Download Full River mechanics pierre y. julien PDF All Chapters

Page 1


River Mechanics Pierre Y. Julien

Visit to download the full and correct content document: https://textbookfull.com/product/river-mechanics-pierre-y-julien/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Vector Mechanics for Engineers 12th Edition Ferdinand

Pierre Beer

https://textbookfull.com/product/vector-mechanics-forengineers-12th-edition-ferdinand-pierre-beer/

Hood River Zero (Hood River Hoodlums #4) 1st Edition K

Webster [Webster

https://textbookfull.com/product/hood-river-zero-hood-riverhoodlums-4-1st-edition-k-webster-webster/

Computational Homogenization of Heterogeneous Materials with Finite Elements Julien Yvonnet

https://textbookfull.com/product/computational-homogenization-ofheterogeneous-materials-with-finite-elements-julien-yvonnet/

Topological Data Analysis for Scientific Visualization 1st Edition Julien Tierny (Auth.)

https://textbookfull.com/product/topological-data-analysis-forscientific-visualization-1st-edition-julien-tierny-auth/

Cosmetic Medicine and Surgery Pierre Andre

https://textbookfull.com/product/cosmetic-medicine-and-surgerypierre-andre/

Biostatistics for Medical and Biomedical Practitioners

Second Edition Julien I. E. Hoffman

https://textbookfull.com/product/biostatistics-for-medical-andbiomedical-practitioners-second-edition-julien-i-e-hoffman/

Vert x in Action Asynchronous and Reactive Java 1st Edition Julien Ponge

https://textbookfull.com/product/vert-x-in-action-asynchronousand-reactive-java-1st-edition-julien-ponge/

Book of Patch (Tarot) Jordan River

https://textbookfull.com/product/book-of-patch-tarot-jordanriver/

Gravitation From Newton to Einstein Pierre Fleury

https://textbookfull.com/product/gravitation-from-newton-toeinstein-pierre-fleury/

RIVERMECHANICS

SECONDEDITION

ThesecondeditionofJulien’stextbookpresentsananalysisofrivers,frommountainstreams toestuaries.Thebookisrootedinfundamentalprinciplestopromotesoundengineeringpractice.State-of-the-artmethodsarepresentedtounderlinetheoryandengineeringapplications. Rivermechanicsblendsthedualconceptsofwaterconveyanceandsedimenttransport.Like the firstedition,thistextbookcontainsampledetailsonriverequilibrium,riverdynamics, bankstabilization,andriverengineering.Complementarychaptersalsocoverthephysical andmathematicalmodelingofrivers.Aswellasbeingcompletelyupdatedthroughout,three newchaptershavebeenaddedonwatersheddynamics,hillslopestability,andstreamrestoration.Throughoutthetext,hundredsofexamples,exercises,problems,andcasestudiesassist thereaderinlearningtheessentialconceptsofriverengineering.Thetextbookisverywell illustratedtoenhanceadvancedstudentlearning,whileresearchersandpractitionerswill find thebooktobeaninvaluablereference.

P IERRE Y.J ULIEN isProfessorofCivilandEnvironmentalEngineeringatColoradoState University.Hehas35yearsofprofessionalengineeringexperienceinthe fieldsofhydraulics andriversedimentation.Julienhasauthoredmorethan500scientificcontributions,including twotextbooks(the firsteditionof RiverMechanics,and ErosionandSedimentation (CambridgeUniversityPress2010,secondedition)),25bookchaptersandmanuals,185refereedjournalarticles,and230professionalpresentationsandconferencepapers.Hehasdelivered20keynoteaddressesandguidedmorethan130graduatestudentstocompletionoftheir engineeringdegrees.HeistherecipientoftheHansAlbertEinsteinAwardoftheAmerican SocietyofCivilEngineers(ASCE),deliveredtheHunterRouseLectureoftheEnvironmental andWaterResourcesInstitute(ASCE)in2015,andisaformereditorfortheASCE Journal ofHydraulicEngineering.

“Thiselegantlywrittenbookcoversthemajortopicsassociatedwithwater flowandsediment transportinrivers.Itthoughtfullyguidesreadersthroughdescriptionsandformulationsof keyphysicalprocesses,andoffersmanyillustrationsandworkedexamplestoaidunderstanding.Thebookisacomprehensivecompaniontotheauthor’sbook ErosionandSedimentation, whichfocusesonalluvialsedimenttransportinrivers.”

“Asanengineeringprofessionalfacingthechallengesofsedimenttransport,Ifoundthenew editionof RiverMechanics tobeagreatreferenceandaveryusefulresource.Itspresentation ofmaterialhasbeensubstantiallyrevisedandexpanded,includingseveralnewchapters.I especiallylikedtheexpandedtreatmentofwatershedprocessesandnewmaterialonstream restoration. RiverMechanics standsonitsownandisevenmoreusefulintandemwithPierre Julien’sotherbook ErosionandSedimentation asitscompanion.Havingbeenfamiliarwith the firsteditionfrommydaysingraduateschool,thisneweditionwillundoubtedlyproveto beanindispensableresourceforstudentsandpractitionersalike.”

