Sigma delta converters practical design guide josé m. de la rosa - Own the complete ebook with all c

Page 1


Sigma Delta Converters Practical Design Guide

Visit to download the full and correct content document: https://textbookfull.com/product/sigma-delta-converters-practical-design-guide-jose-m -de-la-rosa/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Practical Column Design Guide M. Nitsche

https://textbookfull.com/product/practical-column-design-guide-mnitsche/

Color

Atlas of Medical

Bacteriology

3rd Edition Luis M. De La Maza

https://textbookfull.com/product/color-atlas-of-medicalbacteriology-3rd-edition-luis-m-de-la-maza/

The Monkey Is the Messenger: Meditation and What Your Busy Mind Is Trying to Tell You Ralph De La Rosa

https://textbookfull.com/product/the-monkey-is-the-messengermeditation-and-what-your-busy-mind-is-trying-to-tell-you-ralphde-la-rosa/

The monkey is the messenger: meditation and what your busy mind is trying to tell you First Edition De La Rosa

https://textbookfull.com/product/the-monkey-is-the-messengermeditation-and-what-your-busy-mind-is-trying-to-tell-you-firstedition-de-la-rosa/

Business Process Management 14th International Conference BPM 2016 Rio de Janeiro Brazil September 18 22 2016 Proceedings 1st Edition Marcello La Rosa

https://textbookfull.com/product/business-processmanagement-14th-international-conference-bpm-2016-rio-de-janeirobrazil-september-18-22-2016-proceedings-1st-edition-marcello-larosa/

Practical Design Discovery Daniel M. Brown

https://textbookfull.com/product/practical-design-discoverydaniel-m-brown/

Practical Game Design A modern and comprehensive guide to video game design 2nd Edition Adam Kramarzewski | Ennio De Nucci

https://textbookfull.com/product/practical-game-design-a-modernand-comprehensive-guide-to-video-game-design-2nd-edition-adamkramarzewski-ennio-de-nucci/

I'd Rather Be Reading Guinevere De La Mare

https://textbookfull.com/product/id-rather-be-reading-guineverede-la-mare/

Cervical Cancer 1st Edition Jaime G. De La GarzaSalazar

https://textbookfull.com/product/cervical-cancer-1st-editionjaime-g-de-la-garza-salazar/

SIGMA-DELTACONVERTERS

PracticalDesignGuide

SECONDEDITION

JOSÉM.DELAROSA

InstituteofMicroelectronicsofSeville

IMSE-CNM(CSIC,UniversityofSeville)

Spain

Thiseditionfirstpublished2018 ©2018JohnWiley&SonsLtd

ThiseditionfirstpublishedinEnglishcopyrightyear2013

LibraryofCongressCataloging-in-PublicationData

Names:Rosa,JoséM.dela,author.

Title:Sigma-deltaconverters:practicaldesignguide/JoséM.delaRosa,

Othertitles:CMOSsigma-deltaconverters Description:Secondedition.|Hoboken,NJ,USA:Wiley-IEEEPress,2018.|

Revisededitionof:CMOSsigma-deltaconverters.|Includes bibliographicalreferencesandindex.| UniversityofSeville,Spain.

Identifiers:LCCN2018023691(print)|LCCN2018026688(ebook)|ISBN 9781119275756(AdobePDF)|ISBN9781119275763(ePub)|ISBN9781119275787 (hardcover)

Subjects:LCSH:Metaloxidesemiconductors,Complementary–Designand construction.|Analog-to-digitalconverters–Designandconstruction.

Classification:LCCTK7871.99.M44(ebook)|LCCTK7871.99.M44R6682019 (print)|DDC621.3815/9–dc23

LCrecordavailableathttps://lccn.loc.gov/2018023691

Preface xix Acknowledgementsxxv ListofAbbreviationsxxvii

1Introductionto ���� Modulators:Fundamentals,BasicArchitectureand PerformanceMetrics1

