TEST BANK for Nuclear Systems Volume 1: Thermal Hydraulic Fundamentals, 3rd Edition by Neil E. Todre

Page 1



Chapter 1 - Principal Characteristics of Power Reactors

PROBLEM 1.1 QUESTION World Utilization of Power Reactor Technology 1. For each position of Table 1.13 identify: (a) The principal technical reason for which this moderator-coolant combination cannot be exploited, and (b) The name of one (or more) terrestrial power reactor plants that have been built using this combination. TABLE 1.13 Worldwide Utilization of Power Reactor Technology - Thermal Reactor Types Coolant Light water

Heavy water

Organic HB-40 Santowax-OM

Pressurized Boiling Pressurized Boiling

Gas hydrogen, nitrogen, COโ‚‚, helium

Liquid metal NaK Na

Vessel

Heavy water

Tube

Moderators

Light water

Graphite Beryllium

Organic References for thermal reactor types: 1. List of operational nuclear power plants. Nucl. News, August 1992. 2. Dietrich, J. R. and Zinn, W. H. Solid Fuel Reactors, Reading, MA: Addison-Wesley Pub. Co., 1958. 3. Directory of Nuclear Reactors, Vienna: International Atomic Energy Commission, published annually. 4. Kuljian, H. A. Nuclear Power Plant Design, Cranbury, NJ: A.S. Barnes & Co., 1968. 5. Meserve, R., Chairman, Safety Issues at the Defense Production Reactors: A Report to the U.S. Department of Energy, National Academy Press, Washington, DC, 1987. 6. Zinn, W. H., Pittman, F. K. and Hogerton, J. F. Nuclear Power, USA, McGraw-Hill, New York, NY, 1964.

6

rev 112420


Chapter 1 - Principal Characteristics of Power Reactors

2. Which of these combinations would be best for submarine propulsion? Explain your choice. 3. State the single most important power cycle parameter affecting the cycle thermal efficiency. 4. Compare the primary side pressures of a PWR, a BWR and a MSR. Describe the reason for primary side pressure of the PWR being about twice the BWR and the advantage of MSR primary side pressure being close to atmospheric. 5. Comparing the core of a BWR with that of a PWR, explain the reason a BWR is considered a closed and a PWR an open core design. 6. Explain the reason that alloys of zirconium are used for fuel cladding. 7. Compare the number of coolant loops and fluids used in a BWR with those of a LMFR describe the reason for the differences, if any. 8. What is the key difference in the VVER design from other LWR designs? 9. How do you classify a LFR with respect to neutron spectrum and thermal efficiency as compared with the SFR? 10. Describe the key difference with respect to core coolant circulation between NuScale and a typical LWR.

PROBLEM 1.1 SOLUTION World Utilization of Power Reactor Technology Question 1 Note:

Descriptions are made with (coolant type) โ€“ (moderator). The following notes are keyed to Table 1.13

A

Pressurized Water Reactor (PWR). Used by: โ€“ USA โ€“ France โ€“ Germany โ€“ Former USSR

B

Boiling Water Reactor (BWR), Used by: โ€“ USA โ€“ Germany

7

rev 112420


Chapter 1 - Principal Characteristics of Power Reactors

โ€“ Sweden C

Press. Heavy Water Heavy Water Vessel โ€“ AGESTA (Sweden) โ€“ R - 3/ ADAM (Sweden) โ€“ ATUCHA (Argentina) โ€“ MZFR (Germany) โ€“ BRUCE 1-8 (Canada) โ€“ CP - 5 (USA) โ€“ NPD -2 (USA)

D

Boiling Heavy Water - Heavy Water Vessel โ€“ MARVIKEN (Sweden) โ€“ HALDEN BWR (Norway) โ€“ ATUCHA 2 (Argentina)

E

Press. Light Water Heavy Water Tube โ€“ NRX (Canada) โ€“ GENKILLY 2 (Canada) โ€“ SGHRW โ€“ CIRUS/TROMBAY (India)

F

Boiling Light Water Heavy Water Tube โ€“ CIRENE (Italy) โ€“ BLW 250 (Canada) โ€“ FUGEN (Japan) โ€“ VENUS (Belgium)

G

Press. Heavy Water - Heavy Water Tube โ€“ CANDU (Canada) โ€“ PRTR (Canada) โ€“ CVTR (Canada) โ€“ NPD (Canada)

8

rev 112420


Chapter 1 - Principal Characteristics of Power Reactors

โ€“ KARLSRUHE (Germany) โ€“ PICKERING (Canada) H

Boiling Heavy Water Heavy Water Tube โ€“ NPD CONVERSION (Canada)

I

Organic - Heavy Water Tube โ€“ WR-1 โ€“ ESSOR โ€“ ORGEL โ€“ DON โ€“ HWOCR

J

Gas - Heavy Water Tube โ€“ BOHUNIZE (Czechoslovakia) โ€“ KKN (Germany) โ€“ EL-2, EL-4 (France) โ€“ LUCENS (Switzerland)

K

Press. Light Water Graphite โ€“ APS OBNINSK (Former USSR) โ€“ CHERNOBYL (Ukraine) โ€“ HANFORD (USA) โ€“ RBMK (Former USSR)

L

Boiling Light Water - Graphite โ€“ SOSNOVY BORINSK (Former USSR) โ€“ BELOYARSK (Former USSR) โ€“ FIRST NUCLEAR REACTOR OF USSR โ€“ N REACTOR (USA)

M

Gas - Graphite โ€“ MAGNOX (Great Britain)

9

rev 112420


Chapter 1 - Principal Characteristics of Power Reactors

โ€“ DRAGON (Great Britain) โ€“ HTGR (EGCR, PEACHBOTTOM, FT. ST. VRAIN, HINKLEY POINT B), (USA) โ€“ UTREX (USA) โ€“ AVR (Germany) โ€“ SIZEWELL NPS (Great Britain) โ€“ HECTOR โ€“ KIWI โ€“ NERVA โ€“ USA SPACE PROGRAM N

Liquid Metal - Graphite โ€“ HALLAM (USA) โ€“ MOLTEN SALT REACTOR EXPERIMENT (ORNL, USA)

O

Gas - Beryllium โ€“ EBOR (USA) โ€“ DANIELโ€™S PILE (ORNL, USA)

P

Organic - Organic โ€“ PIQUA (USA)

Q

Press. Light Water -Beryllium โ€“ MIR (Russia) โ€“ GE TEST REACTOR (USA) โ€“ MR-2 โ€“ MIR (Russia)

R

Boiling Light Water Beryllium โ€“ BR 2 (Belgium)

S

Boiling Light Water Organic โ€“ AGN-211 (Switzerland)

T

Gas - Light Water โ€“ ESADA VESR (USA) โ€“ MOBILE LOW POWER PLANT (USA) โ€“ ML-1 (Idaho Falls, USA) โ€“ HEAT TRANSFER REACTOR EXPERIMENT (USAF)

U

Organic Heavy Water Vessel

10

rev 112420


Chapter 1 - Principal Characteristics of Power Reactors

โ€“ ECO (Italy) V

Gas - Heavy Water Vessel โ€“ HWGCR (Former USSR)

W

Liquid Metal - Beryllium โ€“ SUBMARINE INTERMEDIATE REACTOR (USA)

X

Press, Light Water Organic โ€“ L-77 (Univ, of Nevada, USA)

Answer to Question 1 continued. Comments on moderator-coolants which have been utilized worldwide. 1. There is no advantage gained here by using a light water moderator with a different coolant, because light water is already being used to moderate, it is simpler and more economical to use it as a coolant as well. 2. Liquid sodium will react with water. Using sodium as a coolant would require extensive (and expensive) efforts to separate the two materials (i.e., a tertiary loop). 3. Separation of light and heavy water is not feasible in a vessel-type reactor. If they were both placed in the vessel, the advantages of heavy water would be lost by dilution with light water. 4. In a vessel type reactor you cannot separate the coolant from the moderator. 5. It is unnecessarily expensive to use heavy water as a coolant if it is not being used for its excellent moderating ability. Since graphite is the moderator here it is more economical to use light water as the coolant (even though it has a higher absorption cross section than heavy water.) 6. This is an uneconomical combination. If the organic is being used as the coolant it should be used as the moderator as well. 7. Beryllium is expensive, toxic, brittle, and hard to work with. For a power reactor there are plenty of better choices. 8. Because the organic is the moderator, it is more economical to sue it as the coolant as well. The decomposition of organics under radiation will pose a problem if the organic is not being used as the moderator AND the coolant. If it is not circulating as a coolant its residence time in the core will be too long, leading to decomposition.

11

rev 112420


Chapter 1 - Principal Characteristics of Power Reactors

TABLE SM-1.1: Summary Coolant Pressurized Boiling light Pressurized Boiling (right), light water water heavy heavy Moderator water water (down)

Light Water A

Organic Gas Liquid (HB-40, (Hydrogen, Metal Santowax- Nitrogen, (NaK, Na) OM) Carbon dioxide, Helium) 1(USADA 1 2 VERS, USA) 44 (HWGCR, 2,4 USSR)

B

1

1

3

C

D

F

G

H

I

J

2

Graphite

K (APS) L

5

5

6

M

M (MSRE)

Beryllium

Q (MIR, Russia GE test reactor)

R (BR-2, Belgium)

7

7

7

0

7

8

S (AGN211, Basel, 8 Switzerland)

8

P

8

8

Heavy water 3 (vessel) Heavy E water (tube)

Organic

Question 2. Which of these combinations would be best for submarine propulsion? Explain your choice. Submarine propulsion reactors are generally designed for military ships. We may identify some characteristics which might be desirable for nuclear military submarines: โ€“ โ€“ โ€“ โ€“ โ€“ โ€“ โ€“ โ€“

High reliability Low weight: high power density Low volume Very low toxic release, especially in cruise space Silent operation Tolerance to acceleration (in case of attack) and battle damage Power variation capability Ease of operation

12

rev 112420


Chapter 1 - Principal Characteristics of Power Reactors

โ€“ Long fuel residence time โ€“ Need for both propulsion and electricity generation โ€“ Fuel cost is not a big concern In order to ensure reliability under acceleration, boiling water reactors should be avoided, because of the large density difference between the liquid and the vapor phase. Gas-cooled reactors should be avoided because of the large required volume, the risk of leaks and the high gas velocity, which may result into noisy operation. Since there is no limitation to fuel enrichment, there is no particular need for special moderating materials such as heavy water, graphite or organic. Therefore, pressurized light water-cooled and moderated reactors are good options. Light water has several advantages, among which are: โ€“ โ€“ โ€“ โ€“

Small slowing down length, which allows for a compact core. Can be used in both the primary and secondary systems, simplifying the design. Neutron activation products have a short half-life. Can be easily distilled from seawater to provide makeup and safety function inventory.

Alternatively, liquid metal-cooled reactors may be used if corrosion is under control. If liquid metal coolants are used, electromagnetic pumps may be installed which allow more silent operation. However, sodium coolants have the drawback of reacting violently with water, producing explosive/flammable hydrogen. Question 3. State the single most important power cycle parameter affecting the cycle thermal efficiency. Coolant Outlet Temperatureโ€”it dictates reactor mission capability e.g. process heat and cycle thermal efficiency which affects capital cost. Also importantly it affects coolant corrosion performance. Question 4. Compare the primary side pressures of a PWR, a BWR and a MSR. Describe the reason for primary side pressure of the PWR being about twice the BWR and the advantage of MSR primary side pressure being close to atmospheric. PWR - 15.5MPa, BWR - 7.17 MPa, MSR - nominal 1 MPa PWR pressure is high to keep the primary coolant in the subcooled regime while still achieving high operating temperatures MSR nominal atmospheric primary operating pressure keeps stored energy in the salt coolant low which is a beneficial safety factor as well as allowing the primary coolant system pressure containment e.g. piping to be thin walled. Question 5. Comparing the core of a BWR with that of a PWR, explain the reason a BWR is considered a closed and a PWR an open core design. The BWR operates with a boiling mixture from about one third the distance from the core flow inlet. Particularly in the boiling region different axial pressure levels in adjacent coolant channels

13

rev 112420


Chapter 1 - Principal Characteristics of Power Reactors

develop due to the core radial neutron flux shape which in turn cause radial pressure gradients to develop between coolant channels. These radial pressure gradients in turn cause radial flows to develop between coolant channels which are countered in BWRs by use of smaller radial sized bundles than in PWRs (a closed core design) . Also since the PWR does not operate in the boiling region, radial pressure gradients of BWR magnitude do not develop so that PWR fuel assemblies do not have bounding walls (an open core design). Question 6. Explain the reason that alloys of zirconium are used for fuel cladding. Zirconium has low neutron capture cross section and sufficient strength and corrosion resistance at water cooled reactor operating temperatures Question 7. Compare the number of coolant loops and fluids used in a BWR with those of a LMFR - describe the reason for the differences, if any. The BWR uses a direct cycle, hence a single water coolant loop while the LMFR uses a threecoolant loop system. Both use the steam cycle. The LMFR loops are the primary sodium loop, the intermediate loop between the intermediate heat exchange and the steam generator typically to date also using sodium coolant and finally a water coolant in which steam is produced which flows to the turbine in this third loop. Question 8. What is the key difference in the VVER design from other LWR designs? The VVER uses hexagonal shaped fuel assemblies and horizontal steam generators. Question 9. How do you classify a LFR with respect to neutron spectrum and thermal efficiency as compared with the SFR? Both are fast neutron spectrum reactors. The primary coolant outlet temperatures are respectively 550 degrees Centigrade with thermal efficiencies of 43-44 %. Question 10. Describe the key difference with respect to core coolant circulation between NuScale and a typical LWR. The Nuscale design is natural circulation using a helical coil steam generator operating in a oncethru producing superheated steam. A module produces 60 MWe with a plant composed of 12 modules. The typical LWR ( letโ€™s take the PWR) is a forced circulation primary loop operating with a U tube pot type steam generator producing saturated steam (Westinghouse) or a steam generator of the once-thru design producing superheated steam (the Areva design).

14

rev 112420


Chapter 2 Thermal Design Principles and Application Contents Problem 2.1 Relations among fuel element thermal properties in various power reactors ...... 16 Problem 2.2 Relationships between assemblies of different pin arrays ................................... 21 Problem 2.3 Minimum CHF ratio in a PWR for a flow coastdown transient ......................... 22 Problem 2.4 Minimum CPR in a BWR .................................................................................... 25 Problem 2.5 Primary cooling system pumping power for a PWR reactor .............................. 26 Problem 2.6 Relations among thermal design conditions in a PWR ....................................... 28

15

rev 112420


Chapter 2 - Thermal Design Principles and Application

PROBLEM 2.1 QUESTION Relations Among Fuel Element Thermal Parameters in Various Power Reactors (Section 2.3) Compute the core average values of the volumetric energy-generation rate in the fuel (qโ€ด) and outside surface heat flux (qโ€ณ) of cladding for the reactor types BWR, PWR, PHWR, HTGR, AGR and SFBR. Use the core average linear power levels derivable from data in Table 2.1 and the geometric parameters in Table 1.3. Answers (for BWR): โ€“

qโ€ด = 243.2 MW/m3

โ€“

โ€ณ ๐‘ž๐‘žco = 500.2 kW/m2

TABLE 2.1 Typical Core Thermal Performance Characteristics for Six Reference Power Reactor Types Characteristics

BWR

PWR(W)

PHWRa

HTGR

AGR

SFBRb

Core Axis

Vertical

Vertical

Horizontal

Vertical

Vertical

Vertical

Axial

1

1

12

8

8

1

Radial

764

193

380

493

332

364 (C) 233 (BR)

Assembly pitch (mm)

152

214

286

361

460

179

Active fuel height (m)

3.588

3.658

5.94

6.30

8.296

1.0 (C) 1.6 (C + BA)

Equivalent diameter (m)

4.75

3.37

6.29

8.41

9.458

3.66

Total fuel weight (MT)

160 UO2

101 UO2

89.3 UO2

1.56 U 34.0 Th

103.0 UO2

29 UO2

No. of assemblies

Reactor vessel Inside dimensions (m)

6.05D ร— 21.6H

4.83D ร— 13.4H 7.6D ร— 4L (5.94L for EC 6)

11.3D ร— 14.4H

20.25D ร— 21.87H 21D ร— 19.5H

Wall thickness (mm)

152

224

28.6

4720

5800

25

Materialc

SS-clad carbon steel

SS-clad carbon steel

Stainless steel

Prestressed concrete

Concrete helical prestressed

Stainless steel

Pressure tubes

Steel liners

Steel lined

Pool type

Other features Power density core average (kW/L)

52.3

104.5

12

8.4

2.66

280

17.6

17.86

25.7

7.87

17.0

29

Linear heat rate Core average (kW/m)

16

rev 112420


Chapter 2 - Thermal Design Principles and Application

TABLE 2.1 Typical Core Thermal Performance Characteristics for Six Reference Power Reactor Types Characteristics

BWR

PWR(W)

PHWRa

Core maximum (kW/m)

47.24

44.62

~54d

Equilibrium burnup (MWd/MT)

50,000

50,000

Average assembly residence (full-power days)

2192

Sequence Outage time (days)

HTGR

AGR

SFBRb

23.0

29.8

45

8300

105,000

20,000

110,000

1644

470

1170

1320

640 (C) 320 (BR row 1) 640 (BR row 2)

1/4 per year

1/3 per year

Continuous online

1/2 per year

Continuous online

Variable

25

25

None for refueling

Unavailable

None for refueling

32

Performance

Refueling

a

Same for both CANDU 6 and Enhanced CANDU 6 (EC 6), except Reactor Vessel Inside Dimensions

b

SFBR: core (C), radial blanket (BR), axial blanket (BA)

c

SS = Stainless Steel

d

Assuming a 900 kW bundle, 37 elements and radial pin peaking factor of 1.12

Source: Principally Appendix K and (Knief, R. A. Nuclear Engineering: Theory and Technology of Commercial Nuclear Power, 2nd Ed. La Grange Park, IL: American Nuclear Society, 2008.) except for AGR data from M. A. H. G. Alderson (pers. comm., October 6, 1983) and A. A. Debenham (pers. comm., August 5, 1988) and PHWR data from CANDU 6 Technical Summary, CANDU 6 Program Team, Reactor Development Business Unit, May 2005.

Table 1.3 Typical Characteristics of the Fuel for Six Reference Power Reactor Types Characteristics

BWR

PWR

PHWR

HTGR

AGR

SFBR

General Atomic

National Nuclear Corp.

Novatome

(Fulton)

(Heysham 2)

(Superphenix 1)

D2O / D2O

Graphite

Graphite

None

Reference Design Manufacturer

General Electric

Westinghouse

System (reactor station)

BWR/5 (NMP2)

(Seabrook)

Moderator

H2O

H2O

Neutron energy

Thermal

Thermal

Thermal / Thermal

Thermal

Thermal

Fast

Fuel production

Converter

Converter

Converter / Converter

Converter

Converter

Breeder

Atomic Energy of Canada, Ltd. CANDU 6

Enhanced CANDU-6 (EC 6)

17

rev 112420


Chapter 2 - Thermal Design Principles and Application

Table 1.3 Typical Characteristics of the Fuel for Six Reference Power Reactor Types BWR

Characteristics

PWR

PHWR

HTGR

AGR

SFBR

Fuelb Geometry

Cylindrical pellet

Cylindrical pellet

Cylindrical pellet / Cylindrical pellet

Microspheresc

Cylindrical pellet

Cylindrical pellet

Dimensions (mm)

9.60D ร— 10.0L

8.192D ร— 9.8L

12.2D ร— 16.4L / 12.2D ร— 16.4L

400โ€“800 ฮผm D

14.51D ร—14.51L

7.14 D

Chemical form

UO2

UO2

UC/ ThO2

UO2

PuO2 / UO2

Fissile (first core avg. wt% unless designated as equilibrium core) Fertile

U (3.5 eq. core)

235

U

238

U (3.57 avg. eq. core)

235

U

238

UO2 / UO2

U (2 zones at 2.1 and 2.7)

235

U / 238U

Th

238

238

U (93)

235

U (0.711) / 235U (0.711)

235

U

Pu (2 zones at 16 and 19.7)

239

Depleted U

Fuel Rodsb Geometry

Pellet stack Pellet stack in in clad tube clad tube

Pellet stack in clad tube

Pellet stack in clad tube

Cylindrical fuel compacts

Pellet stack in clad Pellet stack in clad tube tube

Dimensions

11.20 mm D 9.5 mm D ร— 3.588 m H ร—3.658 m H (ร— 4.09 m L) (ร—3.876 m L)

13.1 mm D ร— 0.493 m L

13.1 mm D ร— 0.493 m L

15.7 mm D ร— ~0.742 m H (ร— 0.793 m L)

15.3 mm D ร— 0.987 8.5 mm D ร— 2.7 m m H (ร—1.04 m L) H(C)d 15.8 mm D ร— 1.94 m H(RB)d

Clad materiale

Zircaloy-2

Zirloโ„ข

Zircaloy-4 / Zircaloy-4

No clad

Stainless steel

Stainless steel

Clad thickness (mm)

0.71

0.572

0.42 / 0.40

Not applicable

0.37

0.56

Fuel Assembly Geometry

9 ร— 9 square rod arraya

17 ร— 17 square rod array

Rod pitch (mm)

14.37

12.60

14.6 / 14.6

289

No. rod locations 81

Concentric circles of rods

Concentric circles of rods

Cylindrical fuel Concentric circles compacts of rods within a hex. surrounded by graphite blockf graphite sleeve

Hexagonal rod array

23

25.7

9.8 (C)/17.0 (RB)

37 / 37

132 (SA)/76 (CA)g

37

271 (C)/91 (RB)

37 / 37

132 (SA)/76 (CA)g

36

271 (C)/91 (RB)

102D ร— 495L / 102D ร— 495L

359F ร— 793L

190.4 (sleeve inner 173F (inner) ร— 5.4 D) mL

No. fuel rods

74 (8 part length)

264

Outer dimensions (mm)

139 ร— 139

214 ร— 214

Channel

Yes

No

No / No

No

Yes

Yes

~640

~25 / 23.7

โ€”

395

โ€”

Total weight (kg) 273

18

rev 112420


Chapter 2 - Thermal Design Principles and Application

Table 1.3 Typical Characteristics of the Fuel for Six Reference Power Reactor Types Characteristics

BWR

PWR

PHWR

HTGR

AGR

SFBR

The most recent General Electric BWR fuel bundle designs, which have 9 ร— 9 and 10 ร— 10 rod arrays, have been introduced but data for many parameters are held proprietary. The table presents available data for a typical 9 ร— 9 GE11 design. Unique 11 ร— 11 and 12 ร— 12 rod arrays were employed at the early Big Rock Point BWR plant. b Fuel and fuel rod dimensions: diameter (D), heated length (H), total length (L), (across the) flats (F). c Blends of fuel microspheres are molded to form fuel cylinders each having a diameter of 15.7 mm and a length of 5โ€“6 cm d SFBR-core (C), SFBR-radial blanket (RB). e Zircaloy and Zirlo are both trademarked alloys of zirconium. Zirlo stands for Zirconium low oxidation. f Early HTGRs (the German AVR and THTR) employed pebble fuel rather than prismatic graphite blocks. g HTGR-standard assembly (SA), HTGR-control assembly (CA). a

Source: BWR and PWR - Data from Appendix K. The BWR/5 is the Nine Mile Point 2 unit (NMP2) and the PWR is the four-loop Seabrook unit. PHWR - Adopted from Knief, R. A. Nuclear Engineering: Theory and Technology of Commercial Nuclear Power, pp. 707โ€“717. American Nuclear Society, La Grange Park, IL, 2008. CANDU 6 Technical Summary, CANDU 6 Program Team, Reactor Development Business Unit, May 2005. HTGR - Breher, W., Neyland, A. and Shenoy, A. Modular High-Temperature Gas-Cooled Reactor (MHTGR) Status. GA Technologies, GAA18878, May 1987. AGR - Adopted from AEAT/R/PSEG/0405 Issue 3. Main Characteristics of Nuclear Power Plants in the European Union and Candidate Countries. Report for the European Commission, September 2001; Nuclear Engineering International. Supplement. August 1982. Alderson, M. A. H. G. (UKAEA, pers. comm., October 6, 1983 and December 6, 1983); Getting the most out of the AGRs, Nucl. Eng. Int., 28(358):8โ€“11, August 1984. SFBR - Adopted from IAEA-TECDOC-1531. Fast Reactor Database 2006 Update. International Atomic Energy Agency. December 2006.

19

rev 112420


Chapter 2 - Thermal Design Principles and Application

PROBLEM 2.1 SOLUTION Relations Among Fuel Element Thermal Parameters in Various Power Reactors (Section 2.3) Compute the core average values of the volumetric energy-generation rate in the fuel (qโ€ด) and outside surface heat flux (qโ€ณ) of cladding for the reactor types BWR, PWR, PHWR, HTGR, AGR and SFBR. Use the core average linear power levels derivable from data in Table 2.1 and the geometric parameters in Table 1.3. The volumetric energy generation rate is calculated using 4๐‘ž๐‘ž โ€ฒ ๐‘ž๐‘ž = 2 ๐œ‹๐œ‹๐ท๐ทfo โ€ด

(1)

and outside surface heat of the cladding is calculated with โ€ณ ๐‘ž๐‘žco =

๐‘ž๐‘ž โ€ฒ ๐œ‹๐œ‹๐ท๐ทco

(2)

where Dfo = Diameter of fuel pellet, Dco = Diameter of fuel rod, qโ€ฒ = Linear heat generation rate, โ€ณ ๐‘ž๐‘žco = Heat flux at cladding surface and qโ€ด = Volumetric heat generation rate.

Table SM-2.1 shows the data results for the different reactor types:

TABLE SM-2.1: Data and Results for Various Power Reactors BWR

PWR

PHWR

HTGR

AGR

SFBR

Dco [mm]

11.20

9.5

13.1

15.7

15.3

8.5

Dfo [mm]

9.6

8.192

12.2

15.7*

14.51

7.14

500.2

598.4

624.5

159.6

353.7

1086.0

243.2

338.9

219.8

40.7

102.8

724.3

โ€ณ ๐‘ž๐‘žco ๏ฟฝ

๐‘ž๐‘ž โ€ด ๏ฟฝ

๐‘˜๐‘˜๐‘˜๐‘˜ ๏ฟฝ ๐‘š๐‘š2

๐‘€๐‘€๐‘€๐‘€ ๏ฟฝ ๐‘š๐‘š2

*Note: Fuel is coated with graphite and the coating thickness can be neglected.

20

rev 112420


Chapter 2 - Thermal Design Principles and Application

PROBLEM 2.2 QUESTION Relationships Between Assemblies of Different Pin Arrays (Section 2.3) A utility wishes to replace the fuel in its existing PWR from 15ร—15 fuel pin array assemblies to 17ร—17 fuel pin array assemblies. What is the ratio of the core average linear power, qโ€ฒ in the new core to the old core, assuming reactor power, length, number of fuel assemblies and fuel mass are maintained constant. Repeat for the core average heat flux, qโ€ณ. ๐‘ž๐‘ž

โ€ฒ

Answers: 17๐‘ฅ๐‘ฅ17 = 0.779 โ€ฒ ๐‘ž๐‘ž15๐‘ฅ๐‘ฅ15 โ€ณ

๐‘ž๐‘ž17๐‘ฅ๐‘ฅ17 โ€ณ

๐‘ž๐‘ž15๐‘ฅ๐‘ฅ15

= 0.882

PROBLEM 2.2 SOLUTION

Relationships Between Assemblies of Different Pin Arrays (Section 2.3) A utility wishes to replace the fuel in its existing PWR from 15ร—15 fuel pin array assemblies to 17ร—17 fuel pin array assemblies. What is the ratio of the core average linear power and core average heat flux, qโ€ฒ and qโ€ณ, in the new core to the old core, assuming reactor power, length, number of fuel assemblies and fuel mass are maintained constant. The core average power is defined as ๐‘„๐‘„ = ๐‘๐‘๐‘๐‘๐‘ž๐‘ž โ€ฒ

(1)

where Q is the core average power, N is the number of fuel pins, L is the length of the core and qโ€ฒ is the core average linear power. If we keep the core power and length constant, we can determine the ratio of the linear power from new core to old core as ๐‘„๐‘„ ๐‘๐‘17๐‘ฅ๐‘ฅ17 ๐ฟ๐ฟ ๐‘๐‘15๐‘ฅ๐‘ฅ15 152 = = = = 0.779 โ€ฒ ๐‘„๐‘„ ๐‘๐‘17๐‘ฅ๐‘ฅ17 172 ๐‘ž๐‘ž15๐‘ฅ๐‘ฅ15 ๐‘๐‘15๐‘ฅ๐‘ฅ15 ๐ฟ๐ฟ โ€ฒ

๐‘ž๐‘ž17๐‘ฅ๐‘ฅ17

(2)

The heat flux is defined as

๐‘ž๐‘ž โ€ณ =

๐‘ž๐‘ž โ€ฒ ๐œ‹๐œ‹๐œ‹๐œ‹

(3)

where qโ€ณ is the core average heat flux and D is the diameter of the fuel elements. We would like to not change the fuel mass in the core and therefore the diameter of the fuel elements must change when moving to the new core. To conserve mass or in this case just simply the area of fuel, we apply the following condition:

21

rev 112420


Chapter 2 - Thermal Design Principles and Application

๐‘๐‘17๐‘ฅ๐‘ฅ17 =

๐œ‹๐œ‹ 2 ๐œ‹๐œ‹ 2 ๐ท๐ท17๐‘ฅ๐‘ฅ17 = ๐‘๐‘15๐‘ฅ๐‘ฅ15 = ๐ท๐ท15๐‘ฅ๐‘ฅ15 4 4

(4)

We can then determine the ratio of the old fuel element diameter to new element diameter as ๐ท๐ท15๐‘ฅ๐‘ฅ15 ๐‘๐‘17๐‘ฅ๐‘ฅ17 =๏ฟฝ ๐ท๐ท17๐‘ฅ๐‘ฅ17 ๐‘๐‘15๐‘ฅ๐‘ฅ15

(5)

The ratio of the new to old core average heat flux can be determined by applying Equation (2) and the result from Equation (5): โ€ฒ ๐‘ž๐‘ž17๐‘ฅ๐‘ฅ17 โ€ณ โ€ฒ ๐‘ž๐‘ž17๐‘ฅ๐‘ฅ17 ๐œ‹๐œ‹๐ท๐ท17๐‘ฅ๐‘ฅ17 ๐‘ž๐‘ž17๐‘ฅ๐‘ฅ17 ๐ท๐ท15๐‘ฅ๐‘ฅ15 ๐‘๐‘15๐‘ฅ๐‘ฅ15 ๐‘๐‘17๐‘ฅ๐‘ฅ17 152 172 ๏ฟฝ ๏ฟฝ = โ€ฒ = โ€ฒ = = = 0.882 โ€ณ ๐‘ž๐‘ž15๐‘ฅ๐‘ฅ15 ๐‘ž๐‘ž15๐‘ฅ๐‘ฅ15 ๐‘ž๐‘ž15๐‘ฅ๐‘ฅ15 ๐ท๐ท17๐‘ฅ๐‘ฅ17 ๐‘๐‘17๐‘ฅ๐‘ฅ17 ๐‘๐‘15๐‘ฅ๐‘ฅ15 172 152

๐œ‹๐œ‹๐ท๐ท15๐‘ฅ๐‘ฅ15

(6)

PROBLEM 2.3 QUESTION

Minimum Critical Heat Flux Ratio in a PWR for a Flow Coastdown Transient (Section 2.4) Describe how you would determine the minimum critical heat flux ratio versus time for a flow coastdown transient by drawing the relevant channel operating curves and the CHF limit curves for several time values. Draw your sketches in relative proportion and be sure to state all assumptions.

PROBLEM 2.3 SOLUTION Minimum Critical Heat Flux Ratio (MCHFR) in a PWR for a Flow Coastdown Transient (Section 2.4) Describe how you would determine the minimum critical heat flux ratio versus time for a flow coastdown transient by drawing the relevant channel operating curves and the CHF limit curves for several time values. Draw your sketches in relative proportion and be sure to state all assumptions. For this transient, we can have two different situations depending on whether the reactor will be shut down or not. In a flow coastdown transient, the mass flow through the reactor follows the trends of Figure SM-2.1.

22

rev 112420


Chapter 2 - Thermal Design Principles and Application

FIGURE SM-2.1: Mass flow rate behavior through reactor

As mentioned, there are two possibilities for the reactor power as stated below and shown in Figure SM-2.2: 1. Curve 1 - the reactor is shut down. 2. Curve 2 - the reactor is not shut down and the behavior of the power will be a function of reactivity feedback effects.

FIGURE SM-2.2: Reactor power behavior

There are two situations for change in operating heat flux with time. In both cases the critical heat flux decreases as the flow decreases. It is assumed that the inlet quality is constant. Condition 1 โ€“ operating heat flux decreases with time

23

rev 112420


Chapter 2 - Thermal Design Principles and Application

Figure SM-2.3: Condition 1, Heat flux as a function of quality

At each instant we have a curve for the critical heat flux and for the maximum operating heat flux in the core. The CHF curve decreases with both decreasing heat flux and mass flux. The operating curve as shown in Figure SM-2.3 collapses primarily due to decrease in heat flux. The decrease in mass flux would cause the quality at any given position to increase if the heat flux were constant. Therefore, we can calculate the MCHFR at any time, t. The occurrence of CHF will depend on how the power and mass flux vary. Condition 2 โ€“ operating heat flux maximum is constant with time

Figure SM-2.4: Condition 2, Heat flux as a function of quality In this case, we can assume that the maximum operating heat flux does not vary with time.

24

rev 112420


Chapter 2 - Thermal Design Principles and Application

PROBLEM 2.4 QUESTION Minimum Critical Power Ratio in a RWR (Section 2.4) Calculate the minimum critical power ratio for a typical 1062 MWe BWR operating at 100% power using the data in Appendix K. Assume that: 1. The axial linear power shape can be expressed as โ€ฒ ๐‘ž๐‘ž โ€ฒ (๐‘ง๐‘ง) = ๐‘ž๐‘žref exp ๏ฟฝโˆ’

๐›ผ๐›ผ๐›ผ๐›ผ ๐œ‹๐œ‹๐œ‹๐œ‹ ๏ฟฝ sin ๏ฟฝ ๏ฟฝ ๐ฟ๐ฟ ๐ฟ๐ฟ

โ€ฒ โ€ฒ where ฮฑ = 1.96. Determine ๐‘ž๐‘žref such that ๐‘ž๐‘žmax = 47.24 kWโ„m.

2. The critical bundle power is 9319 kW. Answers: โ€ฒ ๐‘ž๐‘žref = 104.75 kWโ„m

MCPR = 1.28

PROBLEM 2.4 SOLUTION Minimum Critical Power Ratio in a BWR (Section 2.4) Calculate the minimum critical power ratio for a typical 1062 MWe BWR operating at 100% power using the data in Appendix K. The given parameters in the problem are listed below: โ€“

ฮฑ = 1.96

โ€“

L = 3.588 m

โ€“

โ€ฒ ๐‘ž๐‘žmax = 47.24 m

โ€“

Nrods = 74

โ€“

qcr = 9319 kW

kW

The linear heat rate profile is given as โ€ฒ ๐‘ž๐‘ž โ€ฒ (๐‘ง๐‘ง) = ๐‘ž๐‘žref exp ๏ฟฝโˆ’

๐›ผ๐›ผ๐›ผ๐›ผ ๐œ‹๐œ‹๐œ‹๐œ‹ ๏ฟฝ sin ๏ฟฝ ๏ฟฝ ๐ฟ๐ฟ ๐ฟ๐ฟ

(1)

โ€ฒ โ€ฒ To begin, we must obtain the value of ๐‘ž๐‘žref such that the maximum linear heat rate is ๐‘ž๐‘žmax . Note โ€ฒ โ€ฒ that for a standard cosine profile, ๐‘ž๐‘žmax = ๐‘ž๐‘žref . To determine the axial location that yields the maximum linear heat rate, we can take the derivative of Equation (1) and solve for the roots,

๐‘‘๐‘‘๐‘‘๐‘‘ โ€ฒ (๐‘ง๐‘ง) = 0 โŸผ ๐‘ง๐‘งmax = 1.157 m ๐‘‘๐‘‘๐‘‘๐‘‘ 25

(2)

rev 112420


Chapter 2 - Thermal Design Principles and Application โ€ฒ can be solved for, noting that ๐‘ž๐‘ž โ€ฒ (๐‘ง๐‘งmax ) = Substituting ๐‘ง๐‘งmax into Equation 1, the parameter ๐‘ž๐‘žref โ€ฒ ๐‘ž๐‘žmax . This results in โ€ฒ ๐‘ž๐‘žref = 104.75 kwโ„m

(3)

The linear heat rate (displayed in W/m) can be plotted as a function of axial location as shown in Figure SM-2.5, to verify the maximum linear heat rate condition of about 4.7ร—104 W/m.

FIGURE SM-2.5: Axial Profile of the Linear Heat Rate The power of the bundle, assuming all fuel rods have the same linear profile (no local peaking), ๐ฟ๐ฟ

(4)

๐‘ž๐‘ž = ๐‘๐‘rods ๏ฟฝ ๐‘ž๐‘ž โ€ฒ(z) ๐‘‘๐‘‘๐‘‘๐‘‘ = 7270.4 kw 0

Then the Minimum Critical Power Ratio (MCPR) is MCPR =

๐‘ž๐‘žcr = 1.28 ๐‘ž๐‘ž

(5)

PROBLEM 2.5 QUESTION Pumping Power for a PWR Reactor Cooling System (Section 2.5) Calculate the pumping power under steady-state operating conditions for a typical PWR reactor coolant system using only the following operating conditions: โ€“

Core thermal power, Q = 3411 MWth

โ€“

Core temperature drop, โˆ†Tcore = 33.7 ยฐC

โ€“

Inlet temperature, Tin = 293 ยฐC

26

rev 112420


Chapter 2 - Thermal Design Principles and Application

โ€“

Core system pressure, P = 15.5 MPa

โ€“

Reactor coolant system pressure drop, โˆ†P = 778 kPa

โ€“

Pump efficiency, ฮทp = 0.85

Answer: Pumping power = 21.8 MWe

PROBLEM 2.5 SOLUTION Pumping Power for a PWR Reactor Cooling System (Section 2.5) Calculate the pumping power under steady-state operating conditions for a typical PWR reactor coolant system using only the following operating conditions: โ€“

Core thermal power, ๐‘„๐‘„ฬ‡ = 3411 MWth

โ€“

Inlet temperature, Tin = 293 ยฐC

โ€“

Core system pressure, P = 15.5 MPa

โ€“

Reactor coolant system pressure drop, โˆ†P = 778 kPa

โ€“

Pump efficiency, ฮทp = 0.85

โ€“

Core temperature drop, โˆ†Tcore = 33.7 ยฐC

The pumping power can be calculated using Equation 2.9a in the text which applies under ideal conditions ๐‘Š๐‘Šฬ‡๐‘๐‘ =

โˆ†๐‘ƒ๐‘ƒ๐‘š๐‘šฬ‡ = ๐›ฅ๐›ฅ๐›ฅ๐›ฅ๐›ฅ๐›ฅ๐‘“๐‘“ ๐œ๐œ ๐œŒ๐œŒ

(1)

where Wp is the pumping power, Af is the flow area and ฯ… is the velocity. We can perform a heat balance across the core to relate the core thermal power to the temperature drop with ๐‘„๐‘„ฬ‡ = ๐‘š๐‘šฬ‡๐‘๐‘p ฮ”๐‘‡๐‘‡core = ๐œŒ๐œŒ๐œŒ๐œŒf ๐œ๐œ๐œ๐œp ฮ”๐‘‡๐‘‡core

(2)

To calculate the mass flow rate correctly and to relate the flow area and velocity correctly, we must determine the density of the fluid at inlet conditions, P = 15.5 MPa and T = 293 ยฐC. This results in a density of ฯ = 740.49.kg/m3. On the other hand the specific heat at constant pressure varies with temperature as the fluid is heated across the core, We may just take an average of this parameter, evaluating it at the core system pressure and the average coolant temperature, ๐‘‡๐‘‡core = 309.85 ยฐ๐ถ๐ถ. This result in an average specific heat of ๐‘๐‘p = 5736.03 Jโ„kg โˆ’ K. Combing Equations 1 and 2, solving for the ideal pumping power, we obtain the following expression and solution:

27

rev 112420


Chapter 2 - Thermal Design Principles and Application

๐‘Š๐‘Šฬ‡๐‘๐‘ = โˆ†๐‘ƒ๐‘ƒ

๐‘„๐‘„ฬ‡ = 18.5 MW ๐œŒ๐œŒ๐‘๐‘p โˆ†๐‘‡๐‘‡core

(3)

Taking into account the efficiency of the pump, we may divide by 0.85 to obtain the actual pumping power of 21.8 MWe.

PROBLEM 2.6 QUESTION Relations Among Thermal Design Conditions in a PWR (Section 2.5) Compute the margin to failure defined as the ratio of linear power rate at failure to the maximum โ€ฒ โ€ฒ linear power ratio ๐‘ž๐‘žfail /๐‘ž๐‘žmax for a typical PWR having a core average linear power rate of 17.86 kW/m. Assume that the failure limit is established by centerline melting of the fuel at 70 kW/m. Use the following multiplication factors: โ€“

Radial flux factor = 1.55

โ€“

Axial and local flux factor = 1.70

โ€“

Engineering uncertainty factor = 1.05

โ€“

Overpower factor = 1.15

Answer: Margin = 1.23

PROBLEM 2.6 SOLUTION Relations Among Thermal Design Conditions in a PWR (Section 2.5) Compute the margin for a typical PWR having the following parameters and multiplication factors: โ€“

Radial flux factor, Fr = 1.55

โ€“

Axial and local flux factor, Fz = 1.70

โ€“

Engineering uncertainty factor, Fe = 1.05

โ€“

Overpower factor, Fop = 1.15

The average linear power rate and the failure limit, established by centerline melting of the fuel are: โ€“ โ€“

โ€ฒ Average linear power rate, ๐‘ž๐‘žave = 17.86 kWโ„m โ€ฒ = 70 kWโ„m Failure limit, ๐‘ž๐‘žfail

The maximum linear power rate is

โ€ฒ โ€ฒ ๐‘ž๐‘žmax = ๐‘ž๐‘žave ๐น๐นr ๐น๐นz ๐น๐นe ๐น๐นop = 56.83 kWโ„m

28

(1)

rev 112420


Chapter 2 - Thermal Design Principles and Application

The margin to failure is calculated as โ€ฒ ๐‘ž๐‘žfail Margin = โ€ฒ = 1.23 ๐‘ž๐‘žmax

29

(2)

rev 112420


Chapter 3 Reactor Energy Distribution Contents Problem 3.1 Thermal Design Parameters For a Cylindrical Fuel Pin .....................................

31

Problem 3.2 Power Profile in a Homogeneous Reactor ..........................................................

33

Problem 3.3 Power Generation in Thermal Shield ..................................................................

36

Problem 3.4 Decay Heat Energy .............................................................................................

37

Problem 3.5 Decay Heat From a PWR Fuel Rod ....................................................................

39

Problem 3.6 Decay Power Calculations of a 3 Batch PWR Core ...........................................

40

Problem 3.7 Effect of Continuous Refueling on Decay Heat .................................................

42

30

rev 112420


Chapter 3 - Reactor Energy Distribution

PROBLEM 3.1 QUESTION Thermal Design Parameters for a Cylindrical Fuel Pin (Section 3.4) Consider the PWR reactor of Example 3.1. 1. Evaluate the average neutron flux if the enrichment of the fuel is 3.25 wt %. 2. Evaluate the volumetric heat generation rate in the fuel in MW/m3. Assume the fuel density is 90% of theoretical density. 3. Calculate the average linear power of the fuel, assuming there are 264 fuel rods per assembly. Assume the fuel rod length to be 3658 mm. 4. Calculate the average heat flux at the cladding outer radius, when the cladding diameter is 9.5 mm. Answers: 1. โŒฉ๐œ™๐œ™โŒช = 3.7 ร— 1014

neutrons

MW

2. โŒฉ๐‘ž๐‘ž โ€ฒโ€ฒโ€ฒ โŒช = 300.5 m3

cm2 s

kW

3. โŒฉ๐‘ž๐‘žโ€ฒโŒช = 17.61 m

kW

4. โŒฉ๐‘ž๐‘žโ€ณโŒช = 590.0 m2

PROBLEM 3.1 SOLUTION

Thermal Design Parameters for a Cylindrical Fuel Pin (Section 3.4) Consider the PWR reactor of Example 3.1. 1. Evaluate the average neutron flux if the enrichment of the fuel is 3.25%. The molar mass of U can be calculated with โˆ’1

๐‘Ÿ๐‘Ÿ 1 โˆ’ ๐‘Ÿ๐‘Ÿ โˆ’1 0.0325 1 โˆ’ 0.0325 ๏ฟฝ =๏ฟฝ + + ๐‘€๐‘€๐‘ˆ๐‘ˆ = ๏ฟฝ g g ๏ฟฝ ๐‘€๐‘€25 ๐‘€๐‘€28 235.0439 238.0508 mol mol

= 237.952

g mol

The molar mass of UO2 and the weight percent of U in UO2 can be calculated as ๐‘€๐‘€๐‘ˆ๐‘ˆ๐‘‚๐‘‚2 ๐‘€๐‘€๐‘ˆ๐‘ˆ + 2๐‘€๐‘€๐‘‚๐‘‚ = 237.952

g g g + 15.9994 = 269.951 mol mol mol

31

rev 112420


Chapter 3 - Reactor Energy Distribution

g 237.952 ๐‘€๐‘€๐‘ˆ๐‘ˆ mol ๐œ”๐œ”๐‘ˆ๐‘ˆ = = = 0.881 ๐‘€๐‘€๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ2 269.951 g mol

The number of atoms of U-235 in the core can be calculated using parameters in Example 3.1 including the mass of UOX per assembly, 558.5 kg and the number of assemblies, 193. The total mass of UOX is the mass of U-235 is

๐‘š๐‘š๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ2 = (193)(558.5 kg) = 1.078 ร— 108 g

๐‘š๐‘š25 = ๐œ”๐œ”๐œ”๐œ”๐œ”๐œ”๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ2 = (0.881)(0.0325)(0.178 ร— 108 g) = 3.088 ร— 106 g

and the number of U-235 atoms

23 atoms

6

๐‘š๐‘š25 ๐‘๐‘๐ด๐ด (3.088 ร— 10 g) ๏ฟฝ6.022 ร— 10 ๐‘๐‘25 = = g ๐‘€๐‘€25 235.0439 mol

mol

๏ฟฝ

The average neutron flux can be calculated with Equation 3.15d, โŒฉ๐œ™๐œ™โŒช =

ฮณ๐‘„๐‘„ฬ‡๐‘ก๐‘กโ„Ž = ๐œ’๐œ’๐‘“๐‘“ ๐œŽ๐œŽ ๐‘“๐‘“25 ๐‘๐‘25 ๏ฟฝ3.2 ร— 10โˆ’11

= 7.912 ร— 1027 atoms

0.962(3411 MWt)

J ๏ฟฝ (35 ร— 10โˆ’24 cm2 )(7.912 ร— 1027 atoms) fission

Using 0.974 as the energy deposition fraction yields 3.75 ร— 1014

neutrons cm2 s

= 3.7 ร— 1014

neutrons cm2 s

. Here we use a

microscopic fission cross section of 35 b for U-235. This is a 1 group spectrum-averaged cross section. If a two-group approach is taken, the thermally-averaged microscopic fission cross section will be much higher. 2. Evaluate the volumetric heat generation rate in the fuel in MW/m3. Assume the fuel density is 90% of theoretical density (l0.97g/cm3). The fuel density and volume is calculated as ๐œŒ๐œŒ๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ2 = 0.90(10.97 gโ„cm3 ) = 9.87 gโ„cm3

๐‘‰๐‘‰๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ2 =

๐‘š๐‘š๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ 2 1.078 ร— 108 g = = 1.092 ร— 107 cm3 9.87 gโ„cm3 ๐œŒ๐œŒ๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ2

The average power density is calculated with โŒฉ๐‘ž๐‘ž โ€ฒโ€ฒโ€ฒ โŒช =

ฮณ๐‘„๐‘„ฬ‡๐‘ก๐‘กโ„Ž 0.962(3411 MWt) MW = = 300.5 ๐‘‰๐‘‰๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ2 1.092 ร— 107 cm3 m3

32

rev 112420


Chapter 3 - Reactor Energy Distribution MW

Using 0.974 as the energy deposition fraction yields 304.3 m3

3. Calculate the average linear power of the fuel, assuming there are 264 fuel rods per assembly. Assume the fuel rod length to be 3658 mm. The average linear power is โŒฉ๐‘ž๐‘žโ€ฒโŒช =

ฬ‡ ฮณ๐‘„๐‘„๐‘ก๐‘กโ„Ž 0.962(3411 MWt) kW = = 17.61 m ๐‘›๐‘›๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘›๐‘›๐‘๐‘๐‘๐‘๐‘๐‘ ๐ฟ๐ฟ (193)(264)(3.658 m) kW

Using 0.974 as the energy deposition fraction yields 17.83 m

4. Calculate the average heat flux at the cladding outer radius, when the cladding diameter is 9.5 mm. The average heat flux at the cladding outer radius is kW 16.95 m โŒฉ๐‘ž๐‘žโ€ฒโŒช kW โŒฉ๐‘ž๐‘žโ€ณโŒช = = = 589.9 2 ๐œ‹๐œ‹๐œ‹๐œ‹๐‘๐‘๐‘๐‘ ๐œ‹๐œ‹(9.5 mm) m kW

Using 0.974 as the energy deposition fraction yields 597.3 m2

PROBLEM 3.2 QUESTION

Power Profile in a Homogeneous Reactor (Section 3.5) Consider an ideal core with the following characteristics: The U-235 enrichment is uniform throughout the core, and the flux distribution is characteristic of an unreflected, uniformly fueled cylindrical reactor, with extrapolation distances ฮดz and ฮดR of 10 cm. How closely do these assumptions allow prediction of the following characteristics of a PWR? 1. Ratio of peak to average power density and heat flux? 2. Maximum heat flux? 3. Maximum linear heat generation rate of the fuel rod? 4. Peak to average enthalpy rise ratio, assuming equal coolant mass flow rates in every fuel assembly? 5. Temperature of water leaving the central fuel assembly? Calculate the heat flux on the basis of the area formed by the cladding outside diameter and the active fuel length. Use as input only the following values from Tables 1.2, 1.3, 2.1 and Appendix K. โ€”

Total power = 3411 MWt

โ€”

Equivalent core diameter = 3.37 m

โ€”

Active length = 3.658 m

33

rev 112420


Chapter 3 - Reactor Energy Distribution

โ€”

Fraction of energy released in fuel = 0.962

โ€”

Total number of rods = 50,952

โ€”

Rod outside diameter = 9.5 mm

โ€”

Total flow rate = 17.476 ร— 103 kg/s

โ€”

Inlet temperature = 293.1 ยฐC

โ€”

Core average pressure = 15.5 MPa

Answers: 1.

๐œ™๐œ™๐‘œ๐‘œ ฯ•

= 3.11

โ€ณ 2. ๐‘ž๐‘žmax = 1.88 MWโ„m2 โ€ฒ 3. ๐‘ž๐‘žmax = 56.1 kWโ„m

4.

(ฮ”โ„Ž)max ฮ”โ„Ž

= 2.08

5. (ฮ”๐‘‡๐‘‡๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ )๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = 344.8ยฐC

PROBLEM 3.2 SOLUTION

Power Profile in a Homogeneous Reactor (Section 3.5) Consider an ideal core with the following characteristics: The U-235 enrichment is uniform throughout the core, and the flux distribution is characteristic of an unreflected, uniformly fueled cylindrical reactor, with extrapolation distances ฮดz and ฮดR of 10 cm. How closely do these assumptions allow prediction of the following characteristics of a PWR? 1. Ratio of peak to average power density and heat flux? We can define the radial and axial profile of the volumetric generation rate as 2.405๐‘Ÿ๐‘Ÿ ๐œ‹๐œ‹๐œ‹๐œ‹ โ€ฒโ€ฒโ€ฒ ๏ฟฝ ๐‘๐‘๐‘๐‘๐‘๐‘ ๏ฟฝ ๏ฟฝ ๐‘ž๐‘ž โ€ฒโ€ฒโ€ฒ (๐‘Ÿ๐‘Ÿ, ๐‘ง๐‘ง) = ๐‘ž๐‘ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐ฝ๐ฝ0 ๏ฟฝ ๐‘…๐‘…๐‘’๐‘’ ๐ฟ๐ฟ๐‘’๐‘’

The average volumetric heat generation rate can be calculated by averaging the volumetric generation rate, ๐‘ž๐‘ž โ€ฒโ€ฒโ€ฒ =

๐ฟ๐ฟ โ„2

๐‘…๐‘…

โˆซโˆ’๐ฟ๐ฟโ„2 โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘ž๐‘ž โ€ฒโ€ฒโ€ฒ (๐‘Ÿ๐‘Ÿ, ๐‘ง๐‘ง)๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ ๐ฟ๐ฟ โ„2

๐‘…๐‘…

โˆซโˆ’๐ฟ๐ฟโ„2 โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹

The peak to average volumetric generation rate can be calculated as

34

rev 112420


Chapter 3 - Reactor Energy Distribution

โ€ฒโ€ฒโ€ฒ ๐‘ž๐‘ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐น๐น๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ = = ๐‘ž๐‘žโ€ฒโ€ฒโ€ฒ

๐ฟ๐ฟโ„2

๐‘…๐‘…

โ€ฒโ€ฒโ€ฒ โˆซโˆ’๐ฟ๐ฟโ„2 โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘ž๐‘ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = = 3.11 ๐ฟ๐ฟโ„2 ๐‘…๐‘… ๐ฟ๐ฟโ„2 ๐‘…๐‘… 2.405๐‘Ÿ๐‘Ÿ ๐œ‹๐œ‹๐œ‹๐œ‹ 2.405๐‘Ÿ๐‘Ÿ ๐œ‹๐œ‹๐œ‹๐œ‹ โ€ฒโ€ฒโ€ฒ J0 ๏ฟฝ ๐‘…๐‘… ๏ฟฝ cos ๏ฟฝ ๐ฟ๐ฟ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ โˆซ๐ฟ๐ฟโ„2 โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹ J0 ๏ฟฝ ๐‘…๐‘… ๏ฟฝ cos ๏ฟฝ ๐ฟ๐ฟ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ โˆซโˆ’๐ฟ๐ฟโ„2 โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘ž๐‘ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐‘’๐‘’ ๐‘’๐‘’ ๐‘’๐‘’ ๐‘’๐‘’ ๐ฟ๐ฟโ„2

๐‘…๐‘…

โˆซโˆ’๐ฟ๐ฟโ„2 โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹

where L = 3.658 m, Le = 3.858m, R = 1.658m and Re = 1.758m. 2. Maximum heat flux? The maximum heat flux is calculated with โ€ณ = ๐น๐น๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๐‘ž๐‘ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š

ฮณ๐‘„๐‘„ฬ‡๐‘ก๐‘กโ„Ž 0.962(3411 MWt ) MW = 3.11 = 1.88 2 50952๐œ‹๐œ‹(9.5 mm)(3.568 m) m ๐‘›๐‘›๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๐œ‹๐œ‹๐‘‘๐‘‘๐‘๐‘๐‘๐‘ ๐ฟ๐ฟ

3. Maximum linear heat generation rate of the fuel rod?

The maximum linear heat generation rate is calculated as MW kW ๐œ‹๐œ‹(9.5 mm) = 54.8 m2 m

โ€ฒ โ€ณ ๐‘ž๐‘ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = ๐‘ž๐‘ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐œ‹๐œ‹๐‘‘๐‘‘๐‘๐‘๐‘๐‘ = 1.77

4. Peak to average enthalpy rise ratio, assuming equal coolant mass flow rates in every fuel assembly? This ratio can be defined as ๐น๐น๐›ฅ๐›ฅโ„Ž =

๐›ฅ๐›ฅโ„Ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐›ฅ๐›ฅโ„Ž

The average power can be calculated with ๐‘ž๐‘ž =

1

๐‘›๐‘›๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ

๐‘ž๐‘ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐‘ž๐‘ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = ๐‘š๐‘šฬ‡ = ๐‘ž๐‘ž ๐‘ž๐‘ž ๐‘š๐‘šฬ‡

๐ฟ๐ฟ โ„2 ๐‘…๐‘…

๏ฟฝ ๏ฟฝ 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹โ€ฒโ€ฒโ€ฒ(๐‘Ÿ๐‘Ÿ, ๐‘ง๐‘ง)๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘

โˆ’๐ฟ๐ฟโ„2 0

and the maximum power will be located at the center of the core and therefore the volumetric heat generation rate becomes ๐œ‹๐œ‹๐œ‹๐œ‹ โ€ฒโ€ฒโ€ฒ cos ๏ฟฝ ๏ฟฝ ๐‘ž๐‘ž โ€ฒโ€ฒโ€ฒ(0,๐‘ง๐‘ง) = ๐‘ž๐‘ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐ฟ๐ฟ๐‘’๐‘’

We can then calculate the maximum power as ๐‘ž๐‘ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š =

1

๐‘›๐‘›๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ

๐ฟ๐ฟ โ„2

๐œ‹๐œ‹๐‘…๐‘… 2 ๏ฟฝ ๐‘ž๐‘žโ€ฒโ€ฒโ€ฒ(0, ๐‘ง๐‘ง)๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’๐ฟ๐ฟโ„2

The peak to average enthalpy rise is determined to be

35

rev 112420


Chapter 3 - Reactor Energy Distribution

1 1 ๐œ‹๐œ‹๐œ‹๐œ‹ 2 ๐ฟ๐ฟ โ„2 2 ๐ฟ๐ฟ โ„2 โ€ฒโ€ฒโ€ฒ ๐‘›๐‘›๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๐œ‹๐œ‹๐‘…๐‘… โˆซโˆ’๐ฟ๐ฟโ„2 ๐‘ž๐‘žโ€ฒโ€ฒโ€ฒ(0, ๐‘ง๐‘ง)๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘›๐‘›๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๐œ‹๐œ‹๐‘…๐‘… โˆซโˆ’๐ฟ๐ฟโ„2 ๐‘ž๐‘ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š cos ๏ฟฝ ๐ฟ๐ฟ๐‘’๐‘’ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐น๐นฮ”โ„Ž = = 1 ๐ฟ๐ฟโ„2 ๐‘…๐‘… 1 ๐ฟ๐ฟโ„2 ๐‘…๐‘… โ€ฒโ€ฒโ€ฒ J ๏ฟฝ2.405๐œ๐œ ๏ฟฝ cos ๏ฟฝ๐œ‹๐œ‹๐œ‹๐œ‹๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹โ€ฒโ€ฒโ€ฒ(๐‘Ÿ๐‘Ÿ, ๐‘ง๐‘ง)๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘ž๐‘ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š 0 ๐‘›๐‘› โˆซโˆ’๐ฟ๐ฟโ„2 โˆซ0 ๐‘…๐‘… ๐ฟ๐ฟ ๐‘›๐‘› โˆซโˆ’๐ฟ๐ฟโ„2 โˆซ0 ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ

๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ

= 2.08

๐‘’๐‘’

๐‘’๐‘’

5. Temperature of water leaving the central fuel assembly?

The core inlet enthalpy can be evaluated from the inlet temperature and the core pressure to be 1300 kJ/kg. Therefore the hot channel outlet enthalpy can be calculated as โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = โ„Ž๐‘–๐‘–๐‘–๐‘– + ๐น๐นฮ”โ„Ž

๐‘„๐‘„ฬ‡๐‘ก๐‘กโ„Ž kJ 3411 MWt kJ = 1300 + 2.08 = 1706 ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘š๐‘šฬ‡ kg kg 17476 ๐‘”๐‘”

Using steam tables, the temperature can be determined to be in a saturated condition at the given โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ pressure, ๐‘‡๐‘‡๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = 344.8ยฐC.

PROBLEM 3.3 QUESTION

Power Generation in Thermal Shield (Section 3.8) Consider the heat-generation in the thermal shield discussed in Example 3.4. 1. Calculate the total power generation in the thermal shield if it is 4.0 m high. 2. How would this total power change if the thickness of the shield is increased from 12.7 cm to 15 cm? Assume uniform axial power profile. Answers: 1. ๐‘„๐‘„ฬ‡ = 23.21 MW 2. ๐‘„๐‘„ฬ‡ = 23.53 MW

PROBLEM 3.3 SOLUTION

Power Generation in Thermal Shield (Section 3.8) Consider the heat-generation in the thermal shield discussed in Example 3.4. 1. Calculate the total power generation in the thermal shield if it is 4.0 m high. General parameters needed for this calculation: โ€” Height of thermal shield: L = 4.0 m โ€” Inner radius of shield: ri = 1.206 m

36

rev 112420


Chapter 3 - Reactor Energy Distribution โ€” Outer radius of shield: ro = 1.333 m โ€” Buildup factor in shield: B = 4.212 โ€” Energy of gammas: Eo = 2 MeV โ€” Linear attenuation and absorption coefficients: ฮผ = 0.333 cm 1

Fast flux and gamma source: ๐œ™๐œ™๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“, ๐‘†๐‘† = 1014 cm2

โˆ’1

and ฮผa = 0.182 cmโˆ’1

s

The volumetric gamma heat generation rate is defined as ๐‘ž๐‘ž๐›พ๐›พโ€ฒโ€ฒโ€ฒ (๐‘Ÿ๐‘Ÿ) = ๐‘†๐‘†๐‘†๐‘†๐œ‡๐œ‡๐‘Ž๐‘Ž ๐ธ๐ธ๐‘œ๐‘œ ๐‘’๐‘’ โˆ’๐œ‡๐œ‡(๐‘Ÿ๐‘Ÿโˆ’๐‘Ÿ๐‘Ÿ๐‘–๐‘– )

Integrating this equation over the volume of the thermal shield, the gamma heat rate is ๐ฟ๐ฟ

๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ

๐‘ž๐‘žฮณ = ๏ฟฝ ๏ฟฝ 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘ž๐‘žฮณโ€ฒโ€ฒโ€ฒ (๐‘Ÿ๐‘Ÿ)๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ = 22.55 MW 0

๐œ๐œ๐‘–๐‘–

The neutron volumetric heat generation rate, made up of the sum of elastic and inelastic collisions, is determined from Example 3.4 to be โ€ฒโ€ฒโ€ฒ + ๐‘ž๐‘ž๐‘–๐‘–๐‘–๐‘–โ€ฒโ€ฒโ€ฒ = 0.26 ร— 1012 ๐‘ž๐‘ž๐‘›๐‘›โ€ฒโ€ฒโ€ฒ = ๐‘ž๐‘ž๐‘’๐‘’๐‘’๐‘’

MeV MeV MeV 12 12 + 0.76 ร— 10 = 1.02 ร— 10 cm3 s cm3 s cm3 s

Integrating the neutron volumetric generation rate gives us the total neutron heat rate, ๐ฟ๐ฟ

๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ

๐‘ž๐‘ž๐‘›๐‘› = ๏ฟฝ ๏ฟฝ 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘ž๐‘ž๐‘›๐‘›โ€ฒโ€ฒโ€ฒ (๐œ๐œ)๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ = 0.66 ๐‘€๐‘€๐‘€๐‘€ 0

๐‘Ÿ๐‘Ÿ๐‘–๐‘–

Therefore the total heat generation rate due to gamma heating and neutron slo wing down is q = q ฮณ + q n = 22.55 MW + 0.662 MW = 23.21 MW

2. How would this total change if the thickness of the shield is increased from 12.7 cm to 15 cm? We can apply the same process as part 1 and adjust the outer radius of the thermal shield from 1.333 m to 1.356 m. The gamma heat rate and neutron heat rate are then calculated to be: โˆ’ qฮณ = 22.74 MW โˆ’ qn = 0.79 MW The total power is then q = qฮณ + qn = 22.74 MW + 0.79 MW = 23.53 MW

PROBLEM 3.4 QUESTION Decay Heat Energy (Section 3.9) Using Equation 3.70c or 3.70d, evaluate the energy generated in a 3411 MWt PWR after the reactor shuts down. The reactor operated for 1 year at the equivalent of 75% of total power.

37

rev 112420


Chapter 3 - Reactor Energy Distribution

1. Consider the following time periods after shutdown: (a) 1 hour (b) 1 day (c) 1 month 2. How would your answers be different if you had used Equation 3.71 (i.e., would higher or lower values be calculated)? Answers: 1a. 0.128 TJ (1 TJ = 1012 TJ) 1b. 1.42 TJ 1c. 14.8 TJ 2. Higher

PROBLEM 3.4 SOLUTION Decay Heat Energy (Section 3.9) Using Equation 3.70c or 3.70d, evaluate the energy generated in a 3411 MWt PWR after the reactor shuts down. The reactor operated for 1 year at the equivalent of 75% of total power. We may define the following parameters: โ€” Steady state reactor power:

= 0.75(3411 MWt) = 2558 MWt

โ€” Operating time: ฯ„s = 1 yr

1. Consider the following time periods after shutdown, (a) 1 hr, (b) 1 day, (c) 1 month. Equation 3.70d can be used to model the decay heat with

To determine the energy generated after the reactor shuts down, for example at a time ts = 1 hr, 1 day, 1 month, can be calculated by integrating Equation 3.70d, ๐‘ก๐‘ก๐‘ ๐‘ 

๐ธ๐ธ = ๏ฟฝ ๐‘„๐‘„ฬ‡ (๐‘ก๐‘ก๐‘ ๐‘ โ€ฒ )๐‘‘๐‘‘๐‘‘๐‘‘๐‘ ๐‘ โ€ฒ 0

Evaluating parts (a), (b), and (c) gives 0.128 TJ, 1,42 TJ and 14,8 TJ, respectively, 2. How would your answers be different if you had used Equation 3.71 (i.e., would higher or lower values be calculated)?

38

rev 112420


Chapter 3 - Reactor Energy Distribution

Equation 3.71 calculates the decay heat power as

We can integrate this equation to evaluate the energy generated to arrive at 0.188 TJ, 2.03 TJ and 19.1 TJ, respectively. Therefore a higher answer is calculated.

PROBLEM 3.5 QUESTION Decay Heat From a PWR Fuel Rod (Section 3.9) A decay heat cooling system is capable of removing 1 kW from the surface of a typical PWR (Seabrook) fuel rod (Appendix K). Assume the rod has operated for an essentially infinite period before shutdown. 1. At what time will the decay energy generation rate be matched by the cooling capability? 2. What is the maximum amount of decay heat that will be stored in the rod following shutdown? Answers: 1. t = 1490.6 s 2. Qmax = 3.73 ร— 105 J

PROBLEM 3.5 SOLUTION Decay Heat From a PWR Fuel Rod (Section 3.9) A decay heat cooling system is capable of removing 1 kW from the surface of a typical PWR (Seabrook) fuel rod (Appendix K). Assume the rod has operated for an essentially infinite period before shutdown. 1. At what time will the decay energy generation rate be matched by the cooling capability? For a rod that has been operated for an infinite period of time, Equation 3.70d becomes

The power generated by an average fuel pin can be determined from its average linear heat

39

rev 112420


Chapter 3 - Reactor Energy Distribution kW

generation rate, ๐‘ž๐‘ž โ€ฒ = 17.86 m and active length, L = 3.658 m. This power is calculated to be ๐‘„๐‘„ฬ‡๐‘œ๐‘œ = ๐‘ž๐‘ž โ€ฒ ๐ฟ๐ฟ = ๏ฟฝ17.86

kW ๏ฟฝ (3.658 m) = 65.33 kW m

The time it takes for the decay power to be equivalent to the cooling power of 1 kW can be solved by setting Q(ts) = 1 kW. We can then determine ts to be 5 5 0.066๐‘„๐‘„ฬ‡๐‘œ๐‘œ 0.066(65.33kW) ๐‘ก๐‘ก๐‘ ๐‘  = ๏ฟฝ ๏ฟฝ =๏ฟฝ ๏ฟฝ = 1490.6 s 1kW ๐‘„๐‘„ฬ‡ (๐‘ก๐‘ก๐‘ ๐‘  )

2. What is the maximum amount of decay heat energy that will be stored in the rod following a shutdown? One can write the conservation of energy equation after shutdown to be ๐‘ก๐‘ก

๐ธ๐ธ(๐‘ก๐‘ก) = ๏ฟฝ ๏ฟฝ0.066๐‘„๐‘„ฬ‡๐‘œ๐‘œ ๐‘ก๐‘ก โ€ฒโˆ’0.2 โˆ’ 1 kW๏ฟฝ๐‘‘๐‘‘๐‘ก๐‘ก โ€ฒ 0

To solve for this time we can take the derivative of the energy equation and set it equal to 0. This results in the expression,

0 0.066Q๏€ฆ ot โˆ’0.2 โˆ’ 1kW = This is the same equation that was solved for in part 1 and therefore, tmax = 1490.6 s. This can be substituted back in the energy formula to determine that the maximum energy is, ๐ธ๐ธ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = 3.73 ร— 105 J

PROBLEM 3.6 QUESTION Decay Power Calculations of a 3-Batch PWR Core (Section 3.9) A PWR core has been operated on a three-batch fuel management scheme on an 18 month refueling cycle, e.g., at every 18 months, one third the core loading is replaced with fresh fuel. A new batch is first loaded into the core in a distributed fashion such that it generates 43% of the core power. After 18 months of operation, it is shuffled to other core locations where it generates 33% of the core power. After another 18 months, it is moved to other core locations where is generates 24% of the core power. Question The plant rating is 3411 MWt. Assume it is shutdown after an 18-month operating cycle. What is the decay power of the plant one hour after shutdown if it has operated continuously at 100% power during each of the preceding three 18 month operating cycles and the shutdown periods for refueling were each of 35 days duration? Solve this problem two ways:

40

rev 112420


Chapter 3 - Reactor Energy Distribution

1. Consider the explicit operating history of each of the three batches to the core decay power. 2. Assume the whole core had been operating for an infinite period before shutdown. Answers: 1. ๐‘„๐‘„ฬ‡ = 38.0 MWth 2. ๐‘„๐‘„ฬ‡ = 43.8 MWth

PROBLEM 3.6 SOLUTION

Decay Power Calculations of a 3-batch PWR Core (Section 3.9) A PWR core has been operated on a three-batch fuel management scheme on an 18 month refueling cycle, e.g., at every 18 months, one third the core loading is replaced with fresh fuel. A new batch is first loaded into the core in a distributed fashion such that it generates 43% of the core power. After 18 months of operation, it is shuffled to other core locations where it generates 33% of the core power. After another 18 months, it is moved to other core locations where is generates 24% of the core power. Question The plant rating is 3411 MWt. Assume it is shutdown after an 18-month operating cycle. What is the decay power of the plant one hour after shutdown if it has operated continuously at 100% power during each of the preceding three 18 month operating cycles and the shutdown periods for refueling were each of 35 days duration? Solve this problem two ways: 1. Consider the explicit operating history of each of the three batches to the core decay power. To describe the decay power, we will use Equation 3.70c. Let the fractional cycle power be described with the variable ฯ‰, such that ๐œ”๐œ”(๐œ๐œs , ๐‘ก๐‘ก๐‘ ๐‘  ) = 0.066[๐‘ก๐‘ก๐‘ ๐‘ โˆ’0.2 โˆ’ (๐‘ก๐‘ก๐‘ ๐‘  + ๐œ๐œ๐‘ ๐‘  )โˆ’0.2 ]

To solve this question we will consider each cycle separately and determine the contributions of the batches in the cycle to the decay power one hour after shutdown. Cycle A The operating time for Cycle A is 18 months, ฯ„sA = 4.666 ร— 107s, and the time after the end of cycle to reach 1 hour after core final shutdown is tsA = 2 โˆ™ 18 months +2 โˆ™ 35 day + 1 hr = 1.007 ร— 108s. Cycle A contains only batch 1 operating at 43% of the power. The other two batches will not contribute the decay power after final shutdown of this core as they will be replaced by fresh batches. The fractional cycle power 1 hr after shutdown is therefore calculated as ๐œ”๐œ”๐ด๐ด = (0.43)๐œ”๐œ”(๐œ๐œ๐‘ ๐‘ ๐‘ ๐‘  , ๐‘ก๐‘ก๐‘ ๐‘ ๐‘ ๐‘  ) = 5.218 ร— 10โˆ’5 41

rev 112420


Chapter 3 - Reactor Energy Distribution

Cycle B The operating time for Cycle B is 18 months, ฯ„sB = 4.666 ร— 107s, and the time after the end of cycle to reach 1 hour after core final shutdown is tsB = 18 months + 35 day + 1 hr = 5.036 ร— 107s. Cycle B contains batch 1 operating now at 33% and batch 2 operating at 43% of the total power. The fractional cycle power 1 hr after shutdown is Cycle C

๐œ”๐œ”๐ต๐ต = (0.43)๐œ”๐œ”(๐œ๐œ๐‘ ๐‘ ๐‘ ๐‘  , ๐‘ก๐‘ก๐‘ ๐‘ ๐‘ ๐‘  ) + (0.33)๐œ”๐œ”(๐œ๐œ๐‘ ๐‘ ๐‘ ๐‘  , ๐‘ก๐‘ก๐‘ ๐‘ ๐‘ ๐‘  ) = 1.776 ร— 10โˆ’4

The operating time for Cycle C is 18 months, ฯ„sC = 4.666 ร— 107s, and the time after the end of cycle to reach 1 hour after core final shutdown is tsC= 1 hr = 3600 s. Cycle C contains batch 1 operating now at 24% and batch 2 operating at 33% and batch 3 operating at 43% of the total power. The fractional cycle power 1 hr after shutdown is ๐œ”๐œ”๐ถ๐ถ = (0.43)๐œ”๐œ”(๐œ๐œ๐‘ ๐‘ ๐‘ ๐‘  , ๐‘ก๐‘ก๐‘ ๐‘ ๐‘ ๐‘  ) + (0.33)๐œ”๐œ”(๐œ๐œ๐‘ ๐‘ ๐‘ ๐‘  , ๐‘ก๐‘ก๐‘ ๐‘ ๐‘ ๐‘  ) + (0.24)๐œ”๐œ”(๐œ๐œ๐‘ ๐‘ ๐‘ ๐‘  , ๐‘ก๐‘ก๐‘ ๐‘ ๐‘ ๐‘  ) = 1.09 ร— 10โˆ’2

The decay power after 1 hour of shutdown is determined to be

๐‘„๐‘„ฬ‡ = ๐‘„๐‘„ฬ‡๐‘œ๐‘œ (๐œ”๐œ”๐ด๐ด + ๐œ”๐œ”๐ต๐ต + ๐œ”๐œ”๐ถ๐ถ ) = 3411 MW(5.218 ร— 10โˆ’5 + 1.776 ร— 10โˆ’4 + 1.09 ร— 10โˆ’2 ) = 38.0MW

2. Assume the whole core had been operating for an infinite period before shutdown.

This easily be determined with the following expression derived from Equation 3.70d setting ฯ„s โ†’ โˆž, ๐‘„๐‘„ฬ‡ = 0.066๐‘„๐‘„ฬ‡๐‘œ๐‘œ ๐‘ก๐‘ก๐‘ ๐‘ โˆ’0.2 = 0.066(3411 MW)(3600 s)โˆ’0.2 = 43.8 MW

PROBLEM 3.7 QUESTION

Effect of Continuous Refueling on Decay Heat (Section 3.9) Using Equation 3.70c or 3.70d, estimate the decay heat rate in a 3000 MWt reactor in which 3.2% 235 U-enriched UO2 assemblies are being fed into the core. The burned-up fuel stays in the core for 3 years before being replaced. Consider two cases: 1. The core is replaced in two batches every 18 months. 2. The fuel replacement is so frequent that refueling can be considered a continuous process. (Note: The PHWR reactors and some of the water-cooled graphite-moderated reactors in the former Soviet Union are effectively continuously refueled.) Compare the two situations at 1 minute, 1 hour, 1 month and 1 year. Answers:

42

rev 112420


Chapter 3 - Reactor Energy Distribution

Time

Case 1 (MWth)

Case 2 (MWth)

1 minute

81.9

81.0

1 hour

33.1

32.2

1 day

15.0

14.1

1 month

4.95

4.24

1 year

1.29

0.965

PROBLEM 3.7 SOLUTION Effect of Continuous Refueling on Decay Heat (Section 3.9) Using Equation 3.70c or 3.70d, estimate the decay heat rate in a 3000 MWt reactor in which 3.2% 235 U-enriched U02assemblies are being fed into the core. The burned-up fuel stays in the core for 3 years before being replaced. Consider two cases: 1. The core is replaced in two batches every 18 months. This core is divided into two zones. At the end of 3 years, 1 batch of the fuel will have been burned for 3 years and the other batch for 1.5 years. Each fuel bundle is assumed to generate half the total core power. Equation 3.70d is used to calculate the decay power at 1 minute, 1 hour, 1 day, 1 month and 1 year respectfully, ๐‘„๐‘„ฬ‡ = 0.5๐‘„๐‘„ฬ‡๐‘œ๐‘œ (0.066){[๐‘ก๐‘ก๐‘ ๐‘ โˆ’0.2 โˆ’ (๐‘ก๐‘ก๐‘ ๐‘  + ๐œ๐œ๐‘ ๐‘ 1 )โˆ’0.2 ] + [๐‘ก๐‘ก๐‘ ๐‘ โˆ’0.2 โˆ’ (๐‘ก๐‘ก๐‘ ๐‘  + ๐œ๐œ๐‘ ๐‘ 2 )โˆ’0.2 ]}

In the above equation, ๐‘„๐‘„ฬ‡ is a vector of decay powers at time ts after shutdown, ๐‘„๐‘„๐‘œ๐‘œฬ‡ is the total core power, ฯ„s1 is the operating time for fuel bundle 1 which is 3 years and ฯ„s2 is the operating time for fuel bundle 2 which is 1.5 years. The results are shown below: ๐‘ธ๐‘ธฬ‡ in MWth 81.9 33.1 15.0 4.95 1.29

ts 1 minute 1 hour 1 day 1 month 1 year

2. The fuel replacement is so frequent that refueling can be considered a continuous process. For a continuously refueled core, the time between refuelings goes to 0 which implies that the number of batches goes to infinity. Therefore to get an average decay power we may integrate Equation 3.70d with respect to the core operating time and divide by the total time of 3 years (ฯ„s):

43

rev 112420


Chapter 3 - Reactor Energy Distribution

๐‘„๐‘„ฬ‡ = 0.066

This results in the expression,

๐‘„๐‘„ฬ‡ = 0.066

๐‘„๐‘„ฬ‡o ๐œ๐œ๐‘ ๐‘  โˆ’0.2 ๏ฟฝ [๐‘ก๐‘ก โˆ’ (๐‘ก๐‘ก๐‘ ๐‘  + ๐œ๐œ๐‘ ๐‘ โ€ฒ )โˆ’0.2 ]๐‘‘๐‘‘๐œ๐œ๐‘ ๐‘ โ€ฒ ๐œ๐œ๐‘ ๐‘  0 ๐‘ ๐‘ 

๐‘„๐‘„ฬ‡๐‘œ๐‘œ โˆ’0.2 1 [(๐‘ก๐‘ก๐‘ ๐‘  + ๐œ๐œ๐‘ ๐‘  )0.8 โˆ’ ๐‘ก๐‘ก๐‘ ๐‘ 0.8 ]๏ฟฝ ๏ฟฝ๐‘ก๐‘ก๐‘ ๐‘  ๐œ๐œ๐‘ ๐‘  โˆ’ 0.8 ๐œ๐œ๐‘ ๐‘ 

The resulting decay powers are shown below:

ts 1 minute 1 hour 1 day 1 month 1 year

44

๐‘ธ๐‘ธฬ‡ in MWth 81.0 32.2 14.1 4.24 0.965

rev 112420


Chapter 4 Transport Equations for Single-Phase Flow Contents Problem 4.1 Various time derivatives ..................................................................................