“Abookinriverengineeringtakingtheinterestedreaderfromitssourcestotheestuary, paintedwithconciseproblemstatementsandsolvedbyadequateengineeringmethodsand techniques.Prof.Julien’ssecondeditioncanbefullyrecommendedtograduatestudents, researchesandpracticingengineersinthe fieldsofriverbasins,rivermechanics,river flows, riverstability,riverequilibrium,rivermodels,andriverrestoration.Prof.Julienshouldbe praisedforhisintegralapproach,histechnicalformulationandhisupdatedpresentation involvingbothproblemsinpracticeandexercisesofthecomplicatedtopic.”

“Araremust-readonmodernrivermechanicsthatcoversthesubjectnotonlycomprehensivelyandrigorouslybutalsoinspirationally.Theauthor’sphilosophy ‘fromobservationsto physicalunderstandingtomathematicalmodellingandnumericalsimulations’ underpins everytopicinthebook,makingitveryclearandcomplete.Undoubtedly,thistextwillquickly becomeabenchmarksourceequallyimportanttostudents,engineersandresearchers.Itwill alsobenoteworthytogeoscientistsandstreamecologistsworkingatthebordersbetweentheir disciplinesandengineering.Agenuinepleasuretoread!”

RIVERMECHANICS

SECONDEDITION

PIERREY.JULIEN

ColoradoStateUniversity

UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia

314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi – 110025,India 79AnsonRoad,#06-04/06,Singapore079906

CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitofeducation,learning,and researchatthehighestinternationallevelsofexcellence.

www.cambridge.org

Informationonthistitle:www.cambridge.org/9781107462779 DOI:10.1017/9781316107072

© PierreY.Julien2018

Thispublicationisincopyright.Subjecttostatutoryexceptionandtotheprovisionsofrelevantcollective licensingagreements,noreproductionofanypartmaytakeplacewithoutthewrittenpermissionof CambridgeUniversityPress.

Firstpublished2018

PrintedintheUnitedStatesofAmericabySheridanBooks,Inc.

AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

Names:Julien,PierreY.

Title:Rivermechanics/PierreY.Julien,ColoradoStateUniversity.

Description:Cambridge,UnitedKingdom:CambridgeUniversityPress,[2018] |Includesbibliographicalreferencesandindex.

Identifiers:LCCN2017058314|ISBN9781107462779(pbk.)

Subjects:LCSH:Riverengineering.

Classification:LCCTC405.J852018|DDC627/.12 dc23LCrecord availableathttps://lccn.loc.gov/2017058314

ISBN978-1-107-46277-9Paperback

Additionalresourcesforthispublicationatwww.cambridge.org/river2

CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofURLsforexternalor third-partyinternetwebsitesreferredtointhispublicationanddoesnotguaranteethatanycontenton suchwebsitesis,orwillremain,accurateorappropriate.