1.1BasicsofAnalog-to-DigitalConversion2

1.1.1Sampling3

1.1.2Quantization4

1.1.3QuantizationWhiteNoiseModel5

1.1.4NoiseShaping8

1.2Sigma-DeltaModulation9

1.2.1FromNoise-shapedSystemsto ΣΔ Modulators10

1.2.2PerformanceMetricsof ΣΔMs11

1.3TheFirst-order ΣΔ Modulator13

1.4PerformanceEnhancementandTaxonomyof ΣΔMs16

1.4.1 ΣΔMSystem-levelDesignParametersandStrategies17

1.4.2Classificationof ΣΔMs18

1.5PuttingAllThePiecesTogether:From ΣΔMsto ΣΔ ADCs19

1.5.1SomeWordsabout ΣΔ Decimators20

1.6 ΣΔ DACs22

1.6.1SystemDesignTrade-offsandSignalProcessingin ΣΔ DACs22

1.6.2ImplementationofDigital ΣΔMsusedinDACs24

1.7Summary25

References 26

2Taxonomyof ���� Architectures29

2.1Second-order ΣΔ Modulators30

2.1.1AlternativeRepresentationsofSecond-order ΣΔMs31

2.1.2Second-Order ΣΔMwithUnitySTF34

2.2High-orderSingle-loop ΣΔMs35

2.3Cascade ΣΔ Modulators39

2.3.1SMASH ΣΔMArchitectures46

2.4Multi-bit ΣΔ Modulators49

2.4.1InfluenceofMulti-bitDACErrors49

2.4.2DynamicElementMatchingTechniques50

2.4.3DualQuantization53

2.4.3.1Dual-quantizationSingle-loop ΣΔMs53

2.4.3.2Dual-quantizationCascade ΣΔMs54

2.5Band-pass ΣΔ Modulators55

2.5.1QuadratureBP-ΣΔMs56

2.5.2The z → z2 LP–BPTransformation58

2.5.3BP-ΣΔMswithOptimizedNTF58

2.5.4Time-interleavedandPolyphaseBP-ΣΔMs61

2.6Continuous-time ΣΔ Modulators:ArchitectureandBasicConcepts64

2.6.1AnIntuitiveAnalysisofCT-ΣΔMs66

2.6.2SomeWordsaboutAliasRejectioninCT-ΣΔMs69

2.7DT–CTTransformationof ΣΔMs70

2.7.1TheImpulse-invariantTransformation70

2.7.2DT–CTTransformationofaSecond-order ΣΔM72

2.8DirectSynthesisofCT-ΣΔMs74

2.9Summary76

References 76

3CircuitErrorsinSwitched-capacitor ���� Modulators83

3.1OverviewofNonidealitiesinSwitched-capacitor ΣΔ Modulators84

3.2FiniteAmplifierGaininSC-ΣΔMs86

3.3CapacitorMismatchinSC-ΣΔMs90

3.4IntegratorSettlingErrorinSC-ΣΔMs91

3.4.1BehavioralModelfortheIntegratorSettling91

3.4.2LinearEffectofFiniteAmplifierGain–BandwidthProduct95

3.4.3NonlinearEffectofFiniteAmplifierSlewRate98

3.4.4EffectofFiniteSwitchOn-resistance100

3.5CircuitNoiseinSC-ΣΔMs101

3.6ClockJitterinSC-ΣΔMs105

3.7SourcesofDistortioninSC-ΣΔMs107

3.7.1NonlinearAmplifierGain107

3.7.2NonlinearSwitchOn-Resistance109

3.8CaseStudy:High-levelSizingofa ΣΔM111

3.8.1IdealModulatorPerformance111

3.8.2NoiseLeakages112

3.8.3CircuitNoise115

3.8.4SettlingError116

3.8.5OverallHigh-LevelSizingandNoiseBudget117

3.9Summary119

References 119

4CircuitErrorsandCompensationTechniquesinContinuous-time ���� Modulators123

4.1OverviewofNonidealitiesinContinuous-time ΣΔ Modulators123

4.2CTIntegratorsandResonators124

4.3FiniteAmplifierGaininCT-ΣΔMs126

4.4Time-constantErrorinCT-ΣΔMs128

4.5FiniteIntegratorDynamicsinCT-ΣΔMs130

4.5.1EffectofFiniteGain–BandwidthProductonCT-ΣΔMs131

4.5.2EffectofFiniteSlewRateonCT-ΣΔMs133

4.6SourcesofDistortioninCT-ΣΔMs134

4.6.1NonlinearitiesintheFront-endIntegrator134

4.6.2IntersymbolInterferenceintheFeedbackDAC136

4.7CircuitNoiseinCT-ΣΔMs137

4.7.1NoiseAnalysisConsideringNRZFeedbackDACs137

4.7.2NoiseAnalysisConsideringSCFeedbackDACs139

4.8ClockJitterinCT-ΣΔMs140

4.8.1JitterinReturn-to-zeroDACs141

4.8.2JitterinNon-return-to-zeroDACs142

4.8.3JitterinSwitched-capacitorDACs144

4.8.4LingeringEffectofClockJitterError145

4.8.5ReducingtheEffectofClockJitterwithFIRandSine-shapedDACs147

4.9ExcessLoopDelayinCT-ΣΔMs149

4.9.1IntuitiveAnalysisofELD149

4.9.2AnalysisofELDbasedonImpulse-invariantDT-CT Transformation151

4.9.3AlternativeELDCompensationTechniques154

4.10QuantizerMetastabilityinCT-ΣΔMs155

4.11Summary159

References 160

5BehavioralModelingandHigh-levelSimulation165

5.1SystematicDesignMethodologyof ΣΔ Modulators165

5.1.1SystemPartitioningandAbstractionLevels167

5.1.2SizingProcess167

5.2SimulationApproachesfortheHigh-levelEvaluationof ΣΔMs169

5.2.1AlternativestoTransistor-levelSimulation169

5.2.2Event-drivenBehavioralSimulationTechnique171

5.2.3ProgrammingLanguagesandBehavioralModelingPlatforms172

5.3Implementing ΣΔMBehavioralModels173

5.3.1FromCircuitAnalysistoComputationalAlgorithms173

5.3.2Time-domainversusFrequency-domainBehavioralModels175

5.3.3ImplementingTime-domainBehavioralModelsinMATLAB178

5.3.4BuildingTime-domainBehavioralModelsasSIMULINKC-MEX S-functions182

5.4EfficientBehavioralModelingof ΣΔMBuildingBlocksusingC-MEX S-functions188

5.4.1ModelingofSCIntegratorsusingS-functions188

5.4.1.1CapacitorMismatchandNonlinearity190

5.4.1.2Input-referredThermalNoise191

5.4.1.3SwitchOn-resistanceDynamics194

5.4.1.4IncompleteSettlingError197

5.4.2ModelingofCTIntegratorsusingS-functions200

5.4.2.1Single-poleGm-CModel200

5.4.2.2Two-poleDynamicsModel201

5.4.2.3ModelingTransconductorsasS-functions203

5.4.3BehavioralModelingofQuantizersusingS-functions205

5.4.3.1ModelingMulti-levelADCsasS-functions205

5.4.3.2ModelingMulti-levelDACsasS-functions207

5.5SIMSIDES:ASIMULINK-basedBehavioralSimulatorfor ΣΔMs209

5.5.1ModelLibrariesIncludedinSIMSIDES210

5.5.2StructureofSIMSIDESanditsUserInterface211

5.5.2.1CreatingaNew ΣΔMBlockDiagram212

5.5.2.2SettingModelParameters215

5.5.2.3SimulationAnalyses215

5.6UsingSIMSIDESforHigh-levelSizingandVerificationof ΣΔMs216

5.6.1SCSecond-orderSingle-Bit ΣΔM216

5.6.1.1EffectofAmplifierFiniteDCGain218

5.6.1.2EffectofThermalNoise218

5.6.1.3EffectoftheIncompleteSettlingError220

5.6.1.4CumulativeEffectofAllErrors221

5.6.2CTFifth-orderCascade3-2Multi-bit ΣΔM224

5.6.2.1EffectofNonidealEffects227

5.6.2.2High-levelSynthesisandVerification229

5.7Summary231 References 231

6AutomatedDesignandOptimizationof ����Ms235

6.1ArchitectureExplorationandSelection:Schreier’sToolbox236

6.1.1BasicFunctionsofSchreier’sDelta-SigmaToolbox236

6.1.2SynthesisofaFourth-orderCRFFLP/BPSC-ΣΔMwithTunable Notch238

6.1.3SynthesisofaFourth-orderBPCT-ΣΔMwithTunableNotch240

6.2Optimization-basedHigh-levelSynthesisof ΣΔ Modulators245

6.2.1CombiningBehavioralSimulationandOptimization246

6.2.2UsingSimulatedAnnealingasOptimizationEngine247

6.2.3CombiningSIMSIDESwithMATLABOptimizers253

6.3LiftingMethodandHardwareAccelerationtoOptimizeCT-ΣΔMs255

6.3.1HardwareEmulationofCT-ΣΔMsonanFPGA257

6.3.2GPU-acceleratedComputingofCT-ΣΔMs258

6.4UsingMulti-objectiveEvolutionaryAlgorithmstoOptimize ΣΔMs259

6.4.1CombiningMOEAwithSIMSIDES261

6.4.2ApplyingMOEAandSIMSIDEStotheSynthesisofCT-ΣΔMs262

6.5Summary269 References 269

7ElectricalDesignof ����Ms:FromSystemstoCircuits271

7.1Macromodeling ΣΔMs272

7.1.1SCIntegratorMacromodel272

7.1.1.1SwitchMacromodel272

7.1.1.2OTAMacromodel274

7.1.2CTIntegratorMacromodel274

7.1.2.1Active-RCIntegrators274

7.1.2.2Gm-CIntegrators274

7.1.3NonlinearOTATransconductor275

7.1.4EmbeddedFlashADCMacromodel276

7.1.5FeedbackDACMacromodel277

7.2Examplesof ΣΔMMacromodels279

7.2.1SCSecond-orderExample279

7.2.2Second-orderActive-RC ΣΔM283

7.3IncludingNoiseinTransientElectricalSimulationsof ΣΔMs286

7.3.1GeneratingandInjectingNoiseDataSequencesinHSPICE287

7.3.2AnalyzingtheImpactoftheMainNoiseSourcesinSCIntegrators289

7.3.3GeneratingandInjectingFlickerNoiseSourcesinElectrical Simulations289

7.3.4TestBenchtoIncludeNoiseintheSimulationof ΣΔMs293

7.4Processing ΣΔMOutputResultsofElectricalSimulations294

7.5Summary298

References 298

8DesignConsiderationsof ����MSubcircuits301

8.1DesignConsiderationsofCMOSSwitches302

8.1.1Trade-OffBetween Ron andtheCMOSSwitchDrain/Source ParasiticCapacitances302

8.1.2CharacterizingtheNonlinearBehaviorof Ron 302

8.1.3InfluenceofTechnologyDownscalingontheDesignofSwitches304

8.1.4EvaluatingHarmonicDistortionduetoCMOSSwitches305

8.2DesignConsiderationsofOperationalAmplifiers308

8.2.1TypicalAmplifierTopologies309

8.2.2Common-modeFeedbackNetworks311

8.2.3CharacterizationoftheAmplifierinAC313

8.2.4CharacterizationoftheAmplifierinDC313

8.2.5CharacterizationoftheAmplifierGainNonlinearity316

8.3DesignConsiderationsofTransconductors317

8.3.1HighlyLinearFront-endTransconductor318

8.3.2Loop-filterTransconductors320

8.3.3WidelyProgrammableTransconductors323

8.4DesignConsiderationsofComparators324

8.4.1RegenerativeLatch-basedComparators325

8.4.2DesignGuidelinesofComparators327

8.4.3CharacterizationofOffsetandHysteresisBasedontheInput-ramp Method328

8.4.4CharacterizationofOffsetandHysteresisBasedontheBisectional Method328

8.4.5CharacterizingtheComparisonTime330

8.5DesignConsiderationsofCurrent-SteeringDACs332

8.5.1FundamentalsandBasicConceptsofCSDACs333

8.5.2PracticalRealizationofCSDACs333

8.5.3CurrentCellCircuits,ErrorLimitations,andDesignCriteria336

8.5.4CS4-bitDACExample336

8.6Summary338

References 338

9.1Auxiliary ΣΔMBuildingBlocks341

9.1.1Clock-phaseGenerators342

9.1.1.1PhaseGeneration342

9.1.1.2PhaseBuffering342

9.1.1.3PhaseDistribution344

9.1.2GenerationofCommon-modeVoltage,ReferenceVoltage, andBiasCurrents345

9.1.2.1BandgapCircuit345

9.1.2.2ReferenceVoltageGenerator345

9.1.2.3MasterBiasCurrentGenerator346

9.1.2.4Common-modeVoltageGenerator346

9.1.3AdditionalDigitalLogic347

9.2LayoutDesign,Floorplanning,andPracticalIssues348

9.2.1LayoutFloorplanning348

9.2.1.1DivideLayoutintoDifferentPartsorRegions348

9.2.1.2ShieldSensitive ΣΔMAnalogSubcircuitsfrom SwitchingNoise349

9.2.1.3BusestoDistributeSignalsSharedbyDifferent ΣΔM Parts349

9.2.1.4BeObsessiveaboutLayoutSymmetryandDetailsof AnalogParts349

9.2.2I/OPadRing350

9.2.3ImportanceofLayoutVerificationandCatastrophicFailure350

9.3ChipPackage,TestPCB,andExperimentalSetup354

9.3.1BondingDiagramandPackage354

9.3.2TestPCB355

9.4ExperimentalTestSet-Up355

9.4.1PlanningtheTypeandNumberofInstrumentsNeeded357

9.4.2ConnectingLabInstruments357

9.4.3MeasurementSet-UpExample358

9.5 ΣΔMDesignExamplesandCaseStudies359

9.5.1Programmable-gain ΣΔMsforHighDynamicRangeSensor Interfaces360

9.5.1.1MainDesignCriteriaandPerformanceLimitations361

9.5.1.2SCRealizationwithProgrammableGainandDouble Sampling362

9.5.1.3InfluenceofChopperFrequencyonFlickerNoise362

9.5.2ReconfigurableSC-ΣΔMsforMulti-standardDirectConversion Receivers364

9.5.2.1Power-scalingCircuitTechniques367

9.5.2.2ExperimentalResults368

9.5.3UsingWidely-programmableGm-LCBP-ΣΔMsforRFDigitizers368

9.5.3.1ApplicationScenario371

9.5.3.2Gm-LCBP-ΣΔMHigh-levelSizing371

9.5.3.3BPCT-ΣΔMLoop-FilterReconfigurationTechniques375

9.5.3.4Embedded4-bitQuantizerwithCalibration378

9.5.3.5Biasing,DigitalControlProgrammabilityand Testability382

9.6Summary385 References 386

10Frontiers,TrendsandChallenges:TowardsNext-generation ���� Modulators389

10.1State-of-the-ArtADCs:Nyquist-rateversus ΣΔ Converters390

10.1.1ConversionEnergy391

10.1.2FiguresofMerit392

10.2ComparisonofDifferentCategoriesof ΣΔ ADCs393

10.2.1AperturePlotof ΣΔMs406

10.2.2EnergyPlotof ΣΔMs407

10.3EmpiricalandStatisticalAnalysisofState-of-the-Art ΣΔMs408

10.3.1SCversusCT ΣΔMs408

10.3.2TechnologyusedinState-of-the-Art ΣΔMs410

10.3.3Single-LoopversusCascade ΣΔMs410

10.3.4Single-bitversusMulti-bit ΣΔMs411

10.3.5Low-passversusBand-pass ΣΔMs413

10.3.6Emerging ΣΔMTechniques415

10.4Gigahertz-range ΣΔMsforRF-to-digitalConversion415

10.5EnhancedCascade ΣΔMs418

10.5.1SMASHCT-ΣΔMs418

10.5.2Two-stage0-L MASH419

10.5.3Stage-sharingCascade ΣΔMs420

10.5.4Multi-rateandHybridCT/DT ΣΔMs420

10.5.4.1UpsamplingCascadeMR-ΣΔMs421

10.5.4.2DownsamplingHybridCT/DTCascadeMR-ΣΔMs422

10.6Power-efficient ΣΔMLoop-filterTechniques423

10.6.1Inverter-based ΣΔMs423

10.6.2HybridActive/PassiveandAmplifier-less ΣΔMs424

10.6.3Power-efficientAmplifierTechniques426

10.7Hybrid ΣΔM/Nyquist-rateADCs428

10.7.1Multi-bit ΣΔMQuantizersbasedonNyquist-rateADCs428

10.7.2Incremental ΣΔ ADCs429

10.8Time-based ΣΔ ADCs431

10.8.1 ΣΔMswithVCO/PWM-basedQuantization432

10.8.2Scaling-friendlyMostly-digital ΣΔMs433

10.8.3GRO-based ΣΔMs434

10.9DACTechniquesforHigh-performanceCT-ΣΔMs436

10.10ClassificationofState-of-the-ArtReferences437

10.11SummaryandConclusions437

References 438

