. E. Newton–Fisher, H. Notman, J. D. Paterson, V. Reynolds, Eds.). Springer, New York. Putz, F. E., 1984. The natural history of lianas on Barro Colorado Island, Panama. Ecology, 65(6): 1713–1724. Putz, F. E. & Windsor, D. M., 1987. Liana phenology on Barro Colorado Island, Panama. Biotropica, 19(4): 334–341. Schnitzer, S. A. & Bongers, F., 2002. The ecology of lianas and their role in forests. Trends in Ecology and Evolution, 17(5): 223–230. Schnitzer, S. A., Kuzee, M. E. & Bongers, F., 2005. Disentangling above– and below–ground compe�

Martins

tition between lianas and trees in a tropical forest. Journal of Ecology, 93: 1115–1125. Silver, S. C., Ostro, L. E. T., Yeager, C. P. & Dier� enfeld, E. S., 2000. Phytochemical and mineral components of foods consumed by black howler monkeys (Alouatta pigra) at two sites in Belize. Zoo Biology, 19: 95–109. Stoner, K. E., 1996. Habitat selection and seasonal patterns of activity and foraging of mantled howl� ing monkeys (Alouatta palliata) in northeastern Costa Rica. International Journal of Primatology, 17(1): 1–30. Swaine, M. D. & Grace, J., 2007. Lianas may be favoured by low rainfall: evidence form Ghana. Plant Ecology, 192(2): 271–276. Torres de Assumpção, C., 1983. Ecological and be� havioral information on Brachyteles arachnoides. Primates, 24(4): 584–593. Waterman, P. G., 1984. Food acquisition and pro� cessing as a function of plant chemistry. In: Food Acquisition and Processing in Primates: 177–211 (D. Chivers, B. A. Wood & A. Bilsborough, Eds.). Plenum Press, New York. Wright, S. J., Calderón, O., Hernández, A. & Paton, S., 2004. Are lianas increasing in importance in tropi� cal forests? A 17–year record from Barro Colorado Island, Panama. Ecology, 85: 484–489. Zar, J. H., 1999. Biostatistical Analysis. 4th edition. Upper Saddle River, Prentice Hall. Zunino, G. E., 1989. Habitat, dieta y actividad del mono aullador negro (Alouatta caraya) en el noreste de la Argentina. Boletín Latinoamericano de Primatología, 1: 74–97.


Animal Biodiversity and Conservation 32.1 (2009)

59

Filogeografía: aplicaciones en taxonomía y conservación O. Domínguez–Domínguez & E. Vázquez– Domínguez

Domínguez–Domínguez, O. & Vázquez–Domínguez, E., 2009. Filogeografía: aplicaciones en taxonomía y conservación. Animal Biodiversity and Conservation, 32.1: 59–70. Abstract Phylogeography: applications in taxonomy and conservation.— Phylogeography is defined as the discipline that studies the principles and processes that determine the geographical distribution of genealogical lineages. Two of the study areas where phylogeographic approaches are used more and more frequently are taxonomy and conservation. In this review we first present a general description of phylogeography and then discuss how research in taxonomy and conservation has been addressed when using phylogeographic approaches, emphasising in particular the limitations that need to be considered. We include relevant examples of studies with animals in order to help readers acquire the sense and scope of such applications and select the ap� propriate study design to meet these objectives. Key words: DNA, Biogeography, Genetic structure, Genealogy. Resumen Filogeografía: aplicaciones en taxonomía y conservación.— La filogeografía se define como la disciplina que estudia los principios y procesos que gobiernan la distribución geográfica de los linajes genealógicos. Dos de las áreas de estudio donde se utilizan aproximaciones filogeográficas cada vez con mayor frecuencia son la taxonomía y la conservación. En esta revisión presentamos primero un resumen general sobre filogeografía y posteriormente discutimos cómo se han llevado al cabo estudios de taxonomía y conservación empleando aproximaciones filogeográficas, enfatizando sobre todo las limitaciones que deben considerarse. Incluimos ejemplos relevantes de estudios con animales que permitirán a los lectores conocer el sentido y alcance de dichas aplicaciones y diseñar adecuadamente estudios con estos objetivos. Palabras clave: ADN, Biogeografía, Estructura genética, Genealogía. (Received: 6 X 08; Conditional acceptance: 17 II 09; Final acceptance: 31 III 09) Omar Domínguez–Domínguez, Lab. de Biología Acuática, Fac. de Biología, Edificio "R" planta baja, Ciudad Universitaria, Univ. Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.– Ella Vázquez– Domínguez, Depto. de Ecología de la Biodiversidad, Inst. de Ecología, Univ. Nacional Autónoma de México, Apartado Postal 70–275, Ciudad Universitaria, México DF, 04510, México. Corresponding author: Ella Vázquez–Domínguez. E–mail: evazquez@ecologia.unam.mx

ISSN: 1578–665X

© 2009 Museu de Ciències Naturals


60

La filogeografía La filogeografía parte de la idea de que la gran mayoría de las especies en la naturaleza exhiben cierto grado de estructura genética asociada con la geografía. Esta estructura puede ser muy compleja, como en especies que habitan áreas de fuerte acti� vidad tecto–volcánica o paleoclimática, o de menor complejidad, como el caso de poblaciones con tasas altas de migración o cuyo aislamiento, hablando en tiempos geológicos, es relativamente reciente (e.g. última glaciación). De esta forma, es posible detectar la estructura filogeográfica entre poblaciones cuando la dimensión genealógica es analizada a la par de los eventos geológicos y geográficos. Es decir, la estructura filogeográfica refleja la interacción entre los procesos demográficos y genealógicos y la dinámica de los procesos de la tierra (geológicos o climáticos). Así, la filogeografía se define como la disciplina que estudia los principios y procesos que gobiernan la distribución geográfica de los linajes genealógicos (Avise et al., 1987; Avise, 2000). Este análisis conjunto de aspectos filogenéticos, de genética de poblaciones y de biogeografía en poblaciones naturales, ha tenido repercusiones importantes en las áreas de biología evolutiva, ecología y conservación. Dado que la filogeografía implica el estudio de los aspectos históricos de la actual distribución de los linajes genealógicos, es considerada como una sub� disciplina de la biogeografía histórica, la cual integra conceptos y técnicas de biología molecular, genética de poblaciones, demografía, sistemática filogenética, etología y paleontología (Avise, 2000); o bien es mencionada como parte de la biología evolutiva, siendo un puente entre la microevolución (relacio� nes tocogenéticas) y la macroevolución (relaciones jerárquicas). Asimismo, dado que en filogeografía se analizan genealogías genéticas para determinar el impacto de los eventos históricos en la composición y estructura genética de poblaciones actuales, ha logrado revolucionar la interpretación conjunta de patrones y procesos de la ecología, la biogeografía y la genética de poblaciones. A pesar de que la filogeografía se ha utilizado comúnmente como una herramienta para esclarecer patrones históricos y evolutivos entre po� blaciones de una misma especie, las aproximaciones filogeográficas también pueden ser útiles para inferir procesos demográficos históricos como flujo génico, ta� maño efectivo poblacional, secuencias de colonización, cuellos de botella y también para determinar fronteras entre especies e identificar unidades de conservación (Avise et al., 1987; Avise, 2000, 2008; Freeland, 2005; Vázquez–Domínguez, 2002, 2007). De esta forma, el estudio de la distribución geo� gráfica de linajes genealógicos ha sido ampliamente usado para describir eventos históricos, como frag� mentación de hábitats o expansión del rango de distribución de especies y poblaciones, eventos de mi� gración, vicarianza, o extinción de linajes génicos, así como otros procesos que afectan la estructura de las poblaciones o que causan especiación en un contexto espacial y temporal (Hardy et al., 2002). Además, el estudio comparado de los patrones filogeográficos de

Domínguez–Domínguez & Vázquez–Domínguez

varias especies o poblaciones co–distribuidas permite plantear hipótesis sobre posibles eventos comunes, por ejemplo de vicarianza o dispersión, e identificar las causas geológicas, ecológicas o etológicas que pudieron haber influido en ellos (Arbogast & Kenagy, 2001; Zink, 2002; Lanteri & Confalonieri, 2003). Actualmente los estudios filogeográficos en espe� cies animales se basan principalmente en secuencias de ADN mitocondrial (ADNmt), dado que presenta una alta tasa de mutación, no recombina y su herencia es casi exclusivamente materna (Lanteri & Confalonieri, 2003). Las variantes (secuencias) de ADNmt, conoci� das como haplotipos, registran la historia matrilineal de eventos mutacionales, los cuales pueden conec� tarse de un modo filogenéticamente inteligible en un filograma o mejor llamado, árbol de genes (Avise, 2000, 2008). En los albores de la filogeografía, dicho filograma se superponía con la distribución geográfica de las poblaciones de estudio, lo que permitía hacer una descripción de la reconstrucción filogeográfica (Avise, 2000). Desde entonces se han desarrollado múltiples formas de análisis gráficos, los cuales incorporan los filogramas, el modelo evolutivo de coalescencia y valores estadísticos de probabilidad (Vázquez–Domínguez et al., en prensa y referencias incluidas). La coalescencia es un proceso estocástico que describe la forma en que los eventos genéticos poblacionales determinan la forma de la genealogía de las secuencias de genes muestreados, y se basa en la hipótesis de que todos los individuos de una población natural coalescen en un ancestro común (fig. 1). En esencia, es un modelo retrospectivo que traza todos los alelos de un gen dentro de una muestra poblacional hacia un ancestro común más reciente (Hudson, 1990, 1998; Nordborg, 2000). La teoría de coalescencia ha tenido la virtud de permitir la unión conceptual y analítica de la genética de poblaciones y la filogenia, haciendo que el foco de estudio de ambas áreas sea precisamente el árbol de genes (Nielsen & Beaumont, 2009). Sin embargo, el uso exclusivo del ADNmt en algunos casos puede ser arriesgado, ya que implica un único locus, el cual puede estar ligado a selección, puede presentar introgresión o puede que no sea posible identificar su dispersión entre poblaciones como con� secuencia de diferencias etológicas o ecológicas entre hembras y machos o entre especies (Avise, 2008; Váz� quez–Domínguez et al., 2009); todo ello puede implicar limitaciones en el momento de hacer la reconstrucción de historias poblacionales (Avise, 2000). Por ello, cada vez con más frecuencia se aplica el uso combinado y comparativo de genealogías obtenidas de datos de ADNmt y ADN nuclear (ADNn). El uso de genes nucleares conlleva a su vez problemas, por ejemplo aquellos inherentes a la recombinación, así como el hecho de que cada locus (que en algunas especies suelen ser más de dos), muestre historias evolutivas independientes (Zhang et al., 2005). Para enfrentar este problema existen dos aproximaciones de análisis: 1) hacer reconstrucciones y comparaciones de más de un gen, con lo cual, en caso de existir congruencia en las historias filogeográficas tratadas, se incrementa la probabilidad de que la historia filogeográfica que se


Animal Biodiversity and Conservation 32.1 (2009)

61

Coalescencia hacia el ancestro común

A

n generaciones

Barrera al flujo genético

t2

Barrera

Atrás en el tiempo

t1

B C n individuos

Tamaño poblacional

Selección natural

Flujo génico

D

Tiempo de coalescencia

Fig. 1. Relación evolutiva (genealógica) de cuatro haplotipos (individuos) dentro de una población. Los linajes de los haplotipos pueden rastrearse hacia atrás en el tiempo y así identificar eventos coalescentes que sucedieron a diferentes tiempos (t1 y t2). Por ejemplo, los haplotipos A y B tienen su ancestro común más reciente (ACMR) dos generaciones atrás (primer evento coalescente; ancestro señalado con un asterisco), mientras que el ACMR de los haplotipos A, B y C (doble asterisco) se da cuatro generaciones atrás (segundo evento coalescente). Barreras físicas o cualquier factor que limita el flujo génico entre individuos o poblaciones, además de características como tamaño poblacional, selección natural y flujo génico, determinan en gran medida los patrones de coalescencia (modificado de Vázquez–Domínguez et al., en prensa). Fig. 1. Evolutionary relationship (genealogical) of four haplotypes (individuals) within a population. Haplotype lineages can be traced back in time to identify coalescent events that occurred at different times (t1 y t2). For example, haplotypes A and B have their most recent common ancestor (MRCA) two generations back (first coalescent event; ancestor indicated with an asterix), while the MRCA of haplotypes A, B and C (double asterix) is four generations back (second coalescent event). Physical barriers or any factor that limits gene flow between individuals, together with parameters like population size, natural selection and gene flow, greatly determine the coalescent patterns (modified from Vázquez–Domínguez et al., in press).