DedicatedtomydeceasedmotherYolandeandmybrotherMichel

Prefacepage xi Notation xv

1PhysicalProperties1

1.1DimensionsandUnits1

1.2WaterProperties4

1.3SedimentProperties6 2MechanicsofRivers14

2.1EquationsGoverningRiverFlows14

2.2EquationsGoverningSedimentMotion33

2.3WhyDoRiversForm?41

3RiverBasins47

3.1RiverBasinCharacteristics47

3.2ExcessRainfallPrecipitation49

3.3SurfaceRunoff60

3.4SedimentSourcesandSedimentYield69

4RiverBasinDynamics83

4.1RainfallPrecipitation83

4.2RiverFlowDurationCurves96

4.3FloodFrequencyAnalysis101

4.4ExtremeFloods108

5SteadyFlowinRivers116

5.1Steady-UniformRiverFlow116

5.2SteadyNonuniformRiverFlow138

6UnsteadyFlowinRivers153

6.1SolitaryWavePropagation153

6.2KinematicandDynamicWaves154

6.3Flood-WaveCelerity155

6.4Flood-WavePropagation159

6.5Short-WavePropagation164

6.6FlowPulsesinRivers165

6.7Loop-RatingCurves167

7MathematicalRiverModels177

7.1RiverFlood-WavePropagation177

7.2Advection–DispersionofRiverContaminants186

7.3Aggradation–DegradationinRivers195

7.4NumericalRiverModels198

8HillslopeandRevetmentStability205

8.1HillslopeStability205

8.2RevetmentStability214

9RiverbankProtection230

9.1RiverbankStability230

9.2RiverFlow-ControlStructures247 10RiverEquilibrium260

10.1IrrigationCanalGeometry260

10.2DownstreamHydraulicGeometry262

10.3RiverMeandering276 11RiverDynamics292 11.1RiverResponse293

11.2RiverDegradation299

11.3RiverAggradation311 12PhysicalRiverModels330

12.1HydraulicSimilitude330

12.2Rigid-BedRiverModels333

12.3Sediment-TransportSimilitude338

12.4Mobile-BedRiverModels340 13StreamRestoration348

13.1WatershedEnvironment348

13.2ChannelRehabilitation351

13.3AquaticEnvironment358

13.4StreamRestorationGuidelines375 14RiverEngineering379

14.1RiverFloodControl379

14.2RiverClosureandLocalScour388

14.3WeirsandCanalHeadworks397

14.4BridgeScour402

14.5NavigableWaterways408

Preface

Waterisessentialtosustainlifeandriversaretrulyfascinating.Mostprosperouscitiesarelocatednearriverconfluencesandriverengineersmust designstructurestodrawbenefitsfromthe fl uvialsystemfordeveloping societies.Ideally,scientistsshoulddevelopnewmethodstoimproveengineeringdesign,whilepractitionersmustunderstandwhycertainstructures workandothersfail.Fundamentally,rivermechanicsrequiresunderstanding ofhydrodynamicforcesgoverningthemotionofwaterandsedimentincomplexriversystems.Additionally,the fluvialnetworkmustseekequilibriumin itsabilitytocarrywaterandtransportsedimentthroughdynamicriver systems.Nowadays,riverengineersareconcernednotonlyabouturban drainage, floodcontrol,andwatersupply,butalsoaboutwaterquality,contamination,andaquatichabitat.Thistextbookbroadensthisperspectiveby integratingknowledgeofclimatology,hydrology,andgeomorphology.

Thistextbookhasbeenpreparedforengineersandscientistsdevelopinga broad-basedtechnicalexpertiseinrivermechanics.Ithasbeenspecifically designedforgraduatestudents,forscholarsactivelypursuingscientific research,andforpractitionerskeepingupwithrecentdevelopmentsinriver engineering.Theprerequisitesforreadingitandmakinguseofitaresimply abasicknowledgeofundergraduate fluidmechanicsandofpartialdifferentialequations.Thetextbook ErosionandSedimentation fromCambridge UniversityPressservesasprerequisitematerialforthegraduatecourse, RiverMechanics,thatIhavetaughtatColoradoStateUniversityoverthe pastthreedecades.

MyteachingphilosophyhasbeendetailedinmyrecentHunterRouse lecture(Julien,2017).SketchI.1illustratesthekeypointsthatIseekto developamongmygraduatestudentsandpostdoctoraladvisees.

Observation field and lab.

Physics–chemistry

SketchI.1.Professionaldevelopmentinriverengineering

First,theessentialcomplementarityoftheoryandpracticecannotbeoveremphasized.Theorycanbestenhanceengineeringapplicationswhenthefundamentalunderstandinghasbeengroundedinpracticalobservations. Second,thereisaneedtodevelopthreemainpoles,whereobservations from fieldandlaboratoriesleadtophysicalunderstanding,priortomathematicalcalculations.Expertiseisdevelopedbyexpandingtheoverlapping areasofthesethreepoles.Finally,whiletheprocessesoflisteningandreadingareessentialtotheabilitytolearnandretainnewknowledge,myteachingemphasizesalsotheneedtodevelopverbalandwrittencommunication skills.Theabilitytoexpressdynamicthinkingisatremendousassetforany successfulprofessionalcareer.

Ratherthanbeingavoluminousencyclopedia,thistextbookscrutinizes selectedmethodswhichmeetpedagogicalobjectives.Thereissufficientmaterialfora45-hgraduate-levelcourse.Besidebasictheoryandlecture material,thechaptersofthisbookcontainvariousexercisesandproblems, datasetsandexamples,computerproblems,andcasestudies.Theyillustrate specificaspectsoftheprofessionfromtheoreticalderivations,throughexercisesandproblems,topracticalsolutionswiththeanalysisofcasestudies. Mostproblemscanbesolvedwithafewalgebraicequations;othersrequire theuseofcomputers.Nospecificcomputercodeorlanguageisrequired. Insteadofpromotingtheuseofcommercialsoftwarepackages,Istimulate students’ creativityandoriginalityindevelopingtheirowncomputerprograms.Throughoutthebook,asoliddiamond(♦)denotesequationsand problemsofparticularsignificance;doublediamond(♦♦)denotesthemost important.