46

Problem 4.2 Conservation of energy in a control volume ...................................................

47

Problem 4.3 Process-dependent heat addition to a control mass .........................................

48

Problem 4.4 Control mass energy balance ...........................................................................

54

Problem 4.5 Qualifying a claim against the first and second laws of thermodynamics ......

55

Problem 4.6 Determining rocket acceleration from an energy balance ...............................

58

Problem 4.7 Momentum balance for a control volume .......................................................

59

Problem 4.8 Internal conservation equations for an extensive property ..............................

63

Problem 4.9 Differential transport equations .......................................................................

64

45

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

PROBLEM 4.1 QUESTION Various Time Derivatives (Section 4.2) Air bubbles are being injected at a steady rate into the bottom of a vertical water channel of height L. The bubble rise velocity with respect to the water is ฯ…b . The water itself is flowing vertically at a velocity ฯ…๏ฌ . The observer moves upward in the channel with a velocity Vo as defined below. What is the velocity of the bubbles in the channel as observed by the following: 1. A stationary observer 2. An observer who moves upward with velocity Vo = ฯ…๏ฌ 3. An observer who moves upward with velocity Vo = 2ฯ…๏ฌ

Answers: 1. ฯ…๏ฌ + ฯ…b 2. ฯ…b

3. ฯ…b โˆ’ ฯ…๏ฌ

PROBLEM 4.1 SOLUTION Various Time Derivatives (Section 4.2) First, define the absolute bubble velocity, Vb, as the velocity of the bubble with respect to an (effectively) inertial reference frame. For this problem, the origin of this coordinate system can be at the entrance to the pipe. For simplicity this can be a 1-D coordinate system because we can assume that the bubbles are rising in the tube without changing their position in the cross section of the tube. For an observer at the origin of this absolute reference frame, the water is going past at ฯ…l. On top of this velocity, the bubbles are moving at speed ฯ…b with respect to the water due to the buoyancy force. So, the observer sees the bubble moving at an absolute velocity, ๐‘‰๐‘‰b = ๐œ๐œ๏ฌ + ๐œ๐œb

(1)

๐‘‰๐‘‰brel = ๐‘‰๐‘‰b โˆ’ ๐‘‰๐‘‰0

(2)

The observer does not have to stay at the inertial originโ€”he is free to move in the tube at any velocity Vo where Vo is the absolute velocity of the observer with respect to the inertial frame. Using these two absolute velocities, it is possible to talk about the relative motion of the bubble with respect to any observer. The relative motion of the bubble is simply the difference between its absolute velocity and the absolute velocity of the observer, Substituting for Vb into Equation 2,

46

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

๐‘‰๐‘‰brel = ๐œ๐œ๏ฌ + ๐œ๐œb โˆ’ ๐‘‰๐‘‰0

(3)

1. Stationary observer (Vo = 0). If Vo = 0, then Equation 3 reduces to, ๐‘‰๐‘‰brel = ๐œ๐œ๏ฌ + ๐œ๐œb

(4)

This is the same as assuming that the observer stays at a fixed reference pointโ€”such as the origin of the inertial system. 2. Observer moving upwards with velocity ฯ…๏ฌ (Vo = ฯ…๏ฌ). Now Equation 3 becomes, ๐‘‰๐‘‰brel = ๐œ๐œ๏ฌ + ๐œ๐œb โˆ’ ๐œ๐œ1 = ๐œ๐œb

(5)

This can be seen by assuming that the observer is moving with the liquid phase. The only component of the bubble velocity that he sees is the part due to buoyancy, ฯ…b. 3. Observer moving upwards with velocity 2ฯ…l (Vo = 2ฯ…l). Now Equation 3 becomes, ๐‘‰๐‘‰brel = ๐œ๐œ๏ฌ + ๐œ๐œb โˆ’ 2๐œ๐œ1 = ๐œ๐œ๐‘๐‘ โˆ’ ๐œ๐œ๏ฌ

(6)

Note that it is possible for this relative velocity to be negative if the buoyancy force is stronger than the force that is pumping the fluid through the tube. In that case, the observer would be โ€œpassingโ€ the bubbles in the tube.

PROBLEM 4.2 QUESTION Conservation of Energy in a Control Volume (Section 4.3) A mass of 9 kg of gas with an internal energy of 1908 kJ is at rest in a rigid cylinder. A mass of 1.0 kg of the same gas with an internal energy of 95.4 kJ and a velocity of 30 m/s flows into the cylinder. In the absence of heat transfer to the surroundings and with negligible change in the center of gravity, find the internal energy of the 10 kg of gas finally at rest in the cylinder. The absolute pressure of the flowing gas crossing the control surface is 0.7 MPa, and the specific volume of the gas is 0.00125 m3/kg. Answer: Uf = 2004.7 kJ

47

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

PROBLEM 4.2 SOLUTION Conservation of Energy in a Control Volume (Section 4.3)

FIGURE SM-4.1 Collection cylinder of Problem 4.2 Operating Pressure = 0.7 MPa v = 0.00125 m3/kg First law of thermodynamics I

๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ƒ๐‘ƒi ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ ๏ฟฝ = ๏ฟฝ ๐‘š๐‘šฬ‡i ๏ฟฝ๐‘ข๐‘ขio + + ๐‘”๐‘”๐‘”๐‘”i ๏ฟฝ + ๏ฟฝ ๏ฟฝ ๏ฟฝ +๏ฟฝ ๏ฟฝ โˆ’๏ฟฝ โˆ’๏ฟฝ โˆ’๏ฟฝ ๐œŒ๐œŒi ๐‘‘๐‘‘๐‘‘๐‘‘ cv ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ gen ๐‘‘๐‘‘๐‘‘๐‘‘ shaft ๐‘‘๐‘‘๐‘‘๐‘‘ normal ๐‘‘๐‘‘๐‘‘๐‘‘ shear i

For a Rigid body

ฮ”๐‘‰๐‘‰ = 0

No heat transfer

ฮ”๐‘Š๐‘Š = 0 ฮ”๐‘„๐‘„ = 0

No gravitational change We can integrate Equation 1 from the initial state to the final state to get the change in energy ๐‘ฃ๐‘ฃi2 ๐‘ƒ๐‘ƒi ฮ”๐ธ๐ธ = ๐‘š๐‘ši ๏ฟฝ๐‘ข๐‘ขi + + ๏ฟฝ = 96.725 kJ 2 ๐œŒ๐œŒi where m i = 1kg, u i = 95.4kJ/kg, ฯ…i = 30 m/s, Pi = 0.7 MPa, ฯi = (0.00125 m3/kg)โˆ’ 1 . The final energy is ๐ธ๐ธ = ๐ธ๐ธ๐‘œ๐‘œ + ฮ”๐ธ๐ธ = 2004.7 kJ where Eo = 1908 kJ.

PROBLEM 4.3 QUESTION Process-Dependent Heat Addition to a Control Mass (Section 4.3) Two tanks, A and B (Figure 4.10), each with a capacity of 20 ft3 (0.566 m3), are perfectly insulated from the surroundings. A diatomic perfect gas is initially confined in tank A at a pressure of 1.013 MPa and a temperature of 70 ยฐF (21.2 ยฐC). Valve C is initially closed, and tank B is completely evacuated.

48

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

1. If valve C is opened and the gas is allowed to reach the same temperature in both tanks, what is the final pressure and temperature? 2. If valve C is opened just until the pressure in the tanks is equalized and is then closed, what are the final temperature and pressure in tanks A and B? Assume no transfer of heat between tank A and tank B.

FIGURE 4.10 Initial state of perfectly insulated tanks for Problem 4.3. Answers: 1. P = 0.507 MPa; T = 530 R (21.1 ยบC) 2. P = 0.507 MPa; TA = 434.5 R (-31.8 ยบC), TB = 678.2 R (103.6 ยบC)

PROBLEM 4.3 SOLUTION Process-Dependent Heat Addition to a Control Mass (Section 4.3) Two tanks, A and B (Figure 4.10), each with a capacity of 20 ft3 (0.566 m3), are perfectly insulated from the surroundings. A diatomic perfect gas is initially confined in tank A at a pressure of 1.013 MPa and a temperature of 70 ยฐF (21.2 ยฐC). Valve C is initially closed, and tank B is completely evacuated. Given Parameters: โ€“ TAi = 70 ยฐF โ€“ PAi = 1.013 MPa โ€“ VA = VB = 20 ft3 1. Valve C is opened until thermal equilibrium is reached: We may begin by taking the control volume as the two tanks together. The first law of thermodynamics for a stationary closed system is: ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ = = ๐‘„๐‘„ฬ‡ โˆ’ ๐‘Š๐‘Šฬ‡ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ 49

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

Since we took the control volume over both tanks, there is no work. In addition, since the tanks are insulated, there is no heat transfer. Thus, ฮ”๐‘ˆ๐‘ˆcv = 0

We may apply the energy constitutive relation of a perfect gas to determine that ฮ”๐‘ˆ๐‘ˆcv = ๐‘š๐‘šcv ๐‘๐‘๐‘๐‘ฮ”Tcv ฮ”๐‘‡๐‘‡cv = 0

Since this is an isothermal process, the final temperature of each tank is simply, ๐‘‡๐‘‡Af = ๐‘‡๐‘‡Bf = ๐‘‡๐‘‡Ai = 529.67R

We may use the equation of state for a perfect gas to determine the final pressure of the control volume, (1)

๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ = ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š

The right hand side of Equation (3) is the same at the initial and final states and therefore, The final pressure is ๐‘ƒ๐‘ƒf =

๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ = const

๐‘ƒ๐‘ƒAi ๐‘‰๐‘‰A

๐‘‰๐‘‰A +๐‘‰๐‘‰B

= 0.507 MPa (5 atm)

2. Valve is opened until pressure equilibrium is attained: We may consider a control volume around tank A and a different control volume around tank B. The two systems taken together form a composite system, A+B, that is an isolated system. Therefore, the first law of thermodynamics for the composite system is (๐ธ๐ธf โˆ’ ๐ธ๐ธi )๐ด๐ด+๐ต๐ต = 0

(๐ธ๐ธf โˆ’ ๐ธ๐ธi )๐ด๐ด+๐ต๐ต = (๐ธ๐ธf โˆ’ ๐ธ๐ธi )A + ๏ฟฝ๐ธ๐ธj โˆ’ ๐ธ๐ธi ๏ฟฝ

Therefore, we can simply write that

A

ฮ”๐ธ๐ธA + ฮ”๐ธ๐ธB = 0

The constitutive relation for energy can be substituted in for each volume: ๐‘š๐‘š๐ด๐ด๐ด๐ด ๐‘๐‘๐‘ฃ๐‘ฃ ๏ฟฝ๐‘‡๐‘‡๐ด๐ด๐ด๐ด โˆ’ ๐‘‡๐‘‡๐ด๐ด๐ด๐ด ๏ฟฝ + ๐‘š๐‘š๐ต๐ต๐ต๐ต ๐‘๐‘๐‘ฃ๐‘ฃ ๏ฟฝ๐‘‡๐‘‡๐ต๐ต๐ต๐ต โˆ’ ๐‘‡๐‘‡๐ด๐ด๐ด๐ด ๏ฟฝ = 0

Simplifying the expression,

๐‘š๐‘šAf ๐‘๐‘v ๐‘‡๐‘‡Af + ๐‘š๐‘šBf ๐‘๐‘๐‘ฃ๐‘ฃ ๐‘‡๐‘‡Bf = (๐‘š๐‘šAf ๐‘๐‘v + ๐‘š๐‘šB ๐‘๐‘v )๐‘‡๐‘‡Ai ๐‘š๐‘šAf ๐‘‡๐‘‡Af + ๐‘š๐‘šB ๐‘‡๐‘‡Bf = ๐‘š๐‘šAi ๐‘‡๐‘‡Ai

(2)

In Equation (1), from conservation of mass, mAi = mAf + mBf. We can write the equation of state

50

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

for a perfect gas for each control volume, ๐‘š๐‘šAf ๐‘…๐‘…๐‘…๐‘…Af ๐‘ƒ๐‘ƒAf = ๐‘‰๐‘‰A

๐‘ƒ๐‘ƒBf =

๐‘š๐‘šBf ๐‘…๐‘…๐‘…๐‘…Bf ๐‘‰๐‘‰B

Since the final pressures are equivalent, PAf = PBf, the following relation is obtained: ๐‘š๐‘šAf ๐‘‡๐‘‡Af = ๐‘š๐‘šBf ๐‘‡๐‘‡Bf

Substituting Equation (3) into Equation (1), 1 ๐‘š๐‘šAf ๐‘‡๐‘‡Af = ๐‘š๐‘šAi ๐‘‡๐‘‡Ai 2

(3) (4)

We can now write the equation of state for a perfect gas for control volume A at the initial and final state, ๐‘ƒ๐‘ƒAi ๐‘‰๐‘‰A ๐‘ƒ๐‘ƒAf ๐‘‰๐‘‰A (5) = ๐‘š๐‘šAi ๐‘‡๐‘‡Ai = ๐‘š๐‘šAf ๐‘‡๐‘‡Af ๐‘…๐‘… ๐‘…๐‘… By inspection of Equations (4) and (5) we can see that 1 ๐‘ƒ๐‘ƒAf = ๐‘ƒ๐‘ƒAi = 5atm 2

(6)

Now that we have determined the final pressure, we can perform an energy balance on control volume A. Since this is an open system (mass will travel out of control volume A), the first law becomes ๐‘‘๐‘‘๐‘‘๐‘‘A = โˆ’๐‘š๐‘šฬ‡out,A โ„ŽA ๐‘‘๐‘‘๐‘‘๐‘‘

Since this is an ideal gas, the energy in the control volume is just the internal energy of the gas. We can replace the energy with the constitutive relation for an ideal gas. We can also replace the enthalpy with the constitutive relation for an ideal gas. The first law is rewritten as (for any instant in time), ๐‘‘๐‘‘(๐‘š๐‘š๐‘š๐‘šฯ… ๐‘‡๐‘‡)A = โˆ’๐‘š๐‘šฬ‡out,A ๐‘๐‘p ๐‘‡๐‘‡A ๐‘‘๐‘‘๐‘‘๐‘‘

We can differentiate the left hand side to arrive at

๐‘‘๐‘‘๐‘š๐‘šA ๐‘‘๐‘‘๐‘‘๐‘‘A ๏ฟฝ ๏ฟฝ ๐ถ๐ถฯ… ๐‘‡๐‘‡A + ๐‘š๐‘šA ๐‘๐‘ฯ… = โˆ’๐‘š๐‘šฬ‡out,A ๐‘๐‘p ๐‘‡๐‘‡A ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘

(7)

Applying continuity to control volume A we can determine that

This can be substituted into Equation (7), ๐‘š๐‘šA ๐‘๐‘๐œ๐œ

๐‘‘๐‘‘๐‘‘๐‘‘A = ๐‘š๐‘šฬ‡out,A ๐‘‘๐‘‘๐‘‘๐‘‘

๐‘‘๐‘‘๐‘‘๐‘‘A = โˆ’๐‘š๐‘šฬ‡out,A ๐‘๐‘p ๐‘‡๐‘‡A + โˆ’๐‘š๐‘šฬ‡out,A ๐‘๐‘ฯ… ๐‘‡๐‘‡A โˆ’ ๐‘š๐‘šฬ‡out,A ๏ฟฝ๐‘๐‘p โˆ’ ๐‘๐‘ฯ… ๏ฟฝ๐‘‡๐‘‡A ๐‘‘๐‘‘๐‘‘๐‘‘ 51

(8)

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

The gas constant for a fluid can be expressed as This can be substituted into Equation (8), ๐‘š๐‘šA ๐‘๐‘ฯ…

๐‘…๐‘… = ๐‘๐‘p โˆ’ ๐‘๐‘ฯ…

๐‘‘๐‘‘๐‘‘๐‘‘A ๐‘‘๐‘‘๐‘‘๐‘‘A = ๐‘š๐‘šฬ‡out,A ๐‘…๐‘…๐‘…๐‘…A = ๐‘…๐‘…๐‘…๐‘…A ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘t

Separating variables, we arrive at

๐‘๐‘ฯ… 1 ๐‘‘๐‘‘๐‘‘๐‘‘A ๐‘‘๐‘‘๐‘‘๐‘‘A = ๐‘…๐‘… ๐‘‡๐‘‡A ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘

(9)

In order to eliminate the mass terms, we can apply the perfect gas law, ๐‘ƒ๐‘ƒA ๐‘‰๐‘‰A = ๐‘š๐‘šA ๐‘…๐‘…๐‘…๐‘…A

Taking the logarithm of both sides we get,

ln(๐‘ƒ๐‘ƒ๐ด๐ด ) + ln(๐‘‰๐‘‰A ) = ln(๐‘š๐‘šA ) + ln (๐‘…๐‘…) + ln(๐‘‡๐‘‡A )

Taking the derivative of both sides and noting that dVA is zero since the control volume is constant: ๐‘‘๐‘‘๐‘‘๐‘‘A ๐‘‘๐‘‘๐‘‘๐‘‘A ๐‘‘๐‘‘๐‘‘๐‘‘A = + , ๐‘ƒ๐‘ƒA ๐‘š๐‘šA ๐‘‡๐‘‡A 1 ๐‘‘๐‘‘๐‘‘๐‘‘A 1 ๐‘‘๐‘‘๐‘‘๐‘‘A 1 ๐‘‘๐‘‘๐‘‘๐‘‘๐ด๐ด = โˆ’ (10) ๐‘š๐‘šA ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ƒ๐‘ƒA ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‡๐‘‡A ๐‘‘๐‘‘๐‘‘๐‘‘ Substituting Equation (10) into Equation (9) we obtain,

๐‘๐‘๐œ๐œ 1 ๐‘‘๐‘‘๐‘‘๐‘‘A 1 ๐‘‘๐‘‘๐‘‘๐‘‘A 1 ๐‘‘๐‘‘๐‘‘๐‘‘A = โˆ’ ๐‘…๐‘… ๐‘‡๐‘‡A ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ƒ๐‘ƒA ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‡๐‘‡A ๐‘‘๐‘‘๐‘‘๐‘‘

1 ๐‘‘๐‘‘๐‘‘๐‘‘A ๐‘๐‘๐œ๐œ 1 ๐‘‘๐‘‘๐‘‘๐‘‘A ๐‘๐‘p 1 ๐‘‘๐‘‘๐‘‘๐‘‘A = ๏ฟฝ1 + ๏ฟฝ โˆ’ ๐‘ƒ๐‘ƒA ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘…๐‘… ๐‘‡๐‘‡A ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘…๐‘… ๐‘‡๐‘‡A ๐‘‘๐‘‘๐‘‘๐‘‘

Taking the integral of both sides,

๐‘‡๐‘‡Af ๐‘๐‘ 1 ๐‘‘๐‘‘๐‘‘๐‘‘A p 1 ๐‘‘๐‘‘๐‘‘๐‘‘A ๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ƒ๐‘ƒAi ๐‘ƒ๐‘ƒA ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‡๐‘‡Ai ๐‘…๐‘… ๐‘‡๐‘‡A ๐‘‘๐‘‘๐‘‘๐‘‘

๏ฟฝ

results in:

๐‘ƒ๐‘ƒAf

๐‘๐‘p ๐‘ƒ๐‘ƒAf ๐‘‡๐‘‡Af ln ๏ฟฝ ๏ฟฝ = ln ๏ฟฝ ๏ฟฝ ๐‘ƒ๐‘ƒAi ๐‘…๐‘… ๐‘‡๐‘‡Ai ๐‘…๐‘…

๐‘๐‘๐‘๐‘

7

๐‘ƒ๐‘ƒAf ๐‘๐‘๐‘๐‘ ๐‘‡๐‘‡Af = ๐‘‡๐‘‡Ai ๏ฟฝ ๏ฟฝ ๐‘ƒ๐‘ƒAi

For a diatomic gas, ๐‘…๐‘… = 2 and therefore the final temperature is 52

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow 2

๐‘ƒ๐‘ƒAf 7 ๐‘‡๐‘‡Af = ๐‘‡๐‘‡Ai ๏ฟฝ ๏ฟฝ = 434.507 R ๐‘ƒ๐‘ƒAi

Recalling from Equation (3) that mAfTAf = mBfTBf, we can eliminate mBf with mBf = mAi โˆ’ mAf to get ๐‘š๐‘šA ๐‘‡๐‘‡Af = (๐‘š๐‘šAi โˆ’ ๐‘š๐‘šAf )๐‘‡๐‘‡Bf

We may divide both sides by mAi and solve for TBf to obtain, ๐‘‡๐‘‡Bf =

ฮฑ๐‘‡๐‘‡Af 1 โˆ’ ๐›ผ๐›ผ

(11)

where ฮฑ is the ratio between final and initial mass of control volume A, ฮฑ = mAf/mAi. Recalling the perfect gas law between the initial and final states of control volume A from Equation (5), ๐‘ƒ๐‘ƒAi ๐‘‰๐‘‰A = ๐‘š๐‘šAi ๐‘‡๐‘‡Ai ๐‘…๐‘…

๐‘ƒ๐‘ƒAf ๐‘‰๐‘‰A = ๐‘š๐‘šAf ๐‘‡๐‘‡Af ๐‘…๐‘…

Since the volume and gas constants are constants we can simplify to ๐‘š๐‘šAi ๐‘‡๐‘‡Ai ๐‘š๐‘šAi ๐‘‡๐‘‡Af = ๐‘ƒ๐‘ƒAi ๐‘ƒ๐‘ƒ๐ด๐ด๐ด๐ด

๐‘š๐‘šAf ๐‘ƒ๐‘ƒAf ๐‘‡๐‘‡Ai = ๐›ผ๐›ผ = ๐‘š๐‘šAi ๐‘ƒ๐‘ƒAi ๐‘‡๐‘‡Af

The parameter ฮฑ can be calculated to be

๐›ผ๐›ผ =

๐‘ƒ๐‘ƒAf ๐‘‡๐‘‡Ai = 0.6095 ๐‘ƒ๐‘ƒAi ๐‘‡๐‘‡Af

Thus, the final temperature of control volume B, substituting ฮฑ into Equation (6), is ๐‘‡๐‘‡Bf =

ฮฑ๐‘‡๐‘‡Af = 678.2 R 1 โˆ’ ๐›ผ๐›ผ

53

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

PROBLEM 4.4 QUESTION Control Mass Energy Balance (Section 4.3) A perfectly insulated vessel contains 9.1 kg of water at an initial temperature of 277.8 K. An electric immersion heater with a mass of 0.454 kg is also at an initial temperature of 277.8 K. The water is slowly heated by passing an electric current through the heater until both water and heater attain a final temperature of 333.3 K. The specific heat of the water is 4.2 kJ/kg K and that of the heater is 0.504 kJ/kg K. Disregard volume changes and assume that the temperatures of water and heater are the same at all stages of the process. ๐’…๐’…๐’…๐’…

Calculate โˆซ ๐‘ป๐‘ป and ฮ”S for:

1. The water as a system

2. The heater as a system 3. The water and heater as a system Answers: ๐‘‘๐‘‘๐‘‘๐‘‘

1. ฮ”๐‘†๐‘† = โˆซ ๐‘‡๐‘‡ = 6.96 kJโ„K 2. ฮ”S = 41.7 J/K

3. ฮ”S = 6.96 kJ/K

๐‘‘๐‘‘๐‘‘๐‘‘

โˆซ ๐‘‡๐‘‡ = โˆ’ 6.96 kJโ„K ๐‘‘๐‘‘๐‘‘๐‘‘

โˆซ ๐‘‡๐‘‡ = 0

PROBLEM 4.4 SOLUTION

Control Mass Energy Balance (Section 4.3) Perfectly insulated tank: ฮ”Q = 0. From the problem statement we are given: โ€“ mass of water, mw = 9.1kg โ€“ initial temperature of water, Tw = 277.8 K โ€“ mass of heater, = 0.454kg โ€“ initial temperature of heater, Th = 277.8 K โ€“ specific heat of water, Cpw โ€” 4.2kJ/kg K โ€“ specific heat of heater, Cph = 0.504 kJ/kg K โ€“ final temperature, Tf = 333.3 K Water as a system: Since the temperature of water and heater are the same at all stages of the process, we can regard this process as reversible, ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐‘š๐‘šw ๐‘๐‘pw ๐‘‘๐‘‘๐‘‘๐‘‘ 54

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow ๐‘‡๐‘‡f ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‡๐‘‡f 333.3 ๏ฟฝ = ๐‘š๐‘šw ๐‘๐‘pw ๏ฟฝ = ๐‘š๐‘šw ๐‘๐‘pw ln ๏ฟฝ ๏ฟฝ = 9.1(4.2) ln = 6.96 kJโ„K ๐‘‡๐‘‡ ๐‘‡๐‘‡w 277.8 ๐‘‡๐‘‡w ๐‘‡๐‘‡

๐‘‘๐‘‘๐‘‘๐‘‘ =

โˆด โˆ†๐‘†๐‘† = ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ

๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‡๐‘‡

๐‘‘๐‘‘๐‘‘๐‘‘ = 6.96 kJโ„K ๐‘‡๐‘‡

Heater as a system: Considering the heater as the system we have ๏ฟฝ

๐‘‡๐‘‡f ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ = โˆ’๐‘š๐‘šw ๐‘๐‘pw ๏ฟฝ = 6.96 kJโ„K ๐‘‡๐‘‡ ๐‘‡๐‘‡๐‘ค๐‘ค ๐‘‡๐‘‡

โˆ†๐‘บ๐‘บ = ๏ฟฝ ๐’…๐’…๐’…๐’… = ๏ฟฝ

๐‘‘๐‘‘๐‘‘๐‘‘ =

๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‡๐‘‡

๐‘ป๐‘ป๐ฐ๐ฐ ๐’…๐’…๐’…๐’… ๐’…๐’…๐’…๐’… = ๐’Ž๐’Ž๐ก๐ก ๐’„๐’„๐ฉ๐ฉ๐ฉ๐ฉ ๏ฟฝ = ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’. ๐Ÿ•๐Ÿ• ๐‰๐‰โ„๐ค๐ค๐ค๐ค ๐‘ป๐‘ป ๐‘ป๐‘ป๐ก๐ก ๐‘ป๐‘ป

Water and heater as a system: For the water and heater as the system we have ๐‘‘๐‘‘๐‘‘๐‘‘ = 0

โˆ†๐‘†๐‘† = ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ

โˆด๏ฟฝ

๐‘‘๐‘‘๐‘‘๐‘‘ =0 ๐‘‡๐‘‡

๐‘‡๐‘‡f ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ๐‘š๐‘šw ๐‘๐‘pw + ๐‘š๐‘šh ๐‘๐‘ph ๏ฟฝ ๏ฟฝ = 6.92 + 0.042 = 6.96 kJโ„K ๐‘‡๐‘‡ ๐‘‡๐‘‡w ๐‘‡๐‘‡

PROBLEM 4.5 QUESTION

Qualifying a Claim Against the First and Second Laws of Thermodynamics (Section 4.3)

An engineer claims to have invented a new compressor that can be used with a small gas-cooled reactor. The CO2 used for cooling the reactor enters the compressor at 1.378 MPa and 48.9 ยฐC and leaves the compressor at 2.067 MPa and โˆ’6.7ยฐC. The compressor requires no input power but operates simply by transferring heat from the gas to a low-temperature reservoir surrounding the compressor. The inventor claims that the compressor can handle 0.908 kg of CO2 per second if the temperature of the reservoir is โˆ’95.6ยฐC and the rate of heat transfer is -63.9 kJ/s. (This heat transfer is out of the control volume and hence taken negative.) Assume that the CO2 enters and leaves the device at very low velocities and that no significant elevation changes are involved. 1. Determine if the compressor violates the first or the second law of thermodynamics. 2. Draw a schematic of the process on a T-s diagram.

55

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

3. Determine the change in the availability function (A) of the fluid flowing through the compressor. 4. Using the data from items 1 through 3, determine if the compressor is theoretically possible. For COโ‚‚ supercritical properties of this problem, use the website: http://www.peacesoftware.de/einigewerte/co2_e.html Answers: 1. The compressor does not violate either the first or second law. 2. ฮ”A = 10.5 kJ/kg

PROBLEM 4.5 SOLUTION Qualifying a Claim Against the First and Second Laws of Thermodynamics (Section 4.3)

FIGURE SM-4.2 New compressor for small gas-cooled reactor From the problem statement we have: โ€“ entering pressure, Pi = 1.378 MPa โ€“ entering temperature, Ti = 48.9 ยฐC โ€“ exiting pressure, Po = 2.067 MPa โ€“ exiting temperature, To = โˆ’6.7 ยฐC โ€“ heat transfer rate, Qฬ‡ = 63.9 kW โ€“ mass flow rate, แน = 0.908 kg/s โ€“ reservoir temperature, TR = โˆ’95 ยฐC Thermodynamic properties evaluated at temperature and pressure for carbon dioxide (real gas) : โ„Ži = 515.9 kJโ„kg

๐‘ ๐‘ i = 2.3 kJโ„kg K

โ„Žo = 452.0 kJโ„kg ๐‘ ๐‘ o = 2.0 kJโ„kg K

The first law of thermodynamics for this case is

56

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

Qฬ‡ + ๐‘š๐‘šฬ‡i ๏ฟฝโ„Ž๐‘–๐‘– +

๐‘ฃ๐‘ฃi2 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ฃ๐‘ฃo2 + ๐‘”๐‘”๐‘”๐‘”i ๏ฟฝ = ๏ฟฝ ๏ฟฝ + ๐‘š๐‘šฬ‡o ๏ฟฝโ„Žo + + ๐‘”๐‘”๐‘”๐‘”o ๏ฟฝ + ๐‘Š๐‘Š 2 ๐‘‘๐‘‘๐‘‘๐‘‘ CV 2

๐‘‘๐‘‘๐‘‘๐‘‘ No elevation change so zi = zo and we are at steady state so that ๐‘š๐‘šฬ‡i = ๐‘š๐‘šฬ‡โ€‹ฬ‡ o = ๐‘š๐‘šฬ‡, ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ

Vi = Vo. There is also no work แบ† = 0. The first law therefore reduces to

CV

= 0 and

Qฬ‡ = ๐‘š๐‘šฬ‡(โ„Žo โˆ’ โ„Ži ) = (452.0 โˆ’ 515.9) = โˆ’63.9 kW

The first law of thermodynamics is satisfied.

For the second law analysis, use Equation 4.41:

๏ฃซ โˆ‚S ๏ฃถ ๏ฃฌ ๏ฃท cv= ๏ฃญ โˆ‚t ๏ฃธ

โˆ‘ m๏€ฆ s + S๏€ฆ i i

gen

+

Q๏€ฆ TS

which for our steady state case reduces to

Q๏€ฆ 0 = m๏€ฆ ( si โˆ’ so ) + S๏€ฆgen + TR Q๏€ฆ S๏€ฆgen= m๏€ฆ ( so โˆ’ si ) โˆ’ TR

( โˆ’63.9 ) kW kg kJ S๏€ฆgen = 0.908 (2.0 โˆ’ 2.3) โˆ’ s kgK 273.15 โˆ’ 95.6 K kJ Q๏€ฆ = โˆ’63.9 s since heat is being transferred out of the control volume. where kW S๏€ฆgen = โˆ’0.272 + 0.360 K kW S๏€ฆgen = 0.088 K โˆ†S = ๐‘š๐‘šฬ‡(๐‘ ๐‘ o โˆ’ ๐‘ ๐‘ i ) = โˆ’0.264 kWโ„K From the results, since

S๏€ฆgen

๐‘ธ๐‘ธฬ‡ = โˆ’๐ŸŽ๐ŸŽ. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐ค๐ค๐ค๐คโ„๐Š๐Š ๐‘ป๐‘ป๐‘๐‘

is positive, the second law of thermodynamics is satisfied.

2. Figure SM-4.3 is a schematic of the process.

57

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

FIGURE SM-4.3 Process diagram for compressor of Problem 4.5 3. The change in availability function is defined as follows (the Gibbs free energy): For this case E is equal to U.

๐ด๐ด = ๐ธ๐ธ + ๐‘ƒ๐‘ƒ๐‘…๐‘… ๐œ๐œ โˆ’ ๐‘‡๐‘‡๐‘…๐‘… ๐‘ ๐‘ 

Hence: โˆ†๐ด๐ด = (๐ธ๐ธ๐‘–๐‘– โˆ’ ๐ธ๐ธ๐‘œ๐‘œ ) โˆ’ ๐‘‡๐‘‡๐‘…๐‘… (๐‘ ๐‘ ๐‘–๐‘– โˆ’ ๐‘ ๐‘ ๐‘œ๐‘œ ) = (โ„Ž๐‘–๐‘– โˆ’ โ„Ž๐‘œ๐‘œ ) โˆ’ ๐‘‡๐‘‡๐‘…๐‘… (๐‘ ๐‘ ๐‘–๐‘– โˆ’ ๐‘ ๐‘ ๐‘œ๐‘œ ) = 13.1 kJโ„kg

โˆ†Aper = = 10.46 {515.9 โˆ’ 452.0} โˆ’ ( โˆ’95.6 + 273.15){2.3 โˆ’ 2.0= } 63.9 โˆ’ (53.44) kg

kJ kg

4. The compressor is theoretically possible. However, since it needs a very low temperature heat sink, it is not practical.

PROBLEM 4.6 QUESTION Determining Rocket Acceleration from an Energy Balance (Section 4.3) A rocket ship is traveling in a straight line through outer space, beyond the range of all gravitational forces. At a certain instant, its velocity is V, its mass is M, the rate of consumption of propellant is P, the rate of energy liberation by the chemical reaction is Qฬ‡R. From the first law of thermodynamics alone (i.e., without using a force balance on the rocket), derive a general expression for the rate of change of velocity with time as a function of the above parameters and the discharged gas velocity Vd and enthalpy hd. In solving this problem, place a control volume around the rocket ship within which the propellant is contained, neglect the mass of the rocket ship itself and take the discharge velocity Vd as that with respect to the rocket ship.

58

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

Answer: ๐‘‘๐‘‘๐‘‘๐‘‘ 1 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‰๐‘‰ 2 ๐‘‰๐‘‰d2 = ๏ฟฝ๐‘„๐‘„ฬ‡R โˆ’ ๐‘€๐‘€ + ๏ฟฝ๐‘ข๐‘ข + โˆ’ โ„Ž๐‘‘๐‘‘ โˆ’ ๏ฟฝ ๐‘ƒ๐‘ƒ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘€๐‘€๐‘€๐‘€ ๐‘‘๐‘‘๐‘‘๐‘‘ 2 2

PROBLEM 4.6 SOLUTION

Determining Rocket Acceleration from an Energy Balance (Section 4.3) Energy balance equation: ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‰๐‘‰d2 = ๐‘š๐‘šฬ‡d ๏ฟฝโ„Žd + ๏ฟฝ + ๐‘„๐‘„ฬ‡R ๐‘‘๐‘‘๐‘‘๐‘‘ 2

(1)

where แนd is the mass flow rate of discharged gas. The energy at any point in time is

From conservation of mass

๐ธ๐ธ = ๐‘€๐‘€ ๏ฟฝโ„Žd + ๐‘š๐‘šฬ‡๐‘‘๐‘‘ =

๐‘‰๐‘‰2 2

๏ฟฝ

๐‘‘๐‘‘๐‘‘๐‘‘ = โˆ’๐‘ƒ๐‘ƒ ๐‘‘๐‘‘๐‘‘๐‘‘

(2)

(3)

Substituting these equations into Equation 1:

๏ฟฝโ„Ž +

๐‘‘๐‘‘ ๐‘‰๐‘‰๐Ÿ๐Ÿ ๐‘‰๐‘‰2d ๏ฟฝ๐‘€๐‘€ ๏ฟฝโ„Ž + ๏ฟฝ๏ฟฝ = โˆ’๐‘ƒ๐‘ƒ ๏ฟฝโ„Ž + ๏ฟฝ + ๐‘„๐‘„ฬ‡ R ๐‘‘๐‘‘๐‘‘๐‘‘ 2 2

๐‘‰๐‘‰๐Ÿ๐Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ 2

๏ฟฝ

๐‘‘๐‘‘๐‘‘๐‘‘

+ ๐‘€๐‘€

๐‘‘๐‘‘โ„Ž ๐‘‘๐‘‘ ๐‘‰๐‘‰2 ๐‘‰๐‘‰2๐‘‘๐‘‘ + ๐‘€๐‘€ ๏ฟฝ ๏ฟฝ = โˆ’๐‘ƒ๐‘ƒ ๏ฟฝโ„Žd + ๏ฟฝ + ๐‘„๐‘„ฬ‡ R ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ 2 2

๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘โ„Ž ๐‘‰๐‘‰2d ๐‘‰๐‘‰2 ฬ‡ ๐‘€๐‘€๐‘€๐‘€ = โˆ’๐‘ƒ๐‘ƒ ๏ฟฝโ„Žd + ๏ฟฝ + ๐‘„๐‘„R + ๐‘ƒ๐‘ƒ ๏ฟฝโ„Ž + ๏ฟฝ โˆ’ ๐‘€๐‘€ ๐‘‘๐‘‘๐‘‘๐‘‘ 2 2 ๐‘‘๐‘‘๐‘‘๐‘‘

(4) (5) (6)

Neglecting the gravitational term, h = u and therefore

๐‘‘๐‘‘๐‘‘๐‘‘ 1 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‰๐‘‰ 2 ๐‘‰๐‘‰d2 = ๏ฟฝ๐‘„๐‘„ฬ‡R โˆ’ ๐‘€๐‘€ โˆ’ ๐‘ƒ๐‘ƒ ๏ฟฝ๐‘ข๐‘ข + โˆ’ โ„Žd โˆ’ ๏ฟฝ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘€๐‘€๐‘€๐‘€ ๐‘‘๐‘‘๐‘‘๐‘‘ 2 2

(7)

PROBLEM 4.7 QUESTION

Momentum Balance for a Control Volume (Section 4.3) A jet of water is directed at a vane (Figure 4.11) that could be a blade in a turbine. The water leaves the nozzle with a speed of 15 m/s and a mass flow of 250 kg/s; it enters the vane tangent to its surface (in the x direction). At the point the water leaves the vane, the angle to the positive

59

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

x direction of 120ยฐ. Compute the resultant force on the vane assuming there is no friction if: 1. The vane is held constant. 2. The vane moves with a velocity of 5 m/s in the x direction. Answers: 1. Fx = 5625 N, Fy = โˆ’3248 N 2. Fx = 2500 N, Fy = โˆ’1443 N

FIGURE 4.11 Jet of water directed at a vane.

PROBLEM 4.7 SOLUTION Momentum Balance for a Control Volume (Section 4.3)

FIGURE SM-4.4 Free body diagram of jet directed at vane of Problem 4.7 A jet of water is directed at a vane that could be a blade in a turbine. The water leaves the nozzle with a speed of 15 m/s and a mass flow of 250 kg/s; it enters the vane tangent to its surface (in the x direction). At the point the water leaves the vane, the angle to the positive x direction is

60

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

120ยฐ. 1. The vane is held constant: We can write conservation of momentum for a control volume surrounding the vane following Equation 4.32 of the text, ๏ฟฝ ๐น๐นโƒ—k = ๏ฟฝ k

๐‘‘๐‘‘๐‘‘๐‘‘๐œ๐œโƒ— ๐‘‘๐‘‘๐‘‘๐‘‘

๏ฟฝ

๐‘‚๐‘‚

cฯ…

(1)

= ๏ฟฝ ๐‘š๐‘šฬ‡i ๐œ๐œโƒ—i o=1

where ๏ฟฝ๐‘ญ๐‘ญโƒ—๐ค๐ค is an external force acting on the control volume, แนi is the mass inflow rate through a ๏ฟฝโƒ—๐ข๐ข is the velocity at which the fluid enters through that boundary of the control volume and ๐Š๐Š boundary of the control volume. Similarly the subscript o is for outflows. For this problem we have two places where the fluid crosses the boundary of the control volume. Using continuity, we know that the mass flow rate entering and exiting the control volume is ๐‘š๐‘šฬ‡in = 250

kg kg ๐‘š๐‘šฬ‡out = 250 s s

Since the flow is assumed incompressible and the cross section flow are does not change, the speed of the fluid in and out of the control volume is the same, ๐œ๐œ๐‘–๐‘–๐‘–๐‘– = 15

m m ๐œ๐œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = 15 s s

We may break Equation 1 into vector components in the +x and +y directions: ๐น๐นx = ๐‘š๐‘šฬ‡out ๐œ๐œx,in โˆ’ ๐‘š๐‘šฬ‡๐‘–๐‘–๐‘–๐‘– ๐œ๐œx,in ๐น๐นy = ๐‘š๐‘šฬ‡out ๐œ๐œy,out

We may define the components of velocity in the x direction as: ๐œ๐œx,in = ๐œ๐œin = 15

m s

๐œ๐œx,out = ๐œ๐œout [โˆ’ cos(60ยฐ)] = โˆ’7.5

m s

We may define the components of velocity in the y direction as: ๐œ๐œy,out = ๐œ๐œout [sin(60ยฐ)] = 12.99

m s

We can now solve for the x and y components of the resultant force, ๐น๐นx = 250

m kg m ๏ฟฝโˆ’7.5 โˆ’ 15 ๏ฟฝ = โˆ’5625 N s s s

๐น๐นy = 250

kg m ๏ฟฝ12.99 ๏ฟฝ = 3248 N s s

Note these forces reflect the the force of the vane on the fluid. We may apply Newtonโ€™s 3rd Law

61

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

to determine that the force of the fluid on the vane is equal and opposite therefore: ๐น๐นxฯ… = 5625 N ๐น๐นyฯ… = โˆ’3248 N

2. The vane moves with a velocity of 5 m/s in the x direction: The same approach will be taken as in case 1, except a Lagrangian view will be used to solve this problem. If the control volume is formulated such that it is moving with the vane, the relative velocity of the entering fluid needs to be calculated. The velocity of the vane is given as

The relative velocity of the fluid entering is

๐œ๐œo = 5

m s

๐œ๐œr = ๐œ๐œin โˆ’ ๐œ๐œo = 10

m s

Assuming that the flow is incompressible, the mass flow rate entering the control volume can be calculated by ๐‘š๐‘šฬ‡ = ๐œŒ๐œŒ๐œŒ๐œŒ = const ฯ…

Therefore, we can calculate the mass flow rate of this new frame of reference as ๐œ๐œr kg ๐‘š๐‘šฬ‡r = ๐‘š๐‘šฬ‡in ๏ฟฝ ๏ฟฝ = 166.667 ๐œ๐œin s

From conservation of mass, the mass flow rate entering the moving control volume will be equivalent to the mass flow rate exiting the control volume. Since the fluid is assumed incompressible and the flow area is not changing, the speed at the exit must be equivalent to the speed entering the control volume. From conservation of momentum we have ๐น๐นx,r = ๐‘š๐‘šฬ‡r ๐œ๐œx,r,out โˆ’ ๐‘š๐‘šฬ‡๐‘Ÿ๐‘Ÿ ๐œ๐œx,r,in ๐น๐นy,r = ๐‘š๐‘šฬ‡r ๐œ๐œy,r,out

The velocity components in the x direction are

๐œ๐œx,r,in = ๐œ๐œr = 10

m s

๐œ๐œx,r,in = ๐œ๐œr [โˆ’cos(60ยฐ)] = โˆ’5

The velocity components in the y direction are

๐œ๐œy,r,out = ๐œ๐œr [sin(60ยฐ)] = 8.66

m s

m s

We can now solve for the x and y components of the resultant force,

62

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

๐น๐นx,r = 166.667

kg m m ๏ฟฝโˆ’5 โˆ’ 10 ๏ฟฝ = โˆ’2500 N s s s

๐น๐นy,r = 166.667

kg m ๏ฟฝ8.66 ๏ฟฝ = 1443 N s s

Note these forces reflect the the force of the vane on the fluid. We may apply Newtonโ€™s 3rd Law to determine that the force of the fluid on the vane is equal and opposite, therefore: ฯ… ฯ… ๐น๐นx,r = 2500 N ๐น๐นy,r = โˆ’1443 N

PROBLEM 4.8 QUESTION Internal Conservation Equations for an Extensive Property (Section 4.4) Consider a coolant in laminar flow in a circular tube. The one-dimensional velocity is given by ๐‘‡๐‘‡ 2 ๐œ๐œโƒ— = ๐œ๐œmax ๏ฟฝ1 โˆ’ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๐šค๐šคโƒ—z ๐‘…๐‘…

where ฯ…max = 2.0 m/s; R = radius of the tube = 0.05 m; ๐šค๐šคโƒ—z = ๐‘Ž๐‘Ž unit vector in the axial direction. Assume the fluid density is uniform within the tube (ฯ0 = 300 kg/m3). 1. What is the coolant flow rate in the rube?

2. What is the coolant average velocity (V) in the tube? ๐Ÿ๐Ÿ

3. What is the true kinetic head of this flow? Does the kinetic head equal ๐Ÿ๐Ÿ ๐†๐†๐ŸŽ๐ŸŽ ๐‘ฝ๐‘ฝ๐Ÿ๐Ÿ ?

Answers:

๏€ฆ 1. V = 7.854 ร— 10โˆ’3 m3/s 2. V = 1 m/s ๐†๐† ๐‘ฝ๐‘ฝ๐Ÿ๐Ÿ

3. ๐Š๐Š๐Š๐Š๐Š๐Š๐Š๐Š๐Š๐Š๐Š๐Š๐Š๐Š ๐ก๐ก๐ก๐ก๐ก๐ก๐ก๐ก = ๐Ÿ๐Ÿ. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐จ๐จ๐Ÿ๐Ÿ

PROBLEM 4.8 SOLUTION

Internal Conservation Equations for an Extensive Property (Section 4.4) From the problem statement we are give: โ€“ velocity profile

๐‘Ÿ๐‘Ÿ 2 ๐œ๐œโƒ—(๐‘Ÿ๐‘Ÿ) = ๐œ๐œmax ๏ฟฝ1 โˆ’ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๐šค๐šคโƒ—z ๐‘…๐‘…

โ€“ maximum velocity, ฯ…max = 2.0 m/s โ€“ radius, R = 0.05 m

63

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

โ€“ density, ฯ0 = 300 kg/m3 Calculate coolant flow rate: The coolant flow rate can be determine by integrating the velocity profile over the cross sectional area R

Vฬ‡ = ๏ฟฝ ๐œ๐œ(๐‘Ÿ๐‘Ÿ)๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ ๐œ๐œ(๐‘Ÿ๐‘Ÿ)2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ = ๐œ‹๐œ‹๐œ๐œmax 0

๐‘…๐‘… 2 = 7.854 ร— 10โˆ’3 m3 โ„s 2

(1)

Average velocity: The average velocity can be determined by averaging over the cross sectional area ๐‘น๐‘น๐Ÿ๐Ÿ ฬ‡ ๐…๐…๐…๐… ๐Š๐Š๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ ๐Ÿ๐Ÿ โˆฌ ๐Š๐Š(๐’“๐’“)๐’…๐’…๐’…๐’… ๐•๐• ๐‘ฝ๐‘ฝ = = = = = ๐Ÿ๐Ÿ ๐ฆ๐ฆโ„๐ฌ๐ฌ ๐Ÿ๐Ÿ ๐‘จ๐‘จ ๐…๐…๐‘น๐‘น ๐Ÿ๐Ÿ โˆฌ ๐’…๐’…๐’…๐’…

(2)

Kinetic head: The kinetic head is determined with ๐‘ƒ๐‘ƒk =

๐œŒ๐œŒ๐œŒ๐œŒ(๐‘Ÿ๐‘Ÿ)2 2

(3)

The average kinetic is therefore determined with ๐‘ƒ๐‘ƒ๏ฟฝk =

2 1 ๐œŒ๐œŒ0 ๐œ๐œmax 4๐œŒ๐œŒ0 ๐‘‰๐‘‰ 2 ๐‘‰๐‘‰ 2 2 ๏ฟฝ ๐œŒ๐œŒ0 ๐œ๐œ(๐‘Ÿ๐‘Ÿ) 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ = = 1.333๐œŒ๐œŒ0 6 0 2 2๐ด๐ด

1

(4)

๐‘‰๐‘‰ 2

Thus, the kinetic head does not equal 2 ๐œŒ๐œŒ0 2

PROBLEM 4.9 QUESTION Differential Transport Equations (Section 4.5) Can the following sets of velocities belong to possible incompressible flow cases? Case 1: ฯ…x = x โˆ’ y + z2 ฯ…y = x โˆ’ y + z ฯ…z = 2xy + y2 Case 2: ฯ…x = xyzt ฯ…y = โˆ’xyzt2 z2 ๐œ๐œ๐‘ง๐‘ง = (xt 2 โˆ’ yt) 2 64

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

Answers: 1. Yes 2. Yes

PROBLEM 4.9 SOLUTION Differential Transport Equations (Section 4.5) Case 1: For case one we have ๐œ๐œx = ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ + ๐‘ง๐‘ง 2 ๐œ๐œy = ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ + ๐‘ง๐‘ง

Continuity equation:

For incompressible flow:

๐œ๐œz = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ 2

๐ท๐ท๐ท๐ท + ๐œŒ๐œŒ(โˆ‡ ยท ๐œ๐œโƒ—) = 0 ๐ท๐ท๐ท๐ท โˆ‡ ยท ๐œ๐œโƒ— = 0

โˆ‡ ยท ๐œ๐œโƒ— =

๐œ•๐œ•๐œ•๐œ•x ๐œ•๐œ•๐œ•๐œ•y ๐œ•๐œ•๐œ•๐œ•z ๐œ•๐œ• ๐œ•๐œ• ๐œ•๐œ• + + = = (๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ โˆ’ ๐‘ง๐‘ง 2 ) + (๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ + ๐‘ง๐‘ง) + (2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ 2 ) ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• โˆ‡ ยท ๐œ๐œโƒ— = 1 โˆ’ 1 + 0 = 0

Therefore this flow can belong to an incompressible flow. Case 2: For case two we have ๐œ๐œx = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

๐œ๐œy = โˆ’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ 2

Continuity equation: For incompressible flow:

๐‘ง๐‘ง 2 ๐œ๐œz = (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ 2 โˆ’ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ) 2 ๐ท๐ท๐ท๐ท + ๐œŒ๐œŒ(โˆ‡ ยท ๐œ๐œโƒ—) = 0 ๐ท๐ท๐ท๐ท โˆ‡ ยท ๐œ๐œโƒ— = 0

65

rev 112420


Chapter 4 - Transport Equations for Single-Phase Flow

โˆ‡ ยท ๐œ๐œโƒ— =

๐œ•๐œ•๐œ•๐œ•x ๐œ•๐œ•๐œ•๐œ•y ๐œ•๐œ•๐œ•๐œ•z ๐œ•๐œ• ๐œ•๐œ• ๐œ•๐œ• ๐‘ง๐‘ง 2 (โˆ’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ก๐‘ก 2 ) + ๏ฟฝ (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ 2 โˆ’ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ)๏ฟฝ + + = = (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) + ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• 2 โˆ‡ ยท ๐œ๐œโƒ— = ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ก๐‘ก 2 + ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ก๐‘ก 2 โˆ’ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 0

Therefore this flow can belong to an incompressible flow.

66

rev 112420


Chapter 5 Transport Equations for Two-Phase Flow Contents Problem 5.1 Area-averaged parameters ...............................................................................

68

Problem 5.2 Momentum balance for a two-phase jet load ..................................................

69

Problem 5.3 Estimating phase velocity differential ..............................................................

71

Problem 5.4 Torque on vessel due to jet from hot leg break ................................................

73

Problem 5.5 Interfacial term in the momentum equation .....................................................

76

67

rev 112420


Chapter 5 - Transport Equations for Two-Phase Flow

PROBLEM 5.1 QUESTION Area Averaged Parameters (Section 5.4) In a BWR assembly it is estimated that the exit quality is 0.15 and the mass flow rate is 17.5 kg/s. If the pressure is 7.2 MPa, and the slip ratio can be given as S = 1.5, determine {ฮฑ}, {ฮฒ}, {jv}, Gv, and Gl. The flow area of the assembly is 1.2 ร— 102 m2. Answers: {ฮฑ} = 0.6968 {ฮฒ} = 0.7751 { j v } = 5.80 m/s Gv = 218.75 kg/m2 s Gl = 1239.6 kg/m2 s

PROBLEM 5.1 SOLUTION Area Averaged Parameters (Section 5.4) From the problem statement we are given: โ€“ exit quality, xex = 0.15 โ€“ mass flow rate, แน = 17.5 kg/s โ€“ slip ratio, S = 1.5 โ€“ cross sectional area, A = 1.2 ร— 10โˆ’2 m2 โ€“ operating pressure, P = 7.2 MPa At the operating pressure, the densities of the vapor and liquid phase are ฯg = 37.71 kg/m3

ฯf = 736.49kg/m3

Void Fraction To determine the void fraction we use {๐›ผ๐›ผ} =

1 = 0.6968 1 โˆ’ ๐‘ฅ๐‘ฅ ๐œŒ๐œŒ๐‘”๐‘” 1 + ๐‘ฅ๐‘ฅ ๐‘’๐‘’๐‘’๐‘’ ๐œŒ๐œŒ ๐‘†๐‘† ๐‘’๐‘’๐‘’๐‘’ ๐‘“๐‘“

Volumetric Flow Fraction The volumetric flow fraction is {๐›ฝ๐›ฝ} =

1 = 0.7751 1 โˆ’ ๐‘ฅ๐‘ฅ๐‘’๐‘’๐‘’๐‘’ ๐œŒ๐œŒ๐‘”๐‘” 1 + ๐‘ฅ๐‘ฅ ๐œŒ๐œŒ๐‘“๐‘“ ๐‘’๐‘’๐‘’๐‘’

Superficial Vapor Velocity The superficial vapor velocity is

68

rev 112420


Chapter 5 - Transport Equations for Two-Phase Flow

{๐‘—๐‘—๐‘ฃ๐‘ฃ } =

๐‘š๐‘šฬ‡ ๐‘ฃ๐‘ฃ ๐‘š๐‘šฬ‡๐‘ฅ๐‘ฅ = = 5.80 mโ„s ๐œŒ๐œŒ๐‘”๐‘” ๐ด๐ด ๐œŒ๐œŒ๐‘”๐‘” ๐ด๐ด

Vapor Mass Flux The vapor mass flux is {๐บ๐บ๐‘ฃ๐‘ฃ } =

๐‘š๐‘šฬ‡๐‘ฃ๐‘ฃ ๐‘š๐‘šฬ‡๐‘ฅ๐‘ฅ = = 218.75kg/m2 s ๐ด๐ด ๐ด๐ด

Liquid Mass Flux The liquid mass flux is {๐บ๐บ๐‘™๐‘™ } =

๐‘š๐‘šฬ‡๐‘™๐‘™ ๐‘š๐‘šฬ‡(1 โˆ’ ๐‘ฅ๐‘ฅ) = = 1239.6kgโ„m2 s ๐ด๐ด ๐ด๐ด

PROBLEM 5.2 QUESTION

Momentum Balance for a Two-phase Jet Load (Section 5.5) Calculate the force on a wall subjected to a two-phase jet (Figure 5.10) that has the following parameters: Mass flux at exit, Gm = 10.75 ร— 103 kg/m2 s Exit diameter, D = 0.3 m Upstream pressure, P = 7.2 MPa Pressure at throat, Po = 3.96 MPa Quality at exit, xo = 0.68 Slip ratio, So = 1.5

FIGURE 5.10 Two-phase jet impacting a wall. Answer: Force = 0.416 MN

69

rev 112420


Chapter 5 - Transport Equations for Two-Phase Flow

PROBLEM 5.2 SOLUTION Momentum Balance for a Two-phase Jet Load (Section 5.5)

G = 10.75 x 103 kg/m2 sec Po (Pressure at throat) = 3.96 MPa xo = 0.68 s = 1.5

FIGURE SM-5.1 Control volume for Problem 5.2 Momentum Equation: ๐œ•๐œ• [๐‘š๐‘š ๐‘ฃ๐‘ฃโƒ— ] = ๏ฟฝ(๐‘š๐‘šฬ‡๐พ๐พ ๐‘ฃ๐‘ฃโƒ—๐พ๐พ ) + ๐‘š๐‘šฬ‡๐พ๐พ ๐‘ฃ๐‘ฃโƒ—๐พ๐พ๐‘ ๐‘  + ๏ฟฝ ๐น๐นโƒ—๐‘—๐‘—๐‘—๐‘— โˆ’ ๏ฟฝ๏ฟฝ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐ด๐ดโƒ—๐พ๐พ ๏ฟฝ + ๐น๐นโƒ—๐‘ ๐‘ ๐‘ ๐‘  + ๐‘š๐‘š๐พ๐พ ๐‘”๐‘”โƒ— ๐‘—๐‘— ๐œ•๐œ•๐œ•๐œ• ๐พ๐พ ๐พ๐พ

Assumptions:

๐‘—๐‘—

๐‘—๐‘—

(1)

๐‘—๐‘—

โ€“ steady state โ€“ the cross section of jet area is constant โ€“ horizontal flow โ€“ thermal equilibrium (no phase transfer inside control volume) โ€“ no friction In the x direction: [๐‘ฅ๐‘ฅ๐‘œ๐‘œ ๐œ๐œ๐œ๐œ๐œ๐œ + (1 โˆ’ ๐‘ฅ๐‘ฅ๐‘œ๐‘œ )๐œ๐œ๐‘™๐‘™๐‘™๐‘™ ]๐‘š๐‘šฬ‡ + ๐‘ƒ๐‘ƒ๐‘œ๐‘œ ๐ด๐ด๐‘œ๐‘œ โˆ’ ๐‘ƒ๐‘ƒ๐‘ค๐‘ค ๐ด๐ด๐‘ค๐‘ค = 0

(2)

๐น๐น = [๐‘ฅ๐‘ฅ๐‘œ๐‘œ ๐œ๐œ๐œ๐œ๐œ๐œ + (1 โˆ’ ๐‘ฅ๐‘ฅ๐‘œ๐‘œ )๐œ๐œ๐‘™๐‘™๐‘™๐‘™ ]๐‘š๐‘šฬ‡ + ๐‘ƒ๐‘ƒ๐‘œ๐‘œ ๐ด๐ด๐‘œ๐‘œ

(3)

where Ao = Aw since the cross sectional area is constant and the force is given by F = PwAw. Therefore we can rewrite as The vapor velocity can be determined as

and the liquid velocity is

๐œ๐œ๐œ๐œ๐œ๐œ =

๐บ๐บ๐‘š๐‘š ๐‘ฅ๐‘ฅ๐‘œ๐‘œ ๐œŒ๐œŒ๐œ๐œ ๐›ผ๐›ผ๐‘œ๐‘œ

70

(4)

rev 112420


Chapter 5 - Transport Equations for Two-Phase Flow

๐œ๐œ๐‘™๐‘™๐‘™๐‘™ =

๐บ๐บ๐‘š๐‘š (1 โˆ’ ๐‘ฅ๐‘ฅ๐‘œ๐‘œ ) ๐œŒ๐œŒ๐‘™๐‘™ (1 โˆ’ ๐›ผ๐›ผ๐‘œ๐‘œ )

(5)

The void fraction can be determined from the slip ratio and quality ๐›ผ๐›ผ๐‘œ๐‘œ =

1 1~๐‘ฅ๐‘ฅ ๐œŒ๐œŒ 1 + ๐‘ฅ๐‘ฅ ๐‘œ๐‘œ ๐œŒ๐œŒ๐‘ฃ๐‘ฃ ๐‘†๐‘† ๐‘œ๐‘œ ๐‘™๐‘™

(6)

Substituting these equations into Equation (3) and substituting GmAo = แน, we get 2 ๐น๐น = ๐ด๐ด๐‘œ๐‘œ ๐บ๐บ๐‘š๐‘š ๏ฟฝ

(1 โˆ’ ๐‘ฅ๐‘ฅ๐‘œ๐‘œ )2 ๐‘ฅ๐‘ฅ๐‘œ๐‘œ2 + ๏ฟฝ + ๐‘๐‘๐‘œ๐‘œ ๐ด๐ด๐‘œ๐‘œ ๐œŒ๐œŒ๐œ๐œ ๐›ผ๐›ผ๐‘œ๐‘œ ๐œŒ๐œŒ๐‘™๐‘™ (1 โˆ’ ๐›ผ๐›ผ๐‘œ๐‘œ )

(7)

At the upstream pressure (7.2 MPa), the densities of vapor and liquid are ๐œŒ๐œŒ๐œ๐œ = ๐œŒ๐œŒ๐‘”๐‘” = 37.71kg/m3

The cross sectional area is

๐œŒ๐œŒ๐‘™๐‘™ = ๐œŒ๐œŒ๐‘“๐‘“ = 736.84kg/m3

๐œ‹๐œ‹๐ท๐ท2 = 7.0686 ร— 10โˆ’2 m2 ๐ด๐ด๐‘œ๐‘œ = 4

(8)

(9)

The void fraction can be determined with Equation (6) to be ฮฑo = 0.9651. Solving for the force in Equation (7) we get ๐น๐น = 0.461 MN

(10)

PROBLEM 5.3 QUESTION Estimating phase velocity differential (Section 5.4) A vertical tube is operating at high pressure conditions as follows (Figure 5.11): Operating Conditions Pressure, P = 7.4 MPa Mass flux, G = 2000 kg/m2 s Quality at exit, xe = 0.0693 Geometry D = 10.0 mm L = 3.66 m Saturated water properties at 7.4 MPa hf = 1331.33 kJ/kg hg = 2759.60 kJ/kg hfg = 1448.27 kJ/kg vf = 0.001381 m3/kg vg = 0.02390 m3/kg

71

rev 112420


Chapter 5 - Transport Equations for Two-Phase Flow

vfg = 0.02252 m3/kg

FIGURE 5.11 Cross-section of a high-pressure tube. Assuming that thermal equilibrium between steam and water has been attained at the tube exit, find: 1. The tube exit cross-sectional averaged true and superficial vapor velocities; that is, find {ฯ…ฯ…}ฯ… and {jฯ…}. 2. The difference between the tube exit cross sectional averaged vapor and liquid velocities; that is, find {ฯ…ฯ…}ฯ… โˆ’ {ฯ…l}l at the exit. 3. The difference between the tube exit cross-sectional averaged vapor and liquid superficial velocities; that is, find {j ฯ…} โˆ’ {j l }. Answers: 1. {ฯ…ฯ…}ฯ… = 7.45 m/s, {j ฯ…} = 3.31 m/s 2. 2.83 m/s 3. 0.74 m/s

72

rev 112420


Chapter 5 - Transport Equations for Two-Phase Flow

PROBLEM 5.3 SOLUTION Estimating phase velocity differential (Section 5.4)

G = 2000 kg/m2 sec D = 10.0 mm = 1.0 x 10-2m L = 3.66 m P = 7. MPa Figure 5.11 Cross-section of a high-pressure tube.

xe = 0.0693

1. The tube exit cross-section averaged true and superficial vapor velocity ๐บ๐บ๐‘ฅ๐‘ฅ๐‘’๐‘’ = ๐บ๐บ๐‘ฅ๐‘ฅ๐‘’๐‘’ v๐‘”๐‘” = 3.31 mโ„s ๐œŒ๐œŒ๐œ๐œ ๐œ‹๐œ‹ ๐ท๐ท 2 void area 4 4 ๏ฟฝ 3 ๏ฟฝ 4 {๐›ผ๐›ผ}๐‘’๐‘’ = = ๐œ‹๐œ‹ = = 0.444 2 flow area 9 4 ๐ท๐ท {๐‘—๐‘—๐œ๐œ } =

{๐œ๐œ๐œ๐œ }๐œ๐œ =

{๐‘—๐‘—๐œ๐œ } = 7.45 mโ„s {๐›ผ๐›ผ}๐‘’๐‘’

2. The difference between the tube exit cross-sectional averaged vapor and liquid velocities {๐‘—๐‘—๐‘™๐‘™ } =

๐บ๐บ(1 โˆ’ ๐‘ฅ๐‘ฅ๐‘’๐‘’ ) = ๐บ๐บ(1 โˆ’ ๐‘ฅ๐‘ฅ๐‘’๐‘’ )v๐‘“๐‘“ = 2.57 mโ„s ๐œŒ๐œŒ๐‘™๐‘™ {๐‘—๐‘—๐‘™๐‘™ } {๐œ๐œ๐‘™๐‘™ }๐‘™๐‘™ = = 4.62 mโ„s {1 โˆ’ ๐›ผ๐›ผ๐‘’๐‘’ } โˆด {๐œ๐œ๐œ๐œ }๐œ๐œ โˆ’ {๐œ๐œ๐‘™๐‘™ }๐‘™๐‘™ = 2.83 mโ„s

3. The difference between the tube cross-sectional averaged vapor and liquid superficial velocities {๐‘—๐‘—๐œ๐œ }๐œ๐œ โˆ’ {๐‘—๐‘—๐‘™๐‘™ } = 0.74 mโ„s

PROBLEM 5.4 QUESTION Torque on Vessel due to Jet from Hot Leg Break (Section 5.5) Calculate the torque on a pressure vessel when a break develops in the hot leg as shown in Figure 5.12. The conditions of the two phase emerging jet are: Ger = 10.75 ร— 103 kg/m2 s

73

rev 112420


Chapter 5 - Transport Equations for Two-Phase Flow

xer = 0.68 L=5m Angle ฮธ = 70ยฐ S = 1.5 Po = 3.96 MPa P = 7.2 Mpa Flow area at the rupture โ‰ˆ 0.08 m2

FIGURE 5.12 Two-phase jet at a pipe break. Answer: Torque โ‰ˆ 2.8 MN m

PROBLEM 5.4 SOLUTION Torque on Vessel due to Jet from Hot Leg Break (Section 5.5)

G = 10.75 x 103 kg/m2 sec x = 0.68 L=5m S = 1.5 Po = 3.96 MPa P = 7.2 MPa A = 0.08 m2 FIGURE 5.12

74

rev 112420


Chapter 5 - Transport Equations for Two-Phase Flow

Momentum Equation: ๐œ•๐œ• [๐‘š๐‘š ๐‘ฃ๐‘ฃโƒ— ] = ๏ฟฝ(๐‘š๐‘šฬ‡๐พ๐พ ๐‘ฃ๐‘ฃโƒ—๐พ๐พ ) + ๐‘š๐‘šฬ‡๐พ๐พ ๐‘ ๐‘  ๐‘ฃ๐‘ฃโƒ—๐พ๐พ๐‘ ๐‘  + ๏ฟฝ ๐น๐นโƒ—๐‘—๐‘—๐‘—๐‘— โˆ’ ๏ฟฝ๏ฟฝ๐‘ƒ๐‘ƒ๐พ๐พ ๐ด๐ดโƒ—๐พ๐พ ๏ฟฝ + ๐น๐นโƒ—๐‘ ๐‘ ๐‘ ๐‘  + ๐‘š๐‘š๐พ๐พ ๐‘”๐‘”โƒ— ๐‘—๐‘— ๐œ•๐œ•๐œ•๐œ• ๐พ๐พ ๐พ๐พ

Assumptions: โ€“ steady state

๐‘—๐‘—

๐‘—๐‘—

(1)

๐‘—๐‘—

โ€“ uniform pressure across the cross-section โ€“ no gravitational change 0 = [๐‘ฅ๐‘ฅ๐‘–๐‘– ๐œ๐œ๐œ๐œ๐œ๐œ + (1 โˆ’ ๐‘ฅ๐‘ฅ๐‘–๐‘– )๐œ๐œ๐‘™๐‘™๐‘™๐‘™ ]๐‘š๐‘šฬ‡๐šค๐šคโƒ— โˆ’ [๐‘ฅ๐‘ฅ๐‘œ๐‘œ ๐œ๐œ๐œ๐œ๐œ๐œ + (1 โˆ’ ๐‘ฅ๐‘ฅ๐‘œ๐‘œ )๐œ๐œ๐‘™๐‘™๐‘™๐‘™ ]๐‘š๐‘šฬ‡๐‘›๐‘›๏ฟฝโƒ—๐‘œ๐‘œ

(2)

0 = ๐‘ƒ๐‘ƒ๐ด๐ด๐‘–๐‘– ๐šค๐šคโƒ— โˆ’ (๐‘ƒ๐‘ƒ๐‘œ๐‘œ โˆ’ ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž )๐ด๐ด๐‘œ๐‘œ ๐‘›๐‘›๏ฟฝโƒ—๐‘œ๐‘œ + ๐น๐นโƒ—

(3)

๐น๐น๐‘ฆ๐‘ฆ = [๐‘ฅ๐‘ฅ๐‘œ๐‘œ ๐œ๐œ๐œ๐œ๐œ๐œ + (1 โˆ’ ๐‘ฅ๐‘ฅ๐‘œ๐‘œ )๐œ๐œ๐‘™๐‘™๐‘™๐‘™ ]๐‘š๐‘šฬ‡ sin ๐œƒ๐œƒ + (๐‘ƒ๐‘ƒ๐‘œ๐‘œ โˆ’ ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž )๐ด๐ด๐‘œ๐‘œ sin ๐œƒ๐œƒ

(4)

where ๐‘›๐‘›๏ฟฝโƒ—๐‘œ๐‘œ is normal vector of rupture cross section. Only the y-direction component of ๐น๐นโƒ— will cause a torque on the vessel. The y-direction balance: where

๐œ๐œ๐œ๐œ๐œ๐œ =

and

๐œ๐œ๐‘™๐‘™๐‘™๐‘™ =

๐‘—๐‘—๐œ๐œ ๐บ๐บ๐‘๐‘๐‘๐‘ ๐‘ฅ๐‘ฅ๐‘๐‘๐‘๐‘ = ๐›ผ๐›ผ๐‘œ๐‘œ ๐œŒ๐œŒ๐œ๐œ ๐›ผ๐›ผ๐‘œ๐‘œ

๐‘—๐‘—๐œ๐œ ๐บ๐บ๐‘๐‘๐‘๐‘ (1 โˆ’ ๐‘ฅ๐‘ฅ๐‘๐‘๐‘๐‘ ) = 1 โˆ’ ๐›ผ๐›ผ๐‘œ๐‘œ ๐œŒ๐œŒ๐‘™๐‘™ (1 โˆ’ ๐›ผ๐›ผ๐‘œ๐‘œ )

(5)

(6)

Substituting the velocities in the momentum equation we get and using mass flux instead of mass flow rate (แน= Gcr Ao), (1 โˆ’ ๐‘ฅ๐‘ฅ๐‘๐‘๐‘๐‘ )2 ๐‘ฅ๐‘ฅ๐‘œ๐‘œ2 (7) ๐น๐น๐‘ฆ๐‘ฆ = ๏ฟฝ + ๏ฟฝ ๐บ๐บ 2 ๐ด๐ด sin ๐œƒ๐œƒ + (๐‘๐‘๐‘œ๐‘œ โˆ’ ๐‘๐‘๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž )๐ด๐ด๐‘œ๐‘œ sin ๐œƒ๐œƒ ๐œŒ๐œŒ๐œ๐œ ๐›ผ๐›ผ๐‘œ๐‘œ ๐œŒ๐œŒ๐‘™๐‘™ (1 โˆ’ ๐›ผ๐›ผ๐‘œ๐‘œ ) ๐‘๐‘๐‘๐‘ ๐‘œ๐‘œ The torque is then

(8)

๐œ๐œ = ๐ฟ๐ฟ๐ฟ๐ฟ๐‘ฆ๐‘ฆ

Thus,

(1 โˆ’ ๐‘ฅ๐‘ฅ๐‘œ๐‘œ )2 ๐‘ฅ๐‘ฅ๐‘œ๐‘œ2 ๐œ๐œ = ๏ฟฝ๏ฟฝ + ๏ฟฝ ๐บ๐บ 2 ๐ด๐ด sin ๐œƒ๐œƒ + (๐‘ƒ๐‘ƒ๐‘œ๐‘œ โˆ’ ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž )๐ด๐ด๐‘œ๐‘œ sin ๐œƒ๐œƒ๏ฟฝ ๐ฟ๐ฟ ๐œŒ๐œŒ๐œ๐œ ๐›ผ๐›ผ๐‘œ๐‘œ ๐œŒ๐œŒ๐‘™๐‘™ (1 โˆ’ ๐›ผ๐›ผ๐‘œ๐‘œ ) ๐‘๐‘๐‘๐‘ ๐‘œ๐‘œ

(9)

The densities of vapor and liquid at 7.2 MPa are The void fraction is

๐œŒ๐œŒ๐œ๐œ = 37.31 kgโ„m3

๐œŒ๐œŒ๐‘™๐‘™ = 736.48 kgโ„m3

75

rev 112420


Chapter 5 - Transport Equations for Two-Phase Flow

๐›ผ๐›ผ๐‘œ๐‘œ =

and area

1 = 0.9651 1 โˆ’ ๐‘ฅ๐‘ฅ๐‘๐‘๐‘๐‘ ๐œŒ๐œŒ๐œ๐œ 1 + ๐‘ฅ๐‘ฅ ๐œŒ๐œŒ๐‘™๐‘™ ๐‘†๐‘† ๐‘๐‘๐‘๐‘ ๐ด๐ด๐‘œ๐‘œ = 0.08 m2