obtiene sea de la especie y no del gen (Avise, 2000); y 2) realizar comparaciones filogeográficas entre más de una especie co–distribuida, con lo cual se evalúa si existen patrones filogeográficos concordantes (Avise, 2000, 2008; Arbogast & Kenagy, 2001; Zink, 2002; Vázquez–Domínguez et al., en prensa). En términos analíticos, la filogeografía se concibe en general en dos áreas que difieren básicamente en la forma de análisis (Hey & Machado, 2003). La primera se basa fundamentalmente en una idea gráfico–descriptiva, donde las ramificaciones de un

árbol se analizan bajo una (o varias) hipótesis de la historia biogeográfica de los organismos, y que se sustenta en métodos de reconstrucción filogenética de árboles de genes; o bien, en la construcción de redes de haplotipos, las cuales se basan en la re� construcción de árboles multibifurcados arreglados a manera de redes de haplotipos bajo métodos filogenéticos o métodos de coalescencia. En ambos casos las interpretaciones de eventos y procesos asociados a la distribución de los organismos se realiza después de que se tienen los árboles o redes


62

resultantes (Nielsen & Beaumont, 2009; Templeton, 2009). La segunda área descansa en fundamentos estadísticos y matemáticos de demografía y estructura poblacional, basados en teoría de coalescencia, fenó� menos estocásticos y estadística computacional, donde los modelos de análisis incluyen hipótesis que se ponen a prueba, utilizando métodos basados en verosimilitud, particularmente de Inferencia Bayesiana (Knowles & Maddison, 2002; Nielsen & Beaumont, 2009). Ambas aproximaciones se utilizan cada vez con más frecuencia de forma combinada y complementaria, con las ventajas y desventajas propias de cada una; una revisión más detallada de estos métodos va más allá del objetivo del presente trabajo, pero existe amplia información en la literatura (e.g., ver Emerson et al., 2001; Knowles & Maddison, 2002; Hey & Machado, 2003; Avise, 2008; Nielsen & Beaumont, 2009; Templeton, 2009; Vázquez– Domínguez et al., en prensa). Cabe añadir que se ha señalado que una forma adecuada de evaluar historias de divergencia simultánea (filogeografía comparada), es a través del uso de métodos basados en simulaciones, e.g. aproximaciones de verosimilitud o bayesianas ya que, como éstos utilizan estadísticos de resumen, tienen mayor flexibilidad para manejar modelos complejos, por ejemplo como los esperados al analizar conjuntos de datos filogeográficos (para una explicación detallada ver Hickerson et al., 2006). Hay dos áreas de estudio donde se utilizan aproximaciones filogeográficas cada vez con mayor frecuencia, pero que sin embargo no existe, hasta donde sabemos, una revisión publicada donde es� pecíficamente se aborden dichas aplicaciones de la filogeografía: por un lado en la taxonomía, básica� mente en el uso de la filogeografía para el recono� cimiento y establecimiento de límites entre especies y, por otro lado, su uso específico en biología de la conservación, sobre todo en la definición de unidades de conservación y manejo. Libros como el de Avise (2000) y el de Freeland (2006) incluyen ejemplos de estudios filogeográficos que han permitido sugerir la existencia de especies distintas; asimismo, en Avise (2000; pp. 268–276) se hace mención sobre Unidades Evolutivas Significativas (ver explicación más adelante) y da ejemplos de algunos estudios filogeográficos asociados a dicho concepto de conservación. Indudablemente numerosos estudios filogeográficos han reportado resultados taxonómicos o de conservación, y aquí presentamos una revisión de estas aplicaciones. Los ejemplos que presenta� mos son exclusivamente de fauna (vertebrados e invertebrados); debemos hacer notar que existen muchos casos donde se ha usado la filogeografía en plantas para resolver preguntas taxonómicas y de conservación, pero dichos ejemplos quedan fuera del alcance de la presente revisión. La filogeografía en el ámbito de la taxonomía La filogeografía puede también ser usada como una herramienta de análisis en estudios taxonómicos. En sistemática, los taxa son el punto de partida para la

Domínguez–Domínguez & Vázquez–Domínguez

clasificación biológica y los estudios filogenéticos. Sin embargo, cuando el taxón se convierte en la unidad para el estudio de entidades evolutivas, se complica poder encontrar las fronteras y atributos de la unidad evolutiva, es decir el taxón, más cuando la respuesta puede variar en el organismo o grupo de organismos de que se trate (Hey & Machado, 2003). Los con� ceptos de especie acuñados en los últimos 40 años son conflictivos y en ocasiones contradictorios, por lo que en realidad aun no existe un concepto único. En este sentido, la filogeografía, combinada con otros métodos usados en la taxonomía tradicional, puede aportar información de las fronteras entre especies o poblaciones. El concepto filogenético de especie se define como el agrupamiento mínimo de individuos, de poblaciones o grupos de poblaciones que son diagnosticables por un número dado de caracteres compartidos, y dentro de los cuales hay un patrón claro de ances� tría–descendencia (Cracraft, 1983; McKitrick & Zink, 1988; Nixon & Wheler, 1990; Davis & Nixon, 1992); esto es, la unidad taxonómica mínima que puede ser analizada desde un punto de vista filogenético. Este concepto filogenético de especie puede ser analizado con cualquier tipo de caracteres homólogos, y bajo este concepto es donde recae el uso de caracteres moleculares en la delimitación de especies. Así, al delimitar una especie bajo el concepto filogenético es necesario poder identificar las fronteras por arriba de las cuales el arreglo filogenético representa entidades biológicas independientes (relaciones jerárquicas) y, por debajo de ellas, donde la jerarquización es in� adecuada (relaciones tocogenéticas o genealógicas) (Goldstein et al., 2000). Actualmente se utilizan con más frecuencia caracteres moleculares como una herramienta importante, aunque no exclusiva, en la delimitación de especies (Avise & Ball, 1990). Sin embargo, este concepto filogenético de especie, uti� lizando caracteres moleculares, ha sido criticado por la problemática de distinguir la historia de los genes de aquella de las especies (Sites & Crandall, 1997). También por el hecho de que comúnmente en las reconstrucciones filogenéticas se usa un solo locus, lo cual puede arrojar reconstrucciones filogenéticas erróneas como resultado de los polimorfismos dentro de la especie (Templeton, 2001). Por ello, es común que con el uso de diferentes caracteres se obtenga un diagnóstico de unidades evolutivas diferentes dentro de una misma especie (ver Crother, 1990; Smith, 1992; Moore, 1995). El concepto de especie utilizando caracteres mo� leculares se define como un grupo de organismos o poblaciones que presentan monofilia recíproca, los cuales son candidatos a ser identificados como unidades evolutivas independientes. Esta definición es prácticamente igual al concepto monofilético de especie acuñado por Donoghue (1985). Sin embargo, la monofilia recíproca, entendida en el contexto de árboles de genes, no es el único concepto implíci� to. El problema persiste en cuanto a en qué nivel jerárquico es aplicable la monofilia recíproca para la delimitación de especies, o si es una mera represen� tación de unidades dentro de una especie. Así, se


Animal Biodiversity and Conservation 32.1 (2009)

ha señalado que el uso de relaciones filogenéticas intraespecificas es inapropiado para la delimitación de especies (Goldstein et al., 2000). Es decir, una de sus mayores dificultades es delimitar la frontera entre las relaciones tocogenéticas y jerárquicas, lo cual es un tema debatido en todos los ámbitos donde la filogeografía es aplicable. Sin embargo, existen ejemplos donde han podido detectarse es� pecies diferenciadas o crípticas evaluando relaciones filogenéticas intraespecificas: Richlen et al. (2008) estudiaron el dinoflagelado Gambierdiscus toxicus, responsable del síndrome de la ciguatera; evalua� ron filogenéticamente 28 aislados a lo largo de su distribución global (con varias regiones del DNA ribo� somal además de caracteres morfológicos; tabla 1). Encontraron cuatro linajes diferentes separados por distancias genéticas considerables, uno de los cuales es morfológicamente diferente y más acorde con la especie Gambierdiscus belizeanus; los otros tres linajes son considerados especies crípticas. En otro estudio, métodos taxonómicos tradicionales no habían podido resolver la sistemática del complejo del insecto B. rhodani (Ephemeroptera). Utilizando el gen mitocondrial COI, Williams et al. (2006) ob� tuvieron dos grupos monofiléticos que consisten de un haplogrupo mayor y un segundo clado de seis haplogrupos más pequeños y diferentes entre sí. La divergencia de los haplogrupos es de 0,2–3% (den� tro), mientras que entre éstos es de 8–9%, valores que superan por mucho el intervalo reportado para otros insectos, lo que consideraron como evidencia de la existencia de especies crípticas dentro del complejo (tabla 1). Por otra parte, Templeton (2001) menciona que los árboles de genes tienen el potencial de encontrar los límites entre la evolución intra e interespecifica, con los cuales es entonces posible delimitar especies. Por ello, este autor acuñó el término de especie "cohesiva". Este concepto es descrito como un linaje evolutivo cuyas fronteras pueden ubicarse a partir de las fuerzas genéticas y evolutivas que crean una cohesión reproductiva en la comunidad (Templeton, 1999). Asimismo, Templeton (2001) denomina un linaje evolutivo como una población o grupo de poblaciones reproductivas con suficiente historia de relaciones de ancestria–descendencia, la cual presen� ta sus propias trayectorias y tendencias evolutivas. Por ello una especie es definida como un linaje o un grupo de linajes evolutivos que pueden presentar intercambio genético y/o cohesión ecológica. Un ejem� plo de esto es el estudio con la serpiente Hypsiglena torquata, de la cual se reconocen 17 subespecies. Con métodos filogeográficos y ADNmt se evaluaron 178 individuos y se encontraron seis especies: una nueva, dos de las previamente reconocidas como subespecies y las otras tres son linajes polimórficos, ampliamente distribuidos, compuestos por múltiples especies (Mulcahy, 2008; tabla 1). Con base en di� chos resultados se señala que deben mantenerse las subespecies encontradas como diferentes, dado que son geográficamente cohesivas, morfológicamente discretas y pueden representar especies incipientes (Mulcahy, 2008).

