Radiogenic Isotope Geology Alan P. Dickin Visit to download the full and correct content document: https://textbookfull.com/product/radiogenic-isotope-geology-alan-p-dickin/
More products digital (pdf, epub, mobi) instant download maybe you interests ...
Radiogenic Isotope Geochemistry A Guide for Industry Professionals 1st Edition Bruce F. Schaefer
https://textbookfull.com/product/radiogenic-isotope-geochemistrya-guide-for-industry-professionals-1st-edition-bruce-f-schaefer/
Stable isotope forensics : methods and forensic applications of stable isotope analysis Second Edition Meier-Augenstein
https://textbookfull.com/product/stable-isotope-forensicsmethods-and-forensic-applications-of-stable-isotope-analysissecond-edition-meier-augenstein/
German Military Geology and Fortification of the British Channel Islands During World War II Edward P. F. Rose
https://textbookfull.com/product/german-military-geology-andfortification-of-the-british-channel-islands-during-world-war-iiedward-p-f-rose/
Unconventional Petroleum Geology Caineng Zou
https://textbookfull.com/product/unconventional-petroleumgeology-caineng-zou/
The Beauty of Geology Art of Geology Mapping in China
Over a Century Chenyang Li
https://textbookfull.com/product/the-beauty-of-geology-art-ofgeology-mapping-in-china-over-a-century-chenyang-li/
Structural Geology Second Edition Haakon Fossen
https://textbookfull.com/product/structural-geology-secondedition-haakon-fossen/
The Geology of Egypt Zakaria Hamimi
https://textbookfull.com/product/the-geology-of-egypt-zakariahamimi/
Coal Geology 3rd Edition Larry Thomas
https://textbookfull.com/product/coal-geology-3rd-edition-larrythomas/
Engineering Geology for Society and Territory Volume 1
Climate Change and Engineering Geology 1st Edition Giorgio Lollino
https://textbookfull.com/product/engineering-geology-for-societyand-territory-volume-1-climate-change-and-engineeringgeology-1st-edition-giorgio-lollino/
RadiogenicIsotopeGeology ThirdEdition
Thethirdeditionof RadiogenicIsotopeGeology examinesrevolutionarychangesingeochemicalthinkingthathave occurredoverthepast15years.ExtinctnuclidestudiesonmeteoriteshavecalledintoquestionfundamentalgeochemicalmodelsoftheEarth,whilenewdatingmethodshavechallengedconventionalviewsofEarthhistory.Atthesame time,theproblemofglobalwarminghasraisednewquestionsaboutthecausesofpastandpresentclimatechange. Inthenewedition,theseandotherrecentissuesareevaluatedintheirscholarlyandhistoricalcontext,soreaderscan understandthedevelopmentofcurrentideas.Controversialtheories,newanalyticaltechniques,classicpapers,and illustrativecasestudiesallcomeunderscrutinyinthisbook,providinganaccessibleintroductionforstudentsand criticalcommentaryforresearchers.
AlanP.Dickin isProfessorofGeologyatMcMasterUniversity.
“TheDickintextprovidesanexcellentintroductiontoradiogenicisotopegeochemistry.Ireadapreviouseditioncoverto-coverduringpreparationforthegeneralknowledgeexamsingraduateschool,andIstillsuggestthatgraduate studentsdothesameinpreparationfortheirexams.Itcontinuestobeakeyreferenceforteachingandintheclassroom andinthelaboratory.”
–
MatthewJackson,UniversityofCalifornia,SantaBarbara
“IsotopegeochemistryishugelyinfluentialinthedevelopmentofnewapproachesandideasintheEarthsciences.New datachallengemodelsfortheformationoftheEarth,theevolutionofthecontinentalcrust,andclimatechange.An understandingofthebasicprinciplesofisotopegeologyisimportantinawiderangeofthesciences,andthiswelcome thirdeditionof RadiogenicIsotopeGeology buildsonthesuccessofthepreviouseditions.Itisscholarlyandaccessible, anditcombinesanalltoorarehistoricalcontextwithacomprehensiveintroductiontoawiderangeofradiogenic isotopetechniques.Writtenbyoneoftheworld’smostrespectedauthorsinthisfield,thistextbookwillbeinvaluable forundergraduateandgraduatecourses,anditisanexcellentreferencetextforscientistsinotherfields.”
– ChrisHawkesworth,UniversityofBristol
“Forteachersandstudentsinbothlow-andhigh-temperaturegeochemistrywhoneedreadyaccesstogeochemical conceptsandtechniques,AlanDickinoffersanup-to-date,well-writtenmedium-leveltextbookonisotopegeochemistry. Apleasant,handy,andusefulbookforyourshelf.”
– FrancisAlbarède,EcoleNormaleSupérieuredeLyon
RadiogenicIsotopeGeology ThirdEdition
AlanP.Dickin
McMasterUniversity
UniversityPrintingHouse,Cambridge CB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork, NY 10006,USA 477WilliamstownRoad,PortMelbourne, VIC 3207,Australia
314-321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi-110025,India 79AnsonRoad,#06-04/06,Singapore079906
CambridgeUniversityPressispartoftheUniversityofCambridge.
ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence.
www.cambridge.org
Informationonthistitle:www.cambridge.org/9781107099449 DOI: 10.1017/9781316163009
C AlanP.Dickin2018
Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress.
Firstpublished1995
Secondeditionpublished2005
Thirdeditionpublished2018
PrintedintheUnitedStatesofAmericabySheridanBooks,Inc.2018
AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-Publicationdata
Names:Dickin,AlanP.,author.
Title:Radiogenicisotopegeology/AlanP.Dickin,McMasterUniversity.
Description:[2018edition].|Cambridge:CambridgeUniversityPress,2018.| Includesbibliographicalreferencesandindex.
Identifiers:LCCN2017023083| ISBN 9781107099449(alk.paper)
Subjects:LCSH:Isotopegeology.|Radioactivedating.|Geochemistry.| Paleoclimatology.|Environmentalarchaeology. Classification:LCCQE501.4.N9D532017|DDC551.9–dc23 LCrecordavailableathttps://lccn.loc.gov/2017023083
ISBN 978-1-107-09944-9Hardback
ISBN 978-1-107-49212-7Paperback
Additionalresourcesforthispublicationatwww.cambridge.org/dickin3 CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate.
ToMargaret andtothememoryofStephenMoorbath, isotopepioneer
ContentsinBrief 7IsotopeGeochemistryofContinentalRocks.................
8OsmiumIsotopes....................................
PrefaceandAcknowledgements
1NucleosynthesisandNuclearDecay.........................