Thebookcoverstopicsessentiallyfromthemountainstotheoceans:

Chapter1outlinesthephysicalpropertiesofwaterandsediment; Chapter2reviewsthegoverningequationsofmotionandsedimenttransport; Chapter3describesriverbasinsintermsofthesourceofwaterandsediment; Chapter4looksatriverbasindynamics; Chapter5treatsthesteady- flowconditionsincanalsandrivers;

Chapter6delvesinto flood-wavepropagationinrivers; Chapter7introducessomenumericalmethodsusedtosolveriverengineering problems;

Chapter8copeswithhillslopeandriverbankstability; Chapter9dealswithriverbankprotectionmeasures; Chapter10delineatesthehydraulicgeometryandequilibriuminalluvialrivers; Chapter11explainstheconceptsofriverdynamicsandresponse; Chapter12focusesonphysicalmodelingtechniques; Chapter13providesessentialknowledgeonstreamrestoration; Chapter14presentsseveralriverengineeringtechniques;and Chapter15coverswavesandtidesinriverestuaries.

MyteachinghasbeengreatlyinspiredbyDrs.MarcelFrenette,DarylB. Simons,HunterRouse,YvonOuellet,E.V.Richardson,JeanLouis Verrette,StevenR.Abt,JoseD.Salas,RichardEykholt,HsiehWenShen, JimRuff,CarlF.Nordin,JeanRousselle,andStanSchumm,aswellas manyothers.Theyhavegreatlyinfluencedmyprofessionaldevelopmentand universityteachingsince1979.IamalsothankfultoDrs.PhilCombs,Drew Baird,andPatrickO’Brienforsharingtheirpracticalexpertiseinriverengineering.Thisbookwouldnothavebeenthesamewithoutcontributionsand suggestionsfromacoupleofgenerationsofgraduatestudentsatColorado StateUniversity.Theyhelpedmetailorthistextbooktomeettheirneeds undertheconstraintsofquality,concision,andaffordability.JeanParent patientlydraftedallthe figures.Finally,ithasbeenarenewedpleasure tocollaboratewithMattLloyd,EstherMigueliz,andtheCambridge UniversityPressproductionstaff.

Notation

Symbols

ax, ay, az Cartesianacceleration

ar, aθ, az cylindricalaccelerations

a referenceelevation

a pierwidth

acent centrifugalacceleration

acor Coriolisacceleration

ai incrementalcross-sectionarea

aj 1, aj+1 upstream/downstreamboundarycoef ficientsofthe Leonardscheme at partialwatershedarea

aΘ projectionofthesubmergedweightintothe embankmentplane awaveamplitude

a, b coefficientsoftheresistanceequation

a, b, â, ^ b transformcoef ficientsfordurationcurves

A,B coefficientandexponentofthesedimentratingcurve

A surfacearea

Aa erroramplitudefactor

Asb surfaceareaofasettlingbasin At watersheddrainagearea

Ã, B wavecoef ficients

br river-bendcoefficient

B basechannelwidth

BCFbioconcentrationfactor

c wavecelerity

c * dimensionlesscelerity xv

cG groupcelerity

cu undrainedcohesion

C Chézycoef ficient

C sedimentconcentration

Ca referenceconcentration

ˆ

C croppingmanagementfactor

Cfl Courant–Friedrichs–Lewycondition

Ck griddispersionnumber

C0i upstreamsedimentconcentration

Cr runoffcoef ficient

Cu = uΔt/Δx Courantnumber

Cv, Cw, Cppm, Cmg/l sedimentconcentrationbyvolume,weight,partsper million,andmilligramsperliter

d10, d50 particlesizedistribution,% finerbyweight

dm effectiveriprapsize

ds particlesize

d* dimensionlessparticlediameter

D pipe/culvertdiameter

D headcutheight

Dd degree-days

Dp dropheightofagrade-controlstructure

Dx oxygendeficit

DO dissolvedoxygencontent

e voidratio

E specificenergy

E grosserosion

Etons expectedsoillossintons

Ê soillossperunitarea

E totalenergyofawave

E()exceedanceprobability

ΔE specificenergylostinahydraulicjump

f Darcy–Weisbachfrictionfactor

fl Laceysiltfactor

f (t)infiltrationrate

F force

F fetchlengthofwindwaves

FB buoyancyforce

Fc centrifugalforce

FD dragforce

Fg gravitationalforce

Fh hydrodynamicforce

Fi inertialforce

FL liftforce

FM momentumforce

Fp pressureforce

Fs shearforceinabend

FS submergedweightofaparticle

FVf ¼ V = gLfp fishFroudenumber

Fw weightofwater

FW weightofaparticle

F()nonexceedanceprobability

Fn(z)standardnormaldistribution

F(t)cumulativeinfiltration

Fa(t)actualcumulativeinfi ltration

Fp(t)potentialcumulativeinfiltration

FrFroudenumber

g gravitationalacceleration

G specificgravityofsediment

Grgradationcoef ficient

Gu universalgravitationconstant

h flowdepth

hc critical flowdepth

hd downstream flowdepth

hn normal flowdepth

hp pressureheadatthewettingfront

hr rainfalldepth

hs cumulativesnowmelt

ht tailwaterdepth

hu upstream flowdepth

hw partialelevationdroponawatershed

Δh localchangein flowdepth

H Bernoullisum

ΔH energylossoverameanderwavelength

Hc criticalhillslopesoilthickness

Ho(θm)Struvefunction

H s ¼ 2a waveheight

Hw elevationdroponawatershed i rainfallintensity

ib riverbedinfiltrationrate ie excessrainfallintensity if snowmeltrate i30 maximum30-minrainfallintensity j spaceindex