AState-spaceAnalysisofClockJitterinCT-����Ms463

A.1State-spaceRepresentationofNTF(z)463

A.2ExpectationValueof(Δqn )2 465

A.3In-bandNoisePowerduetoClockJitter466 References 467

BSIMSIDESUserGuide469

B.1GettingStarted:InstallingandRunningSIMSIDES470

B.2BuildingandEditing ΣΔMArchitecturesinSIMSIDES470

B.3Analyzing ΣΔMsinSIMSIDES473

B.3.1NodeSpectrumAnalysis474

B.3.2IntegratedPowerNoise474

B.3.3SNR/SNDR475

B.3.4HarmonicDistortion475

B.3.5IntegralandDifferentialNon-Linearity477

B.3.6Multi-tonePowerRatio477

B.3.7Histogram478

B.3.8ParametricAnalysis478

B.3.9MonteCarloAnalysis479

B.4OptimizationInterface480

B.5TutorialExample:UsingSIMSIDEStoModelandAnalyze ΣΔMs482

B.5.1CreatingtheCascade2-1 ΣΔMBlockDiagraminSIMSIDES482

B.5.2SettingModelParameters482

B.5.3ComputingtheOutputSpectrum484

B.5.4SNRversusInputAmplitudeLevel486

B.5.5ParametricAnalysisConsideringOnlyOneParameter487

B.5.6ParametricAnalysisConsideringTwoParameters488

B.5.7ComputingHistograms489

B.6GettingHelp489

CSIMSIDESBlockLibrariesandModels491

C.1OverviewofSIMSIDESLibraries491

C.2IdealLibraries492

C.2.1IdealIntegrators492

C.2.1.1Building-blockModelPurposeandDescription492

C.2.1.2ModelParameters493

C.2.2IdealResonators493

C.2.2.1Ideal_LD_Resonator493

C.2.2.2Ideal_FE_Resonator493

C.2.2.3Ideal_CT_Resonator493

C.2.3IdealQuantizers494

C.2.3.1Ideal_Comparator494

C.2.3.2Ideal_Comparator_for_SI495

C.2.3.3Ideal_Multibit_Quantizer495

C.2.3.4Ideal_Multibit_Quantizer_for_SI496

C.2.3.5Ideal_Multibit_Quantizer_levels496

C.2.3.6Ideal_Multibit_Quantizer_levels_SD2496

C.2.3.7Ideal_Sampler496

C.2.4IdealD/AConverters496

C.2.4.1Ideal_DAC_for_SI496

C.2.4.2Ideal_DAC_dig_level_SD2497

C.3RealSCBuilding-BlockLibraries497

C.3.1RealSCIntegrators497

C.3.2RealSCResonators501

C.4RealSIBuilding-BlockLibraries503

C.4.1RealSIIntegrators503

C.4.2RealSIResonators505

C.4.3SIErrorsandModelParameters506

C.4.3.1Basic_SI_FE(LD)_Integratorand Basic_SI_FE(LD)_Resonator506

C.4.3.2SI_FE(LD)_Int_Finite_Conductance507

C.4.3.3SI_FE(LD)_Int_Finite_Conductance&Settling& ChargeInjection508

C.5RealCTBuilding-BlockLibraries508

C.5.1RealCTIntegrators508

C.5.1.1ModelParametersusedinTransconductorsandGm-C IntegratorBuildingBlocks511

C.5.1.2Gm-MCIntegrators511

C.5.1.3Active-RCIntegrators512

C.5.1.4MOSFET-CIntegrators513

C.5.2RealCTResonators513

C.5.2.1Gm-CResonators514

C.5.2.2Gm-LCResonators517

C.6RealQuantizers&Comparators517

C.7RealD/AConverters518

C.8AuxiliaryBlocks519

Index523

PREFACE

Sigma-Deltamodulators(ΣΔMs)havebecomeoneofthebestchoicesfortheimplementationof analog/digitalinterfacesofelectronicsystemsintegratedinCMOStechnologies.Comparedtoother kindsofanalog-to-digitalconverters(ADCs), ΣΔMscoverthewidestconversionregionofthe resolution-versus-bandwidthplane.Theyarethemostefficientwaytodigitizeverydiversetypesof signalinanincreasingnumberofapplicationscenarios,fromhigh-resolutionlow-bandwidthdata conversionsfordigitalaudio,sensorinterfaces,andinstrumentation,toultra-low-powerbiomedical systemsandmedium-resolutionbroadbandwirelesscommunications.Thisversatility,togetherwith theirrobustnessandtheirsimplicityinmanypracticalsituations,hasmademoreandmoreengineers todayconsider ΣΔMsasthefirstchoicefortheirresearchprojectsandtheirindustrialproducts.

Theideaunderlyingtheoperationof ΣΔMswaspatentedbyCutlerin1960[1],althoughits applicationtotheconstructionofdataconverterswasfirstreportedinthepublishedliteraturebyInose etal.in1962[2].Theoperationof ΣΔMsisrelativelysimpletodescribe,althoughsometimesvery difficulttoanalyze.Essentially,thefundamentalprinciplebehind ΣΔMsisbasedonthecombination oftwosignalprocessingtechniques,namely: oversampling andquantization noiseshaping.The formerconsistsoftakingthesignalsamplesatahigherratethantheonedictatedbytheNyquist samplingtheorem.Thesesamplesarecommonlyquantizedwithalargeerrorusingalow-resolution quantizer.Theresultingoversampledquantizationerrorisfilteredinthemodulatorfeedbackloop, sothatitsfrequencyspectrumis shaped insuchawaythatalargeportionofitspowerispushed outofthesignalband,whereitisremovedbyadigitalfilter.Theoutcomeofthecombinedaction ofoversamplingandnoiseshapingallows ΣΔMstoachievehigh-precisiondigitizationusinga low-resolutioncoarsequantizer.Therefore,unlikeotherkindsofADCarchitecturesthatrequire high-precisionanalogcircuits, ΣΔMstradetheaccuracyoftheiranalogcircuitryforspeedofdigital signalprocessing,thusachievingahigherdegreeofinsensitivitytocircuiterrormechanismsand potentiallybenefitingfromCMOStechnology’sevolutiontowardsthenanometerscale.

Promptedbythesebenefitsandfueledbytechnologydownscalingandindustrytrendsin consumerdigitalelectronics,theoriginalconceptofnoiseshapingdescribedabovehasevolvedover thelastfivedecadesthroughmany ΣΔMgenerations,givingrisetoaplethoraofarchitectures,circuitandsystem-designtechniques,andanumberofintegratedcircuits(ICs),whichhavepushedthestate ofthearton ΣΔMsforward,yieldinginnovativeresearchresultsandsuccessfulindustryproducts.

Alltheseadvancesandresearchstudieshaveled(andcontinuetodoso)toavastamountof technicalliterature.Indeed,sincethepublicationofpioneeringworkssuchasthewidelycitedpapers writtenbyCandy[3,4]andBoserandWooley[5],thenumberofpublicationshasincreasedsignificantly,nowincludinghundredsofpatents,thousandsofresearchpapers,sometutorialpapers[6–8],as wellasdozensofintroductoryandspecializedmonographs[9–31].However,withsomuchmaterial andsuchanabundanceoftechnicalinformationpublished,manydesigners–particularlynovel designers,butalsosomeexperienceddesignersfocusedonspecificsubtopicsof ΣΔMs–maybecome sometimesdisorientedandlosetheirway.Thishasmotivatedsomeauthorstoputallthesepiecesof informationtogetherinacomprehensiveandsystematicway.

Apartfromearlierbooksaimingtocataloguetheexistingpublicationson ΣΔMs[9],oneofthe firstattemptstopresentaguidefor ΣΔMdesignersisthebookeditedbyNorsworthy etal.in1997[10], alsoknownas“theyellowbook”bythe ΣΔMcommunity.Thisbook,whichdealswithanumberof importantsubjectsin ΣΔMs,hadcontributionsbyanumberofexpertsinthefield,thusmakingithard topresentitscontentsinacoherentandconsistentway.Withthisobjectiveinmind,someauthors haveputtheireffortsintowritingtutorialmonographsdealingwiththesystematicdesignof ΣΔMs.

Amongothers,thebookwrittenbySchreierandTemes,publishedin2005[21],oftenreferred toas“thegreenbook”,hasbecomeoneofthemostpopularbookson ΣΔ converters.This bookprovidesanexcellentandcomprehensivetreatmentof ΣΔMs,theiroperatingprinciples,and mainarchitectures,presentingseveraldesignexamplesconstructedusingthewell-knownSchreier’s MATLABtoolbox[32].ArevisedsecondeditionofthisbookwaswrittenbyPavan,Schreier andTemes,andwaspublishedin2017[33].Thisneweditionexpandedthecontentsofthefirst editionwithmoresectionsdealingwithcontinuous-time(CT)circuitimplementationsandcircuit designconsiderations,withoutlosingthemainintentionofthefirstedition,namelytogiveabasic understandingoftheoperationof ΣΔ converters.

SomeotherremarkableandpioneeringexamplesarethebookwrittenbyMedeiro etal.in 1999[13]–focusedonthesystematicdesignofSC ΣΔMs–andthebookofOrtmannsand Gerfers[22],publishedin2006,whichisstilloneofthemostcompletemonographsonCT ΣΔMs todate.Allofthesebooks,aswellasothermonographsreportedinthetechnicalliterature,give incompleteviewsof ΣΔMs,payingmoreattentiontoparticularaspectsoftheirdesign,and/oratype ofarchitecture,circuittechnique,orapplication.

Thisbeingthecase,andfollowingthespiritofthefirsteditionofthisbook,thissecondedition attemptstocoversomeoftheseknowledgegapsinthe ΣΔ literature,byprovidingacomprehensive andsystematicdescriptionofthe universe of ΣΔMs,theirdiversearchitectures,circuittechniques, analysisandsynthesismethodsandCADtools,aswellastheirpracticaldesignconsiderations.As inthefirstedition,oneofthemainpurposesofthisbookistobeaneducationalandreference textbookforundergraduateandgraduatestudents.Withthisgoalinmind,andbasedonthecourses alreadygivenbytheauthorandthefeedbackreceivedfromreadersandcourseattendees,thecontents ofthesecondeditionofthebookhavebeenupdated,completedandstructuredtoaddressalarge audience:fromseniordesignerswhowanttoacquireadeeperandup-to-dateinsightinto ΣΔMs,to inexperiencedengineerswhoarelookingforauniformandself-containedreferenceintothishottopic. Thenewcontentsandmaterialsmakethisneweditionauniquemonograph,aresultofthecompiling andupdatingoftheenormousnumberoftechnicalandresearchstudiesreportedtodateonthetopic of ΣΔMs.Itpresentstheresultsofthiscompilationinadidactical,pedagogical,andintuitivestyle.

Anotherkeyfeatureofthisbook(asmentionedinthetitle)isthatitcanbeusedasa practical guidefordesigners,emphasizingexplanationsofthemultipletrade-offsinvolvedinthewhole designflowof ΣΔMs–fromspecificationstochipimplementationandcharacterization.Tothis end,a top-down approachisfollowed,presentingthecontentsinahierarchicalway;inotherwords, goingfromthetheoreticalfundamentals,system-leveldesignequations,andbehavioralmodelsto circuit,transistor-level,andphysicalimplementations,inordertoprovidereaderswiththenecessary understandingandinsightsintotherecentadvances,trends,andchallengesinvolvedinthedesignof state-of-the-art ΣΔMICs.

Thissecondeditionemphasizestwokeypoints,whichwerenotcoveredinsuchdepthinthe firstedition.Thefirstistoincludemoredetailedexplanationof ΣΔMsimplementedusingCT circuits,goingfromsystem-levelsynthesistopracticalcircuit/physicallimitations.Thesecondpoint istoincludemorepracticalcasestudiesandapplications,aswellgivingadeeperdescriptionof thesynthesismethodologiesandCADtoolsemployedinthedesignof ΣΔ converters.Duetothe quantityofallthesenewmaterials,thetableofcontentsofthefirsteditionhasbeenre-organizedand expanded,goingfromfivechaptersandtwoappendixestotenchaptersandthreeappendixesinthis secondedition.

Thetop-downapproachadoptedinthisbookinspiresthehierarchicalwayinwhichthecontents arestructured.Thus,Chapter1beginsfromthetop,givinganintroductiontodataconverters andexplainingthebasicconceptsandfundamentalsbehind ΣΔ modulation,itsmainbuilding blocks,thesignalprocessinginvolved,itsperformancemetricsandbasicexamplestoillustratethe conceptsofnoiseshapingandoversampling–themainingredientsof ΣΔ converters.Chapter2 givesataxonomicaldescriptionofthediversevarietyof ΣΔMarchitectures,thenatureofsignals (low-passandband-pass),aswellasthedynamicsinvolved(eitherdiscrete-timeorcontinuous-time). Inthischapter, ΣΔMsareconsideredidealsystems,exceptfortheirinherentquantizationerror; CTsynthesismethodsandarchitectureswillbeexplainedinmoredetailthaninthefirstedition ofthebook.

Chapters3and4descendonelevelinthemodulatorhierarchytoanalyzetheeffectofthemain circuiterrormechanisms,aswellasarchitecturalandtimingnonidealities.Themathematicalmodels, analyticalproceduresanddesignguidelinesdescribedinthischapterprovideanunderstandingofthe mainpracticalissuesaffectingtheperformanceof ΣΔMs.Chapter3mostlyfocusesonSCcircuiterror mechanisms,whileChapter4updatesandexpandsonthecontentsofthefirstedition,dealingwith CTcircuitnonidealeffectsandcompensationtechniques.Thisiscomplementedbythestate-space analysisofclockjitterinCT-ΣΔMsgiveninAppendixA.

Theknowledgederivedfromthefirstfourchaptersisanessentialpartofthesystematic top-down/bottom-up synthesismethodologyof ΣΔMs,whichisdescribedinChapters5and6. Thus,Chapter5dealswiththesynthesismethodologyof ΣΔ converters,focusingonhigh-level behaviouralmodellingandsimulationtechniques,andgivinganintroductiontotheSIMSIDES simulator.Theupdatesofthenewversionofthissimulatorarealsoincludedinthissecondedition anddistributedthroughthebook’scompanionwebsite.Chapter6focusesonoptimizationtechniques, illustratingdifferentapproachestocombinesimulationandoptimizationforthehigh-leveldesignof ΣΔ modulators.ThecontentsofthischapterareextendedandcomplementedinAppendicesBand C.AppendixBincludesauserguidetoSIMSIDESandAppendixCprovidesanoverviewofall behavioralmodelsandlibrariesincludedinthissimulator.