1.1TheChartoftheNuclides.............................1
1.2Nucleosynthesis....................................2
1.2.1 StellarEvolution................................ 3
1.2.2 StagesintheNucleosynthesisofHeavyElements...........
1.3RadioactiveDecay..................................6
1.3.1 IsobaricDecay.................................
1.3.2 AlphaandHeavyParticleDecay......................
1.3.3 NuclearFissionandtheOkloNaturalReactor.............
1.4TheLawofRadioactiveDecay.........................10
2.1ChemicalPurification...............................13
2.1.1 IonExchangeSeparation..........................
2.1.3
2.1.4
2.1.5
2.2IonSources......................................16
2.2.1
2.3Mass-dependentFractionation........................19
2.3.1 MassFractionationinTIMS........................ 19
2.3.2 MassFractionationinMC–ICP–MS...................
2.4MagneticSectorAnalysis............................22
2.4.1 IonOptics................................... 22
2.4.2 Detectors.................................... 24
2.4.3 DataCollection................................
2.5IsotopeDilution...................................26
2.5.1 AnalysisTechnique..............................
2.5.2 DoubleSpiking................................
2.5.3 Pb–TlDoubleSpiking............................
2.6MC–ICP–MSSolution-basedApplications.................28
2.6.1 Hf–W......................................
2.6.2 Lu–Hf......................................
2.6.3 U–Th......................................
2.6.4 Pb–Pb......................................
2.6.5 Sm–Nd.....................................
2.7LA–ICP–MS.......................................30
2.7.1 U–Pb......................................
2.7.2 Lu–Hf......................................
2.8IsochronRegressionLineFitting.......................32
2.8.1 TypesofRegressionFit........................... 32
2.8.2 RegressionFittingwithCorrelatedErrors............... 32
2.8.3 Errorchrons..................................
2.8.4 ProbabilityofFit...............................
2.8.5 Isoplot.....................................
2.9ProbabilityDensity... ..............................35
2.9.1 DetritalZirconDistributions....................... 35
2.9.2 IsochronDataDistributions........................ 36
3TheRb–SrMethod..................................... 40
3.1TheRbDecayConstant..............................40
3.2DatingIgneousCrystallization... .....................41
3.2.1 SrModelAges................................. 42
3.2.2 TheIsochronDiagram........................... 42
3.2.3 EruptedIsochrons.............................. 43
3.2.4 MeteoriteChronology............................ 44
3.3DatingMetamorphicSystems.........................45
3.3.1 MineralandWhole-RockIsochrons................... 45
3.3.2 BlockingTemperatures........................... 47
3.4DatingOreDeposits................................48
3.5DatingSedimentarySystems..........................49
3.5.1 Shales...................................... 50
3.5.2 Glauconite................................... 51
3.6SeawaterEvolution.................................52
3.6.1 MeasurementoftheCurve......................... 52
3.6.2 TheCretaceous–TertiarySeawater Curve...................................... 54
3.6.3 SeawaterSrandGlacialCycles...................... 55
3.6.4 ModellingtheFluxes............................ 56
3.6.5 QuantifyingtheHydrothermalFlux.................. 58
3.6.6 TheEffectsofHimalayanErosion.................... 60
3.6.7 GlacialCycles................................. 61
3.6.8 StableSrIsotopesinSeawater...................... 62
4TheSm–NdMethod.................................... 67
4.1Sm–NdIsochrons..................................67
4.1.1 Meteorites................................... 67
4.1.2 PrecambrianMaficRocks......................... 68
4.1.3 High-GradeMetamorphicRocks..................... 70
4.1.4 GarnetGeochronology........................... 70
4.2NdIsotopeEvolutionandModelAges...................72
4.2.1 ChondriticModelAges........................... 72
4.2.2 DepletedMantleModelAges....................... 73
4.2.3 NdIsotopeMapping. ........................... 75
4.3ModelAgesandCrustalProcesses......................78
4.3.1 SedimentarySystems............................ 79
4.3.2 Meta-SedimentarySystems........................ 79
4.3.3 Meta-IgneousSystems............................ 80
4.3.4 PartiallyMeltedSystems.......................... 81
4.4TheCrustalGrowthProblem..........................82
4.4.1 CrustalAccretionAges........................... 82
4.4.2 SedimentProvenanceAges......................... 83
4.4.3 ArcheanDepletedMantle......................... 84
4.4.4 EarlyArcheanCrustalProvinces..................... 86
4.5NdintheOceans..................................88
4.5.1 ModernSeawaterNd............................ 88
4.5.2 TheOceanicNdParadox.......................... 89
4.5.3 AncientSeawaterNd............................ 90
4.5.4 TertiarySeawaterNd............................ 91
4.5.5 QuaternarySeawaterNd......................... 92
5LeadIsotopes... 99
5.1U–PbIsochrons...................................99
5.1.1 U–PbIsochronsandDecayConstants................. 100
5.1.2 UraniumIsotopeComposition..................... 100
5.1.3 U–PbIsochronsandTimescaleCalibration............. 101
5.2U–PbConcordiaDating.............................102
5.2.1 LeadLossModels.............................. 103
5.2.2 AirAbrasionandDirectEvaporation................. 104
5.2.3 ChemicalAbrasionandAnnealing.................. 105
5.2.4 ConcordiaAgesandDecayConstants................. 107
5.2.5 InheritedZircon.............................. 108
5.2.6InSitu Analysis.............................. 109
5.2.7 AlternativeU–PbDatingMaterials.................. 111
5.3Pb–PbDating....................................112
5.3.1 TheAgeoftheEarthandPbParadox................. 113
5.3.2 MeteoriteDatingandtheTotalPbIsochron............. 115
5.4Pb(Galena)ModelAges.............................118
5.4.1 TheHolmes–HoutermansModel.................... 118
5.4.2 ConformableLeads............................. 119
5.4.3 Open-SystemPbEvolution........................ 120
5.4.4 Plumbotectonics.............................. 121
5.5Whole-RockPbandCrustalEvolution..................122
5.5.1 ArcheanCrustalEvolution........................ 122
5.5.2 Paleo-IsochronsandMetamorphicDisturbance........... 124
5.5.3 ProterozoicCrustalEvolution...................... 124
5.6EnvironmentalPb.................................125
5.6.1 AnthropogenicPb............................. 126
5.6.2 PbasanOceanographicTracer.. 127
5.6.3 Paleo-SeawaterPb............................. 129
6IsotopeGeochemistryofOceanicVolcanics................. 134
6.1IsotopicTracingofMantleStructure...................134
6.1.1 ContaminationandAlteration..................... 134
6.1.2 DisequilibriumMelting.......................... 135
6.1.3 MantlePlumes............................... 136
6.1.4 PlumPuddingMantle........................... 137
6.1.5 MarbleCakeMantle............................ 138
6.1.6 MantleConvectionandViscosity.................... 139
6.2TheNd–SrIsotopeDiagram..........................140
6.2.1 TheMantleArrayandOIBSources.................. 140
6.2.2 BoxModelsfortheMORBSource.................... 141
6.2.3 Nd–142andEarlyEarthDifferentation............... 143
6.3PbIsotopeGeochemistry............................144
6.3.1 Pb–PbIsochronsandtheLeadParadox................ 145
6.3.2 TheKappaConundrum 146
6.3.3 TheThirdLeadParadox......................... 149
6.4MantleReservoirsinIsotopicMultispace................150
6.4.1 TheMantlePlane.............................. 151
6.4.2 TheMantleTetrahedron......................... 151
6.5IdentificationofMantleComponents..................154
6.5.1 DepletedOIBSources........................... 155
6.5.2 EMII...................................... 155
6.5.3 EMI...................................... 156
6.5.4 HIMU..................................... 158
6.5.5 TheDUPALAnomaly........................... 159
6.6IslandArcsandMantleEvolution.....................159
6.6.1 Two-ComponentMixingModels.................... 159
6.6.2 Three-ComponentMixingModels................... 161
7IsotopeGeochemistryofContinentalRocks................. 167
7.1MantleXenoliths.................................167
7.1.1 MantleMetasomatism.......................... 168
7.2CrustalContamination.............................170
7.2.1 Two-ComponentMixingModels.................... 171
7.2.2 MeltinginNaturalandExperimentalSystems........... 172
7.2.3 InversionModellingofMagmaSuites. 174
7.2.4 PhenocrystsasRecordsofMagmaEvolution. 178
7.2.5 LithosphericMantleContamination................. 178
7.3PetrogenesisofContinentalMagmas...................179
7.3.1 Kimberlites,CarbonatitesandLamproites.............. 179
7.3.2 AlkaliBasalts................................ 181
7.3.3 FloodBasalts................................ 183
7.3.4 PrecambrianGranitoids......................... 185
7.3.5 PhanerozoicBatholiths.......................... 187
8OsmiumIsotopes.................................... 194
8.1OsmiumAnalysis.................................194
8.2TheRe–OsandPt–OsDecaySchemes...................195
8.2.1 TheReDecayConstant.......................... 195
8.2.2 MeteoriteIsochrons............................ 196
8.2.3 DatingOresandRocks.......................... 197
8.2.4 OsNormalizationandthePt–OsDecayScheme.......... 198
8.3MantleOsmium..................................199
8.3.1 TheBulkSilicateEarth.. 199
8.3.2 LithosphericMantle............................ 200
8.3.3 PrimitiveUpperMantle......................... 201
8.3.4 AsthenosphericMantle.......................... 202
8.3.5 EnrichedMantlePlumes......................... 204
8.3.6 SubductionZones............................. 205
8.3.7 TheCoreOsmiumSignature....................... 206
8.4PetrogenesisandOreGenesis........................206
8.4.1 TheBushveldComplex.......................... 207
8.4.2 TheStillwaterComplex.......................... 208
8.4.3 TheSudburyIgneousComplex..................... 209
8.5SeawaterOsmium................................210
8.5.1 OsmiumIsotopeEvolution........................ 210
8.5.2 OsFluxesandResidenceTimes..................... 212
8.5.3 QuaternarySeawaterOsmium..................... 213
9TheLu–Hf,Ba–La–CeandK–CaSystems 218
9.1Lu–HfGeochronology..............................218
9.1.1 TheLuDecayConstantandCHURComposition.......... 218
9.1.2 DatingMetamorphism.......................... 220
9.2ModernMantleReservoirs...........................221
9.2.1 DepletedMantle.............................. 221
9.2.2 EnrichedMantle.............................. 223
9.3AncientHfEvolution..............................226
9.3.1 EarlyWork.................................. 226
9.3.2 DetritalZircon............................... 227
9.3.3 HfModelAges................................ 228
9.3.4 ArcheanDepletedMantle........................ 229
9.4SeawaterHafnium................................230