63

Templeton (2001, 2008, 2009) propone el uso del Análisis de Clados Anidados (NCA por sus siglas en inglés) como un método de análisis riguroso y con criterios adecuados para evitar confundir árboles de haplotipos con aquellos de poblaciones o especies, ya que con el NCA es posible identificar los efectos del flujo genético recurrente y los eventos históricos que han afectado a toda una población, los cuales pueden tener asociación geográfica en los árboles de genes. La prueba más fehaciente que arroja el NCA para inferir que las muestras en cuestión se derivan de linajes evolutivos independientes es cuando, a través del análisis, se infieren uno o más eventos de fragmentación. Otro atributo que Templeton (2001, 2009) menciona como útil del NCA es que incorpora aspectos de polimorfismo interespecífico, sorteo de linajes y eventos de hibridación, lo que representa una ventaja al momento de delimitar especies. Otro aspecto importante del NCA es que los linajes evolu� tivos se infieren de patrones filogenéticos que tienen un valor estadístico y no como un patrón absoluto (Templeton, 2001, 2009). El NCA ha sido criticado (Petit, 2008), en particular porque se presume resulta en un alto porcentaje de falsos positivos y de falsos negativos. Templeton (2008) ha demostrado que dichos porcentajes son mucho menores cuando se evalúan casos reales; también ha evaluado el uso del NCA con multilocus y otra propuesta de análisis co� nocida como método Computacional de Aproximación Bayesiana (ABC por sus siglas en inglés) para probar hipótesis filogeográficas, resaltando la ventaja de usar ambos métodos (Templeton, 2009). La polémica del NCA no se ha resuelto, por lo que se recomienda una revisión detallada de las opiniones a favor y en contra de su uso, para tener bases fundamentadas cuando se decida utilizar este método (ver Knowles, 2008; Petit, 2008; Nielsen & Beaumont, 2009; Templeton, 2004, 2008, 2009 y referencias incluidas). Una crítica sobre el uso exclusivo de análisis filo� geográficos para ubicar las fronteras entre especies está relacionado con uno de los conceptos básicos en la teoría de coalescencia que es la herencia uniparental y la no recombinación del gen utilizado (en caso de estar representado exclusivamente por ADNmt). Por ello, las relaciones de los árboles mitocondriales pueden representar equivocadamente las relaciones entre poblaciones o especies. Se ha sugerido que genes mitocondriales por sí solos no son suficientes para diagnosticar especies, ya que dichos caracteres se fijarán más rápido que los nucleares, por lo que pueden no reflejar la "verda� dera" frontera entre especies (Avise & Ball, 1990). Con base en lo anterior, se recomienda también el uso de datos nucleares, los cuales permiten corro� borar o rechazar la hipótesis obtenida con genes mitocondriales, o bien, la utilización de otro tipo de caracteres (e.g. morfológicos o etológicos). Farias & Hrbek (2008) realizaron un amplio estudio filogeo� gráfico y de genética de poblaciones del género de peces Symphysodon del Amazonas, donde pudieron probar hipótesis sobre la relación entre unidades taxonómicas y los procesos que generaron diver� sificación dentro del género combinando análisis


64

Domínguez–Domínguez & Vázquez–Domínguez

Tabla 1. Ejemplos de aplicaciones de la filogeografía en taxonomía y conservación: P. Pregunta; Mm. Marcador molecular; Ma. Método de análisis; Ref. Referencia. Table 1. Examples of phylogeographic applications in taxonomy and conservation: P. Question; Mm. Molecular marker; Ma. Analysis method; Ref. Reference. Taxonomía Acris spp. P Fronteras entre especies, biogeografía, evolución del comportamiento y conservación de

la rana "cricket"

Mm Fragmento del gen mitocondrial citocromo b, genes nucleares tyrosina, proopiomrlsnovortin y el inton 4 dr beta–cristalin Ma Ref

Árboles filogenéticos y Fst Gamble et al., 2008

Symphysodon spp. P Historia evolutiva y diversificación del genero de peces disco Mm Región control y exón 3 del gen RAG1 Ma Árboles filogenéticos, análisis de clados anidados (NCA), Fst, parámetros de diversidad genética, análisis de neutralidad, análisis de mismatch y prueba de Mantel Ref Farias & Hrbeck, 2008 Hypsiglena torquata P Fronteras geográficas y taxonómicas dentro de la serpiente nocturna americana M m

Nad4 y tRNAs

Ma Árboles filogenéticos, red de haplotipos y taxonomía Ref

Mulcahy, 2008

Baetis rhodani P Delimitación de especies crípticas de este complejo de insectos Mm Citocromo oxidasa subunidad I Ma

Árboles filogenéticos

Ref

Williams et al., 2006

Gambierdiscus toxicus P Generar una hipótesis robusta de clasificación del dinoflagelado Mm Región hipervariable D8–D10 del rDNA LSU y 18 rDNA SSU y morfológicos de la teca Ma Árboles filogenéticos, mapeo de caracteres morfológicos en la filogenia Ref

Richlen et al., 2008

filogenéticos, NCA y demográficos. Identificaron tres grupos monofiléticos, que corresponden a dos gru� pos morfológicos de Symphysodon aequifasciatus, y a uno previamente no reconocido. Los procesos asociados con dicha diferenciación son fragmen� tación en el pasado entre grupos y flujo genético restringido dentro de los mismos (Farias & Hrbek, 2008; tabla 1). En otro ejemplo donde se utilizaron múltiples genes al evaluar los límites entre espe�

cies de las ranas "cricket" norteamericanas Acris crepitans y A. gryllus (tabla 1), Gamble et al. (2008) mostraron que la distribución actual de las subes� pecies de A. crepitans, definidas morfológicamente y por vocalizaciones, no coinciden con los linajes evolutivos encontrados en su análisis. Encontraron también grupos filogeográficos distintos dentro de ambas especies, pero además una especie diferente dentro de éstos, Acris blanchardi.


Animal Biodiversity and Conservation 32.1 (2009)

Tabla 1. (Cont.) Conservación Zapus hudsonius preblei P Comprobación de estatus taxonómico a través de análisis filogeográficos del roedor Mm ADNmt y microsatélites Ma Índices de diversidad genética y molecular, pruebas de agrupamiento, árboles de distancia, Fst, análisis molecular de varianza (AMOVA), árboles filogenéticos, NCA Ref

King et al., 2006

Geochelone nigra P Reconstruir relaciones genealógicas de la tortuga gigante y su historia de colonización en dos islas de las Galápagos Mm ADNmt y microsatélites Ma Índices de diversidad genética y molecular, estimaciones de divergencia, análisis demográficos, distribución mistmach, NCA, pruebas de asignación Ref Beheregaray et al., 2003 Elephas maximus P Evaluación de las ESU’s y niveles taxonómico (subespecie) del elefante asiático Mm

ADNmt

MA Índices de diversidad molecular, árboles filogenéticos, AMOVA, estimación de divergencia,

análisis de mismatch

Ref Fleischer et al., 2001 Buteo jamaicensis P Determinar si el paisaje a escala regional influye en la diferenciación morfológica y

genética en especies altamente vágiles como el halcón cola roja

Mm

Microsatélites y caracteres morfológicos

Ma Índices de diversidad genética y molecular, pruebas de asignación, árboles de distancia, Fst, modelaje para estimación tiempo divergencia, componentes principales y prueba de Mantel Ref

Hull et al., 2008

Bradypus torquatus P

Estado de conservación, influencia de eventos históricos y recientes en la distribución

geográfica y ubicación de unidades de conservación y manejo del perezoso del bosque

atlántico brasileño

Mm Región control y citocromo oxidasa subunidad I Ma Árboles filogenéticos, índices de diversidad genética y molecular, análisis de varianza molecular, Fst, red de haplotipos, análisis de clados anidados y prueba de Mantel Ref Lara–Ruiz et al., 2008 Zoogoneticus quitzeoensis P Identificación de unidades de conservación de pez dulceacuícola Mm

Microsatélites

Ma Diversidad genética, impacto relativo de la deriva y la mutación paso a paso, cuellos de botella, índice de endogamia Ref Domínguez–Domínguez et al., 2007

65


66

La filogeografía en el ámbito de la conservación Lo mismo que en la taxonomía, la filogeografía es una herramienta importante en la biología de la conservación. La idea de proponer políticas de conservación en unidades por debajo del nivel de especie utilizando datos moleculares cobró impor� tancia significativa cuando se acuñó el concepto de Unidades Evolutivas Significativas (ESU’s por sus siglas en inglés; Ryder, 1986). A la fecha, el análisis de la diversidad genética por arriba del nivel de es� pecie está más o menos bien definido con base en métodos filogenéticos, sin embargo, el representar adecuadamente la diversidad genética por abajo del nivel de especie es un tema aún en discusión, y es precisamente aquí donde la filogeografía puede ser una herramienta importante. Esta idea de conservación a nivel infraespecífico pretende identificar de manera precisa unidades de manejo que reflejen la importancia evolutiva de los linajes dentro de las especies, para con ellos crear programas efectivos para la conservación de espe� cies en riesgo (Avise & Hamrick, 1996). Por ello, la información genética heredable ofrece una forma de delinear dichas unidades de conservación, y provee un contexto evolutivo a partir del cual desarrollar es� trategias y definir prioridades de conservación (King & Burke, 1999; Pertoldi et al., 2007). En este sentido, desde que se reconoció a la diversidad genética como el nivel basal de la biodiversidad (como fue recomendado en la Convención Sobre la Diversidad Biológica en Brasil, 1992), se ha desarrollado la genética de la conservación de manera exponencial. En la actualidad es común encontrar trabajos que usan caracteres moleculares para priorizar especies o poblaciones para su conservación. La genética de la conservación, de forma general, trata de hacer inferencias de eventos genéticos que son relevantes para el conocimiento y conservación de la diversidad. Ello parte de la base de un conoci� miento amplio de la diversidad biológica (incluyendo el reconocimiento de especies o unidades evolutivas independientes), hasta el conocimiento del tama� ño efectivo de las poblaciones (el cual difiere del concepto de un tamaño poblacional censal usado en ecología), la depresión genética por endogamia o por exogamia, cuellos de botella, el efecto de la fragmentación y el flujo genético dentro y entre las poblaciones y la reducción en la adecuación de las especies. En esencia, la genética de la conservación pretende, con base en la información genética y evolutiva que conlleva, no sólo identificar aquellas especies en peligro de extinción, sino los eventos que han podido afectarlas y cómo revertirlos, pero sobre todo intenta aportar las bases para conservar no sólo las especies (con la problemática que im� plica su "correcta" identificación), sino las unidades evolutivas dentro de ellas, con lo que es posible preservar los procesos evolutivos —previamente no considerados en conservación— pero indispensa� bles para la permanencia de las especies a largo plazo, y los factores evolutivos asociados (Crandall

Domínguez–Domínguez & Vázquez–Domínguez

et al., 2000; Moritz, 2002; Pertoldi et al., 2007). Sin embargo, existe una fuerte polémica en relación a cómo usar la información genética en la identificación de "grupos operativos" en conservación, la cual, de forma práctica, se enmarca dentro de tres grandes rubros: la viabilidad de las poblaciones a largo plazo (Loeschecke et al., 1994), la identificación de uni� dades biológicas para su protección (Moritz, 1994; Amato et al., 1995) y la identificación de las relaciones históricas entre poblaciones (Avise & Hamrick, 1996; Vázquez–Domínguez, 2002). Se han acuñado diversas definiciones para nombrar estos "grupos operativos", dentro de las cuales la más usada en estudios filogeográficos enmarcados en un contexto de conservación es el ya mencionado concepto de las ESU’s (Moritz, 1994, 2002). Este concepto ha sido incluso incorporado a la legislación ambiental de diversos países como una forma de identificar poblaciones distintas con fines de conservación, aunque su definición y ope� ratividad no son universalmente aceptados (Pennock & Dimmick, 1997). El primer concepto de ESU fue acuñado por Ryder (1986), quien lo definió como un grupo de organismos que han estado asilados de otros grupos de la misma especie por un periodo de tiempo suficiente para haber desarrollado di� vergencias genéticas significativas entre ellos. Más tarde, Moritz (1994, 2002) define una ESU como un grupo de individuos o poblaciones que presentan monofilia recíproca para marcadores mitocondriales y divergencias significativas en frecuencias alélicas en loci nucleares, pudiéndose referir a poblaciones, especies o subespecies, y considerando también el tiempo de aislamiento de dichas poblaciones. Algunas de las principales críticas mencionadas a estas aproximaciones es que ningún método filogenético es tan poderoso como para poder in� ferir una filogenia correcta, más cuando se trata de poblaciones dentro de una misma especie, y que por el contrario lo que se genera es una hipótesis con una cierta probabilidad de que lo sea. De igual forma, las variaciones estocásticas pueden generar arreglos erróneos en un árbol de poblaciones, por lo que la monofilia recíproca no siempre denota aisla� miento histórico (Crandall et al., 2000; Domínguez– Domínguez et al., 2008). En este sentido, el tamaño poblacional es un factor importante para que se dé la monofilia recíproca; así, si imaginamos el ejemplo donde una especie es dividida en dos poblaciones por una barrera, si una de las poblaciones aisladas es pequeña, el tiempo que tiene que transcurrir para que califique como una ESU es mucho menor que en el caso de que la población aislada sea de mayor tamaño (Neigel & Avise, 1986). Esto es aún más marcado en términos genéticos, ya que la mayoría de las especies o poblaciones con importancia para la conservación son naturalmente pequeñas, han sufrido un declive en su tamaño poblacional, han sido fragmentadas o simplemente perturbadas (Pearse & Crandall, 2004). También se considera que el concepto de ESU no hace suficiente énfasis en el potencial de las especies para maximizar el éxito evolutivo mediante