Solving for the torque we get

๐œ๐œ = 2.18 MN m

PROBLEM 5.5 QUESTION Interfacial Term in the Momentum Equation (Section 5.6) In a two-fluid model the momentum equation of the vapor in one-dimensional flow may be written from Equation 5.138 for flow in the z direction as ๐œ•๐œ• ๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•๐œ•๐œ• (๐›ผ๐›ผ๐›ผ๐›ผ๐œ๐œ ๐‘‰๐‘‰๐œ๐œ ๐ด๐ด) = โˆ’ (๐›ผ๐›ผ๐›ผ๐›ผ๐œ๐œ ๐‘‰๐‘‰๐œ๐œ ๐ด๐ด) + ๐›ค๐›ค๐ด๐ด๐ด๐ด๐œ๐œ๐œ๐œ โˆ’ ๐ด๐ด โˆ’ ๐น๐น๐‘ค๐‘ค๐‘ค๐‘ค โˆ’ ๐น๐น๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  โˆ’ ๐›ผ๐›ผ๐›ผ๐›ผ๐œ๐œ ๐‘”๐‘”๐‘”๐‘” cos ๐œƒ๐œƒ ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•

where ฮ“ = rate of mass exchange between vapor and liquid per unit volume; Fwฯ… = rate of momentum loss at the wall due to friction; A = flow area; Vฯ…s = vapor velocity at the liquidvapor interface; and Fsฯ… = rate of momentum exchange between vapor and liquid, Given the following: Steady-state flow condition in a tube Tube diameter is D Uniform axial heat flux qโ€ณ Annular flow conditions prevail 1. Write appropriate mass balance and energy balance equations for vapor to complete the model. State any assumption you made. 2. Provide an expression for ฮ“. Justify your answer. Answer: 4๐‘”๐‘”โ€ณ

2. ๐›ค๐›ค = ๐ท๐ทโ„Ž

๐‘“๐‘“๐‘“๐‘“

PROBLEM 5.5 SOLUTION Interfacial Term in the Momentum Equation (Section 5.6)

Momentum equation of vapor (from Equation 5.138 for flow in the z direction):

76

rev 112420


Chapter 5 - Transport Equations for Two-Phase Flow

๐œ•๐œ• ๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•๐œ•๐œ• (๐›ผ๐›ผ๐›ผ๐›ผ๐œ๐œ ๐‘‰๐‘‰๐œ๐œ ๐ด๐ด) = โˆ’ (๐›ผ๐›ผ๐›ผ๐›ผ๐œ๐œ ๐‘‰๐‘‰๐œ๐œ ๐ด๐ด) + ๐›ค๐›ค๐ด๐ด๐ด๐ด๐œ๐œ๐œ๐œ โˆ’ ๐ด๐ด โˆ’ ๐น๐น๐‘ค๐‘ค๐‘ค๐‘ค โˆ’ ๐น๐น๐‘ ๐‘ ๐‘ ๐‘  โˆ’ ๐›ผ๐›ผ๐›ผ๐›ผ๐œ๐œ ๐‘”๐‘”๐‘”๐‘” cos ๐œƒ๐œƒ ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•

where ฮ“ = rate of mass exchange between vapor and liquid per unit volume; Fwฯ… = rate of momentum loss at the wall due to friction; A = flow area; Vฯ…s = vapor velocity at the liquid-vapor interface; and Fsฯ… = rate of momentum exchange between vapor and liquid. Mass balance equation for vapor (from Equation 5.132 for flow in the z direction): ๐œ•๐œ• ๐œ•๐œ• (๐›ผ๐›ผ๐›ผ๐›ผ๐œ๐œ ๐ด๐ด) + [(๐›ผ๐›ผ๐›ผ๐›ผ๐œ๐œ ๐‘‰๐‘‰๐œ๐œ )๐ด๐ด] = ๐›ค๐›ค๐›ค๐›ค ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•

Energy balance equation (from Equation 5.145 for flow in the z direction, neglecting shear effects): ๐œ•๐œ• ๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• [(๐œŒ๐œŒ๐œ๐œ ๐‘ข๐‘ข๐œ๐œ๐‘œ๐‘œ ๐›ผ๐›ผ๐œ๐œ )๐ด๐ด] + [(๐œŒ๐œŒ๐œ๐œ โ„Ž๐œ๐œ๐‘œ๐‘œ ๐‘‰๐‘‰๐œ๐œ ๐›ผ๐›ผ๐œ๐œ )๐ด๐ด] = ๐›ค๐›คโ„Ž๐œ๐œ ๐ด๐ด โˆ’ ๏ฟฝ๐‘ƒ๐‘ƒ๐‘˜๐‘˜ ๏ฟฝ ๐ด๐ด + (๐‘ž๐‘ž๐œ๐œโ€ด ๐›ผ๐›ผ๐œ๐œ )๐ด๐ด ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• โ€ด ) (๐œŒ๐œŒ ๐›ผ๐›ผ )๐ด๐ด โˆ’ (๐œŒ๐œŒ๐œ๐œ ๐‘”๐‘”๐‘”๐‘”๐œ๐œ ๐›ผ๐›ผ๐œ๐œ ) ๐ด๐ด โˆ’(๐‘ž๐‘ž๐œ๐œโ€ด ๐›ผ๐›ผ๐‘ค๐‘ค๐‘ค๐‘ค P๐‘ค๐‘ค ) โˆ’ (๐‘ž๐‘ž๐‘ ๐‘ ๐‘ ๐‘  P๐‘ ๐‘  โˆ’ ๐œ•๐œ•๐œ•๐œ• ๐œ๐œ ๐œ๐œ

Where Pw is the wall perimeter in the Az plane and Ps is the interface perimeter in the Az plane. 2. Assume all heat is used to generate vapor in the steady state conditions. ๐›ค๐›ค =

๐‘š๐‘šฬ‡๐‘˜๐‘˜๐‘˜๐‘˜ V

(Equation 5.88)

๐‘ž๐‘ž โ€ณ . (ฯ€๐ท๐ท. 1)โ„โ„Ž๐‘“๐‘“๐‘“๐‘“ 4๐‘ž๐‘ž โ€ณ ๐›ค๐›ค = = ฯ€๐ท๐ท2 ๐ท๐ทโ„Ž๐‘“๐‘“๐‘“๐‘“ . 1 4

77

rev 112420


Chapter 6 Thermodynamics of Nuclear Energy Conversion Systems - Nonflow and Steady Flow: First- and SecondLaw Applications Contents Problem 6.1

Work output of a fuel-water interaction............................................................ 79

Problem 6.2

Evaluation of alternate ideal Rankine cycles .................................................... 80

Problem 6.3

Availability analysis of a simplified BWR ....................................................... 85

Problem 6.4

Thermodynamic analysis of a gas turbine ........................................................ 94

Problem 6.5

Analysis of a steam turbine ............................................................................... 95

Problem 6.6

Irreversibility problems involving the Rankine cycle ....................................... 96

Problem 6.7

Replacement of a steam generator in a PWR with a flash tank ....................... 100

Problem 6.8

Advantages of moisture separation and feedwater heating............................... 113

Problem 6.9

Ideal Brayton Cycle .......................................................................................... 114

Problem 6.10 Complex real Brayton cycle.............................................................................. 117 Problem 6.11 Cycle thermal efficiency problem involving a bottoming cycle ...................... 121 Problem 6.12 Nuclear cogeneration plant ............................................................................... 125

78

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

PROBLEM 6.1 QUESTION Work Output of a Fuel-Water Interaction (Section 6.2) Compute the work done by a fuel-water interaction assuming that the 40,000 kg of mixed oxide fuel and 4000 kg of water expand independently and isentropically to 1 atmosphere. Assume that the initial fuel and water conditions are such that equilibrium mixture temperature (Te) achieved is 1945 K. Other water conditions are as follows: Tinitial = 400K; ฯinitial = 945kg/m3; cฯ… = 4184J/kgโ€“K. Caution: Equation 6.9 is inappropriate for these conditions, as the coolant at state e is supercritical. Answer: 1.67 ร— 1010 J

PROBLEM 6.1 SOLUTION Work Output of a Fuel-Water Interaction (Section 6.2) Compute the work done by a fuel-water interaction assuming that the 40,000 kg of mixed oxide fuel and 4000 kg of water (mw) expand independently and isentropically to 1 atmosphere. Assume that the initial fuel and water conditions are such that equilibrium mixture temperature (Te) achieved is 1945 K. Other water conditions are as follows: Tintial = 400 K; ฯinitial = 945 kg/m3; cฯ… = 4184J/kg โ€“ K. Let us model the transformation in two steps. First, water and fuel undergo an isochore transformation to reach thermal equilibrium. This means that volume in conserved. This isochore transformation, also called isometric, does, by nature, not produce any work because W= 0 . This transformation turns state 1 to state e. Then the water expands โˆซ โˆ’ pdV =

isentropically and produces the work. This second transformation leads to the final state, state 2. As this expansion is very quick, let us postulate that the transformation is adiabatic. Obtain State 1 Properties To begin, the specific entropy and specific internal energy at state 1 can be determined, using steam tables, from the initial temperature and initial density. โˆ’ s1 = 1.58787 kJ/kg โ€“ K โˆ’ u1 = 527.081 kJ/kg Find specific entropy at state e For a pure substance the following relation exists between thermodynamic properties for two infinitesimally close equilibrium states (Equation 6.10a): ๐‘‘๐‘‘โ„Ž = ๐‘‡๐‘‡๐‘‡๐‘‡๐‘‡๐‘‡ + ๐œ๐œ๐œ๐œ๐œ๐œ

(1)

๐‘‘๐‘‘โ„Ž = ๐‘‘๐‘‘๐‘‘๐‘‘ + ๐‘๐‘๐‘๐‘๐‘๐‘ + ๐œ๐œ๐œ๐œ๐œ๐œ

(2)

Recalling that specific enthalpy is defined as h = u +pฯ…i and we may differentiate this to get We may subtract Equation (2) from Equation (1) to get the relation

79

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

(3)

0 = ๐‘‡๐‘‡๐‘‡๐‘‡๐‘‡๐‘‡ โˆ’ ๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๐‘๐‘๐‘๐‘๐‘๐‘

In the first process (state 1 to e) an equilibrium temperature is found for the fuel and coolant under the condition of no expansion and therefore, dฯ… = 0. Rearranging Equation (3): ๐‘‘๐‘‘๐‘‘๐‘‘ =

๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‡๐‘‡

(4)

Using the state equation that expresses specific internal energy as a function of temperature: ๐‘‘๐‘‘๐‘‘๐‘‘ =

๐‘๐‘๐œ๐œ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‡๐‘‡

(5)

Integrating Equation (5) from state 1 to e, we have ๐‘‡๐‘‡e ๐‘ ๐‘ ๐‘’๐‘’ โˆ’ ๐‘ ๐‘ 1 = ๐‘๐‘๐œ๐œ ln ๏ฟฝ ๏ฟฝ ๐‘‡๐‘‡1

(6)

We may now evaluate the specific entropy at state e to be: ๐‘ ๐‘ ๐‘’๐‘’ = 1.58787

kJ kJ 1945 K kJ ๏ฟฝ = 8.205 + 4.184 ln ๏ฟฝ kg K kg K 400 K kg K

(7)

Calculate specific internal energy at state e Using the state equation we can calculate the specific internal energy at state e: ๐‘ข๐‘ข๐‘’๐‘’ = ๐‘ข๐‘ข1 + ๐‘๐‘๐œ๐œ (๐‘‡๐‘‡e โˆ’ ๐‘‡๐‘‡1 ) = 6.99 ร— 106

J kg

(8)

Obtain specific internal energy at state 2 At state 2 we know that the pressure is P2 = 101.325 kPa and that the process from state 2 to e is isentropic and therefore, ๐‘ ๐‘ 2 = ๐‘ ๐‘ ๐‘’๐‘’ = J

8205.1 kg K . Since we have identified two independent state variables, we may use steam tables to determine specific internal energy:

๐‘ข๐‘ข2 = 2807.53

kJ kg

(9)

Calculate the work from state e to 2 The process form state e to state 2 is adiabatic and therefore using the first law we arrive at the following expression for the work. ๐‘Š๐‘Š๐‘’๐‘’โ†’2 = ๐‘š๐‘š๐‘ค๐‘ค (๐‘ข๐‘ข๐‘’๐‘’ โˆ’ ๐‘ข๐‘ข2 ) = 1.67 ร— 1010 J

PROBLEM 6.2 QUESTION

Evaluation of Alternate Ideal Rankine Cycles (Section 6.3) Three alternative steam cycles illustrated in Figure 6.37 are proposed for a nuclear power station capable of producing either saturated steam or superheated steam at a temperature of 293 ยฐC. The condensing steam temperature is 33 ยฐC.

80

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications kg steam

1. Assuming ideal machinery, calculate the cycle thermal efficiency and steam rate ๏ฟฝ kWe hr ๏ฟฝ for each cycle using steam tables.

2. For each cycle, compare the amount of heat added per unit mass of working fluid in the legs 3โ€ฒ โ†’ 4 and 4 โ†’ 1.

3. Briefly compare advantages and disadvantages of each of these cycles. Which would you use? Answers: kg steam

1. ฮทth= 38.2%, 45.9%, 36.8% and the steam rate = 3.60, 5.38, 3.54 ๏ฟฝ kWe hr ๏ฟฝ kJ

2. ๐‘„๐‘„3โ€ฒ โ†’4 = 1.163 ร— 103 , 0, 1.011 ร— 103 ๏ฟฝkg๏ฟฝ ;

๐‘„๐‘„4โ†’1 = 1.456 ร— 103 , 1.456 ร— 103 , 1.748 ร— 103 ๏ฟฝ

kJ ๏ฟฝ kg

FIGURE 6.37 Alternate ideal Rankine cycles.

PROBLEM 6.2 SOLUTION Evaluation of Alternate Ideal Rankine Cycles (Section 6.3) Three alternative steam cycles illustrated in Figure 6.37 are proposed for a nuclear power station capable of producing either saturated steam or superheated steam at a temperature of 293 ยฐC. The condensate steam temperature is 33 ยฐC. ๐ค๐ค๐ค๐ค ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ

1. Assuming ideal machinery, calculate the cycle thermal efficiency and steam rate ๏ฟฝ ๐ค๐ค๐ค๐ค๐ค๐ค ๐ก๐ก๐ก๐ก ๏ฟฝ for each cycle using steam tables.

81

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

Cycle 1 (Rankine Saturated Steam Cycle): We may begin at point 4. At this point we know two thermodynamic properties (T4 = 293 ยฐC and x4 = 0) and therefore define all other properties of interest at this point, such as the pressure and the enthalpy. ๐‘ƒ๐‘ƒ4 = 7.77 MPa โ„Ž4 = 1306.3

1.

kJ kg

Similarly we may look at point 1, where we know temperature and quality, T1= 293 ยฐC and x =

๐‘ƒ๐‘ƒ1 = 7.77 MPa โ„Ž1 = 2762

kJ kg

๐‘ ๐‘ 1 = 5.7604

kJ kg K

We may know determine the properties at point 2 since this process is an isentropic expansion. kJ

This means that ๐‘ ๐‘ 2 = ๐‘ ๐‘ 1 = 5.760 kg K . Now, we have two properties defined at point 2, entropy

and temperature, T2 = 33 ยฐC, and can calculate the quality. The saturated liquid entropy and kJ

kJ

saturated vapor entropy from steam tables are ๐‘ ๐‘ f = 0.47792 kg K and ๐‘ ๐‘ g = 8.3913 kg K . ๐‘ ๐‘ 2 โˆ’ ๐‘ ๐‘ ๐‘“๐‘“ ๐‘ฅ๐‘ฅ2 = = 0.668 ๐‘ ๐‘ ๐‘”๐‘” โˆ’ ๐‘ ๐‘ ๐‘“๐‘“

We may now use this quality and temperature to look up the enthalpy in steam tables: โ„Ž2 = kJ

1756.62 kg .

Next, we can determine the enthalpy and the entropy at point 3 using the temperature, T3 = 33 ยฐC, and the quality, x3 = 0. โ„Ž3 = 138.274

kJ kJ ๐‘ ๐‘ 3 = 0.47792 kg kg K

The process to get to point 3โ€ฒ is an isentropic compression and therefore, ๐‘ ๐‘ 3โ€ฒ = ๐‘ ๐‘ 3 = kJ

0.47792 kg K . We also know that the pressure at this point is the same at point 4, P3โ€ฒ = P4 = 7.77 MPa. Therefore, the enthalpy can be determine from steam tables to be: โ„Ž3โ€ฒ = 143.241

The efficiency of the cycle can be calculated: ๐œ‚๐œ‚1 =

kJ kg

๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ โˆ’ ๐‘Š๐‘Šฬ‡๐ถ๐ถ (โ„Ž1 โˆ’ โ„Ž2 ) โˆ’ (โ„Ž3โ€ฒ โˆ’ โ„Ž3 ) = = 0.382 โ„Ž1 โˆ’ โ„Ž3โ€ฒ ๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘–

(1)

The steam rate is calculated to be: ๐‘š๐‘šฬ‡1 =

1

๐‘Š๐‘Šฬ‡๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›

=

1 kg = 3.599 (โ„Ž1 โˆ’ โ„Ž2 ) โˆ’ (โ„Ž3โ€ฒ โˆ’ โ„Ž3 ) kWe hr

(2)

Cycle 2 (Carnot Cycle): We can do the same type of approach as cycle 1. We may begin at

82

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

point 4 and use the temperature and quality to determine the enthalpy and entropy. โ„Ž4 = 1306.3

kJ kg

๐‘ ๐‘ 4 = 3.1892

kJ kg K

We may move to point 1 and determine the enthalpy and entropy from the temperature and quality. โ„Ž1 = 2762

kJ kJ ๐‘ ๐‘ 1 = 5.7604 kg kg K

For point 2 we may do the same analysis as cycle 1. Moving from point 1 to point 2 there is an kJ

isentropic expansion and therefore ๐‘ ๐‘ 2 = ๐‘ ๐‘ 1 = 5.7604 kgยทK . Therefore we may determine the

quality and enthalpy as before to be:

๐‘ฅ๐‘ฅ2 = 0.668

โ„Ž2 = 1756.62

kJ kg

To determine the enthalpy at point 3, we must work backwards from point 4. The process from kJ

point 3 to point 4 is an isentropic compression and therefore, ๐‘ ๐‘ 3 = ๐‘ ๐‘ 4 = 3.1892 kg K . Using the kJ

saturated liquid and vapor entropies at this temperature, T3 = 33 ยฐC , ๐‘ ๐‘ ๐‘“๐‘“ = 0.47792 kg k and ๐‘ ๐‘ ๐‘”๐‘” = kJ

8.3913 kg K . The quality at point 3 is therefore ๐‘ฅ๐‘ฅ3 =

๐‘ ๐‘ 3 โˆ’ ๐‘ ๐‘ ๐‘“๐‘“ = 0.343 ๐‘ ๐‘ ๐‘”๐‘” โˆ’ ๐‘ ๐‘ ๐‘“๐‘“

kJ

We may then use steam tables to find that the enthalpy at this point is โ„Ž3 = 969.253 kg . The efficiency of the cycle is ๐œ‚๐œ‚2 =

๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ โˆ’ ๐‘Š๐‘Šฬ‡๐ถ๐ถ (โ„Ž1 โˆ’ โ„Ž2 ) โˆ’ (โ„Ž4 โˆ’ โ„Ž3 ) = = 0.459 โ„Ž1 โˆ’ โ„Ž4 ๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘–

(3)

The steam rate is calculated to be: ๐‘š๐‘šฬ‡2 =

1

๐‘Š๐‘Šฬ‡๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›

=

1 kg = 5.387 (โ„Ž1 โˆ’ โ„Ž2 ) โˆ’ (โ„Ž4 โˆ’ โ„Ž3 ) kWe hr

(4)

Cycle 3 (Superheated Rankine Cycle): Again, we may begin at point 4 and use the pressure, kJ

P4 = 5 MPa and quality, x4 = 0, to determine the enthalpy: โ„Ž4 = 1154.64 kg. Similarly the enthalpy kJ

at point 5 can be determine except using a quality of ๐‘ฅ๐‘ฅ5 = 1: โ„Ž5 = 2794.21 kg.

The enthalpy and entropy at point 1 can be determined using the pressure, P1 = 5 MPa, and temperature, T1 = 293 ยฐC.

83

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

โ„Ž1 = 2903.05

kJ kJ ๐‘ ๐‘ 1 = 6.17128 kg kg K

We can assume from the diagram that going from point 1 to 2 is an isentropic expansion and kJ

therefore, ๐‘ ๐‘ 2 = ๐‘ ๐‘ 1 = 6.17128 kg K . Using the saturated liquid and vapor entropies at this kJ

kJ

temperature, T2 = 33 ยฐC, ๐‘ ๐‘ ๐‘“๐‘“ = 0.47792 kg K and ๐‘ ๐‘ ๐‘”๐‘” = 8.3913 kgยทK . The quality at point 2 is therefore

๐‘ฅ๐‘ฅ2 =

๐‘ ๐‘ 2 โˆ’ ๐‘ ๐‘ ๐‘“๐‘“ = 0.719 ๐‘ ๐‘ ๐‘”๐‘” โˆ’ ๐‘ ๐‘ ๐‘“๐‘“

kJ

We can use the temperature and quality to determine the enthalpy to be โ„Ž2 = 1880.18 kg

We can use the temperature and quality at point 3, T3 = 33 ยฐC and x3 = 0, to determine the enthalpy and entropy to be โ„Ž3 = 138.274

kJ kJ ๐‘ ๐‘ 3 = 0.47792 kg kg K

At point 3โ€ฒ we know the pressure, P3โ€ฒ = 5 MPa and the entropy from the isentropic compression, kJ

๐‘ ๐‘ 3โ€ฒ = ๐‘ ๐‘ 3 = 0.47792 kg K

The efficiency of cycle 3 is ๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ โˆ’ ๐‘Š๐‘Šฬ‡๐ถ๐ถ (โ„Ž1 โˆ’ โ„Ž2 ) โˆ’ (โ„Ž3โ€ฒ โˆ’ โ„Ž3 ) ๐œ‚๐œ‚3 = = = 0.369 โ„Ž1 โˆ’ โ„Ž3โ€ฒ ๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘–

(5)

The steam rate is calculated to be: ๐‘š๐‘šฬ‡3 =

1

๐‘Š๐‘Šฬ‡๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›

=

1 kg = 3.537 (โ„Ž1 โˆ’ โ„Ž2 ) โˆ’ (โ„Ž3โ€ฒ โˆ’ โ„Ž3 ) kWe hr

(6)

2. For each cycle, compare the amount of heat added per unit mass of working fluid in legs 3โ€ฒ โ†’ 4 and 4 โ†’ 1: Cycle 1

๐‘„๐‘„3โ€ฒ โ†’4

โ„Ž4 โˆ’ โ„Ž3โ€ฒ = 1.163 ร— 103

kJ kg

โ„Ž4 โˆ’ โ„Ž3โ€ฒ = 1.011 ร— 103

kJ kg

__________

2 3

๐‘„๐‘„4โ†’1

kJ kg kJ โ„Ž1 โˆ’ โ„Ž4 = 1.456 ร— 103 kg kJ โ„Ž1 โˆ’ โ„Ž4 = 1.748 ร— 103 kg โ„Ž1 โˆ’ โ„Ž4 = 1.456 ร— 103

Comparing Case 2 against Case l, for the same amount of energy added per mass between 4 and 1, Case 2 supplies less energy/mass between 3โ€ฒ and 4. Since the work out per mass will also be the same for these two cases, Case 2 adds less heat for this work out and therefore will have a higher efficiency. Comparing Case 3 to Case l the heat added in both cases is larger. This will tend to

84

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

drive the efficiency down, however, since Case 3 adds more heat to create a superheated vapor, it extracts more work out per mass and this will raise the thermal efficiency. 3. Briefly compare advantages and disadvantages of each of these cycles. Which would you use? Case 2 has the highest efficiency and therefore would be the most advantageous to use. However, this case is ideal and uses the assumption that the fluid expands and compresses isentropically. In reality this does not happen and entropy is generated during these processes. In Case 2 the compression of the fluid occurs within the two phase dome. Pumps only like work on a liquid and compressors work on a single phase gas. Therefore to be more realistic this compression will have to take place outside of the two phase dome. In Case 1, the isentropic assumptions are still made except the compression is now occurring outside the two phase dome. This is probably the simplest Rankine cycle to create. However with the operating temperatures it does not maximize the thermal efficiency and the quality coming out of the turbine is wetter which may damage the turbine blades. Cycle 3 has the lowest steam rate, but requires more superheating equipment. Note that in the third cycle, the efficiency is actually lower than the first cycle even though we are superheating. This is because we have a fixed maximum temperature. If the temperature of the saturated vapor were kept constant, this efficiency would actually have increased.

PROBLEM 6.3 QUESTION Availability Analysis of a Simplified BWR (Section 6.4) A BWR system with a one-stage moisture separation is shown in Figure 6.38. The conditions in Table 6.20 may be used. TABLE 6.20 State Conditions for Problem 6.3 State 1 2 3 4 5 6 7 8 9

P (kPa) 6890 1380 1380 1380 6.89 6.89 1380 1380 6890

Condition Saturated vapor Saturated vapor Saturated liquid Saturated liquid

โ€“ Turbine isentropic efficiency, ฮทT = 0.90 โ€“ Pump isentropic efficiency, ฮทC = 0.85 โ€“ Environmental Temperature, To = 30 ยฐC

85

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

1. Calculate the cycle thermal efficiency 2. Recalculate the thermal efficiency of the cycle assuming that the pumps and turbines have isentropic efficiency of 100%. 3. Calculate the lost work due to the irreversibility of each component in the cycle and show numerically that the available work equals the sum of the lost work and the net work. Answers: 1. ฮทth = 34.2% 2. ฮทthi = 37.7% kJ 3. ๐‘Š๐‘Šฬ‡๐‘ข๐‘ข1๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = 2510.9 kg

kJ ๐‘Š๐‘Šฬ‡๐‘›๐‘›๐‘›๐‘›๐‘›๐‘› + ๐ผ๐ผ๐‘‡๐‘‡๐‘‡๐‘‡๐‘‡๐‘‡ = 2510.9 kg

FIGURE 6.38 BWR plant.

PROBLEM 6.3 SOLUTION Availability Analysis of a Simplified BWR (Section 6.4) 1. Calculate the cycle thermal efficiency. Point 1: We can begin the analysis at point 1. At this point we know the pressure and quality: ๐‘ƒ๐‘ƒ1 = 6890 kPa

๐‘ฅ๐‘ฅ1 = 1

We can then use steam tables to determine the enthalpy and entropy. โ„Ž1 = 2774.05

kJ kJ ๐‘ ๐‘ 1 = 5.82273 kg kg K

Point 2s: We can move to the analysis of point 2. First, we can use an isentropic assumption

86

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

and correct with the turbine efficiency. Therefore at point 2s we know the pressure and entropy ๐‘ ๐‘ 2๐‘ ๐‘  = ๐‘ ๐‘ 1 = 5.82273

kJ kg K

๐‘ƒ๐‘ƒ2๐‘ ๐‘  = 1380 kPa

At this pressure, the saturated liquid/vapor entropies are: ๐‘ ๐‘ 2๐‘“๐‘“ = 2.27714

The quality at 2s can then be calculated:

๐‘ฅ๐‘ฅ2๐‘ ๐‘  =

kJ kg K

๐‘ ๐‘ 2๐‘”๐‘” = 6.47256

๐‘ ๐‘ 2๐‘ ๐‘  โˆ’ ๐‘ ๐‘ 2๐‘“๐‘“ = 0.845 ๐‘ ๐‘ 2๐‘”๐‘” โˆ’ ๐‘ ๐‘ 2๐‘“๐‘“

kJ kg K

The enthalpy can now be determined with this quality and pressure from steam tables: โ„Ž2๐‘ ๐‘  = 2484.59

kJ kg

Point 2: The enthalpy at point 2 can be calculated using the isentropic efficiency of the high pressure turbine. The work per unit mass flow rate of a turbine is defined as ๐‘Š๐‘Šฬ‡๐ป๐ป๐ป๐ป๐ป๐ป = โ„Ž1 โˆ’ โ„Ž2 = ๐œ‚๐œ‚๐‘‡๐‘‡ (โ„Ž1 โˆ’ โ„Ž2๐‘ ๐‘  )

The isentropic assumption is therefore corrected with the isentropic turbine efficiency and the true enthalpy at point 2 is โ„Ž2 = โ„Ž1 โˆ’ ๐œ‚๐œ‚๐‘‡๐‘‡ (โ„Ž1 โˆ’ โ„Ž2๐‘ ๐‘  ) = 2513.54

kJ kg

kJ kg

kJ kg

The saturated liquid/vapor enthalpies are:

โ„Ž2๐‘“๐‘“ = 826.959

The quality at point 2 is therefore,

๐‘ฅ๐‘ฅ2 =

โ„Ž2๐‘”๐‘” = 2788.39

โ„Ž2 โˆ’ โ„Ž2๐‘“๐‘“ = 0.8599 โ„Ž2๐‘”๐‘” โˆ’ โ„Ž2๐‘“๐‘“

We may also determine the entropy here since it will be needed for part 3: ๐‘ ๐‘ 2 = (1 โˆ’ ๐‘ฅ๐‘ฅ2 )๐‘ ๐‘ 2๐‘“๐‘“ + ๐‘ฅ๐‘ฅ2 ๐‘ ๐‘ 2๐‘”๐‘” = 5.885

Point 3: At point 3 we know the pressure and quality: P3 = 1380 kPa

kJ kg K

x3 = 1

Using steam tables we may determine the enthalpy and entropy:

87

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

h3 = 2788.9

kJ kg

s3 = 6.47256

kJ kg K

In addition, we need to define another property at point 3 which is the fraction of the total mass flow rate. At the moisture separator, a portion of the liquid goes to the low pressure turbine (LPT) and portion goes to the OFWH. It can be understood that the fraction that travels to the LPT is simply just the quality at point 2 which is the fraction of steam mass flow rate to the total mass flow rate. We will denote this property with at y: y3 = x2 = 0.86

Point 4: At point 4 we know the pressure and quality: P4 = 1380 kPa

x4 = 0

Using steam tables we may determine the enthalpy and entropy: h4 = 826.959

kJ kg

s4 = 2.27714

kJ kg K

The fractional mass flow rate is just one minus the quality at point 2, y4 = 1 โˆ’ x2 = 0.1401

Point 5s: To determine the properties at point 5, we must first analyze with an isentropic assumption. Therefore, we know the entropy and pressure at point 5s: ๐‘ ๐‘ 5๐‘ ๐‘  = ๐‘ ๐‘ 3 = 6.473

kJ kg K

๐‘ƒ๐‘ƒ5๐‘ ๐‘  = 6.89 kPa

The saturated liquid/vapor entropies at this pressure are: ๐‘ ๐‘ 5๐‘“๐‘“ = 0.555081

The quality at 5s can be calculated,

๐‘ฅ๐‘ฅ5๐‘ ๐‘  =

kJ kg K

๐‘ ๐‘ 5๐‘”๐‘” = 8.28006

๐‘ ๐‘ 5๐‘ ๐‘  โˆ’ ๐‘ ๐‘ 5๐‘“๐‘“ = 0.766 ๐‘ ๐‘ 5๐‘”๐‘” โˆ’ ๐‘ ๐‘ 5๐‘“๐‘“

kJ kg K

The enthalpy can now be evaluated using steam tables,

โ„Ž5๐‘ ๐‘  = 2007.52

kJ kg

Point 5: The work of the LPT per unit mass flow rate can be defined as ๐‘Š๐‘Šฬ‡๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ = โ„Ž3 โˆ’ โ„Ž5 = ๐œ‚๐œ‚๐‘‡๐‘‡ (โ„Ž3 โˆ’ โ„Ž5๐‘ ๐‘  )

Therefore, the true enthalpy at point 5 can be determined:

โ„Ž5 = โ„Ž3 โˆ’ ๐œ‚๐œ‚๐‘‡๐‘‡ (โ„Ž3 โˆ’ โ„Ž5๐‘ ๐‘  ) = 2085.61 88

kJ kg rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications kJ

kJ

The saturated liquid/vapor enthalpies at point 5 are โ„Ž5๐‘“๐‘“ = 162.12 kg and โ„Ž5๐‘”๐‘” = 2571.19 kg. The quality is calculated to be

๐‘ฅ๐‘ฅ5 =

โ„Ž5 โˆ’ โ„Ž5๐‘“๐‘“ = 0.7984 โ„Ž5๐‘”๐‘” โˆ’ โ„Ž5๐‘“๐‘“ kJ

kJ

We may also determine the entropy, where ๐‘ ๐‘ 5๐‘“๐‘“ = 0.555 kg K and ๐‘ ๐‘ 5๐‘”๐‘” = 8.28 kg K ๐‘ ๐‘ 5 = (1 โˆ’ ๐‘ฅ๐‘ฅ5 )๐‘ ๐‘ 5๐‘“๐‘“ + ๐‘ฅ๐‘ฅ5 ๐‘ ๐‘ 5๐‘”๐‘” = 6.723

kJ kg K

Finally, the fractional mass flow rate at point 5 is equivalent to the fractional mass flow rate at point 3, y5 = y3 = 0.86

Point 6: At point 6 we know the pressure and the quality: P6 = 6.89 kPa

x6 = 0

Using steam tables, the enthalpy and entropy can be determined: h6 = 162.12

kJ kg

s6 = 0.555081

kJ kg K

The fractional mass flow rate at this point is the same as point 5, y6 = y5 = 0.86

Point 7s To determine the properties at point 7, we must first use an isentropic assumption. Using this assumption, we know entropy and pressure: s7s = ๐‘ ๐‘ 6 = 0.555081

kJ kg K

P7s = 1380 kPa.

We can use these two properties to determine the enthalpy,

kJ kg Point 7 The pumping power of the main condensate pump per unit mass flow rate can be defined as: h7s = 163.487

๐‘Š๐‘Šฬ‡๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ = โ„Ž7 โˆ’ โ„Ž6 =

Therefore, the real enthalpy at point 7 is โ„Ž7 = โ„Ž6 +

1 (โ„Ž โˆ’ โ„Ž6 ) ๐œ‚๐œ‚๐‘ƒ๐‘ƒ 7๐‘ ๐‘ 

1 kJ (โ„Ž7๐‘ ๐‘  โˆ’ โ„Ž6 ) = 163.73 ๐œ‚๐œ‚๐‘ƒ๐‘ƒ kg

The fractional mass flow rate is equivalent to point 6:

89

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

y7 = y6 = 0.86

We may also determine the entropy from the enthalpy and pressure at point 7 (1380 kPa) using kJ

steam tables ๐‘ ๐‘ 7 = 0.555834 kg K

Point 8 To evaluate the enthalpy at this point we must apply conservation of mass and energy: โ€“ Mass: แน8 = แน4 + แน7 โ€“ Energy: แน4h4 + แน7h7 = แน8h8

Here, the mass flow rate at point 8 is just the total mass flow rate of the system. We may then divide the energy equation by this flow and determine the enthalpy at point 8, โ„Ž8 = ๐‘ฆ๐‘ฆ4 โ„Ž4 + ๐‘ฆ๐‘ฆ7 โ„Ž7 = 256.666

kJ kg

Two independent properties are known at point 8, the enthalpy and pressure. We may use steam tables to determine entropy: ๐‘ ๐‘ 8 = 0.843481

kJ kg K

Point 9s In order to determine the properties at point 9, we must first use the isentropic condition. Therefore, we know the entropy and pressure at point 9s: ๐‘ ๐‘ 9๐‘ ๐‘  = ๐‘ ๐‘ 8 = 0.843

Therefore, we can determine the enthalpy,

kJ kg K

๐‘ƒ๐‘ƒ9๐‘ ๐‘  = 6890 kPa

โ„Ž9๐‘ ๐‘  = 262.158

kJ kg

Point 9 We can again define the work of the feed water pump per unit mass flow rate ๐‘Š๐‘Šฬ‡๐น๐น๐น๐น = โ„Ž9 โˆ’ โ„Ž8 =

The real enthalpy at point 9 is therefore, โ„Ž9 = โ„Ž8 +

1 (โ„Ž โˆ’ โ„Ž8 ) ๐œ‚๐œ‚๐‘ƒ๐‘ƒ 9๐‘ ๐‘ 

1 kJ (โ„Ž9๐‘ ๐‘  โˆ’ โ„Ž8 ) = 263.13 ๐œ‚๐œ‚๐‘ƒ๐‘ƒ kg

Knowing the pressure and enthalpy, we may determine the entropy using steam tables ๐‘ ๐‘ 9 = 0.846389

kJ kg K

Cycle efficiency The thermal efficiency of the cycle is defined as

90

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

๐œ‚๐œ‚๐‘ก๐‘กโ„Ž =

๐œ‚๐œ‚๐‘ก๐‘กโ„Ž =

๐‘Š๐‘Šฬ‡๐ป๐ป๐ป๐ป๐ป๐ป + ๐‘Š๐‘Šฬ‡๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ โˆ’ ๐‘Š๐‘Šฬ‡๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ โˆ’ ๐‘Š๐‘Šฬ‡๐น๐น๐น๐น ๐‘„๐‘„ฬ‡๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ

๐‘š๐‘šฬ‡1 (โ„Ž1 โˆ’ โ„Ž2 ) + ๐‘š๐‘šฬ‡3 (โ„Ž3 โˆ’ โ„Ž5 ) โˆ’ ๐‘š๐‘šฬ‡7 (โ„Ž7 โˆ’ โ„Ž6 ) โˆ’ ๐‘š๐‘šฬ‡8 (โ„Ž9 โˆ’ โ„Ž8 ) ๐‘š๐‘šฬ‡1 (โ„Ž1 โˆ’ โ„Ž9 )

We may now divide the numerator and denominator my the total mass flow rate and the cycle efficiency may be calculated: ๐œ‚๐œ‚๐‘ก๐‘กโ„Ž =

(โ„Ž1 โˆ’ โ„Ž2 ) + ๐‘ฆ๐‘ฆ3 (โ„Ž3 โˆ’ โ„Ž5 ) โˆ’ ๐‘ฆ๐‘ฆ7 (โ„Ž7 โˆ’ โ„Ž6 ) โˆ’ (โ„Ž9 โˆ’ โ„Ž8 ) = 0.3413 (โ„Ž1 โˆ’ โ„Ž9 )

(1)

2. Recalculate the thermal efficiency of the cycle assuming that the pumps and turbines have isentropic efficiencies of 100%. We have already determined most of the properties needed for this part. We will briefly go through each point and relate them to previous quantities determined above. All properties here will be denoted with a subscript โ€œiโ€. Point 1

Point 2

Point 3

Point 4

โ„Ž1๐‘–๐‘– = โ„Ž1 = 2.774 ร— 103

kJ kg

โ„Ž2๐‘–๐‘– = โ„Ž2๐‘ ๐‘  = 2.485 ร— 103

kJ kg

โ„Ž3๐‘–๐‘– = โ„Ž3 = 2.788 ร— 103

kJ kg

๐‘ฅ๐‘ฅ2๐‘–๐‘– = ๐‘ฅ๐‘ฅ2๐‘ ๐‘  = 0.845

๐‘ฆ๐‘ฆ3๐‘–๐‘– = ๐‘ฅ๐‘ฅ2๐‘–๐‘– = 0.845

โ„Ž4๐‘–๐‘– = โ„Ž4 = 826.959 Point 5

kJ kg

๐‘ฆ๐‘ฆ4๐‘–๐‘– = 1 โˆ’ ๐‘ฅ๐‘ฅ2๐‘–๐‘– = 0.155

โ„Ž5๐‘–๐‘– = โ„Ž5๐‘ ๐‘  = 2.008 ร— 108 ๐‘ฅ๐‘ฅ5๐‘–๐‘– = ๐‘ฅ๐‘ฅ5๐‘ ๐‘  = 0.766

Point 6

kJ kg

๐‘ฆ๐‘ฆ5๐‘–๐‘– = ๐‘ฆ๐‘ฆ3๐‘–๐‘– = 0.845

91

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

โ„Ž6๐‘–๐‘– = โ„Ž6 = 162.12 Point 7

kJ kg

๐‘ฆ๐‘ฆ6๐‘–๐‘– = ๐‘ฆ๐‘ฆ5๐‘–๐‘– = 0.845

โ„Ž7๐‘–๐‘– = โ„Ž7๐‘ ๐‘  = 163.487 ๐‘ฆ๐‘ฆ7๐‘–๐‘– = ๐‘ฆ๐‘ฆ6๐‘–๐‘– = 0.845

kJ kg

Point 8 Conservation of mass and energy can be applied again, except some of the properties have changed due to the isentropic assumption. โ„Ž8๐‘–๐‘– = ๐‘ฆ๐‘ฆ4๐‘–๐‘– โ„Ž4๐‘–๐‘– + ๐‘ฆ๐‘ฆ7๐‘–๐‘– โ„Ž7๐‘–๐‘– = 266.252

The new entropy at point 8 is now, using steam tables: ๐‘ ๐‘ 8๐‘–๐‘– = 0.872172

kJ kg

kJ kg ยท K

Point 9 Keeping entropy constant we know the pressure and entropy at point 9, we may determine the enthalpy from steam tables: ๐‘ ๐‘ 9๐‘–๐‘– = ๐‘ ๐‘ 8๐‘–๐‘– = 0.872172

kJ kg K

โ„Ž9๐‘–๐‘– = 271.952

๐‘ƒ๐‘ƒ9 = 6.89 MPa

kJ kg

Cycle efficiency We can now determine the thermal efficiency of the cycle, ๐œ‚๐œ‚๐‘ก๐‘กโ„Ž๐‘–๐‘– =

(โ„Ž1๐‘–๐‘– โˆ’ โ„Ž2๐‘–๐‘– ) + ๐‘ฆ๐‘ฆ3๐‘–๐‘– (โ„Ž3๐‘–๐‘– โˆ’ โ„Ž5๐‘–๐‘– ) โˆ’ ๐‘ฆ๐‘ฆ7๐‘–๐‘– (โ„Ž7๐‘–๐‘– โˆ’ โ„Ž6๐‘–๐‘– ) โˆ’ (โ„Ž9๐‘–๐‘– โˆ’ โ„Ž8๐‘–๐‘– ) = 0.3767 โ„Ž1๐‘–๐‘– โˆ’ โ„Ž9๐‘–๐‘–

3. Calculate the lost work due to the irreversibility of each component in the cycle and show numerically that the available work equals the sum of the lost work and the net work. To calculate the lost work due to irreversibility, we need to define the temperature where heat is rejected. For this problem it is the environment temperature, Te = 303.15 K. We will also be referencing variables from part 1 of this solution. For each of these components, we will be calculating quantities per unit mass flow rate. Therefore, one needs to multiply each of these quantities by the fraction of the total mass flow (y) passing through it. High Pressure Turbine (HPT) We may use Equation 6 65 to determine the lost work due to irreversibility. ๐ผ๐ผ๐ป๐ป๐ป๐ป๐ป๐ป = ๐‘‡๐‘‡๐‘’๐‘’ (๐‘ ๐‘ 2 โˆ’ ๐‘ ๐‘ 1 ) = 18.774 92

kJ kg rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

Low Pressure Turbine (LPT) ๐ผ๐ผ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ = ๐‘‡๐‘‡๐‘’๐‘’ ๐‘ฆ๐‘ฆ3 (๐‘ ๐‘ 5 โˆ’ ๐‘ ๐‘ 3 ) = 65.277

kJ kg

Condenser (CD) We may use Equation 6-72a for the condenser.

Pump 1 (p1)

โˆ’(โ„Ž6 โˆ’ โ„Ž5 ) kJ + ๐‘ ๐‘ 6 โˆ’ ๐‘ ๐‘ 5 ๏ฟฝ = 46.166 ๐ผ๐ผ๐ถ๐ถ๐ถ๐ถ = ๐‘‡๐‘‡๐‘’๐‘’ ๐‘ฆ๐‘ฆ5 ๏ฟฝ ๐‘‡๐‘‡๐‘’๐‘’ kg

Pump 2

๐ผ๐ผ๐‘๐‘1 = ๐‘‡๐‘‡๐‘’๐‘’ ๐‘ฆ๐‘ฆ6 (๐‘ ๐‘ 7 โˆ’ ๐‘ ๐‘ 6 ) = 0.196

Reactor

๐ผ๐ผ๐‘๐‘2 = ๐‘‡๐‘‡๐‘’๐‘’ (๐‘ ๐‘ 9 โˆ’ ๐‘ ๐‘ 8 ) = 0.882

Moisture Separator

kJ kg

kJ kg

๐ผ๐ผ๐‘…๐‘… = ๐‘‡๐‘‡๐‘’๐‘’ (๐‘ ๐‘ 1 โˆ’ ๐‘ ๐‘ 9 ) = 1.509 ร— 103 ๐ผ๐ผ๐‘€๐‘€๐‘€๐‘€ = ๐‘‡๐‘‡๐‘’๐‘’ (๐‘ฆ๐‘ฆ4 ๐‘ ๐‘ 4 + ๐‘ฆ๐‘ฆ3 ๐‘ ๐‘ 3 โˆ’ ๐‘ ๐‘ 2 ) = 0

The moisture separator is an adiabatic, reversible process.

kJ kg

kJ kg

OFWH ๐ผ๐ผ๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ = ๐‘‡๐‘‡๐‘’๐‘’ (๐‘ ๐‘ 8 โˆ’ ๐‘ฆ๐‘ฆ4 ๐‘ ๐‘ 4 โˆ’ ๐‘ฆ๐‘ฆ7 ๐‘ ๐‘ 7 ) = 14.079

kJ kg

Total Irreversibility The total lost work due to irreversibility is simply the sum of all of the individual components. kJ ๐ผ๐ผ๐‘‡๐‘‡๐‘‡๐‘‡๐‘‡๐‘‡ = ๐ผ๐ผ๐ป๐ป๐ป๐ป๐ป๐ป + ๐ผ๐ผ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ + ๐ผ๐ผ๐ถ๐ถ๐ถ๐ถ + ๐ผ๐ผ๐‘๐‘1 + ๐ผ๐ผ๐‘๐‘2 + ๐ผ๐ผ๐‘…๐‘… + ๐ผ๐ผ๐‘€๐‘€๐‘€๐‘€ + ๐ผ๐ผ๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ = 1.654 ร— 103 kg Available Work Using Equation 6-55, we may determine the amount of available work. ๐‘Š๐‘Š๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข = โ„Ž1 โˆ’ โ„Ž9 = 2510.9

kJ kg

Net Work The net work can be determined as the numerator of Equation (1). ๐‘Š๐‘Š๐‘›๐‘›๐‘›๐‘›๐‘›๐‘› = (โ„Ž1 โˆ’ โ„Ž2 ) + ๐‘ฆ๐‘ฆ3 (โ„Ž3 โˆ’ โ„Ž5 ) โˆ’ ๐‘ฆ๐‘ฆ7 (โ„Ž7 โˆ’ โ„Ž6 ) โˆ’ (โ„Ž9 โˆ’ โ„Ž8 ) = 856.973

kJ kg

Answer We can now sum the net work and the work lost due to irreversibility and show that it

93

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

is equivalent to the available work. ๐‘Š๐‘Š๐‘›๐‘›๐‘›๐‘›๐‘›๐‘› + ๐ผ๐ผ๐‘‡๐‘‡๐‘‡๐‘‡๐‘‡๐‘‡ = 2510.9

kJ kg

PROBLEM 6.4 QUESTION Thermodynamic Analysis of a Gas Turbine (Section 6.4) Is transformation 1 โ†’ 2, shown in Figure 6.39, thermodynamically possible for a gas turbine? If so, under what conditions? If not, why? (Assume steady-state)

FIGURE 6.39 Temperatureโ€“entropy diagram for transformation in the turbine.

PROBLEM 6.4 SOLUTION Thermodynamic Analysis of a Gas Turbine (Section 6.4) Is transformation 1 โ†’ 2, shown in Figure 6.39, thermodynamically possible for a gas turbine? If so, under what conditions? If not, why? (Assume steady-state) Solution: Consider the entropy equation for transformation 1โ†’ 2: ๐‘ ๐‘ 2 = ๐‘ ๐‘ 1 +

ฬ‡ ๐‘†๐‘†๐‘”๐‘”๐‘”๐‘”๐‘”๐‘” ๐‘„๐‘„ฬ‡ + ๐‘š๐‘šฬ‡ ๐‘š๐‘šฬ‡๐‘‡๐‘‡๐‘ ๐‘ 

(1)

ฬ‡ (> 0) is the entropy generation due to irreversibilities (e.g., where ๐‘š๐‘šฬ‡ is the mass flow rate, ๐‘†๐‘†๐‘”๐‘”๐‘”๐‘”๐‘”๐‘” friction), Qฬ‡ is the heat rate exchanged between the turbine and the surroundings and Ts is the

temperature at which this exchange occurs. Normally, for a turbine it is assumed that Qฬ‡ = 0 (the turbine is adiabatic). Then Equation (1) gives:

94

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

๐‘ ๐‘ 2 = ๐‘ ๐‘ 1 +

ฬ‡ ๐‘†๐‘†๐‘”๐‘”๐‘”๐‘”๐‘”๐‘” > ๐‘ ๐‘ 1 ๐‘š๐‘šฬ‡

(2)

and one has to conclude that transformation 1 โ†’ 2 shown in Figure 6.39 where ๐‘ ๐‘ 2 < ๐‘ ๐‘ 1 is not thermodynamically possible. However, the transformation becomes thermodynamically possible if one assumes that Qฬ‡ < 0, i.e., the turbine is cooled.

PROBLEM 6.5 QUESTION

Analysis of a Steam Turbine (Section 6.4 ) In the test of a steam turbine the following data were observed: โ€“ โ€“ โ€“

kJ

โ„Ž1 = 3000 kg ๐‘ƒ๐‘ƒ1 = 10 MPa kJ

โ„Ž2 = 2600 kg ๐‘‰๐‘‰2 negligible ๐‘ง๐‘ง2 = ๐‘ง๐‘ง1

kJ ๐‘Š๐‘Šฬ‡1,2 = 384.45 kg

๐‘‰๐‘‰1 = 150 mโ„s

๐‘ƒ๐‘ƒ2 = 0.5 MPa

1. Assume steady flow, and determine the heat transferred to the surroundings per kilogram of steam. 2. What is the quality of the exit steam? Answers: 1. Qฬ‡ = โˆ’26.8 kJโ„kg 2. x = 92.9%

PROBLEM 6.5 SOLUTION Analysis of Steam Turbine (Section 6.4) In the test of a steam turbine the following data were observed: โ€“ โ€“ โ€“

kJ

โ„Ž1 = 3000 kg ๐‘ƒ๐‘ƒ1 = 10 MPa kJ

โ„Ž2 = 2600 kg ๐‘‰๐‘‰2 negligible ๐‘ง๐‘ง2 = ๐‘ง๐‘ง1

kJ ๐‘Š๐‘Šฬ‡1,2 = 384.45 kg

๐‘‰๐‘‰1 = 150 mโ„s

๐‘ƒ๐‘ƒ2 = 0.5 MPa

1. Assume steady flow, and determine the heat transferred to the surroundings per kilogram of steam: We can start with conservation of energy in the form of the steady flow energy equation: ๏ฟฝโ„Ž2 +

๐‘‰๐‘‰22 ๐‘‰๐‘‰12 + ๐‘”๐‘”๐‘”๐‘”2 ๏ฟฝ โˆ’ ๏ฟฝโ„Ž1 + + ๐‘”๐‘”๐‘”๐‘”1 ๏ฟฝ = ๐‘„๐‘„ฬ‡ โˆ’ ๐‘Š๐‘Šฬ‡ 2 2

where by convention heat added and work extracted from the system is positive.

95

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

We may neglect the velocity at state 2 as given by the problem statement. We can solve for heat transferred to the surrounding per kilogram of steam, ๐‘„๐‘„ฬ‡๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ : ๐‘‰๐‘‰12 kJ ๐‘„๐‘„ฬ‡๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = โ„Ž1 + โˆ’ โ„Ž2 โˆ’ ๐‘Š๐‘Šฬ‡1,2 = โˆ’26.8 2 kg

This negative answer indicates that heat flow is out of the control volume. 2. What is the quality of the exit steam? The saturated liquid/vapor enthalpies at state 2 can be kJ

determined from steam tables using pressure, P2 = 0.5 MPa and enthalpy, โ„Ž2 = 2600 kg: โ„Ž2๐‘“๐‘“ = 640.085

The quality can therefore be calculated as ๐‘ฅ๐‘ฅ2 =

kJ kg

โ„Ž2๐‘”๐‘” = 2748.11

kJ kg

โ„Ž2 โˆ’ โ„Ž2๐‘“๐‘“ = 0.929 โ„Ž2๐‘”๐‘” โˆ’ โ„Ž2๐‘“๐‘“

PROBLEM 6.6 QUESTION Irreversibility Problems Involving the Rankine Cycle (Section 6.4) Consider the Rankine cycles given in the T-s diagram of Figure 6.40 and defined by operating conditions of Table 6.21. The cycles differ in the temperature and pressure of the condensation process. What are the differences in cycle irreversibilities between the two cases for irreversibilities defined as: ฬ‡ ๐‘š๐‘šฬ‡, and 1. Irreversibility per unit mass flowrate of working fluid, ๐ผ๐ผ โ„ ฬ‡ ๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘– ๐‘š๐‘šฬ‡๐‘ ๐‘  2. Irreversibility per unit mass flowrate of working fluid and energy output, i.e., ๐ผ๐ผ โ„ TABLE 6.21 Operating Conditions of Cycles of Problem 6.6 Cycle

State

Pressure (kPa)

Condition

1

1

7.0

Saturated Liquid

2

6800.0

3

6800.0

4

7.0

1โ€ฒ

6.0

2โ€ฒ

6800.0

3

6800.0

4โ€ฒ

6.0

1โ€ฒ

96

Saturated Vapor Saturated Liquid Saturated Vapor

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

FIGURE 6.40 Temperature-entropy characteristics of two cycles. Answers: 1. I โ‰ก I๏€ฆ / m๏€ฆ s for cycle 1234 = 1645.1 kJ/kg ๏€ฆ s for cycle 1โ€ฒ 234โ€ฒ = 1642.0 kJ/kg I โ‰ก I๏€ฆ / m

2. I / Q๏€ฆ in โ‰ก I๏€ฆ / Q๏€ฆ in m๏€ฆ s for cycle 1234 = 0.632 I / Q๏€ฆ in โ‰ก I๏€ฆ / Q๏€ฆ in m๏€ฆ s for cycle 1'234' = 0.627

PROBLEM 6.6 SOLUTION Irreversibility Problems Involving the Rankine Cycle (Section 6.4) Consider the Rankine cycles given in the T-s diagram of Figure 6.40 and defined by operating conditions of Table 6.21. The cycles differ in the temperature and pressure of the condensation process. What are the differences in cycle irreversibilities between the two cases for irreversibilities defined as: 1. Irreversibility per unit mass flowrate of working fluid: This irreversibility can be determined using Equation 6.84. We will denote this quantity simply with I. ๐ผ๐ผ = โ„Ž4 โˆ’ โ„Ž1

Therefore, we must go around the cycle and determine the enthalpies at each point.

97

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

State 1: At state 1, we know the pressure and quality: ๐‘ƒ๐‘ƒ1 = 7.0 kPa

๐‘ฅ๐‘ฅ1 = 0

We can therefore determine the enthalpy and entropy using steam tables: โ„Ž1 = 163.351

kJ kg

๐‘ ๐‘ 1 = 0.559028

State 1โ€ฒ: At state 1โ€ฒ, we know the pressure and quality: ๐‘ƒ๐‘ƒ1โ€ฒ = 6.0 kPa

kJ kg K

๐‘ฅ๐‘ฅ1 = 0.

We can therefore determine the enthalpy and entropy using steam tables: โ„Ž1โ€ฒ = 1551.478

kJ kg

๐‘ƒ๐‘ƒ2 = 6800 kpa

๐‘ ๐‘ 2 = ๐‘ ๐‘ 1 = 0.559028

๐‘ ๐‘ 1โ€ฒ = 0.52082

kJ kg K

State 2: At state 2, we know the pressure and entropy, since the process from 1 to 2 is isentropic: kJ kg K

We may then use these properties to the determine the enthalpy with steam tables: kJ kg State 2โ€ฒ: At state 2โ€ฒ, we know the pressure and entropy, since the process from 1โ€ฒ to 2โ€ฒ is isentropic: kJ ๐‘ƒ๐‘ƒ2โ€ฒ = 6800 kpa ๐‘ ๐‘ 2โ€ฒ = ๐‘ ๐‘ 1โ€ฒ = 0.52082 kg K โ„Ž2 = 170.211

We may then use these properties to the determine the enthalpy with steam tables: โ„Ž2โ€ฒ = 158.306

kJ kg

State 3: At state 3, we know the pressure and quality: ๐‘ƒ๐‘ƒ3 = 6800 kPa

๐‘ฅ๐‘ฅ3 = 1

We may then determine the enthalpy and entropy using steam tables: kJ kJ ๐‘ ๐‘ 3 = 5.82931 kg kg K State 4: At state 4, we know the pressure and entropy, since the process from 3 to 4 is isentropic: kJ ๐‘ƒ๐‘ƒ4 = 7.0 kpa ๐‘ ๐‘ 4 = ๐‘ ๐‘ 3 = 5.82931 kg K โ„Ž3 = 2775.19

We can then look up the saturated liquid/vapor entropies from steam tables at this pressure:

98

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

๐‘ ๐‘ 4๐‘“๐‘“ = 0.559028

kJ kg K

The quality at state 4 can then be determined: ๐‘ฅ๐‘ฅ4 =

๐‘ ๐‘ 4๐‘”๐‘” = 8.27446

๐‘ ๐‘ 4 โˆ’ ๐‘ ๐‘ 4๐‘“๐‘“ = 0.683 ๐‘ ๐‘ 4๐‘”๐‘” โˆ’ ๐‘ ๐‘ 4๐‘“๐‘“

kJ kg K

Finally, we can use pressure and quality to determine enthalpy from steam tables: kJ kg State 4โ€ฒ: At state 4โ€ฒ, we know the pressure and entropy, since the process from 3 to 4โ€ฒ is isentropic: โ„Ž4 = 1808.47

๐‘ƒ๐‘ƒ4โ€ฒ = 6.0 kpa ๐‘ ๐‘ 4โ€ฒ = ๐‘ ๐‘ 3 = 5.82931

kJ kg K

kJ kg K

kJ kg K

We can then look up the saturated liquid/vapor entropies from steam tables at this pressure: ๐‘ ๐‘ 4โ€ฒ ๐‘“๐‘“ = 0.52082

๐‘ ๐‘ 4โ€ฒ ๐‘”๐‘” = 8.32904

The quality at state 4โ€ฒ can then be determined: ๐‘ ๐‘ 4โ€ฒ โˆ’ ๐‘ ๐‘ 4โ€ฒ ๐‘“๐‘“ ๐‘ฅ๐‘ฅ4โ€ฒ = = .680 ๐‘ ๐‘ 4โ€ฒ ๐‘”๐‘” โˆ’ ๐‘ ๐‘ 4โ€ฒ ๐‘“๐‘“

Finally, we can use pressure and quality to determine enthalpy from steam tables: โ„Ž4โ€ฒ = 1793.44

kJ kg

Irreversibility: The irreversibility per unit mass flow rate can now be determined for each cycle: kJ

๐ผ๐ผ โ‰ก ๐ผ๐ผ /ฬ‡ ๐‘š๐‘šฬ‡๐‘ ๐‘  = โ„Ž4 โˆ’ โ„Ž1 = 1645.1 kg for cycle 1

kJ ๐ผ๐ผ โ€ฒ โ‰ก ๐ผ๐ผ /ฬ‡ ๐‘š๐‘šฬ‡๐‘ ๐‘  = โ„Ž4โ€ฒ โˆ’ โ„Ž1โ€ฒ = 1642.0 kg for cycle 1โ€ฒ

2. Irreversibility per unit mass flow rate of working fluid and energy output: To determine this quantity, we must first define the heat rate added to the system per unit mass flow rate: kJ ๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘– = โ„Ž3 โˆ’ โ„Ž2 = 2605.0 kg for cycle 1

Hence

kJ โ€ฒ ๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘– = โ„Ž3 โˆ’ โ„Ž2โ€ฒ = 2616.9 kg for cycle 1โ€ฒ

99

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

1645.1 I / Q๏€ฆ in โ‰ก I๏€ฆ / Q๏€ฆ in m๏€ฆ s = =0.6315 for cycle 1 2605.0 1642.0 I / Q๏€ฆ in โ‰ก I๏€ฆ / Q๏€ฆ in m๏€ฆ s = =0.6275 for cycle 1โ€ฒ 2616.9

PROBLEM 6.7 QUESTION Replacement of a Steam Generator in a PWR with a Flash Tank (Sections 6.4 and 6.5) Consider a โ€œdirectโ€ cycle plant with a pressurized water-cooled reactor. This proposed design consists of using most of the typical PWR plant components except the steam generator. In place of the steam generator, a large โ€œflash tankโ€ is incorporated with the capability to take the primary coolant and reduce the pressure to the typical secondary side pressure. The resulting steam is separated, dried, and taken to the balance of the plant. The feedwater from the condenser returns to this flash tank. The primary water from the flash tank is repressurized and circulated back to the core. Make a schematic drawing of this direct cycle plant, and discuss the benefits and/or problems with this design. Also, compare a typical PWR plant design with this direct cycle design with respect to: โ€” Plant thermal efficiencies (perform a numerical comparison and explain your results), and โ€” Nuclear plant safety (perform a qualitative comparison).

Assume the reactor, steam generator and condensation conditions are those of Table 6.7 of Example 6.4.

PROBLEM 6.7 SOLUTION Replacement of a Steam Generator in a PWR with a Flash Tank (Sections 6.4 and 6.5) Purpose: The purpose of this problem is to compare the characteristics of a direct cycle nuclear power system to those of a conventional pressurized water reactor. A direct plant uses a โ€œflash tankโ€ in place of the steam generator found in PWRs. To evaluate feasibility of this process, the net work, heat supplied, mass flow ratios, and overall thermal efficiency will be calculated for several cases. Description of Cases Considered: In order to allow easy comparison, the cases considered will use the same design parameters. They are as follows: โ€” Primary loop pressure: 15.5 MPa

100

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications โ€” Secondary loop pressure (Single Turbine): 7.75 MPa โ€” Sink Pressure: 0.00689 MPa โ€” Pressure Losses: 0.0 MPa โ€” Turbine efficiencies: 100% โ€” Pump efficiencies: 100% โ€” Mass flow rate through core: 1.0 units

Component efficiencies of 100% were chosen to make the comparison between the cycles clearer, and to make the mathematical solution easy to follow. Steam Generator Cases (Figure SM-6.1): For a conventional PWR with a steam generator, the analysis is identical to the solution of Example 6.4, except that all expansion and duct pressure losses are neglected for simplicity. Figure SM-6.1 shows the block diagram and associated T-s diagram for the single turbine cycle with a steam generator. Because there are no losses in the primary, no primary pump is included.

FIGURE SM-6.1: Single Turbine, Steam Generator Cycle Nonmixed Direct Cycle Cases (Figure SM-6.2): In these cases the steam generator from a conventional PWR has been replaced with a flash tank for generating steam. A porous stopper is placed in the pipe from the core to the flash tank to control the low rate of high pressure to the tank. Upon passing through the plug, a fraction (xf) of the water is โ€œflashedโ€ to steam at the secondary system pressure (assumed here to be a constant enthalpy-process). In the nonmixed cycle this steam is sent out of the flash tank and towards the turbine. The fraction that did not flash to steam (1 โˆ’ xf) mixes with the stream of water returning from the condenser. These two streams mix completely and exit to pump P2 and go back to the reactor. One hundred percent efficiency in the steam separator and drying process are assumed in the flash tank.

101

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

FIGURE SM-6.2: Single Turbine, Nonmixed Direct Cycle Fully-Mixed Direct Cycle Cases (Figure SM-6.3): The fully-mixed cycles represent an alternative way of modeling the process in the flash tank. In the analysis of the fully-mixed case, it is assumed that the entire mass of fluid entering the flash tank from the core mixes with the subcooled liquid from the condenser before any steam leaves. All of the enthalpy of the primary fluid is mixed with the enthalpy from the subcooled liquid. The result is a new mass of fluid with an average enthalpy including contributions from both streams. The high enthalpy fluid from the reactor gives the heat to the subcooled liquid, bringing it up to the saturation temperature. The excess enthalpy is given to saturated liquid to make saturated steam. The process is illustrated in the T-s diagram in Figure SM-6.3. It is apparent that this process will yield less steam than the nonmixed case, but the fluid going to the core will be slightly pre-heated. The correct method of modeling the flash tank would depend on the physical set up of the tank, but would surely be a hybrid of both models described here.

FIGURE SM-6.3: Single Turbine, Mixed Direct Cycle

102

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

TABLE SM-6.1: Summary of Results Net Work (kJ/kg) Heat Added (kJ/kg) Thermal Efficiency (%) Steam Generator (1T)

968

2592

37.4

Nonmixed Direct (1T)

113

318

35.4

Mixed Direct (1T)

59

174

33.6

Mass Flow Ratio Steam Generator (1T)

13.18

Nonmixed Direct (1T)

7.9

Mixed Direct (1T)

14.0

As shown in Table SM-6.1, the most efficient cycle is the conventional steam generator cycle. The net work is several times greater in this case than for the direct cycles. The combination of the superior efficiency and much greater net work output makes the configuration the best choice. The nonmixed cycle, while achieving high efficiency, produces very little work compared to the indirect cycle. Because the flashing process is highly irreversible, it introduces inefficiency into the steam production process. In this example only 113% of the fluid flashes to steam, resulting in a low mass flowrate through the turbines. The fully mixed cycle is even worse than the nonmixed cycle. Its work output is low, and its efficiency is worse than the other 2 cases. Because it is fully mixed with subcooled liquid before producing steam, only 7.6% of the primary fluid is turned into steam. The calculations for each of these cases are included in Appendices A through F. Safety Considerations: The use of the direct cycle for the steam generator creates several safety issues that must be addressed. Ensuring the safety of this type of plant has implications in the areas of: 1. Accident Probability and Consequences 2. Plant Operations 3. Economics I. Accident Probability and Consequences Large Potential for Loss of Coolant Accident: The use of a flash tank requires new complexities not found in a conventional PWR. These complexities lead to more system piping and coupling between systems. Any increase in piping length has associated problems of corrosion, radiation damage, and fatigue that raise the probabilities of LOCA. Overpressurization of Secondary: A failure in the plug (and/or valve) between the primary side and the flash tank would lead to overpressurization of secondary as the steam inventory

103

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

expanded. The secondary piping would rupture, releasing a potentially large volume of radioactive steam. Loss of Core Flow: A related problem is the loss of coolant flow through the core in the case of failure of the flash tarde valve. The flashing steam would severely reduce the heat transfer in the core. Some kind of circulation system would need to be engineered because normal forced circulation and natural circulation would both be unavailable, II. Plant Operations Large Volume of Radioactivity: Because the primary and secondary cycles are not physically separate in a direct cycle, there will be radioactive water and steam flowing throughout the system. This is similar to the problem encountered in a BWR but the coolant inventory here is larger (comparable to the inventory in a PWR). This amplifies the BWR problems of radiation damage to piping, turbines, pumps and other components. System Chemistry Control: The use of neutron poisons to control reactivity is common in PWRs and in BWR primary loops. Poisons used in the direct cycle would vaporize in the severe pressure drop of the flash tank. Some of the chemicals would also accumulate in the flash tank. These chemicals could potentially accumulate in the porous plug used to separate the primary from the flash tank. Furthermore, these chemicals (such as boron) would be circulated through the secondary, possibly accelerating corrosion damage to components. Flash Tank Level Control: The fluid level in the flash tank would have to be carefully monitored in order to prevent it from drying out. In this cycle, the fluid is pumped directly from the flash tank to the core. If the supply coolant disappears, the core will begin to dry out. The primary pump in the direct cycle is much stronger than in a conventional PWR (7.75 MPa vs. 0.5 MPa), so it would quickly begin to suck steam or air into the core. Startup Procedure: In a normal PWR, the primary pumps can be turned on to begin to heat the system. Because there is no way to run only a primary system in a direct cycle, this would not be possible. The flash tank would have to be bypassed until the system is ready to begin steam generation. This creates more tubing and more connections-adding to the complexity of the design. III. Economics Flash Tank: The flash tank and its associated valve system would be considerably more expensive than a conventional steam generator. If a predominantly nonmixing design is employed (as was proven to be more desirable), the internal structure of the flash tank will be more complex than a conventional steam generator. Steam flow must be directed one way, while merging liquid flows are sent another. The construction of the tank itself would have to be very strong to accommodate the high stresses associated with the flashing process. In addition, radioactive degradation of the material would be a concern for the entire structure (in a PWR only the piping carrying the primary fluid is radioactive). However, these costs could be offset by reducing the

104

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

number of steam generation loops used in the design. A flash tank would not have the size limitation imposed on a conventional steam generator. All the primary loops could conceivable lead into one large flash tank. Primary Pump: The primary pump, as pointed earlier, must pump the fluid from secondary to primary pressure. This is an increase of 7.75 MPa. A normal PWR primary pump only has to cover the pressure drops due to friction in the loop. A 7.75 MPa pump would be very expensive and would require several stages (with associated leales and losses). In addition to its large size, it would have to withstand reactivity control chemicals, be exposed to radioactive water, and be desiged to high reliability (it is responsible for cooling the core). Secondary Piping: The threat of rapid pressurization of the secondary discussed earlier would require strong piping and precautions in its design. The associated costs could be quite high because of the length of piping and number of components that must be reinforced. Conclusion: The use of the direct cycle plant with a flash tank does not appear to be a desirable option for conventional power production. The efficiency is slightly less than that of a conventional PWR, and the net work is several times less. The safety, operational, and economic implications of the design make it appear even less favorable. The conventional PWR design with a steam generator is a better choice. Solution Manual Appendices: โ€“

A. Calculations: Single-Turbine, Indirect Cycle

โ€“

B. Calculations: Single-Turbine, Nonmixed direct Cycle

โ€“

C. Calculations: Single-Turbine, Fully-Mixed direct Cycle

SM-Appendix A: Single Turbine, Indirect Cycle (Figure SM-6.1) Point 1: At point 1 we know the pressure and quality: ๐‘ƒ๐‘ƒ๐ด๐ด1 = 7.75 Mpa ๐‘ฅ๐‘ฅ๐ด๐ด1 = 1.

We can use steam tables to calculate enthalpy and entropy: โ„Ž๐ด๐ด1 = 2762.34

kJ kJ ๐‘ ๐‘ ๐ด๐ด1 = 5.76201 kg kg K

Point 2: At point 2 we know the entropy and pressure: ๐‘ ๐‘ ๐ด๐ด2 = ๐‘ ๐‘ ๐ด๐ด1 = 5.76201

kJ kg K

We can look up the saturated liquid/vapor entropies: ๐‘ ๐‘ ๐ด๐ด2๐‘“๐‘“ = 0.555081

kJ kg K 105

๐‘ƒ๐‘ƒ๐ด๐ด2 = 6.89 kPa

๐‘ ๐‘ ๐ด๐ด2๐‘”๐‘” = 8.28006

kJ kg K rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

The quality is calculated to be: ๐‘ฅ๐‘ฅ๐ด๐ด2 =

๐‘ ๐‘ ๐ด๐ด2 โˆ’ ๐‘ ๐‘ ๐ด๐ด2๐‘“๐‘“ = 0.674 ๐‘ ๐‘ ๐ด๐ด2๐‘”๐‘” โˆ’ ๐‘ ๐‘ ๐ด๐ด2๐‘“๐‘“

We can use the quality and pressure in steam tables to determine the enthalpy: โ„Ž๐ด๐ด2 = 1785.93

kJ kg

Point 3: At point 3 we know the pressure and quality: ๐‘ƒ๐‘ƒ๐ด๐ด3 = 6.89 kPa

๐‘ฅ๐‘ฅ๐ด๐ด3 = 0

We may use steam tables to look up the enthalpy and entropy: โ„Ž๐ด๐ด3 = 162.12

kJ kg

๐‘ ๐‘ ๐ด๐ด3 = 0.555081

Point 4: At point 4 we know the entropy and pressure: ๐‘ ๐‘ ๐ด๐ด4 = ๐‘ ๐‘ ๐ด๐ด3 = 0.555081

kJ kg K

kJ kg K

๐‘ƒ๐‘ƒ๐ด๐ด4 = 7.75 MPa

We can use steam tables to determine the enthalpy to be: โ„Ž๐ด๐ด4 = 170.22

Point 7: We the pressure and temperature to be:

kJ kg

๐‘ƒ๐‘ƒ๐ด๐ด7 = 15.5 MPa ๐‘‡๐‘‡๐ด๐ด7 = 599 K = 325.85ยฐC

We can use steam tables to determine the enthalpy to be: โ„Ž๐ด๐ด7 = 1489.87

kJ kg

Thermal Efficiency: The work of the turbine per mass flow rate is ๐‘Š๐‘Šฬ‡๐ด๐ด๐ด๐ด = โ„Ž๐ด๐ด1 โˆ’ โ„Ž๐ด๐ด2 = 976.41

The work of the pump per mass flow rate is

The net work is therefore,

๐‘Š๐‘Šฬ‡๐ด๐ด๐ด๐ด = โ„Ž๐ด๐ด4 โˆ’ โ„Ž๐ด๐ด3 = 8.1

kJ kg

kJ kg

๐‘Š๐‘Šฬ‡๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด = ๐‘Š๐‘Šฬ‡๐ด๐ด๐ด๐ด โˆ’ ๐‘Š๐‘Šฬ‡๐ด๐ด๐ด๐ด = 968.31

The heat added to the system per unit mass is

106

kJ kg

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

๐‘„๐‘„ฬ‡๐ด๐ด๐ด๐ด๐ด๐ด = โ„Ž๐ด๐ด1 โˆ’ โ„Ž๐ด๐ด4 = 2592.1

The thermal efficiency is therefore,

kJ kg

๐‘Š๐‘Šฬ‡๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด = 0.374 ๐‘„๐‘„ฬ‡๐ด๐ด๐ด๐ด๐ด๐ด

๐œ‚๐œ‚๐ด๐ด =

The ratio of the primary to secondary mass flow rates is 13.18 as given in Table 6.7.

SM-Appendix B, Single Turbine, Direct, Nonmixed (Figure SM-6.2) We may follow much of the same procedure as Appendix A. Point 1: At point 1 we know the pressure and quality: ๐‘ƒ๐‘ƒ๐ต๐ต1 = 7.75 MPa ๐‘ฅ๐‘ฅ๐ต๐ต1 = 1

We can use steam tables to calculate enthalpy and entropy: โ„Ž๐ต๐ต1 = 2762.34

kJ kJ ๐‘ ๐‘ ๐ต๐ต1 = 5.76201 kg kg K

Point 2: At point 2 we know the entropy and pressure: ๐‘ ๐‘ ๐ต๐ต2 = ๐‘ ๐‘ ๐ต๐ต1 = 5.76201

kJ kg โˆ™ K

๐‘ƒ๐‘ƒ๐ต๐ต2 = 6.89 kPa

We can look up the saturated liquid/vapor entropies: ๐‘ ๐‘ ๐ต๐ต2๐‘“๐‘“ = 0.555081

The quality is calculated to be:

๐‘ฅ๐‘ฅ๐ต๐ต2 =

kJ kg K

๐‘ ๐‘ ๐ต๐ต2๐‘”๐‘” = 8.28006

๐‘ ๐‘ ๐ต๐ต2 โˆ’ ๐‘ ๐‘ ๐ต๐ต2๐‘“๐‘“ = 0.674 ๐‘ ๐‘ ๐ต๐ต2๐‘”๐‘” โˆ’ ๐‘ ๐‘ ๐ต๐ต2๐‘“๐‘“

kJ kg K

We can use the quality and pressure in steam tables to determine the enthalpy: โ„Ž๐ต๐ต2 = 1785.93

kJ kg

Point 3: At point 3 we know the pressure and quality: ๐‘ƒ๐‘ƒ๐ต๐ต3 = 6.89 kPa

๐‘ฅ๐‘ฅ๐ด๐ด3 = 0.