9.5TheLa–CeandLa–BaSystems........................232
9.5.1 La–BaGeochronology........................... 232
9.5.2 La–CeGeochronology........................... 232
9.5.3 CeIsotopeGeochemistry......................... 233
9.5.4 SeawaterCeriumGeochemistry..................... 234
9.6TheK–CaSystem.................................235
10K–Ar,Ar–ArandU–HeDating........................... 240
10.1TheK–ArDatingMethod............................240
10.1.1 AnalyticalTechniques........................... 240
10.1.2 InheritedArgonandtheK–ArIsochronDiagram......... 242
10.1.3 ArgonLoss.................................. 244
10.2The 40 Ar–39 ArDatingMethod........................244
10.2.1 40 Ar–39 ArMeasurement......................... 244
10.2.2 IrradiationCorrections.......................... 245
10.2.3 StepHeating................................ 246
10.2.4 ArgonLossEvents............................. 247
10.2.5 ExcessArgon................................ 249
10.2.6 39 ArRecoil.................................. 250
10.2.7 DatingPaleomagnetism.. 251
10.2.8 LaserMicroprobeDating......................... 252
10.3TimescaleCalibration..............................254
10.3.1 MagneticandAstronomicalTimescales.. 254
10.3.2 IntercalibrationofDecayConstants.................. 257
10.4Thermochronometry..............................259
10.4.1 ArrheniusModelling........................... 259
10.4.2 ComplexDiffusionModels........................ 261
10.4.3 K-FeldsparThermochronometry.................... 265
10.5U–Th–HeDating..................................268
10.5.1 ProductionandAnalysis......................... 268
10.5.2 AnnealingBehaviour........................... 269
10.5.3 CosmogenicHeliumPaleothermometry................ 269
11NobleGasGeochemistry............................... 274
11.1Helium........................................274
11.1.1 MassSpectrometry............................. 274
11.1.2 HeliumProductioninNature...................... 275
11.1.3 TerrestrialPrimordialHelium..................... 277
11.1.4 The‘Two-Reservoir’Model........................ 279
11.1.5 HeliumBoxModels............................ 281
11.1.6 CrustalandMantleHelium....................... 282
11.1.7 OceanicSedimentsandInterplanetaryDust............ 283
11.2Neon..........................................285
11.2.1 NeonProduction.............................. 285
11.2.2 PrimordialNeonintheEarth...................... 285
11.2.3 Sub-SolarNeon............................... 287
11.2.4 AtmosphericNeon............................. 288
11.2.5 NucleogenicNeon.............................. 289
11.3Argon.........................................289
11.3.1 TerrestrialPrimordialArgon...................... 290
11.3.2 AtmosphericContamination...................... 291
11.3.3 Argon-38................................... 293
11.4Krypton........................................294
11.5Xenon.........................................295
11.5.1 IodogenicXenon.............................. 295
11.5.2 FissiogenicXenon............................. 296
11.5.3 RadiogenicXenonReservoirs...................... 298
11.5.4 Non-RadiogenicXenon.......................... 299
11.5.5 TheBarium–XenonSystem....................... 300
12U-SeriesDating... 306
12.1SecularEquilibriumandDisequilibrium ................306
12.2AnalyticalMethods................................307
12.2.1 EarlyWork.................................. 308
12.2.2 MassSpectrometry............................. 308
12.2.3 Half-Lives................................... 309
12.3Daughter-ExcessMethods...........................309
12.3.1 234 UDatingofCarbonates........................ 309
12.3.2 234 UDatingofFe–MnCrusts...................... 311
12.3.3 230 ThSedimentDating.......................... 313
12.3.4 230 Th–232 Th.................................. 314
12.3.5 230 ThSedimentStratigraphy...................... 315
12.3.6 231 Pa–230 Th.................................. 317
12.3.7 210 Pb...................................... 319
12.4Daughter-DeficiencyMethods........................321
12.4.1 230 Th:Theory................................ 321
12.4.2 230 Th:Applications............................. 322
12.4.3 230 Th:DirtyCalcite............................. 324
12.4.4 231 Pa...................................... 326
12.5U-SeriesDatingofOpenSystems......................326
12.5.1 231 Pa–230 Th.................................. 326
12.5.2 ESR–230 Th.................................. 328
13U-SeriesGeochemistryofIgneousSystems.. 333
13.1GeochronologyofVolcanicRocks.....................334
13.1.1 TheU–ThIsochronDiagram...................... 334
13.1.2 U–Th(Zircon)ModelAges........................ 335
13.1.3 Ra–ThIsochronDiagrams........................ 336
13.1.4 Ra–ThModelAges............................. 337
13.2MagmaChamberEvolution..........................337
13.2.1 TheThIsotopeEvolutionDiagram................... 338
13.2.2 Short-LivedSpeciesinMagmaEvolution. 341
13.3MantleMeltingModels.............................342
13.3.1 MeltingUnderOceanRidges...................... 343
13.3.2 TheEffectofSourceConvection..................... 344
13.3.3 TheEffectofMeltingDepth....................... 347
13.3.4 TheEffectofSourceComposition.................... 348
13.3.5 CrustalMeltingandContamination................. 350
13.4Short-LivedSpeciesandMeltingModels.................351
13.4.1 226 RaandMeltingModels........................ 351
13.4.2 231 PaandMeltingModels........................ 353
13.4.3 SourcesofContinentalMagmas.. .................. 354
13.5SubductionZoneProcesses..........................355
13.5.1 U–ThinArcMagmas... 355
13.5.2 Ra–ThinArcs................................ 357
13.5.3 U–PainArcs................................. 358
14CosmogenicNuclides 363
14.1Carbon-14......................................363
14.1.1 EarlyWork.................................. 363
14.1.2 Closed-SystemAssumption........................ 365
14.1.3 InitialRatioAssumption......................... 366
14.1.4 Dendrochronology............................. 367
14.1.5 BayesianAnalysis............................. 369
14.1.6 Pre-HoloceneCalibration......................... 369
14.2RadiocarbonandClimateChange.....................372
14.2.1 RadiocarbonintheModernOceans.................. 372
14.2.2 Glacial/HoloceneVentilationAges................... 373
14.2.3 CausesofClimateChange........................ 376
14.3AcceleratorMassSpectrometry.......................378
14.3.1 PrinciplesofAcceleratorMassSpectrometry. 378
14.3.2 RadiocarbonDatingbyAMS...................... 379
14.4Beryllium-10... .................................380
14.4.1 10 BeintheAtmosphere.......................... 380
14.4.2 10 BeintheOceans............................. 381
14.4.3 10 BeinSnowandIce........................... 384
14.4.4 10 BeProductionandClimateCycles.................. 385
14.4.5 10 BeinSoilProfiles............................. 386
14.4.6 10 BeinMagmaticSystems 387
14.5Chlorine-36.....................................390
14.6Iodine-129......................................393
14.7 InSitu CosmogenicNuclides.........................394
14.7.1 MeteoriteTerrestrialResidenceAges.................. 394
14.7.2 Al–BeTerrestrialExposureAges.................... 395
14.7.3 Al–BeBurialAges............................. 396
14.7.4 Al–Be–NeAges............................... 397
14.7.5 Chlorine-36ExposureAges........................ 398
15ExtinctRadionuclides... 407
15.1Introduction....................................407
15.1.1 NuclideProductionandDecay..................... 407
15.1.2 CelestialObjectsandAges........................ 407
15.1.3 Parent–DaughterPairs.......................... 409
15.2StableIsotopes...................................409
15.2.1 CosmicBuildingBlocksoftheEarth.................. 410
15.2.2 SolarSystemIsotopeHeterogeneity.................. 410
15.3ExtantActinides..................................411
15.4Iodine–Xenon....................................412
15.4.1 TheXe–XeCorrelationDiagram.................... 412
15.4.2 TheDeterminationof‘Delta’...................... 413
15.4.3 Pu–Xe..................................... 414
15.4.4 I–XeChronology.............................. 415
15.5Al–Mg.........................................415
15.5.1 26 AlintheAllendeMeteorite...................... 416
15.5.2 DeterminationofDelta.......................... 416
15.5.3 Al–MgEarlyNebularChronometry.................. 417
15.5.4 Testingthe‘Canonical’Model...................... 418
15.6Short-LivedSpeciesinPlanetaryDifferentiation...........419
15.6.1 Pd–Ag..................................... 419
15.6.2 Mn–Cr.................................... 420
15.6.3 Fe–Ni..................................... 421
15.6.4 Hf–W..................................... 423
15.6.5 Hf–WSolarSystemChronometry................... 424
15.6.6 RevisitingtheGiantImpactModel.................. 426
15.7TheSm–NdSystem................................427
15.7.1 EarlyWork.................................. 427
15.7.2 ChondritesandtheBulkEarth. 429
15.7.3 The 142 NdConundrum .......................... 429
15.7.4 SCHEMorChondriticMoon....................... 430
15.7.5 142 Nd,CoreSulphideandE-Chondrites................ 432
15.7.6 142 NdintheArcheanEarth....................... 433
15.8TheCurium–Uranium–(Nd)System....................433
15.9SpallogenicExtinctNuclides.........................435
15.9.1 Be-10...................................... 435
15.9.2 Ca–K..................................... 436
15.10Conclusions.....................................437
16Fission-TrackDating..................................
16.1TrackFormation..................................444
16.2TrackEtching....................................446
16.3CountingTechniques..............................446
16.3.1 PopulationMethod............................ 447
16.3.2 ExternalDetectorMethod........................ 447
16.3.3 Re-EtchingandRe-Polishing....................... 448
16.3.4 LA–ICP–MS................................. 449
16.3.5 AutomatedTrackCounting....................... 449
16.4DetritalPopulations...............................449
16.5TrackAnnealing..................................451
16.6UpliftandSubsidenceRates.........................452
16.7TrackLengthMeasurements.........................454
16.7.1 ProjectedTracks(Semi-Tracks)...................... 455
16.7.2 ConfinedTracks............................... 456
16.7.3 TrackWidths................................ 457
16.7.4 cAxisProjection.............................. 458
16.7.5 ForwardandInverseModelling.................... 459
16.8PressureEffects..................................462
PrefaceandAcknowledgements Thepastfifteenyearshaveseenaquietrevolutioninisotopegeochemistry,asaonce-arcanefieldinvolving‘extinct’ radionuclidesinmeteoriteshascalledintoquestionfundamentalgeochemicalmodelsoftheEarthitself.Atthesame time,increasingpublicawarenessoftheproblemofanthropogenicglobalwarminghasfocusedattentionontheroleof isotopegeochemistryinmonitoringpastandpresentinfluencesonclimatechange.