J0(θm)zeroth-orderBesselfunctionofthe firstkind

k decaycoefficient

k0 resistanceparameterforlaminaroverland flow

ks surfaceroughness

k ′ s grainroughnessheight

kt totalresistancetolaminaroverland flow

k wavenumber

K saturatedhydraulicconductivity

K conveyancecoefficient

^ K soilerodibilityfactor

K1, K2 coefficientsofthepierscourequation

Kb ratioofmaximumshearstressinabendtoastraight channel

Kc riprapcoef ficient

Kd dispersioncoefficient

Kd flood-wavediffusivity

Kd soil–waterpartitioncoef ficientorratioofsorbedto dissolvedmetals

KEaveragekineticenergyperunitarea

KG(T)frequencyfactoroftheGumbeldistribution

Knum numericaldispersioncoef ficient

Koc soil–waterpartitioncoef ficientnormalizedtoorganic carbons

Kow octanol–waterpartitioncoefficient

Kp plungingjetcoefficient

Kp(γ)frequencyfactorofthelog-PearsonIIIdistribution

KS ratioofthesedimentvolume

Ksj submergedjetcoefficient

Δl ¼ a=R meanannualmigrationrate

l1 to l4 momentarms

lc, ld momentarmsinradialstabilityofriverbends

L sinuousriverlength

L fieldrunofflength

La abutmentlength

LC50 lethalconcentrationresultingin50%mortality

Lf depthofthewettingfront

L0 normalizedchannellength

Lp pierlength

Lr riverlength

Lr lengthratio

Lsb settling-basinlength

^ L slope-lengthfactor

Lf fishlength

LM runoff-modelgrid-cellsize

LR gridsizeofrainfallprecipitation

LS correlationlengthofastorm

LW lengthscaleofawatershed

LΔ lengthofarrestedsalinewedge

m exponentoftheresistanceequation

mE massoftheEarth

mM massoftheMoon

ms sedimentmasserodedfromasinglestorm

M mass

M specificmomentum

M snowmeltrate

Mf meltfactor

M1, M2 firstandsecondmomentsofadistribution

M, N particle-stabilitycoefficients

M/N ratiooflifttodragmomentsofforce

n Manningcoefficient n

~

n normalvectorpointingoutsideofthecontrol volume

˜

n wavenumberindex

N numberofpointsperwavelength

N numberofstorms

N0(θm)Neumannfunction,orthezeroth-orderBesselY function

O()orderofanapproximation

p pressure

p()probabilitydensityfunction

pcl meanannualpercentagelateralmigrationrate

p0 porosity

p0e effectiveporosity

p0i initialwatercontent

p0r residualwatercontent

Δpc fractionofmaterialcoarserthan dsc

Δpi sedimentsizefraction

Δp0 changeinwatercontentatthewettingfront

P wettedperimeter

P()probability

ΔP powerlossinahydraulicjump

^ P conservationpracticefactor

P totalpowerofawave

PCBpolychlorinatedbiphenyls

PEaveragepotentialenergyperunitsurfacearea

P0 powerloss

PΔ gridPecletnumber

q unitdischarge

qbv unitsedimentdischargebyvolume

qbv ¼ qbv =ω0 ds dimensionlessunitsedimentdischarge

ql lateralunitdischarge

qm maximumunitdischarge

qs unitsedimentdischarge

qsj þ1 ; qsj upstreamanddownstreamunitsedimentdischarge

qt totalunitsedimentdischarge

Q riverdischarge

Qbv bedsedimentdischargebyvolume

Qp peakdischarge

Qs sedimentdischarge

r radialcoordinate

r * dimensionlessradiusofcurvature

r, θ, z cylindricalcoordinatesystem r lateral, θ downstream,and z upward

rQ dischargeratio

R risk

R radiusofcurvatureofariver

^ R rainfall-erosivityfactor

ΔRe excessrainfall

RE radiusoftheEarth

ReReynoldsnumber

Re* = u*ds/v grainshearReynoldsnumber

Rh hydraulicradius

Rm

Ro ¼ ω=κ u

minimumradiusofcurvatureofachannel

Rousenumber

S slope

^ S slope-steepnessfactor

SD specificdegradation

SDR sedimentdeliveryratio

Se effectivesaturation

S0, Sf, Sw bed,friction,andwater-surfaceslopes

S0x,S0y bed-slopecomponentsin x and y

Sr, Swr radialwater-surfaceslope