We may use steam tables to look up the enthalpy and entropy: โ„Ž๐ต๐ต3 = 162.12

kJ kg

๐‘ ๐‘ ๐ต๐ต3 = 0.555081

Point 4: At point 4 we know the entropy and pressure:

107

kJ kg K

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

๐‘ ๐‘ ๐ต๐ต4 = ๐‘ ๐‘ ๐ต๐ต3 = 0.555081

kJ kg K

๐‘ƒ๐‘ƒ๐ต๐ต4 = 7.75 MPa

We can use steam tables to determine the enthalpy to be: โ„Ž๐ต๐ต4 = 170.22

Point 7: We the pressure and temperature to be:

kJ kg

๐‘ƒ๐‘ƒ๐ต๐ต7 = 15.5 MPa ๐‘‡๐‘‡๐ต๐ต7 = 599 ๐พ๐พ = 325.85 ยฐC

We can use steam tables to determine the enthalpy to be: โ„Ž๐ต๐ต7 = 1489.87

kJ kg

Point F: At point F we know the pressure, and since this is an isenthalpic process, we also know the enthalpy: ๐‘ƒ๐‘ƒ๐ต๐ต๐ต๐ต = 7.75 MPa โ„Ž๐ต๐ต๐ต๐ต = โ„Ž๐ต๐ต7 = 1489.9

The saturated liquid and vapor enthalpies at this pressure are: โ„Ž๐ต๐ต๐ต๐ต๐ต๐ต = 1305.22

The quality can therefore be calculated as, ๐‘ฅ๐‘ฅ๐ต๐ต๐ต๐ต =

kJ kg

โ„Ž๐ต๐ต๐ต๐ต๐ต๐ต = 2762.34

kJ kg

kJ kg

โ„Ž๐ต๐ต๐ต๐ต โˆ’ โ„Ž๐ต๐ต๐ต๐ต๐ต๐ต = 0.127 โ„Ž๐ต๐ต๐ต๐ต๐ต๐ต โˆ’ โ„Ž๐ต๐ต๐ต๐ต๐ต๐ต

Point 8: At point 8 we know the pressure and quality of the fluid: ๐‘ƒ๐‘ƒ๐ต๐ต8 = 7.75 MPa ๐‘ฅ๐‘ฅ๐ต๐ต8 = 0

We can use this to determine the enthalpy from steam tables to be: โ„Ž๐ต๐ต8 = 1305.22

kJ kg

The fraction of the total mass flow rate at this point is, equivalent to the portion of liquid that is separated off from point F. We can relate this to the quality: ๐‘ฆ๐‘ฆ๐ต๐ต8 = 1 โˆ’ ๐‘ฅ๐‘ฅ๐ต๐ต๐ต๐ต = 0.873

Therefore, the rest of the fluid passes through points 1, 2, 3, 4: ๐‘ฆ๐‘ฆ๐ต๐ต1 = ๐‘ฆ๐‘ฆ๐ต๐ต2 = ๐‘ฆ๐‘ฆ๐ต๐ต3 = ๐‘ฆ๐‘ฆ๐ต๐ต4 = 0.127

Point 5: At point 5 we know the pressure to be:

๐‘ƒ๐‘ƒ๐ต๐ต5 = 7.75 MPa 108

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

We can calculate the enthalpy using conservation of energy. Stream 4 and stream 8 combine to stream 5 and therefore: ๐‘š๐‘šฬ‡๐ต๐ต5 โ„Ž๐ต๐ต5 = ๐‘š๐‘šฬ‡๐ต๐ต4 โ„Ž๐ต๐ต4 + ๐‘š๐‘šฬ‡๐ต๐ต8 โ„Ž๐ต๐ต8

If we divide by the total mass flow rate of the system, we may determine the enthalpy: โ„Ž๐ต๐ต5 = ๐‘ฆ๐‘ฆ๐ต๐ต4 โ„Ž๐ต๐ต4 + ๐‘ฆ๐‘ฆ๐ต๐ต8 โ„Ž๐ต๐ต8 = 1161.4

kJ kg

We can use the pressure and the enthalpy to determine the entropy from steam tables: ๐‘ ๐‘ ๐ต๐ต5 = 2.92689

kJ kg K

Point 6: At point we know the pressure and the entropy: ๐‘ƒ๐‘ƒ๐ต๐ต6 = 15.5 MPa

๐‘ ๐‘ ๐ต๐ต5 = 2.92689

From steam tables, we can determine the enthalpy to be: โ„Ž๐ต๐ต6 = 1171.44

kJ kg K

kJ kg

Thermal Efficiency: The work of the turbine per mass flow rate is ๐‘Š๐‘Šฬ‡๐ต๐ต๐ต๐ต = โ„Ž๐ต๐ต1 โˆ’ โ„Ž๐ต๐ต2 = 976.41

The work of the pump 1 per mass flow rate is

๐‘Š๐‘Šฬ‡๐ต๐ต๐ต๐ต1 = โ„Ž๐ต๐ต4 โˆ’ โ„Ž๐ต๐ต3 = 8.1

The work of the pump 1 per mass flow rate is

kJ kg

kJ kg

๐‘Š๐‘Šฬ‡๐ต๐ต๐ต๐ต2 = โ„Ž๐ต๐ต6 โˆ’ โ„Ž๐ต๐ต5 = 10.05

kJ kg

The net work taking into account the fraction of the total flow rate going through each component is, ๐‘Š๐‘Šฬ‡๐ต๐ต๐ต๐ต๐ต๐ต๐ต๐ต = ๐‘ฆ๐‘ฆ๐ต๐ต1 ๐‘Š๐‘Šฬ‡๐ต๐ต๐ต๐ต โˆ’ ๐‘ฆ๐‘ฆ๐ต๐ต4 ๐‘Š๐‘Šฬ‡๐ต๐ต๐ต๐ต1 โˆ’ ๐‘Š๐‘Šฬ‡๐ต๐ต๐ต๐ต2 = 112.657

The heat added to the system per unit mass is

๐‘„๐‘„ฬ‡๐ต๐ต๐ต๐ต๐ต๐ต = โ„Ž๐ต๐ต7 โˆ’ โ„Ž๐ต๐ต6 = 318.43

The thermal efficiency is therefore,

109

kJ kg

kJ kg

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

๐œ‚๐œ‚๐ต๐ต =

๐‘Š๐‘Šฬ‡๐ต๐ต๐ต๐ต๐ต๐ต๐ต๐ต = 0.354 ๐‘„๐‘„ฬ‡๐ต๐ต๐ต๐ต๐ต๐ต

The ratio of the mass flow rate of the โ€œprimaryโ€ side to โ€œsecondaryโ€ side is calculated using fractional flow rates. This primary side has the total mass flow rate and is therefore 1. The secondary side fractional mass flow rate, say through the turbine yB1. We can therefore calculate this ratio to be: 1 = 7.891 ๐‘ฆ๐‘ฆ๐ต๐ต1

SM-Appendix C, Single Turbine, Direct, Mixed (Figure SM-6.3) We may follow much of the same procedure as Appendices A and B. Point 1: At point 1 we know the pressure and quality: ๐‘ƒ๐‘ƒ๐ถ๐ถ1 = 7.75 MPa ๐‘ฅ๐‘ฅ๐ถ๐ถ1 = 1

We can use steam tables to calculate enthalpy and entropy: โ„Ž๐ถ๐ถ1 = 2762.34

kJ kJ ๐‘ ๐‘ ๐ถ๐ถ1 = 5.76201 kg kg K

Point 2: At point 2 we know the entropy and pressure: ๐‘ ๐‘ ๐ถ๐ถ2 = ๐‘ ๐‘ ๐ถ๐ถ1 = 5.76201

kJ kg K

๐‘ƒ๐‘ƒ๐ถ๐ถ2 = 6.89 kPa

We can look up the saturated liquid/vapor entropies: ๐‘ ๐‘ ๐ถ๐ถ2๐‘“๐‘“ = 0.555081

The quality is calculated to be:

๐‘ฅ๐‘ฅ๐ถ๐ถ2 =

kJ kg K

๐‘ ๐‘ ๐ถ๐ถ2๐‘”๐‘” = 8.28006

๐‘ ๐‘ ๐ถ๐ถ2 โˆ’ ๐‘ ๐‘ ๐ถ๐ถ2๐‘“๐‘“ = 0.674 ๐‘ ๐‘ ๐ถ๐ถ2๐‘”๐‘” โˆ’ ๐‘ ๐‘ ๐ถ๐ถ2๐‘“๐‘“

kJ kg K

We can use the quality and pressure in steam tables to determine the enthalpy: โ„Ž๐ถ๐ถ2 = 1785.93

kJ kg

Point 3: At point 3 we know the pressure and quality: ๐‘ƒ๐‘ƒ๐ต๐ต3 = 6.89 kPa

๐‘ฅ๐‘ฅ๐ด๐ด3 = 0

We may use steam tables to look up the enthalpy and entropy: โ„Ž๐ถ๐ถ3 = 162.12

kJ kg

๐‘ ๐‘ ๐ถ๐ถ3 = 0. 555081 110

kJ kg K rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

Point 4: At point 4 we know the entropy and pressure: ๐‘ ๐‘ ๐ถ๐ถ4 = ๐‘ ๐‘ ๐ถ๐ถ3 = 0.555081

kJ kg K

๐‘ƒ๐‘ƒ๐ถ๐ถ4 = 7. 75 MPa

We can use steam tables to determine the enthalpy to be: โ„Ž๐ถ๐ถ4 = 170.22

kJ kg

Point 5: At point 5 we know the pressure and quality:

๐‘ƒ๐‘ƒ๐ถ๐ถ5 = 7.75 MPa ๐‘ฅ๐‘ฅ๐ถ๐ถ5 = 0

We can then go to steam tables to look up the enthalpy and entropy: โ„Ž๐ถ๐ถ5 = 1305.22

kJ kJ ๐‘ ๐‘ ๐ถ๐ถ5 = 3.18736 kg kg K

Point 7: We the pressure and temperature to be:

๐‘ƒ๐‘ƒ๐ถ๐ถ7 = 15.5 MPa ๐‘‡๐‘‡๐ถ๐ถ7 = 599 K = 325.85 ยฐC

We can use steam tables to determine the enthalpy to be: โ„Ž๐ถ๐ถ7 = 1489.87

kJ kg

Point F: At point F we know the pressure) and since this is an isenthalpic process, we also know the enthalpy: ๐‘ƒ๐‘ƒ๐ต๐ต๐ต๐ต = 7.75 MPa โ„Ž๐ต๐ต๐ต๐ต = โ„Ž๐ต๐ต7 = 1489.9

We can perform an energy balance on the fully mixed flash tank:

kJ kg

๐‘š๐‘šฬ‡๐ถ๐ถ7 โ„Ž๐ถ๐ถ7 + ๐‘š๐‘šฬ‡๐ถ๐ถ4 โ„Ž๐ถ๐ถ4 = ๐‘š๐‘šฬ‡๐ถ๐ถ5 โ„Ž๐ถ๐ถ5 + ๐‘š๐‘šฬ‡๐ถ๐ถ1 โ„Ž๐ถ๐ถ1

We can now divide by the total the mass flow rate. The fraction of steam mass flow rate that goes to the turbine will be denoted as xF: โ„Ž๐ถ๐ถ7 + ๐‘ฅ๐‘ฅ๐น๐น โ„Ž๐ถ๐ถ4 = โ„Ž๐ถ๐ถ5 + ๐‘ฅ๐‘ฅ๐น๐น โ„Ž๐ถ๐ถ1

Therefore, we can calculate this fraction of steam: ๐‘ฅ๐‘ฅ๐น๐น =

โ„Ž๐ถ๐ถ7 โˆ’ โ„Ž๐ถ๐ถ5 = 0.071 โ„Ž๐ถ๐ถ1 โˆ’ โ„Ž๐ถ๐ถ4

This is parameter will also be denoted as the fraction of the total mass flow rate that travels through the turbine, condenser and pump 1: ๐‘ฆ๐‘ฆ๐ถ๐ถ1 = ๐‘ฆ๐‘ฆ๐ถ๐ถ2 = ๐‘ฆ๐‘ฆ๐ถ๐ถ3 = ๐‘ฆ๐‘ฆ๐ถ๐ถ4 = 0.071

Point 6: At point we know the pressure and the entropy:

111

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

๐‘ƒ๐‘ƒ๐ถ๐ถ6 = 15.5 MPa ๐‘ ๐‘ ๐ถ๐ถ6 = ๐‘ ๐‘ ๐ถ๐ถ5 = 3.18736

From steam tables, we can determine the enthalpy to be: โ„Ž๐ถ๐ถ6 = 1315.68

kJ kg K

kJ kg

Thermal Efficiency: The work of the turbine per mass flow rate is ๐‘Š๐‘Šฬ‡๐ถ๐ถ๐ถ๐ถ = โ„Ž๐ถ๐ถ1 โˆ’ โ„Ž๐ถ๐ถ2 = 976.41

The work of the pump 1 per mass flow rate is

๐‘Š๐‘Šฬ‡๐ถ๐ถ๐ถ๐ถ1 = โ„Ž๐ถ๐ถ4 โˆ’ โ„Ž๐ถ๐ถ3 = 8.1

The work of the pump 1 per mass flow rate is

kJ kg

kJ kg

๐‘Š๐‘Šฬ‡๐ถ๐ถ๐ถ๐ถ2 = โ„Ž๐ถ๐ถ6 โˆ’ โ„Ž๐ถ๐ถ5 = 10.46

kJ kg

The net work taking into account the fraction of the total flow rate going through each component is, ๐‘Š๐‘Šฬ‡๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ = ๐‘ฆ๐‘ฆ๐ถ๐ถ1 ๐‘Š๐‘Šฬ‡๐ถ๐ถ๐ถ๐ถ โˆ’ ๐‘ฆ๐‘ฆ๐ถ๐ถ4 ๐‘Š๐‘Šฬ‡๐ถ๐ถ๐ถ๐ถ1 โˆ’ ๐‘Š๐‘Šฬ‡๐ถ๐ถ๐ถ๐ถ2 = 58.518

The heat added to the system per unit mass is

๐‘„๐‘„ฬ‡๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ = ๐‘ฆ๐‘ฆ๐ถ๐ถ7 โˆ’ โ„Ž๐ถ๐ถ6 = 174.19

The thermal efficiency is therefore,

๐œ‚๐œ‚๐ถ๐ถ =

kJ kg

kJ kg

๐‘Š๐‘Šฬ‡๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ = 0.336 ๐‘„๐‘„ฬ‡๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ

The ratio of the mass flow rate of the โ€œprimaryโ€ side to โ€œsecondaryโ€ side is calculated using fractional flow rates. This primary side has the total mass flow rate and is therefore 1. The secondary side fractional mass flow rate, say through the turbine yB1. We can therefore calculate this ratio to be: 1 = 14.038 ๐‘ฆ๐‘ฆ๐ถ๐ถ1

112

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

PROBLEM 6.8 QUESTION Advantages of Moisture Separation and Feedwater Heating (Section 6.5) A simplified BWR system with moisture separation and an open feedwater heater is described in Problem 6.3. Compute the improvement in thermal efficiency that results from the inclusion of these two components in the power cycle. Do you think the thermal efficiency improvement from these components is sufficient to justify the capital investment required? Are there other reasons for having moisture separation? Answer: ฮทth changes from 36.9% to 37.7%

PROBLEM 6.8 SOLUTION Advantages of Moisture Separation and Feedwater Heating (Section 6.5) To solve this problem, we will re-solve Problem 6.3 without the inclusion of the moisture separator and open feedwater heater. We will assume that the turbine and pump are isentropic components. Point 1 At this point we know the pressure and quality: ๐‘ƒ๐‘ƒ1 = 6890 kPa

๐‘ฅ๐‘ฅ1 = 1

We can use steam tables to determine the enthalpy and entropy: โ„Ž1 = 2774.05

kJ kJ ๐‘ ๐‘ 1 = 5.82273 kg kg K

Point 5 The two properties that are known at this state are the pressure and the entropy. The entropy is evaluated from point 3 using the isentropic expansion assumption, ๐‘ ๐‘ 5 = ๐‘ ๐‘ 1 = 5.82273

kJ ๐‘ƒ๐‘ƒ5 = 6.89 kPa kg K

The saturated liquid/vapor entropies at the pressure are:

The quality at 5s:

๐‘ ๐‘ 5๐‘“๐‘“ = 0.555081 ๐‘ฅ๐‘ฅ5 =

kJ kg K

๐‘ ๐‘ 5๐‘”๐‘” = 8.28006

๐‘ ๐‘ 5 โˆ’ ๐‘ ๐‘ 5๐‘“๐‘“ = 0.682 ๐‘ ๐‘ 5๐‘ž๐‘ž โˆ’ ๐‘ ๐‘ 5๐‘“๐‘“

kJ kg K

The enthalpy can now be evaluated using steam tables:

113

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

โ„Ž5 = 1805.11

kJ kg

Point 6 At point 6 we know the pressure and quality: ๐‘ƒ๐‘ƒ6 = 6.89 kPa

๐‘ฅ๐‘ฅ6 = 0

We can use steam tables to determine the enthalpy and entropy: โ„Ž6 = 162.12

kJ kg

๐‘ ๐‘ 6 = 0.555081

kJ kg K

Point 9 At this state we know the pressure and entropy. The entropy is evaluated from point 6 using the isentropic assumption: ๐‘ ๐‘ 9 = ๐‘ ๐‘ 6 0.555081

kJ kg K

๐‘ƒ๐‘ƒ9 = 6890 kPa

We can use these properties to determine the enthalpy from steam tables: โ„Ž9 = 169.042

Cycle Efficiency ๐œ‚๐œ‚๐‘ก๐‘กโ„Ž =

kJ kg

๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ โˆ’ ๐‘Š๐‘Šฬ‡๐‘๐‘ (โ„Ž1 โˆ’ โ„Ž5 ) โˆ’ (โ„Ž9 โˆ’ โ„Ž5 ) = = 0.3693 โ„Ž1 โˆ’ โ„Ž9 ๐‘„๐‘„ฬ‡๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ

Is the 0.8% increase in efficiency worth it? Since it is such a low gain in thermal efficiency it would not be work the capital investment. There are other reasons for having the moisture separator. The less moisture that the turbine blades are exposed to, the less they will erode. This is very important for the low pressure turbine because the quality exiting the high pressure turbine is not close to 1. Therefore it is necessary to separate out the moisture and use this hot water for other applications such as a open feedwater heater to raise the average temperature of the water that is being heated in the reactor, This will inherently raise the thermal efficiency.

PROBLEM 6.9 QUESTION Ideal Brayton Cycle (Section 6.6) The Brayton cycle shown in Figure 6.41 operates using CO2 as a working fluid with compressor and turbine isentropic efficiencies of 1.0. Calculate the thermal efficiency of this cycle when the working fluid is modeled as: 1. A perfect gas of ฮณ = 1.30. 2. A real fluid (see below for extracted values from Keenan and Kayeโ€™s gas tables). 3. A real fluid and the compressor and turbine both have isentropic efficiencies of 0.95.

114

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

FIGURE 6.41 Ideal Brayton cycle (State a: P = 137.9 kPa, T = 32.2ยฐC, State c: P = 689.5 kPa, T = 537.8ยฐC).

The parameters needed for a real fluid (from Keenan and Kayeโ€™s gas tables) are shown in Table 6.22. Table 6.22 Parameters for Problem 6.9 Parameter T [ยฐC]

a 32.2

b โ€“

c 537.8

d โ€“

P [psia]

137.9

689.5

689.5

137.9

Pr*

0.16108

0.8054

31.5

6.3

kJ ๏ฟฝ kg โˆ™ mole

9643.6

14513.8

33038.5

23439.1

โ„Ž๏ฟฝ

*Pr is relative pressure. The ratio of pressures Pa and Pb corresponding to the temperatures Ta and Tb, respectively, for an isentropic process is equal to the ratio of the relative pressures Pra and Prb as tabulated for Ta and Tb, respectively. Thus:

Answers:

๏ฟฝ

๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž ๐‘ƒ๐‘ƒ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๏ฟฝ = ๐‘ƒ๐‘ƒ๐‘๐‘ ๐‘ ๐‘ =๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘ƒ๐‘ƒ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ

1. ฮทth = 31.0% 2. ฮทth = 25.5% 3. ฮทth = 21.9%

115

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

PROBLEM 6.9 SOLUTION Ideal Brayton Cycle (Section 6.6) The Brayton cycle shown in Figure 6.41 operates using CO2 as a working fluid with compressor and turbine isentropic efficiencies of 1.0. Calculate the thermal efficiency of this cycle when the working fluid is modeled as: 1. A perfect gas of ฮณ = 1.30 The thermodynamic efficiency of this cycle can be calculated as

๐œ‚๐œ‚ =

๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ โˆ’ ๐‘Š๐‘Šฬ‡๐ถ๐ถ ๐‘„๐‘„ฬ‡

๏ฟฝ ๐‘‡๐‘‡ is the turbine work per mass flow rate, ๐‘Š๐‘Š ๏ฟฝ๐ถ๐ถ is the compressor work per mass flow rate where ๐‘Š๐‘Š and ๐‘„๐‘„๏ฟฝ is the heat rate added per mass flow rate. Each of these quantities can be determined using the following equations:

๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ = โ„Ž๐‘๐‘ โˆ’ โ„Ž๐‘‘๐‘‘ = ๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡๐‘๐‘ โˆ’ ๐‘‡๐‘‡๐‘‘๐‘‘ )

๐‘Š๐‘Šฬ‡๐ถ๐ถ = โ„Ž๐‘๐‘ โˆ’ โ„Ž๐‘Ž๐‘Ž = ๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡๐‘๐‘ โˆ’ ๐‘‡๐‘‡๐‘Ž๐‘Ž ) ๐‘„๐‘„ฬ‡ = โ„Ž๐‘๐‘ โˆ’ โ„Ž๐‘๐‘ = ๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡๐‘๐‘ โˆ’ ๐‘‡๐‘‡๐‘๐‘ )

Temperatures at state points a and c are known, but b and d need to be determined. For an isentropic process, Pvk = const. Using this relationship and the equation of state, Pv = RT, the following relation can be derived relating pressure and temperature of two different state points: 1โˆ’๐›พ๐›พ

๐‘‡๐‘‡2 ๐‘ƒ๐‘ƒ1 ๐›พ๐›พ =๏ฟฝ ๏ฟฝ ๐‘‡๐‘‡1 ๐‘ƒ๐‘ƒ2

Using this equation the temperature at points b and d can be determined, 1โˆ’1.30

1โˆ’๐›พ๐›พ

๐‘ƒ๐‘ƒ ๐‘Ž๐‘Ž ๐›พ๐›พ 1 1.30 = 305.35[K] ๏ฟฝ ๏ฟฝ = 442.69 K = 169.54 ยฐC ๐‘‡๐‘‡๐‘๐‘ = ๐‘‡๐‘‡๐‘Ž๐‘Ž ๏ฟฝ ๏ฟฝ ๐‘ƒ๐‘ƒ๐‘๐‘ 5 1โˆ’๐›พ๐›พ

1โˆ’1.30 ๐‘ƒ๐‘ƒ๐‘๐‘ ๐›พ๐›พ ๐‘‡๐‘‡๐‘‘๐‘‘ = ๐‘‡๐‘‡๐‘๐‘ ๏ฟฝ ๏ฟฝ = 810.95[K](5) 1.30 = 559.36 K = 286.21 ยฐC ๐‘ƒ๐‘ƒ๐‘‘๐‘‘

The efficiency can then be calculated: ๐œ‚๐œ‚1 =

(๐‘‡๐‘‡๐‘๐‘ โˆ’ ๐‘‡๐‘‡๐‘‘๐‘‘ ) โˆ’ (๐‘‡๐‘‡๐‘๐‘ โˆ’ ๐‘‡๐‘‡๐‘Ž๐‘Ž ) (537.8 โˆ’ 286.21)[ยฐC] โˆ’ (19.54 โˆ’ 32.2)[ยฐC] = = 0.31 (537.8 โˆ’ 169.54)[ยฐC] ๐‘‡๐‘‡๐‘๐‘ โˆ’ ๐‘‡๐‘‡๐‘๐‘

2. For a real fluid, using values given in the table

116

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

To deterime the efficiency for a real fluid using the values in the table, we may just subtract the enthalpies per mole: kJ kJ (โ„Ž๐‘๐‘ โˆ’ ๐‘‡๐‘‡๐‘‘๐‘‘ ) โˆ’ (๐‘‡๐‘‡๐‘๐‘ โˆ’ ๐‘‡๐‘‡๐‘Ž๐‘Ž ) 33038.5 โˆ’ 23439.1 ๏ฟฝkg โˆ™ mole๏ฟฝ โˆ’ (14513.8 โˆ’ 9643.6) ๏ฟฝkg โˆ™ mole๏ฟฝ = ๐œ‚๐œ‚2 = kJ ๐‘‡๐‘‡๐‘๐‘ โˆ’ ๐‘‡๐‘‡๐‘๐‘ (33038.5 โˆ’ 14513.8) ๏ฟฝ ๏ฟฝ kg โˆ™ mole = 0.255

3. For a real fluid with turbine and compressor isentropic efficiencies, ฮทT = ฮทC = 0.95

Since now we are working with isentropic efficiencies, we may redefine the work of the turbine and compressor: ๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ = โ„Ž๐‘๐‘ โˆ’ โ„Ž๐‘‘๐‘‘โ€ฒ = ๐œ‚๐œ‚๐‘‡๐‘‡ (โ„Ž๐‘๐‘ โˆ’ โ„Ž๐‘‘๐‘‘ )

๐‘Š๐‘Šฬ‡๐ถ๐ถ = โ„Ž๐‘๐‘โ€ฒ โˆ’ โ„Ž๐‘Ž๐‘Ž =

1 (โ„Ž โˆ’ โ„Ž๐‘Ž๐‘Ž ) ๐œ‚๐œ‚๐ถ๐ถ ๐‘๐‘

The real enthalpies at points b and d can then be calculated from the equations above, โ„Ž๐‘๐‘โ€ฒ = โ„Ž๐‘Ž๐‘Ž +

1 kJ (โ„Ž๐‘๐‘ โˆ’ โ„Ž๐‘Ž๐‘Ž ) = 14770.1 ๐œ‚๐œ‚๐ถ๐ถ kg โˆ™ mole

โ„Ž๐‘‘๐‘‘โ€ฒ = โ„Ž๐‘๐‘ โˆ’ ๐œ‚๐œ‚๐‘‡๐‘‡ (โ„Ž๐‘๐‘ โˆ’ โ„Ž๐‘‘๐‘‘ ) = 23919.1

kJ kg โˆ™ mole

The thermodynamic efficiency can now be calculated using the real enthalpies, ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘˜๐‘˜๐‘˜๐‘˜ (โ„Ž๐‘๐‘ โˆ’ โ„Ž๐‘‘๐‘‘โ€ฒ ) โˆ’ (โ„Ž๐‘๐‘โ€ฒ โˆ’ โ„Ž๐‘Ž๐‘Ž ) (33038.5 โˆ’ 23919.1) ๏ฟฝ๐‘˜๐‘˜๐‘˜๐‘˜ โˆ™ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๏ฟฝ โˆ’ (14770.1 โˆ’ 9643.6) ๏ฟฝ๐‘˜๐‘˜๐‘˜๐‘˜ โˆ™ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๏ฟฝ ๐œ‚๐œ‚3 = = ๐‘˜๐‘˜๐‘˜๐‘˜ โ„Ž๐‘๐‘ โˆ’ โ„Ž๐‘๐‘โ€ฒ (33038.5 โˆ’ 14770.1) ๏ฟฝ ๏ฟฝ ๐‘˜๐‘˜๐‘˜๐‘˜ โˆ™ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = 0.219

PROBLEM 6.10 QUESTION

Complex Real Brayton Cycle (Section 6.7) A gas cooled reactor is designed to heat helium gas to a maximum temperature of 540 ยฐC. The helium flow through a gas turbine, generating work to run the compressors and an electric generator, and then through a regenerative heat exchanger and two stages of compression with precooling to 40 ยฐC before entering each compressor. Each compressor and the turbine have an isentropic efficiency of 85%, and the exchanger drop factor ฮฒ is equal to 1.05. Each compression stage has a pressure ratio (rp) of 1.27. The heat exchanger effectiveness, ฮพ, is 0.90. Determine the cycle thermal efficiency. The Brayton cycle system is illustrated in Figure 6.42. The pressure drop factor ฮฒ is defined as:

117

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications ๐›พ๐›พโˆ’1

Answer: ฮทth = 13.9%

๐‘ƒ๐‘ƒ4 ๐‘ƒ๐‘ƒ7 ๐‘ƒ๐‘ƒ2 ๐›พ๐›พ ๐›ฝ๐›ฝ โ‰ก ๏ฟฝ โˆ™ โˆ™ ๏ฟฝ = 1.05 ๐‘ƒ๐‘ƒ6 ๐‘ƒ๐‘ƒ1 ๐‘ƒ๐‘ƒ3

FIGURE 6.42 Complex Brayton cycle.

PROBLEM 6-10 SOLUTION Complex Real Brayton Cycle (Section 6.7) To begin a cycle analysis a T-s diagram should be created. Figure SM-6.4 shows the T-s diagram for this real Brayton cycle.

FIGURE SM-6.4: T-s diagram

118

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

The given parameters in the problem statement are listed below: โ€“

Temperatures: T6 = 540 ยฐC T1 = T3 = 40 ยฐC

โ€“

Turbine and Compressor Efficiencies: ฮทT = ฮทC = 0.85

โ€“

Compressor Pressure Ratio: rp = 1.27

โ€“

Pressure drop factor: ฮฒ = 1.05

โ€“

Heat Exchanger Effectiveness: ฮพ = 0.90

โ€“

Ratio of specific heats for helium (monatomic gas): ๐›พ๐›พ = ๐‘๐‘ = 3โ„2๐‘…๐‘… = 1.667

๐‘๐‘๐‘๐‘ ๐œ๐œ

The cycle efficiency can be calculated with ๐œ‚๐œ‚๐‘ก๐‘กโ„Ž =

5โ„2๐‘…๐‘…

๐‘Š๐‘Šฬ‡๐‘›๐‘›๐‘›๐‘›๐‘›๐‘› ๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ โˆ’ ๐‘Š๐‘Šฬ‡๐ถ๐ถ1 โˆ’ ๐‘Š๐‘Šฬ‡๐ถ๐ถ2 = ๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘– ๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘–

(1)

Each of the components in Equation (1) are defined below: ๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ = ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡6 โˆ’ ๐‘‡๐‘‡7 ) ๐‘Š๐‘Šฬ‡๐ถ๐ถ1 = ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡1 )

(2) (3)

๐‘Š๐‘Šฬ‡๐ถ๐ถ2 = ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡4 โˆ’ ๐‘‡๐‘‡3 )

(4)

๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘– = ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡6 โˆ’ ๐‘‡๐‘‡5 )

(5)

Since the mass flow rate through each of these components is the same, and for this question we will also assume that the specific heat is constant, only the temperature drop need to be determined. Turbine Work The main goal here is to determine the temperature at point 7. First, we may solve for the ideal temperature assuming that the turbine is isentropic and then apply the turbine efficiency to get the real temperature. For an isentropic process, Pฯ…ฮณ = const. Using the equation of state, the following relation can be derived to relate the pressures and temperatures at points 6 and 7 (note a subscript โ€œsโ€ denotes a temperature derived from an isentropic calculation): ๐›พ๐›พโˆ’1

๐‘ƒ๐‘ƒ7 ๐›พ๐›พ ๐‘‡๐‘‡7๐‘ ๐‘  = ๐‘‡๐‘‡6 ๏ฟฝ ๏ฟฝ ๐‘ƒ๐‘ƒ6

(6)

The ratio of these pressures is unknown, however it may be determined using the pressure drop factor shown below: ๐›พ๐›พโˆ’1

๐›พ๐›พโˆ’1

๐›พ๐›พโˆ’1

๐‘ƒ๐‘ƒ2 ๐‘ƒ๐‘ƒ4 ๐›พ๐›พ ๐‘ƒ๐‘ƒ7 ๐›พ๐›พ ๐‘ƒ๐‘ƒ4 ๐‘ƒ๐‘ƒ7 ๐‘ƒ๐‘ƒ2 ๐›พ๐›พ ๏ฟฝ ๏ฟฝ ๐›ฝ๐›ฝ = ๏ฟฝ โˆ™ โˆ™ ๏ฟฝ =๏ฟฝ โˆ™ ๏ฟฝ ๐‘ƒ๐‘ƒ6 ๐‘ƒ๐‘ƒ1 ๐‘ƒ๐‘ƒ3 ๐‘ƒ๐‘ƒ1 ๐‘ƒ๐‘ƒ3 ๐‘ƒ๐‘ƒ6

(7)

The right most quantity in Equation (7) is the unknown quantity needed to solve for the temperature ๐‘ƒ๐‘ƒ

๐‘ƒ๐‘ƒ

in Equation (6). We can rearrange Equation (7) and substitute the pressure ratio, ๐‘Ÿ๐‘Ÿ๐‘๐‘ = ๐‘ƒ๐‘ƒ2 = ๐‘ƒ๐‘ƒ4 1

119

3

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications ๐›พ๐›พโˆ’1

๐‘ƒ๐‘ƒ7 ๐›พ๐›พ ๏ฟฝ ๏ฟฝ = ๐‘ƒ๐‘ƒ6

๐›ฝ๐›ฝ

๐›พ๐›พโˆ’1 = 0.867 ๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘๐‘ โˆ™ ๐‘Ÿ๐‘Ÿ๐‘๐‘ ๏ฟฝ ๐›พ๐›พ

(8)

This result can be substituted into Equation (6) to determine the ideal temperature at point 7, ๐‘‡๐‘‡7๐‘ ๐‘  = (813.15 K) 0.867 = 706.27 K = 431.9 ยฐC

(9)

๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ = ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡6 โˆ’ ๐‘‡๐‘‡7 ) = ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ ๐œ‚๐œ‚๐‘‡๐‘‡ (๐‘‡๐‘‡6 โˆ’ ๐‘‡๐‘‡7๐‘ ๐‘  ) ๐‘‡๐‘‡7 โˆ’ ๐‘‡๐‘‡6 โˆ’ ๐œ‚๐œ‚๐‘‡๐‘‡ (๐‘‡๐‘‡6 โˆ’ ๐‘‡๐‘‡7๐‘ ๐‘  ) = 448.07 ยฐC

(10) (11)

๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ โˆ’ ๐‘‡๐‘‡6 โˆ’ ๐‘‡๐‘‡7 = 91.93 ยฐC

(12)

Using the turbine efficiency, we can rewrite Equation (2) and solve for the real temperature at point 7,

And therefore the work of the turbine (just need temperature drop is): Compressor 1 Work The main goal here is to determine the temperature at point 2. The ideal temperature at point 2 can be calculated similar to the temperature at point 7, ๐›พ๐›พโˆ’1

๐‘ƒ๐‘ƒ2 ๐›พ๐›พ ๐‘‡๐‘‡2๐‘ ๐‘  = ๐‘‡๐‘‡1 ๏ฟฝ ๏ฟฝ ๐‘ƒ๐‘ƒ1

(13)

However in this case, we know that the ratio of the pressures is just the given compressor pressure ratio, rp: ๐›พ๐›พโˆ’1

๐‘‡๐‘‡2๐‘ ๐‘  = ๐‘‡๐‘‡1 ๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘๐‘ ๏ฟฝ ๐›พ๐›พ = 344.31 K = 71.43 ยฐC

(14)

The real temperature can be calculated using the definition of the compressor work in Equation (3) and the compressor efficiency. ๐‘Š๐‘Šฬ‡๐ถ๐ถ1 = ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡1 ) = ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ ๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡1 +

1 (๐‘‡๐‘‡ โˆ’ ๐‘‡๐‘‡1 ) ๐œ‚๐œ‚๐ถ๐ถ 2๐‘ ๐‘ 

1 (๐‘‡๐‘‡ โˆ’ ๐‘‡๐‘‡1 ) = 76.97 ยฐC ๐œ‚๐œ‚๐ถ๐ถ 2๐‘ ๐‘ 

(15) (16)

Therefore, the temperature drop over compressor 1 is

โˆ†๐‘‡๐‘‡๐ถ๐ถ1 = 36.97 ยฐC

(17)

๐‘‡๐‘‡4 = ๐‘‡๐‘‡2 = 76.97 ยฐC

(18)

Compressor 2 Work Since the compressors are identical, they have the same efficiency, pressure ratio, and inlet temperature. Therefore the outlet temperature and temperature drop are equivalent,

โˆ†๐‘‡๐‘‡๐ถ๐ถ2 = ๐‘‡๐‘‡4 โˆ’ ๐‘‡๐‘‡3 = 36.97 ยฐC

(19)

Reactor Heat Addition The main goal here is to determine the temperature at point 5. The heat

120

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

exchanger effectiveness can be calculated with:

Solving for Temperature at point 5,

๐œ‰๐œ‰ =

๐‘‡๐‘‡5 โˆ’ ๐‘‡๐‘‡4 ๐‘‡๐‘‡7 โˆ’ ๐‘‡๐‘‡4

(20)

๐‘‡๐‘‡5 โˆ’ ๐‘‡๐‘‡4 + ๐œ‰๐œ‰(๐‘‡๐‘‡7 โˆ’ ๐‘‡๐‘‡4 ) = 410.96 ยฐC

(21)

๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘– = ๐‘‡๐‘‡6 โˆ’ ๐‘‡๐‘‡5 = 129.04 ยฐC

(22)

The temperature drop across the reactor is then

Efficiency of Cycle: Recalling that for this problem, the mass flow rate is the same through all components and that we are neglecting any changes in the specific heat, the thermodynamic efficiency can just be calculated with temperature differences: ๐œ‚๐œ‚๐‘ก๐‘กโ„Ž =

๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ โˆ’ ๐‘Š๐‘Šฬ‡๐ถ๐ถ1 โˆ’ ๐‘Š๐‘Šฬ‡๐ถ๐ถ2 = 0.138 = 13.8% ๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘–

(23)

PROBLEM 6.11 QUESTION

Cycle Thermal Efficiency Problem Involving a Bottoming Cycle (Section 6.7) In Example 6.10A it is shown that the cycle thermal efficiency of the simple Brayton cycle shown in Figure 6.24 can be increased by utilizing regeneration. Specifically, it was found that, with the addition of a regenerator effectiveness 0.75, the cycle thermal efficiency was increased from 42.3% to 48.1%. Another way of improving the efficiency of the simple Brayton cycle is to use a bottoming cycle. To this end, consider the system shown in Figure 6.43. It shows the simple Brayton cycle with a Brayton bottoming cycle. Parameters and assumptions for this Problem are given in Table 6.23.

TABLE 6.23 Parameters and Assumptions for Problem 6.11 T1 = 278 K T3 = 972 K T9 = T1 (ฮ”Tp)1 = pinch point of heat exchanger #1= 15ยฐC All turbine and compressors in both cycles are ideal

rp for the simple Brayton cycle = 4.0 cp for both cycles = 5230 J/kg K ฮณ for both cycles = 1.658 Mass flow rate for the simple Brayton cycle = twice the mass flow rate for the Brayton bottoming cycle No duct pressure losses in either cycle

121

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

FIGURE 6.43 A simple Brayton cycle with a Brayton bottoming cycle.

QUESTIONS 1. Draw the T-s diagram for the entire system. 2. What must the pressure ratio be of Turbine #2 and Compressor #2 such that the cycle thermal efficiency of the entire system is maximized? 3. What is the maximum cycle thermal efficiency? Answers: 2. rp = 2.34 3. ฮทth = 46.9%

PROBLEM 6.11 SOLUTION Cycle Thermal Efficiency Problem Involving a Bottoming Cycle (Section 6.7) Given Parameters: โ€“

Temperature at point 1, T1 = 278 K

โ€“

Temperature at point 3, T3 = 972 K

โ€“

Temperature at point 9, T9 = T1 = 278 K

โ€“

Pressure ratio of simple Brayton Cycle, rp1 = 4.0

โ€“

Specific heat in both cycles, ๐‘๐‘๐‘๐‘ = 5230 kg K

J

122

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

โ€“

Gamma factor for both cycles, ฮณ = 1.658

โ€“

Pinch-point temperature of heat exchanger #1, (ฮ”Tp)1 = 15ยฐC

1. Draw the T-s diagram for the entire system (Figure SM-6.5).

FIGURE SM-6.5. T-s diagram for entire system.

2. What must the pressure ratio be of Turbine #2 and Compressor #2 such that the cycle thermal efficiency of the entire system is maximized? The thermal efficiency of the cycle can be defined as ๐œ‚๐œ‚๐‘ก๐‘กโ„Ž =

๐‘Š๐‘Šฬ‡๐‘ก๐‘ก1 + ๐‘Š๐‘Šฬ‡๐‘ก๐‘ก2 โˆ’ ๐‘Š๐‘Šฬ‡๐‘๐‘1 โˆ’ ๐‘Š๐‘Šฬ‡๐‘๐‘2 ๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘–

(1)

Work of Turbine 1: We may define the work of turbine 1 as ๐‘Š๐‘Šฬ‡๐‘ก๐‘ก1 = ๐‘š๐‘šฬ‡1 ๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡3 โˆ’ ๐‘‡๐‘‡4 )

(2)

To determine the temperature at 4 we may use the isentropic condition that 1โˆ’๐›พ๐›พ

๐‘‡๐‘‡๐‘‡๐‘‡ ๐›พ๐›พ = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘

The temperature at point 4 can now be calculated with,

1โˆ’๐›พ๐›พ ๐‘‡๐‘‡4 = ๐‘‡๐‘‡3 ๐‘Ÿ๐‘Ÿ๐‘๐‘1๐›พ๐›พ = 560.7 K

(3)

Work of Turbine 2: We may define the work of turbine 2 as ๐‘Š๐‘Šฬ‡๐‘ก๐‘ก2 = ๐‘š๐‘šฬ‡2 ๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡7 โˆ’ ๐‘‡๐‘‡8 )

(4)

๐‘‡๐‘‡7 = ๐‘‡๐‘‡4 โˆ’ (ฮ”๐‘‡๐‘‡๐‘ƒ๐‘ƒ )1 = 545.7 K

(5)

Note that from the problem statement, แน1 = 2แน2. The temperature at point 7 may be calculate from the pinch point temperature of heat exchanger 1, Unlike with Turbine 1, we do not know the pressure ratio in this bottoming cycle. Therefore we

123

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

will leave T8 in terms of the pressure ratio, rp2, 1โˆ’๐›พ๐›พ ๐›พ๐›พ ๐‘‡๐‘‡8 ๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘๐‘2 ๏ฟฝ = ๐‘‡๐‘‡7 ๐‘Ÿ๐‘Ÿ๐‘๐‘2

(6)

Work of Compressor 1: We may define the work of compressor 1 as ๐‘Š๐‘Šฬ‡๐‘๐‘1 = ๐‘š๐‘šฬ‡1 ๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡1 )

(7)

The temperature at point 2 can be determined from the isentropic condition, ๐›พ๐›พโˆ’1 ๐‘‡๐‘‡2 = ๐‘‡๐‘‡1 ๐‘Ÿ๐‘Ÿ๐‘๐‘1๐›พ๐›พ = 481.9 K

(8)

Note the change in the exponent for the compressor as compared to the turbine. Work of Compressor 2: We may define the work of compressor 2 as ๐‘Š๐‘Šฬ‡๐‘๐‘2 = ๐‘š๐‘šฬ‡2 ๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡6 โˆ’ ๐‘‡๐‘‡9 )

(9)

Unlike with Compressor 1, we do not know the pressure ratio in this bottoming cycle. Therefore we will leave T6 in terms of the pressure ratio, rp2 ๐›พ๐›พโˆ’1 ๐‘‡๐‘‡6 ๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘๐‘2 ๏ฟฝ = ๐‘‡๐‘‡9 ๐‘Ÿ๐‘Ÿ๐‘๐‘2๐›พ๐›พ

(10)

Heat added: The rate of addition of heat to the system can be defined as ๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘– = ๐‘š๐‘šฬ‡1 ๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡3 โˆ’ ๐‘‡๐‘‡2 )

(11)

Thermal Efficiency: We can now rewrite Equation (1), ๐œ‚๐œ‚๐‘ก๐‘กโ„Ž =

๐‘š๐‘šฬ‡1 ๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡3 โˆ’ ๐‘‡๐‘‡4 ) + ๐‘š๐‘šฬ‡2 ๐‘๐‘๐‘๐‘ ๏ฟฝ๐‘‡๐‘‡7 โˆ’ ๐‘‡๐‘‡8 ๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘๐‘2 ๏ฟฝ๏ฟฝ โˆ’ ๐‘š๐‘šฬ‡1 ๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡1 ) โˆ’ ๐‘š๐‘šฬ‡2 ๐‘๐‘๐‘๐‘ ๏ฟฝ๐‘‡๐‘‡6 ๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘๐‘2 ๏ฟฝ โˆ’ ๐‘‡๐‘‡9 ๏ฟฝ ๐‘š๐‘šฬ‡1 ๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡3 โˆ’ ๐‘‡๐‘‡2 )

(12)

Note that for unknown temperatures, we have written them as a function of the bottoming cycle pressure ratio, rp2. We may divide Equation (12) by the mass flow rate of the bottoming cycle, taking into account the relationships between the flow rates and getting rid of specific heat, ๐œ‚๐œ‚๐‘ก๐‘กโ„Ž =

2(๐‘‡๐‘‡3 โˆ’ ๐‘‡๐‘‡4 ) + ๏ฟฝ๐‘‡๐‘‡7 โˆ’ ๐‘‡๐‘‡8 ๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘๐‘2 ๏ฟฝ๏ฟฝ โˆ’ 2(๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡1 ) โˆ’ ๏ฟฝ๐‘‡๐‘‡6 ๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘๐‘2 ๏ฟฝ โˆ’ ๐‘‡๐‘‡9 ๏ฟฝ 2(๐‘‡๐‘‡3 โˆ’ ๐‘‡๐‘‡2 )

(13)

We may take the derivative of Equation (13) using the relationships in Equations (6) and (10), and set it equal to zero to determine the pressure ratio such that the thermal efficiency is a max, ๐‘‘๐‘‘๐œ‚๐œ‚๐‘ก๐‘กโ„Ž =0 ๐‘‘๐‘‘๐‘‘๐‘‘๐‘๐‘2

(14)

Finding the roots of Equation (14), we determine that the pressure ratio is ๐‘Ÿ๐‘Ÿ๐‘๐‘2 = 2.34

(15)

124

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

We can also graph Equation (13) in Figure SM-6.6 as a function of the pressure ratio to check that this is the maximum.

FIGURE SM-6.6 Cycle thermal efficiency as a function of pressure ratio (bottoming cycle).

3. What is the maximum cycle thermal efficiency? We can plug the resulting pressure ratio into Equation (13) to determine the that maximum cycle thermal efficiency is ๐œ‚๐œ‚๐‘ก๐‘กโ„Ž,๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = 0.469 = 46.9%

(16)

PROBLEM 6.12 QUESTION Nuclear Cogeneration Plant (Section 6.8) A High-Temperature Gas Reactor (HTGR) is being considered for cogeneration of electricity and heat for residential heating. This HTGR uses the direct Brayton cycle shown in Figure 6.44, which comprises a turbine, a regenerator, a cogeneration heat exchanger (3 โ†’ 4) and a compressor. The cogeneration heat exchanger is used to generate steam, which is then sent to the residential area served by the plant. The helium temperature and pressure at the turbine inlet are 1000 K and 9 MPa, respectively. The minimum temperature in the cycle is 373 K. The cycle operates with a compression ratio equal to 2. The isentropic efficiency for the turbo-machines (turbine and compressor) is 0.9. Assume negligible pressure losses throughout the cycle.

125

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

FIGURE 6.44 Schematic of the nuclear cogeneration plant.

1. Sketch the T-s diagram for the cycle. 2. An important parameter to select is the cogeneration temperature T3. If T3 is too high, regeneration is minimal and the cycle thermal efficiency becomes too low. If T3 is too low, the amount of heat delivered to the residential heating system may be too low. Find the value of T3 that will give a cycle thermal efficiency equal to 30%. 3. What is the energy utilization factor (EUF) of this cycle? The EUF is defined as the ratio of the energy utilized (net work + cogeneration heat) to the heat input (reactor heat). 4. What is the reactor thermal power if the plant is to produce 100 kg/s of saturated steam at 0.5 MPa from the return water at 80ยฐC? 5. Nuclear cogeneration for residential heating has been rarely done although the Agesta reactor performed this function in Stockholm for a decade starting in 1963. What are in your opinion the drawbacks of this approach? Useful Properties: โ€“

J

J

โ€“

Helium: Treat as an ideal gas with ๐‘๐‘๐‘๐‘ = 5193 kg K ; ๐‘…๐‘…๐‘ ๐‘ ๐‘ ๐‘  = 2077 kg K ; ๐›พ๐›พ = 1.667

โ€“

Water enthalpy of vaporization = 2109 kJ/kg

Water at 0.5 MPa (Tsat = 152ยฐC);

J

specific heat = 4.24 kg K

Answers : 2. T3 = 572.5 K 3. EUF = 1 4. ๐‘„๐‘„ฬ‡๐‘…๐‘… = 344.9 MW

126

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

PROBLEM 6.12 SOLUTION Nuclear Cogeneration Plant (Section 6.8) Given Parameters: โ€“ Temperatures at points 1 and 4, T1 = 1000 K T4 = 373 K โ€“

Pressure at point 1, P1 = 9 MPa

โ€“

Compressor Pressure Ratio, rp = 2

โ€“

Turbine and Compressor Isentropic Efficiencies, ฮทT = ฮทC = 0.9

โ€“

Specific Heat, Gas Constant and gamma factor for He,

โ€“

๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ = 5.193 kgโˆ™K ๐‘…๐‘…๐ป๐ป๐ป๐ป = 2077 kgโˆ™K ๐›พ๐›พ๐ป๐ป๐ป๐ป = 1.667

kJ

kJ

kJ

Pressure and specific heat of water, ๐‘ƒ๐‘ƒ๐‘ค๐‘ค = 0.5 MPa ๐‘๐‘๐‘๐‘๐‘๐‘ = 4.24 kgโˆ™K

1. Sketch the T-s diagram for the cycle (Figure SM-6.7).

FIGURE SM-6.7 T-s diagram for the Cogeneration Brayton Cycle.

2. Find the value of T3 that will give a cycle thermal efficiency equal to 30%. The efficiency of the cycle can be defined as ๐œ‚๐œ‚๐‘ก๐‘กโ„Ž =

๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ โˆ’ ๐‘Š๐‘Šฬ‡๐ถ๐ถ = 0.3 ๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘–

(1)

Turbine Work: Considering the process from 1 to 2 to be isentropic, we can determine the ideal temperature at 2: 1โˆ’๐›พ๐›พ๐ป๐ป๐ป๐ป ๐›พ๐›พ ๐‘‡๐‘‡2๐‘ ๐‘  = ๐‘‡๐‘‡1 ๐‘Ÿ๐‘Ÿ๐‘๐‘ ๐ป๐ป๐ป๐ป = 757.8 K

We can define the work of the turbine per unit mass flowrate as:

127

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡1 โˆ’ ๐‘‡๐‘‡2 ) = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ ๐œ‚๐œ‚๐‘‡๐‘‡ (๐‘‡๐‘‡1 โˆ’ ๐‘‡๐‘‡2๐‘ ๐‘  )

Therefore, we can calculate the real temperature at state 2 to be,

๐‘‡๐‘‡2 = ๐‘‡๐‘‡1 โˆ’ ๐œ‚๐œ‚๐‘‡๐‘‡ (๐‘‡๐‘‡1 โˆ’ ๐‘‡๐‘‡2๐‘ ๐‘  ) = 782.0 K

The turbine work per unit mass flow rate is

๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ = 1132

kJ kg

(2)

Compressor Work: Considering the process from 4 to 5 to be isentropic, we can determine the ideal temperature at 5: ๐›พ๐›พ๐ป๐ป๐ป๐ป โˆ’1 ๐›พ๐›พ ๐‘‡๐‘‡5๐‘ ๐‘  = ๐‘‡๐‘‡4 ๐‘Ÿ๐‘Ÿ๐‘๐‘ ๐ป๐ป๐ป๐ป = 492.2 K

We can define the work of the compressor per unit mass flowrate as: ๐‘Š๐‘Šฬ‡๐ถ๐ถ = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡5 โˆ’ ๐‘‡๐‘‡4 ) = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘

1 (๐‘‡๐‘‡ โˆ’ ๐‘‡๐‘‡4 ) ๐œ‚๐œ‚๐ถ๐ถ 5๐‘ ๐‘ 

Therefore, we can calculate the real temperature at state 5 to be, ๐‘‡๐‘‡5 = ๐‘‡๐‘‡4 +

1 (๐‘‡๐‘‡ โˆ’ ๐‘‡๐‘‡4 ) = 505.5 K ๐œ‚๐œ‚๐ถ๐ถ 5๐‘ ๐‘ 

The compressor work per unit mass flow rate is

๐‘Š๐‘Šฬ‡๐ถ๐ถ = 687.91

kJ kg

(3)

Regenerator We can use conservation of energy to write the equation for this component as ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡6 โˆ’ ๐‘‡๐‘‡5 ) = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡3 )

Therefore, we can solve for the temperature at 6 in terms of 3: ๐‘‡๐‘‡6 = ๐‘‡๐‘‡5 + ๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡3

(4)

๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘– = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡1 โˆ’ ๐‘‡๐‘‡6 )

(5)

Reactor The heat added to the system per unit mass is: Temperature at 3 We can now substitute Equation (4) into Equation (5), substitute this result into Equation (1) and solve for T3: ๐‘‡๐‘‡3 =

๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ โˆ’ ๐‘Š๐‘Šฬ‡๐ถ๐ถ + ๐‘‡๐‘‡2 + ๐‘‡๐‘‡5 โˆ’ ๐‘‡๐‘‡1 = 572.5 K ๐œ‚๐œ‚๐‘ก๐‘กโ„Ž ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘

And therefore the temperature at 6 is T6 = 714.9 K.

3. What is the energy utilization factor (EUF) of this cycle? The EUR can be determined as follows:

128

rev 112420


Chapter 6 - Thermodynamics of Nuclear Energy Conversion Systems Nonflow and Steady Flow: First- and Second-Law Applications

๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ =

๐‘Š๐‘Šฬ‡๐‘‡๐‘‡ โˆ’ ๐‘Š๐‘Šฬ‡๐ถ๐ถ + ๐‘„๐‘„ฬ‡3โ†’4 =1 ๐‘„๐‘„ฬ‡๐‘–๐‘–๐‘–๐‘–

4. The power of the cogeneration heat exchanger. We must first define some additional parameters: โ€“

๐‘˜๐‘˜๐‘˜๐‘˜

โ€“

steam flow rate, ๐‘š๐‘šฬ‡๐‘ค๐‘ค = 100 ๐‘ ๐‘ 

โ€“

water inlet temperature, Tin = 80ยฐC

water saturation temperature, Tsat = 152ยฐC

To begin we must calculate the power of the cogneration heat exchanger from the water side: ๐‘„๐‘„ฬ‡๐ถ๐ถ๐บ๐บ๐บ๐บ๐บ๐บ = ๐‘š๐‘šฬ‡๐‘ค๐‘ค ๏ฟฝ๐‘๐‘๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– ) + โ„Ž๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ = 241.4 MW

We can now move to the Helium side and determine the mass flow rate of this gas: ๐‘š๐‘šฬ‡๐ป๐ป๐ป๐ป =

Therefore, the reactor power is just

๐‘„๐‘„ฬ‡๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ kg = 233.0 ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡3 โˆ’ ๐‘‡๐‘‡4 ) s

๐‘„๐‘„ฬ‡๐‘…๐‘… = ๐‘š๐‘šฬ‡๐ป๐ป๐ป๐ป ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡1 โˆ’ ๐‘‡๐‘‡6 ) = 344.9 MW

5. Nuclear cogeneration for residential heating has been rarely done. The main issues hindering development of nuclear cogeneration for residential heating on a large scale are as follows: โ€“

For safety reasons, nuclear power plants are sited far from major residential areas. As such, heat transport losses and costs from the plant to the end users would be high.

โ€“

The residential heating load varies greatly throughout the year and even during a single day. This may force frequent changes in the operating conditions of the plant, something nuclear plants are not particularly suitable for.

129

rev 112420


Chapter 7 Thermodynamics of Nuclear Energy Conversion Systems - Nonsteady Flow First Law Analysis Contents Problem 7.1

Containment pressure analysis ....................................................................... 131

Problem 7.2

Ice condenser containment analysis ............................................................... 134

Problem 7.3

Containment pressure increase due to residual core heat ............................... 137

Problem 7.4

Loss of heat sink in a sodium-cooled reactor ................................................. 140

Problem 7.5

Response of a BWR suppression pool to safety/relief valve discharge ......... 143

Problem 7.6

Containment sizing for a gas cooled reactor with passive emergency cooling ......................................................................................................................... 146

Problem 7.7

Containment problem involving a LOCA ...................................................... 151

Problem 7.8

Analysis of a transient overpower in the PWR steam generator .................... 154

Problem 7.9

Drain tank pressurization problem ................................................................. 157

Problem 7.10 Containment pressurization following zircaloy-hydrogen reaction ............... 161 Problem 7.11 Effect of noncondensable gas on pressurizer response to an insurge ............. 164 Problem 7.12 Pressurizer sizing analysis .............................................................................. 168 Problem 7.13 Pressurizer insurge problem ........................................................................... 170 Problem 7.14 Behavior of a fully contained pressurized pool reactor under decay power conditions ....................................................................................................... 172 Problem 7.15 Depressurization of a primary system ............................................................ 175

Note on Nomenclature of Chapter 7: This Solution Manual uses italics for sub-scripts, whereas the Nuclear Systems I 3rd edition textbook uses non-italics.

130

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

PROBLEM 7.1 QUESTION Containment Pressure Analysis (Section 7.2) For the plant analyzed in Example 7.1, Problem A, the peak containment pressure resulting from primary system blowdown is 0.523 MPa. Assume that the primary system failure analyzed in that accident sends an acoustic wave through the primary system that causes a massive failure of steam generator tubes. Although main and auxiliary feedwater to all steam generators are shut off promptly, the entire secondary system inventory of 89 m3 at 6.89 MPa is also now released to containment by blowdown through the primary system. Assume for this case that the secondary system inventory is all at saturated liquid conditions. 1. What is the new containment pressure? 2. Can it be less than that resulting from only primary system failure? Answers: 1. 0.6 MPa 2. Yes, if the secondary fluid properties are such that this fluid acts as an effective heat sink.

PROBLEM 7.1 SOLUTION Containment Pressure Analysis (Section 7.2) For the plant analyzed in Example 7.1, Problem A, the peak containment pressure resulting from primary system blowdown is 0.523 MPa. Assume that the primary system failure analyzed in that accident sends an acoustic wave through the primary system that causes a massive failure of steam generator tubes. Although main and auxiliary feedwater to all steam generators are shut off promptly, the entire secondary system inventory of 89 m3 at 6.89 MPa is also now released to containment by blowdown through the primary system. Assume for this case that the secondary system inventory is all at saturated liquid conditions. 1. What is the new containment pressure? The containment for this problem will be taken as the sum of the original containment volume plus the primary system. General parameters are listed below that were given or the result from the analysis performed in Example 7.1. โ€”

Initial pressure before this transient, P1 = 0.523 MPa

โ€”

Initial temperature of the containment, T1 = 415.6 K

โ€”

Quality of water mixture in the containment, x1 โˆ’ 0.505

โ€”

Volume of containment and primary system, Vc = 51,324 m3

โ€”

Volume of secondary system, Vss = 89 m3

โ€”

Initial pressure of secondary system, Pss = 6.89 MPa

131

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis โ€”

Mass of air, ma = 5.9 ร— 104kg

โ€”

Mass of water initially in containment, mwa = 2.11 ร— 105 kg

We can begin by writing the conservation of energy for this system where we take a control volume of the fluid that is present after the primary system rupture and the volume of the secondary system, ๐œ•๐œ•๐œ•๐œ•๐ถ๐ถ๐ถ๐ถ = ๏ฟฝ ๐‘„๐‘„๐‘›๐‘› ๐œ•๐œ•๐œ•๐œ•

(1)

๐‘›๐‘›

In Equation (9) ECV is the energy stored in the control volume and Qn are the heat sources and sinks. For this problem, we will neglect all heat transfer to the structures as well as the decay heat, heat from fission and chemical reaction. Thus Equation (9) becomes ๐œ•๐œ•๐œ•๐œ•๐ถ๐ถ๐ถ๐ถ =0 ๐œ•๐œ•๐‘ก๐‘ก

This can be integrated to give

(2)

๐ธ๐ธ2 โˆ’ ๐ธ๐ธ1 = 0

(3)

๐‘š๐‘š๐‘Ž๐‘Ž (๐‘ข๐‘ข๐‘Ž๐‘Ž2 โˆ’ ๐‘ข๐‘ข๐‘Ž๐‘Ž1 ) + (๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค + ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค )๐‘ข๐‘ข๐‘ค๐‘ค2 โˆ’ (๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค ๐‘ข๐‘ข๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค1 + ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค ๐‘ข๐‘ข๐‘ค๐‘ค๐‘ค๐‘ค1 ) = 0

(4)

We can write the stored energy from air and water at the final (2) and initial (1) states,

In Equation (2) ua2 and ua1 are the final and initial internal energies of the air in containment, mwSS is the mass of water in the secondary system, uw2 is the final internal energy of water after the break, uwSS1 is the initial internal energy of the water in the secondary system and uwa1 is the initial internal energy of the water in the containment. Note that we have assume that the water from the secondary system and the initial water in the containment will be in thermal equilibrium at the final state. We will take Equation (2) apart looking at each component. We can assume that air is a perfect gas where (5) ๐‘ข๐‘ข๐‘Ž๐‘Ž2 โˆ’ ๐‘ข๐‘ข๐‘Ž๐‘Ž1 = ๐‘๐‘๐œ๐œ๐œ๐œ (๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡1 ) However, we do not know the temperature T2 at the final state. The specific heat is taken to be J

719 kg K taken from Example 7.1. Next, the mass of water initially in the secondary system can be

determined from the volume and specific volume of the saturated liquid water. V๐‘†๐‘†๐‘†๐‘† = 89 m3

v๐‘†๐‘†๐‘†๐‘† = v๏ฟฝ๐‘ƒ๐‘ƒ๐‘†๐‘†๐‘†๐‘†, ๐‘ฅ๐‘ฅ = 0๏ฟฝ = 0.00134827 ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค =

V๐‘†๐‘†๐‘†๐‘† = 6.601 ร— 104 kg v๐‘†๐‘†๐‘†๐‘† 132

(6) m3 kg

(7) (8)

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

Next, the specific internal energy at state 2 will be assumed to be saturated and therefore can be expressed as ๐‘ข๐‘ข๐‘ค๐‘ค2 = ๐‘ข๐‘ข๐‘”๐‘”๐‘”๐‘”2 (๐‘‡๐‘‡2 )๐‘ฅ๐‘ฅ๐‘ค๐‘ค2 + ๐‘ข๐‘ข๐‘“๐‘“๐‘“๐‘“2 (๐‘‡๐‘‡2 )(1 โˆ’ ๐‘ฅ๐‘ฅ๐‘ค๐‘ค2 )

(9)

The internal energy of water at saturated liquid and vapor conditions are determined from T2 which is unknown still. The final specific volume of water in the system can be calculated by determining the total volume of the system and dividing by the total mass of water, v๐‘ค๐‘ค2 =

V๐‘†๐‘†๐‘†๐‘† + V๐ถ๐ถ m3 = 0.1856 ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค + ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค kg

This can be used eventually to determine the quality at state 2 ๐‘ฅ๐‘ฅ๐‘ค๐‘ค2 =

v๐‘ค๐‘ค2 โˆ’ v๐‘“๐‘“๐‘“๐‘“2 (๐‘‡๐‘‡2 ) v๐‘ค๐‘ค2 โˆ’ v๐‘“๐‘“๐‘“๐‘“2 (๐‘‡๐‘‡2 ) = v๐‘”๐‘”๐‘”๐‘”2 (๐‘‡๐‘‡2 ) โˆ’ v๐‘“๐‘“๐‘“๐‘“2 (๐‘‡๐‘‡2 ) v๐‘”๐‘”๐‘”๐‘”2 (๐‘‡๐‘‡2 ) โˆ’ v๐‘“๐‘“๐‘“๐‘“2 (๐‘‡๐‘‡2 )

(10)

So, we still have T2 as an unknown. The specific internal energy of the water initially in the secondary system can be determined as kJ ๐‘ข๐‘ข๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค1 = ๐‘ข๐‘ข(๐‘ƒ๐‘ƒ๐‘†๐‘†๐‘†๐‘† , ๐‘ฅ๐‘ฅ = 0) = 1252.68 (11) kg The specific internal energy of the water in the containment initially, is determined from the temperature and the quality, kJ ๐‘ข๐‘ข๐‘ค๐‘ค๐‘ค๐‘ค1 = ๐‘ข๐‘ข(๐‘‡๐‘‡1 = 415.6 K, ๐‘ฅ๐‘ฅ1 = 0.505) = 1585.39 kg Looking at the equations that have been constructed above, we can formulate the following equations to be solved simultaneously, where we have substituted Equation (5) into Equation (2), ๐‘š๐‘š๐‘Ž๐‘Ž ๐‘๐‘๐œ๐œ๐œ๐œ (๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡1 ) + (๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค + ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค )๐‘ข๐‘ข๐‘ค๐‘ค2 โˆ’ (๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค ๐‘ข๐‘ข๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค1 + ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค ๐‘ข๐‘ข๐‘ค๐‘ค๐‘ค๐‘ค1 ) = 0 ๐‘ข๐‘ข๐‘ค๐‘ค2 โˆ’ ๐‘ข๐‘ข๐‘”๐‘”๐‘”๐‘”2 (๐‘‡๐‘‡2 )๐‘ฅ๐‘ฅ๐‘ค๐‘ค2 + ๐‘ข๐‘ข๐‘“๐‘“๐‘“๐‘“2 (๐‘‡๐‘‡2 )(1 โˆ’ ๐‘ฅ๐‘ฅ๐‘ค๐‘ค2 )

๐‘ฅ๐‘ฅ๐‘ค๐‘ค2 =

v๐‘ค๐‘ค2 โˆ’ v๐‘“๐‘“๐‘“๐‘“2 (๐‘‡๐‘‡2 ) ๐‘ข๐‘ข๐‘ค๐‘ค2 โˆ’ ๐‘ข๐‘ข๐‘“๐‘“๐‘“๐‘“2 (๐‘‡๐‘‡2 ) = v๐‘”๐‘”๐‘”๐‘”2 (๐‘‡๐‘‡2 ) โˆ’ v๐‘“๐‘“๐‘“๐‘“2 (๐‘‡๐‘‡2 ) ๐‘ข๐‘ข๐‘”๐‘”๐‘”๐‘”2 (๐‘‡๐‘‡2 ) โˆ’ ๐‘ข๐‘ข๐‘“๐‘“๐‘“๐‘“2 (๐‘‡๐‘‡2 )

Here we have 3 unknowns, T2, uw2, xw2 and 3 equations. Note it is not trivial to solve these equations since there are thermal properties that depend on the unknowns. A MATLAB script was used to iterate on thefinal temperature determining properties on the fly until the equations converged. The important results from the script are m3 ๐‘‡๐‘‡2 = 421.7 K ๐‘ฅ๐‘ฅ๐‘ค๐‘ค2 = 0.4547 v๐‘“๐‘“๐‘“๐‘“2 = 0.0011 kg Knowing the temperature the total pressure at state 2 can be calculated. The total pressure is made up of the partial pressure of water and the partial pressure of air. The pressure of the water is just the saturation pressure at the temperature above. The pressure of air will be calculated from the

133

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

perfect gas law. The partial pressure of water at the final pressure is just ๐‘ƒ๐‘ƒ๐‘ค๐‘ค2 = ๐‘ƒ๐‘ƒ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  (๐‘‡๐‘‡2 ) = 0.4594 MPa

The volume of air is the total volume subtracted by the volume of the liquid water droplets. The volume of liquid water is first calculated as V๐‘“๐‘“๐‘“๐‘“2 = (๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค + ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค )(1 โˆ’ ๐‘ฅ๐‘ฅ๐‘ค๐‘ค2 )v๐‘“๐‘“๐‘“๐‘“2 = 166.159 m3

The volume of air is therefore

V๐‘Ž๐‘Ž2 = (V๐‘†๐‘†๐‘†๐‘† + V๐ถ๐ถ ) โˆ’ V๐‘“๐‘“๐‘“๐‘“2 = 5.125 ร— 104 m3 J

The partial pressure of air is determine from ideal gas law ๐‘…๐‘…๐‘Ž๐‘Ž = 286 kg K taken from Example 7.1, ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž2 =

๐‘š๐‘š๐‘Ž๐‘Ž ๐‘…๐‘…๐‘Ž๐‘Ž ๐‘‡๐‘‡2 = 0.139 MPa V๐‘Ž๐‘Ž2

Thus, the total pressure is just the sum of the partial pressures,

๐‘ƒ๐‘ƒ2 = ๐‘ƒ๐‘ƒ๐‘ค๐‘ค2 + ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž2 = 0.598 MPa โ‰ˆ 0.6 MPa

2. Can the final containment pressure be less than that from only primary system failure? This situation could happen if the thermal properties of the fluid in the secondary system were such that energy is absorbed at failure of this secondary side. This could happen if the fluid is very subcooled.

PROBLEM 7.2 QUESTION Ice Condenser Containment Analysis (Section 7.2) Calculate the minimum mass of ice needed to keep the final containment pressure below 0.4 MPa, assuming that the total volume consists of a 5.05 ร— 104 m3 containment volume and a 500 m3 primary volume. Neglect the initial volume of the ice. Additionally, assume the following initial conditions: Containment pressure = 1.013 ร— 105 Pa (1 atm) Containment temperature = 300 K Ice temperature = 263 K (โˆ’10ยฐC) Ice pressure = 1.013 ร— 105 Pa (1 atm) Primary pressure = 15.5 MPa (saturated liquid conditions) Relevant properties are: cฯ…, for air = 719 J/kg K Rsp,a for air = 268 J/kg K c for ice = 4.23 ร— 103 J/kg K Heat of fusion for water = 3.33 ร— 105 J/kg (at 1 atm)

134

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

Answer: 1.78 ร— 105 kg of ice

PROBLEM 7.2 SOLUTION Ice Condenser Containment Analysis (Section 7.2) From the problem statement, we are given that: โ€”

final containment pressure, Pf = 0.4 MPa

โ€”

total volume of containment, Vc = 5.05 ร— 104 m3

โ€”

primary system volume, Vp = 500 m3

โ€”

initial containment pressure, Po = 1.013 ร— 105 Pa

โ€”

initial containment temperature, To = 300 K

โ€”

temperature of ice, Ti = 263 K

โ€”

primary system pressure, Pp = 15.5 MPa

Thermodynamic properties are: โ€”

specific heat of air, cฯ…a = 719 J/kg K

โ€”

gas constant for air, Rsp,a = 286 J/kg K

โ€”

specific heat of ice, ci = 4.23 ร— 103 J/kg K

โ€”

heat of fusion for ice, ufus = 3.33 ร— 105 J/kg

โ€”

melting temperature, Tm = 273 K

The internal energy of primary system water initially (evaluated from steam tables) is ๐‘ข๐‘ข๐‘ค๐‘ค๐‘ค๐‘ค1 = 1603.8 kJโ„kg

(1)

๐‘ข๐‘ข๐‘–๐‘–1 = โˆ’๐‘ข๐‘ข๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ โˆ’ ๐‘๐‘๐‘–๐‘– (๐‘‡๐‘‡๐‘š๐‘š โˆ’ ๐‘‡๐‘‡๐‘–๐‘– ) = โˆ’375.3 kJโ„kg

(2)

v๐‘ค๐‘ค๐‘ค๐‘ค1 = 0.00168243 m3 โ„kg

(3)

The internal energy of ice initially is

From steam tables, the specific volume in the primary system initially is Thus, the mass of water in the primary system is ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค =

V๐‘๐‘ = 2.972 ร— 105 kg v๐‘ค๐‘ค๐‘ค๐‘ค1

(4)

The mass of air in the containment can be determined from the ideal gas law to be

135

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

๐‘š๐‘š๐‘Ž๐‘Ž =

๐‘ƒ๐‘ƒ๐‘œ๐‘œ V๐‘œ๐‘œ = 5.962 ร— 104 kg ๐‘…๐‘…๐‘ ๐‘ ๐‘ ๐‘ ,๐‘Ž๐‘Ž ๐‘‡๐‘‡๐‘œ๐‘œ

(5)

For this situation, conservation of energy is

๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค ๏ฟฝ๐‘ข๐‘ข๐‘ค๐‘ค๐‘ค๐‘ค2 โˆ’ ๐‘ข๐‘ข๐‘ค๐‘ค๐‘ค๐‘ค1 ๏ฟฝ + ๐‘š๐‘š๐‘Ž๐‘Ž ๐‘๐‘๐œ๐œ๐œ๐œ (๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡๐‘œ๐‘œ ) + ๐‘š๐‘š๐‘–๐‘– (๐‘ข๐‘ข๐‘–๐‘–2 โˆ’ ๐‘ข๐‘ข๐‘–๐‘–1 ) = 0

(6)

๐‘ข๐‘ข๐‘ค๐‘ค๐‘ค๐‘ค2 = ๐‘ข๐‘ข๐‘–๐‘–2

(7)

๐‘ข๐‘ข๐‘ค๐‘ค๐‘ค๐‘ค2 = ๐‘ข๐‘ข(๐‘‡๐‘‡2 , ๐‘ฅ๐‘ฅ2 )

(8)

In this equation, the only unknowns are the final specific internal energy of water uwp2, final specific internal energy of ice ui2, the mass of ice mi and the final containment temperature T2. If we assume thermodynamic equilibrium conditions at the final state, then

To define this internal energy, we need two independent state properties. Here we state that the internal energy can be evaluated from the final containment temperature and final quality At the final state; the specific volume can be calculated with v2 =

V๐‘๐‘ + V๐‘๐‘ ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค + ๐‘š๐‘š๐‘–๐‘–

(9)

We can define this specific volume similar to the specific internal energy as v2 = v(๐‘‡๐‘‡2 , ๐‘ฅ๐‘ฅ2 )

(10)

๐‘ƒ๐‘ƒ2 = ๐‘ƒ๐‘ƒ๐‘ค๐‘ค2 + ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž2

(11)

๐‘ƒ๐‘ƒ๐‘ค๐‘ค2 = ๐‘ƒ๐‘ƒ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  (๐‘‡๐‘‡2 )

(12)

The final pressure of the containment, which was given in the problem statement, is made up of the partial pressure of water and partial pressure of air, The partial pressure of water is the saturation pressure of the system at the final state, and the partial pressure of air can again be calculated with the ideal gas law ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž2 =

๐‘š๐‘š๐‘Ž๐‘Ž ๐‘…๐‘…๐‘ ๐‘ ๐‘ ๐‘ ,๐‘Ž๐‘Ž ๐‘‡๐‘‡2 V๐‘๐‘

(13)

assuming V๐‘๐‘ โ‹™ V๐‘๐‘ and neglecting the volume that liquid water takes up. The number of unknowns, 8, in this formulation are T2 , uwp2 , ui2, mi, ฯ…2, x2, Pw2 Pa2. We have 8 equations, (6)-(13) to solve for them. The final result is ๐‘š๐‘š๐‘–๐‘– = 1.78 ร— 105 kg

136

(14)

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

PROBLEM 7.3 QUESTION Containment Pressure Increase Due to Residual Core Heat (Section 7.2) Consider the containment system as shown in Figure 7.14 after a loss of coolant accident (LOCA). Assume that the containment is filled with saturated liquid, saturated vapor, and air and nitrogen gas released from rupture of one of the accumulators, all at thermal equilibrium. The containment spray system has begun its recirculating mode, during which the sump water is pumped by the residual heat removal (RHR) pump through the RHR heat exchanger and sprayed into the containment.

FIGURE 7.14 Containment.