Thethirdeditionof RadiogenicIsotopeGeology attempts toplacetheseandotherrecentdevelopmentsinscientific thinkingintheiroverallscholarlycontext.
Theapproachtothesubjectmatterishistorical,forthree mainreasons.Firstly,togiveanimpressionofthedevelopmentofthoughtinthefieldsothatthereadercanunderstandtheoriginofpresentideas;secondly,toexplainwhy pasttheorieshavehadtobemodified;andthirdly,topresent ‘fallback’positionslestcurrentmodelsberefutedatsome futuredate.Thisapproachembodiesthescholarlyprinciple thatknowledgeoftheclassicworkinthefieldisthestarting pointforcurrentresearch.
Thetextisalsoparticularlyfocussedonthreetypesofliterature.Firstly,itattemptstogiveaccurateattributionof newideasormethods;secondly,itreviewsclassicpapers whichhavebecomestandardsintheirfield;andthirdly,it presentscasestudiesthathaveevokedcontroversyintheliterature,asexamplesofalternativedatainterpretations.
Theorganizationofthebookallowseachchaptertobe arelativelyfree-standingentitycoveringonesegmentofthe fieldofradiogenicisotopegeology.However,thereadermay benefitfromanunderstandingofthethread,which,inthe author’smind,linksthesechapterstogether.
Chapter1introducesradiogenicisotopesbydiscussing thesynthesisanddecayofnuclideswithinthecontextof nuclearstability.Decayconstantsandtheradioactivedecay lawareintroduced.
Chapter2providesanexperimentalbackgroundtomany ofthechaptersthatfollowbydiscussingthedetailsofmass spectrometricanalysis(TIMSandICP–MS),alongwithadiscussionofisochronregressionfitting.
Thenextthreechaptersintroducethethreepillarsof lithophileisotopegeology,comprisingtheSr,NdandPb isotopemethods.Emphasisisplacedontheirapplications togeochronologyandtheirevolutioninterrestrialsystems. Chapter3coverstheRb–Srsystem,sincethisisoneof thesimplestandmostbasicdatingmethods.Chapter4 coverstheSm–Ndsystem,includingtheuseofNdmodel agestodatecrustalformation.Chapter5examinesU–Pb geochronologyandintroducesthecomplexitiesofterrestrial Pbisotopeevolutioninastraightforwardfashion.Eachchapterendswithanexaminationoftheseisotopesasenvironmentaltracers,focussingparticularlyontheoceans.
Chapters6and7applySr,NdandPb,asgeochemicaltracers,tothestudyofoceanicandcontinentaligneousrocks. Thisisappropriate,becausetheseisotopesaresomeofthe basictoolsoftheisotopegeochemist,whichtogethermay allowunderstandingofthecomplexitiesofmantleprocesses andmagmaticevolution.Thesemethodsaresupplemented inChapters8and9byinsightsfromtheRe–Os,Lu–Hfand otherlithophileisotopesystems,whicharisefromtheirdistinctchemistry.
Chapter10completesthepanoplyoflong-livedisotopic datingsystemsbyintroducingtheK–Ar,Ar–ArandU–He methods,includingtheirapplicationstomagneticandthermalhistories.ThisleadsusnaturallyinChapter11tothe considerationofraregasesasisotopictracers,whichgive uniqueinsightsintothede-gassinghistoryoftheEarth.
Chapter12introducestheshort-livedisotopesoftheuraniumdecayseries,coveringclassicalandrecentdevelopmentsinthedatingofQuaternary-agesedimentaryrocks. ThispreparesusforthecomplexitiesofChapter13,which examinesU-seriesisotopesastracersinigneoussystems. Short-livedprocessesinmantlemeltingandmagmaevolutionarethefocusofattentionhere.
Chapter14examinesthemostimportantofthecosmogenicisotopes.Theserepresentavastandgrowingfieldof chronologyandisotopechemistry,whichisespeciallypertinenttoenvironmentalgeoscience.Inparticular,theradiocarbonmethodisavitaldatingtoolinarchaeologyanda traceroftheocean–atmospheresysteminvolvedinclimate change.
Chapter15representsacomprehensivereviewofthe ‘extinctnuclide’systemsinmeteoritesthathaverecently raisedquestionsaboutthecosmiccontextofterrestrialgeochemistry.Thisoverviewdealswithallofthemajorextinct nuclidepairs,anddiscussestheirsignificancefortheorigins ofthesolarsystemandtheEarth.
Lastly,Chapter16examinesthespecializedfieldof(radiogenic)fissiontrackanalysis,originallydevelopedasaregular datingmethod,butincreasinglyappliedtothermalhistory analysis.
Thetextisgatheredaroundalargenumberofdiagrams, manyofwhichareclassicfiguresfromtheliterature.Igratefullyacknowledgethemanyauthorswhoseoriginaldataand diagramsformthebasisforthesefigures.Authoracknowledgementforallfiguresourcesisgivenwithinindividual figurecaptions,andcorrespondingtitles,journalnames,volumesandpagesarecontainedinthelistofcitedreferences attheendofeachchapter.
AlanP.Dickin McMasterUniversity
Chapter1 NucleosynthesisandNuclearDecay 1.1TheChartoftheNuclides Inthefieldofisotopegeology,neutrons,protonsandelectronscanberegardedasthefundamentalbuildingblocksofthe atom.Thecompositionofagiventypeofatom,calledanuclide,isdescribedbyspecifyingthenumberofprotons(atomic number, Z)andthenumberofneutrons(N)inthenucleus.Thesumoftheseisthemassnumber(A).Byplotting Z against N forallofthenuclidesthathavebeenknowntoexist(atleastmomentarily),thechartofthenuclidesisobtained(Fig.1.1).In thischart,horizontalrowsofnuclidesrepresentthesameelement(constant Z)withavariablenumberofneutrons(N).These areisotopes.
Fig.1.1 Chartofthenuclidesincoordinatesofprotonnumber Z,againstneutronnumber N.( ) = stablenuclides;( ) = unstable nuclides;( ) = naturallyoccurringlong-livedunstablenuclides;( ) = naturallyoccurringshort-livedunstablenuclides.Some geologicallyusefulradionuclidesaremarked.Smoothenvelope = theoreticalnuclidestabilitylimits.Foramoredetailednuclidechart, seeAppendix1.
Abotalof264stablenuclidesareknown,whichhave notbeenobservedtodecaywithavailabledetectionequipment.Thesedefineacentral‘pathofstability’,coloured blackinFig.1.1.Oneithersideofthispath,thezig-zag outlinedefinesthelimitsofexperimentallyknownunstable nuclidescompiledbyHansen(1987).Thesespeciestendto undergoincreasinglyrapiddecayasonemovesoutoneither sideofthepathofstability.Thesmoothouterenvelopesare thetheoreticallimitsofnuclidestability(‘driplines’)beyond whichpromptdecayoccurs.Thismeansthatthesynthesis anddecayofanunstablenuclideoccursinasingleparticle interaction,givingitazeroeffectivelifetime.
Asworkprogresses,thedomainofexperimentallyknown nuclidesshouldapproachthetheoreticalenvelope,ashas alreadyoccurredfornuclideswith Z < 20(Thoennessen, 2013).Thishasbeenachievedoverthepast60yearsusing heavyionaccelerators(e.g.Darmstadt)tomakeexoticspecies bycollision.Becauseofthecurvatureofthepathofstability(Fig.1.1),itwasrelativelyeasytopopulatetheprotonrichsideofthepathofstability,sincethesespeciescanbe madebyfusionoflighterelements.Speciesontheneutronrichsidearemadebybombardingtargetmaterialwith 238 U, creatingunstableheavyatomswhichimmediatelyundergo fissiontoproduceveryneutron-richproducts(e.g.Geissel etal.,2003).Knowledgeabouttheseunstablenucleiwill improveourunderstandingofthenucleosyntheticr-process whichoccursinsupernovae(ThoennessenandSherrill, 2011).
Asmallnumberofunstablenuclideshavesufficiently longhalf-livesthattheyhavenotentirelydecayedtoextinctionsincetheformationofthesolarsystem.Afewother short-livednuclidesareeithercontinuouslygeneratedinthe decayseriesofuraniumandthorium,orproducedbycosmic raybombardmentofstablenuclides.Thesenuclides,andone ortwoextinctshort-livedisotopes,plustheirdaughterproducts,aretherealmofradiogenicisotopegeology.Thosewith half-livesover0.5MaaremarkedinFig.1.2.Nuclideswith half-livesover1000Gadecaytooslowlytobegeologically useful.Observationshowsthatalloftheotherlong-livedisotopeseitherhavebeenorarebeingappliedingeology.