Thecircuit-andphysical-levelconsiderationsarepresentedinChapters7and8,whichupdate andexpandonthecontentsofthefirstedition.Thisupdateandre-organizationismotivatedbythe factthatthepreviousversion(presentedinasinglechapter)wastoolongand,accordingtoreaders’ feedback,neededtoberestructuredintotwochapters.Thesechaptersgiveanumberofnecessary designrecommendationsandpracticalrecipestocompletethedesignflowofa ΣΔM,showingthe

step-by-stepmethodologytotransformasystem-levelmodelintoanelectricalschematic–initially basedonmacromodels,andthenimplementedwithtransistors–and,finally,concludingthedesign cyclewiththelayoutandchipimplementation.Plentyofexamples,casestudies,andsimulation testbenchesareprovidedtoillustratethepracticalissuesanddesignconsiderationsaddressedinthe chapter,whichcovereverythingfromelectricalanalysisandsimulationusingSPICE-likesimulators, tolayoutdesignconsiderations,chipprototyping,andexperimentalmeasurementsof ΣΔMsinthe laboratory.ThesechaptersarecomplementedbyChapter9,wheresomemorecontentdealingwith practicalchipimplementation,casestudiesandexperimentalcharacterizationareprovided.

Toconcludethebook,Chapter10givesanoverviewofstate-of-the-art ΣΔMICs,comparing theirperformancewithNyquist-rateADCs.Overall,morethan500state-of-the-artICreferences havebeenstudiedindetailandconsideredinthisreview,includingpaperspublishedupuntilAugust 2017.Therefore,followingthepracticalphilosophythatinspiresthisbook,thediversefamiliesof state-of-the-art ΣΔMarchitecturesandcircuittechniquesareexhaustivelyanalyzedandcomparedto extractpracticalandempiricaldesignguidelinesfromthestatisticaldata,tryingtoidentifythecoming trends,designchallenges,aswellasthesolutionsproposedbycutting-edgeICsatthefrontiersof ΣΔMs.

Asstatedabove,thebookcontentsareaddressedandstructuredforawideaudience:fromsenior designerstostudentsstartingtoworkintheareaof ΣΔMs.Bearingthisinmind,thestyleandmain purposeofthebookistoservealsoasaneducationalandreferencetextbookforundergraduate andgraduatestudents.Indeed,thebookisbasedonseveralgraduatecoursesgivenbytheauthor, includingmastersanddoctoratedegreeprograms,invitedlectures,andIEEEconferencetutorials, distinguishedlectures,andcourses.Allthesematerialshavebeenadaptedandupdatedsothatalarge portionofthebookcanalsobeused(andindeedithasbeenused)inbothundergraduateandgraduate courses.

However,inspiteoftheencyclopaedicnatureofthebook,itisimpossibletogiveanexhaustive descriptionofallthetopicscontainedinthethousandsofpublicationsdealingwith ΣΔMs.Instead,the booktriestocoverthemainsubtopics,providingsufficientinsighttoallowthereadertounderstand theothers,whichareonlyreviewedinbrief,orsometimesevenomitted.Inordertotrytopalliate theseunavoidabledeficiencies,alistofreferencesisincludedattheendofeachchapter.Overall,the bookcontainsalistofreferencesinordertoguidereaderstoanincreaseintheirunderstandingofthe diverseresearchtopicsinthe ΣΔ world.

Thehugequantityofinformationcontainedinthebookiscomplementedandupdatedbyanumber ofelectronicresources,whichenlargeontheresourcesprovidedwiththefirstedition.Theyarefreely availableontheWeb.Tothisend,allthedataanalyzedinthestate-of-the-artsurveypresented inChapter10havebeencollectedinaspreadsheet,whichisavailableat http://www.imsecnm.csic.es/∼jrosa/CMOS-SDMs-Survey-IMSE-JMdelaRosa.xlsx.Thisdatabaseis periodicallykeptuptodate,andaimstobeacomplementtothepopularMurmann’sADCsurvey datacollection[34].Inaddition,afullyfunctionalversionofthetime-domainbehavioralsimulator SIMSIDESisfreelyavailableondemandat http://www.imse-cnm.csic.es/simsides Thesimulatorincorporatesmanyexamples,includingthecasestudiespresentedinthebookand manymoreexamples.ApartfromtheSIMSIDESsoftware,themajorityofexamplesandtest benchesofdifferentCADtoolsusedthroughoutthebookarealsoavailableontheWebat http://www.imse-cnm.csic.es/∼jrosa.

Lastbutnotleast,althoughtheauthorhasdonehisbesttocoverthemanynewandhottopics intheworldof ΣΔ converters,thereissomecontentthatcannotyetbecoveredindetailwhileother areashadtobeomittedtoallowthebooktobecompletedinareasonabletimeandinareasonable numberofpages.

Ihopethatreadersunderstandtheselimitations,findthiseditionofthebookusefulandpractical, andenjoyreading(andusing)itasmuchasIhaveenjoyedrevisingandwritingit.Asinthefirst edition,yourfeedbackisveryimportantandverywelcome!

References

[1]C.C.Cutler,“TransmissionSystemEmployingQuantization,” U.S.PatentNo.2,927,962,1960.

[2]H.Inose,Y.Yasuda,andJ.Murakami,“ATelemeteringSystembyCodeModulation– Δ−Σ Modulation,” IRETrans.onSpaceElectronicsandTelemetry,vol.8,pp.204–209,September1962.

[3]J.CandyandO.J.Benjamin,“TheStructureofQuantizationNoisefromSigma-DeltaModulation,” IEEE TransactionsonCommunications,pp.1316–1323,1981.

[4]J.Candy,“AUseofDoubleIntegrationinSigma-DeltaModulation,” IEEETransactionsonCommunications, vol.33,pp.249–258,March1985.

[5]B.E.BoserandB.A.Wooley,“TheDesignofSigma-DeltaModulationAnalog-to-DigitalConverters,” IEEEJ.ofSolid-StateCircuits,vol.23,pp.1298–1308,December1988.

[6]P.M.Aziz etal.,“AnOverviewofSigma-DeltaConverters,” IEEESignalProcessingMagazine,vol.13, pp.61–84,January1996.

[7]I.Galton,“Delta-SigmaDataConversioninWirelessTransceivers,” IEEETrans.onMicrowaveTheoryand Techniques,vol.50,pp.302–315,January2002.

[8]J.M.delaRosa,“Sigma-DeltaModulators:TutorialOverview,DesignGuide,andState-of-the-ArtSurvey,” IEEETransactionsonCircuitsandSystemsI:RegularPapers,vol.58,pp.1–21,January2011.

[9]J.CandyandG.Temes, OversamplingDelta-SigmaDataConverters:Theory,DesignandSimulation.IEEE Press,1991.

[10]S.R.Norsworthy,R.Schreier,andG.C.Temes, Delta-SigmaDataConverters:Theory,Designand Simulation.IEEEPress,1997.

[11]J.CherryandW.Snelgrove, Continuous-TimeDelta-SigmaModulatorsforHigh-SpeedA/DConversion. KluwerAcademicPublishers,1999.

[12]J.V.EngelenandR.vandePlassche, BandPassSigma-DeltaModulators:StabilityAnalysis,Performance andDesignAspects.KluwerAcademicPublishers,1999.

[13]F.Medeiro,B.Pérez-Verdú,andA.Rodríguez-Vázquez, Top-DownDesignofHigh-Performance Sigma-DeltaModulators.KluwerAcademicPublishers,1999.

[14]V.Peluso,M.Steyaert,andW.Sansen, DesignofLow-VoltageLow-PowerCMOSDelta-SigmaA/D Converters.KluwerAcademicPublishers,1999.

[15]S.RabiiandB.A.Wooley, TheDesignofLow-Voltage,Low-PowerSigma-DeltaModulators.Kluwer AcademicPublishers,1999.

[16]L.BreemsandJ.H.Huijsing, Continuous-TimeSigma-DeltaModulationforA/DConversioninRadio Receivers.KluwerAcademicPublishers,2001.

[17]Y.Geerts,M.Steyaert,andW.Sansen, DesignofMulti-bitDelta-SigmaA/DConverters.KluwerAcademic Publishers,2002.

[18]J.M.delaRosa,B.Pérez-Verdú,andA.Rodríguez-Vázquez, SystematicDesignofCMOSSwitched-Current BandpassSigma-DeltaModulatorsforDigitalCommunicationChips.KluwerAcademicPublishers,2002.

[19]M.KozakandI.Kale, OversamplingDelta-SigmaModulators.Springer,2003.

JOSÉ

[20]O.BajdechiandJ.Huising, SystematicDesignofSigma-DeltaAnalog-to-DigitalConverters.Kluwer AcademicPublishers,2004.

[21]R.SchreierandG.C.Temes, UnderstandingDelta-SigmaDataConverters.IEEEPress,2005.

[22]M.OrtmannsandF.Gerfers, Continuous-TimeSigma-DeltaA/DConversion:Fundamentals,Performance LimitsandRobustImplementations.Springer,2006.

[23]K.PhilipsandA.H.M.vanRoermund, SigmaDeltaA/DConversionforSignalConditioning.Springer, 2006.

[24]R.delRío,F.Medeiro,B.Pérez-Verdú,J.M.delaRosa,andA.Rodríguez-Vázquez, CMOSCascade ΣΔ ModulatorsforSensorsandTelecom:ErrorAnalysisandPracticalDesign.Springer,2006.

[25]L.Yao,M.Steyaert,andW.Sansen, Low-PowerLow-VoltageSigma-DeltaModulatorsinNanometer CMOS.Springer,2006.

[26]P.G.R.SilvaandJ.H.Huijsing, HighResolutionIF-to-Baseband ΣΔ ADCforCarRadios.Springer,2008.

[27]R.H.vanVeldhovenandA.H.M.vanRoermund, RobustSigmaDeltaConverters.Springer,2011.

[28]A.Morgado,R.delRío,andJ.M.delaRosa, NanometerCMOSSigma-DeltaModulatorsforSoftware DefinedRadio.Springer,2012.

[29]E.JanssensandA.vanRoermund, Look-AheadBasedSigma-DeltaModulation.Springer,2011.

[30]R.Gaggl, Delta-SigmaA/DConverters:PracticalDesignforCommunicationSystems.Springer,2013.

[31]M.Bolatkale,L.Breems,andK.Makinwa, HighSpeedandWideBandwidthDelta-SigmaADCs.Springer, 2015.

[32]R.Schreier, TheDelta-SigmaToolbox.[Online].Available: http://www.mathworks.com/matlabcentral, 2017.

[33]S.Pavan,R.Schreier,andG.C.Temes, UnderstandingDelta-SigmaDataConverters.Wiley-IEEEPress, 2nded.,2017.

[34]B.Murmann, ADCPerformanceSurvey1997–2018.[Online].Available: http://www.stanford.edu/ ~murmann/adcsurvey.html.