Assume that after 1 h of operation the RHR pump fails and the containment is heated by core decay heat. The decay heat from the core is assumed constant at 1% of the rated power of 2441 MWth. Find the time when the containment pressure reaches its design limit, 0.827 MPa (121.6 psia). Additional necessary information is given below. Conditions after 1 h: Water mixture mass (mw) = 1.56 ร— 106 kg Water mixture quality (xst) = 0.0249 Air mass (ma) = 5.9 ร— 104 kg Nitrogen mass =(mN2) = 1.0ร—l03 kg Initial temperature (T) = 381.6 K

137

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

Thermodynamic properties of gases: Rsp,a= 0.286 kJ/kg K cฯ…a = 0.719 kJ/kg K Rsp,N = 0.296 kJ/kg K cฯ…N = 0.742 kJ/kg K Answer: 7.08 h

PROBLEM 7.3 SOLUTION Containment Pressure Increase Due to Residual Core Heat (Section 7.2) From the problem statement, we are given: โˆ’ โˆ’

reactor power, ๐‘„๐‘„ฬ‡๐‘…๐‘… = 2441 MWth

containment pressure limit, Pc = 0.827 MPa

Conditions after 1 hr: โˆ’

mass of water mixture, mw = 1.56 ร— 106 kg

โˆ’

water mixture quality, xst = 0.0249

โˆ’

mass of air, ma = 5.9 ร— 104 kg

โˆ’

mass of nitrogen, mN = 1.0 ร— 103 kg

โˆ’

initial temperature, T1 = 381.6 K

Thermodynamic properties: โˆ’

gas constant for air, Rsp,a = 0.286 kJ/kg

โˆ’

specific heat for air, cฯ…a = 0.719 kJ/kg

โˆ’

gas constant for nitrogen, Rsp,N = 0.296 kJ/kg

โˆ’

specific heat for nitrogen, cฯ…N.= 0.742 kJ/kg

The decay heat is at 1% of the reactor power ๐‘„๐‘„ฬ‡๐‘‘๐‘‘ = 0.01๐‘„๐‘„๐‘…๐‘… = 24.41 MWth

(1)

๐‘ƒ๐‘ƒ๐‘ค๐‘ค1 = 1.361 bar

(2)

The initial partial pressure of water in the containment corresponds to the saturation pressure at the initial temperature,

The corresponding saturated specific volumes for liquid and vapor are

138

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

v๐‘“๐‘“1 = 0.00105028 m3 โ„kg

(3)

v๐‘”๐‘”1 = 1.26993 m3 โ„kg

The specific volume of the water mixture is therefore,

v๐‘“๐‘“1 = v๐‘“๐‘“1 + ๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝv๐‘”๐‘”1 โˆ’ v๐‘“๐‘“1 ๏ฟฝ = 0.032645 m3 โ„kg

(4)

V๐‘๐‘ = v1 ๐‘š๐‘š๐‘ค๐‘ค = 5.093 ร— 104 m3

(5)

The volume of the containment is given by

Conservation of energy for this situation is

๐‘š๐‘š๐‘ค๐‘ค (๐‘ข๐‘ข๐‘ค๐‘ค2 โˆ’ ๐‘ข๐‘ข๐‘ค๐‘ค1 ) + ๐‘š๐‘š๐‘Ž๐‘Ž ๐‘๐‘๐œ๐œ๐œ๐œ (๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡1 ) + ๐‘š๐‘š๐‘๐‘ ๐‘๐‘๐œ๐œ๐œ๐œ (๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡1 ) = ๐‘„๐‘„ฬ‡๐‘‘๐‘‘ ๐‘ก๐‘ก

(6)

The initial specific internal energy of water is calculated from steam tables at temperature, T1, and quality xst, ๐‘ข๐‘ข1๐‘ค๐‘ค = 5.06 ร— 105 Jโ„kg

(7)

๐‘ข๐‘ข2๐‘ค๐‘ค = ๐‘ข๐‘ข(๐‘‡๐‘‡2 , v1 )

(8)

๐‘ƒ๐‘ƒ2 = ๐‘ƒ๐‘ƒ2๐‘ค๐‘ค + ๐‘ƒ๐‘ƒ2๐‘Ž๐‘Ž + ๐‘ƒ๐‘ƒ2๐‘๐‘

(9)

๐‘ƒ๐‘ƒ2๐‘ค๐‘ค = ๐‘ƒ๐‘ƒ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  (๐‘‡๐‘‡2 )

(10)

The final specific internal energy of water is calculated from steam tables from the final temperature, T2 and final specific volume which is v1, The final pressure, given above, is made up of partial pressures (water, air, and nitrogen), The partial pressure of water is the saturation pressure at the final temperature,

The partial pressures of air and nitrogen are given by the ideal gas law,

and

๐‘ƒ๐‘ƒ2๐‘Ž๐‘Ž =

๐‘š๐‘š๐‘Ž๐‘Ž ๐‘…๐‘…๐‘ ๐‘ ๐‘ ๐‘ ,๐‘Ž๐‘Ž ๐‘‡๐‘‡2 V๐‘๐‘

๐‘ƒ๐‘ƒ2๐‘๐‘ =

๐‘š๐‘š๐‘๐‘ ๐‘…๐‘…๐‘ ๐‘ ๐‘ ๐‘ ,๐‘๐‘ ๐‘‡๐‘‡2 ๐‘‰๐‘‰๐‘๐‘

(11)

(12)

There are 6 unknowns (uw2 , T2 , t, P2w, P2a and P2N) and 6 corresponding equations (Equations (7), (12), (10), (11), (12) and (8)). Solving these equations simultaneously yields a time of 7.08 hours.

139

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

PROBLEM 7.4 QUESTION Loss of Heat Sink in a Sodium-cooled Reactor (Section 7.2) A 1000 MWth SFR has three identical coolant loops. The reactor vessel is filled with sodium to a prescribed level, with the remainder of the vessel being occupied by an inert cover gas, as shown in Figure 7.15. Under the steady operating condition, the ratio of the volume of cover gas to that of sodium in the primary system is 0.1. At time t = 0, the primary system of this reactor suffers a complete loss of heat sink accident, and the reactor power instantly drops to 2% of full power.

FIGURE 7.15 Reactor vessel in a sodium-cooled reactor.

Using a lumped parameter approach, calculate the pressure of the primary system at t = 60 seconds. At this time, check if the sodium is boiling. Useful data: Initial average primary system temperature = 527ยฐC Initial primary system pressure = 345 kPa Total primary system coolant mass = 8165 kg ฮฒ (volumetric coefficient of thermal expansion of sodium) = 2.88 ร— 10โˆ’4 ยฐC cp for sodium = 1256 J/kg K (at 527ยฐC) ฯ for sodium = 823.3 kg/m3 (527ยฐC) Sodium saturated vapor pressure: ๐‘ƒ๐‘ƒ = exp[18.832 โˆ’ (13113โ„๐‘‡๐‘‡) โˆ’ 1.0948 ln ๐‘‡๐‘‡ + 1.9777 ร— 10โˆ’4 ๐‘‡๐‘‡]

where P is in atmospheres and T is in K. Answers: P = 607 kPa T = 644ยฐC, thus no boiling occurs.

140

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

PROBLEM 7.4 S OLUTION Loss of Heat Sink in a Sodium-cooled Reactor (Section 7.2) From the problem statement, we are given that: โˆ’

initial temperature, T1 = 527ยฐC

โˆ’

initial pressure, P1 = 345 kPa

โˆ’

mass of sodium, ms = 8165 kg

โˆ’

volumetric thermal expansion coefficient of sodium, ฮฒ = 2.88 ร— 10โˆ’4 1/K

โˆ’

specific heat of sodium, cps = 1256 J/kg K

โˆ’

density of sodium, ฯs = 823.3 kg/m3

โˆ’

reactor power, ๐‘„๐‘„ฬ‡๐‘…๐‘… = 1000 MWth

โˆ’

time, t = 60 s

The decay power of the reactor is 2% the operating power,

The volume of sodium is

๐‘„๐‘„ฬ‡๐‘‘๐‘‘ = 0.02๐‘„๐‘„ฬ‡๐‘…๐‘… = 20 MWth V๐‘ ๐‘ I =

๐‘š๐‘š๐‘ ๐‘  = 9.917m3 ๐œŒ๐œŒ๐‘ ๐‘ 

(1) (2)

From the problem statement, the ratio of the nitrogen cover gas 1/10 that of the volume of sodium, therefore, V๐‘๐‘1 = 0.1 V๐‘ ๐‘ 1 = 0.9917 m3

(3)

V๐‘๐‘ = V๐‘ ๐‘ 1 + V๐‘๐‘1 = 10.91 m3

(4)

๐‘ƒ๐‘ƒ๐‘ ๐‘ 1 = exp[18.832 โˆ’ (13113โ„๐‘‡๐‘‡1 ) โˆ’ 1.0948 ln ๐‘‡๐‘‡1 + 1.9777 ร— 10โˆ’4 ๐‘‡๐‘‡1 ] = 906.5 Pa

(5)

v๐‘๐‘1 = 0.6902 m3 โ„kg

(6)

Thus, the total volume is

The initial partial pressure of sodium is given by the provided formula to be

The specific volume of nitrogen can be evaluated from thermodynamic tables (in EES, ideal nitrogen) at the initial temperature and pressure, Thus, the mass of nitrogen is

๐‘š๐‘š๐‘๐‘ =

๐‘‰๐‘‰๐‘๐‘1 = 1.437kg v๐‘๐‘1

(7)

The initial specific internal energy of nitrogen is evaluated from thermodynamic tables (in EES,

141

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

ideal nitro gen) at the initial temperature, T1, and pressure partial pressure of nitrogen, PN1 = P1โˆ’ Ps1 = 344 kPa, ๐‘ข๐‘ข1๐‘๐‘ = 3.003 ร— 105 Jโ„kg

(8)

๐‘š๐‘š๐‘ ๐‘  ๐‘๐‘๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡1 ) + ๐‘š๐‘š๐‘๐‘ (๐‘ข๐‘ข2๐‘๐‘ โˆ’ ๐‘ข๐‘ข1๐‘๐‘ ) = ๐‘„๐‘„ฬ‡๐‘‘๐‘‘ ๐‘ก๐‘ก

(9)

๐‘ข๐‘ข2๐‘๐‘ = ๐‘ข๐‘ข(๐‘‡๐‘‡2 , ๐‘ƒ๐‘ƒ๐‘๐‘2 )

(10)

๐‘ƒ๐‘ƒ๐‘ ๐‘ 2 = exp[18.832 โˆ’ (13113โ„๐‘‡๐‘‡2 ) โˆ’ 1.0948 ln ๐‘‡๐‘‡2 + 1.9777 ร— 104 ๐‘‡๐‘‡2 ]

(11)

V๐‘๐‘2 = V๐‘๐‘1 + V๐‘ ๐‘ 1 (1 โˆ’ exp[๐›ฝ๐›ฝ(๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡1 )])

(12)

Conservation of energy for this situation is

The final specific internal energy of nitrogen can be evaluated at the final temperature, T2 and nitrogen partial pressure, PN2,

The final partial pressure of sodium is

The final volume of nitrogen after expansion is

Therefore the final specific volume is

v๐‘๐‘2 =

V๐‘๐‘2 ๐‘š๐‘š๐‘๐‘

(13)

The final partial pressure of nitrogen gas can be evaluated from thermodynamic tables with the final temperature T2 and final specific volume vN2 , (14) ๐‘ƒ๐‘ƒ๐‘๐‘2 = ๐‘ƒ๐‘ƒ๏ฟฝ๐‘‡๐‘‡2, v๐‘๐‘2 ๏ฟฝ

The final pressure of the system is the summation of partial pressures, ๐‘ƒ๐‘ƒ2 = ๐‘ƒ๐‘ƒ๐‘๐‘2 + ๐‘ƒ๐‘ƒ๐‘ ๐‘ 2

(15)

(16)

and

๐‘ƒ๐‘ƒ2 = 607 kPa

(17)

Thus, no boiling occurred.

๐‘‡๐‘‡2 = 644ยฐC

There are 7 number of unknowns (T2 , u2N, PN2, Ps2, VN2, vN2 P2) and 7 equations (Equations (7)(9)). After solving them simultaneously, the final pressure and temperature are

142

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

PROBLEM 7.5 QUESTION Response of a BWR Suppression Pool to Safety/Relief Valve Discharge (Section 7.2) Compute the suppression pool temperature after 5 min for a case in which the reactor is scrammed and steam is discharged from the reactor pressure vessel (RPV) into the suppression pool such that the temperature of the RPV coolant is reduced at a specific cooldown rate. During this process, makeup water is supplied to the RPV. Heat input to the RPV is only from long-term decay energy generation. Numerical parameters applicable to this problem are given in Table 7.4. Answer: 34.6ยฐC TABLE 7.4 Conditions for Suppression Pool Heat-Up Analysis Parameter

Value

Specified cooldown rate

38ยฐC/h (68.4ยฐF/h)

Reactor power level prior to scram

3434 MWth

RPV initial pressure

7 MPa (1015.3 psia)

Saturation properties at 7 MPa

T = 285.88ยฐC ฮฝf = 1.3513 ร— 10โˆ’3 m3/kg ฮฝfg = 26.0187 ร— 10โˆ’3 m3/kg uf = 1257.55 kJ/kg ufg = 1323.0 kJ/kg sf = 3.1211 kJ/kg K sfg = 2.6922 kJ/kg K

Discharge period

5 min

Makeup water flow rate

32 kg/s (70.64 lbm/s)

Makeup water enthalpy

800 kJ/kg (350 Btu/lbm)

RPV free volume

656.3 m3 (2.3184 ร— 104 ft3)

RPV initial liquid mass

0.303 ร— 106 kg (0.668 ร— 106 lbm)

RPV initial steam mass

9.0264 ร— 103 kg (19.9 ร— 103 lbm)

Suppression pool initial temperature

32ยฐC (90ยฐF)

Suppression pool initial pressure

0.1 MPa (14.5 psia)

Suppression pool water mass

3.44 ร— 106 kg (7.6 ร— 106 lbm)

RHR heat exchanger is actuated at high suppression pool temperature: 43.4ยฐC (110ยฐF)

143

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

PROBLEM 7.5 SOLUTION Response of a BWR Suppression Pool to Safety/Relief Valve Discharge (Section 7.2) From the problem statement, we are given: ๐‘‘๐‘‘๐‘‘๐‘‘

โˆ’

cooldown rate, ๐‘‘๐‘‘๐‘‘๐‘‘ = 38โˆ†ยฐ Cโ„hr

โˆ’

time, tf = 5 min

โˆ’

โˆ’ โˆ’ โˆ’

reactor power, ๐‘„๐‘„ฬ‡๐‘…๐‘… = 3434 MW

inlet makeup water flow rate, ๐‘š๐‘šฬ‡๐‘–๐‘–๐‘–๐‘– = 32 kgโ„s

makeup water flow enthalpy, โ„Ž๐‘–๐‘–๐‘–๐‘– = 800 kJโ„kg volume of primary system, VPS = 656.3 m3

โˆ’

mass of saturated liquid initially in primary system, mf1 = 0.303 ร— 106 kg

โˆ’

mass of saturated vapor initially in primary system, mg1 = 9.0264 ร— 103 kg

โˆ’

initial suppression pool temperature, T1 = 32 ยฐC

โˆ’

suppression pool initial pressure, P1 = 0.1 MPa

โˆ’

suppression pool water mass, mw1 = 3.44 ร— 106 kg

โˆ’

initial primary system pressure, Pi = 7 MPa

Saturation properties at 7 MPa: โˆ’

Ti = 285.88 ยฐC

โˆ’

vf = 1.3513 ร— 10โˆ’3 m3/kg

โˆ’ โˆ’

vfg = 26.0187 ร— 10โˆ’3 m3/kg uf = 1257.55 kJ/kg

โˆ’

ufg = 1323 kJ/kg

โˆ’

hg1 = 2773 kJ/kg

Reactor First, we look at the reactor system and determine the total amount of energy leaving the system to the suppression pool over 5 minutes. The final temperature in the reactor after cooldown is ๐‘‡๐‘‡๐‘“๐‘“ = ๐‘‡๐‘‡๐‘–๐‘– โˆ’

๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ก๐‘ก = 282.713ยฐC ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘“๐‘“ 144

(1)

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

For conservation of energy we have ๐‘ก๐‘ก๐‘“๐‘“

๐‘š๐‘š๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ (๐‘ข๐‘ข๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ2 โˆ’ ๐‘ข๐‘ข๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ1 ) = ๐‘š๐‘šฬ‡๐‘–๐‘–๐‘–๐‘– โ„Ž๐‘–๐‘–๐‘–๐‘– ๐‘ก๐‘ก๐‘“๐‘“ + ๏ฟฝ ๐‘„๐‘„ฬ‡๐‘‘๐‘‘ (๐‘ก๐‘ก)๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๐‘š๐‘šฬ‡๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๐‘ก๐‘ก๐‘“๐‘“

(2)

๐‘š๐‘š๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ = ๐‘š๐‘š๐‘“๐‘“1 + ๐‘š๐‘š๐‘”๐‘”1 = 3.12 ร— 105 kg

(3)

0

Here, we assume that the mass in the primary system will not change significantly in 5 minutes. Therefore we need to calculate all quantities and solve for ๐‘š๐‘šฬ‡๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ. Mass in the primary system is The initial quality in the primary system is ๐‘ฅ๐‘ฅ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ1 =

๐‘š๐‘š๐‘”๐‘”1 = 0.028928 ๐‘š๐‘š๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

(4)

Since we know the pressure and quality, the initial specific internal energy is ๐‘ข๐‘ข๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ1 = ๐‘ข๐‘ข๏ฟฝ๐‘ƒ๐‘ƒ๐‘–๐‘–, ๐‘ฅ๐‘ฅ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ1 ๏ฟฝ = 1296 kJโ„kg

(5)

The specific volume can be calculated to be v๐‘–๐‘– =

V๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ = 2.103 ร— 10โˆ’3 m3 โ„kg ๐‘š๐‘š๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

(6)

Since we know the final temperature from Equation (1), we can look up the saturation pressure to be ๐‘ƒ๐‘ƒ2๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ = ๐‘ƒ๐‘ƒ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ๐‘‡๐‘‡๐‘“๐‘“ ๏ฟฝ = 6.683 MPa

(7)

๐‘ข๐‘ข๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ2 = ๐‘ข๐‘ข๏ฟฝ๐‘ƒ๐‘ƒ2๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ, v๐‘–๐‘– ๏ฟฝ = 1279 kJโ„kg

(8)

Since we are assuming that the mass of water in the primary system does not change much, the initial specific volume will be approximately equivalent to the final specific volume. Therefore, using pressure and specific volume, we can look up the final specific internal energy to be

We can evaluate the energy entering the system due to decay heat with ๐‘ก๐‘ก๐‘“๐‘“

๐‘ก๐‘ก๐‘“๐‘“

๐‘„๐‘„๐‘‘๐‘‘ = ๏ฟฝ ๐‘„๐‘„ฬ‡๐‘‘๐‘‘ (๐‘ก๐‘ก)๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ 0.066๐‘„๐‘„ฬ‡๐‘…๐‘… ๐‘ก๐‘ก โˆ’0.2 ๐‘‘๐‘‘๐‘‘๐‘‘ = 2.716 ร— 1010 J

(9)

โ„Žout = 0.5 ๏ฟฝโ„Ž๐‘”๐‘” (๐‘ƒ๐‘ƒ1๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ) + โ„Ž๐‘”๐‘” (๐‘ƒ๐‘ƒ2๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ )๏ฟฝ = 2775 kJโ„kg

(10)

0

0

Finally, the enthalpy leaving the system to the suppression pool will be at saturated vapor conditions. Since the pressure doesnโ€™t change significantly, we will just take a simple average

where hg (P1PS) โ€” 2773 kJ/kg and hg (P2PS) = 2777 kJ/kg. Thus, we

can solve Equation (2) for the flow rate going to the suppression pool, ๐‘š๐‘šฬ‡๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ =

๐‘„๐‘„๐‘‘๐‘‘ + ๐‘š๐‘šฬ‡๐‘–๐‘–๐‘–๐‘– โ„Ž๐‘–๐‘–๐‘–๐‘– ๐‘ก๐‘ก๐‘“๐‘“ โˆ’ ๐‘š๐‘š๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ (๐‘ข๐‘ข๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ2 โˆ’ ๐‘ข๐‘ข๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ1 ) = 48.1 kgโ„s โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๐‘ก๐‘ก๐‘“๐‘“

(11)

145

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

Therefore, in the 5 minutes the change in primary system mass is (๐‘š๐‘šฬ‡๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ โˆ’ ๐‘š๐‘šฬ‡๐‘–๐‘–๐‘–๐‘– )๐‘ก๐‘ก๐‘“๐‘“ = 4.8 ร— 103 kg

(12)

which is small compared to 3.12 ร— 105 kg which is the total mass initially in the primary system. Suppression Pool We will now consider just the suppression where the outgoing mass flow rate from the reactor is now the incoming mass flow rate into the suppression pool, ๐‘š๐‘šฬ‡๐‘–๐‘–๐‘–๐‘– โˆ’ ๐‘š๐‘šฬ‡๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = 48.1 kgโ„s

(13)

โ„Ž๐‘–๐‘–๐‘–๐‘– โˆ’ โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = 2775 kJโ„kg

(14)

๐‘š๐‘š๐‘ค๐‘ค2 = ๐‘š๐‘š๐‘ค๐‘ค1 + ๐‘š๐‘šฬ‡๐‘–๐‘–๐‘–๐‘– ๐‘ก๐‘ก๐‘“๐‘“ = 3.454 ร— 106 kg

(15)

๐‘š๐‘š๐‘ค๐‘ค2 ๐‘ข๐‘ข๐‘ค๐‘ค2 โˆ’ ๐‘š๐‘š๐‘ค๐‘ค1 ๐‘ข๐‘ข๐‘ค๐‘ค1 = ๐‘š๐‘šฬ‡๐‘–๐‘–๐‘–๐‘– โ„Ž๐‘–๐‘–๐‘–๐‘– ๐‘ก๐‘ก๐‘“๐‘“

(16)

๐‘ข๐‘ข๐‘ค๐‘ค1 = ๐‘ข๐‘ข(๐‘‡๐‘‡1 , ๐‘ƒ๐‘ƒ1 ) = 134.1 kJโ„kg

(17)

๐‘š๐‘šฬ‡๐‘–๐‘–๐‘–๐‘– โ„Ž๐‘–๐‘–๐‘–๐‘– ๐‘ก๐‘ก๐‘“๐‘“ + ๐‘š๐‘š๐‘ค๐‘ค1 ๐‘ข๐‘ข๐‘ค๐‘ค1 = 145.126 kJโ„kg ๐‘š๐‘š๐‘ค๐‘ค2

(18)

Similarly the enthalpy of the flow going into the suppression pool is the same as the enthalpy leaving the reactor

Applying conservation of mass we can determine the final amount of mass in the suppression pool Conservation of energy for the suppression is

The initial specific internal energy can be determined from the temperature, T1 and pressure, P1, Solving for the final specific internal energy we get, ๐‘ข๐‘ข๐‘ค๐‘ค2 =

The final temperature can be evaluated from steam tables at a pressure P1 (assuming it doesnโ€™t change much) and specific internal energy, uw1, ๐‘‡๐‘‡2 = (๐‘ƒ๐‘ƒ1 , ๐‘ข๐‘ข๐‘ค๐‘ค1 ) = 34.6ยฐC

(19)

PROBLEM 7.6 QUESTION Containment Sizing for a Gas-cooled Reactor with Passive Emergency Cooling (Section 7.2) An advanced helium-cooled graphite-moderated reactor generates a nominal thermal power of 300 MW. To prevent air ingress in the core during a Loss Of Coolant Accident (LOCA), the reactor containment is filled with helium at atmospheric pressure and room temperature (Figure 7.16). The reactor also features an emergency cooling system to remove the decay heat from the containment

146

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

during a LOCA. To function properly, this system, which is passive and based on natural circulation of helium inside the containment, requires a minimum containment pressure of 1.3 MPa.

FIGURE 7.16 Helium-cooled reactor with helium-filled containment: (a) normal operating conditions and (b) post-LOCA situation.

1. Find the containment volume, so that the pressure in the containment is 1.3 MPa immediately after a large-break LOCA occurs (Figure 7.16). (Assume that thermodynamic equilibrium within the containment is achieved instantaneously after the break) 2. Assuming that the emergency cooling system removes 2% of the nominal reactor thermal power, calculate at what time the pressure in the containment reaches its peak value after the LOCA as well as the peak temperature and pressure: (Calculate the decay heat rate assuming infinite operation time) 3. To reduce the peak pressure in the containment, a nuclear engineer suggests venting the containment gas to the atmosphere through a filter. What would be the advantages and disadvantages of this approach? Assumptions: โˆ’ Treat helium as an ideal gas. โˆ’ Neglect the heat contribution from fission and chemical reactions. โˆ’ Neglect the thermal capacity of the structures. Data: โˆ’

Gas volume in the primary system: 200 m3

147

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis โˆ’

Initial primary system temperature and pressure: 673 K, 7.0 MPa

โˆ’

Initial containment temperature and pressure: 300 K, 0.1 MPa

โˆ’

Helium specific heat at constant volume: cฯ…=12.5 J/(mol-K)

โˆ’

Helium atomic weight: A= 0.004 kg/mol

โˆ’

Universal gas constant: R = 8.31 J/(mol-K)

Answers: 1. 950 m3 2. 787K and 1.6MPa at 391s

PROBLEM 7.6 SOLUTION Containment Sizing for a Gas-cooled Reactor with. Passive Emergency Cooling (Section 7.2) An advanced helium-cooled graphite-moderated reactor generates a nominal thermal power of 300 MW. To prevent air ingress in the core during a Loss Of Coolant Accident (LOCA), the reactor containment is filled with helium at atmospheric pressure and room temperature (Figure 7.16). The reactor also features an emergency cooling system to remove the decay heat from the containment during a LOCA. To function properly, this system, which is passive and based on natural circulation of helium inside the containment, requires a minimum containment pressure of 1.3 MPa. The following parameters are used in solving the problem: โˆ’

Gas volume of primary system, VPS = 200 m3

โˆ’

Temperature of primary system, TPS = 673 K

โˆ’

Pressure of primary system, PPS = 7.0 MPa

โˆ’

Initial temperature of containment, T1 = 300 K

โˆ’

Initial pressure of containment, P1 =0.1 MPa

โˆ’

Helium specific heat capacity at constant volume, ๐‘๐‘๐œ๐œ = 12.5 mol K kg

J

โˆ’

Helium molar mass, ๐ด๐ด = 0.004 mol

โˆ’

Final pressure of containment, p2 = 1.3 MPa

โˆ’

J

Universal Gas constant, ๐‘…๐‘… = 8.31 mol K

Answers: 1. 950 m3 2. 787K and 1.64MPa at 391s

148

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

1. Find the containment volume, so that the pressure in the containment is 1.3 MPa immediately after a large-break LOCA occurs (Figure 7.16). (Assume that thermodynamic equilibrium within the containment is achieved instantaneously after the break) We can write the conservation of energy of a control volume that includes the containment and primary system instantaneously after the break. Note that since it is right after the break, we may neglect any decay heat and other heat transfer modes, ๐‘ˆ๐‘ˆ2 โˆ’ ๐‘ˆ๐‘ˆ1 = 0

(1)

๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ๐‘๐‘๐œ๐œ (๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ) + ๐‘›๐‘›๐ถ๐ถ ๐‘๐‘๐œ๐œ (๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡1 ) = 0

(2)

We can expand this equation by substituting in the constitutive relation for internal energy of an ideal gas. Here we will express it in a molar form,

We can rearrange Equation (2) to arrive at ๐‘‡๐‘‡2 =

๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ๐‘‡๐‘‡๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘›๐‘›๐ถ๐ถ ๐‘‡๐‘‡1 ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘›๐‘›๐ถ๐ถ

(3)

The amount of helium initially in the primary system is ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ =

๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ V๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ = 2.5 ร— 105 mol ๐‘…๐‘…๐‘…๐‘…๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

The amount of helium initially in the containment is ๐‘›๐‘›๐ถ๐ถ =

๐‘ƒ๐‘ƒ1 V๐ถ๐ถ ๐‘…๐‘…๐‘…๐‘…1

(4)

In order to calculate this we need the volume of the containment which is the parameter of interest. We can represent the final state as ๐‘ƒ๐‘ƒ2 =

(๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘›๐‘›๐ถ๐ถ )(๐‘…๐‘…๐‘…๐‘…2 ) V๐ถ๐ถ + V๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

(5)

We may substitute Equations (3) and (4) into Equation (5) to determine the volume of the containment to be

Therefore, T2 and nC are:

V๐ถ๐ถ =

๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ๐‘…๐‘…๐‘…๐‘…๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ โˆ’ ๐‘ƒ๐‘ƒ2 V๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ = 950m3 ๐‘ƒ๐‘ƒ2 โˆ’ ๐‘ƒ๐‘ƒ1

๐‘›๐‘›๐ถ๐ถ =

๐‘‡๐‘‡2 =

๐‘ƒ๐‘ƒ1 V๐ถ๐ถ = 3.811 ร— 104 mol ๐‘…๐‘…๐‘…๐‘…1

๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ๐‘‡๐‘‡๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘›๐‘›๐ถ๐ถ ๐‘‡๐‘‡1 = 623.7 K ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘›๐‘›๐ถ๐ถ 149

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

2. Assuming that the emergency cooling system removes 2% of the nominal reactor thermal power, calculate at what time the pressure in the containment reaches its peak value after the LOCA as well as the peak temperature and pressure. (Calculate the decay heat assuming infinite reactor time) The core power and heat removal are: ๐‘„๐‘„ฬ‡๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ = 300 MW ๐‘„๐‘„ฬ‡๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ = 0.02๐‘„๐‘„ฬ‡๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ = 6MW

The decay heat as a function of time is

๐‘„๐‘„ฬ‡๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ (๐‘ก๐‘ก) = 0.066 ๐‘„๐‘„ฬ‡๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘ก๐‘ก โˆ’0.2

Conservation of energy can be written as ๐‘ก๐‘ก

๐ธ๐ธ๐‘๐‘๐‘๐‘ (๐‘ก๐‘ก) = ๏ฟฝ ๏ฟฝ๐‘„๐‘„ฬ‡๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ (๐‘ก๐‘กโ€ฒ) โˆ’ ๐‘„๐‘„ฬ‡๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๏ฟฝ๐‘‘๐‘‘๐‘ก๐‘ก โ€ฒ 0

(6)

To find the peak time we may take the derivative and find the root ๐‘‘๐‘‘๐ธ๐ธ๐‘๐‘๐‘๐‘ (๐‘ก๐‘ก) = ๐‘„๐‘„ฬ‡๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ (๐‘ก๐‘ก) โˆ’ ๐‘„๐‘„ฬ‡๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ = 0 ๐‘‘๐‘‘๐‘‘๐‘‘

๐‘„๐‘„ฬ‡๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ (๐‘ก๐‘ก) = 0.066 ๐‘„๐‘„ฬ‡๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘ก๐‘ก โˆ’0.2 = ๐‘„๐‘„ฬ‡๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ

Solving for time,

๐‘ก๐‘ก๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ = 391.4 s

We can also write an equation for the temperature, relating it to the energy of the control volume, ๐ธ๐ธ๐‘๐‘๐‘๐‘ (๐‘ก๐‘ก) = (๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘›๐‘›๐ถ๐ถ )๐‘๐‘๐œ๐œ (๐‘‡๐‘‡(๐‘ก๐‘ก) โˆ’ ๐‘‡๐‘‡2 )

Solving for T(t) and substituting into Equation (6) we can write ๐‘ก๐‘ก 1 ๐‘‡๐‘‡(๐‘ก๐‘ก) = ๐‘‡๐‘‡2 + ๏ฟฝ ๏ฟฝ๐‘„๐‘„ฬ‡ (๐‘ก๐‘กโ€ฒ) โˆ’ ๐‘„๐‘„ฬ‡๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘โ€ฒ ๐‘๐‘๐œ๐œ (๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘›๐‘›๐ถ๐ถ ) 0 ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ Integrating to the peak time results in The peak pressure is therefore

๐‘‡๐‘‡๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ = ๐‘‡๐‘‡๏ฟฝ๐‘ก๐‘ก๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ ๏ฟฝ = 786.5 K

๐‘ƒ๐‘ƒ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ =

(๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘›๐‘›๐ถ๐ถ )๐‘…๐‘…๐‘…๐‘…๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ = 1.639 MPa ๐‘‰๐‘‰๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘‰๐‘‰๐ถ๐ถ

3. To reduce the peak pressure in the containment, a nuclear engineer suggests venting the containment gas to the atmosphere through a filter. What would the advantages and disadvantages of this approach?

150

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

The advantages are: โ€”

Lower loads on the containment

โ€”

Can reduce containment thickness, which results in lower capital costs

The disadvantages are: โ€“ Release of potentially radioactive gas to the environment, depending on the efficiency of the filter. โ€“ If the vent valve failed open, the containment would lose its function.

PROBLEM 7.7 QUESTION Containment problem involving a LOCA (Section 7.2) Upon a loss of primary coolant accident (LOCA) the primary system flashes as it discharges into the containment. At the resulting final equilibrium condition, the containment and primary system are filled with a mixture of steam and liquid. A containment is being designed as shown in Figure 7.17 which directs the liquid portion of this mixture to flood into a reactor cavity in which primary system is located. The condensate which passes back into the core through the break can satisfactorily cool the core if it can submerge it, that is, if the condensate level is high enough.

FIGURE 7.17 Containment with liquid fraction of discharge from LOCA directed to core cooling.

Find the containment volume which will yield a final equilibrium pressure following primary system rupture sufficient to create the 125 m3 of liquid required to fill the cavity and submerge the core. The pressure and volume of the primary system are 15.5 MPa and 354 m3, respectively.

151

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis โˆ’

Neglect the initial relative humidity

โˆ’

Neglect ๐‘„๐‘„ฬ‡๐‘๐‘โˆ’๐‘ ๐‘ ๐‘ ๐‘  and ๐‘„๐‘„ฬ‡๐‘๐‘โˆ’๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž

Answers.

VT = 2.32 ร— 104 m3 VC = 2.27 ร— 104 m3 PT = 0.97 MPa

PROBLEM 7.7 S OLUTION Containment problem involving a LOCA (Section 7.2) From the problem statement, we are given: โˆ’

cavity volume, VL = 125 m3

โˆ’

primary system pressure, PPS = 15.5 MPa

โˆ’

primary system volume, VPS = 354 m3

โˆ’

initial containment pressure, P1 = 0.101 MPa

โˆ’

initial containment temperature, T1 = 300 K

Conservation of energy is ๐‘š๐‘š๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ (๐‘ข๐‘ข2๐‘ค๐‘ค โˆ’ ๐‘ข๐‘ข1๐‘ค๐‘ค ) + ๐‘š๐‘š๐‘Ž๐‘Ž (๐‘ข๐‘ข2๐‘Ž๐‘Ž โˆ’ ๐‘ข๐‘ข1๐‘Ž๐‘Ž ) = 0

(1)

v๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ = v(๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ , ๐‘ฅ๐‘ฅ = 0) = 0.001683 m3 โ„kg

(2)

The specific volume of primary system fluid can be evaluated from pressure and quality (saturated liquid), The mass of primary system fluid is then ๐‘š๐‘š๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ =

V๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ = 210356 kg v๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

(3)

The initial specific internal energy of water in the primary system can be calculated with pressure and quality, ๐‘ข๐‘ข1๐‘ค๐‘ค = ๐‘ข๐‘ข(๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ , ๐‘ฅ๐‘ฅ = 0) = 1604 kJโ„kg

(4)

๐‘ข๐‘ข1๐‘Ž๐‘Ž = ๐‘ข๐‘ข(๐‘‡๐‘‡1 , ๐‘ƒ๐‘ƒ1 ) = 214.3 kJโ„kg

(5)

The initial specific internal energy of air can be evaluated (in EES, ideal gas) with the initial containment temperature, The specific volume of air can be evaluated from the initial temperature and pressure of the

152

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

containment, v๐‘Ž๐‘Ž = v(๐‘ƒ๐‘ƒ1 , ๐‘‡๐‘‡1 ) = 0.8526 m3 โ„kg

(6)

If the containment volume was known, the mass of air could be calculated with ๐‘š๐‘š๐‘Ž๐‘Ž =

V๐ถ๐ถ v๐‘Ž๐‘Ž

(7)

The final specific internal energy of air can be evaluated from the final temperature ๐‘ข๐‘ข2๐‘Ž๐‘Ž = ๐‘ข๐‘ข(๐‘‡๐‘‡2 )

(8)

V๐‘‡๐‘‡ = V๐ฟ๐ฟ + V๐‘†๐‘† + V๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

(9)

V๐ถ๐ถ = V๐ฟ๐ฟ + V๐‘†๐‘†

(10)

๐‘ฅ๐‘ฅ2 = ๐‘ฅ๐‘ฅ(v2 , ๐‘ƒ๐‘ƒ2๐‘ค๐‘ค )

(11)

The total volume (VT) of the system consists of the cavity where liquid water will fill (VL), a region for steam (VS) and the volume of the primary system where the containment volume (VC) is

The final quality of the system can be evaluated from the specific volume and partial pressure of water where the specific volume is defined as

v2 =

V๐‘‡๐‘‡ ๐‘š๐‘š๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

(12)

The liquid cavity will just be filled with saturated liquid at the final equilibrium conditions. The specific volume of saturated liquid water can be evaluated from the final partial pressure of water v๐‘“๐‘“2 = v(๐‘ƒ๐‘ƒ2๐‘ค๐‘ค , ๐‘ฅ๐‘ฅ = 0)

(13)

V๐ฟ๐ฟ = v๐‘“๐‘“2 (1 โˆ’ ๐‘ฅ๐‘ฅ2 )๐‘š๐‘š๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

(14)

๐‘ข๐‘ข2๐‘ค๐‘ค = ๐‘ข๐‘ข(๐‘ƒ๐‘ƒ2๐‘ค๐‘ค , v2 )

(15)

๐‘ƒ๐‘ƒ2๐‘ค๐‘ค = ๐‘ƒ๐‘ƒ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  (๐‘‡๐‘‡2 )

(16)

Therefore, the volume of the cavity is

The final specific internal energy of water can be evaluated from the final partial pressure of water and specific volume, This partial pressure is the saturation pressure of water at the final temperature, The overall pressure of the system can be estimated with (assuming air as an ideal gas) ๐‘ƒ๐‘ƒ2 = ๐‘ƒ๐‘ƒ2๐‘ค๐‘ค + ๐‘ƒ๐‘ƒ2๐‘Ž๐‘Ž = ๐‘ƒ๐‘ƒ2๐‘ค๐‘ค + ๐‘ƒ๐‘ƒ1

153

๐‘‡๐‘‡2 ๐‘‡๐‘‡1

(17)

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

The number of unknowns from these equations is 17 (mPS, u2w, u1w, ma, u2a, u1a vPS, va, VC, T2, VT VS, x 2 , v2, P2w , vf2, P2). The number of equations to solve is also 17. Solving them simultaneously yields V๐‘‡๐‘‡ = 2.32 ร— 104 m3

(18)

๐‘ƒ๐‘ƒ2 = 0.97 MPa

(20)

4

3

V๐ถ๐ถ = 2.29 ร— 10 m

and

(19)

PROBLEM 7.8 QUESTION Analysis of a Transient Overpower in the PWR Steam Generator (Section 7.2) The steam generator of a large PWR delivers dry saturated steam at 5.7 MPa to the turbine. Consider the steam generator secondary side, which has a volume of 100 m3 and receives a thermal power ๐‘„๐‘„ฬ‡ from the primary coolant flowing in the U-tubes (Figure 7.18).

FIGURE 7.18 Schematic of the steam generator. At steady state the operating conditions for the secondary coolant are as follows: โˆ’ Inlet mass flow rate ๐‘š๐‘šฬ‡๐‘–๐‘– = 456 kg/s

โˆ’ Inlet temperature Ti = 267ยฐC (hi= 1170 kJ/kg) โˆ’ Mass of steam 880 kg โˆ’ Mass of liquid 54,000 kg

Properties of saturated water at 5.7 MPa are given in Table 7.5.

154

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

TABLE 7.5 Properties of Saturated Water at 5.7 MPa Parameter

Value

Tsat

272ยฐC

vf

1.3 ร— 10โˆ’3 m3/kg

vg

0.034 m3/kg

hf

1196 kJ/kg

hg

2788 kJ/kg

cp,f

5.2 kJ/kg ยฐC

cp,g

4.7 kJ/kg ยฐC

uf

1189 kJ/kg

ug

2592 kJ/kg

1. Calculate ๐‘„๐‘„ฬ‡ , At one point in time the operator maneuvers the reactor so that the thermal power supplied to the secondary coolant increases to 1.2๐‘„๐‘„ฬ‡ . Assume that the secondary coolant pressure, inlet mass flow rate and inlet temperature do not change during the transient.

2. Write a complete set of equations that would allow you to find how the secondary coolant mass (Msc (t)) in the steam generator changes during the transient. Clearly identify all known and unknown parameters in the equations. You may neglect kinetic and gravitational terms. State all your assumptions. 3. Does the secondary coolant outlet mass flow rate increase, decrease or stay the same during the transient? 4. Now imagine that after 2 min both the secondary coolant inlet and outlet are suddenly and simultaneously closed shut, while the thermal power remains at 1.2๐‘„๐‘„ฬ‡ . Does the secondary coolant pressure increase or decrease during this transient? Write a complete set of equations that would allow you to find the pressure change in the secondary coolant during this transient. Answers: 1. 737.8 MWth 3. Increases 4. Increases

155

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

P ROBLEM 7.8 S OLUTION Analysis of a Transient Overpower in the PWR Steam Generator (Section 7.2) 1. The control volume selected to analyze the problem is the volume occupied by the secondary coolant in the steam generator. The conservation of mass at steady state is: 0 = ๐‘š๐‘šฬ‡๐‘–๐‘– โˆ’ ๐‘š๐‘šฬ‡๐‘œ๐‘œ โ†’ ๐‘š๐‘šฬ‡๐‘œ๐‘œ = ๐‘š๐‘šฬ‡๐‘–๐‘–

(1)

0 = ๐‘„๐‘„ฬ‡ + ๐‘š๐‘šฬ‡๐‘–๐‘– โ„Ž๐‘”๐‘” โ†’ ๐‘š๐‘šฬ‡๐‘œ๐‘œ โ„Ž๐‘”๐‘” โ†’ ๐‘„๐‘„ฬ‡ = ๐‘š๐‘šฬ‡๐‘–๐‘– ๏ฟฝโ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘–๐‘– ๏ฟฝ = 737.8 MW

(2)

where ๐‘š๐‘šฬ‡๐‘œ๐‘œ is the secondary coolant outlet mass flow rate. The conservation of energy for steady state yields the following equation: where kinetic and gravitational terms were neglected and hg is the specific enthalpy of dry saturated steam at 5.7 MPa. 2. The conservation of mass equation is: ๐‘‘๐‘‘๐‘‘๐‘‘๐‘†๐‘†๐‘†๐‘† = ๐‘š๐‘šฬ‡๐‘–๐‘– โˆ’ ๐‘š๐‘šฬ‡๐‘œ๐‘œ ๐‘‘๐‘‘๐‘‘๐‘‘

(3)

The conservation of energy equation is:

๐‘‘๐‘‘๐‘‘๐‘‘๐‘†๐‘†๐‘†๐‘† = 1.2๐‘„๐‘„ฬ‡ + ๐‘š๐‘šฬ‡๐‘–๐‘– โ„Ž๐‘–๐‘– โˆ’ ๐‘š๐‘šฬ‡๐‘œ๐‘œ โ„Ž๐‘”๐‘” ๐‘‘๐‘‘๐‘‘๐‘‘

(4)

where the total energy of the secondary coolant is:

๐ธ๐ธ๐‘†๐‘†๐‘†๐‘† = ๐‘€๐‘€๐‘†๐‘†๐‘†๐‘† ๏ฟฝ๐‘ข๐‘ข๐‘“๐‘“ + ๐‘ข๐‘ข๐‘“๐‘“๐‘“๐‘“ ๐‘ฅ๐‘ฅ๏ฟฝ

(5)

V๐‘†๐‘†๐‘†๐‘† = ๐‘€๐‘€๐‘†๐‘†๐‘†๐‘† ๏ฟฝv๐‘“๐‘“ + v๐‘“๐‘“๐‘“๐‘“ ๐‘ฅ๐‘ฅ๏ฟฝ

(6)

and x is the steam quality of the secondary coolant. The total volume of the secondary coolant in the steam generator is Vsc = 100 m3 and can be written as:

In Equations (7) through (11) ๐‘š๐‘šฬ‡๐‘œ๐‘œ , ๐‘„๐‘„ฬ‡ , hi hg, uf, Vsc, vf and vfg are all known. Therefore, these equations represent a system of four equations of the four unknowns Msc, ๐‘š๐‘šฬ‡๐‘œ๐‘œ and x, which can be solved to find the variation of Msc (t) during the transient. Note that for this particular problem it is possible to find

๐‘‘๐‘‘๐‘‘๐‘‘๐‘†๐‘†๐‘†๐‘† ๐‘‘๐‘‘๐‘‘๐‘‘

in close form, as follows. Solving Equation (11) for x, substituting into

Equation (10) and eliminating Esc from Equation (12) one gets: v๐‘“๐‘“๐‘“๐‘“ ๐‘‘๐‘‘ ๏ฟฝ๐‘€๐‘€๐‘†๐‘†๐‘†๐‘† ๐‘ข๐‘ข๐‘“๐‘“ + ๏ฟฝV โˆ’ v๐‘“๐‘“ ๐‘€๐‘€๐‘†๐‘†๐‘†๐‘† ๏ฟฝ๏ฟฝ = 1.2๐‘„๐‘„ฬ‡ + ๐‘š๐‘šฬ‡๐‘–๐‘– โ„Ž๐‘–๐‘– โˆ’ ๐‘š๐‘šฬ‡๐‘œ๐‘œ โ„Ž๐‘”๐‘” ๐‘‘๐‘‘๐‘‘๐‘‘ v๐‘“๐‘“๐‘“๐‘“ ๐‘†๐‘†๐‘†๐‘†

(7)

The left hand side of Equation (12) can be simplified to give:

156

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

v ๐‘ข v

๐‘ข

๐‘‘๐‘€ ๐‘‘๐‘ก

1.2๐‘„

๐‘šโ„Ž

Eliminating ๐‘š from Equations (7) and (8), and solving for

Thus,

๐‘‘๐‘€ ๐‘‘๐‘ก

๐‘š โ„Ž โ„Ž

๐‘ข ๐‘€

โ„Ž

1.2๐‘„ v ๐‘ข v

๐‘ก

๐‘€

constant

0

๐‘š โ„Ž

(8)

, one gets:

89.2 kgโ„s

89.2๐‘ก

(9)

(10)

where Msc(0) is 54880 kg and t is in seconds. 3. Since the secondary coolant receives more heat, the rate at which steam is produced and delivered to the turbine increases, which means ๐‘š increases. 4. If the inlet and outlet are closed shut and heat is still being supplied to the secondary coolant, the pressure will increase. The equations are as follows. Mass: ๐‘‘๐‘€ ๐‘‘๐‘ก

0โ†’๐‘€

constant

(11)

That is, the secondary coolant mass in the steam generator does not change during the transient and can be treated as a constant, equal to 44176 kg from Equation (10), Energy: ๐‘‘๐ธ ๐‘‘๐‘ก

where the stored energy is:

Volume:

(12)

1.2๐‘„

๐ธ

๐‘€

๐‘ข ๐‘ƒ

๐‘ข

๐‘ƒ ๐‘ฅ

(13)

V

๐‘€

v ๐‘ƒ

v

๐‘ƒ ๐‘ฅ

(14)

Equations (12), (13) and (14) are three equations of the three unknowns Esc, P and x, which can be solved to find P(t).

PROBLEM 7.9 QUESTION Drain Tank Pressurization Problem (Section 7.2) A drain tank is used to temporarily store water discharged from the pressurizer through the pressure-operated relief valve (PORV) (Figure 7.19). The drain tank has a burst disk on it which ruptures if the pressure inside the drain tank becomes too large. For this problem, assume that the PORV at the top of the pressurizer is stuck open, and saturated liquid water at 15.4 MPa leaves the

157

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

pressurizer at a constant flow rate of 3 kg/s and enters a perfectly insulated drain tank of total volume 12 m3. In addition, assume that the initial conditions (before the water due to the stuckopen PORV has entered the drain tank) in the drain tank are No air present Initial vapor volume = 10 m3 Initial pressure = 3 MPa Initial liquid volume = 2 m3 Also assume that the liquid and the water vapor axe in thermal equilibrium at all times in the drain tank, and that the burst disk on the drain tank ruptures at 10 MPa.

FIGURE 7.19 Drain tank to store discharge from the PORV. Questions: a. Define the control mass or control volume you will use and the equation set you will develop. b. Solve for the elapsed time to burst disk rupture. c. Now assume 11.93 kg of air is present in the drain tank along with the liquid water and water vapor, Plw initial = 3 MPa and that the change in volume of the liquid water from the initial state to the final state is large. What is the new time to rupture? Answers: b. 1128 s c. 1044 s

158

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

P ROBLEM 7.9 S OLUTION Drain Tank Pressurization Problem (Section 7.2) From the problem statement, we are given: ๏€ญ pressurizer pressure, PPZR = 15.4 MPa ๏€ญ mass flow rate out of the pressurizer, ๐‘š = 3 kg/s ๏€ญ drain tank total volume, VT = 12 m3

๏€ญ the initial pressure of the drain tank, P1 = 3 MPa ๏€ญ initial vapor volume, V9 = 10 m3 ๏€ญ initial liquid volume is therefore, Vf = 2 m3 ๏€ญ final pressure, P2 = 10 MPa For this problem we will choose the control volume to be the drain tank only. The initial specific volumes of saturated liquid in vapor in the drain tank can be evaluated from the initial pressure, v

v P ,x

0

0.002117 m โ„kg v

v P ,x

1

0.06667 m โ„kg

(1)

The masses of each phase can then be determined with the volume, m

V v

1644 kg

(2)

m

V v

150 kg

(3)

and

Thus, the total initial mass of water in the drain tank is m

m

m

1794 kg

(4)

Therefore, the initial quality of the mixture is m m

x

0.07716

(5)

The specific enthalpy of saturated liquid flowing into the drain tank is determined from the pressure of the pressurizer, h

h P

,x

1626 kJโ„kg

0

(6)

The initial specific internal energy of the mixture in the drain tank can be evaluated from the pressure and quality u

u P ,x

1128 kJโ„kg

159

(7)

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

Conservation of energy can be written as The continuity equation is

mw2 uw2 โˆ’ mw1 uw1 = mฬ‡ hin t

(8)

mw2 = mw1 + mฬ‡ t

(9)

u2w = u(P2 , x2 )

(10)

The final specific internal can be determined from the final pressure and quality The final specific volume can be calculated from the drain tank volume and final mass v2 =

VT mw2

(11)

The final quality can be evaluated from the specific volume and final pressure x2 = x(P2 , v2 )

(12)

t = 1128 s

(13)

mw2 uw2 โˆ’ mw1 uw1 + ma (ua2 โˆ’ ua1 ) = mฬ‡ hin t

(14)

(15)

and

ua1 = u(T1 )

(16)

Again from continuity we have

ua2 = u(T2 ) mw2 = mw1 + mฬ‡ t

(17)

Therefore, there are 5 unknowns (mw2, uw2, t, x2, v2) and 5 equations (Equations (7)-(12)). The time to disk rupture for this situation is In the last part, ma = 11.93 kg is present initially. All of the initial properties, Equations (l)-(7) are still valid. Conservation of energy for this situation is

The initial and final internal energy of air can be evaluated from the initial and final temperature,

The final specific volume can be calculated from the drain tank volume and final mass v2 =

VT mw2

(18)

The final quality can be evaluated from the specific volume and final pressure x2 = x(P2 , v2 )

(19)

uw2 = u(T2 , x2 )

(20)

The final specific internal energy can be evaluated from the final temperature and quality,

160

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

The final pressure of the system is made up of the partial pressure of water and air, P2 = Pw2 + Pa2

(21)

Pw2 = Psat (T2 )

(22)

Va = VT โˆ’ vf2 (1 โˆ’ x2 )mw2

(23)

vf2 = ฯ…(T2 , x = 0)

(24)

The partial pressure of water is the saturated pressure at the final temperature The final volume of air is the total volume minus the volume that the liquid water takes up. This can be represented with where ฯ…f2 is the specific volume of saturated liquid water at the final equilibrium conditions The specific volume of air is

va =

Va ma

(25)

The partial pressure of air can be evaluated from the final temperature and specific volume, Pa2 = P(T2 , va )

(26)

t = 1044 s

(27)

Therefore, there are 13 unknowns (mw2, uw2, t, x2, v2, P2, Pa2, ua2, ua2, T2, Va, vf2, va) and 13 equations (Equations (14)-(26)). Solving these equations simultaneously yields a time to disk rupture of

PROBLEM 7.10 QUESTION Containment Pressurization following Zircaloy-Hydrogen Reaction (Section 7.2) Consider a LOCA in a typical PWR in which the emergency cooling system is insufficient to prevent metalโ€“water reaction of 75% of the Zircaloy clad and the hydrogen produced subsequently combusts. Using the results of Problem 3.6, this sequence of events yields the following material changes and energy releases relevant to the containment pressurization: Primary coolant released = 2,1 ร— 105 kg Zr reacted = 0.75 ร— 24,000 kg Energy released from Zrโ€“H2O reaction = 1.18 ร— 1011 J H2 produced and reacted = 394.7 mols Energy released from H2 combustion = 9.54 ร— 1010 J O2 consumed = you must determine Net H2O change = you must determine

161

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

Take the initial primary coolant and containment vessel geometry and conditions the same as Table 7.2. Also, assume that nitrogen has the same properties as air.

TABLE 7.2 Conditions for Containment Examples Heat Addition during Blowdown (Joules)

Fluid

Volume (m3) Pressure (MPa)

Temperature Quality (xst) or Relative (K) Humidity (ฯ†)

Example 7.1: Saturated Water Mixture in Equilibrium with Air as Final State Primary coolant water (initial)

Vp = 354

15.5

617.9

Assumed saturated liquid

Containment vessel air (initial)

Vc = 50,970

0.101

300.0

ฯ† = 80%

VT = 51,324

0.523

415.6

xst = 50.5%

Mixture (final)

Q=0

Example 7.2: Superheated Steam in Equilibrium with Air as Final State Secondary coolant water (initial)

Vs = 89

6.89

558

Assumed saturated liquid

Containment vessel air (initial)

Vc = 50,970

0.101

300

ฯ† = 80%

VT = 51,059

0.446 (64.7 psia)

478

ฯ† = 17%

Mixture (final)

Q = 1011

Question: For the sequence described (e.g., LOCA, 75% Zircaloy clad reaction and subsequent complete combustion of the hydrogen produced): Demonstrate that the final equilibrium temperature is 450 K, neglecting containment heat sinks using the initial conditions of Table 7.2. Find the final equilibrium pressure. Hint: Is the final state likely saturated water or superheated steam in equilibrium with the air? Consider the energy releases compared to those of Example 7.2. Answer: b. P2 (450 K) = 1.06 ร— 106 Pa

162

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

P ROBLEM 7.10 S OLUTION Containment Pressurization following Zircaloy-Hydrogen Reaction (Section 7.2) From the problem statement, we are given that: โˆ’ total heat released, Q = 1.180 ร— 1011 J + 9.54 ร— 1010 J = 2.134 ร— 1011 J โˆ’ number of Zr mols reacted, Z = 394.7 mols โˆ’ number of O2 mols consumed, O = 0.5Z = 197.4 mol โˆ’ molar mass of oxygen, MMO = 32 kg/mol โˆ’ mass of oxygen, mO = O โˆ™ MMO = 6315 kg Initial conditions taken from Table 7.2 and Example 7.1: โˆ’ mass of air less the oxygen consumed, mai = 5.9 ร— 104 kg โ€“ mO = 52685 kg โˆ’ mass of water in air, mwa1 = 1019 kg โˆ’ mass of water in secondary system, mws1 = 2.10 ร— 105 kg โˆ’ gas constant for air, Ra = 286 J/kg โˆ™ K โˆ’ specific internal energy of water in primary system, uwp1 = 1.6 ร—106 J/kg โˆ’ specific internal energy of water in air, uwa1 = 2.41 ร— 106 J/kg โˆ’ initial temperature, Ta1 = 300 K โˆ’ specific heat of air, 719 J/kg โˆ™ K โˆ’ total volume of containment, Vt = 51324 m3 The total energy of the initial state is ๐ธ๐ธ1 = ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค1 ๐‘ข๐‘ข๐‘ค๐‘ค๐‘ค๐‘ค + ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค1 ๐‘ข๐‘ข๐‘ค๐‘ค๐‘ค๐‘ค1 + ๐‘š๐‘š๐‘Ž๐‘Ž1 ๐‘๐‘๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ ๐‘‡๐‘‡๐‘Ž๐‘Ž1

(1)

๐ธ๐ธ2 = ๐ธ๐ธ1 + ๐‘„๐‘„

(2)

๐ธ๐ธ2 = ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค1 ๐‘ข๐‘ข๐‘ค๐‘ค2 + ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค1 ๐‘ข๐‘ข๐‘ค๐‘ค2 + ๐‘š๐‘š๐‘Ž๐‘Ž1 ๐‘๐‘๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ ๐‘‡๐‘‡2

(3)

The total energy of the final state is the initial energy plus the total heat released This final energy is also

The specific volume of water is

v๐‘ค๐‘ค2 =

V๐‘ก๐‘ก ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค1 + ๐‘š๐‘š๐‘ค๐‘ค๐‘ค๐‘ค1 163

(4)

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

The final specific internal energy can be evaluated from specific volume and temperature ๐‘ข๐‘ข๐‘ค๐‘ค2 = ๐‘ข๐‘ข(v๐‘ค๐‘ค2 , ๐‘‡๐‘‡2 )

(5)

๐‘ƒ๐‘ƒ2 = ๐‘ƒ๐‘ƒ2๐‘Ž๐‘Ž + ๐‘ƒ๐‘ƒ2๐‘ค๐‘ค

(6)

The final pressure is made up of the partial pressure of air and water, The partial pressure of air can be determined from the ideal gas law, ๐‘ƒ๐‘ƒ2๐‘Ž๐‘Ž =

๐‘š๐‘š๐‘Ž๐‘Ž1 ๐‘…๐‘…๐‘Ž๐‘Ž ๐‘‡๐‘‡2 V๐‘ก๐‘ก

(7)

The partial pressure of water is the saturation pressure at the final temperature, (8)

๐‘ƒ๐‘ƒ2๐‘ค๐‘ค = ๐‘ƒ๐‘ƒ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  (๐‘‡๐‘‡2 )

The number of unknowns is 8 (E1, E2, uw2 , T 2 , v2 w , P 2 , P 2a, P2 w ) and the number of equations is 8. Solving the equations simultaneously yields a final pressure of ๐‘ƒ๐‘ƒ2 = 1.06 ร— 106 Pa

PROBLEM 7.11 QUESTION Effect of Noncondensable Gas on Pressurizer Response to an Insurge (Section 7.3) Compute the pressurizer and heater input resulting from an insurge of liquid from the primary system to a pressurizer containing a mass of air (ma). Use the following initial, final and operating conditions. Initial Conditions โˆ’ Mass of liquid = mf1 โˆ’ Mass of steam = mg1 โˆ’ Mass of air (in steam space) = ma โˆ’ Total pressure = P1 โˆ’ Equilibrium temperature = T1 Operating Conditions โˆ’ Mass of surge = msurge โˆ’ Mass of spray = fmsurge โˆ’ Enthalpy of surge = hsurge โˆ’ Enthalpy of spray = hspray

164

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

โˆ’ Heater input = Qh Final Condition โˆ’ Equilibrium temperature = T2 = T1 You may make the following assumptions for the solution: 1. Perfect phase separation 2. Thermal equilibrium throughout the pressurizer 3. Liquid water properties that are independent of pressure Answers: ๐‘ƒ๐‘ƒ2 = ๐‘ƒ๐‘ƒ๐‘š๐‘š ๏ฟฝ๐‘‡๐‘‡1,๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ + ๐‘„๐‘„โ„Ž =

๐‘š๐‘š๐‘Ž๐‘Ž ๐‘…๐‘…๐‘ ๐‘ ๐‘ ๐‘  ๐‘‡๐‘‡2 v๐‘”๐‘”1 โˆ’ v๐‘“๐‘“1 ๏ฟฝ ๏ฟฝ v๐‘”๐‘”1 ๐‘š๐‘š๐‘”๐‘”1 v๐‘”๐‘”1 โˆ’ ๐‘š๐‘š๐‘”๐‘”1 v๐‘“๐‘“1 โˆ’ (1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  v๐‘“๐‘“1

(1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ๐‘ข๐‘ข๐‘“๐‘“ v๐‘”๐‘” โˆ’ ๐‘ข๐‘ข๐‘”๐‘” v๐‘“๐‘“ ๏ฟฝ โˆ’ ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝโ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + ๐‘“๐‘“โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ v๐‘“๐‘“๐‘“๐‘“

P ROBLEM 7.11 S OLUTION

Effect of Noncondensable Gas on Pressurizer Response to an Insurge (Section 7.3) Compute the pressurizer and heater input resulting from an insurge of liquid from the primary system to a pressurizer containing a mass of air (ma). Use the following initial, final and operating conditions. Initial Conditions โˆ’ Mass of liquid = mf1 โˆ’ Mass of steam = mg1 โˆ’ Mass of air (in steam space) = ma โˆ’ Total pressure = P1 โˆ’ Equilibrium temperature = T1 Operating Conditions โˆ’ Mass of surge = msurge โˆ’ Mass of spray = fmsurge โˆ’ Enthalpy of surge = hsurge โˆ’ Enthalpy of spray = hspray

165

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

โˆ’ Heater input = Qh Final Condition โˆ’ Equilibrium temperature = T2 = T1 The mass balance on the pressurizer is given as ๏ฟฝ๐‘š๐‘š๐‘“๐‘“2 + ๐‘š๐‘š๐‘”๐‘”2 + ๐‘š๐‘š๐‘Ž๐‘Ž ๏ฟฝ โˆ’ ๏ฟฝ๐‘š๐‘š๐‘“๐‘“1 + ๐‘š๐‘š๐‘”๐‘”1 + ๐‘š๐‘š๐‘Ž๐‘Ž ๏ฟฝ = (1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ 

(1)

๏ฟฝ๐‘š๐‘š๐‘“๐‘“2 + ๐‘š๐‘š๐‘”๐‘”2 ๏ฟฝ โˆ’ ๏ฟฝ๐‘š๐‘š๐‘“๐‘“1 + ๐‘š๐‘š๐‘”๐‘”1 ๏ฟฝ = (1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ 

(2)

๐‘š๐‘š๐‘“๐‘“1 v๐‘“๐‘“1 + ๐‘š๐‘š๐‘”๐‘”1 v๐‘”๐‘”1 = ๐‘š๐‘š๐‘“๐‘“2 v๐‘“๐‘“2 + ๐‘š๐‘š๐‘”๐‘”2 v๐‘”๐‘”2

(3)

๐‘ƒ๐‘ƒ1 = ๐‘ƒ๐‘ƒ๐‘ค๐‘ค ๏ฟฝ๐‘‡๐‘‡1,๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ + ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž,1

(4)

๐‘ƒ๐‘ƒ1 โ‰  ๐‘ƒ๐‘ƒ2

(6)

๐‘š๐‘š๐‘“๐‘“1 v๐‘“๐‘“1 + ๐‘š๐‘š๐‘”๐‘”1 v๐‘”๐‘”1 = ๐‘š๐‘š๐‘“๐‘“2 v๐‘“๐‘“1 + ๐‘š๐‘š๐‘”๐‘”2 v๐‘”๐‘”1

(7)

๐‘ƒ๐‘ƒ2 = ๐‘ƒ๐‘ƒ๐‘ค๐‘ค ๏ฟฝ๐‘‡๐‘‡1,๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ + ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž,2

(8)

Since the pressurizer is a rigid volume we can write

Since the temperature is the same at the initial and final state, the specific volume of the gas will be the same, vg1 = vg2. However, the pressure on the liquid will be the summation of the partial pressures of saturated water vapor and air. This pressure will be different from the initial state due to the noncondensable.

๐‘ƒ๐‘ƒ2 = ๐‘ƒ๐‘ƒ๐‘ค๐‘ค ๏ฟฝ๐‘‡๐‘‡1,๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ + ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž,2 We will however assume that vf1 โ‰ƒ vf2. Therefore, Equation (3) is

(5)

At the final state the pressure is

We can substitute in the ideal gas law for the air component, ๐‘…๐‘…๐‘ ๐‘ ๐‘ ๐‘  ๐‘‡๐‘‡2 ๏ฟฝ ๐‘ƒ๐‘ƒ2 = ๐‘ƒ๐‘ƒ๐‘ค๐‘ค ๏ฟฝ๐‘‡๐‘‡1,๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ + ๏ฟฝ v๐‘Ž๐‘Ž2

(9)

We know that the final and initial temperatures are equivalent, T1 = T2. Also, the volume that the air takes up is the same volume that the saturated water vapor takes up and therefore we can say ๐‘š๐‘š๐‘Ž๐‘Ž v๐‘Ž๐‘Ž2 = ๐‘š๐‘š๐‘”๐‘”2 v๐‘”๐‘”1

(10)

We may substitute Equation (10) into Equation (9) to obtain ๐‘ƒ๐‘ƒ2 = ๐‘ƒ๐‘ƒ๐‘ค๐‘ค ๏ฟฝ๐‘‡๐‘‡1,๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ +

๐‘š๐‘š๐‘Ž๐‘Ž ๐‘…๐‘…๐‘ ๐‘ ๐‘ ๐‘  ๐‘‡๐‘‡2 ๐‘š๐‘š๐‘”๐‘”2 v๐‘”๐‘”1

(11)

We may solve Equation (2) for the final saturated liquid water mass ๐‘š๐‘š๐‘“๐‘“2 = ๏ฟฝ๐‘š๐‘š๐‘“๐‘“1 + ๐‘š๐‘š๐‘”๐‘”1 โˆ’ ๐‘š๐‘š๐‘”๐‘”2 ๏ฟฝ + (1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  166

(12)

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

We can multiply this equation by the initial specific volume of water ๐‘š๐‘š๐‘“๐‘“2 v๐‘“๐‘“1 = ๏ฟฝ๐‘š๐‘š๐‘“๐‘“1 v๐‘“๐‘“1 + ๐‘š๐‘š๐‘”๐‘”1 v๐‘“๐‘“1 โˆ’ ๐‘š๐‘š๐‘”๐‘”2 v๐‘“๐‘“1 ๏ฟฝ + (1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  v๐‘“๐‘“1

(13)

We may substitute Equation (13) into Equation (7) to get

๐‘š๐‘š๐‘“๐‘“1 v๐‘“๐‘“1 + ๐‘š๐‘š๐‘”๐‘”1 v๐‘”๐‘”1 = ๏ฟฝ๐‘š๐‘š๐‘“๐‘“1 v๐‘“๐‘“1 โˆ’ ๐‘š๐‘š๐‘”๐‘”2 v๐‘“๐‘“1 ๏ฟฝ + (1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  v๐‘“๐‘“1 + ๐‘š๐‘š๐‘”๐‘”2 v๐‘”๐‘”1

We can solve this for the final mass of saturated water vapor ๐‘š๐‘š๐‘”๐‘”2 =

๐‘š๐‘š๐‘”๐‘”1 v๐‘”๐‘”1 โˆ’ ๐‘š๐‘š๐‘”๐‘”1 v๐‘“๐‘“1 โˆ’ (1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  v๐‘“๐‘“1 v๐‘”๐‘”1 โˆ’ v๐‘“๐‘“1

(14)

The formulation for the final pressure can then be determined by substituting Equation (14) into Equation (11) ๐‘ƒ๐‘ƒ2 = ๐‘ƒ๐‘ƒ๐‘ค๐‘ค ๏ฟฝ๐‘‡๐‘‡1,๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ +

๐‘š๐‘š๐‘Ž๐‘Ž ๐‘…๐‘…๐‘ ๐‘ ๐‘ ๐‘  ๐‘‡๐‘‡2 v๐‘”๐‘”1 โˆ’ v๐‘“๐‘“1 ๏ฟฝ ๏ฟฝ v๐‘”๐‘”1 ๐‘š๐‘š๐‘”๐‘”1 v๐‘”๐‘”1 โˆ’ ๐‘š๐‘š๐‘”๐‘”1 v๐‘“๐‘“1 โˆ’ (1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  v๐‘“๐‘“1

(15)

We can now write conservation of energy to determine the energy of the heater

๐‘š๐‘š๐‘“๐‘“2 ๐‘ข๐‘ข๐‘“๐‘“2 โˆ’ ๐‘š๐‘š๐‘“๐‘“1 โˆ’ ๐‘ข๐‘ข๐‘“๐‘“1 + ๐‘š๐‘š๐‘”๐‘”2 ๐‘ข๐‘ข๐‘”๐‘”2 โˆ’ ๐‘š๐‘š๐‘”๐‘”1 ๐‘ข๐‘ข๐‘”๐‘”1 โˆ’ ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝโ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + ๐‘“๐‘“โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ โˆ’ ๐‘„๐‘„โ„Ž = 0

(16)

๐‘„๐‘„โ„Ž = ๐‘š๐‘š๐‘“๐‘“2 ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ ๐‘š๐‘š๐‘“๐‘“1 โˆ’ ๐‘ข๐‘ข๐‘“๐‘“ + ๐‘š๐‘š๐‘”๐‘”2 ๐‘ข๐‘ข๐‘”๐‘” โˆ’ ๐‘š๐‘š๐‘”๐‘”1 ๐‘ข๐‘ข๐‘”๐‘” โˆ’ ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝโ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + ๐‘“๐‘“โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ

(17)

๐‘š๐‘š๐‘“๐‘“2 ๐‘ข๐‘ข๐‘“๐‘“ = ๏ฟฝ๐‘š๐‘š๐‘“๐‘“1 ๐‘ข๐‘ข๐‘“๐‘“ + ๐‘š๐‘š๐‘”๐‘”1 ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ ๐‘š๐‘š๐‘”๐‘”2 ๐‘ข๐‘ข๐‘“๐‘“ ๏ฟฝ + (1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ข๐‘ข๐‘“๐‘“

(18)

We will assume again that uf2 = uf1 = uf and ug1 = ug2 = ug. Therefore we can rewrite Equation (16) as

We can multiply Equation (12) by the initial internal energy of water

We may substitute Equation (18) into Equation (17)

๐‘„๐‘„โ„Ž = ๏ฟฝ๐‘š๐‘š๐‘“๐‘“1 ๐‘ข๐‘ข๐‘“๐‘“ + ๐‘š๐‘š๐‘”๐‘”1 ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ ๐‘š๐‘š๐‘”๐‘”2 ๐‘ข๐‘ข๐‘“๐‘“ ๏ฟฝ + (1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ ๐‘š๐‘š๐‘“๐‘“1 โˆ’ ๐‘ข๐‘ข๐‘“๐‘“ + ๐‘š๐‘š๐‘”๐‘”2 ๐‘ข๐‘ข2 โˆ’ ๐‘š๐‘š๐‘”๐‘”1 ๐‘ข๐‘ข๐‘”๐‘” โˆ’ ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝโ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + ๐‘“๐‘“โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ

๐‘„๐‘„โ„Ž = ๐‘š๐‘š๐‘”๐‘”1 ๏ฟฝ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ ๐‘ข๐‘ข๐‘”๐‘” ๏ฟฝ โˆ’ ๐‘š๐‘š๐‘”๐‘”2 ๏ฟฝ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ ๐‘ข๐‘ข๐‘”๐‘” ๏ฟฝ + (1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝโ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + ๐‘“๐‘“โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ

Equation (14) can be rewritten with vg1 = vg and vf1 = vf, We can rewrite this as

๐‘š๐‘š๐‘”๐‘”2 =

๐‘š๐‘š๐‘”๐‘”1 v๐‘”๐‘” โˆ’ ๐‘š๐‘š๐‘”๐‘”1 v๐‘“๐‘“ โˆ’ (1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  v๐‘“๐‘“ v๐‘”๐‘” โˆ’ v๐‘“๐‘“

๐‘š๐‘š๐‘”๐‘”1 โˆ’ ๐‘š๐‘š๐‘”๐‘”2 =

(1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  v๐‘“๐‘“ v๐‘”๐‘” โˆ’ v๐‘“๐‘“

(19) (20)

(21)

(22)

We may plug Equation (22) into Equation (20)

167

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

๐‘„๐‘„โ„Ž =

(1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  v๐‘“๐‘“ ๏ฟฝ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ ๐‘ข๐‘ข๐‘”๐‘” ๏ฟฝ + (1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝโ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + ๐‘“๐‘“โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ v๐‘”๐‘” โˆ’ v๐‘“๐‘“

๐‘„๐‘„โ„Ž =

(1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝv๐‘“๐‘“ ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ v๐‘“๐‘“ ๐‘ข๐‘ข๐‘”๐‘” + ๐‘ข๐‘ข๐‘“๐‘“ ๏ฟฝv๐‘”๐‘” โˆ’ v๐‘“๐‘“ ๏ฟฝ๏ฟฝ โˆ’ ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝโ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + ๐‘“๐‘“โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ v๐‘”๐‘” โˆ’ v๐‘“๐‘“ ๐‘„๐‘„โ„Ž =

(1 + ๐‘“๐‘“)๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ๐‘ข๐‘ข๐‘“๐‘“ v๐‘”๐‘” โˆ’ ๐‘ข๐‘ข๐‘”๐‘” v๐‘“๐‘“ ๏ฟฝ โˆ’ ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝโ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + ๐‘“๐‘“โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ v๐‘“๐‘“๐‘“๐‘“

(23)

PROBLEM 7.12 QUESTION

Pressurizer Sizing Analysis (Section 7.3) The size of a pressurizer is determined by the criteria that the vapor volume must be capable of accommodating the largest insurge and the liquid volume must handle the outsurge. The important limitations of the design are that the pressurizer should not be totally liquid filled or the immersion heaters should not be uncovered after possible transients. To size the vapor volume, a maximum insurge is assumed to completely fill the pressurizer with liquid with some of the insurge being diverted to the spray to condense the vapor, Treating the entire pressurizer volume, Vt, as the control volume, find the vapor volume, Vg1, which will accommodate the insurge given below. Data: Initial pressurizer conditions Saturation at 15.51 MPa and 345ยบC Initial liquid mass = 1827 kg Maximum insurge (includes spray) Mass = 2740 kg Enthalpy = 1.2 ร— 106 J/kg Final pressurizer condition Assume completely filled with liquid at 15.51 MPa Answer: Vg1 = 5.57 m3 Vt = 8.64 m3

P ROBLEM 7.12 S OLUTION Pressurizer sizing analysis (Section 7.3) From the problem statement, we are given: โˆ’ pressurizer pressure, P = 15.5 MPa โˆ’ mass of liquid, mf1 = 1827 kg

168

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

โˆ’ mass of insurge, mst = 2740 kg โˆ’ enthalpy of vapor, hst = 1.2 ร— 106 J/kg Thermodynamic properties (from tables): โˆ’ uf = 1604 kJ/kg โˆ’ ug = 2444 k J/kg โˆ’ ufg = ug โ€“ uf = 840 kJ/kg โˆ’ vf = 0.001683 m3/kg

โˆ’ vg = 0.009803 m3/kg

โˆ’ vfg = vg โ€“ vf = 0.00812 m3/kg.

From conservation of mass

๐‘š๐‘š2 โˆ’ ๐‘š๐‘š1 = ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ 

(1) (2)

and

V๐‘ก๐‘ก = ๐‘š๐‘š2 v2

(3)

From conservation of energy

V๐‘ก๐‘ก = ๐‘š๐‘š1 v1 ๐‘š๐‘š2 ๐‘ข๐‘ข2 โˆ’ ๐‘š๐‘š1 ๐‘ข๐‘ข1 = ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘  โ„Ž๐‘ ๐‘ ๐‘ ๐‘ 

(4) (5)

where the specific volume is

๐‘š๐‘š๐‘“๐‘“1 = (1 โˆ’ ๐‘ฅ๐‘ฅ1 )๐‘š๐‘š1

(6)

and specific internal energy

v1 = (1 โˆ’ ๐‘ฅ๐‘ฅ1 )v๐‘“๐‘“ + ๐‘ฅ๐‘ฅ1 v๐‘”๐‘” ๐‘ข๐‘ข1 = (1 โˆ’ ๐‘ฅ๐‘ฅ1 )๐‘ข๐‘ข๐‘“๐‘“ + ๐‘ฅ๐‘ฅ1 ๐‘ข๐‘ข๐‘”๐‘”

(7)

v2 = v๐‘“๐‘“

(8)

V๐‘”๐‘”1 = ๐‘‰๐‘‰๐‘ก๐‘ก โˆ’ ๐‘š๐‘š๐‘“๐‘“1 v๐‘“๐‘“

(9)

The pressurizer is a rigid volume so therefore,

The mass of liquid can be calculated with

Since we are considering an insurge, the final specific volume is equal to the specific volume of saturated liquid only, The vapor volume to accommodate the insurge is therefore Therefore there are 9 unknowns, (m2, m1, Vt, v1, v2, u1, u2, x1, Vg1) and 9 equations. Solving these 169

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

equations simultaneously yields and

V๐‘”๐‘”1 = 5.569 m3

(10)

V๐‘ก๐‘ก = 8.644 m3

(11)

P ROBLEM 7.13 Q UESTION Pressurizer Insurge Problem (Section 7.3) For insurge case, why is latent heat of vaporization of vapor which is condensed insufficient to heat insurge mass to saturation?