Animal Biodiversity and Conservation 32.1 (2009)

el mantenimiento de la diversidad adaptativa (Lynch et al., 1999), y que un planteamiento exclusivamente genético tiene graves riesgos en el reconocimiento del potencial adaptativo y la adecuación. Se ha mencionado también que si cualquier linaje evolutivo perfectamente diagnosticable tiene que ser elevado al nivel de especie, entonces el concepto de ESU está de más (Vogler & De Salle, 1994). Existen sin embargo muchos ejemplos donde se ha utilizado este concepto para propuestas y/o políticas de conservación. La fauna de las islas oceánicas ha sido una fuente importante de estudios genéticos y de conservación. Por ejemplo, las tortugas gigantes de las Galápagos (Geochelone nigra) comprenden una linaje que radió de manera rápida junto con la evolución del archipiélago, historia que se ha podido detallar utilizando ADNmt y microsatélites. Se ha observado que las poblaciones tienen mar� cada divergencia genética, historias demográficas contrastantes y estructura filogeográfica profunda, consistente con la historia geológica y biogeográfica de las islas. Dada la separación evolutiva tan antigua, se han propuesto cuatro ESU’s (dos en Santa Cruz, una en Pinzón y una en San Cristóbal; Beheregaray et al., 2003). En otro ejemplo no insular, se conoce que el elefante asiático (Elephas maximus) presenta poblaciones muy reducidas y fragmentadas, tanto por factores históricos como por dispersión reciente mediada por el hombre. Un estudio filogeográfico muestra dos clados que se separaron hace cerca de 1,2 millones de años, donde los individuos de los dos clados están presentes en todas las localidades de estudio, excepto Indonesia y Malasia; éstos últimos están en linajes basales, por los que se les confiere estatus de ESU’s (Fleischer et al., 2001). El uso de marcadores moleculares altamente variables en la conservación de especies en peligro y su uso en planes de manejo ha llevado también a la implementación de nuevos conceptos en la bio� logía de la conservación, por ejemplo las Unidades de Manejo (MU’s por sus siglas en inglés). Estas unidades intentan integrar la diversidad genética y la demografía de distintas poblaciones, las cuales tienen que ser manejadas de manera independiente para asegurar la viabilidad de una ESU (Moritz, 2002). Un ejemplo que combina la propuesta de ESU’s y MU’s es el trabajo con la especie de perezoso del bosque atlántico brasileño, Bradypus torquatus, la cual está en grave peligro por la pérdida del 93% de su área de distribución original. En un estudio gené� tico y filogeográfico de las poblaciones remanentes más grandes, se encontró que dichas poblaciones están aisladas reproductivamente y son altamente divergentes, resultado de fragmentación alopátrica. Así, se definieron al menos dos unidades evolutivas independientes, además de que poblaciones sepa� radas por más de 100 km deben ser consideradas unidades de manejo diferentes (Lara–Ruíz et al., 2008; tabla 1). Por otro lado, uno de los métodos más recientes que se han desarrollado dentro de la genética de poblaciones para fines de conservación es la com� binación de análisis filogeográficos, la genética del

67

paisaje ("landscape genetics") y las aproximaciones estadísticas, que en conjunto permiten definir la es� tructura poblacional a lo largo de la distribución y la historia demográfica de las poblaciones, identificando las poblaciones que deben ser conservadas junto con su distribución geográfica (Manel et al., 2003; Storfer et al., 2007). Bajo este enfoque, Hull et al. (2008) evaluaron los patrones de diferenciación y hábitat entre dos subespecies (oriental y occidental) del hal� cón cola roja Buteo jamaicensis (tabla 1). Utilizaron microsatélites y caracteres morfológicos y encontraron un patrón de aislamiento por distancia entre los sitios de anidación en el oeste. Dada la alta capacidad de dispersión de esta especie, dicho patrón sugiere que preferencias de hábitat específicas a las poblaciones —y no a la especie —, limitan la migración y resultan en estos patrones filogeográficos. La diversidad biológica incluye la variación genética entre especies y dentro de las especies, tanto en poblaciones geográfica y genéticamente separadas como a nivel de individuos dentro de cada población. Sin embargo, el encontrar un método que permita la correcta identificación de dichas unidades es prácticamente imposible, dada la gran diversidad de posibilidades que hay en la naturaleza, e incluso, dada la carencia de métodos adecuados o la correcta aplicación de los existentes. Por ello, en el proceso de la identificación de unidades de conservación se debe tener clara la división de la diversidad biológica en dos componentes: aquella resultante del aislamiento histórico y aquella que tiene que ver con la evolución adaptativa (Moritz, 2002; Vázquez–Domínguez, 2002, 2007). Una historia peculiar a este respecto es el caso del roedor Zapus hudsonius preblei, subespe� cie considerada como amenazada en la legislación norteamericana, que en un momento fue cuestionada taxonómicamente y se propuso que se eliminara de la lista de especies en peligro. En un estudio filogeo� gráfico reciente con microsatélites y dos regiones de ADNmt, el cual incluyó NCA, se concluyó que cada subespecie de Zapus hudsonius era distinta genéticamente y que sus haplotipos correspondían directamente con la distribución disyunta de cada una (King et al., 2006; tabla 1). Es importante mencionar que el uso exclusivo de datos moleculares para definir las estrategias de con� servación dentro de una especie puede ser altamente arriesgado. Para que los conceptos teóricos de la genética de la conservación puedan ser de utilidad en los planes de conservación, éstos tienen que ser prácticos en su aplicación. Los datos obtenidos de esta manera deben ser cuidadosamente evaluados junto con datos históricos, ecológicos, sociales y de distribución, con la finalidad de obtener una perspec� tiva más acertada y realista (Crandall et al., 2000). Recientemente se han incorporado otras fuentes de información a la identificación de grupos operacio� nales para conservación, como lo es la distribución espacial de la diversidad genética, datos taxonómicos y fenotípicos, los servicios ecológicos y ambientales, datos biogeográficos, aspectos socioeconómicos y datos etológicos (Doadrio et al., 1996; Dodson et al., 1998; Luck et al., 2003; Manel et al., 2003; Green,


68

2005; Domínguez–Domínguez et al., 2007, 2008). Por ejemplo, para la conservación de la diversidad de peces dulceacuícolas en particular, Doadrio et al. (1996) acuñaron el concepto de Unidad Operativa de Conservación (OCU por sus siglas en inglés), el cual es definido como una área continua limitada por fronteras geográficas bien definidas y habitada por una o más poblaciones que comparten el mismo patrón genético. Conclusiones Los estudios filogeográficos indudablemente han ayudado a la sistemática para reconocer y esta� blecer límites entre especies, sobre todo a nivel de especie y de subespecie. Asimismo, la aplicación de métodos de análisis filogeográficos ha sido una herramienta muy poderosa en estudios de biología de la conservación, significativamente permitiendo evaluar el potencial evolutivo de las especies. En particular, con base en los resultados obtenidos a través de análisis filogeográficos, ha sido posible probar hipótesis biogeográficas, describir procesos demográficos y evolutivos que resultan en unidades poblacionales diferenciables, así como inferir proce� sos que han determinado el origen, distribución y mantenimiento de la biodiversidad, información indis� pensable en taxonomía y conservación. Es evidente que ello ha sido posible no sólo a través del uso de métodos tradicionalmente filogeográficos, sino que es necesario incorporar aquellos de la genética de poblaciones y genética del paisaje, de demografía y de coalescencia, además de la utilización de di� versos genes y particularmente de ADNmt y ADNn, en combinación con caracteres morfológicos, etoló� gicos, ambientales, etc. De esta forma, con estudios filogeográficos como los descritos, se ha logrado precisar la taxonomía de especies y subespecies de forma adecuada, y también se han podido hacer propuestas significativas en conservación y manejo de especies animales, indistintamente si éstas son de amplia distribución o restringidas y en peligro. Referencias Amato, G., Wharton, D., Zainuddin, Z. Z. & Powell, J. R., 1995. Assessment of conservation units for the Sumatran rhinoceros (Dicerorbinus sumatrensis). Zoo Biology, 14: 395–402. Arbogast, B. S. & Kenagy, G. J., 2001. Comparative phylogeography as an integrative approach to historical biogeography. Journal of Biogeography, 28: 819–825. Avise, J. C., 2000. Phylogeography. Harvard Univ. Press, Cambridge. – 2008. Phylogeography: retrospect and prospect. Journal of Biogeography, 36: 3–15. Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, L. E., Reeb, C. A. & Saunders, N. C., 1987. Intraspecific phylogeography: The mitocondrial DNA bridge between population ge�

Domínguez–Domínguez & Vázquez–Domínguez

netics and systematics. Annual Review in Ecology and Systematics, 18: 489–522. Avise, J. C. & Ball, Jr, R. M., 1990. Principles of genealogical concordance in species concepts and biological taxonomy. Oxford Surveys in Evolutionary Biology, 7: 45–67. Avise, J. C. & Hamrick, J. L., 1996. Conservation genetics: case histories from nature. Chapman & Hall, New York. Beheregaray, L. B., Ciofi, C., Caccone, A., Gibbs, J. P. & Powell, J. R., 2003. Genetic divergence, phylogeography and conservation units of giant tortoises from Santa Cruz and Pinzon, Galapagos Islands. Conservation Genetics, 4: 31–46. Cracraft, J., 1983. Species concepts and speciation analysis. Current Ornithology, 1: 159–187. Crandall, K. A., Bininda–Emonds, O. R. P., Mace, G. M. & Wayne, R. K., 2000. Considering evolutionary processes in conservation biology. Trends in Ecology and Evolution, 15: 290–295. Crother, B. I., 1990. Is "some better than none" or do allele frequencies contain phylogenetically useful information? Cladistics, 6: 677–281. Davis, J. I. & Nixon, K. C., 1992. Population, genetic variation, and delimitation of phylogenetic species. Systematic Biology, 41: 421–435. Doadrio, I., Perdices, A. & Machordom, A., 1996. Allozymic variation of the endangered killifish Aphanius iberus and its application to conservation. Environmental Biology of Fishes, 45: 259–271. Dodson, J. J., Gibson, R. J., Cunjak, R. A., Friedland, K. D., Garcia de Leaniz, C., Gross, M. R., Newbury, R., Nielsen, J. L., Power, M. E. & Roy, S., 1998. Elements in the development of conservation plans for Atlantic salmon (Salmo salar). Canadian Journal of Fish and Aquatic Sciences, 55: 312–323. Domínguez–Domínguez, O., Alda, F., Pérez–Ponce de León, G., García–Garitagoitia, J. L. & Doadrio, I., 2008. Evolutionary history of the endangered fish Zoogoneticus quitzeoensis (Bean, 1898) (Cypri� nodontiformes: Goodeidae) using a sequential approach to phylogeography based on mitochon� drial and nuclear DNA data. BMC Evolutionary Biology, 8: 161. Domínguez–Domínguez, O., Boto, L., Alda, F., Pérez– Ponce de León, G. & Doadrio, I., 2007. Human impacts on drainages of the Mesa Central of Mexico and its genetic effects on an endangered fish, Zoogoneticus quitzeoensis. Conservation Biology, 21: 168–180. Donoghue, M. J., 1985. A critique of the biological species concept and recommendations for a phy� logenetic alternative. Bryologist, 88: 172–181. Farias, I. P. & Hrbek, T., 2008. Patterns of diversi� fication in the discus fishes (Symphysodon spp. Cichlidae) of the Amazon basin. Molecular Phylogenetics and Evolution, 49: 32–43. Fleischer, R. C., Perry, E. A., Muralidharan, K., Ste� vens, E. E. & Wemmer, C. M., 2001. Phylogeog� raphy of the Asian elephant (Elephas maximus) based on mitochondrial DNA. Evolution, 55: 1882–1892. Freeland, J. R., 2005. Molecular ecology. John Wiley