1.2Nucleosynthesis Arealisticmodelforthenucleosynthesisoftheelements mustbebasedonempiricaldatafortheir‘cosmicabundance’.Truecosmicabundancescanbederivedfromstellar spectroscopyorbychemicalanalysisofgalacticcosmicrays. However,suchdataaredifficulttomeasureathighprecision, socosmicabundancesarenormallyapproximatedbysolarsystemabundances.Thesecanbedeterminedbysolarspectroscopyorbydirectanalysisofthemost‘primitive’meteorites,carbonaceouschondrites.Acomparisonofthelatter twosourcesofdata(RossandAller,1976)demonstratesgood agreementformostelements(Fig.1.3).Exceptionsarethe volatileelements,whichhavebeenlostfrommeteorites,and theLi–Be–Bgroup,whichareunstableinstars.
Fig.1.2 Unstablenuclideswithhalf-lives(t1/2 )over0.5Ma,in orderofdecreasingstability.Geologicallyusefulparentnuclides aremarked.Someverylong-livedradionuclideswithno geologicalapplicationarealsomarkedinbrackets.
Itiswidelybelieved(e.g.Weinberg,1977)thatabout30 minutesafterthe‘bigbang’,thematteroftheuniverse(in theformofprotonsandneutrons)consistedmostlyof 1 H and22–28%bymassof 4 He,alongwithtracesof 2 H(deuterium)and 3 He.Hydrogenisstillbyfarthemostabundantelementintheuniverse(88.6%ofallnuclei)andwith helium,makesup99%ofitsmass,butnaturallyoccurring heavynuclidesnowexistuptoatomicweight254orbeyond
Fig.1.3 Comparisonofsolarsystemabundances(relativeto silicon)determinedbysolarspectroscopyandbyanalysisof carbonaceouschondrites.AfterRingwood(1979).
Fig.1.4 Plotofabsolutemagnitudeagainstspectralclassof stars.Hatchedareasshowdistributionsofthethreemainstar groups.Thepostulatedevolutionarypathofastarofsolar massisshown.
(Fig.1.1).Theseheaviernucleimusthavebeenproducedby nucleosyntheticprocessesinstars,andnotinthebigbang, becausestarsofdifferentageshavedifferentcompositions whichcanbedetectedspectroscopically.Furthermore,stars atparticularevolutionarystagesmayhavecompositional abnormalities,suchasthepresenceof 254 Cfinsupernovae. Ifnucleosynthesisoftheheavyelementshadoccurredinthe bigbangthentheirdistributionwouldbeuniformaboutthe universe.
1.2.1StellarEvolution PresentdaymodelsofstellarnucleosynthesisarebasedheavilyonaclassicreviewpaperbyBurbidge etal.(1957),inwhich eightelement-buildingprocesseswereidentified(hydrogen burning,heliumburning, α,e,x,r,sandp).Differentprocesseswereinvokedtoexplaintheabundancepatternsof differentgroupsofelements.Theseprocessesare,inturn, linkedtodifferentstagesofstellarevolution.Itistherefore appropriateatthispointtosummarizethelife-historyof sometypicalstars(e.g.Iben,1967).Thelengthofthislifehistorydependsdirectlyonthestellarmass,andcanbe tracedonaplotofabsolutemagnitude(brightness)against spectralclass(colour),referredtoastheHertzsprung–Russell orH–Rdiagram(Fig.1.4).
Gravitationalaccretionofastarofsolarmassfromcold primordialhydrogenandheliumwouldprobablytakeabout 1Matoraisethecoretemperaturetoca.107 K,when nuclearfusionofhydrogentoheliumcanbegin(Atkinson andHoutermans,1929).Thisprocessisalsocalled‘hydrogen burning’.Thestarspendsmostofitslifeatthisstage,asa ‘mainsequence’star,whereanequilibriumissetupbetween energysupplybyfusionandenergylossintheformofradiation.FortheSun,thisstagewillprobablylastca.10Ga,but
Schematicevolutionofalargestarshowing nucleosyntheticprocessesalongitsacceleratinglife-historyin responsetoincreasingtemperature.Timeismeasured backwardsfromtheendofthestar’slifeontheright.After Burbidge etal.(1957).
averylargestarwith15timestheSun’smassmayremainin themainsequenceforonly10Ma.
Whenthebulkofhydrogeninasmallstarhasbeenconvertedinto 4 He,inwarddensity-drivenforcesexceedoutward radiationpressure,causinggravitationalcontraction.However,theresultingriseincoretemperaturecausesexpansion oftheouterhydrogen-richlayerofthestar.Thisformsahuge low-densityenvelopewhosesurfacetemperaturemayfallto ca.4000K,observedasa‘redgiant’.Thisstagelastsonlyone tenthaslongasthemainsequencestage.Whencoretemperaturesreach1.5 × 107 K,amoreefficienthydrogen-burning reactionbecomespossibleifthestarcontainstracesofcarbon,nitrogenandoxygeninheritedfromoldergenerations ofstars.ThisformofhydrogenburningiscalledtheC–N–O cycle(Bethe,1939).
Atsomepointduringtheredgiantstage,coretemperaturesmayreach108 K,whenheliumfusiontocarbonis ignited(the‘heliumflash’).Furthercorecontraction,yieldingatemperatureofca.109 K,followsasheliumbecomes exhausted.Atthesetemperaturesanendothermicprocessof α-particleemissioncanoccur,allowingthebuildingofheaviernuclidesuptomass40.However,thisquicklyexpends theremainingburnablefuelofthestar,whichthencoolsto awhitedwarf.
Moremassivestars(ofseveralsolarmasses)haveadifferentlife-history.Inthesestars,greatergravitationallyinduced pressure–temperatureconditionsallowthefusionofhelium tobeginearlyintheredgiantstage.Thisisfollowedbyfurthercontractionandheating,allowingthefusionofcarbonandsuccessivelyheavierelements.However,aslighter elementsbecomeexhausted,gravitationallyinducedcontractionandheatingoccurataneverincreasingpace(Fig. 1.5),untiltheimplosionisstoppedbytheattainmentof neutron-stardensity.Theresultingshockwavecausesa
Fig.1.5
Fig.1.6 Schematicdiagramofthecosmicabundancesofthe elements,highlightingthenucleosyntheticprocesses responsibleforformingdifferentgroupsofnuclides.After Burbidge etal.(1957).
supernovaexplosionwhichendsthestar’slife(e.g.Burrows, 2000).
Intheminutesbeforeexplosion,whentemperatures exceed3 × 109 K,veryrapidnuclearinteractionsoccur.Energeticequilibriumisestablishedbetweennucleiandfreeprotonsandneutrons,synthesizingelementslikeFebythesocallede-process.Thesupernovaexplosionitselflastsonlya fewseconds,butischaracterizedbycolossalneutronfluxes. Theseveryrapidlysynthesizeheavierelements,terminating at 254 Cf,whichundergoesspontaneousfission.Productsof thesupernovaexplosionaredistributedthroughspaceand laterincorporatedinanewgenerationofstars.
1.2.2StagesintheNucleosynthesisof HeavyElements Aschematicdiagramofthecosmicabundancechartisgiven inFig.1.6.Wewillnowseehowdifferentnucleosynthetic processesareinvokedtoaccountforitsform.
Theelement-buildingprocessbeginswiththefusionof fourprotonstoone 4 Henucleus,whichoccursinthree stages: 1
where Q istheenergyoutputand t1/2 isthereactiontimeof eachstage(thetimenecessarytoconsumeonehalfofthe reactants)forthecentreoftheSun.Thelongreactiontime forthefirststepexplainsthelongdurationofthehydrogenburning(mainsequence)stageforsmallstarsliketheSun. Theoverallreactionconvertsfourprotonsintoonehelium nucleus,twopositronsandtwoneutrinos,plusalargeoutputofenergyintheformofhigh-frequencyphotons.Hence thereactionisverystronglyexothermic.Althoughdeuteriumand 3 Hearegeneratedinthefirsttworeactions above,theirconsumptioninthethirdaccountsfortheir muchlowercosmicabundancethan 4 He.
Ifheavierelementssuchascarbonandnitrogenare presentinastar,thecatalyticC–N–Osequenceofreactions canoccur,whichalsocombinesfourprotonstomakeone heliumnucleus:
TheC–N–Oelementshavegreaterpotentialenergybarriers tofusionthanhydrogen,sothesereactionsrequirehigher temperaturestooperatethanthesimpleproton–proton(p–p)reaction.However,thereactiontimesaremuchshorter thanforthep–preaction.ThereforetheC–N–Oreactioncontributeslessthan10%ofhydrogen-burningreactionsina smallstarliketheSun,butisoverwhelminglydominantin largestars.Thisexplainstheirmuchshorterlifespaninthe mainsequence.
Heliumburningalsooccursinstages:
He + 4 He ↔
The 8 Benucleusisveryunstable(t1/2 < 10–15 s)andinthe coreofaredgianttheBe/Heequilibriumratioisestimatedat 10–9 .Howeveritslifeisjustlongenoughtoallowthepossibilityofcollisionwithanotherheliumnucleus.(Instantaneous three-particlecollisionsareveryrare.)Theenergyyieldofthe firststageissmall,andthesecondisactuallyendothermic, butthedecayofexcited 12 C∗ tothegroundstateisstrongly exothermic,drivingtheequilibriumtotheright.