ABBREVIATIONS

ΣΔ Sigma-Delta

ΣΔMSigma-Deltamodulator

AAFAntialiasingfilter

A/DAnalog-to-digital

ADCAnalog-to-digitalconverter

BBBaseband

BGABallgridarray

BPBand-pass

CADCircuit-aideddesign

CDSCorrelateddoublesampling

CICCascadedintegratorcomb

CIFFCascadeofintegratorsinfeedforwardform

CIFBCascadeofintegratorsinfeedbackform

CLAClockedaveraging

CMFBCommon-modefeedback

CMOSComplementaryMOSFET

CRFFCascadeofresonatorsinfeedforwardform

CRFBCascadeofresonatorsinfeedbackform

CSCurrent-steering

CTContinuous-time

D/ADigital-to-analog

DACDigital-to-analogconverter

DCDirectcurrent

DCLDigitalcancelationlogic

DCRDirectconversionreceiver

DEMDynamicelementmatching

DMTDiscretemulti-tone

DNLDifferentialnonlinearity

DRDynamicrange

DRCDesignrulechecker

DSPDigitalsignalprocessor

DTDiscrete-time

DWADataweightedaveraging

EAEvolutionaryalgorithm

ELDExcessloopdelay

ENOBEffectivenumberofbits

ESDElectrostaticdischarge

FEForward-Euler

FIRFiniteimpulseresponse

FFTFastFouriertransform

FOMFigureofmerit

FPGAFieldprogrammablegatearray

FSFullscale

GBGain-bandwidthproduct

GPUGraphicsprocessingunit

GROGatedswitched-ringoscillator

GUIGraphicuserinterface

HDLHardwaredescriptionlanguage

HPFHighpassfilter

HRZHalf-delayreturntozero

IBNIn-bandnoisepower

ICIntegratedcircuit

IFIntermediatefrequency

IIRInfiniteimpulseresponse

IITImpulse-invarianttransformation

ILAIndividuallevelaveraging

INLIntegralnonlinearity

I/OInput–output

ISIIntersymbolinterference

ITFIntegratortransferfunction

LDILosslessdiscreteintegrator

LPLow-pass

LPELayoutparasiticextractor

LSBLeastsignificantbit

LTCCLow-temperaturecofiredceramic

LTILineartime-invariant

LVSLayoutversusschematic

MASHMulti-stagenoiseshaping

MDTModulatordependentterm

MEMMicroelectromechanical

MICTORMatchedimpedanceconnector

MiMMetal-insulator-metal

MOEAMulti-objectiveevolutionaryalgorithm

MoMMetal-oxide-metal

MOOPMulti-objectiveoptimizationproblem

MOSMetal-oxide-semiconductor

MOSFETMOSfield-effecttransistor

MOSTMOStransistor

MRMulti-rate

MTPRMultitonepowerratio

nMOSn-channelMOSFET

NSGANondominatedsortinggeneticalgorithm

NSIQNoise-shapedintegratedquantizer

NRZNon-return-to-zero

NTFNoisetransferfunction

OBGOutofbandgain

OLOverloadlevel

OSROversamplingratio

OTAOperationaltransconductanceamplifier

PCBPrintedcircuitboard

PDFProbabilitydensityfunction

PDMPulse-densitymodulation

PLLPhase-lockedloop

pMOSp-channelMOSFET

PoFPareto-optimalfront

PSDPowerspectraldensity

PWLPiecewiselinear

PWMPulse-widthmodulation

QFPQuadflatpackage

QPLLQuadraturephaselockedloop

RFRadiofrequency

RTFResonatortransferfunction

RTOReturntoopen

ROMReadonlymemory

RZReturn-to-zero

SARSuccessiveapproximationregister

SCSwitched-capacitor

SDRSoftware-definedradio

SDTSignaldependentterm

SFDRSpurious-freedynamicrange

S/H,S&HSampleandhold

SISwitched-current

SMASHSturdymulti-stagenoiseshaping

SMDSurface-mountdevice

SNRSignal-to-noiseratio

SNDRSignal-to-noise-plus-distortionratio

SPRSerial-to-parallelregister

SQNRSignal-to-quantization-noiseratio

SoCSystemonchip

SRSlewrate

TDCTime-to-digitalconverter

TEQTime-encodingquantizer

THDTotalharmonicdistortion

TITimeinterleaved

TIATransimpedanceamplifier

USTFUnitysignaltransferfunction

VCOVoltage-controlledoscillator

VCROVoltage-controlledringoscillator

ZOHZero-orderhold

CHAPTER1

INTRODUCTIONTO ΣΔ MODULATORS: FUNDAMENTALS,BASICARCHITECTURE ANDPERFORMANCEMETRICS

Thischapterisconceivedasanintroductionto ΣΔ dataconverters.Theiroperatingprincipleconsists incombiningoversampling,quantizationerrorprocessing,andnegativefeedbackforimproving theeffectiveresolutionofacoarsequantizer.ThesebasicconceptsarepresentedinSection1.1, puttingespecialemphasisonthetwomainprocessesinvolvedintheanalog-to-digitalconversion, namelysamplingandquantization.Theerrorsassociatedwiththeirinherentcontinuous-to-discrete transformationsareanalyzedandthewayinwhichtheycanbemitigatedbycombiningoversampling andnoiseshapingispresented.Onthebasisoftheseingredients,theperformanceof ΣΔ converters iscomparedwithNyquist-rateconvertersinordertoillustratehowtoachievethesamespecifications bytradingcircuitelementaccuracyforsignalprocessing.

Section1.2showsthebasicarchitecture,idealbehavior,andperformancemetricsof ΣΔ modulatorsandthesimplestwaytoimplementsuchanarchitectureispresentedinSection1.3,where theso-calledfirst-order ΣΔ modulatorisanalyzedindetail.Thissimplearchitectureisusedasan illustrationtoshowtheprinciplesofoperationbehind ΣΔMsandtohighlightthemaindrawbacksof thecorrelationbetweenthequantizationerrorandtheinputsignal.System-leveldesignparameters andstrategiestoenhancetheperformanceof ΣΔ convertersarediscussedinSection1.4,andthe differenttypesof ΣΔ topologiesandtheirimplementationsareoutlined.Everythingisputtogetherin Sections1.5and1.6,wherethedifferentbuildingblocksrequiredtoimplementADCsandDACsare described.

1.1BasicsofAnalog-to-DigitalConversion

ADCsareelectronicsystemsthatperformthetransformationofanalogsignals–whicharecontinuous intimeandinamplitude–intodigitalsignals–whicharediscreteinbothtimeandamplitude.Figure1.1a illustratesthegeneralblockdiagramofanADCintendedfortheconversionoflow-pass(LP)signals, Itessentiallyconsistsofan antialiasingfilter (AAF),a sampler,a quantizer anda coder

Figure1.1 Analog-to-digitalconversion:(a)conceptualblockdiagram;(b)signalprocessing.A Nyquist-rateADCisassumed.

TheoperationoftheseblocksisillustratedinFigure1.1b.First,theanaloginputsignal xa (t ) of theADCpassesthroughtheAAF:anLPanalogfilterthatpreventsout-of-bandcomponentsfrom foldingoverthesignalbandwidth B�� duringthesubsequentsampling,whichwouldcorruptthe signalinformationaccordingtotheNyquistsamplingtheorem.Theresultingband-limitedsignal x(t ) issampledatarate fs bythesamplingandhold(S/H)circuit,thusyieldingadiscrete-timesignal xs (n)= x(nTs ),where Ts = 1∕fs standsforthesamplingperiod.Thecontinuousrangeofamplitudes of xs (n) arequantizedusing N bits,sothateachcontinuous-valuedinputsampleofthequantizer ismappedontothecloserdiscrete-valuedleveloutofthe2N thatcovertheinputrange.Finally, thedigitizationprocessiscompletedbyassigningauniquedigitalcodetoeachoutputlevelofthe quantizer,normallyusingbinarycoding,whichyieldsthe N -bitdigitaloutput yd (n)

AsconceptuallyshowninFigure1.1b,thefundamentalprocessesinvolvedinA/Dconversion aresamplingandquantization.Bothprocessesimplementacontinuous-to-discretetransformation, theformerintimeandthelatterinamplitude.Thesetwocontinuous-to-discretetransformationslimit theperformanceofADCs,definingtheirmainspecifications,intermsofthespeedandaccuracy,the latteralsoreferredtoas resolution1 andmeasuredinbits.Itisthereforeverycommontocompare theperformanceofdifferenttypesofADCsintheresolution-versus-speedplane,asillustratedin Figure1.2.Inthispicture,thestate-of-the-artperformanceofdifferentdigitizationtechniques– ΣΔ, Flash,two-step,folding,pipelineandSAR–aredepicted.Itcanbeseenthattheso-called ΣΔ ADCs–thetopicofthisbook–havethewidestconversionregion.Thisisoneofthemotivationsfor considering ΣΔ techniquesfortheimplementationofADCs,butitisnottheonlyone.Tounderstand

1 Aswillbeexplainedlaterinthisbook,theaccuracyofanADCisnotonlylimitedinpracticebythequantizationprocess,but alsobyanumberofnonidealeffectscausedbythecircuitandthephysicalimplementationofthechip.

Medium/High Resolution State-of-the-Art Front

Figure1.2 Resolution(accuracy)versusspeedachievedbystate-of-the-artADCs.

themainbenefitsof ΣΔ ADCsitisimportantfirsttoanalyzeindetailtheprocessesinvolvedinA/D conversion,namelysamplingandquantization.

1.1.1Sampling

Asstatedabove,thesamplingprocessperformsthecontinuous-to-discretetransformationoftheinput signalintimeandimposesalimitonthebandwidthoftheanaloginputsignal.Accordingtothe Nyquisttheorem,topreventinformationloss, x(t ) mustbesampledataminimumrateof fN = 2B�� , oftenreferredtoastheNyquistfrequency.Onthebasisofthiscriterion,ADCsinwhichtheanalog inputsignalissampledattheminimumrate(fs = fN )arecalled Nyquist-rateADCs.Conversely, ADCsinwhich fs > fN arecalled oversamplingADCs.Howmuchfasterthanrequiredtheinputsignal issampledisexpressedintermsofthe oversamplingratio (OSR),definedas:

WhetheroversamplingisusedornotinanADChasanoticeableinfluenceontherequirements ofitsantialiasingfilter.SinceinNyquist-rateADCstheinputsignalbandwidth B�� coincideswith fs ∕2,aliasingwilloccurif xa (t ) (asshowninFigure1.1)containsfrequencycomponentsabove fs ∕2. Higher-orderanalogAAFsarethusrequiredtoimplementsharptransitionbandscapableofremoving out-of-bandcomponentswithnosignificantattenuationofthesignalband,asillustratedinFigure1.3a fortheLPcase.Conversely,since fs ∕2 > B�� inoversamplingADCs,thereplicasoftheinputsignal spectrumthatarecreatedbythesamplingprocessarefartherapartthaninNyquist-rateADCs.As illustratedinFigure1.3b,frequencycomponentsoftheinputsignalintherange [B�� , fs B�� ] donot aliaswithinthesignalband,sothatthefiltertransitionbandcanbesmoother;thisgreatlyreducesthe orderrequiredfortheAAFandsimplifiesitsdesign.

Antialiasingfilterfor:(a)Nyquist-rateADCs;(b)oversamplingADCs.

1.1.2Quantization

ThequantizationprocessalsointroducesalimitationontheperformanceofanidealADC,sincean errorisgeneratedwhileperformingthecontinuous-to-discretetransformationoftheinputsignalin amplitude.Thisiscommonlyreferredtoas quantizationerror.Thebasicoperationofquantizersis illustratedinFigure1.4.