Sr dimensionlessradialslope

SFsafetyfactor

t time

t trapezoidalsectionparameter

Δt timeincrement

Δts timeincrementforsediment

ta cumulativetimewithpositiveairtemperature

te timetoequilibrium

tf cumulativedurationofsnowmelt

tf fishswimmingduration

tr rainfallduration

tr ¼ tr =tr normalizedstormduration

tt transversalmixingtime

tv verticalmixingtime

T periodofreturnofextremeevents

T waveperiod

T° temperature

T50 timeforhalfthechannel-widthchange

TE trapefficiency

Ts windstormduration

u, v velocityalongaverticalprofile

u average flowvelocity

u* shearvelocity

u*c criticalshearvelocity

Uf fishswimmingvelocity

Uw windspeed

vh migrationrateofheadcuts

vs localvelocityagainstthestone

vx, vy, vz localvelocitycomponents

V mean flowvelocity

Vc criticalvelocity

Vx, Vy, Vz Cartesianmean flowvelocitiesin x, y,and z

VΔ densimetricvelocity

Vθ downstreamvelocityincylindricalcoordinates

∀ volume

∀v ; ∀t volumeofvoidsandtotalvolume

W channelwidth

W weightofsoilperunitwidth

W, W0, We active,initialandequilibriumchannelwidth

Wm meanderwidth

W0 overlandplanewidth

x, y, z coordinatesusually x downstream, y lateral,and z upward

xr, yr, zr lengthratiosforhydraulicmodels

Xmax downstreamdistancewiththemaximumoxygen deficit

Δx gridspacing

X runofflength

Xc reachlength

Xe equilibriumrunofflength

Xmax maximumendurance fishswimmingdistance

yd, yu downstreamandupstreamwaveamplitude

Y sedimentyield

zb bedelevation

zw water-surfaceelevation

z* dimensionlessdepth

Δz scourdepth

GreekSymbols

α coef ficientofthestage–dischargerelationship

α, β parametersofthegammadistribution

αb deflectionangleofbarges

αe Coriolisenergycorrectionfactor

~ α ¼ 2π =N phaseangle

β exponentofthestage–dischargerelationship

β bedparticle-motionangle

βm momentumcorrectionfactor

γ speci ficweightofwater

γ skewnesscoef ficient

γm speci ficweightofawater–sedimentmixture

γmd dryspeci ficweightofawater–sedimentmixture

γs speci ficweightofsediment

Γ ¼ 1 þ 4kK =U 2 p dimensionlesssettlingparameter

Γ(x)gammafunction

δ anglebetweenstreamlineandparticledirection

δL ¼ lnðyd =yu Þ waveamplificationoverlength L0

ξ ratioofexceedanceprobabilities

ξr ¼ Wr =hr channelwidth–depthratio

~

ξ wavedisplacementinthe x direction

η sideslopestabilitynumber

~

η wavesurfaceelevation

ζ k n Fouriercoef ficients

κ vonKármánconstant

λ streamlinedeviationangle

λ wavelength

λf snowmeltintensity

λr = tr/te hydrographequilibriumnumber

λs significantwavelength

Λ meanderwavelength

μ dynamicviscosityofwater

ν kinematicviscosityofwater

φ angleofreposeofbedmaterial

ϕ latitude

Φ potentialfunctionforwaves

ρ massdensityofwater

ρm massdensityofawater–sedimentmixture

ρmd drymassdensityofawater–sedimentmixture

ρs massdensityofsediment

ρsea massdensityofseawater

Δρ massdensitydifference

Π = ln[ ln E(x)]doublelogarithmofexceedanceprobability

ω settlingvelocity

ωE angularvelocityoftheEarth

Ω sinuosity

ΩR ratioofcentrifugalforcetoshearforceinbends

θ downstreamorientationofchannel flow

θ angularcoordinate

θc criticalangleofthefailureplane

θj jetanglemeasuredfromthehorizontal

θm maximumorientationofchannel flow

θp floworientationangleagainstapier

θr raindropangle

θ0, Θ0 downstreambedangle

Θ1 sideslopeangle

Θ = (t tr)/te dimensionlesstime

σ stresscomponents

σ standarddeviation

σ ¼ 2π L0 =λ dimensionlesswavenumber

σ ′ effectivestress

σg gradationcoeffi cient

σx, σy, σz normalstresses(negativepressure)