TheelementsLi,BeandBhavelownuclearbindingenergies,sothattheyareunstableatthetemperaturesof107 K andabovefoundatthecentreofstars.Theyaretherefore bypassedbystellarnucleosyntheticreactions,leadingtolow
cosmicabundances(Fig.1.6).Thefactthatthefivestableisotopes 6 Li, 7 Li, 9 Be, 10 Band 11 Bexistatallhasbeenattributed tofragmentationeffects(spallation)ofheavycosmicrays (atomicnucleitravellingthroughthegalaxyatrelativistic speeds)astheyhitinterstellargasatoms(Reeves,1974).This istermedthex-process.
Problemshavebeenrecognizedinthex-processmodel forgeneratingthelightelementsLi,BeandB,sincecosmicrayspallationcannotexplaintheobservedisotoperatios oftheseelementsinsolarsystemmaterials.However,Casse etal.(1995)proposedthatcarbonandoxygennucleiejected fromsupernovaecangeneratethesenuclidesbycollision withhydrogenandheliuminthesurroundinggascloud. ThisprocessisbelievedtooccurinregionssuchastheOrion nebula.ThecombinationofsupernovaproductionwithspallationofgalacticcosmicrayscanexplainobservedsolarsystemabundancesofLi,BeandB.
Followingthesynthesisofcarbon,furtherheliumburningreactionsarepossible,toproduceheaviernuclei:
12 C + 4 He → 16 O + γ (Q =+7 15MeV )
16 O + 4 He → 20 Ne + γ (Q =+4 75MeV )
20 Ne + 4 He → 24 Mg + γ (Q =+9.31MeV ) .
Interveningnucleisuchas 13 Ncanbeproducedbyadding protonstothesespecies,butarethemselvesconsumed intheprocessofcatalytichydrogenburningmentioned above.
Inoldredgiantstars,carbon-burningreactionscan occur:
12 C + 12 C → 24 Mg + γ (Q =+13 85MeV ) → 23 Na + 1 H (Q =+2.23MeV ) → 20 Ne + 4 He (Q =+4 62MeV )
Thehydrogenandheliumnucleiregeneratedintheseprocessesallowfurtherreactionswhichhelptofillingaps betweenmasses12and24.
Whenasmallstarreachesitsmaximumcoretemperature of109 Ktheendothermic α-processcanoccur:
20 Ne + γ → 16 O + 4 He (Q =−4.75MeV ) .
Theenergyconsumptionofthisprocessiscompensatedby stronglyexothermicreactionssuchas:
20 Ne + 4 He → 24 Mg + γ (Q =+9 31MeV ) , sothattheoverallreactiongeneratesapositiveenergybudget.Theprocessresemblesheliumburning,butisdistinguishedbythedifferentsourceof 4 He.The α-processcan buildupfrom 24 Mgthroughthesequence 28 Si, 32 S, 36 Arand 40 Ca,whereitterminates,owingtotheinstabilityof 44 Ti.
Themaximumtemperaturesreachedinthecoreofa smallstardonotallowsubstantialheavyelementproduction.However,inthefinalstagesoftheevolutionoflarger
stars,beforeasupernovaexplosion,thecoretemperature exceeds3 × 109 K.Thisallowsenergeticequilibriumtobe establishedbyveryrapidnuclearreactionsbetweenthevariousnucleiandfreeprotonsandneutrons(thee-process). Because 56 Feisatthepeakofthenuclearbindingenergy curve,thiselementismostfavouredbythee-process(Fig. 1.6).However,theotherfirst-seriestransitionelementsV,Cr, Mn,CoandNiinthemassrange50to62arealsoattributed tothisprocess.
Duringthelastfewmillionyearsofaredgiant’slife,a slowprocessofneutronadditionwithemissionofgamma rays(thes-process)cansynthesizemanyadditionalnuclides uptomass209(seeFig.1.7).Twopossibleneutronsources are:
The 13 Cand 21 Neparentscanbeproducedbyprotonbombardmentofthecommon 12 Cand 20 Nenuclides.
Becauseneutroncaptureinthes-processisrelatively slow,unstableneutron-richnuclidesgeneratedinthisprocesshavetimetodecayby β emissionbeforefurtherneutron addition.Hencethenucleosyntheticpathofthes-process climbsinmanysmallstepsupthepathofgreateststability ofproton/neutronratio(Fig.1.7)andisfinallyterminatedby the α decayof 210 Pobackto 206 Pband 209 Bibackto 205 Tl.
The‘neutroncapturecross-section’ofanuclideexpresses howreadilyitcanabsorbincomingthermalneutrons,and thereforedetermineshowlikelyitistobeconvertedto ahigheratomicmassspeciesbyneutronbombardment. Nuclideswithcertainneutronnumbers(e.g.50,82and126) haveunusuallysmallneutroncapturecross-sections,makingthemparticularlyresistanttofurtherreactionandgivingrisetolocalpeaksinabundanceatmasses90,138and 208.Hence, N = 50,82and126areempiricallyreferredtoas neutron‘magicnumbers’.
Incontrasttothes-process,whichmayoccuroverperiodsofmillionsofyearsinredgiants,r-processneutronsare addedinveryrapidsuccessiontoanucleusbefore β decay ispossible.Thenucleiarethereforerapidlydriventothe neutron-richsideofthestabilityline,untiltheyreachanew equilibriumbetweenneutronadditionand β decay,representedbythehatchedzoneinFig.1.7.Nuclidesmovealong thisr-processpathwayuntiltheyreachaconfigurationwith lowneutroncapturecross-section(aneutronmagicnumber).Atthesepointsa‘cascade’ofalternating β decaysand singleneutronadditionsoccurs,indicatedbythenotched laddersinFig.1.7.Nuclidesclimbtheseladdersuntilthey reachthenextsegmentofther-processpathway.Nuclides withneutronmagicnumbersbuildtoexcessabundances,as withthes-process,buttheyoccuratproton-deficientcompositionsrelativetothes-processstabilitypath.Therefore, whentheneutronfluxfallsoffandnuclidesontheladders undergo β decaybacktothestabilityline,ther-processlocal abundancepeaksaredisplacedabout6–12massunitsbelow
Fig.1.7 Neutroncapturepathsofthes-processandr-processshownonthechartofthenuclides.Hatchedzoneindicatesthe r-processnucleosyntheticpathwayforaplausibleneutronflux.Neutron‘magicnumbers’areindicatedbyverticallines,andmass numbersofnuclideabundancepeaksaremarked.AfterSeeger etal.(1965).
thes-processpeaks(Fig.1.6).Ther-processisterminatedby neutron-inducedfissionatmass254,andnuclearmatteris fedbackintotheelement-buildingprocessesatmassesofca. 108and146.Thus,cyclingofnuclearreactionsoccursabove mass108.
Becauseoftheextremeneutronfluxpostulatedforthe r-process,itsoccurrenceisprobablylimitedtosupernovae. However,BlakeandSchramm(1976)proposedtheexistenceofaprocessthatoccurredatintermediateneutron fluxesbetweenthes-andr-processes,whichtheycalled the‘n-process’.Thiscouldoccurwhenneutronaddition onlyslightlyexceedsratesof β decay.Althoughneglected formanyyears,phenomenasimilartothen-processhave receivedconsiderationinsomerecentmodellingofsupernovaoutflows(Meyer,2005;Wanajo,2007;PanovandJanka, 2009).
Theeffectsofr-ands-processsynthesisoftypicalheavy elementsmaybedemonstratedbyanexaminationofthe chartofthenuclidesintheregionofthelightrareearths (Fig.1.8).Thestep-by-stepbuildingofthes-processcontrasts withthe‘rainofnuclides’producedby β decayofr-process products.Somenuclides,suchas 143 Ndto 146 Ndareproduced bybothr-ands-processes.Some,suchas 142 Ndares-only nuclides‘shielded’fromthedecayproductsofther-process byinterveningnuclides.Others,suchas 148 Ndand 150 Nd arer-onlynuclideswhichlieoffthes-processproduction pathway.
Severalheavynuclidesfrom 74 Seto 196 Hglieisolatedon theproton-richsideofthes-processgrowthpath(e.g. 144 Sm inFig.1.8),andarealsoshieldedfromr-processproduction. Inordertoexplaintheexistenceofthesenuclidesitisnec-
essarytopostulateap-processbywhichnormalr-andsprocessnucleiarebombardedbyprotonsatveryhightemperature(>2 × 109 K),probablyintheouterenvelopeofa supernova.
1.3RadioactiveDecay Nuclearstabilityanddecayisbestunderstoodinthecontextofthechartofnuclides.Ithasalreadybeennoted thatnaturallyoccurringnuclidesdefineapathinthechart ofthenuclides,correspondingtothegreateststabilityof
Fig.1.8
Partofthechartofthenuclidesintheareaofthe lightrareearthstoshowp-,r-ands-processproductnuclides. AfterO’Nions etal.(1979).