P ROBLEM 7.13 S OLUTION Pressurizer Insurge Problem (Section 7.3) Sufficiency depends on the initial enthalpy of insurge assumed. The balance between these effects is close, but for the values taken (see Table 7.3), heat input is required. For example, see Figure SM-7.1, which shows a final pressurizer condition:

Figure SM-7.1

TABLE 7.3 Conditions for Pressurizer Design Problem Saturation pressure

15.5 MPa

170

2250 psia

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis Saturation temperature

618.3 K

652.9ยฐF

uf

1.60 ร— 106 J/kg

689.9 Btu/lbm

ug

2.44 ร— 106 J/kg

1050.6 Btu/lbm

vf

1.68 ร— 10โˆ’3 m3/kg

0.02698 ft3/lbm

vg

9.81 ร— 10โˆ’3 m3/kg

0.15692 ft3/lbm

Mass of maximum outsurge

14,000 kg

30.86 ร— 103 lbm

Mass of maximum insurge

9500 kg

20.94 ร— 103 lbm

Hot leg insurge enthalpy

1.43 ร— 106 J/kg

612.8 Btu/lbm

Cold leg spray enthalpy

1.27 ร— 106 J/kg

546.8 Btu/lbm

Cold leg spray expressed as a fraction of hot leg insurge (f)

0.03

0.03

Outsurge enthalpy

1.63 ร— 106 J/kg

701.1 Btu/lbm

Mass of liquid water necessary to cover the heaters (requires an assumption about the pressurizer configuration)

1827 kg

4021.23 lbm

Saturation properties

Energy liberated by condensing vapor: ๐‘š๐‘š๐‘”๐‘” ๐‘ข๐‘ข๐‘“๐‘“๐‘“๐‘“ =

๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  (1 + ๐‘“๐‘“)v๐‘“๐‘“ ๐‘ข๐‘ข๐‘“๐‘“๐‘“๐‘“ v๐‘”๐‘” โˆ’ v๐‘“๐‘“

since mg is given by Equation 7.51. The mass of surge and spray added: ๏ฟฝ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝv๐‘“๐‘“ = ๐‘š๐‘š๐‘”๐‘” vโ„Ž๐‘”๐‘” v๐‘”๐‘” ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  (1 + ๐‘“๐‘“) = ๐‘š๐‘š๐‘”๐‘” v๐‘“๐‘“

Energy needed to raise the mass added to saturation conditions:

๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ + ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘“๐‘“๏ฟฝ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ = ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ข๐‘ข๐‘“๐‘“ (1 + ๐‘“๐‘“) โˆ’ ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝโ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + ๐‘“๐‘“โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ

since surge and spray masses are flow streams into the control volume. Summarizing: If ๐‘„๐‘„ฬ‡โ„Ž is extra energy needed, then ๐‘„๐‘„ฬ‡โ„Ž + ๐‘š๐‘š๐‘”๐‘” ๐‘ข๐‘ข๐‘”๐‘” โˆ’ ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ข๐‘ข๐‘“๐‘“ (1 + ๐‘“๐‘“) + ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝโ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + ๐‘“๐‘“โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ = 0

If the terms balance, ๐‘„๐‘„ฬ‡โ„Ž is zero. Depending on other values of parameters, ๐‘„๐‘„ฬ‡โ„Ž can be + or -.

171

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

v๐‘“๐‘“ ๐‘„๐‘„ฬ‡โ„Ž = โˆ’๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  (1 + ๐‘“๐‘“) ๏ฟฝ ๐‘ข๐‘ข โˆ’ ๐‘ข๐‘ข๐‘“๐‘“ ๏ฟฝ โˆ’ ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝโ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + ๐‘“๐‘“โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ v๐‘”๐‘” โˆ’ ๐œ๐œ๐‘“๐‘“ ๐‘“๐‘“๐‘“๐‘“

v๐‘“๐‘“ ๐‘ข๐‘ข๐‘”๐‘” โˆ’ v๐‘“๐‘“ ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ v๐‘”๐‘” ๐‘ข๐‘ข๐‘“๐‘“ + v๐‘“๐‘“ ๐‘ข๐‘ข๐‘“๐‘“ ๐‘„๐‘„ฬ‡โ„Ž = โˆ’๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  (1 + ๐‘“๐‘“) ๏ฟฝ ๏ฟฝ โˆ’ ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝโ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + ๐‘“๐‘“โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ v๐‘”๐‘” โˆ’ v๐‘“๐‘“ v๐‘”๐‘” ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ v๐‘“๐‘“ ๐‘ข๐‘ข๐‘”๐‘” ๐‘„๐‘„ฬ‡โ„Ž = ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  (1 + ๐‘“๐‘“) ๏ฟฝ ๏ฟฝ โˆ’ ๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝโ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + ๐‘“๐‘“โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ v๐‘”๐‘” โˆ’ v๐‘“๐‘“

Now take limiting case, i.e., letโ€™s simplify equations making ๐‘„๐‘„ฬ‡โ„Ž as small as possible to see if it could be zero or negative. Take cold leg spray at hot leg surge conditions: hspray = hsurge

Then msurge ๏ฟฝhsurge + fhspray ๏ฟฝ = msurge (1 + f)hsurge

vg uf โˆ’ vfug Qฬ‡ h = msurge (1 + f) ๏ฟฝ โˆ’ hsurge ๏ฟฝ vfg

Further, take the surge enthalpy at saturation, then

โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = ๐‘ข๐‘ข๐‘“๐‘“ + ๐‘ƒ๐‘ƒv๐‘“๐‘“

Substituting

๐‘„๐‘„ฬ‡โ„Ž =

๐‘„๐‘„ฬ‡โ„Ž =

๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  (1 + ๐‘“๐‘“) ๏ฟฝv๐‘”๐‘” ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ v๐‘“๐‘“ ๐‘ข๐‘ข๐‘”๐‘” โˆ’ v๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ๐‘ข๐‘ข๐‘“๐‘“ + ๐‘ƒ๐‘ƒv๐‘“๐‘“ ๏ฟฝ๏ฟฝ v๐‘“๐‘“๐‘“๐‘“

๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  (1 + ๐‘“๐‘“) ๏ฟฝv๐‘”๐‘” ๐‘ข๐‘ข๐‘“๐‘“ โˆ’ v๐‘“๐‘“ ๐‘ข๐‘ข๐‘”๐‘” โˆ’ ๏ฟฝ๐‘ข๐‘ข๐‘“๐‘“ v๐‘”๐‘” + ๐‘ƒ๐‘ƒv๐‘“๐‘“ v๐‘”๐‘” โˆ’ ๐‘ข๐‘ข๐‘“๐‘“ v๐‘“๐‘“ โˆ’ ๐‘ƒ๐‘ƒv๐‘“๐‘“2 ๏ฟฝ๏ฟฝ v๐‘“๐‘“๐‘“๐‘“ ๐‘„๐‘„ฬ‡โ„Ž =

๐‘š๐‘š๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  (1 + ๐‘“๐‘“) ๏ฟฝv๐‘“๐‘“ ๏ฟฝv๐‘“๐‘“ โˆ’ ๐‘ข๐‘ข๐‘”๐‘” ๏ฟฝ โˆ’ ๐‘ƒ๐‘ƒv๐‘“๐‘“ ๏ฟฝv๐‘”๐‘” โˆ’ v๐‘“๐‘“ ๏ฟฝ๏ฟฝ v๐‘“๐‘“๐‘“๐‘“

The second term in brackets on the right hand side is negative. In this limiting case, as expected since the surge enthalpy is taken as saturation, ๐‘„๐‘„ฬ‡โ„Ž is negative.

PROBLEM 7.14 QUESTION

Behavior of a Fully Contained Pressurized Pool Reactor under Decay Power Conditions (Section 7.3) A 1600 MWth pressurized pool reactor has been proposed in which the entire primary coolant system is submerged in a large pressurized pool of cold water with a high boric acid content. The amount of water in the pool is sufficient to provide for core decay heat removal for at least 1 week following any incident, assuming no cooling systems are operating. In this mode, the pool water

172

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

boils and is vented to the atmosphere. The vessel geometry is illustrated in Figure 7.20.

FIGURE 7.20 Pressurized pool reactor. The core volume can be neglected. Assume that at time t = 0 with an initial vessel pressure of 0.10135 MPa (1 atm), the venting to the atmosphere fails. Does water cover the core for all t? Plot the water level measured from the top of the vessel versus time. You may assume that the vessel volume can be subdivided into an upper saturated vapor and a lower saturated liquid volume. Also, assume that the decay heat rate is constant for the time interval of interest at 25 MWth. Answer: Water always covers the core.

P ROBLEM 7.14 S OLUTION Behavior of a Fully Contained Pressurized Pool Reactor under Decay Power Conditions (Section 7.3) From the problem statement, we are given that: โˆ’ decay power, ๐‘„๐‘„ฬ‡๐‘‘๐‘‘ = 25 MWth

โˆ’ initial pressure, P1 = 0.10135 MPa The initial volume of the pool reactor and phase volumes are calculated as follows from Figure 7.20:

173

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

4 V = ๐œ‹๐œ‹(6.5)2 (14.5) + 0.5 ๏ฟฝ ๏ฟฝ ๐œ‹๐œ‹(6.5)3 = 2500 m3 3 V๐‘”๐‘”1 = ๐œ‹๐œ‹(6.5)2 (2.17) = 288 m3

(1) (2)

V๐‘“๐‘“1 = V โˆ’ V๐‘”๐‘”1 = 2212 m3

(3)

v๐‘“๐‘“1 = v(๐‘ƒ๐‘ƒ1 , ๐‘ฅ๐‘ฅ = 0) = 0.001043 m3 โ„kg

(4)

The initial specific volumes of each phase are evaluated at the initial pressure,

The total mass of water is

v๐‘”๐‘”1 = v(๐‘ƒ๐‘ƒ1 , ๐‘ฅ๐‘ฅ = 1) = 1.673 m3 โ„kg ๐‘š๐‘š๐‘ค๐‘ค =

V๐‘“๐‘“1 V๐‘”๐‘”1 + = 2.12 ร— 106 kg v๐‘“๐‘“1 v๐‘”๐‘”1

v=

V = 0.001179 m3 โ„kg ๐‘š๐‘š๐‘ค๐‘ค

(5)

(6)

The specific volume of the mixture (remains constant) is

(7)

The initial specific internal energy can be evaluated at the initial pressure and specific volume Conservation of energy is

๐‘ข๐‘ข1 = ๐‘ข๐‘ข(๐‘ƒ๐‘ƒ1 , v) = 419 kJโ„kg

(8)

๐‘š๐‘š๐‘ค๐‘ค (๐‘ข๐‘ข2 โˆ’ ๐‘ข๐‘ข1 ) = ๐‘„๐‘„ฬ‡๐‘‘๐‘‘ ๐‘ก๐‘ก

(9)

๐‘ƒ๐‘ƒ2 = ๐‘ƒ๐‘ƒ(๐‘ข๐‘ข2 , v)

(10)

๐‘ฅ๐‘ฅ2 = ๐‘ฅ๐‘ฅ(๐‘ข๐‘ข2 , v)

(11)

Therefore, for any given time, the final specific internal energy is the only unknown. This time will be varied in this problem to determine how the water level changes. Once the specific internal energy is known, the final pressure can be evaluated using the specific volume as the second independent state parameter, Similarly, the quality can be evaluated

Once the quality of the mixture is known, the mass of each phase can be calculated, ๐‘š๐‘š๐‘”๐‘”2 = ๐‘š๐‘š๐‘ค๐‘ค ๐‘ฅ๐‘ฅ2

(12)

๐‘š๐‘š๐‘“๐‘“2 = ๐‘š๐‘š๐‘ค๐‘ค โˆ’ ๐‘š๐‘š๐‘”๐‘”2

The final specific volumes of each phase can be determined from the final pressure, v๐‘“๐‘“2 = v(๐‘ƒ๐‘ƒ2 , ๐‘ฅ๐‘ฅ = 0) 174

(13)

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

The final volumes of each phase is

v๐‘”๐‘”2 = v(๐‘ƒ๐‘ƒ2 , ๐‘ฅ๐‘ฅ = 1)

(14)

V๐‘“๐‘“2 = v๐‘“๐‘“2 ๐‘š๐‘š๐‘“๐‘“2

(15)

V๐‘”๐‘”2 = v๐‘”๐‘”2 ๐‘š๐‘š๐‘”๐‘”2

(16)

Since the cross sectional area is constant toward the top of the vessel, the height that the steam volume takes up is ๐ฟ๐ฟ =

V๐‘”๐‘”2 ๐œ‹๐œ‹(6.5)2

(17)

Finally, the water level height as measured from the top of the core is ๐ป๐ป = 12.5 โˆ’ ๐ฟ๐ฟ

(18)

As we vary the time an calculate the water level, the level increases as shown in Figure SM-7.2 below. Thus, the core is never uncovered.

Figure SM-7.2 Water level (measured from the vessel top) decrease with elapsed time.

PROBLEM 7.15 QUESTION Depressurization of a Primary System (Section 7.3) The pressure of the primary system of a PWR is controlled by the pressurizer via the heaters and spray, A simplified drawing of the primary system of a PWR is shown in Figure 7.21.

175

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

FIGURE 7.21 Simplified drawing of the primary system of a PWR. If the spray valve were to fail in the open position, depressurization of the primary system would result. Calculate the time to depressurize from 15.5 MPa to 12.65 MPa if the spray rate is 30.6 kg/s with an enthalpy of 1252 kJ/kg (constant with time). Also calculate the final liquid and vapor volumes. You may assume that 1. Heaters do not operate. 2. Pressurizer wall is adiabatic. 3. Pressurizer vapor and liquid are in thermal equilibrium and occupy initial volumes of 20.39 and 30.58 m3, respectively. 4. Complete phase separation occurs in the pressurizer, 5. The subcooled liquid in the primary system external to the pressurizer is incompressible so that the spray mass flow rate is exactly balanced by the pressurizer outsurge. Answers: 225 s 22.13 m3 vapor 28.84 m3 liquid

P ROBLEM 7.15 S OLUTION Depressurization of a Primary System (Section 7.3) From the problem statement we are given: โˆ’ initial pressure, P1 = 15.5 MPa

176

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

โˆ’ final pressure, P2 = 12.65 MPa โˆ’ mass flow rate of spray, ๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘  = 30.6 kgโ„s

โˆ’ specific enthalpy of spray, hsp = 1252 kJ/kg โˆ’ initial volume of vapor, Vg1 = 20.39 m3 โˆ’ initial volume of liquid, Vf1 = 30.58 m3 Specific volume at initial pressure for saturated liquid and vapor, v๐‘“๐‘“1 = 0.001683 m3 โ„kg

(1)

The specific volumes at the final pressure are

v๐‘”๐‘”1 = 0.009814 m3 โ„kg

v๐‘“๐‘“2 = 0.001552 m3 โ„kg

v๐‘”๐‘”2 = 0.01328 m3 โ„kg

(2)

โ„Ž๐‘“๐‘“2 = 1517 kJโ„kg

(3)

The specific enthalpy of saturated liquid at the initial and final pressure are โ„Ž๐‘“๐‘“1 = 1630 kJโ„kg

Therefore, over the depressurization we will just use the average of these two quantities, โ„Ž๐‘“๐‘“ = 0.5๏ฟฝโ„Ž๐‘“๐‘“1 + โ„Ž๐‘“๐‘“2 ๏ฟฝ = 1574 kJโ„kg

(4)

The total mass of water can be calculated from each phase ๐‘š๐‘š๐‘ค๐‘ค =

V๐‘“๐‘“1 V๐‘”๐‘”1 + = 20249 kg v๐‘“๐‘“1 v๐‘”๐‘”1

(5)

Therefore, the quality at the initial state is

V๐‘”๐‘”1 ๐‘ฅ๐‘ฅ1 = v = 0.1026 ๐‘”๐‘”1

๐‘š๐‘š๐‘ค๐‘ค

(6)

Now that we have two independent thermodynamic properties, we can evaluate the specific internal energy ๐‘ข๐‘ข1 = ๐‘ข๐‘ข(๐‘ƒ๐‘ƒ1 , ๐‘ฅ๐‘ฅ1 ) = 1690 kJโ„kg

(7)

The initial specific volume of the mixture is (constant throughout depressurization)

Conservation of energy is

v=

V๐‘“๐‘“1 + V๐‘”๐‘”1 = 0.002517 m3 โ„kg ๐‘š๐‘š๐‘ค๐‘ค

๐‘š๐‘š๐‘ค๐‘ค (๐‘ข๐‘ข2 โˆ’ ๐‘ข๐‘ข1 ) = ๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝโ„Ž๐‘ ๐‘ ๐‘ ๐‘  โˆ’ โ„Ž๐‘“๐‘“ ๏ฟฝ๐‘ก๐‘ก

(8)

(9)

where the final specific internal energy u2 and time t are unknown. Since the specific volume is constant, the final specific internal energy a the final pressure condition is

177

rev 112420


Chapter 7 - Thermodynamics of Nuclear Energy Conversion Systems Nonsteady Flow First Law Analysis

๐‘ข๐‘ข2 = ๐‘ข๐‘ข(๐‘ƒ๐‘ƒ2 , v) = 1581 kJโ„kg

(10)

๐‘ก๐‘ก = 225 s

(11)

Solving the conservation of energy formula, the time is Similarly, the final quality can be evaluated to be

๐‘ฅ๐‘ฅ2 = ๐‘ฅ๐‘ฅ(๐‘ƒ๐‘ƒ2 , v) = 0.08233

Therefore, the mass of each phase is and

๐‘š๐‘š๐‘“๐‘“2 = (1 โˆ’ ๐‘ฅ๐‘ฅ2 )๐‘š๐‘š๐‘ค๐‘ค = 18582 kg

(12)

๐‘š๐‘š๐‘”๐‘”2 = ๐‘ฅ๐‘ฅ2 ๐‘š๐‘š๐‘ค๐‘ค = 1667 kg

(13)

V๐‘“๐‘“2 = v๐‘“๐‘“2 ๐‘š๐‘š๐‘“๐‘“2 = 28.84 m3

(14)

V๐‘”๐‘”2 = v๐‘”๐‘”2 ๐‘š๐‘š๐‘”๐‘”2 = 22.13 m3

(15)

Using the specific volumes that were evaluated at the final pressure conditions (listed above), the volume of each phase is and

178

rev 112420


Chapter 8 Thermal Analysis of Fuel Elements Contents Problem 8.1

Application of Kirchhoffโ€™s law to pellet temperature distribution ................. 180

Problem 8.2

Conductivity integral ...................................................................................... 183

Problem 8.3

Effect of cracking on UO2 conductivity ......................................................... 184

Problem 8.4

Temperature fields in fresh and irradiated fuel .............................................. 185

Problem 8. 5 Comparison of UO2 and UC fuel temperature fields ..................................... 188 Problem 8.6

Thermal conduction problem involving design of a BWR. core ................... 189

Problem 8.7

Comparison of thermal energy that can be extracted from a spherical hollow fuel pellet versus a cylindrical annular fuel pellet .......................................... 194

Problem 8.8

Fuel pin problem ............................................................................................ 197

Problem 8. 9 Radially averaged fuel temperature and stored energy in solid and annular pellet ......................................................................................................................... 198 Problem 8.10 Maximum linear power from a duplex fuel pellet .......................................... 202 Problem 8.11 Effect of internal cooling on fuel temperature ............................................... 204 Problem 8.12 Temperature field in a restructured fuel pin ................................................... 207 Problem 8.13 Eccentricity effects in a plate type fuel .......................................................... 208 Problem 8.14 Determining the linear power given a constraint on the fuel average temperature ......................................................................................................................... 213

179

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

PROBLEM 8.1 QUESTION Application of Kirchoffโ€™s Law to Pellet Temperature Distribution (Section 8.2) For a PWR cylindrical solid fuel pellet operating at a heat flux equal to 1.7 MW/m2 and a surface temperature of 400 ยฐC, calculate the maximum temperature in the pellet for two assumed values of conductivities. 1. k = 3 W/m ยฐC independent of temperature 2. ๐‘˜๐‘˜ = 1 + 3๐‘’๐‘’ โˆ’0.0005๐‘‡๐‘‡ where T is in ยฐC โ€“

UO2 pellet diameter = 8.192 mm

โ€“

UO2 density, 95% of theoretical density

Answers: 1. Tmax = 1560.5 ยฐC 2. Tmax: = 1627.8 ยฐC

PROBLEM 8.1 SOLUTION Application of Kirchoffโ€™s Law to Pellet Temperature Distribution (Section 8.2) For a PWR cylindrical solid fuel pellet operating at a heat flux equal to 1.7 MW/m2 and a surface temperature of 400 ยฐ C, calculate the maximum temperature in the pellet for two assumed values of conductivities. Given parameters: โ€“

heat flux, qโ€ณ = 1.7 MW/m2

โ€“

surface temperature, Ts = 400 ยฐC

โ€“

fuel pellet diameter, df = 8.192 mm

1. Constant conductivity The heat conduction equation for a constant conductivity is 1 ๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘“๐‘“ ๏ฟฝ = โˆ’๐‘ž๐‘ž โ€ณ ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘

(1)

We may integrate this equation from the center of the pellet to an arbitrary radius r, ๐‘‡๐‘‡

๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ ๐‘‘๐‘‘ ๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘“๐‘“ ๏ฟฝ = ๏ฟฝ โˆ’๐‘ž๐‘ž โ€ณ ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ 0 0

๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘“๐‘“ = โˆ’๐‘ž๐‘žโ€ณ ๐‘‘๐‘‘๐‘‘๐‘‘ 2 180

(2) (3)

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ = โˆ’๐‘ž๐‘žโ€ณ ๐‘‘๐‘‘๐‘‘๐‘‘ 2๐‘˜๐‘˜๐‘“๐‘“

(4)

We can now integrate this equation from the surface to the center of the fuel pellet, ๏ฟฝ

๐‘‡๐‘‡๐ถ๐ถ๐ถ๐ถ

๐‘‡๐‘‡๐‘“๐‘“

0

๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ โˆ’๐‘ž๐‘žโ€ด ๐‘…๐‘…๐‘…๐‘…๐‘œ๐‘œ

๐‘‡๐‘‡๐ถ๐ถ๐ถ๐ถ โˆ’ ๐‘‡๐‘‡๐‘“๐‘“ = ๐‘ž๐‘žโ€ด

๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ 2๐‘˜๐‘˜๐‘“๐‘“

2 ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ 4๐‘˜๐‘˜๐‘“๐‘“

(5) (6)

We can relate the volumetric heat generation to the heat flux ๐‘ž๐‘ž โ€ด =

2๐‘ž๐‘žโ€ณ ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“

(7)

Substituting Equation (7) into Equation (6) we get

๐‘ž๐‘ž โ€ณ๐ท๐ท๐‘“๐‘“๐‘“๐‘“ ๐‘‡๐‘‡๐ถ๐ถ๐ถ๐ถ โˆ’ ๐‘‡๐‘‡๐‘“๐‘“ = 4๐‘˜๐‘˜๐‘“๐‘“

We can substitute the given parameters to calculate the centerline temperature to be ๐‘‡๐‘‡๐ถ๐ถ๐ถ๐ถ = ๐‘‡๐‘‡๐‘“๐‘“ +

๐‘ž๐‘žโ€ณ๐ท๐ท๐‘“๐‘“๐‘“๐‘“ = 1560.5 ยฐC 4๐‘˜๐‘˜๐‘“๐‘“

2. Temperature Dependent Thermal Conductivity Let us solve this part two ways: First, by a direct solution of Equation (1), Second, by the use of the Kirchoff transformation. Direct solution

Integrating between r = 0 and r:

The next step consists of separating the variable T and r and integrating between [TCL, Tfo] for the temperature and [0, Rfo] for the radius:

181

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

R 2fo 3 โˆ’0.0005.T fo โˆ’0.0005TCL โˆ’e = โˆ’qโ€ฒโ€ฒโ€ฒ (T fo โˆ’ TCL ) โˆ’ 0.0005 e 4

(

)

(8)

Substituting Equation (7) into Equation (8), we get: 3 (T โˆ’ T ) โˆ’ 0.0005 (e fo

CL

โˆ’0.0005.T fo

)

โˆ’ e โˆ’0.0005TCL = โˆ’ qโ€ฒโ€ฒ

R fo 2

(9)

= TCL 1627.9 ยฐC A numerical solution gives Kirchoff transformation Using the Kirchoff transformation gives 1 ๐‘‡๐‘‡ 1 ๐‘‡๐‘‡ ๐œƒ๐œƒ = ๏ฟฝ ๐‘˜๐‘˜(๐‘‡๐‘‡)๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ ๐‘˜๐‘˜ = 1 + 3eโˆ’0.0005๐‘‡๐‘‡ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘˜๐‘˜0 ๐‘‡๐‘‡๐‘ ๐‘  ๐‘˜๐‘˜0 ๐‘‡๐‘‡๐‘ ๐‘  1 ๐œƒ๐œƒ = [๐‘‡๐‘‡ โˆ’ 6000๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’(โˆ’0.0005๐‘‡๐‘‡)]๏ฟฝ ๐‘‡๐‘‡๐‘‡๐‘‡๐‘ ๐‘  ๐‘˜๐‘˜0 1 ๐œƒ๐œƒ(๐‘‡๐‘‡) = [(๐‘‡๐‘‡ โˆ’ 400) + 4912.38 โˆ’ 6000exp(โˆ’0.0005๐‘‡๐‘‡)] ๐‘˜๐‘˜0

(10)

The heat conduction equation will therefore be with boundary conditions

๐‘˜๐‘˜0 โˆ‡2 ๐œƒ๐œƒ + ๐‘ž๐‘ž โ€ด = 0 ๐‘Ÿ๐‘Ÿ = 0,

Solving Equation (9)

(11)

โˆ‡๐œƒ๐œƒ = 0

๐‘Ÿ๐‘Ÿ = ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ , ๐‘‡๐‘‡๏ฟฝ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ = ๐‘‡๐‘‡๐‘ ๐‘  โ†’ ๐œƒ๐œƒ๏ฟฝ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ = 0 2 ๐‘ž๐‘žโ€ด๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๐‘Ÿ๐‘Ÿ 2 ๐œƒ๐œƒ(๐‘Ÿ๐‘Ÿ) = ๏ฟฝ1 โˆ’ 2 ๏ฟฝ 4๐‘˜๐‘˜๐‘“๐‘“ ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“

2 ๐‘ž๐‘žโ€ด๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๐‘ž๐‘žโ€ณ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ = 4๐‘˜๐‘˜0 2๐‘˜๐‘˜0 W ๐‘˜๐‘˜0 = ๐‘˜๐‘˜๏ฟฝ๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ = 3.46 mK

๐œƒ๐œƒ(0) = ๐œƒ๐œƒ๐ถ๐ถ๐ถ๐ถ =

๐œƒ๐œƒ๐ถ๐ถ๐ถ๐ถ = 1007ยฐC

(12) (13) (14) (15)

Solving Equation (10) iteratively with Equation (15) we obtain that the maximum temperature is ๐‘‡๐‘‡๐ถ๐ถ๐ถ๐ถ = 1627.8 ยฐC 182

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

PROBLEM 8.2 QUESTION Conductivity Integral (Section 8.2) Describe an experiment by which you would obtain the results of Figure 8.2, that is, the value of the conductivity integral. Be sure to explicitly state what measurements and observations are to be made and how the conductivity integral is to be determined from them.

FIGURE 8.2 Integral of thermal conductivity of UO2 and UO2 with 5% gadoliniaโ€”all cases at 95% of theoretical density. (Based on results of [20].) Note: 32.8 W/cm = 1kW/ft.

PROBLEM 8.2 SOLUTION Conductivity Integral (Section 8.2) The โ€œConductivity Integralโ€ for a cylindrical fuel pellet is: ๐‘ป๐‘ป

๏ฟฝ ๐‘˜๐‘˜๐œŒ๐œŒ ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐‘ป๐‘ป๐’‡๐’‡๐’‡๐’‡

๐‘ž๐‘žโ€ฒ(๐‘ง๐‘ง) 4๐œ‹๐œ‹

(1)

In order to evaluate the LHS of Equation (1) we must know the linear heat rate, qโ€ฒ(z) and temperature, T. 1. qโ€ฒ(z) (a) Irradiate a fuel pin in a reactor with a very well characterized axial flux distribution (b) measure the flow rate, inlet and exit temperature of the coolant flowing over the fuel pin (c) evaluate qโ€ฒ(z) using the know flux shape (hence power shape), coolant flow rate, inlet and exit

183

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

temperature of the coolant and fluid properties. ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– ) = ๏ฟฝ

๐ฟ๐ฟ โ„2

๐‘”๐‘”0โ€ฒ ๐‘“๐‘“(๐‘ง๐‘ง)๐‘‘๐‘‘๐‘‘๐‘‘

โˆ’๐ฟ๐ฟโ„2

(2)

where f(z) is a given power shape. From Equation (2), we can calculate ๐‘ž๐‘ž0โ€ฒ and qโ€ฒ (z) using Equation (3). ๐‘ž๐‘ž โ€ฒ (๐‘ง๐‘ง) = ๐‘ž๐‘ž0โ€ฒ (๐‘ง๐‘ง)

2. Temperature and Density

(3)

(a) To get the temperature, it is very difficult, but not impossible to locate a high temperature thermocouple at the fuel centerline. This is the primary means to get the centerline fuel temperature. (b) Alternately we can destructively examine the fuel pin after irradiation looking at microstructure of the fuel centerline along its axis. We know the approximate relationship of certain fuel structure to temperature, i.e. onset of equiaxed grain structure occurs at about 1600 ยบC to 1650 ยบC and onset of columnar grain structure about 1800 ยบC to 2150 ยบC. These structures also are related to pellet densities. Ceramists also relate overall microstructural characteristics to temperature. Finally, we could insert a small amount of marker material (i.e., undergoes a phase transition at a given temperature) at various axial centerline positions. Hence we can establish several (but not a large number) of temperature values at different axial location from one pin or several pin irradiations. (c) The overall impression you should derive from this solution is that the curves of โ€œConductivity Integralโ€ are drawn from a few experimentally determined points. The curves project more certainty that the information are derived from.

PROBLEM 8.3 QUESTION Effect of Cracking on UO2 Conductivity (Section 8.3) For the conditions given in Example 8.1, evaluate the effective conductivity of the UO2 pellet after cracking using the empirical relation of Equation 8.24. Assume the gas is helium at a temperature Tgas = 0.7Tcl + 0.3Tf. Compare the results to those obtained in Example 8.1. Answer: keff = 2.00 W/m K

PROBLEM 8.3 SOLUTION Effect of Cracking on UO2 Conductivity (Section 8.3) From Example 8.1 we are given that: โ€“

outer clad diameter, Dco = 11.2 mm

184

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

โ€“

clad thickness, tc = 0.71mm

โ€“

gap thickness, tg = 90 ร— 10โˆ’6 m

โ€“

conductivity of UO2, kUO2 = 2.326 W/m K

โ€“

hot gap thickness, ฮดhot = 0.0516 mm

โ€“

fuel temperature, Tf = 1000 ยฐC

โ€“

clad temperature, Tcl = 295 ยฐC

โ€“

thermal expansion coefficient of fuel, ฮฑf = 10.1 ร— 10โˆ’6 1/K

Therefore, the cold fuel pellet diameter is: (1)

๐ท๐ท๐‘“๐‘“,๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ = ๐ท๐ท๐‘๐‘๐‘๐‘ โˆ’ 2๐‘ก๐‘ก๐‘๐‘ โˆ’ 2๐‘ก๐‘ก๐‘”๐‘” = 9.6 mm

The parameters for Equation 8.24 are

๐ด๐ด = 6.35 ร— 10โˆ’5 m ๐ต๐ต = 0.077

๐ถ๐ถ = 0.015

(2)

From the given formula in the problem statement, the temperature of the gas is (3)

๐‘‡๐‘‡๐‘”๐‘”๐‘”๐‘”๐‘”๐‘” = 0.7๐‘‡๐‘‡๐‘๐‘๐‘๐‘ + 0.3๐‘‡๐‘‡๐‘“๐‘“ = 779.65 K

Using Equation 8.140, the conductivity of the helium gas is ๐‘˜๐‘˜๐‘”๐‘”๐‘”๐‘”๐‘”๐‘” = 15.8 ร— 10โˆ’6 ๐‘‡๐‘‡ 0.79

The hot fuel pellet diameter is given as

W W = 3.043 ร— 10โˆ’3 cm K cm K

๐ท๐ท๐‘“๐‘“,โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ โˆ’ ๐ท๐ท๐‘“๐‘“,๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ ๏ฟฝ1 + ๐›ผ๐›ผ๐‘“๐‘“ ๏ฟฝ๐‘‡๐‘‡๐‘“๐‘“ โˆ’ 27ยฐC๏ฟฝ๏ฟฝ = 9.694 mm

(4)

(5)

The effective conductivity is therefore, ๐‘˜๐‘˜๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ =

๐‘˜๐‘˜๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ2

2๐›ฟ๐›ฟโ„Ž๐‘œ๐‘œ๐‘œ๐‘œ โˆ’ ๐ด๐ด ๏ฟฝ ๏ฟฝ ๐ต๐ต๐ต๐ต๐‘”๐‘”๐‘”๐‘”๐‘”๐‘” ๐ท๐ท๐‘“๐‘“,โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ ๏ฟฝ + ๐ถ๐ถ๏ฟฝ + 1 ๐‘˜๐‘˜๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ2

= 2.00

W mK

(6)

PROBLEM 8.4 QUESTION

Temperature Fields in Fresh and Irradiated Fuel (Section 8.3) Consider two conditions for heat transfer in the pellet and the pellet-cladding gap of a BWR fuel pin: โ€“

Initial uncracked pellet with no relocation

โ€“

Cracked and relocated fuel

185

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

1. For each combination, find the temperatures at the cladding inner surface, the pellet outer surface, and the pellet centerline. 2. Find for each case the volume weighted average temperature of the pellet. Geometry and material information: โ€“

Cladding outside diameter = 11.20 mm

โ€“

Cladding thickness = 0.71 mm

โ€“

Fuel-cladding gap thickness = 90 ฮผm

โ€“

Initial solid pellet with density = 88%

Basis for heat transfer calculations: โ€“

Cladding conductivity is constant at 17 W/m K

โ€“

Gap conductance โ€“ Without fuel relocation, 4300 W/m2 K; โ€“ With fuel relocation, 31,000 W/m2 K;

โ€“

Fuel conductivity (average) at 95% density โ€“ Uncracked, 2.7 W/m K, โ€“ Cracked, 2.4 W/m K;

โ€“

Volumetric heat deposition rate: uniform in the fuel and zero in the cladding

โ€“

Do not adjust the pellet conductivity for restructuring.

โ€“

Use Bianchariaโ€™s porosity correction factor (Equation 8-21).

Operating conditions: โ€“

Cladding outside temperature = 295 ยฐC

โ€“

Linear heat-generation rate = 44 kW/m

Answers: 1. Tmax (ยฐC) Tfo (ยฐC) Tci (ยฐC) 2. Tave (ยฐC)

Uncracked 2135 687 351 1411

Cracked 2026 398 351 1212

186

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

PROBLEM 8.4 SOLUTION Temperature Fields in Fresh and Irradiated Fuel (Section 8.3) From the problem statement, we are given that: โ€“

outer clad diameter, Dco = 11.20 mm

โ€“

clad thickness, tc = 0.71 mm

โ€“

gap thickness, tg = 90 ร— 10โˆ’6 m

โ€“

fuel density, ฯf = 0.88 ร— 10.97g/cm3 = 9.654 g/cm3

โ€“

clad conductivity, kc = 17W/m K

โ€“

gap conductance with no fuel relocation (case 1), hg1 = 4300W/m2 K

โ€“

gap conductance with fuel relocation (case 2), hg2 = 31000 W/m2 K

โ€“

fuel conductivity uncracked (case 1), kf1 = 2.7W/m K

โ€“

fuel conductivity cracked (case 2), kf2 = 2.4 W/m K

โ€“

clad outer temperature, Tco = 295 ยฐC

โ€“

linear heat rate, qโ€ฒ = 44kW/m

First, the geometry of the fuel pin will be calculated. The radius to the outer clad surface is ๐‘…๐‘…๐‘๐‘๐‘๐‘ = 0.5๐ท๐ท๐‘๐‘๐‘๐‘ = 5.6 mm

(1)

๐‘…๐‘…๐‘๐‘๐‘๐‘ = ๐‘…๐‘…๐‘๐‘๐‘๐‘ โˆ’ ๐‘ก๐‘ก๐‘๐‘ = 4.89 mm

(2)

๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ = ๐‘…๐‘…๐‘๐‘๐‘๐‘ โˆ’ ๐‘ก๐‘ก๐‘”๐‘” = 4.8 mm

(3)

The radius to the inner clad surface can be calculated with the clad thickness, The fuel pellet surface radius can be calculated by subtracting the gap thickness, Finally, the mean gap radius is computed by taking the average of the fuel surface radius and the inner clad radius, ๐‘…๐‘…๐‘”๐‘” =

๐‘…๐‘…๐‘๐‘๐‘๐‘ + ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ = 4.845 mm 2

(4)

Using Bianchariaโ€™s porosity correction factor, each of the fuel conductivities are adjusted as follows, 0.88 (1.5 1 + โˆ’ 1)(1 โˆ’ 0.88) โ€ฒ ๐‘˜๐‘˜๐‘“๐‘“1 = ๐‘˜๐‘˜๐‘“๐‘“1 = 2.418 Wโ„m K 0.95 1 + (1.5 โˆ’ 1)(1 โˆ’ 0.95) 187

(5)

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

0.88 (1.5 1 + โˆ’ 1)(1 โˆ’ 0.88) โ€ฒ ๐‘˜๐‘˜๐‘“๐‘“2 = ๐‘˜๐‘˜๐‘“๐‘“2 = 2.15 Wโ„m K 0.95 1 + (1.5 โˆ’ 1)(1 โˆ’ 0.95)

(6)

The inner clad temperature can be calculated for each case to be (Equation 8.146) ๐‘ž๐‘žโ€ฒ ๐‘…๐‘…๐‘๐‘๐‘๐‘ ln ๏ฟฝ ๏ฟฝ = 350.8 ยฐC 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘๐‘ ๐‘…๐‘…๐‘๐‘๐‘๐‘ ๐‘ž๐‘žโ€ฒ ๐‘…๐‘…๐‘๐‘๐‘๐‘ ๐‘‡๐‘‡๐‘๐‘๐‘๐‘2 = ๐‘‡๐‘‡๐‘๐‘๐‘๐‘ + ln ๏ฟฝ ๏ฟฝ = 350.8 ยฐC 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘๐‘ ๐‘…๐‘…๐‘๐‘๐‘๐‘

(7)

๐‘‡๐‘‡๐‘๐‘๐‘๐‘1 = ๐‘‡๐‘‡๐‘๐‘๐‘๐‘ +

(8)

The fuel surface temperature can be computed using Equation 8.136

and

๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“1 = ๐‘‡๐‘‡๐‘๐‘๐‘๐‘1 +

๐‘ž๐‘žโ€ฒ = 687 ยฐC 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘”๐‘” โ„Ž๐‘”๐‘”1

๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“2 = ๐‘‡๐‘‡๐‘๐‘๐‘๐‘2 +

๐‘ž๐‘žโ€ฒ = 397.5 ยฐC 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘”๐‘” โ„Ž๐‘”๐‘”2

(9)

(10)

The fuel centerline temperature can be determined with Equation 8.145 for each case,

and

๐‘‡๐‘‡๐ถ๐ถ๐ถ๐ถ1 = ๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“1 +

๐‘ž๐‘žโ€ฒ = 2135 ยฐC 4๐œ‹๐œ‹๐œ‹๐œ‹๐‘“๐‘“1

๐‘‡๐‘‡๐ถ๐ถ๐ถ๐ถ2 = ๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“2 +

๐‘ž๐‘žโ€ฒ = 2026 ยฐC 4๐œ‹๐œ‹๐œ‹๐œ‹๐‘“๐‘“2

๐‘‡๐‘‡๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž1 = ๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“1 +

๐‘ž๐‘žโ€ฒ = 1411 ยฐC 8๐œ‹๐œ‹๐œ‹๐œ‹๐‘“๐‘“1

(11)

(12)

Finally, the average fuel temperature is calculated with Equation 8.71a to give

and

๐‘‡๐‘‡๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 = ๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“2 +

(13)

๐‘ž๐‘žโ€ฒ = 1212 ยฐC 8๐œ‹๐œ‹๐œ‹๐œ‹๐‘“๐‘“2

(14)

PROBLEM 8.5 QUESTION

Comparison of UO2 and UC Fuel Temperature Fields (Section 8.4) A fuel plate is of half width a = 10 mm and is clad in a zircaloy sheet of thickness ฮดc = 2 mm. The heat is generated uniformly in the fuel. Compare the temperature drop across the fuel plate when the fuel is UO2 with that of a UC fuel

188

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

for the same heat-generation rate (i.e., calculate the ratio of Tmax โˆ’ Tco for the UC plate to that of the UO2 plate). Answer: โˆ†๐‘‡๐‘‡๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ2 โ„โˆ†๐‘‡๐‘‡๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ = 4.16

PROBLEM 8.5 SOLUTION

Comparison of UO2 and UC Fuel Temperature Fields (Section 8.4) From the problem statement, we are given that: โ€“

fuel plate half-width, a = 10 mm

โ€“

Zircaloy cladding thickness, ฮดc = 2 mm

From Table 8.1 we have: โ€“

thermal conductivity of UO2, kUO2 = 3.6 W/m K

โ€“

thermal conductivity of UC, kUC = 23 W/m K

From Table 8.2 we have: โ€“

thermal conductivity of Zircaloy, kc = 13 W/m K

Substituting the volumetric heat generation rate from Equation 8.45 into Equation 8.47 we have ๐‘Ž๐‘Ž ๐›ฟ๐›ฟ๐‘๐‘ โˆ†๐‘‡๐‘‡ = ๐‘ž๐‘ž โ€ด ๐‘Ž๐‘Ž ๏ฟฝ + ๏ฟฝ 2๐‘˜๐‘˜๐‘“๐‘“ ๐‘˜๐‘˜๐‘๐‘

(1)

Taking the ratio of the temperature differences for the UO2 and the UC we have ๐‘Ž๐‘Ž ๐›ฟ๐›ฟ๐‘๐‘ ๐‘Ž๐‘Ž ๐›ฟ๐›ฟ๐‘๐‘ โˆ†๐‘‡๐‘‡๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ2 ๐‘ž๐‘žโ€ด๐‘Ž๐‘Ž ๏ฟฝ2๐‘˜๐‘˜๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ2 + ๐‘˜๐‘˜๐‘๐‘ ๏ฟฝ 2๐‘˜๐‘˜๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ2 + ๐‘˜๐‘˜๐‘๐‘ = = = 4.16 ๐‘Ž๐‘Ž ๐›ฟ๐›ฟ๐‘๐‘ ๐‘Ž๐‘Ž ๐›ฟ๐›ฟ๐‘๐‘ โˆ†๐‘‡๐‘‡๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ ๐‘ž๐‘žโ€ด๐‘Ž๐‘Ž ๏ฟฝ + ๏ฟฝ + 2๐‘˜๐‘˜๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ ๐‘˜๐‘˜๐‘๐‘ 2๐‘˜๐‘˜๐‘ˆ๐‘ˆ๐‘ˆ๐‘ˆ ๐‘˜๐‘˜๐‘๐‘

(2)

PROBLEM 8.6 QUESTION

Thermal Conduction Problem Involving Design of a BWR Core (Section 8.5) A core design is proposed in which BWR type UO2 pins are located in holes within graphite hexagonal blocks (Figure 8.29). These blocks then form a core of radius Ro. Constants and constraints are defined in Figure 8.30 and Table 8.10. Basically, these constraints exist under decay power conditions where the outside of the core radiates its energy to a passive air chimney. However, the outside of the core which is in touch with a vessel at the same

189

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

temperature is limited to 500ยฐC. The cladding outside temperature, Tco, which radiates to the graphite, Tgi, is also constrained, here to a temperature 649ยฐC.

FIGURE 8.29 Unit cell dimensions.

FIGURE 8.30 Configuration of a solid core and variables.

TABLE 8.10 Constants and Constraints for Homogenized Core Power Analysis Constraints Tco < 649 ยฐC Tgo < 500 ยฐC

Constants Acell = 7.30 ร— 10โˆ’4 m2 d1 = 12.5 mm d2 = 19.8 mm ฯต1 = 0.6 ฯต2 = 0.7

190

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements W

๐‘˜๐‘˜๐‘”๐‘” = 60 mโˆ™K

๐‘Š๐‘Š

๐œŽ๐œŽ = 5.669 ร— 10โˆ’8 ๐‘š๐‘š2 โˆ™๐พ๐พ4 Calculate the achievable linear thermal power of the core (MW/m) as a function of core radius, Ro(m) for constraints of Table 8.10. Present the result as a plot. Notes for Figure 8.29: โ€“ Unit Cell using BWR fuel pin in MHTGR prismatic block holding the ratio of fuel to graphite constant โ€“ Coolant channel size established by taking the area of water normally associated with a pin in a conventional BWR. Notes for Figure 8.30: โ€“ Tgi is the temperature at the inner surface of the matrix graphite surrounding the fuel pin โ€“

Tgo is the temperature of the matrix graphite at the core outer surface

โ€“

Tco is the temperature at the clad outer surface

โ€“

dl and d2 are shown in Figure 8.29.

PROBLEM 8.6 SOLUTION Thermal Conduction Problem Involving Design of a BWR Core (Section 8.5) A core design is proposed in which BWR type UO2 pins are located in holes within graphite hexagonal blocks (Figure 8.29). These blocks then form a core of radius RO. The achievable linear heat power of the core (MW/m) is desired as a function of core radius, Ro(m) for constraints of Table 8.10. Present the result as a plot. Constants and terms are defined in Figure 8.30 and Table 8.10. Basically these constraints exist under decay power conditions where the outside of the core radiates its energy to a passive air chimney. However, the outside of the core which is in touch with a vessel at the same temperature is limited to 500 ยฐC. The clad outside temperature, Tco, which radiates to the graphite, Tgi, is also constrained, here to a temperature 649 ยฐC. In the problem there are two main heat transfer mechanisms: 1. From fuel rod to graphite: Radiation 2. Within the graphite: Conduction 1) Radiation Heat Transfer The net heat transfer by radiation between two surfaces (outer clad and inner graphite) is

191

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements 4 4 ๐œŽ๐œŽ๏ฟฝ๐‘‡๐‘‡๐‘๐‘๐‘๐‘ โˆ’ ๐‘‡๐‘‡๐‘”๐‘”๐‘”๐‘” ๏ฟฝ (1) ๐‘ž๐‘žฬ‡ = ๐‘…๐‘…๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก In Equation (1), ๐‘ž๐‘žฬ‡ is the net heat transfer between the two surfaces, Tco is the temperature of the outer cladding surface, Tgi is the temperature of the inner surface of the graphite matrix and Rtot is the total thermal resistance between the two surfaces. For two-surface enclosures, the total thermal resistance is modeled with

๐‘…๐‘…๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก =

1 โˆ’ ๐œ–๐œ–1 1 1 โˆ’ ๐œ–๐œ–2 + + ๐ด๐ด1 ๐œ–๐œ–1 ๐ด๐ด1 ๐น๐น1โ†’2 ๐ด๐ด2 ๐œ–๐œ–2

(2)

where ฯต1 is the emissivity of surface 1 (outer clad), ฯต2 is the emissivity of surface 2 (inner graphite), A1 is the surface area of surface 1, A2 is the surface area of surface 2 and F1โ†’2 is the view factor. For two long concentric cylinders, the view factor is unity and Equation (2) can be simplified into the form, ๐‘…๐‘…๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก = ๏ฟฝ

1 1 โˆ’ ๐œ–๐œ–2 ๐‘‘๐‘‘2 1 ๏ฟฝ + ๐œ–๐œ–1 ๐œ–๐œ–2 ๐‘‘๐‘‘2 ๐ด๐ด1

(3)

Combining Equations (3) and (1) we arrive at an expression for the net heat transfer, 4 4 ๐œŽ๐œŽ๐ด๐ด1 ๏ฟฝ๐‘‡๐‘‡๐‘๐‘๐‘๐‘ โˆ’ ๐‘‡๐‘‡๐‘”๐‘”๐‘”๐‘” ๏ฟฝ ๐‘ž๐‘žฬ‡ = 1 1 โˆ’ ๐œ–๐œ–2 ๐‘‘๐‘‘1 ๐œ–๐œ–1 + ๐œ–๐œ–1 ๐‘‘๐‘‘2

(4)

We may divide both sides of Equation (4) to get an expression for the linear heat rate, 4 4 ๐œ‹๐œ‹๐‘‘๐‘‘1 ๐œŽ๐œŽ๏ฟฝ๐‘‡๐‘‡๐‘๐‘๐‘๐‘ โˆ’ ๐‘‡๐‘‡๐‘”๐‘”๐‘”๐‘” ๏ฟฝ ๐‘ž๐‘žโ€ฒ = 1 1 โˆ’ ๐œ–๐œ–2 ๐‘‘๐‘‘1 ๐œ–๐œ–1 + ๐œ–๐œ–1 ๐‘‘๐‘‘2

(5)

2) Conduction Heat Transfer within Homogeneous Core We can assume that the radius of the core, Ro, is much greater than the radius of the coolant ๐’“๐’“ channel, r2, i.e. ๐‘…๐‘…๐Ÿ๐Ÿ โ‰ช 1. The core linear heat rate can then be described by the following 0

conduction equation:

๐‘„๐‘„ โ€ฒ = 4๐œ‹๐œ‹๐œ‹๐œ‹๐‘”๐‘” ๏ฟฝ๐‘‡๐‘‡๐‘”๐‘”๐‘”๐‘” โˆ’ ๐‘‡๐‘‡๐‘”๐‘”๐‘”๐‘” ๏ฟฝ

(6)

where Qโ€ฒ is the core linear heat rate, kg is the thermal conductivity of graphite given in Table 8.10 and Tgo is the temperature of the outer surface of the graphite matrix. We can relate the core linear heat rate to the heat rate of one unit cell with ๐œ‹๐œ‹๐‘…๐‘…๐‘œ๐‘œ2 โ€ฒ ๐‘„๐‘„ = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ž๐‘žโ€ฒ = ๐‘ž๐‘ž ๐ด๐ด๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ โ€ฒ

(7)

In Equation (7) Ncells is the number of unit cells which can be determined from the ratio of the core area, ๐œ‹๐œ‹๐‘…๐‘…๐‘œ๐‘œ2 and unit cell area, Acell. We first substitute Equation (6) into Equation (5) by eliminating Tgi, leaving us with 192

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

๐‘ž๐‘ž โ€ฒ =

4 ๐‘„๐‘„โ€ฒ 4 ๏ฟฝ ๏ฟฝ ๐œ‹๐œ‹๐‘‘๐‘‘1 ๐œŽ๐œŽ ๏ฟฝ๐‘‡๐‘‡๐‘๐‘๐‘๐‘ โˆ’ ๏ฟฝ๐‘‡๐‘‡๐‘”๐‘”๐‘”๐‘” + 4๐œ‹๐œ‹๐œ‹๐œ‹๐‘”๐‘”

(8)

1 1 โˆ’ ๐œ–๐œ–2 ๐‘‘๐‘‘1 + ๐œ–๐œ– ๐œ–๐œ–1 ๐‘‘๐‘‘2 2

We can then covert the right hand side of Equation (8) from unit cell linear heat rate to core linear heat heat using Equation (7): 4

๐‘„๐‘„โ€ฒ 4 โŽง โŽซ 2 โŽช๐œ‹๐œ‹๐‘‘๐‘‘1 ๐œŽ๐œŽ ๏ฟฝ๐‘‡๐‘‡๐‘๐‘๐‘๐‘ โˆ’ ๏ฟฝ๐‘‡๐‘‡๐‘”๐‘”๐‘”๐‘” + 4๐œ‹๐œ‹๐œ‹๐œ‹ ๏ฟฝ ๏ฟฝโŽช ๐œ‹๐œ‹๐‘…๐‘…๐‘œ๐‘œ ๐‘”๐‘”

(9) 1 1 โˆ’ ๐œ–๐œ–2 ๐‘‘๐‘‘1 ๐ด๐ด๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ โŽจ โŽฌ โŽช โŽช ๐œ–๐œ–1 + ๐œ–๐œ–2 ๐‘‘๐‘‘2 โŽฉ โŽญ The maximum achievable core linear power can be obtained when the temperature difference across the core is a maximum. This will occur when the inner surface temperature of the graphite matrix is equivalent to the outer cladding temperature and when the temperature are at their maximum allowed value, Tco = Tgi = 6490 ยฐC and Tgo = 500 ยฐC. Substituting these values into ๐‘„๐‘„ โ€ฒ =

๐‘€๐‘€๐‘€๐‘€

โ€ฒ Equation (6), we find that the maximum core linear power is limited to ๐‘„๐‘„๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = 0.112 ๐‘š๐‘š .

Looking at Eqution (9), we can see that it is easiest to solve this formula for the core radius as a function of core linear power,

๐‘…๐‘…๐‘œ๐‘œ (๐‘„๐‘„โ€ฒ) =

โŽง โŽช โŽช โŽช

๐‘„๐‘„โ€ฒ๐ด๐ด๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘

4

โŽซ โŽช โŽช โŽช

โŽจ 2 4 โˆ’ ๏ฟฝ๐‘‡๐‘‡ + ๐‘„๐‘„โ€ฒ ๏ฟฝ ๏ฟฝ โŽฌ ๐œ‹๐œ‹ ๐‘‘๐‘‘1 ๐œŽ๐œŽ ๏ฟฝ๐‘‡๐‘‡๐‘๐‘๐‘๐‘ ๐‘”๐‘”๐‘”๐‘” 4๐œ‹๐œ‹๐œ‹๐œ‹๐‘”๐‘” โŽช โŽช โŽช โŽช โŽช โŽช 1 1 โˆ’ ๐œ–๐œ–2 ๐‘‘๐‘‘1 + โŽฉ โŽญ ๐œ–๐œ–1 ๐œ–๐œ–2 ๐‘‘๐‘‘2

1 2

(10)

The above function is plotted in Figure SM-8.1:

193

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

Figure SM-8.1 BWR core thermal performance

PROBLEM 8.7 QUESTION Comparison of Thermal Energy that can be Extracted from a Spherical Hollow Fuel Pellet versus a Cylindrical Annular Fuel Pellet (Section 8.5) Consider a cylindrical annular fuel pellet of length L, inside radius R V , and outside radius R foc . It is operating at ๐‘ž๐‘žcโ€ด , such that for a given outside surface temperature, Tfo, the inside surface temperature, TV, is just at the fuel melting limit Tmelt. A fellow engineer claims that if the same volume of fuel is arranged as a sphere with an inside voided region of radius R V and operated between the same two surface temperature limits, that is, T V and T fo , more power can be extracted from the spherical fuel volume then from a cylindrical fuel pellet. In both cases volumetric generation rate is radially constant. Is the claim correct? Prove or disprove it. Use the nomenclature of Figure 8.31. Assume no sintering occurs.

FIGURE 8.31 Fuel Pellet geometry. (a) cylindrical annular pellet. (b) spherical hollow pellet.

194

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

Useful relations: The one dimensional heat conduction equation in the radial direction in spherical coordinates is 1 ๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๏ฟฝ๐‘˜๐‘˜๐‘˜๐‘˜ ๏ฟฝ + ๐‘ž๐‘ž โ€ด = 0 ๐‘Ÿ๐‘Ÿ 2 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘

For a sphere: VS = 4/3ฯ€R3 and AS = ฯ€R2.

Cylindrical Annular Fuel Pellet

Spherical Hollow Fuel Pellet

๐‘ž๐‘žCโ€ด

RV = 0.25 mm

RV = 0.25 mm

Rfoc = 1 cm

๐‘ž๐‘žSโ€ด

Rfos = ?

L = 1 cm

(to be determined from the problem statement)

Answer: The sphere does generate more power.

PROBLEM 8.7 SOLUTION Comparison of Thermal Energy that can be Extracted from a Spherical Hollow Fuel Pellet versus a Cylindrical Annular Fuel Pellet (Section 8.5) From the problem statement we are given that: โ€“

length of annular pellet, L = 1 cm

โ€“

annular pellet and spherical hollow pellet inside radius, RV = 0.25 mm

โ€“

annular pellet outside radius, RfoC = 1cm

In this problem we assume that the volumes of the cylinder and sphere are the same. The heat rate can be related to the volumetric heat rate with ๐‘„๐‘„ฬ‡ = ๐‘‰๐‘‰๐‘ž๐‘ž โ€ด

(1)

Therefore, we only need to compare the volumetric heat rate from the cylinder and sphere. From Equation 8.73 the volumetric heat generation rate for a annular pellet only cooled on the outside is ๐‘ž๐‘ž๐ถ๐ถโ€ด =

๐‘‡๐‘‡

4 โˆซ๐‘‡๐‘‡ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘“๐‘“๐‘“๐‘“

4

= 4.0 ร— 10 ๐‘…๐‘…๐‘ฆ๐‘ฆ 2 ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ 2 ๐‘…๐‘…V 2 2 ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ๏ฟฝ1 โˆ’ ๏ฟฝ๐‘…๐‘… ๏ฟฝ ๏ฟฝ โˆ’ ๏ฟฝ๐‘…๐‘… ๏ฟฝ ๐‘™๐‘™๐‘™๐‘™ ๏ฟฝ ๐‘…๐‘… ๏ฟฝ ๏ฟฝ ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ V

๏ฟฝ

๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š

๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“

๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜

(2)

For the sphere we must first solve for the radius of the sphere given the volume (equivalent to annular cylinder),

195

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

V๐‘†๐‘† =

Therefore,

4 2 3 ๐œ‹๐œ‹๏ฟฝ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ โˆ’ ๐‘…๐‘…V3 ๏ฟฝ = V๐ถ๐ถ = ๐œ‹๐œ‹๐ฟ๐ฟ๏ฟฝ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ โˆ’ ๐‘…๐‘…V2 ๏ฟฝ 3

(3)

3 3 2 ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ = ๏ฟฝ ๐ฟ๐ฟ๏ฟฝ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ โˆ’ ๐‘…๐‘…V2 ๏ฟฝ + ๐‘…๐‘…V2 = 0.908 cm 4

(4)

Starting with the one dimensional heat conduction equation in the radial direction in spherical coordinates: 1 ๐œ•๐œ• 2 ๐œ•๐œ•๐œ•๐œ• ๏ฟฝ๐‘Ÿ๐‘Ÿ ๐‘˜๐‘˜ ๏ฟฝ + ๐‘ž๐‘ž๐‘†๐‘†โ€ด = 0 2 ๐‘Ÿ๐‘Ÿ ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•

The boundary conditions are: โ€“ โ€“

(5)

๐‘‘๐‘‘๐‘‘๐‘‘

at ๐‘Ÿ๐‘Ÿ = ๐‘…๐‘…V , ๐‘‘๐‘‘๐‘‘๐‘‘ = 0

at ๐‘Ÿ๐‘Ÿ = ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ , ๐‘‡๐‘‡ = ๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“

Integrating from RV to an arbitrary radius r: ๐‘‘๐‘‘ 2 ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ๐‘Ÿ๐‘Ÿ ๐‘˜๐‘˜ ๏ฟฝ = โˆ’๐‘ž๐‘ž๐‘†๐‘†โ€ด ๐‘Ÿ๐‘Ÿ 2 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘

๐‘Ÿ๐‘Ÿ

(6)

๐‘‡๐‘‡ ๐‘‘๐‘‘ ๐‘‘๐‘‘ โ€ฒ2 โ€ฒ ๏ฟฝ๐‘Ÿ๐‘Ÿ ๐‘˜๐‘˜ ๏ฟฝ ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ = ๏ฟฝ โˆ’๐‘ž๐‘ž๐‘†๐‘†โ€ด ๐‘Ÿ๐‘Ÿ โ€ฒ2 ๐‘‘๐‘‘๐‘‘๐‘‘โ€ฒ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘โ€ฒ ๐‘…๐‘…V ๐‘‘๐‘‘๐‘‘๐‘‘โ€ฒ ๐‘…๐‘…V

๐‘Ÿ๐‘Ÿ 2 ๐‘˜๐‘˜

(7)

๐‘‘๐‘‘ ๐‘ž๐‘ž๐‘†๐‘†โ€ด 3 (๐‘Ÿ๐‘Ÿ โˆ’ ๐‘…๐‘…V3 ) =โˆ’ ๐‘‘๐‘‘๐‘‘๐‘‘ 3

(8)

Integrating this formula again from Rfos to Rv we get: ๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“

๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š

๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜ = ๏ฟฝ

๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“

๐‘…๐‘…V

โˆ’

๐‘ž๐‘ž๐‘†๐‘†โ€ด ๐‘…๐‘…V3 ๏ฟฝ๐‘Ÿ๐‘Ÿ โˆ’ 2 ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ 3 ๐‘Ÿ๐‘Ÿ

(9)

2 โˆ’ ๐‘…๐‘…V2 ๏ฟฝ ๐‘ž๐‘ž๐‘†๐‘†โ€ด ๏ฟฝ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ 1 1 ๏ฟฝ ๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜ = โˆ’ ๏ฟฝ + ๐‘…๐‘…V3 ๏ฟฝ โˆ’ ๏ฟฝ๏ฟฝ 3 2 ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘…๐‘…V ๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“

Thus,

๏ฟฝ

๐‘ž๐‘ž๐‘†๐‘†โ€ด =

๐‘‡๐‘‡

โˆ’ โˆซ๐‘‡๐‘‡ ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š

2 ๏ฟฝ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ โˆ’ ๐‘…๐‘…V2 ๏ฟฝ ๐‘…๐‘…V3 1 1 ๏ฟฝ ๏ฟฝ + โˆ’ 6 3 ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘…๐‘…V

= 7.29 ร— 104 ๏ฟฝ

๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“

๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š

(10)

๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜

(11)

Comparing the total power generated in each of the pellets, we can see the fellow engineer was indeed correct.

196

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

P ROBLEM 8.8 Q UESTION Fuel Pin Problem (Section 8.5) A fuel pin is operating with solid UO2 pellets of 88% theoretical density and outside radius 5 mm such that at the axial location of maximum fuel temperature, the fuel centerline temperature TCL, is 2500 ยฐC and the fuel surface temperature Tfo, is 700 ยฐC. It is desired to raise the pin linear power by 10% by employing one of the following alternative strategies (in each case all the other conditions except for the one cited are held constant): a. Raise the maximum allowable fuel temperature. b. Use an annular pellet with the center void of dimension Rv or c. Increase the pellet density. For each strategy find the new value of the cited parameter necessary to achieve the desired 10% increase of linear pin power. Sintering effects may be neglected. Answers: a. Tmax = 2600 ยฐC b. RV = 0.75 mm c. ฯ = 0.95ฯTD

PROBLEM 8.8 S OLUTION Fuel Pin Problem (Section 8.5) a) for a solid fuel pellet: ๏ฟฝ

๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š

๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜ =

๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“

๐‘ž๐‘ž๐‘ ๐‘ โ€ฒ 4๐œ‹๐œ‹

(1)

Using Figure 8.3, the conductivity integral can be calculated as 2500 2500 700 ๐‘ž๐‘ž๐‘ ๐‘ โ€ฒ =๏ฟฝ ๐‘˜๐‘˜0.88 ๐‘‘๐‘‘๐‘‘๐‘‘ = ๏ฟฝ ๐‘˜๐‘˜0.88 ๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๏ฟฝ ๐‘˜๐‘˜0.88 ๐‘‘๐‘‘๐‘‘๐‘‘ = 73 โˆ’ 33 = 40 Wโ„cm 4๐œ‹๐œ‹ 700 100 100

(2)

Therefore for a 10% increase we need ๐‘ž๐‘ž๐‘ ๐‘ โ€ฒ = 44 Wโ„cm. We can rewrite the conductivity integral now as ๏ฟฝ

๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š

100

๐‘˜๐‘˜0.88 ๐‘‘๐‘‘๐‘‘๐‘‘ = 44 + ๏ฟฝ

700

100

๐‘˜๐‘˜0.88 ๐‘‘๐‘‘๐‘‘๐‘‘ = 44 + 33 = 77 Wโ„cm

(3)

Using Figure 8.3, the maximum temperature is approximately, ๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = 2600ยฐC

(4)

b) for annular pellet without sintering:

197

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements 2 ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ โŽก ln ๏ฟฝ ๐‘…๐‘… ๏ฟฝ โŽค ๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š โ€ฒ ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๐‘ž๐‘ž๐‘Ž๐‘Žโ€ฒ โŽข ๐‘ž๐‘ž๐‘Ž๐‘Žโ€ฒ v โŽฅ ๐‘ž๐‘ž๐‘Ž๐‘Ž ๏ฟฝ ๏ฟฝ ๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜ = 1 โˆ’ = ๐น๐นv , ๐›ฝ๐›ฝ๏ฟฝ == ๐น๐นv ๏ฟฝ , 1๏ฟฝ โŽข 2 โŽฅ 4๐œ‹๐œ‹ 4๐œ‹๐œ‹ ๐‘…๐‘…V 4๐œ‹๐œ‹ ๐‘…๐‘…V ๐‘…๐‘… ๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“ ๐‘“๐‘“๐‘“๐‘“ โŽข ๏ฟฝ ๏ฟฝ โˆ’ 1โŽฅ ๐‘…๐‘…V โŽฃ โŽฆ

(5)

where ฮฒ = 1 for fuel elements of uniform density. For a solid fuel pellet recall that:

Thus,

For a 10% increase in ๐‘ž๐‘ž๐‘ ๐‘ โ€ฒ , then:

๏ฟฝ

๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š

๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“

๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜ =

๐‘ž๐‘ž๐‘ ๐‘ โ€ฒ 4๐œ‹๐œ‹

(6)

๐‘ž๐‘ž๐‘ ๐‘ โ€ฒ ๐‘ž๐‘ž๐‘Ž๐‘Žโ€ฒ = ๐น๐น 4๐œ‹๐œ‹ 4๐œ‹๐œ‹ ๐‘ฃ๐‘ฃ

(7)

(8)

Hence by substitution

๐‘ž๐‘ž๐‘ ๐‘ โ€ฒ = 1.1๐‘ž๐‘ž๐‘ ๐‘ โ€ฒ

(9)

and

๐‘ž๐‘ž๐‘ ๐‘ โ€ฒ = 1.1๐‘ž๐‘ž๐‘ ๐‘ โ€ฒ ๐น๐น๐‘ฃ๐‘ฃ ๐น๐น๐‘ฃ๐‘ฃ =

1 = 0.909 1.1

(10)

Using Figure 8.14 for a void factor Fฯ… = 0.909 and ฮฒ = 1, 1 = 0.15 ๐›ผ๐›ผ

Therefore, ๐‘…๐‘…๐‘‰๐‘‰ =

๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ = 0.75 mm ๐›ผ๐›ผ

c) Recall from above that a 10% increase in

(11)

(12)

corresponds to 44 W/cm. From Figure 8.3 this

corresponds to about 95% theoretical density, keeping the maximum temperature 2500 ยฐC.

PROBLEM 8.9 QUESTION Radially Averaged Fuel Temperature and Stored Energy in Solid and Annular Pellet (Section 8.5) Consider a solid pellet of radius b and an annular pellet of inner radius a, and outside radius b, each operating at the same linear power rate, qโ€ณ.

198

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

Define โˆ†๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) โ‰ก ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) โˆ’ ๐‘‡๐‘‡๐‘๐‘

and

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โˆ†๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) โ‰ก ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) โˆ’ ๐‘‡๐‘‡๐‘๐‘

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโ„โˆ†๐‘‡๐‘‡. Use the subscript โ€œsโ€ for solid and the subscript 1. Find across each pellet, the value of โˆ†๐‘‡๐‘‡ โ€œaโ€ for annular.

2. What is the ratio of the stored energy in the solid to the annular pellet? Answers: 1. Solid Pellet ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘ ๐‘  โˆ†๐‘‡๐‘‡ = โˆ†๐‘‡๐‘‡๐‘ ๐‘ 

Annular Pellet -

1

2 ๏ฟฝ1 โˆ’

๐‘Ÿ๐‘Ÿ 2 ๏ฟฝ ๐‘๐‘ 2

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘Ž๐‘Ž (2โ„๐น๐น )(๐‘๐‘ 4 โ„4 โˆ’ ๐‘Ž๐‘Ž2 ๐‘๐‘ 2 + 3โ„4๐‘Ž๐‘Ž4 + ๐‘Ž๐‘Ž4 ln ๐‘๐‘โ„๐‘Ž๐‘Ž ) โˆ†๐‘‡๐‘‡ = (๐‘๐‘ 2 โˆ’ ๐‘Ž๐‘Ž2 ) โˆ†๐‘‡๐‘‡๐‘Ž๐‘Ž

where F is a geometric parameter equal

2. Ratio of stored energy โˆ’1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘ ๐‘  ๐‘๐‘๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ๐‘€๐‘€๐‘ ๐‘  โˆ†๐‘‡๐‘‡ ๐‘๐‘๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ (โˆ†๐‘‡๐‘‡๐‘ ๐‘  ) ๐œŒ๐œŒ๐‘ ๐‘  ๐‘๐‘ 4 ๐‘๐‘ 4 3 4 ๐‘๐‘ 2 2 4 = ๏ฟฝ โˆ’ ๐‘Ž๐‘Ž ๐‘๐‘ + ๐‘Ž๐‘Ž + ๐‘Ž๐‘Ž ln ๏ฟฝ ๐‘๐‘๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ๐‘€๐‘€๐‘Ž๐‘Ž โˆ†๐‘‡๐‘‡๐‘Ž๐‘Ž ๐‘๐‘๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ (โˆ†๐‘‡๐‘‡๐‘Ž๐‘Ž ) ๐œŒ๐œŒ๐‘ ๐‘  4 4 4 ๐‘Ž๐‘Ž

PROBLEM 8.9 SOLUTION

Radially Averaged Fuel Temperature and Stored Energy in Solid and Annular Pellet (Section 8.5) Solid Fuel Pellet Starting from the one-dimensional heat conduction equation in the radial direction

The boundary conditions are:

1 ๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ๐‘˜๐‘˜๐‘˜๐‘˜ + ๐‘ž๐‘ž โ€ด = 0๏ฟฝ ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ 199

(1)

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements ๐‘‘๐‘‘๐‘‘๐‘‘

โ€“ at ๐‘Ÿ๐‘Ÿ = 0, ๐‘‘๐‘‘๐‘‘๐‘‘ = 0

โ€“ at r = b, T(r) = Tb After integrating from r = 0 to an arbitrary radius r and applying the first boundary condition, we get ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ž๐‘ž โ€ด 2 ๐‘˜๐‘˜๐‘˜๐‘˜ = ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ 2

(2)

After integrating from r = b to an arbitrary radius r and applying the second boundary condition we get โˆ†๐‘‡๐‘‡๐‘ ๐‘  = ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) โˆ’ ๐‘‡๐‘‡๐‘๐‘ =

๐‘ž๐‘ž โ€ด 2 2 (๐‘๐‘ โˆ’๐‘Ÿ๐‘Ÿ ) 4๐‘˜๐‘˜

(3)

The average temperature across a solid pellet is given as ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘ ๐‘  = โˆ†๐‘‡๐‘‡

๐‘๐‘

โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹โˆ†๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ)๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘๐‘ โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹

Solving part 1 for the solid pellet gives

=

๐‘๐‘ ๐‘ž๐‘ž โ€ด โˆซ0 4๐‘˜๐‘˜ (๐‘๐‘ 2 ๐‘Ÿ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘Ÿ 3 ) ๐‘๐‘ โˆซ0 ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ

=

๐‘ž๐‘ž โ€ด ๐‘๐‘ 2 8๐‘˜๐‘˜

๐‘ž๐‘ž โ€ด ๐‘๐‘ 2 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ 1 โˆ†๐‘‡๐‘‡๐‘ ๐‘  = โ€ด 8๐‘˜๐‘˜ = ๐‘Ÿ๐‘Ÿ 2 โˆ†๐‘‡๐‘‡๐‘ ๐‘  ๐‘ž๐‘ž (๐‘๐‘ 2 โˆ’ ๐‘Ÿ๐‘Ÿ 2 ) ๏ฟฝ1 ๏ฟฝ 2 โˆ’ 8๐‘˜๐‘˜ ๐‘๐‘ 2

(4)

(5)

Annular Pellet In this case, the first boundary condition changes to ๐‘‘๐‘‘๐‘‘๐‘‘

โ€“ at ๐‘Ÿ๐‘Ÿ = 0, ๐‘‘๐‘‘๐‘‘๐‘‘ = 0

so that after the first integration we are left with ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ž๐‘ž โ€ด 2 2 (๐‘Ÿ๐‘Ÿ โˆ’๐‘Ž๐‘Ž ) = ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘‘๐‘‘๐‘‘๐‘‘ 2

(6)

After the second integration and boundary condition the temperature distribution is ๐‘ž๐‘ž โ€ด 2 ๐‘ž๐‘ž โ€ด ๐‘๐‘ 2 ๐‘๐‘ ๐‘ž๐‘ž โ€ด ๐‘๐‘ 2) (๐‘๐‘ ๏ฟฝ ๏ฟฝ โˆ’ ๐‘Ÿ๐‘Ÿ = ln ๏ฟฝ(๐‘๐‘ 2 โˆ’ ๐‘Ÿ๐‘Ÿ 2 ) โˆ’ 2๐‘Ž๐‘Ž2 ln ๏ฟฝ ๏ฟฝ๏ฟฝ โˆ†๐‘‡๐‘‡๐‘Ž๐‘Ž = ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) โˆ’ ๐‘‡๐‘‡๐‘๐‘ = = 4๐‘˜๐‘˜ 2๐‘˜๐‘˜ ๐‘Ÿ๐‘Ÿ 4๐‘˜๐‘˜ ๐‘Ÿ๐‘Ÿ

(7)

Now, we designate F such that

๐‘๐‘ (๐‘๐‘ 2 โˆ’๐‘Ÿ๐‘Ÿ 2 ) โˆ’ 2๐‘Ž๐‘Ž2 ln ๏ฟฝ ๏ฟฝ ๐‘Ÿ๐‘Ÿ ๐น๐น = (๐‘๐‘ 2 โˆ’๐‘Ž๐‘Ž2 )

and therefore โˆ†๐‘‡๐‘‡๐‘Ž๐‘Ž =

๐‘ž๐‘ž โ€ด ๐‘๐‘ ๐‘ž๐‘ž โ€ด ๏ฟฝ(๐‘๐‘ 2 โˆ’ ๐‘Ÿ๐‘Ÿ 2 ) โˆ’ 2๐‘Ž๐‘Ž2 ln ๏ฟฝ ๏ฟฝ๏ฟฝ = ๐น๐น(๐‘๐‘ 2 โˆ’ ๐‘Ž๐‘Ž2 ) 4๐‘˜๐‘˜ ๐‘Ÿ๐‘Ÿ 4๐‘˜๐‘˜ 200

(8)

(9)

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

Again, we know that the definition of average change in temperature ๐‘๐‘ ๐‘ž๐‘ž โ€ด ๐‘๐‘ ๐‘๐‘ 2 2 2 โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹โˆ†๐‘‡๐‘‡๐‘Ž๐‘Ž (๐‘Ÿ๐‘Ÿ)๐‘‘๐‘‘๐‘‘๐‘‘ โˆซ๐‘Ž๐‘Ž ๐‘Ÿ๐‘Ÿ 4๐‘˜๐‘˜ (๐‘๐‘ โˆ’ ๐‘Ÿ๐‘Ÿ ) โˆ’ 2๐‘Ž๐‘Ž ln ๏ฟฝ๐‘Ž๐‘Ž๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ = โˆ†๐‘‡๐‘‡๐‘ ๐‘  = ๐‘๐‘ ๐‘๐‘ โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ โˆซ0 ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๐‘ž๐‘ž โ€ด ๐‘๐‘ ๐‘๐‘ โˆซ๐‘Ž๐‘Ž ๐‘Ÿ๐‘Ÿ ๏ฟฝ(๐‘๐‘ 2 ๐‘Ÿ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘Ÿ 3 ) โˆ’ 2๐‘Ž๐‘Ž2 ๐‘Ÿ๐‘Ÿ ln ๏ฟฝ๐‘Ž๐‘Ž๏ฟฝ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ 4๐‘˜๐‘˜ = ๐‘๐‘ โˆซ0 ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘Ž๐‘Ž = โˆ†๐‘‡๐‘‡

(10)

๐‘ž๐‘ž โ€ด ๐‘๐‘ 4 2 2 3 4 ๐‘๐‘ ๏ฟฝ ๐‘Ž๐‘Ž ๐‘๐‘ + ๐‘Ž๐‘Ž + ๐‘Ž๐‘Ž4 ln ๏ฟฝ 2 2 2๐‘˜๐‘˜(๐‘๐‘ โˆ’๐‘Ž๐‘Ž ) 4 4 ๐‘Ž๐‘Ž

(11)

Now solving for the annular pellet:

๐‘ž๐‘ž โ€ด ๐‘๐‘ 4 3 4 ๐‘๐‘ 2 2 4 ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘Ž๐‘Ž 2๐‘˜๐‘˜(๐‘๐‘ 2 โˆ’๐‘Ž๐‘Ž2 ) 4 โˆ’ ๐‘Ž๐‘Ž ๐‘๐‘ + 4 ๐‘Ž๐‘Ž + ๐‘Ž๐‘Ž ln ๐‘Ž๐‘Ž๏ฟฝ โˆ†๐‘‡๐‘‡ = ๐‘ž๐‘ž โ€ด โˆ†๐‘‡๐‘‡๐‘Ž๐‘Ž ๐น๐น(๐‘๐‘ 2 โˆ’๐‘Ž๐‘Ž2 ) 4๐‘˜๐‘˜ ๐‘๐‘ 4 3 ๐‘๐‘ (2โ„๐น๐น ) ๏ฟฝ โˆ’ ๐‘Ž๐‘Ž2 ๐‘๐‘ 2 + ๐‘Ž๐‘Ž4 + ๐‘Ž๐‘Ž4 ln ๏ฟฝ 4 4 ๐‘Ž๐‘Ž = (๐‘๐‘ 2 โˆ’๐‘Ž๐‘Ž2 )

(12)

Stored Energy is given by the equation

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๐ธ๐ธ = ๐‘€๐‘€๐ถ๐ถ๐‘๐‘ โˆ†๐‘‡๐‘‡

(13)

๐‘€๐‘€๐‘ ๐‘  = ๐œŒ๐œŒ๐‘ ๐‘  ๐œ‹๐œ‹๐‘๐‘ 2 ๐ฟ๐ฟ

(14)

The masses of the pellets are given by

(15)

๐‘€๐‘€๐‘Ž๐‘Ž = ๐œŒ๐œŒ๐‘ ๐‘  ๐œ‹๐œ‹(๐‘๐‘ 2 โˆ’ ๐‘Ž๐‘Ž2 )๐ฟ๐ฟ โˆด

๐‘€๐‘€๐‘Ž๐‘Ž ๐œŒ๐œŒ๐‘Ž๐‘Ž ๐‘๐‘ 2 = ๐‘€๐‘€๐‘Ž๐‘Ž ๐œŒ๐œŒ๐‘Ž๐‘Ž (๐‘๐‘ 2 โˆ’ ๐‘Ž๐‘Ž2 )

(16)

The average temperature ratio is given by ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘Ž๐‘Ž โˆ†๐‘‡๐‘‡ = โˆ†๐‘‡๐‘‡๐‘Ž๐‘Ž Finally,

๐‘ž๐‘ž โ€ด ๐‘๐‘ 2 8๐‘˜๐‘˜

๐‘ž๐‘ž โ€ด ๐‘๐‘ 4 3 ๐‘๐‘ ๏ฟฝ โˆ’ ๐‘Ž๐‘Ž2 ๐‘๐‘ 2 + ๐‘Ž๐‘Ž4 + ๐‘Ž๐‘Ž4 ln ๏ฟฝ 2 2 4 ๐‘Ž๐‘Ž 2๐‘˜๐‘˜(๐‘๐‘ โˆ’๐‘Ž๐‘Ž ) 4 =๏ฟฝ

2

2

4

= ๐‘๐‘ 2

(17) โˆ’1

๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž ๐‘๐‘ 3 ๐‘๐‘ ๏ฟฝ ๏ฟฝ โˆ’ ๐‘Ž๐‘Ž2 ๐‘๐‘ 2 + ๐‘Ž๐‘Ž4 + ๐‘Ž๐‘Ž4 ln ๏ฟฝ 4 4 4 ๐‘Ž๐‘Ž

201

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements โˆ’1 ๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘€๐‘€๐‘ ๐‘  ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โˆ†๐‘‡๐‘‡๐‘ ๐‘  ๐‘๐‘๐‘๐‘๐‘๐‘ ๐œŒ๐œŒ๐‘ ๐‘  ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โˆ†๐‘‡๐‘‡๐‘ ๐‘  ๐‘๐‘ 4 3 4 ๐‘๐‘ 2 2 4 = ๏ฟฝ โˆ’ ๐‘Ž๐‘Ž ๐‘๐‘ + ๐‘Ž๐‘Ž + ๐‘Ž๐‘Ž ln ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘Ž๐‘Ž ๐‘๐‘๐‘๐‘๐‘๐‘ ๐œŒ๐œŒ๐‘Ž๐‘Ž โˆ†๐‘‡๐‘‡ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘€๐‘€๐‘ ๐‘  โˆ†๐‘‡๐‘‡ 4 ๐‘Ž๐‘Ž ๐‘Ž๐‘Ž 4

(18)

PROBLEM 8.10 QUESTION

Maximum Linear Power from a Duplex Fuel Pellet (Section 8.5) To uprate the power of its Light Water Reactor fleet, an electric utility is considering the use of duplex fuel pellets. A duplex fuel pellet consists of two radial zones, one loaded with UO2 and one with PuO2 (Figure 8.32). The pellet outer temperature is fixed at 400 ยฐC.