Animal Biodiversity and Conservation 32.1 (2009)

& Sons, England. Gamble, T., Berendzen, P. B., Shaffer, H. B., Starkey, D. E. & Simons, A. M., 2008. Species limits and phylogeography of North American cricket frogs (Acris: Hylidae). Molecular Phylogenetics and Evolution, 48: 112–125. Goldstein, P. Z., DeSalle, R., Amato, G. & Voger, A. P., 2000. Conservation genetics at the species boundary. Conservation Biology, 14: 120–131. Green, D. M., 2005. Designable units for status as� sessment of endangered species. Conservation Biology, 19: 1813–1820. Hardy, M. E., Grady, J. M. & Routman, E. J., 2002. Intraspecific phylogeography of the slender mad� tom: the complex evolutionary history of the Central Highlans of United States. Molecular Ecology, 11: 2393–2403. Hickerson, M. J., Dolman, G. & Moritz, C., 2006. Comparative phylogeographic summary statistics for testing simultaneous vicariance. Molecular Ecology, 15: 209–223. Hey, J. & Machado, C. A., 2003. The study of struc� tured populations–new hope for a difficult and divided science. Nature Reviews Genetics, 4: 53–543. Hudson, R. R., 1990. Gene genealogies and the coa� lescent process. In: Oxford surveys in evolutionary biology: 1–44 (D. Futuyma & J. Antonovics, Eds.). Oxford Univ. Press, Oxford. – 1998. Island models and the coalescent process. Molecular Ecology, 7: 413–418. Hull, J. M., Hull, A. C., Sacks, B. N., Smith. J. P. & Ernest, H. B., 2008. Landscape characteristics influence morphological and genetic differentia� tion in a widespread raptor (Buteo jamaicensis). Molecular Ecology, 17: 810–824. King, T. L. & Burke, T. ,1999. Special issue on gene conservation: identification and management of genetic diversity. Molecular Ecology, 8: S1–S3. King, T. L., Switzer, J. F., Morrison, C. L., Eackles, M. S., Young, C. C., Lubinski, B. A. & Cryan, P., 2006. Comprehensive genetic analyses re� veal evolutionary distinction of a mouse (Zapus hudsonius preblei) proposed for delisting from the US Endangered Species Act. Molecular Ecology, 15: 4331–4359. Knowles, L. L., 2008. Why does a method that fails continue to be used? Evolution, 62: 2713–2717. Knowles, L. L. & Maddison, W. P., 2002. Statisti� cal phylogeography. Molecular Ecology, 11: 2623–2635. Lanteri, A. & Confalonieri, V., 2003. Filogeografía: objetivos, métodos y ejemplos. In: Una prespectiva latinoamericana de la biogeografía: 185–194 (J. J. Morrone & J. Llorente, Eds.). CONABIO, México. Lara–Ruiz, P., Chiarello, A. G. & Fabrício, R. S., 2008. Extreme population divergence and conservation implications for the rare endangered Atlantic Forest sloth, Bradypus torquatus (Pilosa: Bradypodidae). Biological Conservation, 141: 1332–1342. Loeschcke, V., Tomiuk, V. J. & Jain, S. K., 1994. Conservation genetics. Birkhauser Verlag, Basel,

69

Switzerland. Luck, G. W., Daily, G. C. & Ehrlich, P. R., 2003. Popu� lation diversity and ecosystem services. Trends in Ecology and Evolution, 18: 331–336. Lynch, M., Pfrender, M. K., Spitze, N., Lehman, J., Hicks, D., Allen, L., Latta, M., Ottene, F. & Bogue, J., 1999. The quantitative and molecular genetic architecture of a subdivided species. Evolution, 53: 100–110. Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P., 2003. Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology and Evolution, 18: 189–197. McKritrick, M. C. & Zink, R. M., 1988. Species concept in ornithology. Condor, 90: 1–14. Moore, W. S., 1995. Inferring phylogenies from mtDNA variation: mitochondrial–gene trees versus nuclear–gene trees. Evolution, 49: 718–726. Moritz, C., 1994. Defining "evolutionarily significant units" for conservation. Trends in Ecology and Evolution, 9: 373–375. – 2002. Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology, 51: 238–254. Mulcahy, D. G., 2008. Phylogeography and spe� cies boundaries of the western North American Nightsnake (Hypsiglena torquata): Revisiting the subspecies concept. Molecular Phylogenetics and Evolution, 46: 1095–1115. Neigel, J. E. & Avise J. C., 1986. Phylogenetic relationships of mitocondrial DNA under various demographic models of speciation. In: Evolutionary processes and theory: 515–534 (E. Nevo & D. Karlin, Eds.). Academic Press, New York. Nielsen, R. & Beaumont, M. A., 2009. Statistical inferences in phylogeography. Molecular Ecology, 18: 1034–1047. Nixon, K. C. & Wheler, Q. D., 1990. An amplification of the phylogenetics species concept. Cladistics, 6: 211–223. Nordborg, M., 2000. Coalescent theory. In: Handbook of statistical genetics: 1–37 (D. J. Balding, M. J. Bishop & C. Cannings, Eds). John Wiley & Sons, London. Pearse, D. E. & Crandall, K. A., 2004. Beyond FST: Analysis of population genetic data for conserva� tion. Conservation Genetics, 5: 585–602. Pennock, D. S. & Dimmick, W. D., 1997. Critique of the Evolutionary Significant Unit as a definition for "Distinct Population Segments" under the U.S. Endangered Species Act. Conservation Biology, 11: 611–619. Pertoldi, C., Bijlsma, R., Loeschcke, V., 2007. Con� servation genetics in a globally changing environ� ment: present problems, paradoxes and future challenges. Biodiversity and Conservation, 16: 4147–4163. Petit, R. J., 2008. The coup de grâce for the nested clade phylogeographic analysis? Molecular Ecology, 17: 516–518. Richlen, M. L., Morton, S. L., Barber, P. H. & Lo� bel, S. P., 2008. Phylogeography, morphological variation and taxonomy of the toxic dinoflagellate


70

Gambierdiscus toxicus (Dinophyceae). Harmful Algae, 7: 614–629. Ryder, O. A., 1986. Species conservation and system� atic: the dilemma of subspecies. Trends in Ecology and Evolution, 1: 9–10. Sites Jr., J. W. & Crandall, K. A., 1997. Testing species boundaries in biodiversity studies. Conservation Biology, 11: 1289–1297. Smith, G. R., 1992. Introgression in fishes: significance for paleontology, cladistics, and evolutionary rates. Systematic Biology, 41: 41–57. Storfer, A., Murphy, M. A., Evans, J. S., Goldberg, C. S., Robinson, S., Spear, S. F., Dezzani, R., De� melle, E., Vierling, L. & Waits, L. P., 2007. Putting the "landscape" in landscape genetcs. Heredity, 98: 128–142. Templeton A. R., 1999. Using gene trees to infer species from testable null hypothesis: cohesion species in the Spalax ehrenbergi complex. In: Evolutionay theory and preocesses: Modern perspectives papers in honor of Eviatar Nevo: 171–192 (S. P. Wasser, Ed.). Kluwer Academic Publishers, Dordrecht. – 2001. Using phylogeographic analyses of gene trees to test species status and processes. Molecular Ecology, 10: 779–791. – 2004. Statistical phylogeography: methods of evaluating and minimizing inference errors. Molecular Ecology, 13: 789–809. – 2008. ������������������������������������������� Nested clade analysis: an extensively vali� dated method for strong phylogeographic inference. Molecular Ecology, 17: 1877–1880. – 2009. Statistical hypothesis testing in intraspecific phylogeography: nested clade phylogeographical analysis vs. approximate Bayesian computation. Molecular Ecology, 18: 319–331. Vázquez–Domínguez, E., 2002. Phylogeography, historical patterns and conservation of natural ar�

Domínguez–Domínguez & Vázquez–Domínguez

eas. In: Protected areas and the regional planning imperative in North America: 369–378 (G. Nelson, J. C. Day, L. M. Sportza, J. Loucky & C. Vásquez, Eds.). Univ. of Calgary Press, Canada. – 2007. Filogeografía y vertebrados. In: La Ecología molecular de plantas y animales: 441–466 (L. Eguiarte, V. Souza, & X. Aguirre, Eds.). INE, Mexico. Vázquez–Domínguez, E., Castañeda–Rico, S., Garrido–Garduño, T. & Gutiérrez–García, T. A. (en prensa). Avances metodológicos para el estudio conjunto de la información genética, genealógica y geográfica en análisis evolutivos y de distribución. Revista Chilena de Historia Natural. Vázquez–Domínguez, E., Hernández–Valdés, A., Rojas–Santoyo, A. & Zambrano, L., 2009. ���� Con� trasting genetic structure in two codistributed freshwater fish species inhabiting highly seasonal systems. Revista Mexicana de Biodiversidad, 80: 181–192. Vogler, A. P. & DeSalle, R., 1994. Diagnosing units of conservation management. Conservation Biology, 6: 170–178. Williams, H. C., Ormerod, S. J. & Bruford, M. W., 2006. Molecular systematics and phylogeography of the cryptic species complex Baetis rhodani (Epheme� roptera, Baetidae). Molecular Phylogenetics and Evolution, 40: 370–382. Zhang, A. B., Kubota, K., Takami, Y., Kim, J. L., Kim, J. K. & Sota, T., 2005. Species status and phylogeography of two closely related Coptolabrus species (Coleoptera: Carabidae) in South Korea inferred from mitochondrial and nuclear gene sequences. Molecular Ecology, 14: 3823–3841. Zink, R. M., 2002. Methods in comparative phylogeography, and their application to studying evolution in the North American aridlands. Integrative and Comparative Biology, 42: 953–959.


Animal Biodiversity and Conservation 32.1 (2009)

Animal Biodiversity and Conservation Animal Biodiversity and Conservation (abans Miscel·lània Zoològica) és una revista inter­ disciplinària publicada, des de 1958, pel Museu de Ciències Naturals de Barcelona. Inclou articles d'inves­tigació empírica i teòrica en totes les àrees de la zoologia (sistemàtica, taxo­nomia, morfo­logia, biogeografia, ecologia, etologia, fisiologia i genètica) procedents de totes les regions del món amb especial énfasis als estudis que d'una manera o altre tinguin relevància en la biología de la conservació. La revista no publica compilacions bibliogràfiques, catàlegs, llistes d'espècies o cites puntuals. Els estudis realit­ zats amb espècies rares o protegides poden no ser acceptats tret que els autors disposin dels permisos corresponents. Cada volum anual consta de dos fascicles. Animal Biodiversity and Conservation es troba registrada en la majoria de les bases de dades més importants i està disponible gratuitament a internet a http://www.bcn.cat/ABC, de manera que permet una difusió mundial dels seus articles. Tots els manuscrits són revisats per l'editor execu­ tiu, un editor i dos revisors independents, triats d'una llista internacional, a fi de garantir–ne la qualitat. El procés de revisió és ràpid i constructiu. La publicació dels treballs acceptats es fa normalment dintre dels 12 mesos posteriors a la recepció. Una vegada hagin estat acceptats passaran a ser propietat de la revista. Aquesta es reserva els drets d’autor, i cap part dels treballs no podrà ser reproduïda sense citar–ne la procedència.