Asanexample,Figure1.4cdepictstheI/Ocharacteristicofaquantizerwith N = 2,although theresultsalsoapplytoageneric N -bitquantizer.Inputamplitudeswithinthefull-scaleinputrange [−XFS ∕2, +XFS ∕2] are rounded tooneoutofthe2N differentoutputlevels,whichareusuallyencoded intoabinarydigitalrepresentation.Iftheselevelsareequallyspaced,thequantizerissaidtobe uniform andtheseparationbetweenadjacentoutputlevelsisdefinedasthe quantizationstep,

where YFS standsforthefull-scaleoutputrange.Since XFS and YFS arenotnecessarilyequal,the quantizermayexhibitagaindifferentfromunity,asindicatedinFigure1.4cbytheslope kq .Asshown inFigure1.4e,thequantizeroperationthusinherentlygeneratesa rounding errorthatisanonlinear functionoftheinput.Notethat,if q(n) iskeptwithintherange [−XFS ∕2, +XFS ∕2],thequantization error e(n) isboundedwithin [−Δ∕2, +Δ∕2].Theformerinputrangeisknownasthe nonoverload region ofthequantizer,asopposedtorangeswith |q(n)| > Δ∕2,forwhichthemagnitudeof e(n) growsmonotonously.Figure1.4alsoshowstheoperationofasingle-bitquantizer(N = 1).Notefrom Figure1.4dthat,comparedtothemulti-bitcase,theoutputofasingle-bitquantizerisdeterminedby theinputsignonly,regardlessitsmagnitude.Therefore,thegain kq isundefinedandcanbearbitrarily chosen.

ThequantizationcharacteristicsshowninFigure1.4acorrespondtothoseofso-called midriser quantizers.ThistermcomesfromwhathappensintheregionaroundthezerovalueoftheI/O characteristics,consideringtheanalogywitha staircase.Asaresult,thenumberoflevelsisalways anevennumber.Alternatively,thereisanothertypeofquantizerblockcalleda midtread quantizer,

Figure1.3

Figure1.4 Quantizationprocess:(a)multi-bitquantizerblock;(b)single-bitquantizerblock;(c)I/O characteristicofamulti-bitquantizer;(d)I/Ocharacteristicofasingle-bitquantizer;(e)multi-bit quantizationerror;(f)single-bitquantizationerror.

withaconceptualI/OcharacteristiclikethatshowninFigure1.5a,inwhichthelevelcorresponding tozero–likethetreadofastaircase–isalsoconsideredavalidlevelforquantizationpurposes.These quantizationI/Ocharacteristicsareusuallyexploitedbyfully-differentialcircuits,inwhichthezero valuecanbeobtainedbysimplysubtractingthecharacteristicsofthetwobranchesimplementingthe differentialcircuitry.Forinstance,Figure1.5billustrateshowtoobtainathree-levelquantizerfrom twosingle-levelquantizers;thatis,comparatorfunctions.Inwhatfollows,amidriserquantization willbeconsidered,butwithoutlossofgenerality.

1.1.3QuantizationWhiteNoiseModel

Inpractice,anidealquantizersuchasthatshowninFigure1.6acanoftenbemodeledusingthe linearschemeinFigure1.6bifseveralassumptionsaremadeaboutthestatisticalpropertiesofthe quantizationerror[1–3].AsalreadyshowninFigure1.4e,thequantizationerror e(n) issystematically determinedbythequantizerinputsignal q(n).Nevertheless,if q(n) isassumedtochangerandomly fromsampletosamplewithintherange [−Δ∕2, +Δ∕2], e(n) willalsobeuncorrelatedfromsampleto sample.Thisbehaviorisalsoseenifthenumberofquantizerlevelsincreases.Thisisillustratedin

Figure1.5 Midtreadquantization:(a)conceptualI/Ocharacteristic;(b)illustrationofathree-level ADCmadeupoftwosingle-bitquantizers(comparators).

Figure1.6 Quantizationlinearmodel:(a)multi-bitquantizerblock;(b)equivalentmodelwithadditive whitenoise.

Figure1.7 Illustratingthevalidityofthewhite-noisemodelforaquantizerwhenthenumberoflevels ofthequantizerisincreasedwhenatwo-toneinputsignalisapplied.

Figure1.7,whereaquantizerisexcitedbyatwo-tonesignal.Notethatanumberofintermodulation tonescanbeobservedintheoutputspectrumofthequantizer.Thesetonesarecausedbythe strongcorrelationbetweenthequantizerinputandthequantizationerror,asconceptuallydepictedin Figure1.4e.However,asthenumberofquantizerlevelsisincreased(bydecreasing Δ),thenumber oftonesisdrasticallyreduced,apartfromtheobviousreductionofthenoisepower.

Undertheserequirements,thequantizationerrorcanbeviewedasa randomprocesswitha uniformprobabilitydistribution intherange [−Δ∕2, +Δ∕2],asillustratedinFigure1.8a.Thepower

Figure1.8 Quantizationwhitenoise:(a)probabilitydensityfunction(PDF);(b)powerspectraldensity.

associatedwiththequantizationerrorcanthusbecomputedas:

Theformerassumptionimpliesthat,asillustratedinFigure1.8b,thepowerofthequantizationerror willbealso uniformly distributedintherange [−

,yielding

sothatthepowerspectraldensity(PSD)ofthequantizationerrorinthatrangeis:

Theseassumptionsarecollectivelyknowntoasthe additivewhitenoiseapproximation ofthe quantizationerrorandallowtherepresentationofaquantizerthatisdeterministicandnonlinear withtherandomlinearmodelinFigure1.6b.Here y(n)= kq q(n)+ e(n),with e(n) being quantization noise. 2

Withtheapproximationofthequantizationerroraswhitenoise,theperformanceofidealADCs canbeeasilyevaluated.ForaNyquistADCinwhich fs = 2B�� ,allthequantizationnoisepowerfalls insidethesignalbandandpassestotheADCoutputasapartoftheinputsignalitself,asillustratedin Figure1.9a.Conversely,ifanoversampledsignalisquantized,since fs > 2B�� ,onlyafractionofthe totalquantizationnoisepowerlieswithinthesignalband,asillustratedinFigure1.9b.The in-band noisepower (IBN)causedbythequantizationprocessinanidealoversamplingADCisthus,

sothatthelargertheoversamplingratio,thesmallertheIBN.3

2 Althoughtheassumptionsunderlyingtheadditivewhitenoiseapproximationarerarelymetinpracticeandarenotstrictlyvalid, itiscommonlyusedinADCdesignandusuallyyieldsgoodresults–andbetterforalargernumberofbitsinthequantizer,as illustratedinFigure1.7.Eventhoughstrictlyspeakingitisnotvalidforstand-alonesingle-bitquantizers,theassumptionisalso employedinthedesignofsingle-bit ΣΔ modulators[4].

3 NotethatEquation(1.6)fortheIBNofoversamplingADCsalsoholdstrueforNyquistADCs,justconsideringOSR = 1.The sameappliesforsubsequentexpressionsderivedfromEquation(1.6).

Another random document with no related content on Scribd:

“One of our troubles is with smuggled liquor We try especially to keep it from the Indians, but nevertheless it gets in. In one instance bottles of whisky were shipped to the Yukon inside the carcasses of dressed hogs. In another a woman contrived a rubber sleeve, which she filled with whisky. All one had to do for a drink was to give her arm a hard squeeze.”

I asked how it was that the Mounted Police are so feared by bad characters that this whole territory can be controlled by a handful of them. The officer replied:

“Every man in frontier Canada knows that if he is wanted by the Mounted Police, they are sure to get him. A fugitive from justice could very easily kill one of our men sent after him, but he realizes that if he does so, another will follow, and as many more as are necessary until he is brought in. I have seen constables arrest men of twice their weight and strength, and have had one or two men round up a mob and bring them all to jail. This is true not only of our own bad men, but also of those who come across from Alaska. They may be dangerous on the other side of the border, but they are always gentle enough when they get here.

“The big thing that helps us,” concluded the head of the police, “is that the government supports us up to the limit. For example, it cost us two hundred thousand dollars to convict in one famous murder case, but it was done and the guilty man hanged. Ottawa always tells us that it is prepared to spend any amount of money rather than have a murderer go unpunished. It is that policy that enables us to keep order here.”

THE END

SEEING THE WORLD WITH F G. C

Doubleday, Page & Company, in response to the demand from Carpenter readers, are now publishing the complete story of CARPENTER’S WORLD TRAVELS, of which this book is the tenth in the series. Those now available are:

1. “The Holy Land and Syria”

2. “From Tangier to Tripoli” Morocco, Algeria, Tunisia, and Tripoli

3. “Alaska, Our Northern Wonderland”

4. “The Tail of the Hemisphere” Chile and Argentina

5. “From Cairo to Kisumu” Egypt, the Sudan, and Kenya Colony

6. “Java and the East Indies” Java, Sumatra, the Moluccas, New Guinea, Borneo, and the Malay Peninsula

7. “France to Scandinavia” France, Belgium, Holland, Denmark, Norway, and Sweden

8. “Mexico”

9. “Australia, New Zealand, and Some Islands of the South Seas” Australia, New Zealand, New Guinea, the Samoas,

the Fijis, and the Tongas 10. “Canada” and Newfoundland

Millions of Americans have already found Carpenter their ideal fellow traveller, and have enjoyed visiting with him all the corners of the globe. He tells his readers what they want to know, shows them what they want to see, and makes them feel that they are there.

CARPENTER’S WORLD TRAVELS are the only works of their kind. These books are familiar talks about the countries and peoples of the earth, with the author on the spot and the reader in his home. No other one man has visited so much of the globe and written on the ground, in plain and simple language, the story of what he has found. CARPENTER’S WORLD TRAVELS are not the casual record of incidents of the journey, but the painstaking study of a trained observer, devoting his life to the task of international reporting. Each book is complete in itself; together they form the most vivid, interesting, and understandable picture of our modern world ever published. They are the fruit of more than thirty years of unparalleled success in writing for the American people, and the capstone of distinguished services to the teaching of geography in our public schools, which have used some four million copies of the Carpenter Geographical Readers.

INDEX

Abitibi, large production of news-print at, 92.

Agriculture, in Newfoundland, 11; in Quebec, 47, 48; possibilities of Manitoba, 154.

Air plant, a polar orchid along the Yukon Trail, 236.

Airplanes, fail in attempt to reach Fort Norman, 205.

Alberta, coal deposits estimated to be one seventh of the world’s total, 200; extent of pure bred cattle and dairy industries, 208

Alberta Railway and Irrigation Company, pioneer in Alberta irrigationwork, 207.

Alfalfa, largely produced in southwestern Saskatchewan, 176.

American “branch plants” in Canada, 104.

American capital and investments in Canada, 105.

American owned pulp-mills and timber tracts in Canada, 96.

Americans, number of, in Canada, 2, 193.

Anderson, Charlie, his lucky strike in the Klondike, 275.

Annapolis Valley, Nova Scotia’s apple-growing district, 34.

Anyox, British Columbia, copper mines at, 223.

Apples, largely grown in Annapolis Valley, Nova Scotia, 34; in the Okanagan Valley, 223.

Asbestos, most of world’s supply produced in Thetford district, Quebec, 47.

Astrophysical Observatory at Victoria, British Columbia, 225.

“Athabaska Trail,” poem by Sir Arthur Conan Doyle, 205.

Automobiles, American, in Canada, 104.

Banff, finest mountain resort of Canada, 215.

Bank of Montreal, one of the world’s great banks, 73.

Banks and the banking system of Canada, 69, et seq.

Banting, Dr. F. G., discoverer of Insulin, 99.

Barley, production in the Winnipeg district, 149; large crops at Edmonton, 200; in Peace River Valley, 202.

Baseball, popular in Nova Scotia, 35; in Toronto, 101.

Bassano, great irrigation dam at, 206.

Battleford, Saskatchewan, noted for its fur trade and lumber mills, 179

Beach, Rex, in the Klondike, 278.

Bears, abundant in the Yukon, 234.

Beatty, E. W., first Canadian-born president of the Canadian Pacific, 165.

Beaver, the first fur exported by the Hudson’s Bay Company, 169; abundant in the Yukon, 234.

Beck, Sir Adam, at the head of Ontario Hydro-Electric Commission, 110.

Bell Island, visit to the Wabana iron mines on, 26.

Belle Isle, Strait of, 4.

Big game of the Yukon region, 253.