FIGURE 8.32 Cross-sectional view of a duplex fuel pellet. 1. Assuming that centerline fuel melting is the design limit for this pellet, which oxide would you put in Zone 1 (i.e., the inner zone)? 2. Using only the properties in Table 8.11 and assuming that the volumetric heat generation rate in PuO2 is 50% higher than in UO2, calculate the maximum linear power at which the pellet can be operated without melting the fuel? (Neglect the thermal conductivity dependence on temperature) 3. How does the maximum linear power in (2) compare with the maximum linear power for an all-UO2 pellet? TABLE 8.11 Properties of Oxide Fuels. Parameter UO2 PuO2 Density (g/cm3)

10.5

10.9

Thermal conductivity (W/m โˆ™ยฐ C)

3.0

2.5

Melting Point (ยฐC)

2,800

2,300

Specific heat (J/kgโˆ™ยฐC)

410

380

Answers: 1. UO2 2. 95.6 kW/m 3. 90.5 kW/m

202

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

PROBLEM 8.10 SOLUTION Maximum Linear Power from a Duplex Fuel Pellet (Section 8.5) From the problem statement, we are given that (uranium denoted with subscript โ€œUโ€ and plutonium with โ€œPuโ€: โ€“

density, ฯU = 10.5 g/cm3 and ฯPU = 10.9 g/cm3

โ€“

conductivity, kU = 3.0 W/m K and kPu = 2.5 W/m K

โ€“

maximum temperature, TU = 2800 ยฐC and Tpu = 2300 ยฐC

โ€“

specific heat, cpu = 410 J/kg K and Cppu = 380 J/kg K

โ€“

fuel surface temperature, Tf0 = 400 ยฐC

โ€“

radius of zone 1, R1 = 4 mm

โ€“

radius of fuel, Rf0 = 5 mm

1. Because the UO2 has a higher melting point, it should be placed in Zone 1. 2. The linear power for the duplex pellet can be expressed as: 2 ๐‘ž๐‘ž โ€ฒ = ๐œ‹๐œ‹๐‘…๐‘…12 ๐‘ž๐‘ž1โ€ด + ๐œ‹๐œ‹๏ฟฝ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ โˆ’ ๐‘…๐‘…12 ๏ฟฝ๐‘ž๐‘ž2โ€ด = ๏ฟฝ๐‘…๐‘…12 +

๐‘ž๐‘ž2โ€ด 2 ๏ฟฝ๐‘…๐‘… โˆ’ ๐‘…๐‘…12 ๏ฟฝ๏ฟฝ ๐‘ž๐‘ž1โ€ด ๐‘ž๐‘ž1โ€ด ๐‘“๐‘“๐‘“๐‘“

(1)

where ๐‘ž๐‘ž1โ€ด and ๐‘ž๐‘ž2โ€ด are the volumetric heat generation rates in Zone 1 and 2, respectively, and ๐‘ž๐‘ž2โ€ด โ„๐‘ž๐‘ž1โ€ด 1.5. To solve the problem, it is necessary to establish a relationship between ๐‘ž๐‘ž1โ€ด and the max temperature in the pellet. To do so, one needs to solve the heat conduction equation in both zones. Starting from Zone 2 (i.e., PuO2): 1 ๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘˜๐‘˜2 ๏ฟฝ + ๐‘ž๐‘ž2โ€ด = 0 ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘

(2)

where k2 is the PuO2 thermal conductivity. Integrating twice and setting the boundary conditions 2๐œ‹๐œ‹๐‘…๐‘…1 ๐‘˜๐‘˜2

and

๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ = ๐‘ž๐‘ž1โ€ด ๐œ‹๐œ‹ ๐‘…๐‘…12 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘…๐‘…1

๐‘‡๐‘‡|๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ = ๐‘‡๐‘‡๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“

one gets: ๐‘‡๐‘‡1 โˆ’ ๐‘‡๐‘‡๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ = โˆ’

๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๐‘…๐‘…12 โ€ด ๐‘ž๐‘ž โ€ด 2 (๐‘ž๐‘ž2 โˆ’ ๐‘ž๐‘ž1โ€ด ) ln ๏ฟฝ ๏ฟฝ + 2 ๏ฟฝ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ โˆ’ ๐‘…๐‘…12 ๏ฟฝ 2๐‘˜๐‘˜2 ๐‘…๐‘…1 4๐‘˜๐‘˜2

(3)

(4)

(5)

where T1 is the temperature at R1. For Zone 1 the heat conduction equation yields:

203

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

1 ๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘˜๐‘˜1 ๏ฟฝ + ๐‘ž๐‘ž1โ€ด = 0 ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘

(6)

Integrating twice and setting the boundary conditions โˆ’๐‘˜๐‘˜1

and

๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ =0 ๐‘‘๐‘‘๐‘‘๐‘‘ 0

๐‘‡๐‘‡|0 = ๐‘‡๐‘‡๐‘๐‘๐‘๐‘

one gets:

๐‘‡๐‘‡๐‘๐‘๐‘๐‘ = ๐‘‡๐‘‡1 =

From Equations (5) and (9) it follows that: ๐‘‡๐‘‡๐‘๐‘๐‘๐‘ = ๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“ = ๐‘ž๐‘ž1โ€ด ๏ฟฝ

๐‘ž๐‘ž1โ€ด ๐‘…๐‘…12 4๐‘˜๐‘˜1

๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๐‘…๐‘…12 ๐‘…๐‘…12 ๐‘ž๐‘ž2โ€ด 1 ๐‘ž๐‘ž2โ€ด 2 โˆ’ ๏ฟฝ โˆ’ 1๏ฟฝ ln ๏ฟฝ ๏ฟฝ + ๏ฟฝ๐‘…๐‘… โˆ’ ๐‘…๐‘…12 ๏ฟฝ๏ฟฝ 4๐‘˜๐‘˜1 2๐‘˜๐‘˜2 ๐‘ž๐‘ž1โ€ด ๐‘…๐‘…1 4๐‘˜๐‘˜2 ๐‘ž๐‘ž1โ€ด ๐‘“๐‘“๐‘“๐‘“

(7)

(8)

(9)

(10)

For Tcl = 2800 ยฐC, Equation (3) yields ๐‘ž๐‘ž1โ€ด and from Equation (1) it is easy to get the linear power, qโ€ฒ = 95.6 kW/m. 3. For the traditional pellet the linear power is:

๐‘ž๐‘ž โ€ฒ = 4๐œ‹๐œ‹๐‘˜๐‘˜1 ๏ฟฝ๐‘‡๐‘‡๐‘๐‘๐‘๐‘ โˆ’๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ = 90.5k Wโ„m which is somewhat lower than for the duplex pellet.

(11)

PROBLEM 8.11 QUESTION Effect of Internal Cooling on Fuel Temperature (Section 8.5) Consider the following three UO2 pellet configurations: โ€“ Solid pellet โ€“ Annular pellet with only external cooling โ€“ Annular pellet with simultaneous internal and external cooling The dimensions for all three pellets are in Table 8.12. Assume that the fuel thermal conductivity is kf =3 W/m K (independent of temperature), the pellet surface temperature is 700 ยฐC and the linear power is qโ€™ = 40 kW/m in all three cases.

204

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

Table 8.12 Geometry Of The Three Uo2 Pellets ID (mm)

OD (mm)

Solid pellet

N/A

8.2

Annular pellet with only external cooling

2.0

8.44

Annular pellet with internal and external cooling

9.9

14.1

1. Calculate the maximum temperature for the solid pellet. 2. Calculate the maximum temperature for the annular pellet with only external cooling. 3. Calculate the maximum temperature for the annular pellet with simultaneous external and internal cooling, 4. For the annular pellet with simultaneous internal and external cooling calculate also the heat flux at the inner and outer surfaces. 5. What are the advantages and drawbacks of the annular fuel pellet with simultaneous internal and external cooling? Answers: 1. Tmax = 1761 ยฐC 2. Tmax = 1579 ยฐC 3. Tmax = 793 ยฐC 4. Inner: qโ€ณ = โˆ’ 567.9 kW/m2

Outer: qโ€ณ = 504.3 kW/m2

PROBLEM 8.11 S OLUTION Effect of Internal Cooling on Fuel Temperature (Section 8.5) From the problem statement we are given that: โ€“ conductivity, kf = 3 W/m K โ€“ fuel pellet surface temperature, Tf0 = 700 ยฐC โ€“ linear heat rate, qโ€ฒ = 40kW/m Dimensions from Table 8.12: โ€“ solid pellet diameter, D1 = 8.2 mm โ€“ externally cooled annular pellet, D2i = 2.0 mm and D2o = 8.44 mm โ€“ annular pellet with internal and external cooling, D3i = 9.9 mm and D3o = 14.1mm

205

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

1. For a solid fuel pellet the maximum temperature can be calculated with Equation 8.71b ๐‘ž๐‘ž โ€ฒ ๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š1 = ๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“ + = 1761ยฐ๐ถ๐ถ 4๐œ‹๐œ‹๐‘˜๐‘˜๐‘“๐‘“

(1)

2. For the annular pellet with external cooling the maximum temperature is given by Equation 8.75 ๐‘ž๐‘ž โ€ฒ ๐‘™๐‘™๐‘™๐‘™(๐ท๐ท20 โ„๐ท๐ท2๐‘–๐‘– )2 ๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š2 = ๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“ + =๏ฟฝ ๏ฟฝ = 1579ยฐ๐ถ๐ถ (๐ท๐ท20 โ„๐ท๐ท2๐‘–๐‘– )2 โˆ’ 1 4๐œ‹๐œ‹๐‘˜๐‘˜๐‘“๐‘“

(2)

3. For the annular pellet with both external and internal cooling, the location of the maximum temperature when both surfaces are held at the same temperature is given by Equation 8.83b

๐‘…๐‘…0 = ๏ฟฝ

๐ท๐ท 2 ๐ท๐ท 2 ๏ฟฝ 230 ๏ฟฝ โˆ’ ๏ฟฝ 23๐‘–๐‘– ๏ฟฝ ๐ท๐ท 2 ๐‘™๐‘™๐‘™๐‘™ ๏ฟฝ ๐ท๐ท30 ๏ฟฝ 3๐‘–๐‘–

(3)

= 5969 ๐‘š๐‘š๐‘š๐‘š

From Equations 8.86 and 8.87, the maximum temperature is given by the following formulation: ๐‘…๐‘… ๐ท๐ท 2 ๐‘™๐‘™๐‘™๐‘™ ๏ฟฝ2 ๐ท๐ท ๐‘œ๐‘œ ๏ฟฝ ๏ฟฝ 23๐‘–๐‘– ๏ฟฝ โˆ’ ๐‘…๐‘…๐‘œ๐‘œ2 ๐‘ž๐‘ž โ€ฒ 3๐‘–๐‘– ๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š2 = ๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“ + =๏ฟฝ + ๏ฟฝ = 793 ยฐ๐ถ๐ถ 2 2 ๐ท๐ท 4๐œ‹๐œ‹๐‘˜๐‘˜๐‘“๐‘“ 3๐‘œ๐‘œ ๐ท๐ท30 ๐ท๐ท3๐‘–๐‘– ๏ฟฝ ๏ฟฝ ๐‘™๐‘™๐‘™๐‘™ ๏ฟฝ 2 ๏ฟฝ โˆ’ ๏ฟฝ 2 ๏ฟฝ ๐ท๐ท3๐‘–๐‘–

(4)

The temperature distribution in the annular pellet can be derived from Eq, 8.81 to be ๐‘Ÿ๐‘Ÿ ๏ฟฝ ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๐‘ž๐‘ž 2 2 2 2 ๏ฟฝ ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) = ๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“ + = ๏ฟฝ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ โˆ’ ๐‘Ÿ๐‘Ÿ + ๏ฟฝ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ โˆ’ ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ 2 2 ๐ท๐ท3๐‘œ๐‘œ 4๐œ‹๐œ‹๏ฟฝ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ โˆ’ ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ ๐‘™๐‘™๐‘™๐‘™ ๏ฟฝ ๐ท๐ท3๐‘–๐‘– ๏ฟฝ ๐‘™๐‘™๐‘™๐‘™ ๏ฟฝ2

โ€ฒ

(5)

where Rf0 = 0.5D3o and Rfi = 0.51D3i. Talking the derivative of this expression, we get: 2 2 ๏ฟฝ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ โˆ’ ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ ๐‘ž๐‘ž โ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘ 2 2 โŽ›๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ โŽž = = โˆ’ ๐‘Ÿ๐‘Ÿ + 2 2 ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๐‘‘๐‘‘๐‘‘๐‘‘ 4๐œ‹๐œ‹๏ฟฝ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ โˆ’ ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ ๐‘™๐‘™๐‘™๐‘™ ๏ฟฝ ๐‘…๐‘… ๏ฟฝ โŽ โŽ  ๐‘“๐‘“๐‘“๐‘“

(6)

The inner heat flux can therefore be determined with

and the outer heat flux as

๐‘ž๐‘ž๐‘–๐‘–โ€ณ = โˆ’๐‘˜๐‘˜๐‘“๐‘“

๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ = โˆ’567.9 k Wโ„m2 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“

๐‘ž๐‘ž0โ€ณ = โˆ’๐‘˜๐‘˜๐‘“๐‘“

๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ = 504.3 k Wโ„m2 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“

206

(7)

(8)

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

PROBLEM 8.12 Q UESTION Temperature Field in a Restructured Fuel Pin (Section 8.6) Using the conditions of Problem 8.4 for the uncracked fuel, calculate the maximum fuel temperature for the given operating conditions. Assume two-zone sintering, with Tsintering = 1700 ยฐC and ฯsintered = 98% TD. Answer: Tv = 2278 K

PROBLEM 8.12 S OLUTION Temperature Field in a Restructured Fuel Pin (Section 8.6) From the problem statement and Problem 8.4 we are given that: โ€“ outer diameter, Dco = 11.20 mm โ€“ clad thickness, tc = 0.71 mm โˆ’6

โ€“ gap thickness, tg = 90 ร— 10

m

โ€“ clad conductivity, kc = 17 W/m K โ€“ gap conductance, hg = 4300 W/m

2

K

โ€“ fuel conductivity (95%), kf95 = 2.7W/m K โ€“ clad outer temperature, Tco = 295 ยฐC โ€“ linear heat rate, qโ€™ = 44kW/m โ€“ temperature at which sintering begins, Tsintering = 1700 ยฐC โ€“ density of sintered region, ฯsintered = 98% TD

First, using Bianchariaโ€™s porosity correction the fuel conductivity at 88% TD and 98% TD are

and

0.88 1 + (1.5 โˆ’ 1)(1 โˆ’ 0.88) ๐‘˜๐‘˜๐‘“๐‘“88 = ๐‘˜๐‘˜๐‘“๐‘“95 = 2.418 Wโ„m K 0.95 1 + (1.5 โˆ’ 1)(1 โˆ’ 0.95) 0.98 1 + (1.5 โˆ’ 1)(1 โˆ’ 0.898) ๐‘˜๐‘˜๐‘“๐‘“98 = ๐‘˜๐‘˜๐‘“๐‘“95 = 2.827 Wโ„m K 0.95 1 + (1.5 โˆ’ 1)(1 โˆ’ 0.95)

(1)

(2)

The results from the analysis in Problem 8.4 showed that:

207

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

โ€“ outer fuel pellet temperature, Tf0 = 664 K โ€“ outer clad radius, Rco = 5.6mm โ€“ inner clad radius, Rci =4.89 mm โ€“ fuel pellet radius, Rf0 = 4.8mm โ€“ mean gap radius, Rg = 4.845 mm Using Equation 8.129, the radius at which sintering begins can be determined to be 2

๐‘ž๐‘ž โ€ฒ ๐‘…๐‘…๐‘ ๐‘  ๐‘˜๐‘˜๐‘“๐‘“88 ๏ฟฝ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  โˆ’ ๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ = ๏ฟฝ1 โˆ’ ๏ฟฝ ๏ฟฝ ๏ฟฝ 4๐œ‹๐œ‹ ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“

(3)

Solving for the Rs we get

๐‘…๐‘…๐‘ ๐‘  = 2.56mm

(4)

Using Equation 8.128 the radius of the inner void is ๐‘…๐‘…๐œ๐œ = ๏ฟฝ

๐œŒ๐œŒ98 โˆ’ ๐œŒ๐œŒ88 2 ๐‘…๐‘…๐‘ ๐‘  = 8.177 ร— 10โˆ’4 m ๐œŒ๐œŒ98

(5)

Finally using Equation 8.130 the maximum temperature can be determined to be 2

๐‘ž๐‘ž โ€ฒ ๐‘…๐‘…๐œ๐œ 2 ๐‘…๐‘…๐‘ ๐‘  2 ๐œŒ๐œŒ98 ๐‘…๐‘…๐‘ ๐‘  ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ1 โˆ’ ๏ฟฝ ๏ฟฝ ๏ฟฝ1 + ln ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๐‘‡๐‘‡๐œ๐œ = ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + 4๐œ‹๐œ‹๐‘˜๐‘˜๐‘“๐‘“88 ๐œŒ๐œŒ88 ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๐‘…๐‘…๐‘ ๐‘  ๐‘…๐‘…๐œ๐œ

(6)

2 2 2 44000 ๏ฃซ 0.98 ๏ฃถ๏ฃซ 2.56 ๏ฃถ ๏ฃฑ๏ฃด ๏ฃซ 0.82 ๏ฃถ ๏ฃฎ ๏ฃซ 2.56 ๏ฃถ ๏ฃน ๏ฃผ๏ฃด =+ 1973 ๏ฃฌ ๏ฃท๏ฃฌ ๏ฃท ๏ฃฒ1 โˆ’ ๏ฃฌ ๏ฃท ๏ฃฏ1 + ln ๏ฃฌ ๏ฃท ๏ฃบ๏ฃฝ 4ฯ€ ( 2.418 ) ๏ฃญ 0.88 ๏ฃธ๏ฃญ 4.8 ๏ฃธ ๏ฃณ๏ฃด ๏ฃญ 2.56 ๏ฃธ ๏ฃฐ๏ฃฏ ๏ฃญ 0.82 ๏ฃธ ๏ฃป๏ฃบ ๏ฃพ๏ฃด

= 1973 + 305 = 2278 K ๐œŒ๐œŒ

Note that the ratio, ๐œŒ๐œŒ98 is just 0.98/0.88 since the theoretical density will cancel out of the ratio. 88

PROBLEM 8.13 QUESTION

Eccentricity Effects in a Plate-type Fuel (Section 8.7) A nuclear fuel element is of plate geometry (Figure 8.33). It is desired to investigate the effects of fuel offset within the cladding. For simplicity, assume uniform heat generation in the fuel, temperature-independent fuel conductivity and heat conduction only in the gap.

208

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

FIGURE 8.33 Effect of fuel offset. (a) Centered fuel pellet. (b) Effect of fuel pellet offset. Calculate: 1. The temperature difference between the offset fuel and the concentric fuel maximum temperatures: ๐‘‡๐‘‡๐‘€๐‘€๐‘€๐‘€ โˆ’ ๐‘‡๐‘‡๐‘€๐‘€๐‘€๐‘€

2. The temperature difference between the cladding maximum temperatures: 3. The ratio of heat fluxes to the coolant. ๐‘ž๐‘žโ€ณ ๐‘ž๐‘ž1โ€ณ

๐‘‡๐‘‡7 โˆ’ ๐‘‡๐‘‡4 ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๐‘ž๐‘žโ€ณ ๐‘ž๐‘ž2โ€ณ

Tcoolant and heat transfer coefficient to coolant may be assumed constant on both sides and for both cases. Neglect interface contact resistance for fuel and cladding. kf = 3.011 W/m ยฐC (PuO2 โ€“ UO2) kg= 0.289 W/m ยฐC (He)

209

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

kc= 21,63 W/m ยฐC (SS) D = 6.352 mm Dg= 6.428 mm tc= 0.4054 mm qโ€ด = 9.313 ร— 105 kW/m3 hcoolant = 113.6 kW/m2 ยฐC (Na) Answers: 1. TMO โ€“ TMC = โˆ’23.8 ยฐC and equally -23.8 K 2. T7 โˆ’T4 = -8.83 ยฐC and equally -8.83 K qโ€ณ

qโ€ณ

3. qโ€ณ = 0.902 and qโ€ณ = 1.121 1

2

PROBLEM 8.13 S OLUTION

Eccentricity Effects in a Plate-type Fuel (Section 8.7) From the problem statement we are given that: โ€“ fuel conductivity, kf = 3.011 W/m K โ€“ gap conductivity, kg = 0.289 W/m K โ€“ clad conductivity, kc = 21.63 W/m K โ€“ length of pellet , D = 6.352 mm โ€“ length between inner cladding, Dg = 6.428 mm โ€“ clad thickness, tc = 0.4054 mm โ€“ volumetric heat generation rate, qโ€ด = 9.313 ร— 105 kW/m3 โ€“ heat transfer coefficient to coolant, hc = 113.6 kW/m2 K Eccentric Case: For the eccentric case, the geometric parameters are as follows: โ€“ radius to inner clad: Rg = Dg/2 = 3.214mm โ€“ gap spacing, ฮดg = Rg โ€” D/2 = 0.038 mm โ€“ off radius of fuel, Rf = Rg โ€“ 2ฮดg = 3.138 mm โ€“ fuel element radius, Rco = Rg +tc = 3.619 mm The temperature distribution in a one-dimensional geometry is ๐‘‡๐‘‡(๐‘ฅ๐‘ฅ) = โˆ’

๐‘ž๐‘ž โ€ด 2 ๐‘ฅ๐‘ฅ + ๐ถ๐ถ1 ๐‘ฅ๐‘ฅ + ๐ถ๐ถ2 2๐‘˜๐‘˜๐‘“๐‘“ 210

(1)

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

The temperature drop through the gap is ๐‘‡๐‘‡1 โˆ’ ๐‘‡๐‘‡2 = ๐‘ž๐‘ž2โ€ด

๐‘…๐‘…๐‘”๐‘” โˆ’ ๐‘…๐‘…๐‘“๐‘“ ๐‘˜๐‘˜๐‘”๐‘”

(2)

The temperature drop through the right hand side cladding is ๐‘‡๐‘‡2 โˆ’ ๐‘‡๐‘‡3 = ๐‘ž๐‘ž2โ€ด

๐‘…๐‘…๐‘๐‘๐‘๐‘ โˆ’ ๐‘…๐‘…๐‘”๐‘” ๐‘˜๐‘˜๐‘๐‘

(3)

Finally, the temperature drop through the right hand side coolant is ๐‘‡๐‘‡3 โˆ’ ๐‘‡๐‘‡๐‘š๐‘š = ๐‘ž๐‘ž2โ€ด

1 โ„Ž๐‘๐‘

(4)

Applying the two boundary conditions to Equation (1):

and

๐‘‡๐‘‡1 โˆ’ ๐‘‡๐‘‡๏ฟฝ๐‘…๐‘…๐‘“๐‘“ ๏ฟฝ = โˆ’ ๐‘ž๐‘ž2โ€ด = โˆ’๐‘˜๐‘˜๐‘“๐‘“

Combining the last five equations

๐‘ž๐‘ž2โ€ด 2 ๐‘…๐‘… + ๐ถ๐ถ1 ๐‘…๐‘…๐‘“๐‘“ + ๐ถ๐ถ2 2๐‘˜๐‘˜๐‘“๐‘“ ๐‘“๐‘“

๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ = ๐‘ž๐‘ž โ€ด๐‘…๐‘…๐‘“๐‘“ โˆ’ ๐‘˜๐‘˜๐‘“๐‘“ ๐ถ๐ถ1 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘…๐‘…๐‘“๐‘“

๐‘…๐‘…๐‘”๐‘” โˆ’ ๐‘…๐‘…๐‘“๐‘“ ๐‘…๐‘…๐‘๐‘๐‘๐‘ โˆ’ ๐‘…๐‘…๐‘”๐‘” 1 ๐‘ž๐‘ž โ€ด 2 โˆ’ ๐‘…๐‘…๐‘“๐‘“ + ๐ถ๐ถ1 ๐‘…๐‘…๐‘“๐‘“ + ๐ถ๐ถ2 = ๏ฟฝ๐‘ž๐‘ž โ€ด๐‘…๐‘…๐‘“๐‘“ โˆ’ ๐‘˜๐‘˜๐‘“๐‘“ ๐ถ๐ถ1 ๏ฟฝ ๏ฟฝ + + ๏ฟฝ + ๐‘‡๐‘‡๐‘š๐‘š 2๐‘˜๐‘˜๐‘“๐‘“ ๐‘˜๐‘˜๐‘”๐‘” ๐‘˜๐‘˜๐‘๐‘ โ„Ž๐‘๐‘

(5)

(6)

(7)

For the left hand side heat flow:

The temperature through the left hand side cladding ๐‘‡๐‘‡4 โˆ’ ๐‘‡๐‘‡5 = โˆ’๐‘ž๐‘ž1โ€ณ

๐‘…๐‘…๐‘๐‘๐‘๐‘ โˆ’ ๐‘…๐‘…๐‘”๐‘” ๐‘˜๐‘˜๐‘๐‘

(8)

and the temperature drop through the left hand side coolant is ๐‘‡๐‘‡5 โˆ’ ๐‘‡๐‘‡๐‘š๐‘š = โˆ’๐‘ž๐‘žโ€ณ

1 โ„Ž๐‘๐‘

(9)

Using Equation (1) we can apply the following boundary conditions:

and

๐‘ž๐‘ž โ€ด 2 ๐‘‡๐‘‡4 = ๐‘‡๐‘‡๏ฟฝโˆ’๐‘…๐‘…๐‘”๐‘” ๏ฟฝ = โˆ’ ๐‘…๐‘… โˆ’ ๐ถ๐ถ1 ๐‘…๐‘…๐‘”๐‘” + ๐ถ๐ถ2 2๐‘˜๐‘˜๐‘“๐‘“ ๐‘”๐‘”

211

(10)

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

๐‘ž๐‘ž1โ€ณ = ๐‘˜๐‘˜๐‘“๐‘“

๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ = โˆ’๐‘ž๐‘ž โ€ด ๐‘…๐‘…๐‘”๐‘” โˆ’ ๐‘˜๐‘˜๐‘“๐‘“ ๐ถ๐ถ2 ๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’๐‘…๐‘…๐‘”๐‘”

(11)

Summing the last 4 equations we get โˆ’

๐‘…๐‘…๐‘๐‘๐‘๐‘ โˆ’ ๐‘…๐‘…๐‘”๐‘” 1 ๐‘ž๐‘ž โ€ด 2 ๐‘…๐‘…๐‘”๐‘” โˆ’ ๐ถ๐ถ1 ๐‘…๐‘…๐‘”๐‘” + ๐ถ๐ถ2 = ๏ฟฝโˆ’๐‘ž๐‘ž โ€ด๐‘…๐‘…๐‘”๐‘” โˆ’ ๐‘˜๐‘˜๐‘“๐‘“ ๏ฟฝ ๏ฟฝ + ๏ฟฝ 2๐‘˜๐‘˜๐‘“๐‘“ ๐‘˜๐‘˜๐‘๐‘ โ„Ž๐‘๐‘

(12)

Solving Equations (7) and (12) simultaneously we can obtain the integration constants C1 and C2 if we guess Tm = 500 K: ๐ถ๐ถ1 = 9.466 ร— 104

๐ถ๐ถ2 = 2.492 ร— 103

(13)

Now, we can take the derivative of Equation (1) with these integration constants and find the x location where the temperature is at a maximum: ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ž๐‘ž โ€ด =โˆ’ ๐‘ฅ๐‘ฅ + ๐ถ๐ถ1 = 0 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘˜๐‘˜๐‘“๐‘“ ๐‘ฅ๐‘ฅ0 = 3.06 ร— 10โˆ’4

(14) (15)

The temperature at this location, assuming Tm = 500 K is TMO = 2506.5 K. Concentric Case: For the concentric case we can just perform a simple resistance calculation ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๐‘…๐‘…๐‘”๐‘” โˆ’ ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๐‘…๐‘…๐‘๐‘๐‘๐‘ โˆ’ ๐‘…๐‘…๐‘”๐‘” 1 ๐‘‡๐‘‡๐‘€๐‘€๐‘€๐‘€ = ๐‘ž๐‘ž โ€ด ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ + + + ๏ฟฝ + ๐‘‡๐‘‡๐‘š๐‘š = 2530.3 K 2๐‘˜๐‘˜๐‘“๐‘“ ๐‘˜๐‘˜๐‘”๐‘” ๐‘˜๐‘˜๐‘๐‘ โ„Ž๐‘๐‘

(16)

where Rfo = 0.5D = 3.176 mm. Therefore,

๐‘‡๐‘‡๐‘€๐‘€๐‘€๐‘€ โˆ’ ๐‘‡๐‘‡๐‘€๐‘€๐‘€๐‘€ = โˆ’23.8 K or equally โˆ’ 23.8 หšC

(17)

๐‘‡๐‘‡4 = ๐‘‡๐‘‡๏ฟฝโˆ’๐‘…๐‘…๐‘”๐‘” ๏ฟฝ = 590.30 K

(18)

The temperature at point 4 for the eccentric can be determined by evaluating Equation (1) at x = โˆ’Rg so that

For the concentric case, point 7 is

Therefore,

๐‘…๐‘…๐‘๐‘๐‘๐‘ โˆ’ ๐‘…๐‘…๐‘”๐‘” 1 ๐‘‡๐‘‡7 = ๐‘ž๐‘žโ€ด๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ + ๏ฟฝ + ๐‘‡๐‘‡๐‘š๐‘š = 581.47 K ๐‘˜๐‘˜๐‘๐‘ โ„Ž๐‘๐‘

(19)

๐‘‡๐‘‡7 โˆ’ ๐‘‡๐‘‡4 = โˆ’8.83 K or equally โˆ’ 8.83 หšC

(20)

๐‘ž๐‘ž1โ€ณ = ๏ฟฝโˆ’๐‘ž๐‘žโ€ด๐‘…๐‘…๐‘”๐‘” โˆ’ ๐‘˜๐‘˜๐‘“๐‘“ ๐ถ๐ถ1 ๏ฟฝ = 3.278 ร— 106 Wโ„m2

(21)

๐‘ž๐‘ž2โ€ณ = ๐‘ž๐‘ž โ€ด ๐‘…๐‘…๐‘“๐‘“ โˆ’ ๐‘˜๐‘˜๐‘“๐‘“ ๐ถ๐ถ1 = 2.637 ร— 106 Wโ„m2

(22)

Finally, the heat flux ratios for the eccentric case are (from boundary conditions)

and

212

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

Note that an absolute value was applied to heat flux 1 since it is directed in the โˆ’ x direction. The heat flux in the concentric case is Therefore the ratios are

๐‘ž๐‘ž โ€ณ = ๐‘ž๐‘ž โ€ด ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ = 2.958 ร— Wโ„m2 ๐‘ž๐‘ž โ€ณ = 0.902 ๐‘ž๐‘ž1โ€ณ

๐‘ž๐‘ž โ€ณ = 1.121 ๐‘ž๐‘ž2โ€ณ

(23)

(24)

PROBLEM 8.14 QUESTION Determining the Linear Power Given a Constraint on the Fuel Average Temperature (Section 8.7) For a PWR fuel pin with pellet radius of 4.096 mm, cladding inner radius of 4.178 mm, and outer radius of 4.75 mm, calculate the maximum linear power that can be obtained from the pellet such that the mass average temperature in the fuel does not exceed 1204 ยฐC (2200 ยฐF). Take the bulk fluid temperature to be 307.5 ยฐC and the coolant heat transfer coefficient to be 28,4 kW/m2 ยฐC. Consider only conduction based on the effective gap width using the gap conductance model. Fuel conductivity kf = 3.011 W/m ยฐC Cladding conductivity kc = 18.69 W/m ยฐC Helium gas conductivity kg = 0.277 W/m ยฐC Answer: qโ€ฒ = 35.2 kW/m

PROBLEM 8.14 S OLUTION Determining the Linear Power Given a Constraint on the Fuel Average Temperature (Section 8.7) From the problem statement we are given that: โ€“

fuel pellet radius, Rfo = 4.096mm

โ€“

inner clad radius, Rci = 4.178 mm

โ€“

outer clad radius, Rco = 4.75 mm

โ€“

maximum mass average temperature, Tmax = 1204 ยฐC

โ€“

bulk fluid temperature, Tb = 307.5 ยฐC

โ€“

coolant heat transfer coefficient, hc = 28.4 kW/m2 K

โ€“

fuel conductivity, kf = 3.011 W/m K

213

rev 112420


Chapter 8 - Thermal Analysis of Fuel Elements

โ€“

clad conductivity, kc = 18.69 W/m K

โ€“

gap conductivity, kg = 0.277 W/m K The jump distance for He at 1 atm is ๐›ฟ๐›ฟ๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ = 10 ร— 10โˆ’6 m

(1)

Therefore; the gap conductance (conduction only) can be estimated to be โ„Ž๐‘”๐‘” =

The mean gap radius is

๐‘˜๐‘˜๐‘”๐‘” = 3.842 ร— 103 Wโ„m2 K ๐‘…๐‘…๐‘๐‘๐‘๐‘ โˆ’ ๐‘…๐‘…๐‘“๐‘“ โˆ’ ๐›ฟ๐›ฟ๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ ๐‘…๐‘…๐‘”๐‘” = 0.5๏ฟฝ๐‘…๐‘…๐‘“๐‘“๐‘“๐‘“ + ๐‘…๐‘…๐‘๐‘๐‘๐‘ ๏ฟฝ = 4.137 mm

(2)

(3)

Therefore the linear heat rate is ๐‘ž๐‘ž โ€ฒ =

๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š โˆ’ ๐‘‡๐‘‡๐‘๐‘ = 35.2 kWโ„m ๐‘…๐‘…๐‘๐‘๐‘๐‘ ๐‘™๐‘™๐‘™๐‘™ ๏ฟฝ ๐‘…๐‘… ๏ฟฝ 1 1 1 ๐‘๐‘๐‘๐‘ + + + 2๐œ‹๐œ‹๐‘…๐‘…๐‘๐‘๐‘๐‘ โ„Ž๐‘๐‘ 2๐œ‹๐œ‹๐‘˜๐‘˜๐‘๐‘ 2๐œ‹๐œ‹๐‘…๐‘…๐‘”๐‘” โ„Ž๐‘”๐‘” 8๐œ‹๐œ‹๐œ‹๐œ‹๐‘“๐‘“

(4)

Note that the denominator represents the standard convective and conductive resistance networks. The last term represents the resistance in order to get the maximum mass average temperature.

214

rev 112420


Chapter 9 Single-Phase Fluid Mechanics Contents Problem 9.1 Emptying of a liquid tank ................................................................................ 216 Problem 9.2 Laminar flow velocity distribution and pressure drop in parallel plate geometry ........................................................................................................................... 217 Problem 9.3 Velocity distribution in single-phase turbulent flow ....................................... 220 Problem 9.4 Flow split in downflow .................................................................................... 223 Problem 9.5 Sizing of an orificing device ............................................................................ 224 Problem 9.6 Pressure drop features of a PWR core ............................................................. 228 Problem 9.7 Comparison of laminar and turbulent friction factors of water and sodium heat exchangers ........................................................................................................ 231 Problem 9.8 Using the UCTD correlation to calculate the pressure drop for wire-wrapped and bare rod bundles ............................................................................................... 234

215

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

PROBLEM 9.1 QUESTION Emptying of a Liquid Tank (Section 9.2) Consider an emergency water tank, shown in Figure 9.40, that is designed to deliver water to a reactor following a loss of coolant event. The tank is prepressurized by nitrogen at 1.0 MPa. The water is discharged through an 0.2 (inner diameter) pipe. What is the maximum flow rate delivered to the reactor if the flow is considered inviscid and the reactor pressure is: 1. 0.8 MPa 2. 0.2 Mpa

FIGURE 9.40 Emergency water tank. Answers: 1. m๏€ฆ 1 = 827.3 kg / s 2. m๏€ฆ 2 = 1366.6 kg / s

PROBLEM 9.1 SOLUTION Emptying of a Liquid Tank (Section 9.2) Consider an emergency water tank, shown in Figure 9.40, that is designed to deliver water to a reactor following a loss of coolant event. The tank is prepressurized by nitrogen at 1.0 MPa. Assume the water discharge through an 0.2 m (inner diameter) pipe is quasi-steady. What is the maximum flow rate delivered to the reactor if the flow is considered inviscid and the reactor pressure is:

216

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

1. 0.8 MPa 2. 0.2 MPa The following parameters are given in the problem statement: โ€“ pressure of nitrogen tank, po = 1.0 MPa โ€“ pipe diameter, d = 0.2 m โ€“ height, H = 15 m โ€“ pressure 1, P1 = 0.8 MPa โ€“ pressure 2, P2 = 0.2 MPa The density of water is assumed to 1 g/cm3. The area of the discharge pipe is

The pressure at the pipe is

๐ด๐ด =

๐œ‹๐œ‹ 2 ๐‘‘๐‘‘ = 0.0314 m2 4

๐‘ƒ๐‘ƒ๐‘œ๐‘œ๐‘œ๐‘œ = ๐‘ƒ๐‘ƒ๐‘œ๐‘œ + ๐œŒ๐œŒ๐œŒ๐œŒ๐œŒ๐œŒ = 1.147MPa

(1)

(2)

The velocity can be calculated from Bernoulli's law as ๐œ๐œ๐‘–๐‘– = ๏ฟฝ2

๐‘ƒ๐‘ƒ๐‘œ๐‘œ๐‘œ๐‘œ โˆ’ ๐‘ƒ๐‘ƒ๐‘–๐‘– ๐œŒ๐œŒ

(3)

Using pressure's 1 and 2, the corresponding velocities are ๐œ๐œ1 = 26.348 mโ„s

The mass flow rate can be calculated with

๐œ๐œ2 = 43.522 mโ„s

(4)

๐‘š๐‘šฬ‡๐‘–๐‘– = ๐œŒ๐œŒ๐œ๐œ๐‘–๐‘– ๐ด๐ด

(5)

๐‘š๐‘šฬ‡1 = 827.3 kgโ„s ๐‘š๐‘šฬ‡2 = 1366.6 kgโ„s

(6)

The corresponding mass flow rates are

PROBLEM 9.2 QUESTION

Laminar Flow Velocity Distribution and Pressure Drop in Parallel Plate Geometry (Section 9.4) For flow between parallel flat plates: 1. Show that the momentum equation for fully developed, steady-state, constant density and viscosity flow takes the form:

217

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘2 ฯ…๐‘ฅ๐‘ฅ = ๐œ‡๐œ‡ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘ฆ๐‘ฆ 2

2. For plate separation of 2y0 show that the velocity profile is given by: 3 ๐‘ฆ๐‘ฆ 2 ๐œ๐œ๐‘ฅ๐‘ฅ (๐‘ฆ๐‘ฆ) = ๐‘‰๐‘‰๐‘š๐‘š ๏ฟฝ1 โˆ’ ๏ฟฝ ๏ฟฝ ๏ฟฝ 2 ๐‘ฆ๐‘ฆ๐‘œ๐‘œ

3. Show that:

โˆ’

๐‘‘๐‘‘๐‘‘๐‘‘ 96 1 ๐œŒ๐œŒ๐‘‰๐‘‰๐‘š๐‘š2 = ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘…๐‘…๐‘…๐‘… 4๐‘ฆ๐‘ฆ๐‘œ๐‘œ 2

PROBLEM 9.2 SOLUTION Laminar Flow Velocity Distribution and Pressure Drop in Parallel Plate Geometry (Section 9.4) For fully developed laminar flow, there is no change in the velocity along the longitudinal flow direction x, (1) For fully developed laminar flow, the pressure gradients in the y and z direction are also zero, ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• = =0 ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•

(2)

Therefore Equation 4.90a, assuming no gravity effects, becomes ๐œ๐œ๐‘ฆ๐‘ฆ

๐œ•๐œ•๐œ๐œ๐‘ฅ๐‘ฅ ๐œ•๐œ•๐œ๐œ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œ•๐œ• 2 ๐œ๐œ๐‘ฅ๐‘ฅ ๐œ•๐œ• 2 ๐œ๐œ๐‘ฅ๐‘ฅ ๐œ•๐œ• 2 ๐œ๐œ๐‘ฅ๐‘ฅ + ๐œ๐œ๐‘ง๐‘ง =โˆ’ + ๐œ‡๐œ‡ ๏ฟฝ 2 + + ๏ฟฝ ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œ•๐œ•๐‘ฅ๐‘ฅ ๐œ•๐œ•๐‘ฆ๐‘ฆ 2 ๐œ•๐œ•๐‘ง๐‘ง 2

(3)

Since the geometry is of infinite width in the z direction, ๐œ•๐œ•๐œ๐œ๐‘ฅ๐‘ฅ =0 ๐œ•๐œ•๐œ•๐œ•

From the continuity equation for incompressible flow, โˆ‡ โˆ™ ๐œ๐œโƒ— = 0, ๐œ•๐œ•๐œ๐œ๐‘ฆ๐‘ฆ =0 ๐œ•๐œ•๐œ•๐œ•

(4)

(5)

Upon integration of Equation (5) and application of the boundary condition ฯ…y=0 at the wall, find that ฯ…y=0 throughout the flow region. Therefore, Equation (2) becomes ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œ•๐œ• 2 ๐œ๐œ๐‘ฅ๐‘ฅ = ๐œ‡๐œ‡ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œ•๐œ•๐‘ฆ๐‘ฆ 2 218

(6)

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

This equation can be integrated twice to give ๐œ๐œ๐‘ฅ๐‘ฅ (๐‘ฆ๐‘ฆ) =

Applying the boundary conditions that

1 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ 2 = + ๐ถ๐ถ1 ๐‘ฆ๐‘ฆ + ๐ถ๐ถ2 ๐œ‡๐œ‡ ๐‘‘๐‘‘๐‘‘๐‘‘ 2

๐œ•๐œ•๐œ๐œ

โ€“ at y = 0, ๐œ•๐œ•๐œ•๐œ•๐‘ฅ๐‘ฅ = 0 which yields C1 = 0

โ€“ at y = yo, vx = 0 which yields ๐ถ๐ถ2 = โˆ’

yields the following expression

๐œ๐œ๐‘ฅ๐‘ฅ (๐‘ฆ๐‘ฆ) =

(7)

1 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ๐‘œ๐‘œ2

๐œ‡๐œ‡ ๐‘‘๐‘‘๐‘‘๐‘‘ 2

1 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ 2 ๏ฟฝโˆ’ ๏ฟฝ ๐‘ฆ๐‘ฆ๐‘œ๐‘œ2 ๏ฟฝ1 โˆ’ 2 ๏ฟฝ 2๐œ‡๐œ‡ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ๐‘œ๐‘œ

(8)

The channel average flow velocity can be calculated as ๐‘‰๐‘‰๐‘š๐‘š =

๐‘ฆ๐‘ฆ๐‘œ๐‘œ

โˆซโˆ’๐‘ฆ๐‘ฆ๐‘œ๐‘œ ๐œ๐œ๐‘ฅ๐‘ฅ (๐‘ฆ๐‘ฆ)๐‘‘๐‘‘๐‘‘๐‘‘ 1 1 ๐‘ฆ๐‘ฆ๐‘œ๐‘œ โˆซโˆ’๐‘ฆ๐‘ฆ๐‘œ๐‘œ ๐‘‘๐‘‘๐‘‘๐‘‘

3๐œ‡๐œ‡

Therefore, the pressure gradient can be expressed as โˆ’

๏ฟฝโˆ’

๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๏ฟฝ ๐‘ฆ๐‘ฆ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘œ๐‘œ

๐‘‘๐‘‘๐‘‘๐‘‘ 3๐œ‡๐œ‡ = ๐‘‰๐‘‰ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ๐‘œ๐‘œ2 ๐‘š๐‘š

(9)

(10)

The final expression can be obtained by substituting the pressure gradient into Equation (8) to get ๐œ๐œ๐‘ฅ๐‘ฅ (๐‘ฆ๐‘ฆ) =

3 ๐‘ฆ๐‘ฆ 2 ๐‘‰๐‘‰ ๏ฟฝ1 โˆ’ ๏ฟฝ ๏ฟฝ ๏ฟฝ 2 ๐‘š๐‘š ๐‘ฆ๐‘ฆ๐‘œ๐‘œ

(11)

The pressure gradient can also be expressed as โˆ’

๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘“๐‘“ ๐œŒ๐œŒ๐‘‰๐‘‰๐‘š๐‘š2 = ๐‘‘๐‘‘๐‘‘๐‘‘ ๐ท๐ท๐‘’๐‘’ 2

(12)

We can manipulate Equation (10) into the above form,

Therefore, by inspection,

โˆ’

๐‘‘๐‘‘๐‘‘๐‘‘ 3๐œ‡๐œ‡ 2 ๐œŒ๐œŒ๐‘‰๐‘‰๐‘š๐‘š2 = ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ๐‘œ๐‘œ2 ๐œŒ๐œŒ๐œŒ๐œŒ๐‘š๐‘š 2 โˆ’

๐‘“๐‘“ 3๐œ‡๐œ‡ 2 = 2 ๐ท๐ท๐‘’๐‘’ ๐‘ฆ๐‘ฆ๐‘œ๐‘œ ๐œŒ๐œŒ๐œŒ๐œŒ๐‘š๐‘š

(13)

(14)

The hydraulic diameter can be calculated as ๐ท๐ท๐‘’๐‘’ =

4๐ด๐ด 4(2๐‘ฆ๐‘ฆ๐‘œ๐‘œ ) = = 4๐‘ฆ๐‘ฆ๐‘œ๐‘œ P๐‘ค๐‘ค 2 219

(15)

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

Thus, ๐‘“๐‘“ =

The Reynolds number is given as ๐‘…๐‘…๐‘’๐‘’ =

24๐œ‡๐œ‡ ๐œŒ๐œŒ๐‘‰๐‘‰๐‘š๐‘š ๐‘ฆ๐‘ฆ๐‘œ๐‘œ

(16)

๐œŒ๐œŒ๐‘‰๐‘‰๐‘š๐‘š ๐ท๐ท๐‘’๐‘’ ๐œŒ๐œŒ๐‘‰๐‘‰๐‘š๐‘š 4๐‘ฆ๐‘ฆ๐‘œ๐‘œ = ๐œ‡๐œ‡ ๐œ‡๐œ‡

(17)

In order to use the Reynolds number in Equation (16), it must be multiplied and divided by 4 giving ๐‘“๐‘“ =

96๐œ‡๐œ‡ 96 = ๐œŒ๐œŒ๐‘‰๐‘‰๐‘š๐‘š 4๐‘ฆ๐‘ฆ๐‘œ๐‘œ ๐‘…๐‘…๐‘…๐‘…

(18)

PROBLEM 9.3 QUESTION Velocity Distribution in Single-Phase Turbulent Flow (Section 9.5) Consider a smooth circular flow channel of diameter 13.5 mm (for a hydraulic simulation of flow through a PWR assembly). Operating Conditions: Assume two adiabatic, fully developed flow conditions: 1. High flow (mass flow rate = 0.5 kg/s) 2. Low flow (mass flow rate = 1 g/s) Properties (approximately those of pressurized water at 300 ยฐC and 15.5 MPa) โ€“ Density = 720 kg/m3 โ€“ Viscosity = 91 ฮผPa. s 1. For each flow condition draw a quantitative sketch to show the velocity distribution based on Martinelli's formalism (Equation 9.80a through 9.80c) 2. Find the positions of interfaces between the sublayer, the buffer zone, and the turbulent core. Answers: 2a. Laminar layer: 0 โ‰ค y โ‰ค 3.2 ฮผm Buffer zone: 3.2 ฮผm โ‰ค y โ‰ค 19.2 ฮผm Turbulent core: 19.2 ฮผm โ‰ค y โ‰ค 6.75 mm 2b. Laminar flow

PROBLEM 9.3 SOLUTION Velocity Distribution in Single-Phase Turbulent Flow (Section 9.5) From the problem statement, the following parameters are given:

220

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

โ€“ High mass flow rate, แนH = 0.5 kg/s โ€“ Low mass flow rate, แน€L = 10โˆ’3 kg/s โ€“ Channel diameter, d = 13.5 mm โ€“ Density, ฯ = 720 kg/m3 โ€“ Viscosity, ฮผ = 91 ร— 10โˆ’6 Pa s The flow area of the channel is ๐ด๐ด =

๐œ‹๐œ‹ 2 ๐‘‘๐‘‘ = 1.431 ร— 10โˆ’4 m2 4

(1)

The high flow velocity and low flow velocity are respectively, ๐œ๐œ๐ป๐ป =

๐‘š๐‘šฬ‡๐ป๐ป = 4.85 mโ„s ๐œŒ๐œŒ๐œŒ๐œŒ

๐œ๐œ๐ฟ๐ฟ =

๐‘š๐‘šฬ‡๐ฟ๐ฟ = 0.0097 mโ„s ๐œŒ๐œŒ๐œŒ๐œŒ

(2)

The Reynolds number for the high and low flow are respectively, ๐‘…๐‘…๐‘…๐‘…๐ป๐ป =

๐œŒ๐œŒ๐œŒ๐œŒ๐ป๐ป ๐‘‘๐‘‘ = 5.18 ร— 105 ๐œ‡๐œ‡

๐‘…๐‘…๐‘…๐‘…๐ป๐ป =

๐œŒ๐œŒ๐œŒ๐œŒ๐ฟ๐ฟ ๐‘‘๐‘‘ = 1036 ๐œ‡๐œ‡

(3)

Therefore, the low flow case is laminar and will not be considered for the velocity boundary layer calculation. The friction factor for the high flow case can be calculated with the McAdam's correlation, ๐‘“๐‘“ = 0.184๐‘…๐‘…๐‘…๐‘… โˆ’0.2 = 0.0132 From Equations 9.80a - 9.80c, the velocity profile is expressed as:

(4)

โ€“ laminar zone, 0 < y+ < 5 where v+ = y+

โ€“ buffer zone, 5 < y+ < 30 where v+ = โˆ’3.05 + 5.00 In (y+) โ€“ core zone, 30 > y+ where v+ = 5.5 + 2.5 In (y+) In this formulation, ๐‘ฆ๐‘ฆ + =

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ ๐œ๐œ๐‘ค๐‘ค ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐‘‰๐‘‰๐‘š๐‘š ๐‘“๐‘“๐‘ค๐‘ค ๏ฟฝ ๏ฟฝ = ๐œ‡๐œ‡ ๐œŒ๐œŒ 2๐œ‡๐œ‡ 2

(5)

where Vm represents the channel average velocity which was calculated in Equation (10). Solving for y+ and ฯ…+, ๐‘ฆ๐‘ฆ + =

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐‘‰๐‘‰๐‘š๐‘š ๐‘“๐‘“๐‘ค๐‘ค ๏ฟฝ = 1.562 ร— 106 ๐‘ฆ๐‘ฆ 2๐œ‡๐œ‡ 2

(6)

There y can be expressed as a function of y+ with

221

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

๐‘ฆ๐‘ฆ(๐‘ฆ๐‘ฆ

+)

๐‘ฆ๐‘ฆ + = 1.562 ร— 106

(7)

The boundaries of Equations 9.80a-9.80c can be used in the formula above to get the positions of interfaces between the sublayer, the buffer zone and the turbulent core, Laminar layer: Buffer zone:

0 โ‰ค y โ‰ค 3.2 ฮผm

Turbulent core:

3.2 ๐œ‡๐œ‡๐‘š๐‘š โ‰ค ๐‘ฆ๐‘ฆ โ‰ค 19.2 ๐œ‡๐œ‡๐‘š๐‘š 19.2 ฮผm โ‰ค y โ‰ค 6.75 mm

A sketch of each of these velocity profiles is shown in Figure SM-9.1.

Figure SM-9.1 Velocity profiles in turbulent flow

222

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

PROBLEM 9.4 QUESTION Flow Split in Downflow (Section 9.5) High pressure water at mass flow rate แน enters a certain component having an inlet plenum and an outlet plenum, connected by two vertical tubes (Figure 9.41). These two tubes are identical except that one is heated and one is cooled. Is the mass flow rate in each tube the same? If not, which tube has the higher mass flow rate? Support your answer with an analytic proof. Assume the following: โ€“ The density of water decreases as temperature increases โ€“ Downflow exists in both tubes โ€“ The form and acceleration terms in the momentum equation are negligible โ€“ The friction factor is the same in both tubes โ€“ Single-phase and steady-state conditions apply

FIGURE 9.41

Parallel vertical heated channels.

Answer: The cooled channel has higher mass flow.

PROBLEM 9.4 SOLUTION Flow Split in Downflow (Section 9.5) High-pressure water at mass flow rate แน enters a certain component having an inlet plenum and an outlet plenum, connected by two vertical tubes (Figure 9.41). These two tubes are identical except that one is heated and one is cooled. Is the mass flow rate in each tube the same? Because the two channels are connected to the same inlet and outlet plena, the total pressure change in each channel, โˆ’ฮ”Ptot is the same: โˆ’โˆ†๐‘ƒ๐‘ƒ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก = ๐‘“๐‘“

๐ฟ๐ฟ ๐บ๐บ12 โˆ’ ๐œŒ๐œŒ1 ๐‘”๐‘”๐‘”๐‘” ๐ท๐ท๐‘’๐‘’ 2๐œŒ๐œŒ1 223

(1)

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

๐ฟ๐ฟ ๐บ๐บ22 โˆ’ ๐œŒ๐œŒ2 ๐‘”๐‘”๐‘”๐‘” โˆ’โˆ†๐‘ƒ๐‘ƒ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก = ๐‘“๐‘“ ๐ท๐ท๐‘’๐‘’ 2๐œŒ๐œŒ2

(2)

where the form and acceleration terms were neglected, f is the friction factor (assumed equal in both channels, as per the problem statement), De is the hydraulic diameter of the channels, G1 and G2 are the mass fluxes in channel 1 and 2, respectively, and ฯ1 and ฯ2 are the average water densities in channel 1 and 2, respectively. Eliminating โˆ’ฮ”Ptot from Equation 1 and Equation 2 and recognizing that ฯ1 > ฯ2 (i.e. channel 1 is cooled, while channel 2 is heated), one gets: ๐ฟ๐ฟ ๐บ๐บ12 ๐ฟ๐ฟ ๐บ๐บ22 โˆ’ ๐œŒ๐œŒ1 ๐‘”๐‘”๐‘”๐‘” = ๐‘“๐‘“ โˆ’ ๐œŒ๐œŒ1 ๐‘”๐‘”๐‘”๐‘” ๐‘“๐‘“ ๐ท๐ท๐‘’๐‘’ 2๐œŒ๐œŒ1 ๐ท๐ท๐‘’๐‘’ 2๐œŒ๐œŒ2 ๐บ๐บ12 ๐บ๐บ22 ๐ท๐ท๐‘’๐‘’ (๐œŒ๐œŒ โˆ’ ๐œŒ๐œŒ2 )๐‘”๐‘”๐‘”๐‘” โˆ’ = 2๐œŒ๐œŒ1 2๐œŒ๐œŒ2 ๐‘“๐‘“๐‘“๐‘“ 2

(3)

(4)

Therefore since the quantity on the right hand side must be positive, we can write that

Solving for the mass flux in channel,

๐บ๐บ12 ๐บ๐บ22 โˆ’ >0 2๐œŒ๐œŒ1 2๐œŒ๐œŒ2 ๐บ๐บ1 > ๏ฟฝ

๐œŒ๐œŒ1 ๐บ๐บ ๐œŒ๐œŒ2 2

(5)

(6)

Therefore, the mass flow rate in channel 1 is higher than the mass flow rate in channel 2 since the flow areas are equivalent. The result is also intuitive because cooling channel 1 and heating channel 2 creates a โ€œchimneyโ€ effect that opposes downflow in channel 2.

PROBLEM 9.5 QUESTION Sizing of an Orificing Device (Section 9.6) In a hypothetical reactor an orificing scheme is sought such that the core is divided into two zones. Each zone produces one half of the total reactor power. However, zone 1 contains 100 assemblies, whereas zone 2 contains 80 assemblies. It is desired to obtain equal average temperature rises in the two zones. Therefore the flow in the assemblies of lower power (zone 1) is to be constricted by the use of orificing blocks, as shown in Figure 9.42.

224

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

FIGURE 9.42 Comparison of unorificed and orificed fuel bundles. Determine the appropriate diameter (D) of the flow channels in the orificing block. Assume negligible pressure losses in all parts of the fuel assemblies other than the fuel rod bundle and the orifice block. The flow in all the assemblies may be assumed to be fully turbulent. All coolant channels have smooth surfaces. Data: โ€“ Pressure drop across assembly, ฮ”PA = 7.45 ร— 105 N/m2 โ€“ Total core flow rate, แนT = 17.5 ร— 106 kg/h โ€“ Coolant viscosity, ฮผ = 2 ร— 10โˆ’4 Ns/m2 โ€“ Coolant density, ฯ = 0.8 g/cm3 โ€“ Contraction pressure loss coefficient, Kc = 0.5 โ€“ Expansion pressure loss coefficient, Ke = 1.0 Answer: D = 2.17 cm

PROBLEM 9.5 SOLUTION Sizing of an Orificing Device (Section 9.6) In a hypothetical reactor an orificing scheme is sought such that the core is divided into two zones. Each zone produces one half of the total reactor power. However, zone 1 contains 100 assemblies, whereas zone 2 contains 80 assemblies. It is desired to obtain equal average temperature rises in the two zones. Therefore the flow in the assemblies of lower power (zone 1) is to be constricted by the use of orificing blocks, as shown in Figure 9.42. Determine the the appropriate diameter (D) of the flow channels in the orificing block. Assume negligible pressure losses in all parts of the fuel assemblies other than the fuel rod bundle and the orifice block. The flow in all the assemblies may be assumed to be fully turbulent. All coolant

225

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

channels have smooth surfaces. The following parameters are given in the problem statement and Figure 9.42: โ€“ Pressure drop across assembly, ฮ”PA = 7.45 ร— 105 N/m0 โ€“ Total core flow rate, แนT = 17.5 ร— 106 kg/h โ€“ Coolant viscosity, ฮผ = 2 ร— 10โˆ’4 Ns/m2 โ€“ Coolant density, ฯ = 0.8 g/cm3 โ€“ Contraction pressure loss coefficient, Kc = 0.5 โ€“ Expansion pressure loss coefficient, Ke = 1.0 โ€“ Length of orifice region, Li = 40 cm โ€“ Length of fuel bundle, L1 = 360 cm โ€“ Total length of assembly, L = 400 cm The first step is to determine the flow rates in each of the assemblies. To get these quantities, an energy balance is performed where both assemblies produce the same amount of power and have equal temperature rises: ๐‘๐‘1 ๐‘š๐‘šฬ‡1 ๐‘๐‘๐‘๐‘ โˆ†๐‘‡๐‘‡ = ๐‘๐‘2 ๐‘š๐‘šฬ‡2 ๐‘๐‘๐‘๐‘ โˆ†๐‘‡๐‘‡

(1)

100๐‘š๐‘šฬ‡1 = 80๐‘š๐‘šฬ‡2

(2)

100๐‘š๐‘šฬ‡1 + 80๐‘š๐‘šฬ‡2 = ๐‘š๐‘šฬ‡ ๐‘‡๐‘‡

(3)

where, N1 is the number of assemblies in zone 1, N2 is the number of assemblies in zone 2, cp is the specific heat and ฮ”T is the temperature rise. This expression reduces down to where from conservation mass it is also known that

Solving these two equations simultaneously yields a flow rate through and assembly in zone 1 and zone 2, respectively: ๐‘š๐‘šฬ‡1 = 24.306 kgโ„s

๐‘š๐‘šฬ‡2 = 30.382 kgโ„s

(4)

The next step that can be performed is to find a diameter of assembly 2. The flow area as a function of this diameter can be written as ๐œ‹๐œ‹ ๐ด๐ด2 (๐ท๐ท2 ) = ๐ท๐ท22 (5) 4 The Reynolds number is then

๐‘…๐‘…๐‘…๐‘…2 ๐ท๐ท2 =

The friction factor and then be represented as

๐‘š๐‘šฬ‡2 ๐ท๐ท2 ๐ด๐ด2 (๐ท๐ท2 )๐œ‡๐œ‡

226

(6)

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

๐‘“๐‘“2 (๐ท๐ท2 ) = 0.184๐‘…๐‘…๐‘…๐‘…2 (๐ท๐ท2 )โˆ’0.2

(7)

The pressure drop of assembly 2 is therefore

๐ฟ๐ฟ ๐‘š๐‘šฬ‡22 + ๐œŒ๐œŒ๐œŒ๐œŒ๐œŒ๐œŒ ๐‘ƒ๐‘ƒ๐ด๐ด = ๐‘“๐‘“2 (๐ท๐ท2 ) = ๐ท๐ท2 2๐ด๐ด2 (๐ท๐ท2 )2

(8)

The only unknown in the pressure drop formula is the diameter, which can be calculated to be ๐ท๐ท2 = 0.034 m

The same procedure can be written for the orifice region of assembly 1, ๐œ‹๐œ‹ ๐ด๐ด๐‘–๐‘– (๐ท๐ท๐‘–๐‘– ) = 4 ร— ๐ท๐ท๐‘–๐‘–2 4 ๐‘…๐‘…๐‘…๐‘…๐‘–๐‘– ๐ท๐ท๐‘–๐‘– =

and the pressure drop is

๐‘š๐‘šฬ‡1 ๐ท๐ท1 ๐ด๐ด๐‘–๐‘– (๐ท๐ท๐‘–๐‘– )๐œ‡๐œ‡

๐‘“๐‘“๐‘–๐‘– (๐ท๐ท๐‘–๐‘– ) = 0.184๐‘…๐‘…๐‘…๐‘…๐‘–๐‘– (๐ท๐ท๐‘–๐‘– )โˆ’0.2

โˆ†๐‘ƒ๐‘ƒ๐‘–๐‘– (๐ท๐ท๐‘–๐‘– ) = ๏ฟฝ๐พ๐พ๐‘’๐‘’ + ๐พ๐พ๐‘๐‘ + ๐‘“๐‘“๐‘–๐‘– (๐ท๐ท๐‘–๐‘– )

๐ฟ๐ฟ๐‘–๐‘– ๐‘š๐‘šฬ‡12 ๏ฟฝ + ๐œŒ๐œŒ๐œŒ๐œŒ๐ฟ๐ฟ๐‘–๐‘– ๐ท๐ท๐‘–๐‘– 2๐ด๐ด๐‘–๐‘– (๐ท๐ท๐‘–๐‘– )2

(9)

(10) (11) (12)

(13)

Note, that the there are 4 flow paths through the orifice. Unlike assembly 2, the pressure drop over the orifice sub-region is not known and so it is a function of the orifice diameter, Di. Since the fuel bundle region of assembly 1 is equivalent to assembly 2, they will have the same diameter, ๐ท๐ท1 = ๐ท๐ท2 = 0.0.34 m

(14)

Since this diameter is known now, the area, Reynolds number and friction factor can be calculated: ๐œ‹๐œ‹ ๐ด๐ด1 = ๐ท๐ท12 = 8.872 ร— 10โˆ’4 m2 (15) 4 ๐‘…๐‘…๐‘…๐‘…1 =

๐‘š๐‘šฬ‡1 ๐ท๐ท1 = 4.604 ร— 102 ๐ด๐ด1 ๐œ‡๐œ‡

๐‘“๐‘“1 = 0.184 ๐‘…๐‘…๐‘…๐‘…1โˆ’0.2 = 0.009

(16)

(17)

The pressure drop just over the fuel bundle region to yield โˆ†๐‘ƒ๐‘ƒ1 = ๐‘“๐‘“1

๐ฟ๐ฟ1 ๐‘š๐‘šฬ‡12 + ๐œŒ๐œŒ๐œŒ๐œŒ๐ฟ๐ฟ1 = 458.047 kPa ๐ท๐ท1 2๐œŒ๐œŒ๐ด๐ด12

(18)

Therefore since the pressure drops are equivalent over the assemblies, the pressure drop over the orifice region is

227

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

โˆ†๐‘ƒ๐‘ƒ๐‘–๐‘– = โˆ†๐‘ƒ๐‘ƒ๐ด๐ด โˆ’ โˆ†๐‘ƒ๐‘ƒ1 = 286.953 kPa

(19)

๐ท๐ท1 = 2.17 cm

(20)

The only unknown in Equation (13) is the orifice diameter, which is calculated to be

PROBLEM 9.6 QUESTION Pressure Drop Features of a PWR Core (Section 9.6) Consider a PWR core containing 50,952 fuel rods cooled with a total flow rate of 17.476 Mg/s. Each rod has a total length of 3.876 m and a smooth outside diameter of 9.5 mm. The rods are arranged in a square array with a pitch = 12.6 mm. The lower-end and upper end fittings are represented as a honeycomb grid spacer, with the thickness of individual grid elements being 1.5 mm. There are also five intermediate honeycomb grid spacers with thickness of 1 mm. Consider the upper and lower plenum regions to be entirely open. 1. What is the pressure drop for each of the following bundle regions: entrance, end fixtures, friction in the pin array between grids, gravity, grid spacers and exit? 2. What is the plenum-to-plenum pressure drop? Properties kg

โ€“ Water density = 720 ๐‘š๐‘š3

โ€“ Water viscosity = 91 ฮผPa s

Answers: โ€“ ฮ”Pgravity = 27.37 kPa โ€“ ฮ”Pfriction = 50.06 kPa โ€“ ฮ”Pentrance + ฮ”Pexit = 15.87 kPa โ€“ ฮ”Pspacer = 26.07 kPa โ€“ ฮ”Pfittings = 22.51 kPa โ€“ ฮ”PT = 141.88 kPa

PROBLEM 9.6 SOLUTION Pressure Drop Features of a PWR Core (Section 9.6) Consider a PWR core containing 50,952 fuel rods cooled with a total flow rate of 17.476 Mg/s. Each rod has a total length of 3.876 m and a smooth outside diameter of 9.5 mm. The rods are arranged in a square array with a pitch = 12.6 mm. The lower-end and upper end fittings are represented as a honeycomb grid spacer, with the thickness of individual grid elements being 1.5

228

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

mm. There are also five intermediate honeycomb grid spacers with thickness of 1 mm. Consider the upper and lower plenum regions to be entirely open. Given Parameters: โ€“ Number of fuel rods: nrods = 50,952 โ€“ Total core flow rate: แนcore = 17,476 kg/s โ€“ Fuel rod length: L = 3.876 m โ€“ Fuel rod outside diameter: dco = 9.5 mm โ€“ Fuel rod pitch: P = 12.6 mm โ€“ Spacer grid thickness: tspac = 1 mm โ€“ End fitting thickness: tfit = 1.5 mm Thermodynamic Properties: kg

โ€“ Water density: ๐œŒ๐œŒ = 720 m3

โ€“ Water viscosity: ฮผ = 91 ฮผPa s Gravitational Pressure Drop The gravitational pressure drop can be calculated as

Frictional Pressure Drop

โˆ†๐‘ƒ๐‘ƒ = ๐œŒ๐œŒ๐œŒ๐œŒ๐œŒ๐œŒ = 27.38 kPa

(1)

Before calculating the frictional pressure drop, some other parameters need to be determined. The mass flow rate through a unit cell (interior sub-channel), containing just 1 fuel rod is calculated to be, ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ kg (2) ๐‘š๐‘šฬ‡ = = 0.343 ๐‘›๐‘›๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ s The flow area through this unit cell is ๐ด๐ด๐‘“๐‘“ = ๐‘ƒ๐‘ƒ2 โˆ’

๐œ‹๐œ‹ 2 ๐‘‘๐‘‘ = 8.788 ร— 10โˆ’5 m2 4 ๐‘๐‘๐‘๐‘

(3)

The mass flux through the unit cell can now be determined as ๐บ๐บ =

๐‘š๐‘šฬ‡ kg = 3.903 ร— 103 2 ๐ด๐ด๐‘“๐‘“ m s

(4)

The equivalent hydraulic diameter of the unit cell is ๐ท๐ท๐‘’๐‘’ =

4๐ด๐ด๐‘“๐‘“ ๐œ‹๐œ‹๐‘‘๐‘‘๐‘๐‘๐‘๐‘ 229

(5)

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

The Reynolds number can now be determined to be ๐‘…๐‘…๐‘’๐‘’ =

๐บ๐บ๐ท๐ท๐‘’๐‘’ = 5.052 ร— 105 ๐œ‡๐œ‡

(6)

Since we are dealing with a rod bundle geometry, we may use the Cheng and Todreas correlation (Equation 9.105) to determine the turbulent friction factor. First we must select the appropriate parameters in the correlation from Table 9.5b. In this problem we have square geometry, turbulent flow in an interior channel and a P/D ratio of 1.326. Therefore, the parameters are a = 0.1339, b1 = 0.09059, and b2 = โˆ’0.09926. We may now calculate the turbulent friction factor, and

โ€ฒ ๐ถ๐ถ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ = ๐‘Ž๐‘Ž + ๐‘๐‘1 (๐‘ƒ๐‘ƒโ„๐ท๐ท โˆ’ 1) + ๐‘๐‘2 (๐‘ƒ๐‘ƒโ„๐ท๐ท โˆ’ 1)2 = 0.153

๐‘“๐‘“๐‘–๐‘–๐‘–๐‘– =

โ€ฒ ๐ถ๐ถ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ โ€ฒ )0.18 = 0.01438 (๐‘…๐‘…๐‘’๐‘’๐‘–๐‘–๐‘–๐‘–

(7) (8)

The frictional pressure drop can now be determine to be

๐ฟ๐ฟ ๐บ๐บ 2 = 50.06 kPa โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“ = ๐‘“๐‘“๐‘–๐‘–๐‘–๐‘– ๐ท๐ท๐‘’๐‘’ 2๐œŒ๐œŒ

(9)

Entrance and Exit Pressure Drop

The pressure losses at the entrance and exit of the fuel bundle develop from acceleration and form losses. Combining these losses we can derive that the entrance and exit pressure drops are

and

โˆ†๐‘ƒ๐‘ƒ๐‘–๐‘–๐‘–๐‘– = (๐พ๐พ๐‘–๐‘– + 1)

๐บ๐บ 2 2๐œŒ๐œŒ

๐บ๐บ 2 โˆ†๐‘ƒ๐‘ƒ๐‘’๐‘’๐‘’๐‘’ = (๐พ๐พ๐‘’๐‘’ โˆ’ 1) 2๐œŒ๐œŒ

(10)

(11)

One can look up the form loss coefficients for expansions and contractions in any fluid mechanics textbook. Assuming that the plena areas are much greater than the flow are in the rod bundles, we can determine that the inlet and exit form loss coefficients are Ki = 0.5 and Ke = 1.0. Therefore, the resulting pressure drops are (12) โˆ†๐‘ƒ๐‘ƒ๐‘–๐‘–๐‘–๐‘– = 15.87 kPa and โˆ†Pex = 0 kPa Pressure Loss Due to Spacers

The pressure loss at spacers can be determined using the De Stordeur model modified by Rehme (Equation 9.111), โˆ†๐‘ƒ๐‘ƒ๐‘ ๐‘  = ๐‘๐‘๐‘ ๐‘  ๐ถ๐ถ๐œ๐œ ๏ฟฝ

๐œŒ๐œŒ๐œŒ๐œŒ 2 ๐ด๐ด๐‘ ๐‘  2 ๏ฟฝ๏ฟฝ ๏ฟฝ 2 ๐ด๐ด๐œ๐œ

(13)

For our case, the number of spacers is Ns = 5, the modified drag coefficient is Cฯ… = 6.5 and the average bundle fluid velocity can be derived from the mass flux to be ฯ… = 5.421 m/s. The

230

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

unrestricted flow area away from the spacer is equivalent to the already derived flow area, Aฯ… = Af = 8.788 ร— 10โˆ’5 m2. Finally, the projected frontal area of the spacer can be calculated from Example 9.9 to be 2

๐ด๐ด๐‘ ๐‘  = ๐‘ƒ๐‘ƒ2 โˆ’ ๏ฟฝ๐‘ƒ๐‘ƒ โˆ’ ๐‘ก๐‘ก๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ = 2.42 ร— 10โˆ’5 m2

(14)

โˆ†๐‘ƒ๐‘ƒ๐‘ ๐‘  = 26.07 kPa

(15)

Therefore, the pressure loss due to the spacers can be calculated as Pressure Loss Due to End Fittings

This calculation follows the same procedure as the pressure loss due to spacers, ๐œŒ๐œŒ๐œŒ๐œŒ 2 ๐ด๐ด๐‘ ๐‘  2 โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ = ๐‘๐‘๐‘“๐‘“ ๐ถ๐ถ๐œ๐œ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ 2 ๐ด๐ด๐œ๐œ

(16)

However, in this calculation, the number of end fittings is Nf = 2, and the projected frontal area of the fittings is As = 3.555 ร— 10โˆ’5 m2. Therefore, the pressure drop over the fittings is (17)

โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ = 22.51 kPa

Total Pressure Drop

The total pressure drop is the summation of all of the individual pressure losses, โˆ†๐‘ƒ๐‘ƒ๐‘‡๐‘‡ = โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘” + โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“ + โˆ†๐‘ƒ๐‘ƒ๐‘–๐‘–๐‘–๐‘– + โˆ†๐‘ƒ๐‘ƒ๐‘’๐‘’๐‘’๐‘’ + โˆ†๐‘ƒ๐‘ƒ๐‘ ๐‘  + โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ = 141.9 kPa

(18)

PROBLEM 9.7 QUESTION

Comparison of Laminar and Turbulent Friction Factors of Water and Sodium Heat Exchangers (Sections 9.4 and 9.6) Consider square arrays of vertical tubes utilized in two applications: a recirculation PWR steam generator and an intermediate heat exchanger for SFR service. In each case primary system liquid flows through the tubes, and secondary system liquid flows outside the tubes within the shell side. The operating and geometric conditions of both units are given in Table 9.9. Assume the wall heat flux is axially constant. TABLE 9.9 Operating and Geometric Conditions Parameter

PWR Steam Generator

SFR Intermediate Heat Exchanger

System characteristics Primary fluid

Water

Sodium

Secondary fluid

Water

Sodium

P/D

1.5

1.5

231

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

D (cm)

1.0

1.0

Pressure (MPa)

5.5

0.202

Temperature (ยฐC)

270

480

Density (kg/m3)

767.9

837.1

Thermal conductivity (W/m ยฐC)

0.581

Viscosity (kg/m s)

1.0 ร— 10

Heat capacity (J/kg K)

4990.0

Nominal shell-side properties

88.93 โˆ’4

2.92 ร— 10โˆ’4 1195.8

For the shell side of the tube array in each application answer the following questions: 1. Find the friction factor (f) for fully developed laminar flow at ReDe = 103. 2. Find the friction factor (f) for fully developed turbulent flow at ReDe = 105. 3. Can either of the above friction factors be found from the circular tube geometry using the equivalent diameter concept? Demonstrate and explain. 4. What length is needed to achieve fully developed laminar flow? 5. What length is needed to achieve fully developed turbulent flow? Answers: 1. f = 0.1198 2. f = 0.0194 3. Only for turbulent case 4. Cannot be determined 5. z = 0.466 m to 0.746 m

PROBLEM 9.7 SOLUTION Comparison of Laminar and Turbulent Friction Factors of Water and Sodium Heat Exchangers (Sections 9.4 and 9.6) Consider square arrays of vertical tubes utilized in two applications: a recirculation PWR steam generator and an intermediate heat exchanger for SFR service. In each case primary system liquid flows through the tubes, and secondary system liquid flows outside the tubes within the shell side. The following are given in Table 9.8, where a subscript โ€˜Pโ€™ denotes PWR and โ€˜Sโ€™ denotes SFR: โ€“ = diameter, DP 1.0 = cm and DS 1.0 cm

232

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

โ€“

pitch-to-diameter= ratio, P / DP 1.5 = and P / DS 1.5

โ€“ density, ฯ P 767.9 kg/m3 and ฯ S 837.1 kg/m3 = = โ€“

viscosity, ยต P = 1.0 ร—10โˆ’4 Pa s and ยต S = 2.92 ร—10โˆ’4 Pa s

Find the friction factor for fully developed Laminar flow: The Reynolds number is (1)

Re1 = 103

The friction factor for an array of tubes on the shell side is given as ๐‘“๐‘“1 =

๐ถ๐ถ๐ฟ๐ฟ Re1

(2)

For a square array with a pitch-to diameter ratio of 1.5, the coefficients are Therefore,

๐‘Ž๐‘Ž = 35.55 ๐‘๐‘1 = 263.7 ๐‘๐‘2 = โˆ’190.2

(3)

๐ถ๐ถ๐ฟ๐ฟ = ๐‘Ž๐‘Ž + ๐‘๐‘1 (๐‘ƒ๐‘ƒโ„๐ท๐ท โˆ’ 1) + ๐‘๐‘2 (๐‘ƒ๐‘ƒโ„๐ท๐ท โˆ’ 1)2 = 119.85

(4)

For both heat exchangers, the friction factor is ๐‘“๐‘“1 =

๐ถ๐ถ๐ฟ๐ฟ = 0.1198 Re1

(5)

Find the friction factor for fully developed turbulent flow: The Reynolds number is (6)

Re2 = 105

For a square array with a pitch-to diameter ratio of 1.5, the coefficients are Therefore,

๐‘๐‘2 = โˆ’0.09926

(7)

๐ถ๐ถ๐‘‡๐‘‡ = ๐‘Ž๐‘Ž + ๐‘๐‘1 (๐‘ƒ๐‘ƒโ„๐ท๐ท โˆ’ 1) + ๐‘๐‘2 (๐‘ƒ๐‘ƒโ„๐ท๐ท โˆ’ 1)2 = 0.154

(8)

๐‘Ž๐‘Ž = 0.1339

๐‘๐‘1 = 0.09059

For both heat exchangers, the friction factor is ๐‘“๐‘“2 =

๐ถ๐ถ๐‘‡๐‘‡ = 0.0194 Re0.18 2

(9)

Can either of the above friction factors be found from the circular tube geometry using the equivalent diameter concept? Only for the turbulent case. What is the length needed to achieve fully developed laminar flow? This cannot be determined. What length is needed to achieve fully developed turbulent flow? This hydrodynamic developing length ranges from 25 to 40 hydraulic diameters. Both heat

233

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

exchangers have the same hydraulic diameters since there geometric characteristics are similar. The flow area is ๐œ‹๐œ‹ ๐ด๐ด = [(๐‘ƒ๐‘ƒโ„๐ท๐ท ) ร— ๐ท๐ท]2 โˆ’ ๐ท๐ท2 = 1.465 ร— 10โˆ’4 m2 (10) 4 The hydraulic diameter is therefore

๐ท๐ท๐‘’๐‘’ =

4๐ด๐ด = 0.019 m ๐œ‹๐œ‹๐œ‹๐œ‹

(11)

The developing region therefore ranges from to

๐‘ง๐‘ง = 25๐ท๐ท๐‘’๐‘’ = 0.466 m

(12)

๐‘ง๐‘ง = 40๐ท๐ท๐‘’๐‘’ = 0.746 m

(13)

PROBLEM 9.8 QUESTION Using the UCTD Correlation to Calculate the Pressure Drop for WireWrapped and Bare Rod Bundles (Sections 9.6.2.2) The preliminary design parameters for Indiaโ€™s PFBR 217-pin hexagonal wire-wrapped rod bundle are D = 6.6 mm, Dw = 1.65 mm, P/D =1.255, W/D= 1.255, and H/D = 30.30. Several experiments were performed using this set of geometrical data. The results obtained span laminar, transition and turbulent flow regimes. (Chun and Seo, 2001; Padmakumar et al., 2017) 1. Using the UCDT correlation calculate the pressure drop over one lead length for a Reynolds number of 10000, assuming the working fluid is water at room temperature. 2. What will be the result if no wire is used in the bundle, i.e., bare rod bundle? References Chun, M.H. and Seo, K.W., 2001. An experimental study and assessment of existing friction factor correlations for wire-wrapped fuel assemblies. Annals of Nuclear Energy, 28, 1683โ€“1695. Padmakumar, G., Velusamy, K., Prasad, B.V.S.S., Rajan, K.K., 2017. Hydraulic characteristics of a fast reactor fuel subassembly: An experimental investigation. Annals of Nuclear Energy, 102, 255-267.