Normes de publicació Els treballs s'enviaran preferentment de forma electrònica (abc@bcn.cat). El format preferit és un document Rich Text Format (RTF) o DOC que inclogui les figures i les taules. Les figures s'hauran d'enviar també en arxius apart en format TIFF, EPS o JPEG. Si s'opta per la versió impresa, s'han d'enviar quatre còpies del treball juntament amb una còpia en disquet a la Secretaria de Redacció. Cal incloure, juntament amb l'article, una carta on es faci constar que el treball està basat en investigacions originals no publicades anterior­ment i que està sotmès a Animal Biodiversity and Conservation en exclusiva. A la carta també ha de constar, per a aquells treballs en que calgui manipular animals, que els autors disposen dels permisos necessaris i que compleixen la normativa de protecció animal vigent. També es poden suggerir possibles assessors. Quan l'article sigui acceptat, els autors hauran d'enviar a la Redacció una còpia impresa de la versió final acompanyada d'un disquet indicant el progra­ ma utilitzat (preferiblement en Word). Les proves d'impremta enviades a l'autor per a la correcció, seran retornades al Consell Editor en el termini de 10 dies. Aniran a càrrec dels autors les despeses degudes a modificacions substancials introduïdes per ells en el text original acceptat. ISSN: 1578–665X

I

El primer autor rebrà 50 separates del treball sense càrrec a més d'una separata electrònica en format PDF. Manuscrits Els treballs seran presentats en format DIN A­–4 (30 línies de 70 espais cada una) a doble espai i amb totes les pàgines numerades. Els manus­crits han de ser complets, amb taules i figures. No s'han d'enviar les figures originals fins que l'article no hagi estat acceptat. El text es podrà redactar en anglès, castellà o català. Se suggereix als autors que enviïn els seus treballs en anglès. La revista els ofereix, sense cap càrrec, un servei de correcció per part d'una persona especialitzada en revistes científiques. En tots els casos, els textos hauran de ser redactats correctament i amb un llenguatge clar i concís. La redacció del text serà impersonal, i s'evitarà sempre la primera persona. Els caràcters cursius s’empraran per als noms científics de gèneres i d’espècies i per als neologis­ mes intraduïbles; les cites textuals, independentment de la llengua, seran consignades en lletra rodona i entre cometes i els noms d’autor que segueixin un tàxon aniran en rodona. Quan se citi una espècie per primera vegada en el text, es ressenyarà, sempre que sigui possible, el seu nom comú. Els topònims s’escriuran o bé en la forma original o bé en la llengua en què estigui escrit el treball, seguint sempre el mateix criteri. Els nombres de l’u al nou, sempre que estiguin en el text, s’escriuran amb lletres, excepte quan precedeixin una unitat de mesura. Els nombres més grans s'escriuran amb xifres excepte quan comencin una frase. Les dates s’indicaran de la forma següent: 28 VI 99 (un únic dia); 28, 30 VI 99 (dies 28 i 30); 28–30 VI 99 (dies 28 a 30). S’evitaran sempre les notes a peu de pàgina. Format dels articles Títol. Serà concís, però suficientment indicador del contingut. Els títols amb desig­nacions de sèries numèriques (I, II, III, etc.) seran acceptats previ acord amb l'editor. Nom de l’autor o els autors. Abstract en anglès que no ultrapassi les 12 línies mecanografiades (860 espais) i que mostri l’essència del manuscrit (introducció, material, mètodes, resultats i discussió). S'evitaran les especulacions i les cites bibliogràfiques. Estarà encapçalat pel títol del treball en cursiva. Key words en anglès (sis com a màxim), que orientin sobre el contingut del treball en ordre d’importància. Resumen en castellà, traducció de l'Abstract. De la traducció se'n farà càrrec la revista per a aquells autors que no siguin castellano­parlants. Palabras clave en castellà. © 2009 Museu de Ciències Naturals


II

Adreça postal de l’autor o autors. (Títol, Nom, Abstract, Key words, Resumen, Pala­ bras clave i Adreça postal, conformaran la primera pàgina.) Introducción. S'hi donarà una idea dels antecedents del tema tractat, així com dels objectius del treball. Material y métodos. Inclourà la informació pertinent de les espècies estudiades, aparells emprats, mèto­ des d’estudi i d’anàlisi de les dades i zona d’estudi. Resultados. En aquesta secció es presentaran úni­ cament les dades obtingudes que no hagin estat publicades prèviament. Discusión. Es discutiran els resultats i es compa­ raran amb treballs relacionats. Els sug­geriments de recerques futures es podran incloure al final d’aquest apartat. Agradecimientos (optatiu). Referencias. Cada treball haurà d’anar acom­ panyat de les referències bibliogràfiques citades en el text. Les referències han de presentar–se segons els models següents (mètode Harvard): * Articles de revista: Conroy, M. J. & Noon, B. R., 1996. Mapping of spe­ cies richness for conservation of biological diversity: conceptual and methodological issues. Ecological Applications, 6: 763–773. * Llibres o altres publicacions no periòdiques: Seber, G. A. F., 1982. The estimation of animal abundance. C. Griffin & Company, London. * Treballs de contribució en llibres: Macdonald, D. W. & Johnson, D. P., 2001. Dispersal in theory and practice: consequences for conserva­ tion biology. In: Dispersal: 358–372 (T. J. Clober, E. Danchin, A. A. Dhondt & J. D. Nichols, Eds.). Oxford University Press, Oxford. * Tesis doctorals: Merilä, J., 1996. Genetic and quantitative trait vari­ ation in natural bird populations. Tesis doctoral, Uppsala University. * Els treballs en premsa només han d’ésser citats si han estat acceptats per a la publicació: Ripoll, M. (in press). The relevance of population

studies to conservation biology: a review. Anim. Biodivers. Conserv. La relació de referències bibliogràfiques d’un tre­ ball serà establerta i s’ordenarà alfabè­ticament per autors i cronològicament per a un mateix autor, afegint les lletres a, b, c,... als treballs del mateix any. En el text, s’indi­caran en la forma usual: "... segons Wemmer (1998)...", "...ha estat definit per Robinson & Redford (1991)...", "...les prospeccions realitzades (Begon et al., 1999)...". Taules. Es numeraran 1, 2, 3, etc. i han de ser sempre ressenyades en el text. Les taules grans seran més estretes i llargues que amples i curtes ja que s'han d'encaixar en l'amplada de la caixa de la revista. Figures. Tota classe d’il·lustracions (gràfics, figures o fotografies) entraran amb el nom de figura i es numeraran 1, 2, 3, etc. i han de ser sempre ressen­ yades en el text. Es podran incloure fotografies si són imprescindibles. Si les fotografies són en color, el cost de la seva publicació anirà a càrrec dels au­ tors. La mida màxima de les figures és de 15,5 cm d'amplada per 24 cm d'alçada. S'evitaran les figures tridimensionals. Tant els mapes com els dibuixos han d'incloure l'escala. Els ombreigs preferibles són blanc, negre o trama. S'evitaran els punteigs ja que no es repro­dueixen bé. Peus de figura i capçaleres de taula. Seran clars, concisos i bilingües en la llengua de l’article i en anglès. Els títols dels apartats generals de l’article (Intro­ ducción, Material y métodos, Resultados, Discusión, Conclusiones, Agradecimientos y Referencias) no aniran numerats. No es poden utilitzar més de tres nivells de títols. Els autors procuraran que els seus treballs originals no passin de 20 pàgines (incloent–hi figures i taules). Si a l'article es descriuen nous tàxons, caldrà que els tipus estiguin dipositats en una insti­tució pública. Es recomana als autors la consulta de fascicles recents de la revista per tenir en compte les seves normes.


Animal Biodiversity and Conservation 32.1 (2009)

Animal Biodiversity and Conservation Animal Biodiversity and Conservation (antes Miscel·lània Zoològica) es una revista inter­ disciplinar, publicada desde 1958 por el Museo Ciencias Naturales de Barcelona. Incluye artículos de investigación empírica y teórica en todas las áreas de la zoología (sistemática, taxo­nomía, mor­ fología, biogeografía, ecología, etología, fisiología y genética) procedentes de todas las regiones del mundo, con especial énfasis en los estudios que de una manera u otra tengan relevancia en la biología de la conservación. La revista no publica compila­ ciones bibliográficas, catálogos, listas de especies sin más o citas puntuales. Los estudios realizados con especies raras o protegidas pueden no ser aceptados a no ser que los autores dispongan de los permisos correspondientes. Cada volumen anual consta de dos fascículos. Animal Biodiversity and Conservation está re­ gistrada en todas las bases de datos importantes y además está disponible gratuitamente en internet en http://www.bcn.cat/ABC, lo que permite una difusión mundial de sus artículos. Todos los manuscritos son revisados por el editor ejecutivo, un editor y dos revisores independientes, elegidos de una lista internacional, a fin de garan­ tizar su calidad. El proceso de revisión es rápido y constructivo, y se realiza vía correo electrónico siem­ pre que es posible. La publicación de los trabajos aceptados se realiza con la mayor rapidez posible, normalmente dentro de los 12 meses siguientes a la recepción del trabajo. Una vez aceptado, el trabajo pasará a ser propie­ dad de la revista. Ésta se reserva los derechos de autor, y ninguna parte del trabajo podrá ser reprodu­ cida sin citar su procedencia.

Normas de publicación Los trabajos se enviarán preferentemente de forma electrónica (abc@bcn.cat). El formato preferido es un documento Rich Text Format (RTF) o DOC, que incluya las figuras y las tablas. Las figuras deberán enviarse también en archivos separados en formato TIFF, EPS o JPEG. Si se opta por la versión impresa, deberán remitirse cuatro copias juntamente con una copia en disquete a la Secretaría de Redacción. Debe incluirse, con el artículo, una carta donde conste que el trabajo versa sobre inves­tigaciones originales no publi­cadas an­te­rior­mente y que se somete en ex­ clusiva a Animal Biodiversity and Conservation. En dicha carta también debe constar, para trabajos donde sea necesaria la manipulación de animales, que los autores disponen de los permisos necesa­ rios y que han cumplido la normativa de protección animal vigente. Los autores pueden enviar también sugerencias para asesores. Cuando el trabajo sea aceptado los autores de­ berán enviar a la Redacción una copia impresa de la versión final junto con un disquete del manuscrito ISSN: 1578–665X

III

preparado con un pro­cesador de textos e indican­ do el programa utilizado (preferiblemente Word). Las pruebas de imprenta enviadas a los autores deberán remitirse corregidas al Consejo Editor en el plazo máximo de 10 días. Los gastos debidos a modificaciones sustanciales en las pruebas de im­ pren­­ta, introducidas por los autores, irán a ­cargo de los mismos. El primer autor recibirá 50 separatas del trabajo sin cargo alguno y una copia electrónica en for­ mato PDF. Manuscritos Los trabajos se presentarán en formato DIN A–4 (30 líneas de 70 espacios cada una) a doble espacio y con las páginas numeradas. Los manuscritos de­ ben estar completos, con tablas y figuras. No enviar las figuras originales hasta que el artículo haya sido aceptado. El texto podrá redactarse en inglés, castellano o catalán. Se sugiere a los autores que envíen sus trabajos en inglés. La revista ofre­ce, sin cargo ningu­ no, un servicio de corrección por parte de una persona especializada en revistas científicas. En cualquier caso debe presentarse siempre de forma correcta y con un lenguaje claro y conciso. La redacción del texto deberá ser impersonal, evitán­dose siempre la primera persona. Los caracteres en cursiva se utilizarán para los nombres científicos de géneros y especies y para los neologismos que no tengan traducción; las citas textuales, independientemente de la lengua en que estén, irán en letra redonda y entre comillas; el nombre del autor que sigue a un taxón se escribirá también en redonda. Al citar por primera vez una especie en el trabajo, deberá especificarse siempre que sea posible su nombre común. Los topónimos se escribirán bien en su forma original o bien en la lengua en que esté redactado el trabajo, siguiendo el mismo criterio a lo largo de todo el artículo. Los números del uno al nueve se escribirán con letras, a excepción de cuando precedan una unidad de medida. Los números mayores de nueve se escribirán con cifras excepto al empezar una frase. Las fechas se indicarán de la siguiente forma: 28 VI 99 (un único día); 28, 30 VI 99 (días 28 y 30); 28–30 VI 99 (días 28 al 30). Se evitarán siempre las notas a pie de página. Formato de los artículos Título. Será conciso pero suficientemente explicativo del contenido del trabajo. Los títulos con designacio­ nes de series numéricas (I, II, III, etc.) serán aceptados excepcionalmente previo consentimiento del editor. Nombre del autor o autores. Abstract en inglés de 12 líneas mecanografiadas (860 espacios como máximo) y que exprese la esen­ cia del manuscrito (introducción, material, métodos, resultados y discusión). Se evitarán las especula­ © 2009 Museu de Ciències Naturals