σΔt standarddeviationofdispersedmaterial

σθ normalstressonaplaneatanangle θ fromthe principalstresses

~ σ angularfrequencyofsurfacewaves

τ shearstress

τ0, τb bedshearstress

τ0x, τ0y downstreamandlateralbedshearstresses

τbn bedshearstressatanormaldepth

τc criticalshearstress

τf failureshearstrengthofthesoil

τr radialshearstress

τ r dimensionlessradialshearstress

τs sideshearstress

τsc criticalshearstressonasideslope

τw windshearstress

τzx shearstressinthe x directioninaplane perpendicularto z

τ* Shieldsparameter

τ*c criticalvalueoftheShieldsparameter

τθ tangentialstressonaplaneatanangle θ fromthe principalstresses

ψ = q/ieL dimensionlessdischarge

Ψ reducedvariable

SuperscriptsandDiacritics

˜ n waveproperties

ˆ C parametersoftheuniversalsoil-lossequation

e averagevalue

hk timeindex k

Subscripts

ar, aθ cylindricalcoordinatecomponents

ax, az Cartesiancomponents

no, nc roughnessvaluesforoverbankandmainchannel

τc criticalshearstress

hj+1 spaceindexat j + 1

Lm, Qm modelvalue

Lp, Qp prototypevalue

Lr, Qr similitudescalingratio

K1, K2, K3 correctionfactorsoftheCSUscourequation

W1/2, h1/2, S1/2 width,depth,andslopeforhalfthedischarge

t63, X63 timeanddistancescalefor63%ofthesedimenttodeposit

ρm, γm propertiesofawater–sedimentmixture

ρmd, γmd propertiesofadrywater–sedimentmixture

ρs, γs sedimentproperties

PhysicalProperties

Asanaturalscience,thevariabilityofriverprocessesmustbeexamined throughthemeasurementofphysicalparameters.Thischapterdescribes dimensionsandunits(Section1.1),physicalpropertiesofwater(Section1.2), andsediment(Section1.3).

1.1DimensionsandUnits

Physicalpropertiesareusuallyexpressedintermsofthefollowingfundamentaldimensions:mass(M),length(L),andtime(T).Temperature(T °)isalso sometimesconsidered.Thefundamentaldimensionofmassispreferredto thecorrespondingforce.

Thefundamentaldimensionsaremeasurableinquantifiableunits.Inthe SIsystemofunits,theunitsformass,length,time,andtemperatureare thekilogram(kg),themeter(m),thesecond(s),anddegreesKelvin(K).The Celsiusscale(°C)iscommonlypreferredinriverengineeringbecauseitrefers tothefreezingpointofwateras0°C.Theabbreviationsforcubicmetersper second(1cms = 1m3/s)andcubicfeetpersecond(1cfs = 1ft3/s)arecommonlyusedtodescribethe flowdischargeofariver.

ANewton(N)istheforcerequiredtoaccelerate1kgat1m/s2,or1N = 1kgm/s2.ThegravitationalaccelerationattheEarth’ssurfaceis g = 9.81m/s2. Theweightofonekilogramis F = mass × g = 1kg × 9.81m/s2 = 9.81N. Thepressureisgiveninpascalsfrom1Pa = 1N/m2.Theunitofwork(or energy)isthejoule(J),whichequalstheproductof1N × 1m.Theunit ofpowerisawatt(W),whichis1J/s.Prefixesindicatemultiplesorfractionsofunitsbypowersof10:

μðmicroÞ = 10 6 ; kðkiloÞ = 103 ; mðmilliÞ = 10 3 ; MðmegaÞ = 106 ; cðcentiÞ = 10 2 ; GðgigaÞ = 109 1

Forexample,sandparticlesarecoarserthan62.5 μmormicrons;gravels arecoarserthan2mm;and1megawatt(MW)equals1millionwatts (1,000,000or106 W).

IntheEnglishsystemofunits,thetimeunitisasecond,thefundamental unitsoflengthandmassare,respectively,thefoot(ft),equalto30.48cm, andtheslug,equalto14.59kg.Theforcetoaccelerateamassofoneslugat 1ft/s2 isapoundforce(lb).Inthistext,apoundalwaysreferstoaforce,not amass.TemperatureindegreesCelsius, T °C,isconvertedtothetemperatureindegreesFahrenheit, T °F,by T °F = 32.2°F + 1.8 T °C.

Variablesareclassifiedasgeometric,kinematic,dynamic,anddimensionlessvariables.AsshowninTable1.1,geometricvariablesdescribethegeometryintermsoflength,area,andvolume.Kinematicvariablesdescribethe

Table1.1. Geometric,kinematic,dynamic,anddimensionlessvariables

VariableSymbol Fundamental dimensionsSIunits

Geometric(L)

, L, T)

Speci ficgravity

ReynoldsnumberRe

Grainshear

ReynoldsnumberRe*

Shieldsparameter

Another random document with no related content on Scribd:

Plate XVII. “Rustic Employment.” Stipple-Engraving by J. R. Smith, after George Morland. (Published 1788. Size 9¾″ × 12¼″.)