Black, George, demonstrates to Ottawa Parliament possibility of winter automobile travel in the Yukon, 239.

Bonsecours Market, at Montreal, 66.

Boyle, Joseph W., successful gold-dredging operations in the Yukon, 271;

the story of his career, 281

Branch plants, American, in Canada, 104.

Bras d’Or Lake, an inland sea, 39.

Bright “Dickie,” a character of old-time Calgary, 211.

British American Nickel Company, operators of mines at Sudbury, 130.

British Columbia, timber resources of, 90; production of silver in, 124; agricultural and mineral resources, 220 et seq.

Buffalo, last wild herd reported to be near Fort Vermilion, 202; largest herd in America at Wainwright Park, Alberta, 217.

Cabbage, as raised at Dawson, Yukon, 265.

Cabot, Sebastian, reported that fish obstructed navigation on Newfoundland coast, 13.

Cabot Tower, commemorating discovery of Newfoundland, 6.

Calgary, Alberta, huge irrigation works of the Canadian Pacific Railway at, 206, 207; the city and its industries, 209.

Camping and hunting in Ontario province, 139.

Canadian Bank of Commerce, established in the Klondike, 280.

Canadian Banking Act, provisions of, 72.

Canadian Banking Association, of semi-official status, 73.

Canadian Klondike Mining Company, established by Joe Boyle, 284.

Canadian National Railways, eastern terminus at Halifax, 31; extent of, 158; work abroad to induce immigration, 190; transcontinental route from Prince Rupert to Halifax, 229.

Canadian Northern Railway, growth of, 162.

Canadian Pacific Railway, eastern terminus at St. John, N. B., 41; extent of its railroad and steamship service, 158, 160; work abroad to induce immigration, 190; begins huge irrigation project near Calgary, 206, 207; leads in exploiting Canada’s scenic wonders, 218.

Canadian relations with the United States, 85.

Canso, Strait of, railroad trains ferried across, 39.

Cantilever bridge, world’s longest at Quebec, 45.

Cape Breton Island, port of province of Nova Scotia, 38.

Cape Race, chief signal station of the North Atlantic, 3.

Cape Spear, most easterly point of North America, 6.

“Card money,” circulation of, 74.

Caribou, abundant in Newfoundland, 11; in northern Ontario, 140; in the Yukon, 234, 253; meat sold at butcher shops in Dawson, 253.

Carmack, George, discoverer of gold in the Klondike, 274.

Carrots, a successful crop at Dawson, Yukon, 261

Cartier, Jacques, early explorations of, 45.

Catholicism, Quebec the American capital of French, 57.

Cattalo, cross between buffalo and cattle, raised in large numbers at Wainwright Park, 218.

Cattle, pure bred, in Alberta, 208; transportation of, on the Yukon River, 242.

Cattle ranches being supplanted by farms in Alberta, 206.

Château Laurier, government railroad hotel at Ottawa, 81.

Chaudière Falls, source of power for Ottawa manufactures, 80.

Chicken Billy and his ten-thousand-dollar potato patch, 259.

Chinese labourers, not admitted to Canada, 190.

Chippewa, immense hydro-electric development at, 113.

Chisana, abandoned town on the Yukon River, 244.

“Circle tour,” the Canadian Rockies, Yellowstone Park, and Grand Canyon motor route, 215.

Clay Belt, the Great, agricultural possibilities in, 139.

Clergue steel plant, at Sault Ste. Marie, 135.

Climate, at Edmonton, 200; at Prince Rupert, British Columbia, 228; at Dawson, Yukon, 256.

Coaker, Sir William, organizer of Newfoundland Fishermen’s Protective Union, 21.

Coal, great importance of the Sydney mines, 39; amount saved by development of Canada’s water-power, 108;

Alberta’s deposits, the greatest in the Dominion, 200; immense deposits, near Crow’s Nest Pass, 221.

Cobalt, Ontario, world’s richest silver deposits at, 119.

Cobalt, immense production of the mineral at Cobalt, Ontario, 125.

Cochrane, “Billy,” breeder of “wild” cattle at Calgary, 210.

Cochrane, Senator, owner of large cattle ranch in Alberta, 207.

Cod fisheries, of Newfoundland, 13; of Nova Scotia, 36.

Coffee, George T., lucky miner in the Yukon, 266

Coke ovens, at the coal deposits near Crow’s Nest Pass, 221.

Columbia River, source of, in the Kootenays, 220.

Conservation of forests in Canada, 89.

Copper, rich deposits in Newfoundland, 12; in the Kootenay country, 221, 222

Copper sulphate, by-product of Sudbury mines, 130.

Cornwallis, Lord, city of Halifax, founded by, 32.

“Country banks” of coal, the settler’s recourse, 201.

Creighton Nickel Mine, largest producer in the world, 127.

“Cremation of Sam McGee,” poem by Robert Service, 257.

Crow’s Nest Pass, railway line through, 217, 220; immense coal deposits near, 221.

Cucumbers, a hot-house crop, at Dawson, Yukon, 261.

Curling, a popular game in Canada, 68.

Dairy cattle and products of Alberta, 208.

Dawson, the capital of the Yukon, 250 et seq.

Deer, plentiful in Nova Scotia, 57.

Divorce, no laws for, in Newfoundland, 9.

Domestic servants, scarcity of, 192.

Dominion Agricultural Department, originates improved wheat varieties, 183.

Douglas fir, principal timber of British Columbia, 91.

Doukhobors, fanatical colonists from Russia, 194.

Doyle, Sir Arthur Conan, poem, “The Athabasca Trail,” 205.

Dredging for gold in the Yukon, 267, 269.

Dunsmore, Lord, as a pioneer names town of Moose Jaw, 179.

Edmonton, Alberta, the gateway to the northwest, 197 et seq.

Electric current, low cost of in southern Ontario, 106, 108, 111.

Electrically heated water for winter mining in the Klondike, 285.

Elevators, how conducted in the Canadian wheat belt, 186.

Farm labour, how obtained for the Canadian wheat fields, 184.

Farmers, American, movement to the Canadian wheat belt, 193.

Farmhouses, well built in Nova Scotia, 38.

Farming, on the edge of the Arctic, Fisheries, of Newfoundland, 13; of Nova Scotia, 36.

Fisheries of British Columbia, extent of, 230.

Fishermen, Newfoundland, their hard lives and small incomes, 20.

Fishermen’s Protective Union, activities of, 21.

Flax seed, production in the Winnipeg district, 149.

Fleming, Peter, plans harbour development of Montreal, 62.

Floating dry dock, at Prince Rupert, 229

Flour industry, location of principal mills, 186.

Football, popular in Toronto, 101.

Forest fires and protective measures, 89.

Forest reserves, set aside by government of Ontario, 139.

Forests, denudation of Canadian, 88.

Fort Garry, present site of Winnipeg, 151.

Fort McMurray, on the route to the new oil fields, 203.

Fort Norman, trading post for the new oil region, 203.

Fort Smith, capital of the Northwest Territories, 203.

Fort Vermillion, last herd of wild wood buffalo reported near, 202.

Fort William, the great wheat centre, 135, 141.

Fox, Black, price of fur declining since advent of fur farming, 173.

Fox farms on Prince Edward Island, 40; near Indian Lorette, Quebec, 44.

Fraser River, gold discoveries on, the first in British Columbia, 223. Freighters, Lake Superior, 146.

French, dispute British claims to Newfoundland fisheries, 14; attempts to hold Nova Scotia, 15; driven from Cape Breton Island, 39.

French, the language of Quebec, 49.

French Canada—Quebec, 42

French Catholicism, Quebec the American capital of, 57.

Fruit growing in the Okanagan Valley, British Columbia, 224.

Fundy, Bay of, the forty-foot tides of, 38.

Fur, and the great organizations concerned in its marketing, 166 et seq.

Gas, natural, at Swift Current, Saskatchewan, 180; at Medicine Hat and near Edmonton, 201.

Gates, Swift-Water Bill, his great strike in the Klondike, 277; partnership with Jack London, 278; partnership with Joe Boyle, 282.

Glace Bay, first transatlantic cable landed at, 39.

Gold, but little found in Labrador, 11; production of, in the Porcupine district, 125; in the Kootenay country, 221; first discovery in British Columbia, on the Fraser River, 223; supply being exhausted in the Klondike, 250; the wonders of the Yukon, 266.

Gouin reservoir, immense water-power development in Quebec, 47.

Government ownership of railroads, how brought about, 162.

Governor-General, the, his position in the Canadian government, 84.

Grain-carrying ships, of the Great Lakes, 146

Grain elevators, at Port Arthur and Fort William, 141 et seq.

Grain sacks, manufacture of, a leading industry of Montreal, 63.

Granby Company, miners and smelters of copper in British Columbia, 222.

Grand Banks, the cod fishing grounds, 4, 19.

Grand Forks, British Columbia, smelter closed down after a record production, 222.

Grand Trunk railway, growth of, in Canada, 162.

Grande Prairie, largest town in the Peace River Valley, 202.

Great Divide, crossing the, 213.

Great Slave Lake, on the route to the new oil fields, 204.

Grenfell, Dr., sailors’ mission of, at St. John’s, 8.

Gulf Stream, its influence on Newfoundland, 4, 5.

Halibut, large production of the British Columbia fisheries, 230.

Halifax, chief city and capital of Nova Scotia, 31.

Halifax explosion, one of the greatest ever known, 33.

Hamilton, Ontario, prosperity due to cheap electric power from Niagara, 117.

Hayward, Edward, his murder near Lesser Slave Lake, and the running down of his murderer, 295.

Hematite ore, in the Kootenay country, 221

Hidden Creek copper mines, largest in British Columbia, 223.

Hill, James J., prediction of Canada’s future population, 189.

Hockey, the great game of Canada, 68.

Hogs, raised at Dawson, Yukon, 260, 262.

Hollinger Mine, largest gold mine in North America, 125.

Holt, Renfrew and Company, great furriers at Quebec, 171.

Homesteads in the Yukon, 265

Horse raising, in Alberta, 209.

Hot-houses for cucumbers and tomatoes at Dawson, Yukon, 261.

Hudson Bay, railways projected to, 155.

Hudson’s Bay Company, history of, 166 et seq.

Hudson Strait, chief difficulty in navigation of Hudson Bay Route, 156.

Hull, wet suburb of dry Ottawa, 80.

Hunting, in Newfoundland, 11.

Hunting and camping in Ontario province, 139.

Hydraulic mining, in the Yukon, 267.

Hydro-electric Commission, work of, in Ontario, 102, 103, 106, 107.

Hydro-electric development in Quebec, 46; of Niagara Falls, 106; of Welland River at Niagara Falls, 113; at Sault St. Marie, 134

Hydro-electric development and the paper and pulp industry, 96.

Hydro-electric plant, supplying St. John’s, 15.

Hydro-electric project at Ogdensburg proposed for furnishing power to United States and Canada, 100.

Ibex Range, as seen from the Yukon trail, 236.

Ice Palace, formerly erected each winter at Montreal, 68.

Icelanders, a colony of, near Winnipeg, 152.

Immigration, Canada’s desire for, 188 et seq.

Indian Head, government forestry experiments at, 178.

Insulin, specific for treatment of diabetes, discovered at University of Toronto, 99.

International Joint Commission, approves project for improvement of St. Lawrence waterway, 100.

International Nickel Company of Canada, Ltd., owners of rich Sudbury mines, 127.

Iron, one of the world’s largest deposits in Newfoundland, 12; the wonderful Wabana mines, 24; in the Kootenay country, 221.

Irrigation in Alberta, 206; in the Okanagan Valley, 224

Japanese labourers, not admitted to Canada, 190.

Jasper Park, greatest of Canada’s western game and forest reserve, 217

Keeley Mine, rich silver veins of, at Cobalt, 124.

Keno Hill, new silver district in the Yukon, 124.