IV

ciones y las citas bibliográficas. Irá encabezado por el título del trabajo en cursiva. Key words en inglés (un máximo de seis) que especifiquen el contenido del trabajo por orden de importancia. Resumen en castellano, traducción del abstract. Su traducción puede ser solicitada a la revista en el caso de autores que no sean castellano hablan­tes. Palabras clave en castellano. Dirección postal del autor o autores. (Título, Nombre, Abstract, Key words, Resumen, Palabras clave y Dirección postal conformarán la primera página.) Introducción. En ella se dará una idea de los ante­ cedentes del tema tratado, así como de los objetivos del trabajo. Material y métodos. Incluirá la información referente a las especies estudiadas, aparatos utilizados, me­ todología de estudio y análisis de los datos y zona de estudio. Resultados. En esta sección se presentarán úni­ camente los datos obtenidos que no hayan sido publicados previamente. Discusión. Se discutirán los resultados y se compara­ rán con otros trabajos relacionados. Las sugerencias sobre investigaciones futuras se podrán incluir al final de este apartado. Agradecimientos (optativo). Referencias. Cada trabajo irá acompañado de una bibliografía que incluirá únicamente las publicaciones citadas en el texto. Las referencias deben presentarse según los modelos siguientes (método Harvard): * Artículos de revista: Conroy, M. J. & Noon, B. R., 1996. Mapping of spe­ cies richness for conservation of biological diversity: conceptual and methodological issues. Ecological Applications, 6: 763–773. * Libros y otras publicaciones no periódicas: Seber, G. A. F., 1982. The estimation of animal abundance. C. Griffin & Company, London. * Trabajos de contribución en libros: Macdonald, D. W. & Johnson, D. P., 2001. Dispersal in theory and practice: consequences for conserva­ tion biology. In: Dispersal: 358–372 (T. J. Clober, E. Danchin, A. A. Dhondt & J. D. Nichols, Eds.). Oxford University Press, Oxford.

* Tesis doctorales: Merilä, J., 1996. Genetic and quantitative trait vari­ ation in natural bird populations. Tesis doctoral, Uppsala University. * Los trabajos en prensa sólo se citarán si han sido aceptados para su publicación: Ripoll, M. (in press). The relevance of population studies to conservation biology: a review. Anim. Biodivers. Conserv. Las referencias se ordenarán alfabética­men­te por autores, cronológicamen­te para un mismo autor y con las letras a, b, c,... para los tra­bajos de un mismo autor y año. En el texto las referencias bibliográficas se indicarán en la forma usual: "... según Wemmer (1998)...", "...ha sido definido por Robinson & Redford (1991)...", "...las prospecciones realizadas (Begon et al., 1999)...". Tablas. Se numerarán 1, 2, 3, etc. y se reseñarán todas en el texto. Las tablas grandes deben ser más estrechas y largas que anchas y cortas ya que deben ajustarse a la caja de la revista. Figuras. Toda clase de ilustraciones (gráficas, figuras o fotografías) se considerarán figuras, se numerarán 1, 2, 3, etc. y se citarán todas en el texto. Pueden incluirse fotografías si son imprescindibles. Si las fotografías son en color, el coste de su publicación irá a cargo de los autores. El tamaño máximo de las figuras es de 15,5 cm de ancho y 24 cm de alto. Deben evitarse las figuras tridimen­sionales. Tanto los mapas como los dibujos deben incluir la escala. Los sombreados preferibles son blanco, negro o trama. Deben evitarse los punteados ya que no se reproducen bien. Pies de figura y cabeceras de tabla. Serán claros, concisos y bilingües en castellano e inglés. Los títulos de los apartados generales del artículo (Introducción, Material y métodos, Resultados, Dis­ cusión, Agradecimientos y Referencias) no se nume­ rarán. No utilizar más de tres niveles de títulos. Los autores procurarán que sus trabajos originales no excedan las 20 páginas incluidas figuras y tablas. Si en el artículo se describen nuevos taxones, es imprescindible que los tipos estén depositados en alguna institución pública. Se recomienda a los autores la consulta de fascículos recientes de la revista para seguir sus directrices.


Animal Biodiversity and Conservation 32.1 (2009)

V

Animal Biodiversity and Conservation

Manuscripts

Animal Biodiversity and Conservation (formerly Miscel·lània Zoològica) is an interdisciplinary journal published by the Natural Science Museum of Barce­ lona since 1958. It includes empirical and theoretical research from around the world that examines any aspect of Zoology (Systematics, Taxonomy, Morphol­ ogy, Biogeography, Ecology, Ethology, Physiology and Genetics). It gives special emphasis to studies related to Conservation Biology. The journal does not publish bibliographic compilations, listings, catalogues or col­ lections of species, or isolated descriptions of a single specimens. Studies concerning rare or protected species will not be accepted unless the authors have been granted the relevant permits or authorisation. Each annual volume consists of two issues. Animal Biodiversity and Conservation is regis­ tered in all principal data bases and is freely available online at http://www.bcn.cat/ABC, assuring world–wide access to articles published therein. All manuscripts are screened by the Executive Edi­ tor, an Editor and two independent reviewers so as to guarantee the quality of the papers. The review process aims to be rapid and constructive. Once accepted, papers are published as soon as is practicable. This is usually within 12 months of initial submission. Upon acceptance, manuscripts become the prop­ erty of the journal, which reserves copyright, and no published material may be reproduced or cited without acknowledging the source of information.

Manuscripts must be presented in DIN A–4 format, 30 lines, 70 keystrokes per page. Maintain double spacing throughout. Number all pages. Manuscripts should be complete with figures and tables. Do not send original figures until the paper has been accepted. The text may be written in English, Spanish or Cata­ lan, though English is preferred. The journal provides linguistic revision by an author’s editor. Care must be taken to use correct wording and the text should be written concisely and clearly. Scientific names of gen­ era and species as well as untranslatable neologisms must be in italics. Quotations in whatever language used must be typed in ordinary print between quota­ tion marks. The name of the author following a taxon should also be written in lower case letters. When referring to a species for the first time in the text, both common and scientific names should be given when possible. Do not capitalize common names of species unless they proper nouns (e.g. Iberian rock lizard). Place names may appear ei­ ther in their original form or in the langua ge of the manuscript, but care should be taken to use the same criteria throughout the text. Numbers one to nine should be written in full within the text except when preceding a measure. Higher numbers should be written in numerals except at the beginning of a sentence. Specify dates as follows: 28 VI 99 (for a single day); 28, 30 VI 99 (referring to two days, e.g. 28th and 30th), 28–30 VI 99 (for more than two consecu­ tive days, e.g. 28th to 30th). Footnotes should not be used.

Information for authors Electronic submission of papers is encouraged (abc@bcn.cat). The preferred format is DOC or RTF. All figures must be readable by Word, embedded at the end of the manuscript and submitted together in a separate attachment in a TIFF, EPS or JPEG file. Tables should be placed at the end of the document. If a printed version is sent, four copies should be for­ warded to the Editorial Office, together with a copy on computer disc. A cover letter stating that the article reports original research that has not been published elsewhere and has been submitted exclusively for consideration in Animal Biodiversity and Conservation is also necessary. When animal manipulation has been necessary, the cover letter should also specify that the authors follow current norms on the protec­ tion of animal species and that they have obtained all relevant permits and authorisations. Authors may suggest referees for their papers. Once an article has been accepted, authors should send a paper copy and an electronic copy of the final version. Please identify software (preferably Word). Proofs sent to the authors for correction should be returned to the Editorial Board within 10 days. Expenses due to any substantial alterations of the proofs will be charged to the authors. The first author will receive 50 reprints free of charge and an electronic version of the article in PDF format. ISSN: 1578–665X

Formatting of articles Title. Must be concise but as informative as possible. Numbering of parts (I, II, III, etc.) should be avoided and will be subject to the Editor’s consent. Name of author or authors. Abstract in English, no longer than 12 typewritten lines (840 spaces), covering the contents of the article (introduction, material, methods, results and discussion). Speculation and literature citation should be avoided. The abstract should begin with the title in italics. Key words in English (no more than six) should express the precise contents of the manuscript in order of relevance. Resumen in Spanish, translation of the Abstract. Summaries of articles by non–Spanish speaking au­ thors will be translated by the journal on request. Palabras clave in Spanish. Address of the author or authors. (Title, Name, Abstract, Key words, Resumen, Palabras clave and Address should constitute the first page.) Introduction. Should include the historical back­ ground of the subject as well as the aims of the paper. © 2009 Museu de Ciències Naturals


VI

Material and methods. This section should provide relevant information on the species studied, materi­ als, methods for collecting and analysing data, and the study area. Results. Report only previously unpublished results from the present study. Discussion. The results and their comparison with re­ lated studies should be discussed. Suggestions for future research may be given at the end of this section. Acknowledgements (optional). References. All manuscripts must include a bibliog­ raphy of the publications cited in the text. References should be presented as in the following examples (Harvard method): * Journal articles: Conroy, M. J. & Noon, B. R., 1996. Mapping of spe­ cies richness for conservation of biological diversity: conceptual and methodological issues. Ecological Applications, 6: 763–773. * Books or other non–periodical publications: Seber, G. A. F., 1982. The estimation of animal abundance. C. Griffin & Company, London. * Contributions or chapters of books: Macdonald, D. W. & Johnson, D. P., 2001. Dispersal in theory and practice: consequences for conserva­ tion biology. In: Dispersal: 358–372 (T. J. Clober, E. Danchin, A. A. Dhondt & J. D. Nichols, Eds.). Oxford University Press, Oxford. * Ph. D. Thesis: Merilä, J., 1996. Genetic and quantitative trait variation in natural bird populations. Ph. D. Thesis, Uppsala University. * Works in press should only be cited if they have been accepted for publication: Ripoll, M. (in press). The relevance of population studies to conservation biology: a review. Anim. Biodivers. Conserv. References must be set out in alphabetical and

chronological order for each author, adding the letters a, b, c,... to papers of the same year. Bibliographic citations in the text must appear in the usual way: "... according to Wemmer (1998)...", "...has been defined by Robinson & Redford (1991)...", "...the prospections that have been carried out (Begon et al., 1999)..." Tables. Must be numbered in Arabic numerals with reference in the text. Large tables should be narrow (across the page) and long (down the page) rather than wide and short, so that they can be fitted into the column width of the journal. Figures. All illustrations (graphs, drawings, photo­ graphs) should be termed as figures, and numbered consecutively in Arabic numerals (1, 2, 3, etc.) with reference in the text. Glossy print photographs, if essential, may be included. The Journal will publish colour photographs but the author will be charged for the cost. Figures have a maximum size of 15.5 cm wide by 24 cm long. Figures should not be tridimen­ sional. Any maps or drawings should include a scale. Shadings should be kept to a minimum and preferably with black, white or bold hatching. Stippling should be avoided as it may be lost in reproduction. Legends of tables and figures. Legends of tables and figures should be clear, concise, and written both in English and Spanish. Main headings (Introduction, Material and methods, Results, Discussion, Acknowledgements and Refer­ ences) should not be numbered. Do not use more than three levels of headings. Manuscripts should not exceed 20 pages including figures and tables. If the article describes new taxa, type material must be deposited in a public institution. Authors are advised to consult recent issues of the journal and follow its conventions.


