Toma de Desiciones

Page 1

UNIVERSIDAD FERMIN TORO VICERECTORADO ACADEMICO DECANATO DE CIENCIAS ECONOMICAS Y SOCIALES ESCUELA DE RELACIONES INDUSTRIALES ANALISIS DE PROBLEMAS Y TOMA DE DESICIONES

19324465

CAUDARE Febrero 2013


INTRODUCCION La toma de decisiones puede ser considerada como un resultado de los procesos mentales que conduce a la selección de un curso de acción entre varias alternativas. Cada decisión produce un proceso de toma de decisión final. La salida puede ser una acción o de un dictamen de la elección. Para abordar el tema sobre toma de decisiones debemos de tener en cuenta todos y cada uno de los aspectos que ella abarca. Es importante saber que las decisiones se presentan en todos los niveles de la sociedad, sean de mayor o menor incidencia; pero estas implican una acción que conlleva a un determinado fin u objetivo propuesto. Es de gran utilidad conocer que procesos se deben aplicar y abarcar para tomar decisiones efectivas. Es por ello que en este trabajo se realiza una investigación basada en autores y textos que se refieren a la toma de decisiones y su utilización como una herramienta de uso cotidiano en el estudio de las organizaciones y la administración. Para lograr una efectiva toma de decisiones se requiere de una selección racional, para lo que primero se debe aclarar el objetivo que se quiere alcanzar; eso sí, se deben tener en cuenta varias alternativas, evaluando cada una de sus ventajas, limitaciones y adoptando la que se considere más apropiada para conseguir el objetivo propuesto. Cada una de las herramientas desarrolladas en el presente trabajo, represente un elemento que facilita la generación de soluciones óptimas en el proceso de Toma de decisiones.


MÉTODOS DETERMINÍSTICO

Programación Lineal:

La Programación Lineal (PL) es una de las principales ramas de la Investigación Operativa. En esta categoría se consideran todos aquellos modelos de optimización donde las funciones que lo componen, es decir, función objetivo y restricciones, son funciones lineales en las variables de decisión Los modelos de Programación Lineal por su sencillez son frecuentemente usados para abordar una gran variedad de problemas de naturaleza real en ingeniería y ciencias sociales, lo que ha permitido a empresas y organizaciones importantes beneficios y ahorros asociados a su utilización. La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc Es un procedimiento o algoritmo matemático mediante el cual se resuelve un problema indeterminado, formulado a través de ecuaciones lineales, optimizando la función objetivo, también lineal. Consiste en optimizar (minimizar o maximizar) una función lineal, denominada función objetivo, de tal forma que las variables de dicha función estén sujetas a una serie de restricciones que expresamos mediante un sistema de inecuaciones lineales.


METODO SIMPLEX

Es un procedimiento iterativo que permite ir mejorando la solución a cada paso. El proceso concluye cuando no es posible seguir mejorando más dicha solución. Partiendo del valor de la función objetivo en un vértice cualquiera, el método consiste en buscar sucesivamente otro vértice que mejore al anterior. La búsqueda se hace siempre a través de los lados del polígono (o de las aristas del poliedro, si el número de variables es mayor). Cómo el número de vértices (y de aristas) es finito, siempre se podrá encontrar la solución. El método Simplex es un método secuencial de optimización, es un procedimiento iterativo que permite ir mejorando la solución a cada paso. El proceso concluye cuando no es posible seguir mejorando más dicha solución. Partiendo del valor de la función objetivo en un vértice cualquiera, el método consiste en buscar sucesivamente otro vértice que mejore al anterior. La búsqueda se hace siempre a través de los lados del polígono (o de las aristas del poliedro, si el número de variables es mayor). Cómo el número de vértices (y de aristas) es finito, siempre se podrá encontrar la solución. El método Simplex se basa en la siguiente propiedad: si la función objetivo, f, no toma su valor máximo en el vértice A, entonces hay una arista que parte de A, a lo largo de la cual f aumenta.


MÉTODOS PROBABILÍSTICOS

Lógica Bayesiana La inferencia bayesiana es un tipo de inferencia estadística en la que las evidencias u observaciones se emplean para actualizar o inferir la probabilidad de que una hipótesis pueda ser cierta. El nombre «bayesiana» proviene de uso frecuente que se hace del teorema de Bayes durante el proceso de inferencia. El teorema de Bayes se ha derivado del trabajo realizado por el reverendoThomas Bayes. Hoy en día, uno de los campos de aplicación es en la teoría de la decisión,1 visión artificial2 (simulación de la percepción en general)3 y reconocimiento de patrones por ordenador. La inferencia bayesiana es un tipo de inferencia estadística en la que las evidencias u observaciones se emplean para actualizar o inferir la probabilidad de que una hipótesis pueda ser cierta. El nombre «bayesiana» proviene de uso frecuente que se hace del teorema de Bayes durante el proceso de inferencia. El teorema de Bayes se ha derivado del trabajo realizado por el reverendo Thomas. Hoy en día, uno de los campos de aplicación es en la teoría de la decisión,1 visión artificial2 (simulación de la percepción en general)3 y reconocimiento de patrones por ordenador. La inferencia bayesiana utiliza aspectos del método científico, que implica recolectar evidencia que se considera consistente o inconsistente con una hipótesis dada. A medida que la evidencia se acumula, el grado de creencia en una hipótesis se va modificando. Con evidencia suficiente, a menudo podrá hacerse muy alto o muy bajo. Así, los que sostienen la inferencia bayesiana dicen que puede ser utilizada para discriminar entre hipótesis en conflicto: las hipótesis con un grado de creencia muy alto deben ser aceptadas como verdaderas y las que tienen un grado de creencia muy bajo deben ser rechazadas como falsas. Sin embargo, los detractores dicen que este método de inferencia puede estar afectado por un prejuicio debido a las creencias iníciales que se deben sostener antes de comenzar a recolectar cualquier evidencia.