From the collection of Frederick Behrens, Esq.

Plate XVIII.

“The Soliloquy.”

Stipple-Engraving by and after William Ward, A.R.A. (Published 1787. Size 7½″ × 11″.)

From the collection of Frederick Behrens, Esq.

Plate XIX.

“Harriet, Lady Cockerell as a Gipsy Woman.” Stipple-Engraving by J. S. Agar, after Richard Cosway, R.A. (Published 1810. Size 8⅛″ × 11⅜″.) From the collection of Frederick Behrens, Esq.

Plate XX. “Lady Duncannon.” Stipple-Engraving by F. Bartolozzi, R.A., after John Downman, A.R.A. (Published 1797. Size 6⅜″ × 7¾″.)

From the collection of Rt. Hon. Sir Spencer Ponsonby-Fane, G.C.B.

Plate XXI.

“Cupid bound by Nymphs.” Stipple-Engraving by W. W. Ryland, after Angelica Kauffman, R.A. (Published 1777. Size 11½″.)

From the collection of Major E. F. Coates, M.P.

Plate XXII. “Rinaldo and Armida.”

Stipple-Engraving by Thomas Burke, after Angelica Kauffman, R.A. (Published 1795. Size 10¼″ × 13″.)

From the collection of Frederick Behrens, Esq.

Plate XXIII.

“Angelica Kauffman in the character of Design listening to the Inspiration of Poetry.” Stipple-Engraving by Thomas Burke, after Angelica Kauffman, R.A.

(Published 1787. Size 12⅜″.)

From the collection of Major E. F. Coates, M.P.

Plate XXIV. “Love and Beauty” (Marchioness of Townshend).

Stipple-Engraving by Thomas Cheesman, after Angelica Kauffman, R.A. (Published 1792 and 1795. Size 10⅜″ × 12⅝″.)

From the collection of Basil Dighton, Esq.

Plate XXV. “Two Bunches a Penny, Primroses” (“Cries of London”).

Stipple-Engraving by L. Schiavonetti, after F. Wheatley, R.A. (Published 1793. Size 10¾″ × 14″.)

From the collection of Basil Dighton, Esq.

Plate XXVI.

“Knives, Scissors and Razors to Grind” (“Cries of London”).

Stipple-Engraving by G. Vendramini, after F. Wheatley, R.A.

(Published 1795. Size 11″ × 14″.)

From the collection of Mrs. Julia Frankau.

Plate XXVII. “Mrs. Crewe.”

Stipple-Engraving by Thos. Watson, after Daniel Gardner. (Published 1780. Size 6⅜″ × 8-1/″.)

From the collection of Major E. F. Coates, M.P.

Plate XXVIII. “The Dance.” Stipple-Engraving by F. Bartolozzi, R.A., after H. W. Bunbury. (Published 1782. Size 11⅞″.)

From the collection of Major E. F. Coates, M.P.

Plate XXIX. “Morning Employments.” Stipple-Engraving by P. W. Tomkins, after H. W. Bunbury. (Published 1789. Size 14¼″.)

From the collection of Basil Dighton, Esq.

Plate XXX.

“The Farm-Yard.” Stipple-Engraving by William Nutter, after Henry Singleton. (Published 1790. Size 9¾″ × 11⅞″.)

From the collection of Basil Dighton, Esq.

Plate XXXI.

“The Vicar of the Parish receiving his Tithes.” Stipple-Engraving by Thomas Burke, after Henry Singleton. (Published 1793. Size 12″ × 14⅛″.)

From the collection of Basil Dighton, Esq.

Plate XXXII.

“The English Dressing-Room.” Stipple-Engraving by P. W. Tomkins, after Chas. Ansell.

(Published 1789. Size 7½″ × 9½″.)

From the collection of Frederick Behrens, Esq.

Plate XXXIII.

“The French Dressing-Room.” Stipple-Engraving by P. W. Tomkins, after Chas. Ansell.

(Published 1789. Size 7½″ × 9½″.)

From the collection of Frederick Behrens, Esq.

Plate XXXIV. “January” (“The Months”).

Stipple-Engraving by F. Bartolozzi, R.A., after Wm. Hamilton, R.A. (Published 1788. Size 10″ × 12″.)

From the collection of J. H. Edwards, Esq.

Plate XXXV. “Virtuous Love” (from Thomson’s “Seasons”).

Stipple-Engraving by F. Bartolozzi, R.A., after Wm. Hamilton, R.A. (Published 1793. Size 6¼″ × 5″.)

From the collection of Frederick Behrens, Esq.

Plate XXXVI. “The Chanters.” Stipple-Engraving by J. R. Smith, after Rev. Matthew W. Peters, R.A. (Published 1787. Size 7⅝″.)

From the collection of Frederick Behrens, Esq.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.