Animal Biodiversity and Conservation 32.1 (2009)

Animal Biodiversity and Conservation Subscription Form  Please enter our subscription to Animal Biodiversity and Conservation  66 e Spain  69 e Europe  76 e rest of world  Single use subscription:  21 e Spain  24 e Europe  31 e rest of world  Please despatch my issues by air mail (supplement of 6 e for outside Europe)

 Please send me the Instructions to authors

Name Institution

Address

Payment method International Cheque payable to Institut de Cultura de Barcelona and drawn against a Spanish bank. Send cheque by postal mail to: Lluïsa Arroyo Dept. of Scientific Publications Museu de Ciències Naturals de Barcelona Psg. Picasso s/n. 08003 Barcelona, Spain Bank Transfer to Caixa d’Estalvis i Pensions de Barcelona ("La Caixa") IBAN: ES03 2100 3000 1422 0170 1046 Swicht code / bic code: CAIX ES BB

Send this order form by postal mail to:

Lluïsa Arroyo Dept. of Scientific Publications Museu de Ciències Naturals de Barcelona Psg. Picasso s/n. 08003 Barcelona, Spain

VII


"La tortue greque" Oeuvres du Comte de Lacépède comprenant L'Histoire Naturelle des Quadrupèdes Ovipares, des Serpents, des Poissons et des Cétacés; Nouvelle édition avec planches coloriées dirigée par M. A. G. Desmarest; Bruxelles: Th. Lejeuné, Éditeur des oeuvres de Buffon, 1836. Pl. 7

Editor executiu / Editor ejecutivo / Executive Editor Joan Carles Senar

Secretaria de Redacció / Secretaría de Redacción / Editorial Office

Secretària de Redacció / Secretaria de Redacción / Managing Editor Montserrat Ferrer

Museu de Zoologia Passeig Picasso s/n 08003 Barcelona, Spain Tel. +34–93–3196912 Fax +34–93–3104999 E–mail mzbpubli@intercom.es

Consell Assessor / Consejo asesor / Advisory Board Oleguer Escolà Eulàlia Garcia Anna Omedes Josep Piqué Francesc Uribe

Editors / Editores / Editors Antonio Barbadilla Univ. Autònoma de Barcelona, Bellaterra, Spain Xavier Bellés Centre d' Investigació i Desenvolupament CSIC, Barcelona, Spain Juan Carranza Univ. de Extremadura, Cáceres, Spain Luís Mª Carrascal Museo Nacional de Ciencias Naturales CSIC, Madrid, Spain Adolfo Cordero Univ. de Vigo, Vigo, Spain Mario Díaz Univ. de Castilla–La Mancha, Toledo, Spain Xavier Domingo Univ. Pompeu Fabra, Barcelona, Spain Francisco Palomares Estación Biológica de Doñana, Sevilla, Spain Francesc Piferrer Inst. de Ciències del Mar CSIC, Barcelona, Spain Ignacio Ribera The Natural History Museum, London, United Kingdom Alfredo Salvador Museo Nacional de Ciencias Naturales, Madrid, Spain José Luís Tellería Univ. Complutense de Madrid, Madrid, Spain Francesc Uribe Museu de Zoologia de Barcelona, Barcelona, Spain Consell Editor / Consejo editor / Editorial Board José A. Barrientos Univ. Autònoma de Barcelona, Bellaterra, Spain Jean C. Beaucournu Univ. de Rennes, Rennes, France David M. Bird McGill Univ., Québec, Canada Mats Björklund Uppsala Univ., Uppsala, Sweden Jean Bouillon Univ. Libre de Bruxelles, Brussels, Belgium Miguel Delibes Estación Biológica de Doñana CSIC, Sevilla, Spain Dario J. Díaz Cosín Univ. Complutense de Madrid, Madrid, Spain Alain Dubois Museum national d’Histoire naturelle CNRS, Paris, France John Fa Durrell Wildlife Conservation Trust, Trinity, United Kingdom Marco Festa–Bianchet Univ. de Sherbrooke, Québec, Canada Rosa Flos Univ. Politècnica de Catalunya, Barcelona, Spain Josep Mª Gili Inst. de Ciències del Mar CMIMA–CSIC, Barcelona, Spain Edmund Gittenberger Rijksmuseum van Natuurlijke Historie, Leiden, The Netherlands Fernando Hiraldo Estación Biológica de Doñana CSIC, Sevilla, Spain Patrick Lavelle Inst. Français de recherche scient. pour le develop. en cooperation, Bondy, France Santiago Mas–Coma Univ. de Valencia, Valencia, Spain Joaquín Mateu Estación Experimental de Zonas Áridas CSIC, Almería, Spain Neil Metcalfe Univ. of Glasgow, Glasgow, United Kingdom Jacint Nadal Univ. de Barcelona, Barcelona, Spain Stewart B. Peck Carleton Univ., Ottawa, Canada Eduard Petitpierre Univ. de les Illes Balears, Palma de Mallorca, Spain Taylor H. Ricketts Stanford Univ., Stanford, USA Joandomènec Ros Univ. de Barcelona, Barcelona, Spain Valentín Sans–Coma Univ. de Málaga, Málaga, Spain Tore Slagsvold Univ. of Oslo, Oslo, Norway

Animal Biodiversity and Conservation 24.1, 2001 © 2001 Museu de Zoologia, Institut de Cultura, Ajuntament de Barcelona Autoedició: Montserrat Ferrer Fotomecànica i impressió: Sociedad Cooperativa Librería General ISSN: 1578–665X Dipòsit legal: B–16.278–58


Animal Biodiversity and Conservation 32.1 (2009)

IX

Welcome to the electronic version of Animal Biodiversity and Conservation

th

is

to

Re c

ele

om

ct

yo u

ro

me

nic

nd

ac rl ce ibr ss ar y!

http://www.bcn.cat/ABC

Animal Biodiversity and Conservation joins the recent worldwide Open Access Initiative of providing a permanent online version free of charge and access barriers This is the result of the growing point of view that open access to research is essential for efficient and rapid scientific communication

ABC alert, a free alerting service, provides e–mail information on the latest issue To sign on for this service, please send an e–mail to: abc@bcn.cat


"La tortue greque" Oeuvres du Comte de Lacépède comprenant L'Histoire Naturelle des Quadrupèdes Ovipares, des Serpents, des Poissons et des Cétacés; Nouvelle édition avec planches coloriées dirigée par M. A. G. Desmarest; Bruxelles: Th. Lejeuné, Éditeur des oeuvres de Buffon, 1836. Pl. 7

Editor executiu / Editor ejecutivo / Executive Editor Joan Carles Senar

Secretaria de Redacció / Secretaría de Redacción / Editorial Office

Secretària de Redacció / Secretaria de Redacción / Managing Editor Montserrat Ferrer

Museu de Zoologia Passeig Picasso s/n 08003 Barcelona, Spain Tel. +34–93–3196912 Fax +34–93–3104999 E–mail mzbpubli@intercom.es

Consell Assessor / Consejo asesor / Advisory Board Oleguer Escolà Eulàlia Garcia Anna Omedes Josep Piqué Francesc Uribe

Editors / Editores / Editors Antonio Barbadilla Univ. Autònoma de Barcelona, Bellaterra, Spain Xavier Bellés Centre d' Investigació i Desenvolupament CSIC, Barcelona, Spain Juan Carranza Univ. de Extremadura, Cáceres, Spain Luís Mª Carrascal Museo Nacional de Ciencias Naturales CSIC, Madrid, Spain Adolfo Cordero Univ. de Vigo, Vigo, Spain Mario Díaz Univ. de Castilla–La Mancha, Toledo, Spain Xavier Domingo Univ. Pompeu Fabra, Barcelona, Spain Francisco Palomares Estación Biológica de Doñana, Sevilla, Spain Francesc Piferrer Inst. de Ciències del Mar CSIC, Barcelona, Spain Ignacio Ribera The Natural History Museum, London, United Kingdom Alfredo Salvador Museo Nacional de Ciencias Naturales, Madrid, Spain José Luís Tellería Univ. Complutense de Madrid, Madrid, Spain Francesc Uribe Museu de Zoologia de Barcelona, Barcelona, Spain Consell Editor / Consejo editor / Editorial Board José A. Barrientos Univ. Autònoma de Barcelona, Bellaterra, Spain Jean C. Beaucournu Univ. de Rennes, Rennes, France David M. Bird McGill Univ., Québec, Canada Mats Björklund Uppsala Univ., Uppsala, Sweden Jean Bouillon Univ. Libre de Bruxelles, Brussels, Belgium Miguel Delibes Estación Biológica de Doñana CSIC, Sevilla, Spain Dario J. Díaz Cosín Univ. Complutense de Madrid, Madrid, Spain Alain Dubois Museum national d’Histoire naturelle CNRS, Paris, France John Fa Durrell Wildlife Conservation Trust, Trinity, United Kingdom Marco Festa–Bianchet Univ. de Sherbrooke, Québec, Canada Rosa Flos Univ. Politècnica de Catalunya, Barcelona, Spain Josep Mª Gili Inst. de Ciències del Mar CMIMA–CSIC, Barcelona, Spain Edmund Gittenberger Rijksmuseum van Natuurlijke Historie, Leiden, The Netherlands Fernando Hiraldo Estación Biológica de Doñana CSIC, Sevilla, Spain Patrick Lavelle Inst. Français de recherche scient. pour le develop. en cooperation, Bondy, France Santiago Mas–Coma Univ. de Valencia, Valencia, Spain Joaquín Mateu Estación Experimental de Zonas Áridas CSIC, Almería, Spain Neil Metcalfe Univ. of Glasgow, Glasgow, United Kingdom Jacint Nadal Univ. de Barcelona, Barcelona, Spain Stewart B. Peck Carleton Univ., Ottawa, Canada Eduard Petitpierre Univ. de les Illes Balears, Palma de Mallorca, Spain Taylor H. Ricketts Stanford Univ., Stanford, USA Joandomènec Ros Univ. de Barcelona, Barcelona, Spain Valentín Sans–Coma Univ. de Málaga, Málaga, Spain Tore Slagsvold Univ. of Oslo, Oslo, Norway

Animal Biodiversity and Conservation 24.1, 2001 © 2001 Museu de Zoologia, Institut de Cultura, Ajuntament de Barcelona Autoedició: Montserrat Ferrer Fotomecànica i impressió: Sociedad Cooperativa Librería General ISSN: 1578–665X Dipòsit legal: B–16.278–58


Les cites o els abstracts dels articles d’Animal Biodiversity and Conservation es resenyen a / Las citas o los abstracts de los artículos de Animal Biodiversity and Conservation se mencionan en / Animal Biodiversity and Conservation is cited or abstracted in: Abstracts of Entomology, Agrindex, Animal Behaviour Abstracts, Anthropos, Aquatic Sciences and Fisheries Abstracts, Behavioural Biology Abstracts, Biological Abstracts, Biological and Agricultural Abstracts, Current Primate References, DIALNET, DOAJ, Ecological Abstracts, Ecology Abstracts, Entomology Abstracts, Environmental Abstracts, Environmental Periodical Bibliography, Genetic Abstracts, Geographical Abstracts, Índice Español de Ciencia y Tecnología, International Abstracts of Biological Sciences, International Bibliography of Periodical Literature, International Developmental Abstracts, Marine Sciences Contents Tables, Oceanic Abstracts, RACO, Recent Ornithological Literature, Referatirnyi Zhurnal, Science Abstracts, Scientific Commons, SCImago, SCOPUS, Serials Directory, Ulrich’s International Periodical Directory, Zoological Records.


Índex / Índice / Contents Animal Biodiversity and Conservation 32.1 (2009) ISSN 1578–665X

1–8 A. Bagherian & H. Rahmani Morphological discrimination between two populations of shemaya, Chalcalburnus chalcoides (Actinopterygii, Cyprinidae) using a truss network 9–17 I. A. Arif & H. A. Khan Molecular markers for biodiversity analysis of wildlife animals: a brief review 19–28 F. Espinosa Populational status of the endangered mollusc Patella ferruginea Gmelin, 1791 (Gastropoda, Patellidae) on Algerian islands (SW Mediterranean) 29–39 L. B. Vázquez, C. G. Bustamante–Rodríguez & D. G. Bahena Arce Area selection for conservation of Mexican mammals

41–48 J. Agulló, F. Fadrique, G. Masó & M. Prieto N u evo s d a t o s s o b r e O t i o r h y n c h u s (Lixorrhynchus) zariquieyi (Clermont, 1949) (Coleoptera, Curculionidae) 49–50 Forum A. Martínez–Abrain Improving the efficiency of manuscript selection 51–58 M. M. Martins Lianas as a food resource for brown howlers (Alouatta guariba) and southern muriquis (Brachyteles arachnoides) in a forest fragment 59–70 O. Domínguez–Domínguez & E. Vázquez–Domínguez Filogeografía: aplicaciones en taxonomía y conservación


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.