Fig.1.9 Theoreticalstabilitylimitsofnuclidesillustratedona plotof N/Z againstmassnumber(A).Lowerlimitsfor α emissionareshownfor α energiesof0,2and4MeV.Stability limitsagainstspontaneousfissionareshownforhalf-livesof10 Gaandzero(instantaneousfission).AfterHanna(1959).
proton/neutronratio.Fornuclidesoflowatomicmass,the greateststabilityisachievedwhenthenumbersofneutrons andprotonsareapproximatelyequal(N = Z),butasatomic massincreases,thestableneutron/protonratioincreases until N/Z = 1.5.Theoreticalstabilitylimitsareillustrated onaplotof N/Z againstmassnumber(A)inFig.1.9(Hanna, 1959).
Thepathofstabilityisinfactanenergy‘valley’into whichthesurroundingunstablenuclidestendtofall,emittingparticlesandenergy.Thisconstitutestheprocessof radioactivedecay.Thenatureofparticlesemitteddepends onthelocationoftheunstablenucliderelativetotheenergy valley.Unstablenuclidesoneithersideofthevalleyusually decayby‘isobaric’processes.Thatis,anuclearprotonisconvertedtoaneutron,orviceversa,butthemassofthenuclide doesnotchangesignificantly(exceptforthe‘massdefect’ consumedasnuclearbindingenergy).Incontrast,unstable nuclidesatthehighendoftheenergyvalleyoftendecayby emissionofaheavyparticle(e.g. α particle),thusreducing theoverallmassofthenuclide.
1.3.1IsobaricDecay DifferentdecayprocessesindicatedonFig.1.9canbestbe understoodbylookingatexamplesectionsofthechart ofnuclides.Figure1.10showsapartofthechartaround theelementpotassium.Thediagonallinesindicateisobars (nuclidesofequalmass)whicharedisplayedonenergysectionsinFig.1.11andFig.1.12.
Nuclidesdeficientinprotonsdecaybytransformationof aneutronintoaprotonandanelectron.Thelatteristhen expelledfromthenucleusasanegative‘β’particle(β ), alongwithananti-neutrino(ν).Theenergyreleasedbythe
Fig.1.10 Partofthechartofthenuclides,incoordinatesof atomicnumber(Z)againstneutronnumber(N)intheregion ofpotassium.Stablenuclidesareshaded;thelong-livedunstable nuclide 40 Kishatched.Diagonallinesareisobars(linesof constantmassnumber, A).
transformationisdividedbetweenthe β particleandthe anti-neutrinoaskineticenergy(Fermi,1934).Theobserved consequenceisthatthe β particlesemittedhaveacontinuousenergydistributionfromnearlyzerotothemaximum decayenergy.Low-energy β particlesareverydifficulttoseparatefrombackgroundnoiseinadetector,makingthe β decay constantofnuclidessuchas 87 Rbverydifficulttodetermine accuratelybydirectcounting(Section3.1).
Inmanycasesthenuclideproducedby β decayisleftin anexcitedstatewhichsubsequentlydecaystotheground statenuclidebyareleaseofenergy.Thismayeitherbelost asa γ rayofdiscreteenergy,ormaybetransferredfrom thenucleustoanorbitalelectron,whichisthenexpelled
Fig.1.11 Asimpleenergysectionthroughthechartof nuclidesalongtheisobar A = 38showingnuclidesandisomers. DatafromLedererandShirley(1978).
Fig.1.12 Energysectionthroughthechartofnuclidesalong isobar A = 40.Isomersareomittedforsimplicity.Fornuclides withmorethanonedecaymechanismthepercentageof transitionsbydifferentdecayroutesisindicated.Datafrom LedererandShirley(1978).
fromtheatom.Inthelattercase,nuclearenergyemission inexcessofthebindingenergyoftheelectronistransferred totheelectronaskineticenergy,whichissuperimposedasa linespectrumonthecontinuousspectrumofthe β particles. Themeta-stablestates,or‘isomers’oftheproductnuclide aredenotedbythesuperscript‘m’,andhavehalf-livesfrom lessthanapico-secondupto241years(inthecaseof 192m Ir). Many β emittershavecomplexenergyspectrainvolvinga groundstateproductandmorethanoneshort-livedisomer, asshowninFig.1.11.Thedecayof 40 Clcanyield35differentisomersof 40 Ar(LedererandShirley,1978),buttheseare omittedfromFig.1.12forthesakeofclarity.
Nuclidesdeficientinneutrons,e.g. 38 K(Fig.1.11),may decaybytwodifferentprocesses:positronemissionandelectroncapture.Bothprocessesyieldaproductnuclidewhich isanisobaroftheparent,bytransformationofaprotontoa neutron.Inpositronemissionapositivelychargedelectron (β+ )isemittedfromthenucleusalongwithaneutrino.As with β emission,thedecayenergyissharedbetweenthe kineticenergyofthetwoparticles.Afterhavingbeenslowed downbycollisionwithatoms,thepositroninteractswithan orbitalelectron,wherebybothareannihilated,yieldingtwo 0.511MeV γ rays(thisformspartofthedecayenergyofthe nucleartransformation).
Inelectroncapturedecay(EC)anuclearprotonistransformedintoaneutronbycaptureofanorbitalelectron,usuallyfromoneoftheinnershells,butpossiblyfromanouter shell.Aneutrinoisemittedfromthenucleus,andanouter orbitalelectronfallsintothevacancyproducedbyelectron
capture,emittingacharacteristicX-ray.Theproductnucleus maybeleftinanexcitedstate,inwhichcaseitdecaystothe groundstateby γ emission.
Whenthetransitionenergyofadecayrouteisless thantheenergyequivalentofthepositronmass(2me C2 = 1.022MeV),decayisentirelybyelectroncapture.Thereafter, theratio β+ /ECincreasesrapidlywithincreasingtransition energy(Fig.1.12),butasmallamountofelectroncapture alwaysaccompaniespositronemissionevenathightransitionenergies.
Itisempiricallyobserved(Mattauch,1934)thatadjacent isobarscannotbestable.Since 40 Arand 40 Caarebothstablespecies(Fig.1.10), 40 Kmustbeunstable,andexhibitsa brancheddecaytotheisobarsoneitherside(Fig.1.12).
1.3.2AlphaandHeavyParticleDecay Heavyatomsabovebismuthinthechartofnuclidesoften decaybyemissionofan α particle,consistingoftwoprotons andtwoneutrons(He2+ ).Thedaughterproductisnotanisobaroftheparent,andhasanatomicmassreducedbyfour. Theproductnuclidemaybeinthegroundstate,orremain inanexcitedstateandsubsequentlydecayby γ emission.The decayenergyissharedbetweenkineticenergyofthe α particleandrecoilenergyoftheproductnuclide.
TheUandThdecayseriesareshowninFig.12.1.Because theenergyvalleyofstableproton/neutronratiosinthispart ofthechartofthenuclideshasaslopeoflessthanunity, α decaystendtodrivetheproductsofftotheneutron-richside oftheenergyvalley,wheretheyundergo β decay.Infact β decaymayoccurbeforethecorresponding α decay.
Atintermediatemassesinthechartofthenuclides, α decaymayoccasionallybeanalternativetopositronorelectroncapturedecayforproton-richspeciessuchas 147 Sm. However, α decaysdonotoccuratlowatomicnumbers becausethepathofnuclearstabilityhasa Z/N slopeclose tounityinthisregion(Fig.1.1).Anysuchdecayswould simplydriveunstablespeciesalong(parallelto)theenergy valley.
Anexoticmodeofradioactivedecaywasdiscoveredinthe 235 Uto 207 Pbdecayseries(RoseandJones,1984),whereby 223 Radecaysbyemissionof 14 Cdirectlyto 209 Pbwithadecay energyof13.8MeV.Howeverthismodeofdecayoccurswith afrequencyoflessthan10 9 ofthe α decayof 223 Ra.
1.3.3NuclearFissionandtheOklo NaturalReactor Thenuclide 238 U(atomicno.92)undergoesspontaneousfissionintotwoproductnucleiofdifferentatomicnumber,typicallyca.40and55(ZrandCs),alongwithvariousother particlesandalargeamountofenergy.Becausetheheavy parentnuclidehasahighneutron/protonratio,thedaughterproductshaveanexcessofneutronsandundergoisobaricdecayby β emission.Althoughthefrequencyofspontaneousfissionof 238 Uislessthan2 × 10 6 thatof α decay, inheaviertransuraniumelementsspontaneousfissionisthe
principalmodeofdecay.Othernuclides,suchas 235 U,may undergofissioniftheyarestruckbyaneutron.Furthermore, sincefissionreleasesneutronswhichpromotefurtherfissionreactions,achainreactionmaybeestablished.Ifthe concentrationoffissilenuclidesishighenough,thisleads toathermonuclearexplosion,asinasupernovaoratomic bomb.
Inspecialcaseswhereanintermediateheavy-element concentrationismaintained,aself-sustainingbutnonexplosivechainreactionmaybepossible.Thisdepends largelyonthepresenceofa‘moderator’.Energetic‘fast’neutronsproducedbyfissionundergomultipleelasticcollisions withatomsofthemoderator.Theyaredeceleratedinto‘thermal’neutrons,havingvelocitiescharacteristicofthethermalvibrationofthemedium,theoptimumvelocityforpromotingfissionreactionsinthesurroundingheavyatoms. Onenaturalcaseofsuchanoccurrenceisknown,termed theOklonaturalreactor(Cowan,1976;Naudet,1976).