Kicking Horse Pass, where the railway crosses the Great Divide, 216.

King, Charles, his capture and conviction of murder by the Mounted Police, 295.

King Solomon’s Dome, in the centre of the Klondike gold region, 274.

Kirkland Lake gold district, production of, 125.

Klondike, the supply of gold being exhausted, 250; romances of the, 274.

Kootenay country, resources of, 220, 221

Kootenay Lake, steamer trip through, 221.

Labrador, cod fisheries of, 19.

Labour, how obtained for the Canadian wheat fields, 184.

Lac Beauvert, a mountain resort of the Canadian National Railways, 217.

La Chine Rapids, so-named by Cartier, 61.

Lachine Canal, near Montreal, 64.

Lacrosse, one of the most popular Canadian games, 67.

Lake of the Woods, a beautiful camping and hunting district, 139.

La Rose, discoverer of silver at Cobalt, 122.

Land grants to the Canadian Pacific Railway, 190.

Laurentian Mountains, oldest rock formation of the continent, 48.

Le Roi Copper Mine at Rossland, British Columbia, 222.

Leacock, Stephen, at McGill University, Montreal, 63.

Lead, in the Kootenay country, 221.

Left-hand driving, the custom in Newfoundland, 25.

Life insurance, amount held by Canadians, 78.

Lignite coal, in Saskatchewan, 180.

Live stock, transportation of on the Yukon River, 242.

Live stock production in Newfoundland, 11.

London, Jack, in the Klondike, 278.

London, Ontario, greatly increased consumption of electricity due to low price, 112.

Louise, Lake, in the Canadian Rockies, 216.

Lumber, production at Sault Ste. Marie, 135; production of the Saskatchewan province, 176, 179; immense quantities shipped from Vancouver, 225.

Lumber industry of Canada, the, 88 et seq.

Manitoba, extent of the province, its topography and resources, 154.

Maritime Provinces, of Canada, the, 31.

Marquette, Father, establishes first Jesuit mission in the new world at Sault Ste. Marie, 135.

Marquis, valuable variety of wheat originated by Dominion Agricultural Department, 183.

Matches, manufacture of, at Ottawa, 80, 88.

Medicine Hat, natural gas wells at, 201.

Mennonites, at Winnipeg, 153; colonies of, from Russia, 194, 195.

McGill University, Montreal, 63

Miller, Joaquin, in the Klondike, 278.

Mine props, cut in Newfoundland for use in English and Welsh mines, 11.

Mining wonders of the far North, 266.

Mond Nickel Company, operators of mines at Sudbury, 130.

Monel metal, how produced, 129.

Montreal, Canada’s largest city and financial centre, 60 et seq.

Moose, plentiful in Nova Scotia, 37; in Ontario province, 140; in the Yukon, 234, 253; meat sold at butcher shops at Dawson, 253.

Moose Jaw, an important commercial centre of Saskatchewan, 179.

Mosses, along the Yukon trail, 236.

Mother’s pension, in Ontario, 103.

Motor tourists, welcomed in Quebec, 50.

Mountain goats, abundant in the Yukon, 253.

Mountain sheep, abundant in the Yukon, 253.

Mount Robson, highest peak in Canada, 217.

Mount Royal, from which Montreal is named, 61.

Municipal ownership in Port Arthur and Fort William, 143.

Muskrat, a valuable fur when dyed and prepared, 172.

Names, fanciful, in Newfoundland geography, 12.

National debt of Canada, greatly increased during the World War, 188.

Natural gas, at Swift Current, Saskatchewan, 180; at Medicine Hat, and near Edmonton, 201.

Nelson, British Columbia, in the heart of the mining country, 221.

New Brunswick, its resources and industries, 40.

New Caledonia, nickel production of, 127.

Newfoundland, size and strategic importance, 4; population, 7; education and church activities, 7; political relation to British Empire, 8; system of government, 9.

Newspapers in the early Klondike days, 280.

News-print, production of the Sault Ste. Marie mills, 134.

Niagara Falls, hydro-electric development of, 106, 113.

Niagara Falls Railway Arch Bridge, cost of lighting American half more than double Canadian, 108.

Nickel, largest production in the world at Sudbury, Ontario, 127; the different uses of the metal, 131.

Nickel-steel, the many uses of, 131.

Nipissing silver mine at Cobalt, 122.

Northcliffe, Lord, built plant in Newfoundland for supply of pulp wood paper, 11.

Northwest Company, opponent of the Hudson’s Bay Company, finally absorbed, 170.

Notre Dame, Church of, at Montreal, 65.

Nova Scotia, travels, in, 31 et seq.

Oats, production in the Winnipeg district, 149; large crops at Edmonton, 200; in Peace River Valley, 202.

Oats hay, a farm crop at Dawson, Yukon, 261.

Ogdensburg, N. Y., site of proposed hydro-electric plant for supplying Canada and the United States, 100.

Oil fields, the new operations along the MacKenzie, 203 et seq.

Okanagan Valley, famous as fruit-growing region, 223.

Ontario, Province of, richest in mineral and agricultural wealth and industrial development, 103; the frontier of the province, 137.

Ontario Hydro-Electric Commission, work of, in Ontario, 102, 103, 106, 107.

Ottawa, capital of the Dominion, 79 et seq.

Paper, Quebec leading producer of, 46; greatly increased production of, in Canada, 92; process of manufacture, 93.

Paper mills, at Ottawa, 80, 88.

Parliament buildings, at Ottawa, 82.

Peace River, the town of, 202.

Peace River Valley, agricultural possibilities in, 202

Petroleum, in Alberta, 201; the new field along the Mackenzie, 203.

Petty Harbour, typical Newfoundland “outport,” 16.

Phoenix, British Columbia, copper mines at, 222.

Pilgrimages to Ste. Anne de Beaupré, 52

Porcupine gold district, production of, 125.

Port Arthur, the great wheat centre, 135, 141.

Port Nelson, projected terminus of the Hudson Bay Route, and port for wheat shipment, 155.

Portage la Prairie, a prosperous farming section, 175.

Potatoes, success with in Dawson, Yukon, 259.

Poultry raising in the Arctic, 260.

Prince Albert, Saskatchewan, noted for its fur trade and lumber mills, 179.

Prince Edward Island, smallest but richest province in the Dominion, 40.

Prince Rupert, northern terminus of Canadian National Railways and nearest port to the Orient, 226 et seq.

Public ownership, in Toronto, 101 et seq.; success of the Ontario Hydro-Electric Commission, 107.

Pulp wood, chief product of forests in Newfoundland, 11; great production of Quebec, 46; Canada’s resources in, of great importance to the United States, 91, 96.

Pulp mills, at Ottawa, 88; great increase in numbers of, in Canada, 92; at Sault Ste. Marie, 134.

Quebec, and its history, 42; population, 46.

Queenston Chippewa hydro-electric plant below Niagara Falls, 113.

Radio, fisheries of Nova Scotia controlled by, 36.

Rabbits, destruction of trees by, 234.

Railways, in Newfoundland, 10; transcontinental, of Canada, 157; government-owned in Canada, 162.

Rainfall, excessive, at Prince Rupert, British Columbia, 229. Regina, the capital of Saskatchewan, 177.

Religious denominations in Newfoundland, 7.

Remittance men, in Calgary, 210.

Revillon Frères, chief competitor to the Hudson’s Bay Company, 170.

Rideau Canal, at Ottawa, 80, 81.

Rideau Hall, residence of the Governor-General, at Ottawa, 84.

Rockies, Canadian, beauty of the, 213.

Rocky Mountain Park, finest mountain resort of Canada, 215.

Royal Bank of Canada, connections abroad, 77.

Royal Canadian Mounted Police, training camp at Regina, 177; district headquarters at Dawson, 251; the story of the service, 288 et seq.

Russian church, at Winnipeg, 153.

Rye, production in the Winnipeg district, 149

St. Boniface, old French-Canadian settlement near Winnipeg, 152.

St. Helene Island, once owned by Champlain, 64.

St. James, Cathedral of, at Montreal, 65.

St. John, chief city of New Brunswick, 41.

St. John’s, capital and chief port of Newfoundland, 3, 5; around about the city, 8.

St. Lawrence River, International plans for improvement of, 99.

St. Mary’s River, hydro-electric development of, 134.

St. Paul’s Church, Halifax, first English house of worship in Canada, 35.

St. Pierre Island, headquarters of bootleggers, 15.

Sainte Anne de Beaupré, the Shrine and its miraculous cures, 52.

Salmon fishing, in Newfoundland, 11

Salmon fisheries of British Columbia, 231.

Sanderson, John, first homesteader at Portage la Prairie, 175.

Saskatchewan, greatest wheat province of the Dominion, 175 et seq., 181 et seq.

Saskatoon, second largest city of Saskatchewan, 179.

Sault Ste. Marie, hydro-electric development of, 134;

one of the oldest settlements in Canada, 135

Sealing industry, of Newfoundland, 21.

Selkirk, Lord, his colony in Manitoba the first wheat farmers, 182. Service, Robert, the poet of the Yukon, 249, 257, 279.

Settlers, Canada’s inducements to, 191.

Shawinigan Falls, hydro-electric development of, 46.

Shaughnessy, Lord, an American boy who became president of the Canadian Pacific, 165.

Sheep, in southern Alberta, 208.

Silver in the Kootenay country, 221.

Silver mines of northern Ontario, 119.

Slavin, Frank, in the Klondike, 278; partnership with Joe Boyle, 282.

“Soo” Canal, the waterway and its traffic, 136.

Sports, Canadian, 67; outdoor games promoted by municipal athletic commission at Toronto, 101.

Spruce, predominant standing timber of Canada, 91.

Steam thawing of the ground in Yukon mining, 266, 271.

Steel industries developed in Sydney district, Nova Scotia, 39.

Stock raising in southwestern Saskatchewan, 176.

Sudbury, rich nickel deposits at, 126, 127.

Sunlight, hours of, at Dawson, Yukon, 264.

Superior, Lake, the grain-carrying trade through, 141 et seq.

Swift Current, an important commercial centre of Saskatchewan, 179.

Sydney coal mines, of immense importance, 39.

Tahkeena River, crossing of, on the Yukon trail, 235.

The Pas, an undeveloped mineral region, 154.

Thomas, C. A., demonstrates possibility of winter automobile travel in the Yukon, 239.

Thornton, Sir Henry, in charge of the Canadian national railways, 164.

Three Rivers, Quebec, largest production of paper in the world, at, 47, 92.

Threshing, methods in the Canadian wheat belt, 185.

Tides, forty feet high in Bay of Fundy, 38.

Timber, valuable tracts in Newfoundland, 11.

Timothy hay, large crops at Edmonton, 200.

Tomatoes, a hot-house crop at Dawson, Yukon, 261.

Toronto, the city of public ownership, 97 et seq.

Toronto University, largest in the British Empire, 98.

Transcontinental railway systems of Canada, 157.

Trappists, at Winnipeg, 153

Truro, Nova Scotia, 38.

Turnips, as a crop, at Dawson, Yukon, 264.

University of Saskatchewan, efforts in behalf of agriculture and ceramics, 179.

Valley of the Ten Peaks, in the Canadian Rockies, 216.

Vancouver, chief city of British Columbia and Canada’s most important Pacific port, 224.

Vancouver Island, copper workings on, 223.

Van Horne, Wm., strenuous railroad builder, 165.

Veneer, manufacture of, at Sault Ste. Marie, 135.

Victoria, capital of British Columbia, 225

Wabana iron mines rich under-sea deposits, 24.

Wainwright Park, Alberta, containing largest herd of buffalo extant, 217.

Waterfalls that work for the people, 106 et seq.

Water-power, great developments in Quebec, 46; its relation to the paper and pulp industry, 96

Welland Canal, building of deeper and larger locks, 99.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.