TEORÍA DE JUEGOS La teoría de juegos es una rama de la economía que estudia las decisiones en las que ue para que un individuo tenga éxito tiene que tener en cuenta las decisiones tomadas por el resto de los agentes que intervienen en la situación. La teoría de juegos como estudio matemático no se ha utilizado exclusivamente en la economía, sino en la gestión, gestión, estrategia, psicología o incluso en biología. En la teoría de juegos no tenemos que preguntarnos qué vamos a hacer, tenemos que preguntarnos qué vamos a hacer teniendo en cuenta lo que pensamos que harán los demás, ellos actuarán pensando según crean que van a ser nuestras actuaciones. La teoría de juegos ha sido utilizada en muchas decisiones empresariales, económicas, políticas o incluso para ganar jugando al póker. La teoría de juegos es nuestro Concepto de esta semana Para representar gráficamente en teoría de juegos se suelen utilizar matrices (también conocidas como forma normal) y árboles de decisión como herramientas para comprender mejor los razonamientos que llevan a un punto u otro. Además los juegos se pueden resolver usando las matemáticas, aunque suelen ser bastante sofisticadas como para entrar en profundidad.


MÉTODOS HÍBRIDOS Modelo de Transporte y Asignación El modelo de transporte es un problema de optimización de redes donde debe determinarse como hacer llegar los productos desde los puntos de existencia hasta los puntos de demanda, minimizando los costos de envío. El modelo busca determinar un plan de transporte de una mercancía de varias fuentes a varios destinos. Entre los datos del modelo se cuenta: 1. Nivel de oferta en cada fuente y la cantidad de demanda en cada destino. 2. El costo de transporte unitario de la mercancía de cada fuente a cada destino. El modelo se utiliza para realizar actividades como: control de inventarios, programación del empleo, asignación de personal, flujo de efectivo, programación de niveles de reservas en prensas entre otras.


TÉCNICA DE MONTECARLO Los métodos de Montecarlo abarcan una colección de técnicas que permiten obtener soluciones de problemas matemáticos o físicos por medio de pruebas aleatorias repetidas. En la práctica, las pruebas aleatorias se sustituyen por resultados de ciertos cálculos realizados con números aleatorios. A lo largo de varias páginas se estudiará el concepto de variable aleatoria y la transformación de una variable aleatoria discreta o continua. Empezaremos a estudiar esta técnica por los ejemplos más sencillos: el mecanismo básico de la difusión y el establecimiento del equilibrio térmico entre dos sistemas que se ponen en contacto a distinta temperatura. Estos dos ejemplos nos mostrarán el significado de proceso irreversible y fluctuación alrededor del estado de equilibrio. Se incluyen entre otros ejemplos, la explicación de la ley exponencial decreciente en la desintegración de una sustancia radioactiva en otra estable. Comprender, a partir de un modelo simple de núcleo radioactivo, que su desintegración es un suceso aleatorio, con mayor o menor probabilidad dependiendo de la anchura de las barreras de potencial que mantienen confinadas a las partículas que componen el núcleo. La simulación Monte Carlo es una técnica matemática computarizada que permite tener en cuenta el riesgo en análisis cuantitativos y tomas de decisiones. Esta técnica es utilizada por profesionales de campos tan dispares como los de finanzas, gestión de proyectos, energía, manufacturación, ingeniería, investigación y desarrollo, seguros, petróleo y gas, transporte y medio ambiente. La simulación Monte Carlo ofrece a la persona responsable de tomar las decisiones una serie de posibles resultados, así como la probabilidad de que se produzcan según las medidas tomadas. Muestra las posibilidades extremas — los resultados de tomar la medida más arriesgada y la más conservadora— así como todas las posibles consecuencias de las decisiones intermedias. Los científicos que trabajaron con la bomba atómica utilizaron esta técnica por primera; y le dieron el nombre de Monte Carlo, la ciudad turística de Mónaco conocida por sus casinos. Desde su introducción durante la Segunda Guerra Mundial, la simulación Monte Carlo se ha utilizado para modelar diferentes sistemas físicos y conceptuales.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.