InMay1972, 235 Udepletionswerefoundinuraniumore enteringaFrenchprocessingplantandtracedtoanore depositatOklointheGabonRepublicofcentralAfrica.In spiteofitsapparentimprobability,thereisoverwhelming geologicalevidencethatthe 235 Udepletionswerecausedby theoperationofanaturalfissionreactorataround1.8Ga.It appearsthatintheEarlyProterozoic,conditionsweresuch thattheseriesofcoincidencesneededtocreateanaturalfissionreactorwereachievedmoreeasilythanatthepresent day.
Uraniumdispersedingraniticbasementwasprobably erodedandconcentratedinstream-bedplacerdeposits. Itwasimmobilizedinthisenvironmentastheinsoluble reducedformduetothenatureofprevailingatmospheric conditions.Withtheappearanceofblue-greenalgae,the firstorganismscapableofphotosynthesis,theoxygencontentoftheatmosphere,andhenceriverwater,probablyrose, convertingsomereduceduraniumintomoresolubleoxidizedforms.Thesewerecarrieddown-streaminsolution. Whenthesolubleuraniumreachedariverdeltaitmusthave encounteredsedimentsrichinorganicooze,creatinganoxygendeficiencywhichagainreducedandimmobilizeduranium,butnowatamuchhigherconcentration(upto0.5% uraniumbyweight).
Afterburialandcompactionofthedeposit,itwassubsequentlyuplifted,foldedandfractured,allowingoxygenated groundwaterstore-mobilizeandconcentratetheoresinto veinsover1mwideofalmostpureuraniumoxide.Hencethe specialoxygenfugacityconditionsobtainingintheProterozoichelpedtoproduceaparticularlyconcentrateddeposit. However,itsoperationasareactordependedonthegreater 235 Uabundance(3%)atthattime,comparedwiththepresent daylevelof0.72%,reducedby α decayintheinterveningtime (half-life = 700Ma).
InthecaseofOklo,lightwater(H2 O),musthaveacted asamoderator,andthenuclearreactionwascontrolledby abalancebetweenhotwaterlossbyconvectiveheatingor boiling,andreplacementbycoldgroundwaterinflux.Inthis
Nd,Oklooreandreactorfissionproductwaste.Datafrom Cowan(1976).
waytheestimatedtotalenergyoutput(15000mega-watt years,representingtheconsumptionofsixtonsof 235 U)was probablymaintainedatanaverageofonly20kWforabout 0.8Ma.
Geochemicalevidencefortheoccurrenceoffissionis derivedfirstlyfromthecharacteristicelementalabundances offissionproducts.Forexample,excessconcentrationsof rareearthsandotherimmobileelementssuchasZrare observed.Alkalimetalandalkalineearthswereprobably alsoenriched,buthavesubsequentlybeenremovedbyleaching.Secondly,thecharacteristicisotopeabundancesofsome elementscanonlybeexplainedbyfission(Raffenach etal., 1976).
TheNdisotopecompositionoftheOklooreisverydistinctive(Fig.1.13). 142 Ndisshieldedfromisobaricdecayof theneutron-richfissionproducts(Fig.1.8)sothatitsabundanceindicatesthelevelofnormalNd.Aftercorrectionfor anenhancedabundanceof 144 Ndand 146 Ndduetoneutron capturebythelarge-cross-sectionnuclides 143 Ndand 145 Nd, OkloNdhasanisotopiccompositioncloselyresemblingthat ofnormalreactorfissionproductwaste(Fig.1.13).
Evidenceforasignificantneutronfluxisalsodemonstratedbytheisotopesignaturesofactinideelements.For example,theabundantisotopeofuranium(238 U)readilycapturesfastneutronstoyieldanappreciableamountof 239 U, whichdecaysby β emissionto 239 Npandthen 239 Pu(Fig. 1.14).Thelatterdecaysby α emissionwithahalf-lifeof24ka toyieldmore 235 U,contributinganextra50%tothe‘burnable’fuel,asina‘fast’breederreactor(‘fast’referstothe speedoftheneutronsinvolved).Becausethefissionproducts of 239 Puand 235 Uhavedistinctisotopicsignatures,itisdeterminedthatverylittle 239 Puunderwentneutron-induced
Fig.1.13 Barchartsoftheisotopecompositioninnormal
Fig.1.14 Nuclearreactionsleadingto‘breeding’of transuraniumelementfuelintheOklonaturalreactor.
fissionbeforedecayingto 235 U.Hence,thelowfluxandprolongedlifetimeofthenaturalreactorarededuced.
1.4TheLawofRadioactiveDecay Therateofdecayofaradioactiveparentnuclidetoastable daughterproductisproportionaltothenumberofatoms, n presentatanytime t (RutherfordandSoddy,1902):
where λ istheconstantofproportionality,whichischaracteristicoftheradionuclideinquestionandiscalledthe decayconstant(expressedinunitsofreciprocaltime).The decayconstantstatestheprobabilitythatagivenatomofthe radionuclidewilldecaywithinastatedtime.Thetermdn/dt istherateofchangeofthenumberofparentatoms,andis negativebecausethisratedecreaseswithtime.Rearranging equation[1.1],weobtain:
Thisexpressionisintegratedfrom t = 0to t,giventhatthe numberofatomspresentattime
0is
whichcanalsobewrittenas:
Ausefulwayofreferringtotherateofdecayofaradionuclideisthe‘half-life’, t1/2 ,whichisthetimerequiredforhalf oftheparentatomstodecay.Substituting n = n0 /2and t = t1/2
intoequation[1.5],andtakingthenaturallogofbothsides, weobtain:
Thenumberofradiogenicdaughteratomsformed, D
,is equaltothenumberofparentatomsconsumed:
but n0 = n eλ t (fromequation[1.5]);sosubstitutingfor n0 in equation[1.7]yields:
Ifthenumberofdaughteratomsattime t = 0is D0 ,thenthe totalnumberofdaughteratomsaftertime t isgivenas:
Thisequationisthefundamentalbasisofgeochronological datingtools.
Intheuraniumseriesdecaychains,thedaughterproductsofradioactivedecay(otherthanthethreePbisotopes) arethemselvesradioactive.Hencetherateofdecayofsucha daughterproductisgivenbythedifferencebetweenitsproductionratefromtheparentanditsowndecayrate:
where n1 and λ1 aretheabundanceanddecayconstantof theparent,and n2 and λ2 correspondtothedaughter.
Butequation[1.5]canbesubstitutedfor n1 inequation [1.11]toyield:
Thisequationisintegratedforachosensetofinitialconditions,thesimplestofwhichsets n2 = 0at t = 0.Then:
ThistypeofsolutionwasfirstdemonstratedbyBateman (1910)andisnamedafterhim.Recently,Catchen(1984) examinedmoregeneralinitialconditionsfortheseequations,leadingtomorecomplexsolutions.
1.4.1Uniformitarianism Whenusingradioactivedecaytomeasuretheageofrockswe mustapplytheclassicprincipleofuniformitarianism(Hutton,1788),byassumingthatthedecayconstantoftheparentradionuclidehasnotchangedduringthehistoryofthe Earth.Itisthereforeimportanttooutlinesomeevidencethat thisassumptionisjustified.
Thedecayconstantofaradionuclidedependsonnuclear constants,suchas a ( = elementarycharge2 /Plank’sconstant/velocityoflight).Shlyakhter(1976)arguedthattheneutroncapturecross-sectionofanuclideisverysensitively dependentonnuclearconstants.Becauseneutronabsorbers (suchas 143 Ndand 145 Nd)inthe1.8GaOklonaturalreactor
Another random document with no related content on Scribd:
about donations to the Project Gutenberg Literary Archive Foundation.”
• You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg™ License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg™ works.
• You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work.
• You comply with all other terms of this agreement for free distribution of Project Gutenberg™ works.
1.E.9. If you wish to charge a fee or distribute a Project Gutenberg™ electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from the Project Gutenberg Literary Archive Foundation, the manager of the Project Gutenberg™ trademark. Contact the Foundation as set forth in Section 3 below.
1.F.
1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread works not protected by U.S. copyright law in creating the Project Gutenberg™ collection. Despite these efforts, Project Gutenberg™ electronic works, and the medium on which they may be stored, may contain “Defects,” such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other
medium, a computer virus, or computer codes that damage or cannot be read by your equipment.
1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGESExcept for the “Right of Replacement or Refund” described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg™ trademark, and any other party distributing a Project Gutenberg™ electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH
1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.
1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.
1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.
1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.
1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.
Section 2. Information about the Mission of Project Gutenberg™ Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.
Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project
Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.
Section 3. Information about the Project Gutenberg Literary Archive Foundation The Project Gutenberg Literary Archive Foundation is a nonprofit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.
The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact
Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form
accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.
The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.
While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.
International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.
Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.
Section 5. General Information About Project Gutenberg™ electronic works Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and
distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.
Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.
Most people start at our website which has the main PG search facility: www.gutenberg.org.
This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.