234

rev 112420


Chapter 9 - Single-Phase Fluid Mechanics

PROBLEM 9.8 SOLUTION Using the UCTD Correlation to Calculate the Pressure Drop for WireWrapped and Bare Rod Bundles (Sections 9.6.2.2) Part 1 For the wire wrapped rod bundle a. For Re=10000, first determine the flow regime For this bundle, using Equations 9.118a and 9.118b respectively, RebL=320(100.255)=576 RebT=1000(100.7(0.255))=150834 Therefore the flow, at Re=10000, is in the transition regime. b. In the transition region, the formula for the bundle friction is fb = (CfbL/Reb)(1-ฮจb )1/3(1-ฮจb7)+( CfbT/Reb0.18) ฮจb1/3

(9.117c)

ฮจb = log(Reb/RebL)/log(RebT/RebL) for i=b CfbL = Deb(โˆ‘3i=1 (NiAi/Ab)(Dei/Deb)(Dei/CfiL))-1

(9.118c) (9.119a)

where

c.

CfbT = Deb(โˆ‘3i=1 (NiAi/Ab)(Dei/Deb)0.0989(Dei/CfiT)0.54945)-1.82

(9.119b)

235

rev 112420

Use the equations defined in UCTD given in Section 9.6.2.2 and the website in the next paragraph for calculation using the UCTD correlation as specified below, obtain the friction factor as 0.036 for Reb=10,000. d. The public website for calculating results using the UCTD correlation can be found by searching โ€œupgraded Cheng and Todreasโ€ or from the site http://wp.me/p61TQ-tI. Download the program directory, double click the file โ€œproject1.exeโ€ the following window will show.


Chapter 9 - Single-Phase Fluid Mechanics

On the left side, input the required values. The first input is number of rings, and in this case it is 9 (for 217 pin). Input the rest values as specified. All parameters can be found in the output window. e. The pressure drop over one lead length H can be calculated from L

ฯV2

โˆ†๐‘ƒ๐‘ƒ = f ๏ฟฝDe๏ฟฝ 2 , where

f = 0.036

L = ***H = 30.3(6.6) =200 mm De = wire-wrapped rod bundle equivalent hydraulic diameter = 4Ab/Pwb = 4(5.583 ร—10-3 m2 ) / 6.0566 m = 3.682 mm ฮผ = water viscosity =101ร—10-5 Pa s V = 104ฮผ/(ฯDe)=104(101ร—10-5 Pa s) / (1000 kg/m3 )(3.683 ร— 10-3 m) = 2.74 m/s Therefore, L

ฯV2

โˆ†๐‘ƒ๐‘ƒ = f(D ) 2 = 0.036(200/3.682)[1000(2.74)2 / 2] = 7.34 kPa ๐‘’๐‘’

Part 2 For the bare rod bundle f = 0.030

De = 4A bโ€ฒ / Pwbโ€ฒ = 4(6.051ร— 10โˆ’3 m 2 ) / 4.932 m = 4.908 mm

L = 200 mm V=104ฮผ/(ฯDe) =104(101ร—10-5 Pa s) / (1000 kg/m3 )(4.908ร—10-3 m) = 2.05 m/s L

ฯV2

Yielding โˆ†๐‘ƒ๐‘ƒ = f ๏ฟฝD ๏ฟฝ 2 = 0.030(200/4.908)[1000(2.05)2 / 2] = 2.57 kPa ๐‘’๐‘’

236

rev 112420


Chapter 10 Single-Phase Heat Transfer Contents Problem 10.1

Derivation of Nusselt number for laminar flow in rectangular geometry ..... 238

Problem 10.2

Derivation of Nusselt number for laminar flow in circular and flat plate geometry ........................................................................................................ 241

Problem 10.3

Derivation of Nusselt number for laminar flow in an equivalent annulus ..... 254

Problem 10.4

Estimating the effect of turbulence on heat transfer in SFBR fuel bundles ... 256

Problem 10.5

Reynolds analogy and equivalent diameter problem ..................................... 259

Problem 10.6

Determining the temperature of the primary side of a steam generator ........ 261

Problem 10.7

Comparison of heat transfer characteristics of water and helium .................. 265

Problem 10.8

Hydraulic and thermal analysis of the Emergency Core Spray System in a BWR ......................................................................................................................... 267

Problem 10.9

Coolant selection for an advanced high-temperature reactor ........................ 272

Problem 10.10 Effect of geometry on single phase heat transfer in straight tubes ................ 277

237

rev 112420


Chapter 10 - Single-Phase Heat Transfer

PROBLEM 10.1 QUESTION Derivation of Nusselt Number for Laminar Flow in Rectangular Geometry Prove that the asymptotic Nusselt number for flow of a coolant with constant properties between two flat plates of infinite width, heated with uniform heat flux on both walls, is 8.235 for laminar flow (i.e., parabolic velocity distribution) and 12 for slug flow (i.e., uniform velocity distribution).

PROBLEM 10.1 SOLUTION Derivation of Nusselt Number for Laminar Flow in Rectangular Geometry Prove that the asymptotic Nusselt number for flow of a coolant with constant properties between two flat plates of infinite width, heated with uniform heat flux on both walls, is 8.235 for laminar flow (i.e., parabolic velocity distribution) and 12 for slug flow (i.e., uniform velocity distribution). For laminar flow in rectangular geometry, the momentum equations in the x and y directions are respectively,

The boundary conditions are

๐œ•๐œ• 2 ๐œ๐œ๐‘ฅ๐‘ฅ ๐œ•๐œ•๐œ•๐œ• + ๐œ‡๐œ‡ =0 ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• 2 ๐œ•๐œ•๐œ•๐œ• =0 ๐œ•๐œ•๐œ•๐œ•

at y = y0 (wall location) and

๐œ๐œ๐‘ฅ๐‘ฅ = 0

โˆ’

๐œ•๐œ•๐œ•๐œ•๐‘ฅ๐‘ฅ =0 ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•

(1) (2)

(3)

(4) ๐œ•๐œ•๐œ•๐œ•

at y = 0. Since P is not a function of y, then ๐œ•๐œ•๐œ•๐œ• = ๐œ•๐œ•๐œ•๐œ• , integrating Equation (1) we get 1 ๐œ•๐œ•๐œ•๐œ•๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ + ๐ถ๐ถ1 = ๐œ‡๐œ‡ ๐œ•๐œ•๐œ•๐œ•

(5)

By the boundary condition in Equation (4), C1 = 0. Integrating Equation (5) again, 1 ๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๐‘ฆ๐‘ฆ + ๐ถ๐ถ2 = ๐œ๐œ๐‘ฅ๐‘ฅ 2๐œ‡๐œ‡ ๐‘‘๐‘‘๐‘‘๐‘‘

(6)

1 ๐‘‘๐‘‘๐‘‘๐‘‘

By the boundary condition in Equation (3), ๐ถ๐ถ2 = โˆ’ 2๐œ‡๐œ‡ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ02 , ๐œ๐œ๐‘ฅ๐‘ฅ =

1 ๐‘‘๐‘‘๐‘‘๐‘‘ 2 (๐‘ฆ๐‘ฆ โˆ’ ๐‘ฆ๐‘ฆ02 ) 2๐œ‡๐œ‡ ๐‘‘๐‘‘๐‘‘๐‘‘ 238

(7)

rev 112420


Chapter 10 - Single-Phase Heat Transfer

The average velocity can be determined to be

and therefore)

๐œ๐œ๐‘š๐‘š =

1 ๐‘ฆ๐‘ฆ0 1 ๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๐‘ฆ๐‘ฆ 2 ๐‘‘๐‘‘๐‘‘๐‘‘ (๐‘ฆ๐‘ฆ โˆ’ ๐‘ฆ๐‘ฆ02 )๐‘‘๐‘‘๐‘‘๐‘‘ = โˆ’ 0 ๏ฟฝ ๐‘ฆ๐‘ฆ0 0 2๐œ‡๐œ‡ ๐‘‘๐‘‘๐‘‘๐‘‘ 3๐œ‡๐œ‡ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ 3๐œ‡๐œ‡ = โˆ’ 2 ๐œ๐œ๐‘š๐‘š ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ0

and

3 ๐‘ฆ๐‘ฆ 2 ๐œ๐œ๐‘ฅ๐‘ฅ = ๐œ๐œ๐‘š๐‘š ๏ฟฝ1 โˆ’ ๏ฟฝ ๏ฟฝ ๏ฟฝ 2 ๐‘ฆ๐‘ฆ0

(8)

(9)

(10)

The general form of the energy equation is ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘

๐ท๐ท๐ท๐ท ๐ท๐ท๐ท๐ท = ๐‘˜๐‘˜โˆ‡2 ๐‘‡๐‘‡ + ๐‘ž๐‘ž โ€ด + ๐›ฝ๐›ฝ๐›ฝ๐›ฝ +ฮฆ ๐ท๐ท๐ท๐ท ๐ท๐ท๐ท๐ท

(11)

We make following assumptions:

1. The flow is incompressible and fully developed 2. The flow is inviscid and steady state 3. Neglect axial heat condition and no heat generated in the fluid so that the energy equation becomes

For constant wall heat flux

๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ๐œ๐‘ฅ๐‘ฅ

๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ• 2 ๐‘‡๐‘‡ = ๐‘˜๐‘˜ 2 ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•

๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•๐‘š๐‘š = ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•

(12)

(13)

is not a function of y. Substituting Equation (10) into Equation (12) and integrating twice, we get 3 ๐œ•๐œ•๐œ•๐œ• ๐‘ฆ๐‘ฆ 2 ๐‘ฆ๐‘ฆ 4 ๐œŒ๐œŒ๐œŒ๐œŒ ๐œ๐œ ๏ฟฝ โˆ’ ๏ฟฝ = ๐‘˜๐‘˜๐‘˜๐‘˜ + ๐ถ๐ถ1 ๐‘ฆ๐‘ฆ + ๐ถ๐ถ2 2 ๐‘๐‘ ๐‘š๐‘š ๐œ•๐œ•๐œ•๐œ• 2 12๐‘ฆ๐‘ฆ02

(14)

The boundary conditions are at y = 0,

and at y = y0,

๐œ•๐œ•๐œ•๐œ• =0 ๐œ•๐œ•๐œ•๐œ• ๐‘‡๐‘‡ = ๐‘‡๐‘‡๐‘ค๐‘ค (๐‘ฅ๐‘ฅ)

(15)

(16)

Substituting the boundary conditions into the energy equation, we find

239

rev 112420


Chapter 10 - Single-Phase Heat Transfer

(17)

๐ถ๐ถ1 = 0

and ๐ถ๐ถ2 =

Therefore,

๐‘‡๐‘‡ โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค =

3 ๐œ•๐œ•๐œ•๐œ• 5 2 ๏ฟฝ ๐‘ฆ๐‘ฆ ๏ฟฝ โˆ’ ๐‘˜๐‘˜๐‘˜๐‘˜๐‘ค๐‘ค ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ๐œ๐‘š๐‘š 4 ๐œ•๐œ•๐œ•๐œ• 6 0

3 ๐œ•๐œ•๐œ•๐œ• 2 ๐‘ฆ๐‘ฆ 4 5 ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ๐œ๐‘š๐‘š ๏ฟฝ๐‘ฆ๐‘ฆ โˆ’ 2 โˆ’ ๐‘ฆ๐‘ฆ02 ๏ฟฝ 4๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ• 6๐‘ฆ๐‘ฆ0 6

(18)

(19)

The average temperature is obtained by

๐‘ฆ๐‘ฆ0 3 ๐‘ฆ๐‘ฆ 2 3 ๐œ•๐œ•๐œ•๐œ• 2 ๐‘ฆ๐‘ฆ 4 5 2 ๐‘ฆ๐‘ฆ0 ๐œŒ๐œŒ ๐œ๐œ ๏ฟฝ1 โˆ’ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๐œŒ๐œŒ๐œŒ๐œŒ ๐œ๐œ ๏ฟฝ๐‘ฆ๐‘ฆ โˆ’ โˆ’ ๐‘ฆ๐‘ฆ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ โˆซ ๐‘š๐‘š ๐‘๐‘ ๐‘š๐‘š 2 0 (๐‘‡๐‘‡ )๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๐‘ฆ๐‘ฆ0 4๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ• โˆซ0 ๐œŒ๐œŒ๐œŒ๐œŒ๐‘ฅ๐‘ฅ โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค 6๐‘ฆ๐‘ฆ0 6 0 ๐‘‡๐‘‡๐‘š๐‘š โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค = = ๐‘ฆ๐‘ฆ0 ๐‘ฆ๐‘ฆ0 3 ๐‘ฆ๐‘ฆ 2 โˆซ0 ๐œŒ๐œŒ๐œŒ๐œŒ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘‘๐‘‘ โˆซ0 ๐œŒ๐œŒ 2 ๐œ๐œ๐‘š๐‘š ๏ฟฝ1 โˆ’ ๏ฟฝ๐‘ฆ๐‘ฆ ๏ฟฝ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ 0 ๐œ•๐œ•๐œ•๐œ•

โ€ณ Since ๐‘ž๐‘ž๐‘ค๐‘ค = โˆ’๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ• ๏ฟฝ

๐‘ฆ๐‘ฆ=๐‘ฆ๐‘ฆ0

temperature gradient is

=โˆ’

17 ๐œ•๐œ•๐œ•๐œ• 2 ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ๐œ๐‘š๐‘š ๐‘ฆ๐‘ฆ 35 ๐œ•๐œ•๐œ•๐œ• ๐ท๐ท

(20)

๐œ•๐œ•๐œ•๐œ•

= โˆ’๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ๐œ๐‘š๐‘š ๐œ•๐œ•๐œ•๐œ• ๐‘ฆ๐‘ฆ0 (from integrating energy equation once) the โ€ณ ๐œ•๐œ•๐œ•๐œ•๐‘š๐‘š ๐‘ž๐‘ž๐‘ค๐‘ค 1 =โˆ’ ๐œ•๐œ•๐œ•๐œ• ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ๐œ๐‘š๐‘š ๐‘ฆ๐‘ฆ0

(21)

Combining Equations (20) and (21)

๐‘‡๐‘‡๐‘š๐‘š โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค =

Since the heat transfer coefficient is

โ„=

and the Nusselt number is

the Nusselt number is therefore

โ€ณ 17 ๐‘ž๐‘ž๐‘ค๐‘ค ๐‘ฆ๐‘ฆ0 35 ๐‘˜๐‘˜

โ€ณ ๐‘ž๐‘ž๐‘ค๐‘ค ๐‘‡๐‘‡๐‘š๐‘š โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค

Nu =

โ„Ž๐ท๐ท๐‘’๐‘’ ๐‘˜๐‘˜

โ€ณ ๐‘ž๐‘ž๐‘ค๐‘ค 4๐‘ฆ๐‘ฆ0 4(35) Nu = = = 8.235 ๐‘‡๐‘‡๐‘š๐‘š โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค ๐‘˜๐‘˜ 17

(22)

(23)

(24)

(25)

Note that the hydraulic diameter is De = 4y0. For slug flow, ฯ…m = ฯ…x then Equation (12) becomes

240

rev 112420


Chapter 10 - Single-Phase Heat Transfer

๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ• 2 ๐‘‡๐‘‡ ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ๐œ๐‘š๐‘š = ๐‘˜๐‘˜ 2 ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•

After integrating twice,

๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ๐œ๐‘š๐‘š

๐œ•๐œ•๐œ•๐œ• ๐‘ฆ๐‘ฆ 2 = ๐‘˜๐‘˜๐‘˜๐‘˜ + ๐ถ๐ถ1 ๐‘ฆ๐‘ฆ + ๐ถ๐ถ2 ๐œ•๐œ•๐œ•๐œ• 2

(26)

(27)

Using the same boundary conditions from Equations (15) and (16), ๐ถ๐ถ1 = 0

and

๐œ•๐œ•๐œ•๐œ• ๐‘ฆ๐‘ฆ02 ๐ถ๐ถ2 = ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ๐œ๐‘š๐‘š โˆ’ ๐‘˜๐‘˜๐‘˜๐‘˜๐‘ค๐‘ค (๐‘ฅ๐‘ฅ) ๐œ•๐œ•๐œ•๐œ• 2

Thus,

๐‘‡๐‘‡ โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค

The average temperature is ๐‘‡๐‘‡๐‘š๐‘š โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค =

๐‘ฆ๐‘ฆ

1 ๐œ•๐œ•๐œ•๐œ• 2 (๐‘ฆ๐‘ฆ โˆ’ ๐‘ฆ๐‘ฆ02 ) ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ๐œ๐‘š๐‘š 2๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ•

0 โˆซ0 ๐œŒ๐œŒ๐œŒ๐œŒ๐‘ฅ๐‘ฅ (๐‘‡๐‘‡ โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค )๐‘‘๐‘‘๐‘‘๐‘‘

๐‘ฆ๐‘ฆ

0 โˆซ0 ๐œŒ๐œŒ๐œŒ๐œŒ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘‘๐‘‘

๐‘ฆ๐‘ฆ0 1 ๐œ•๐œ•๐œ•๐œ• โˆซ0 ๐œŒ๐œŒ๐œŒ๐œŒ๐‘š๐‘š 2๐‘˜๐‘˜ ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ๐œ๐‘š๐‘š ๐œ•๐œ•๐œ•๐œ• (๐‘ฆ๐‘ฆ 2 โˆ’ ๐‘ฆ๐‘ฆ02 )๐‘‘๐‘‘๐‘‘๐‘‘ = ๐‘ฆ๐‘ฆ0 โˆซ0 ๐œŒ๐œŒ๐œŒ๐œŒ๐‘š๐‘š ๐‘‘๐‘‘๐‘‘๐‘‘

๐‘‡๐‘‡๐‘š๐‘š โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค = โˆ’

Combining Equations (21) and (32)

so that,

1 ๐œ•๐œ•๐œ•๐œ• 2 ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ๐œ๐‘š๐‘š ๐‘ฆ๐‘ฆ 3๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ• 0

โ€ณ ๐‘ž๐‘ž๐‘ค๐‘ค ๐‘ฆ๐‘ฆ0 ๐‘‡๐‘‡๐‘š๐‘š โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค = 3๐‘˜๐‘˜ โ€ณ (4๐‘ฆ๐‘ฆ ) โ„๐ท๐ท๐‘’๐‘’ ๐‘ž๐‘ž๐‘ค๐‘ค 0 Nu = = โ€ณ = 12 ๐‘ž๐‘ž ๐‘ฆ๐‘ฆ ๐‘˜๐‘˜ ๐‘ค๐‘ค 0 ๐‘˜๐‘˜ 3๐‘˜๐‘˜

(28)

(29)

(30)

(31)

(32)

(33)

(34)

PROBLEM 10.2 QUESTION

Derivation of Nusselt Number for Laminar Flow in Circular and Flat Plate Geometry (Section 10.2) Show that for a round tube, uniform wall temperature, and slug velocity conditions, the asymptotic Nusselt number for a round tube is 5.783, whereas for flow between two flat plates, it is 9.870.

241

rev 112420


Chapter 10 - Single-Phase Heat Transfer

PROBLEM 10.2 SOLUTION Derivation of Nusselt Number for Laminar Flow in Circular and Flat Plate Geometry (Section 10.2) Show that for a round tube, uniform wall temperature, and slug velocity conditions, the asymptotic Nusselt number for a round tube is 5.783, whereas for flow between two flat plates, it is 9.87. Circular Tube To solve this problem, two methods will be considered. The first is an analytic iterative method and the second is a closed form approach to solve the differential equations directly. Iterative Method ITERATION 1 If the wall temperature is axially constant, Equation 10.16 states that ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ ๐œ•๐œ•๐œ•๐œ•๐‘š๐‘š = ๐‘“๐‘“ ๏ฟฝ ๏ฟฝ ; ๐‘‡๐‘‡๐‘ค๐‘ค (๐‘ง๐‘ง) = constant ๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘… ๐œ•๐œ•๐œ•๐œ•

where

๐‘Ÿ๐‘Ÿ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡ ๐‘“๐‘“ ๏ฟฝ ๏ฟฝ = ๐‘…๐‘… ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š

(1)

(2)

according to Equation 10.14c. The energy equation is: ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ๐œ๐‘ง๐‘ง

๐œ•๐œ•๐œ•๐œ• 1 ๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• = ๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๏ฟฝ ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•

(3)

which follows from Equation 10.17 if axial heat conduction is neglected. For slug flow, ฯ…z = Vm, and thus ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐‘‰๐‘‰๐‘š๐‘š

๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) ๐œ•๐œ•๐œ•๐œ•๐‘š๐‘š 1 ๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• = ๏ฟฝ๐‘˜๐‘˜๐‘˜๐‘˜ ๏ฟฝ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•

(4)

We will solve this equation to obtain T(r) in an iterative method, First we will assume the same โ€ณ , or (from Equation 10.25) temperature profiles as for the case of uniform ๐‘ž๐‘ž๐‘ค๐‘ค 2๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 4 3๐‘…๐‘… 2 ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) = โˆ’ ๐‘‰๐‘‰ ๏ฟฝ โˆ’ โˆ’ ๏ฟฝ ๐‘˜๐‘˜ ๐‘š๐‘š ๐œ•๐œ•๐œ•๐œ• 4 16๐‘…๐‘… 2 16 ๐œ•๐œ•๐œ•๐œ•

๐œ•๐œ•๐œ•๐œ•

where for a uniform heat flux, ๐œ•๐œ•๐œ•๐œ• = ๐œ•๐œ•๐œ•๐œ•๐‘š๐‘š. Substituting this profile into Equation (4), ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐‘‰๐‘‰๐‘š๐‘š

โˆ’

(5)

2๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ•๐œ•๐œ•๐œ•๐‘š๐‘š ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 4 3๐‘…๐‘… 2 ๏ฟฝ โˆ’ ๏ฟฝ ๐‘‰๐‘‰๐‘š๐‘š โˆ’ 2 ๐œ•๐œ•๐œ•๐œ• 16 ๐œ•๐œ•๐œ•๐œ•๐‘š๐‘š 1 ๐œ•๐œ• ๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ• 4 16๐‘…๐‘… = ๏ฟฝ๐‘˜๐‘˜๐‘˜๐‘˜ ๏ฟฝ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•

(6)

We can rewrite the above equation so that

242

rev 112420


Chapter 10 - Single-Phase Heat Transfer

1 ๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 4 3๐‘…๐‘… 2 ๏ฟฝ๐‘Ÿ๐‘Ÿ ๏ฟฝ = ๐›ผ๐›ผ ๏ฟฝ โˆ’ โˆ’ ๏ฟฝ ๐‘Ÿ๐‘Ÿ ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• 4 16๐‘…๐‘… 2 16

where

(7)

2๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐œ•๐œ•๐œ•๐œ•๐‘š๐‘š ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ V๐‘š๐‘š ๐‘˜๐‘˜ V๐‘š๐‘š ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•๐‘š๐‘š โ‰  ๐‘“๐‘“(๐‘Ÿ๐‘Ÿ) ๐›ผ๐›ผ โ‰ก โˆ’ ๐‘˜๐‘˜ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š ๐œ•๐œ•๐œ•๐œ•

After multiplying each side by r and integration of Equation (7), we get ๐‘Ÿ๐‘Ÿ

๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ 4 3๐‘…๐‘… 2 ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 6 = ๐›ผ๐›ผ ๏ฟฝ โˆ’ + ๏ฟฝ + ๐ถ๐ถ1 ๐œ•๐œ•๐œ•๐œ• 16 32 96๐‘…๐‘… 2

After dividing both sides by r and a second integration, we get

๐‘Ÿ๐‘Ÿ 4 3๐‘…๐‘… 2 ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 6 ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) = ๐›ผ๐›ผ ๏ฟฝ โˆ’ โˆ’ ๏ฟฝ + ๐ถ๐ถ1 ln(๐‘Ÿ๐‘Ÿ) + ๐ถ๐ถ2 64 64 576๐‘…๐‘… 2

We can apply the following boundary conditions: โ€“ โ€“

๐œ•๐œ•๐œ•๐œ•

at ๐‘Ÿ๐‘Ÿ = 0 โŸถ ๐œ•๐œ•๐œ•๐œ• = 0 โŸน ๐ถ๐ถ1 = 0

19๐›ผ๐›ผ๐‘…๐‘… 4

at ๐‘Ÿ๐‘Ÿ = ๐‘…๐‘… โŸถ ๐‘‡๐‘‡(๐‘…๐‘…) = ๐‘‡๐‘‡๐‘ค๐‘ค โŸน ๐ถ๐ถ2 = ๐‘‡๐‘‡๐‘ค๐‘ค + 576

Therefore, the final form of the temperature profile is ๐‘Ÿ๐‘Ÿ 4 3๐‘…๐‘… 2 ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 6 19๐‘…๐‘… 4 ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) = โˆ’๐›ผ๐›ผ ๏ฟฝ โˆ’ โˆ’ + ๏ฟฝ 64 64 576๐‘…๐‘… 2 576

We can find the mean temperature with ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š =

๐‘…๐‘…

โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘‰๐‘‰๐‘š๐‘š ๏ฟฝ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ)๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘

The wall heat flux is given by

๐‘…๐‘…

โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘‰๐‘‰๐‘š๐‘š ๐‘‘๐‘‘๐‘‘๐‘‘

โ€ณ ๐‘ž๐‘ž๐‘ค๐‘ค = โ„(๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š ) = โˆ’๐‘˜๐‘˜

The partial derivative evaluated at the radius is

Solving for the heat transfer coefficient,

=โˆ’

11๐‘…๐‘… 4 ๐›ผ๐›ผ 768

๐œ•๐œ•๐œ•๐œ• ๏ฟฝ ๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘…

๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘… 3 ๐›ผ๐›ผ ๏ฟฝ = ๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘… 24

243

rev 112420


Chapter 10 - Single-Phase Heat Transfer

๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘… 3 ๐›ผ๐›ผ ๏ฟฝ ๏ฟฝ ๏ฟฝ 32๐‘˜๐‘˜ โˆ’๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘… 24 โ„= = = 11๐‘…๐‘… 4 ๐›ผ๐›ผ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š 11๐‘…๐‘… โˆ’ 768 โˆ’๐‘˜๐‘˜

The Nusselt number is given by

32๐‘˜๐‘˜ โ„Ž๐ท๐ท ๏ฟฝ11๐‘…๐‘… ๏ฟฝ (2๐‘…๐‘…) 64 Nu = = = = 5.818 ๐‘˜๐‘˜ ๐‘˜๐‘˜ 11

The temperature profile above will be used in the next iteration.

ITERATION 2 Starting from Equation (7), 1 ๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ 4 3๐‘…๐‘… 2 ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 6 19๐‘…๐‘… 4 ๏ฟฝ๐‘Ÿ๐‘Ÿ ๏ฟฝ = ๐›ผ๐›ผ ๏ฟฝโˆ’ + + โˆ’ ๏ฟฝ ๐‘Ÿ๐‘Ÿ ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• 64 64 576๐‘…๐‘… 2 576

(8)

After multiplying each side by r and integration of Equation (8), we get

๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ 4 3๐‘…๐‘… 2 ๐‘Ÿ๐‘Ÿ 4 19๐‘…๐‘… 4 ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 8 ๐‘Ÿ๐‘Ÿ = ๐›ผ๐›ผ ๏ฟฝโˆ’ โˆ’ + + ๏ฟฝ + ๐ถ๐ถ1 ๐œ•๐œ•๐œ•๐œ• 384 256 1152 4608๐‘…๐‘… 2

After dividing both sides by r and a second integration, we get

๐‘Ÿ๐‘Ÿ 6 3๐‘…๐‘… 2 ๐‘Ÿ๐‘Ÿ 4 19๐‘…๐‘… 4 ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 8 ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) = ๐›ผ๐›ผ ๏ฟฝ โˆ’ + โˆ’ ๏ฟฝ + ๐ถ๐ถ1 ln(๐‘Ÿ๐‘Ÿ) + ๐ถ๐ถ2 2304 1024 2304 36864๐‘…๐‘… 2

We can apply the following boundary conditions: ๐œ•๐œ•๐œ•๐œ•

โˆ’ at ๐‘Ÿ๐‘Ÿ = 0 โ†’ ๐œ•๐œ•๐œ•๐œ• = 0 โŸน ๐ถ๐ถ1 = 0

211๐‘…๐‘… 6 ๐›ผ๐›ผ

โˆ’ at ๐‘Ÿ๐‘Ÿ = ๐‘…๐‘… โ†’ ๐‘‡๐‘‡(๐‘…๐‘…) = ๐‘‡๐‘‡๐‘ค๐‘ค โŸน ๐ถ๐ถ2 = ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ 36864

Therefore, the final form of the temperature profile is ๐‘Ÿ๐‘Ÿ 6 3๐‘…๐‘… 2 ๐‘Ÿ๐‘Ÿ 4 19๐‘…๐‘… 4 ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 8 211๐‘…๐‘… 6 ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) = โˆ’๐›ผ๐›ผ ๏ฟฝ โˆ’ + โˆ’ โˆ’ ๏ฟฝ 2304 1024 2304 36864 36864

We can find the mean temperature with ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š =

The wall heat flux is given by

๐‘…๐‘…

โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘‰๐‘‰๐‘š๐‘š ๏ฟฝ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ)๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘…๐‘…

โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘‰๐‘‰๐‘š๐‘š ๐‘‘๐‘‘๐‘‘๐‘‘

โ€ฒโ€ฒ ๐‘ž๐‘ž๐‘ค๐‘ค = โ„(๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š ) = โˆ’๐‘˜๐‘˜

The partial derivative evaluated at the radius is

244

=

19๐‘…๐‘… 6 ๐›ผ๐›ผ 7680

๐œ•๐œ•๐œ•๐œ• ๏ฟฝ ๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘…

rev 112420


Chapter 10 - Single-Phase Heat Transfer

๐œ•๐œ•๐œ•๐œ• 11๐‘…๐‘… 5 ๐›ผ๐›ผ ๏ฟฝ =โˆ’ ๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘… 1536

Solving for the heat transfer coefficient,

๐œ•๐œ•๐œ•๐œ• 11๐‘…๐‘… 5 ๐›ผ๐›ผ ๏ฟฝ ๏ฟฝ ๏ฟฝ 55๐‘˜๐‘˜ โˆ’๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘… 1536 โ„= = = 19๐‘…๐‘… 6 ๐›ผ๐›ผ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š 19๐‘…๐‘… 7680 The Nusselt number is given by โˆ’๐‘˜๐‘˜

55๐‘˜๐‘˜ โ„๐ท๐ท ๏ฟฝ19๐‘…๐‘… ๏ฟฝ (2๐‘…๐‘…) 110 Nu = = = = 5.789 ๐‘˜๐‘˜ ๐‘˜๐‘˜ 19

ITERATION 3 Starting from Equation (7),

1 ๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ 6 3๐‘…๐‘… 2 ๐‘Ÿ๐‘Ÿ 4 19๐‘…๐‘… 4 ๐‘Ÿ๐‘Ÿ 2 ๐‘‡๐‘‡ 8 211๐‘…๐‘… 6 ๏ฟฝ๐‘Ÿ๐‘Ÿ ๏ฟฝ = ๐›ผ๐›ผ ๏ฟฝโˆ’ + โˆ’ + + ๏ฟฝ ๐‘Ÿ๐‘Ÿ ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• 2304 1024 2304 36864 36864

(9)

After multiplying each side by r and integration of Eq. (9), we get ๐‘Ÿ๐‘Ÿ

๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘… 2 ๐‘Ÿ๐‘Ÿ 6 ๐‘Ÿ๐‘Ÿ 8 19๐‘…๐‘… 4 ๐‘Ÿ๐‘Ÿ 4 211๐‘…๐‘… 6 ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 10 = ๐›ผ๐›ผ ๏ฟฝ โˆ’ โˆ’ โˆ’ + ๏ฟฝ + ๐ถ๐ถ1 ๐œ•๐œ•๐œ•๐œ• 2048 18432 9216 73728 368640๐‘…๐‘… 2

After dividing both sides by r and a second integration, we get

๐‘…๐‘… 2 ๐‘Ÿ๐‘Ÿ 6 ๐‘Ÿ๐‘Ÿ 8 19๐‘…๐‘… 4 ๐‘Ÿ๐‘Ÿ 4 211๐‘…๐‘… 6 ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 10 ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) = ๐›ผ๐›ผ ๏ฟฝ โˆ’ โˆ’ + + ๏ฟฝ + ๐ถ๐ถ1 ln(๐‘Ÿ๐‘Ÿ) + ๐ถ๐ถ2 12288 147456 36864 147456 3686400๐‘…๐‘… 2

We can apply the following boundary conditions: ๐œ•๐œ•๐œ•๐œ•

โˆ’ at ๐‘Ÿ๐‘Ÿ = 0 โ†’ ๐œ•๐œ•๐œ•๐œ• = 0 โŸน ๐ถ๐ถ1 = 0

1217๐‘…๐‘… 8 ๐›ผ๐›ผ

โˆ’ at ๐‘Ÿ๐‘Ÿ = ๐‘…๐‘… โ†’ ๐‘‡๐‘‡(๐‘…๐‘…) = ๐‘‡๐‘‡๐‘ค๐‘ค โŸน ๐ถ๐ถ2 = ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ 1228800

Therefore, the final form of the temperature profile is ๐‘…๐‘… 2 ๐‘Ÿ๐‘Ÿ 6 ๐‘Ÿ๐‘Ÿ 8 19๐‘…๐‘… 4 ๐‘Ÿ๐‘Ÿ 4 211๐‘…๐‘… 6 ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 10 1217๐‘…๐‘… 8 ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) = โˆ’๐›ผ๐›ผ ๏ฟฝ โˆ’ โˆ’ + + โˆ’ ๏ฟฝ 12288 147456 36864 147456 3686400๐‘…๐‘… 2 1228800

We can find the mean temperature with ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š =

The wall heat flux is given by

๐‘…๐‘…

โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘‰๐‘‰๐‘š๐‘š ๏ฟฝ๐‘‡๐‘‡๐‘š๐‘š โˆ’ ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ)๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘…๐‘…

โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘‰๐‘‰๐‘š๐‘š ๐‘‘๐‘‘๐‘‘๐‘‘

245

473๐‘…๐‘… 8 ๐›ผ๐›ผ = 1105920

rev 112420


Chapter 10 - Single-Phase Heat Transfer

โ€ฒโ€ฒ ๐‘ž๐‘ž๐‘ค๐‘ค = โ„(๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š ) = โˆ’๐‘˜๐‘˜

The partial derivative evaluated at the radius is

Solving for the heat transfer coefficient,

๐œ•๐œ•๐œ•๐œ• ๏ฟฝ ๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘…

๐œ•๐œ•๐œ•๐œ• 19๐‘…๐‘… 7 ๐›ผ๐›ผ ๏ฟฝ = ๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘… 15360

๐œ•๐œ•๐œ•๐œ• 19๐‘…๐‘… 7 ๐›ผ๐›ผ ๏ฟฝ ๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘… โˆ’๐‘˜๐‘˜ ๏ฟฝโˆ’ 15360 ๏ฟฝ 1368๐‘˜๐‘˜ = = โ„= 473๐‘…๐‘… 8 ๐›ผ๐›ผ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š 473๐‘…๐‘… 1105920 โˆ’๐‘˜๐‘˜

The Nusselt number is given by

1368๐‘˜๐‘˜ โ„๐ท๐ท ๏ฟฝ 473๐‘…๐‘… ๏ฟฝ (2๐‘…๐‘…) 2736 Nu = = = = 5.784 ๐‘˜๐‘˜ ๐‘˜๐‘˜ 473

ITERATION 4 Starting from Equation (7),

1 ๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘… 2 ๐‘Ÿ๐‘Ÿ 6 ๐‘Ÿ๐‘Ÿ 8 19๐‘…๐‘… 4 ๐‘Ÿ๐‘Ÿ 4 211๐‘…๐‘… 6 ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 10 1217๐‘…๐‘… 8 ๐›ผ๐›ผ ๏ฟฝ๐‘Ÿ๐‘Ÿ ๏ฟฝ = ๐›ผ๐›ผ ๏ฟฝโˆ’ + + โˆ’ โˆ’ + ๏ฟฝ ๐‘Ÿ๐‘Ÿ ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• 12288 147456 36864 147456 3686400๐‘…๐‘… 2 1228800

(10)

After multiplying each side by r and integration of Eq. (10), we get

๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ 10 ๐‘…๐‘… 2 ๐‘Ÿ๐‘Ÿ 8 19๐‘…๐‘… 4 ๐‘Ÿ๐‘Ÿ 6 211๐‘…๐‘… 6 ๐‘Ÿ๐‘Ÿ 4 1217๐‘…๐‘… 8 ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 12 ๐‘Ÿ๐‘Ÿ = ๐›ผ๐›ผ ๏ฟฝ โˆ’ + โˆ’ + โˆ’ ๏ฟฝ + ๐ถ๐ถ1 ๐œ•๐œ•๐œ•๐œ• 1474560 98304 221184 589824 2457600 44236800๐‘…๐‘… 2

After dividing both sides by r and a second integration, we get

๐‘Ÿ๐‘Ÿ 10 ๐‘…๐‘… 2 ๐‘Ÿ๐‘Ÿ 8 19๐‘…๐‘… 4 ๐‘Ÿ๐‘Ÿ 6 211๐‘…๐‘… 6 ๐‘Ÿ๐‘Ÿ 4 1217๐‘…๐‘… 8 ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 12 ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) = ๐›ผ๐›ผ ๏ฟฝ โˆ’ + โˆ’ + โˆ’ ๏ฟฝ 14745600 786432 1327104 2359296 4915200 53084๐‘…๐‘… 2 + ๐ถ๐ถ1 ln(๐‘Ÿ๐‘Ÿ) + ๐ถ๐ถ2

We can apply the following boundary conditions: ๐œ•๐œ•๐œ•๐œ•

โˆ’ at ๐‘Ÿ๐‘Ÿ = 0 โ†’ ๐œ•๐œ•๐œ•๐œ• = 0 โŸน ๐ถ๐ถ1 = 0

30307๐‘…๐‘… 10 ๐›ผ๐›ผ

โˆ’ at ๐‘Ÿ๐‘Ÿ = ๐‘…๐‘… โ†’ ๐‘‡๐‘‡(๐‘…๐‘…) = ๐‘‡๐‘‡๐‘ค๐‘ค โŸน ๐ถ๐ถ2 = ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ 176947200

Therefore, the final form of the temperature profile is

๐‘Ÿ๐‘Ÿ 10 ๐‘…๐‘… 2 ๐‘Ÿ๐‘Ÿ 8 19๐‘…๐‘… 4 ๐‘Ÿ๐‘Ÿ 6 211๐‘…๐‘… 6 ๐‘Ÿ๐‘Ÿ 4 1217๐‘…๐‘… 8 ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ 12 ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) = โˆ’๐›ผ๐›ผ ๏ฟฝ โˆ’ โˆ’ + + + 14745600 786432 1327104 2359296 4915200 3530841600๐‘…๐‘… 2 30307๐‘…๐‘…10 โˆ’ ๏ฟฝ 176947200

246

rev 112420


Chapter 10 - Single-Phase Heat Transfer

We can find the mean temperature with ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š =

๐‘…๐‘…

โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘‰๐‘‰๐‘š๐‘š ๏ฟฝ๐‘‡๐‘‡๐‘š๐‘š โˆ’ ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ)๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘…๐‘…

โˆซ0 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘‰๐‘‰๐‘š๐‘š ๐‘‘๐‘‘๐‘‘๐‘‘

The wall heat flux is given by

โ€ฒโ€ฒ ๐‘ž๐‘ž๐‘ค๐‘ค = โ„(๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š ) = โˆ’๐‘˜๐‘˜

The partial derivative evaluated at the radius is

๐œ•๐œ•๐œ•๐œ• 473๐‘…๐‘… 9 ๐›ผ๐›ผ ๏ฟฝ = ๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘… 2211840

=

299๐‘…๐‘…10 ๐›ผ๐›ผ 3096576

๐œ•๐œ•๐œ•๐œ• ๏ฟฝ ๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘…

Solving for the heat transfer coefficient,

๐œ•๐œ•๐œ•๐œ• 473๐‘…๐‘… 9 ๐›ผ๐›ผ ๏ฟฝ ๏ฟฝโˆ’ ๏ฟฝ 3311๐‘˜๐‘˜ โˆ’๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ• ๐‘…๐‘… 2211840 โ„= = = 229๐‘…๐‘…10 ๐›ผ๐›ผ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š 1145๐‘…๐‘… 3096576 The Nusselt number is given by โˆ’๐‘˜๐‘˜

3311๐‘˜๐‘˜ โ„Ž๐ท๐ท ๏ฟฝ1145๐‘…๐‘… ๏ฟฝ (2๐‘…๐‘…) 6622 Nu = = = = 5.783 ๐‘˜๐‘˜ ๐‘˜๐‘˜ 1145

Since the Nusselt number did not change much from the previous iteration we will take this as the result. Therefore, for a circular tube with constant temperature and fully-developed laminar flow, the Nusselt number is about 5.783. Closed Form Method In the mathematical approach we again start at the energy equation,

We can define

Therefore, we can rewrite as

๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘๐‘ ๐œ๐œ๐‘ง๐‘ง

๐œ•๐œ•๐œ•๐œ• 1 ๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• = = ๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๏ฟฝ ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•

ฮ˜(๐‘Ÿ๐‘Ÿ, ๐‘ง๐‘ง) = ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘๐‘ ๐œ๐œ๐‘ง๐‘ง

๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ, ๐‘ง๐‘ง) ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘–

๐œ•๐œ•ฮ˜ 1 ๐œ•๐œ• ๐œ•๐œ•ฮ˜ = = ๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๏ฟฝ ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ•

To solve this problem, we to separation of variables, where

ฮ˜(๐‘Ÿ๐‘Ÿ, ๐‘ง๐‘ง) = ฮฆ(๐‘Ÿ๐‘Ÿ)๐‘๐‘(๐‘ง๐‘ง)

247

rev 112420


Chapter 10 - Single-Phase Heat Transfer

and

ฮฆ(๐‘Ÿ๐‘Ÿ) =

๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ) ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š

๐‘๐‘(๐‘ง๐‘ง) =

๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘–

Substituting this into the energy equation we get

๐‘‘๐‘‘๐‘‘๐‘‘ 1 ๐‘‘๐‘‘ ๐‘‘๐‘‘ฮฆ = ๐‘˜๐‘˜๐‘˜๐‘˜(๐‘Ÿ๐‘Ÿ) ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘

We can collect terms as

๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐œ๐œ๐‘ง๐‘ง ฮฆ(๐‘Ÿ๐‘Ÿ)

Defining the following:

1 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘˜๐‘˜ 1 1 ๐‘‘๐‘‘ ๐‘‘๐‘‘ฮฆ = ๐‘Ÿ๐‘Ÿ ๐‘๐‘(๐‘ง๐‘ง) ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐œ๐œ๐‘ง๐‘ง ฮฆ(๐‘Ÿ๐‘Ÿ) ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘

and

we can rewrite as

๐›ผ๐›ผ =

๐‘˜๐‘˜ ๐œŒ๐œŒ๐‘๐‘๐‘๐‘

1 ๐‘‘๐‘‘ ๐‘‘๐‘‘ฮฆ ๐‘‘๐‘‘2 ฮฆ 1 ๐‘‘๐‘‘ฮฆ ๐‘Ÿ๐‘Ÿ = + ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘

1 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐›ผ๐›ผ 1 ๐‘‘๐‘‘2 ฮฆ ๐›ผ๐›ผ 1 ๐‘‘๐‘‘ฮฆ = + ๐‘๐‘(๐‘ง๐‘ง) ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œ๐œ๐‘ง๐‘ง ฮฆ(๐‘Ÿ๐‘Ÿ) ๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๐œ๐œ๐‘ง๐‘ง ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘

Since both sides are a function of a single variable we can set them equal to a constant, 1 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐›ผ๐›ผ 1 ๐‘‘๐‘‘2 ฮฆ ๐›ผ๐›ผ 1 1 ๐‘‘๐‘‘ฮฆ = + = โˆ’ฮป ๐‘๐‘(๐‘ง๐‘ง) ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œ๐œ๐‘ง๐‘ง ฮฆ(๐‘Ÿ๐‘Ÿ) ๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๐œ๐œ๐‘ง๐‘ง ฮฆ(๐‘Ÿ๐‘Ÿ) ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘

Thus, we can rewrite the radial component as

where we define

so that

๐‘‘๐‘‘ 2 ฮฆ 1 ๐‘‘๐‘‘ฮฆ ๐œ๐œ๐‘ง๐‘ง + + ฮปฮฆ(๐‘Ÿ๐‘Ÿ) = 0 ๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐›ผ๐›ผ ๐œ๐œ๐‘ง๐‘ง ฮป ๐›ผ๐›ผ

๐›ฝ๐›ฝ = ๏ฟฝ

๐‘‘๐‘‘ 2 ฮฆ 1 ๐‘‘๐‘‘ฮฆ + + ๐›ฝ๐›ฝ 2 ฮฆ(๐‘Ÿ๐‘Ÿ) = 0 ๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ 248

rev 112420


Chapter 10 - Single-Phase Heat Transfer

Multiplying both sides by r2 we get ๐‘Ÿ๐‘Ÿ 2

๐‘‘๐‘‘ 2 ฮฆ ๐‘‘๐‘‘ฮฆ + ๐‘Ÿ๐‘Ÿ + ๐›ฝ๐›ฝ 2 ๐‘Ÿ๐‘Ÿ 2 ฮฆ(๐‘Ÿ๐‘Ÿ) = 0 2 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘

This is the form of Bessel function and the solution can be written as ฮฆ(๐‘Ÿ๐‘Ÿ) = ๐ถ๐ถ1 ๐ฝ๐ฝ0 (๐›ฝ๐›ฝ๐›ฝ๐›ฝ) + ๐ถ๐ถ2 ๐‘Œ๐‘Œ0 (๐›ฝ๐›ฝ๐›ฝ๐›ฝ)

As r โ†’ 0 the above expression will become unbounded. To have it bounded at 0, C2 = 0. Therefore, we are left with ฮฆ(๐‘Ÿ๐‘Ÿ) = ๐ถ๐ถ1 ๐ฝ๐ฝ0 (๐›ฝ๐›ฝ๐›ฝ๐›ฝ)

From the definition of ฮฆ we know that when r = R, ฮฆ(R) = 0, since T(R) = Tw. Therefore, ๐ฝ๐ฝ0 (๐›ฝ๐›ฝ๐›ฝ๐›ฝ) = 0

and thus

๐›ฝ๐›ฝ๐›ฝ๐›ฝ = 2.4048

Now, we can also look at conservation of energy by only considering the axial variation of the bulk temperature. This is represented as ๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐‘‰๐‘‰๐‘š๐‘š ๐œ‹๐œ‹๐‘…๐‘… 2

We know from the definition of Z (z) that

Thus, after some rearranging we get

where

๐‘‘๐‘‘๐‘‘๐‘‘ 1 ๐‘‘๐‘‘๐‘‡๐‘‡๐‘š๐‘š =โˆ’ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– ๐‘‘๐‘‘๐‘‘๐‘‘

โˆ’๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘ ๐‘‰๐‘‰๐‘š๐‘š ๐‘…๐‘…

๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š = 2โ„ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘–

๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š = ๐‘๐‘ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘–

Also,

โ„=

Therefore,

where

๐‘‘๐‘‘๐‘‡๐‘‡๐‘š๐‘š = โ„Ž(๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š )2ฯ€ ๐‘…๐‘… ๐‘‘๐‘‘๐‘‘๐‘‘

โˆ’

Nu๐‘…๐‘… 2๐‘…๐‘…

1 ๐‘‘๐‘‘๐‘‘๐‘‘ 2 Nu๐‘˜๐‘˜ = ๐‘๐‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œŒ๐œŒ๐‘๐‘๐‘๐‘ V๐‘š๐‘š ๐‘…๐‘… 2๐‘…๐‘… 1 ๐‘‘๐‘‘๐‘‘๐‘‘ = โˆ’ฮป ๐‘๐‘ ๐‘‘๐‘‘๐‘‘๐‘‘ 249

rev 112420


Chapter 10 - Single-Phase Heat Transfer

and

Finally,

๐‘˜๐‘˜ = ๐›ผ๐›ผ ๐œŒ๐œŒ๐‘๐‘๐‘๐‘

From above we have

ฮป=

and

๐›ฝ๐›ฝ = ๏ฟฝ

Combining the two we get

๐›ฝ๐›ฝ =

Nu๐›ผ๐›ผ V๐‘š๐‘š ๐‘…๐‘… 2 ๐œ๐œ๐‘ง๐‘ง ฮป ๐›ผ๐›ผ

2.4048 ๐‘…๐‘…

2.4048 ๐œ๐œ๐‘ง๐‘ง =๏ฟฝ ฮป ๐‘…๐‘… ๐›ผ๐›ผ Plugging in the expression for ฮป that we just found, we get 2.4048 ๐œ๐œ๐‘ง๐‘ง Nu๐›ผ๐›ผ =๏ฟฝ ๐‘…๐‘… ๐›ผ๐›ผ V๐‘š๐‘š ๐‘…๐‘… 2

Solving for the Nusselt number we get

Since this is slug flow we know that Thus,

Nu = 2.4048

V๐‘š๐‘š ๐œ๐œ๐‘ง๐‘ง

๐œ๐œ๐‘ง๐‘ง = V๐‘š๐‘š

Nu = 2.40482 = 5.783

which is equivalent to the result from the iterative method.

Flat Plate: For the flat plate question, the mathematical approach will be used similar to above. In the mathematical approach we again start at the energy equation,

We can define

๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐œ๐œ๐‘ฅ๐‘ฅ =

Therefore, we can rewrite as

ฮ˜(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) =

๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ• 2 ๐‘‡๐‘‡ = ๐‘˜๐‘˜ 2 ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐‘ฆ๐‘ฆ

๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘–

250

rev 112420


Chapter 10 - Single-Phase Heat Transfer

๐œ•๐œ•ฮ˜ ๐œ—๐œ— 2 ฮ˜ ๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐œ๐œ๐‘ฅ๐‘ฅ = ๐‘˜๐‘˜ 2 ๐œ—๐œ—๐œ—๐œ— ๐œ—๐œ—๐‘ฆ๐‘ฆ

To solve this problem, we to separation of variables, where

and

ฮ˜ = (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) = ๐‘‹๐‘‹(๐‘ฅ๐‘ฅ)๐‘Œ๐‘Œ(๐‘ฅ๐‘ฅ) ๐‘Œ๐‘Œ(๐‘ฆ๐‘ฆ) =

๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡(๐‘ฆ๐‘ฆ) ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘–

๐‘‹๐‘‹(๐‘ฅ๐‘ฅ) =

Substituting this into the energy equation we get

๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘–

๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘2 ๐‘Œ๐‘Œ = ๐‘˜๐‘˜๐‘˜๐‘˜(๐‘ฅ๐‘ฅ) 2 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘ฆ๐‘ฆ

We can collect terms as

๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐œ๐œ๐‘ฅ๐‘ฅ ๐‘Œ๐‘Œ(๐‘ฆ๐‘ฆ)

Defining the following,

1 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘˜๐‘˜ 1 ๐‘‘๐‘‘2 ๐‘Œ๐‘Œ = ๐‘‹๐‘‹(๐‘ฅ๐‘ฅ) ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐œ๐œ๐‘ฅ๐‘ฅ ๐‘Œ๐‘Œ(๐‘ฆ๐‘ฆ) ๐‘‘๐‘‘๐‘ฆ๐‘ฆ 2

we can rewrite as

๐›ผ๐›ผ =

๐‘˜๐‘˜ ๐œŒ๐œŒ๐‘๐‘๐‘๐‘

1 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐›ผ๐›ผ 1 ๐‘‘๐‘‘2 ๐‘Œ๐‘Œ = ๐‘‹๐‘‹(๐‘ฅ๐‘ฅ) ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œ๐œ๐‘ฅ๐‘ฅ ๐‘Œ๐‘Œ(๐‘ฆ๐‘ฆ) ๐‘‘๐‘‘๐‘ฆ๐‘ฆ 2 Since both sides are a function of a single variable we can set them equal to a constant, 1 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐›ผ๐›ผ 1 ๐‘‘๐‘‘ 2 ๐‘Œ๐‘Œ = = โˆ’ฮป ๐‘‹๐‘‹(๐‘ฅ๐‘ฅ) ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œ๐œ๐‘ฅ๐‘ฅ ๐‘Œ๐‘Œ(๐‘ฆ๐‘ฆ) ๐‘‘๐‘‘๐‘ฆ๐‘ฆ 2 Thus, we can rewrite the radial component as where we define

so that

๐‘‘๐‘‘ 2 ๐‘Œ๐‘Œ ๐œ๐œ๐‘ฅ๐‘ฅ + ฮป๐‘Œ๐‘Œ(๐‘ฆ๐‘ฆ) = 0 ๐‘‘๐‘‘๐‘ฆ๐‘ฆ 2 ๐›ผ๐›ผ ๐œ๐œ๐‘ฅ๐‘ฅ ฮป ๐›ผ๐›ผ

๐›ฝ๐›ฝ = ๏ฟฝ

๐‘‘๐‘‘2 ๐‘Œ๐‘Œ + ๐›ฝ๐›ฝ 2 ๐‘Œ๐‘Œ(๐‘ฆ๐‘ฆ) = 0 ๐‘‘๐‘‘๐‘ฆ๐‘ฆ 2 251

rev 112420


Chapter 10 - Single-Phase Heat Transfer

The solution can be written as ๐‘Œ๐‘Œ(๐‘ฆ๐‘ฆ) = ๐ถ๐ถ1 cos(๐›ฝ๐›ฝ๐›ฝ๐›ฝ) + ๐ถ๐ถ2 sin(๐›ฝ๐›ฝ๐›ฝ๐›ฝ)

Since the two plate are identical and the flow is fully developed, we can apply a symmetry boundary condition at y = 0. Therefore ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ = โˆ’๐ถ๐ถ1 sin(0) + ๐ถ๐ถ2 cos(0) ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ฆ๐‘ฆ=0

Therefore, C2 = 0. From the definition of Y we know that when y = y0, Y (y0) = 0, since T(y0) = Tw. We define y0 is the distance from the center between the plates to the wall. Therefore, cos(๐›ฝ๐›ฝ๐‘ฆ๐‘ฆ0 ) = 0

and thus

๐›ฝ๐›ฝ๐‘ฆ๐‘ฆ0 =

ฯ€ 2

Now, we can also look at conservation of energy by only considering the axial variation of the bulk temperature. This is represented as ๐‘‘๐‘‘๐‘‘๐‘‘๐‘š๐‘š = โ„(๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š )2 ๐‘‘๐‘‘๐‘‘๐‘‘ where we take the cross sectional area as 2y0 and the perimeter as just 2. We know from the definition of ฮง(x) that ๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐‘‰๐‘‰๐‘š๐‘š 2๐‘ฆ๐‘ฆ0

๐‘‘๐‘‘๐‘‘๐‘‘ 1 ๐‘‘๐‘‘๐‘‘๐‘‘๐‘š๐‘š = ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– ๐‘‘๐‘‘๐‘‘๐‘‘

Thus, after some rearranging we get

where

โˆ’๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐‘‰๐‘‰๐‘š๐‘š 2๐‘ฆ๐‘ฆ0

๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š = 2โ„Ž ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘–

๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘š๐‘š = ๐‘‹๐‘‹ ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘–

Also,

โ„=

where the hydraulic diameter is 4y0. Therefore,

where

โˆ’

Nu๐‘˜๐‘˜ 4๐‘ฆ๐‘ฆ0

1 ๐‘‘๐‘‘๐‘‘๐‘‘ 1 Nu๐‘˜๐‘˜ = ๐‘‹๐‘‹ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐‘‰๐‘‰๐‘š๐‘š ๐‘ฆ๐‘ฆ0 4๐‘ฆ๐‘ฆ0

252

rev 112420


Chapter 10 - Single-Phase Heat Transfer

and

1 ๐‘‘๐‘‘๐‘‘๐‘‘ = โˆ’ฮป ๐‘‹๐‘‹ ๐‘‘๐‘‘๐‘‘๐‘‘

Finally,

๐‘˜๐‘˜ = ๐›ผ๐›ผ ๐œŒ๐œŒ๐‘๐‘๐‘๐‘

From above we have

ฮป=

and

๐›ฝ๐›ฝ = ๏ฟฝ

Combining the two we get

๐›ฝ๐›ฝ =

Nu๐›ผ๐›ผ 4๐‘‰๐‘‰๐‘š๐‘š ๐‘ฆ๐‘ฆ02 ๐œ๐œ๐‘ฅ๐‘ฅ ฮป ๐›ผ๐›ผ

ฯ€ 2๐‘ฆ๐‘ฆ0

ฯ€ ๐œ๐œ๐‘ฅ๐‘ฅ =๏ฟฝ ฮป 2๐‘ฆ๐‘ฆ0 ๐›ผ๐›ผ

Plugging in the expression for ฮป that we just found, we get

Solving for the Nusselt number we get

ฯ€ ๐œ๐œ๐‘ฅ๐‘ฅ Nu๐›ผ๐›ผ =๏ฟฝ 2๐‘ฆ๐‘ฆ0 ๐›ผ๐›ผ 4V๐‘š๐‘š ๐‘ฆ๐‘ฆ02

Since this is slug flow we know that

Nu = ฯ€2

Thus,

V๐‘š๐‘š ๐œ๐œ๐‘ฅ๐‘ฅ

๐œ๐œ๐‘ฅ๐‘ฅ = V๐‘š๐‘š

Nu = ฯ€2 = 9.870

253

rev 112420


Chapter 10 - Single-Phase Heat Transfer

PROBLEM 10.3 QUESTION Derivation of Nusselt Number for Laminar Flow in an Equivalent Annulus (Section 10.2) Derive the Nusselt number for slug flow in the equivalent annulus of an infinite rod array by solving the differential energy equation subject to the appropriate boundary conditions, that is, ๐œ•๐œ• 2 ๐‘‡๐‘‡ 1 ๐œ•๐œ•๐œ•๐œ• ๐œ๐œ๐œ๐œ๐‘๐‘๐‘๐‘ ๐œ•๐œ•๐œ•๐œ• + = ๐œ•๐œ•๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ ๐œ•๐œ•๐œ•๐œ• ๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ•

Answer: Nu =

2(๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 )3 ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 [๐‘Ÿ๐‘Ÿ04 ln (๐‘Ÿ๐‘Ÿ0 โ„๐‘Ÿ๐‘Ÿ๐‘–๐‘– ) โˆ’ (๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 )(3๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 )โ„4]

PROBLEM 10.3 SOLUTION

Derivation of Nusselt Number for Laminar Flow in an Equivalent Annulus (Section 10.2) The rod array and equivalent annulus are shown in Figure SM-10.1:

(Flow areas (shaded region) in both geometries are the same) Figure SM-10.1 Let's consider the case that heat is uniformly generated in a rod. Thus, we will use the boundary condition of the uniform heat flux at r = ri (This is the case in the reactor core, since qโ€ณ at the fuel rod surface is generally known). The energy equation is given as follows: 1 ๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ = ๐œ๐œ ๐‘Ÿ๐‘Ÿ ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ•

(1)

where, ฯ… = ฯ…m (mean velocity) for slug flow. Rearranging the equation,

254

rev 112420


Chapter 10 - Single-Phase Heat Transfer

๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ = ๐œ๐œ๐‘š๐‘š ๐‘Ÿ๐‘Ÿ ๐œ•๐œ•๐œ•๐œ• ๐œ•๐œ•๐œ•๐œ• ๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ•

(2)

For this problem, the boundary conditions are โˆ’ at ๐‘Ÿ๐‘Ÿ = ๐‘Ÿ๐‘Ÿ๐‘–๐‘– , ๐‘‡๐‘‡ = ๐‘‡๐‘‡๐‘ค๐‘ค (๐‘ง๐‘ง) ๐œ•๐œ•๐œ•๐œ•

โˆ’ at ๐‘Ÿ๐‘Ÿ = ๐‘Ÿ๐‘Ÿ0 , ๐œ•๐œ•๐œ•๐œ• = 0.

Integrating Equation (2) from r0 to an arbitrary radius, r, and applying the second boundary condition we get ๐œ•๐œ•๐œ•๐œ• ๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐œ๐œ๐‘š๐‘š ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ02 = ๏ฟฝ โˆ’ ๏ฟฝ ๐œ•๐œ•๐œ•๐œ• ๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ• 2 2 After dividing by r, the equation becomes ๐‘Ÿ๐‘Ÿ

๐œ•๐œ•๐œ•๐œ• ๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐œ๐œ๐‘š๐‘š ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ02 = ๏ฟฝ โˆ’ ๏ฟฝ ๐œ•๐œ•๐œ•๐œ• ๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ• 2 2๐‘Ÿ๐‘Ÿ

(3)

(4)

We may integrate this equation from ri to an arbitrary radius r and apply the first boundary condition to get ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ, ๐‘ง๐‘ง) =

๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐œ๐œ๐‘š๐‘š ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 ๐‘Ÿ๐‘Ÿ02 ๐‘Ÿ๐‘Ÿ ๏ฟฝ โˆ’ โˆ’ ln ๏ฟฝ ๏ฟฝ๏ฟฝ + ๐‘‡๐‘‡๐‘ค๐‘ค (๐‘ง๐‘ง) ๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ• 4 4 2 ๐‘Ÿ๐‘Ÿ๐‘–๐‘– ๐œ•๐œ•๐œ•๐œ•

(5)

๐œ•๐œ•๐‘‡๐‘‡

In the case of a constant heat flux, ๐œ•๐œ•๐œ•๐œ• = ๐œ•๐œ•๐œ•๐œ•๐‘š๐‘š , where Tm is the mean temperature and is obtained from an energy balance on a cross section:

so that

๐œŒ๐œŒ๐œ๐œ๐‘š๐‘š (๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 )๐‘๐‘๐‘๐‘

๐œ•๐œ•๐‘‡๐‘‡๐‘š๐‘š = โˆ’๐‘ž๐‘žโ€ณ2๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ๐‘–๐‘– ๐œ•๐œ•๐œ•๐œ•

๐œ•๐œ•๐‘‡๐‘‡๐‘š๐‘š 2๐‘ž๐‘žโ€ณ ๐‘Ÿ๐‘Ÿ๐‘–๐‘– =โˆ’ ๐œ•๐œ•๐œ•๐œ• ๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐œ๐œ๐‘š๐‘š ๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2

Therefore, ๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ, ๐‘ง๐‘ง) = โˆ’

2๐‘ž๐‘žโ€ณ ๐‘Ÿ๐‘Ÿ๐‘–๐‘– ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 ๐‘Ÿ๐‘Ÿ02 ๐‘Ÿ๐‘Ÿ ๏ฟฝ โˆ’ โˆ’ ln ๏ฟฝ ๏ฟฝ๏ฟฝ + ๐‘‡๐‘‡๐‘ค๐‘ค (๐‘ง๐‘ง) 2 2 ๐‘˜๐‘˜ ๐‘Ÿ๐‘Ÿ0 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘– 4 4 2 ๐‘Ÿ๐‘Ÿ๐‘–๐‘–

(6)

(7)

(8)

The mean temperature can be calculated with ๐‘‡๐‘‡๐‘š๐‘š (๐‘ง๐‘ง) โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค (๐‘ง๐‘ง) =

๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ

โˆซ๐‘Ÿ๐‘Ÿ [๐‘‡๐‘‡(๐‘Ÿ๐‘Ÿ, ๐‘ง๐‘ง) โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค (๐‘ง๐‘ง)]๐œ๐œ๐‘š๐‘š 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹

The resulting temperature difference is

๐‘–๐‘–

๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ

โˆซ๐‘Ÿ๐‘Ÿ ๐œ๐œ๐‘š๐‘š 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹

(9)

๐‘–๐‘–

255

rev 112420


Chapter 10 - Single-Phase Heat Transfer

๐‘‡๐‘‡๐‘š๐‘š (๐‘ง๐‘ง) โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค (๐‘ง๐‘ง)

๐‘‡๐‘‡04 2 2๐‘ž๐‘žโ€ณ ๐‘Ÿ๐‘Ÿ๐‘–๐‘– 1 2 ๐‘Ÿ๐‘Ÿ0 2 2 (๐‘Ÿ๐‘Ÿ ) ๏ฟฝ ๏ฟฝ = 2 ๏ฟฝโˆ’ ๏ฟฝ ๏ฟฝ โˆ’ ๐‘Ÿ๐‘Ÿ โˆ’ ln 0 ๐‘–๐‘– ๐‘˜๐‘˜ ๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 16 4 ๐‘Ÿ๐‘Ÿ๐‘–๐‘– ๐‘Ÿ๐‘Ÿ0 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 ๐‘Ÿ๐‘Ÿ02 + (๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 )๏ฟฝ 8

(10)

The heat transfer coefficient is given as

โ„(๐‘ง๐‘ง) =

where the Nusselt number is

๐‘ž๐‘žโ€ณ ๐‘‡๐‘‡๐‘š๐‘š (๐‘ง๐‘ง) โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค (๐‘ง๐‘ง)

โ„(๐‘ง๐‘ง)๐ท๐ทโ„Ž ๐‘˜๐‘˜ For the equivalent annulus, the hydraulic diameter is Nu(๐‘ง๐‘ง) =

4๐ด๐ด 4๐œ‹๐œ‹(๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 ) = ๐ท๐ทโ„Ž = ๐‘ƒ๐‘ƒโ„Ž 2๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ๐‘–๐‘– Therefore, the Nusselt number is

From Equation (10), ๐‘ž๐‘žโ€ณ

2(๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 ) Nu(๐‘ง๐‘ง) = ๐‘Ÿ๐‘Ÿ๐‘–๐‘– ๏ฟฝ๐‘‡๐‘‡๐‘š๐‘š (๐‘ง๐‘ง) โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค (๐‘ง๐‘ง)๏ฟฝ๐‘˜๐‘˜ ๐‘ž๐‘žโ€ณ

๏ฟฝ๐‘‡๐‘‡๐‘š๐‘š (๐‘ง๐‘ง) โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค (๐‘ง๐‘ง)๏ฟฝ๐‘˜๐‘˜

=

The resulting Nusselt number is Nu =

which is equivalent to

(๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 )2

๐‘Ÿ๐‘Ÿ 2 1 ๐‘Ÿ๐‘Ÿ ๐‘‡๐‘‡๐‘–๐‘– ๏ฟฝ๐‘Ÿ๐‘Ÿ04 ln ๏ฟฝ ๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ ๏ฟฝ โˆ’ ๐‘Ÿ๐‘Ÿ0 (๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 ) โˆ’ 4 (๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 )2 ๏ฟฝ ๐‘–๐‘–

(11)

(12)

(13)

(14)

(15)

๐‘–๐‘–

2(๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 )3 ๐‘Ÿ๐‘Ÿ 2 1 ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ๐‘–๐‘– ๏ฟฝ๐‘Ÿ๐‘Ÿ04 ln ๏ฟฝ ๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ ๏ฟฝ โˆ’ 20 (๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 ) โˆ’ 4 (๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 )2 ๏ฟฝ ๐‘–๐‘–

2(๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 )3 Nu = 2 4 ๐‘Ÿ๐‘Ÿ๐‘–๐‘– [๐‘Ÿ๐‘Ÿ0 ln(๐‘Ÿ๐‘Ÿ0 โ„๐‘Ÿ๐‘Ÿ๐‘–๐‘– ) โˆ’ (๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 ) โˆ’ (3๐‘Ÿ๐‘Ÿ02 โˆ’ ๐‘Ÿ๐‘Ÿ๐‘–๐‘–2 )โ„4]

(16)

(17)

PROBLEM 10.4 QUESTION

Estimate the Effect of Turbulence on Heat Transfer in SFBR Fuel Bundles (Section 10.3) Consider the fuel bundle of a SFBR whose geometry is described in Table 1.3. Using Dwyer's recommendations for the values of ฯตM/ฯ… (Figure 10.7) and Equation 10.71, estimate the ratio of 256

rev 112420


Chapter 10 - Single-Phase Heat Transfer

๐œ–๐œ–๐ป๐ป โ„๐œ–๐œ–๐‘š๐‘š for the sodium velocities in the bundles: 1. For ฯ… = 10 m/s 2. For ฯ… = 1 m/s

FIGURE 10.7

Values of (ฮตM/ฮฝ)max for fully developed turbulent flow of liquid metals through circular tubes, annuli, and rod bundles with equilateral triangular spacing [15].

Answers: 1. For ฯ… = 10 m/s:

2. For ฯ… = 1 m/s:

๐œ–๐œ–๐ป๐ป ๐œ–๐œ–๐‘š๐‘š in core = 0.510; ๏ฟฝ ๏ฟฝ = 120 ๐œ–๐œ–๐‘š๐‘š V ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐œ–๐œ–๐‘š๐‘š ๐œ–๐œ–๐ป๐ป in blanket = 0.722; ๏ฟฝ ๏ฟฝ = 180 ๐œ–๐œ–๐‘š๐‘š V ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐œ–๐œ–๐ป๐ป in both core and blanket = 0 ๐œ–๐œ–๐‘š๐‘š

PROBLEM 10.4 SOLUTION Estimate the Effect of Turbulence on Heat Transfer in SFBR Fuel Bundles (Section 10.3) Consider the fuel bundle of a SFBR whose geometry is described in Table 1.3. Using Dwyer's recommendations for the values of ฯตm and ฯตH (Equation 10.71), estimate the ratio of ฯตH/ฯตm for the sodium velocities in the bundles. Geometric parameters taken from Table 1.3 are: โˆ’ pin diameter in core, DC = 8.5 mm

257

rev 112420


Chapter 10 - Single-Phase Heat Transfer

โˆ’ pin diameter in blanket, DB = 15.8 mm โˆ’ pin pitch in core, PC = 9.8 mm โˆ’ pin pitch in blanket, PB = 17.0 mm Sodium properties are: โˆ’ density, ฯ = 817.7 kg/m3 โˆ’ specific heat, cp = 1254 J/kg K โˆ’ conductivity, 62.6 W/m K โˆ’ viscosity, ฮผ = 2.276 ร— 10โˆ’4 Pa s ๐œ‡๐œ‡๐‘๐‘๐‘๐‘

โˆ’ Prandtl number, ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ = ๐‘˜๐‘˜ = 4.559 ร— 10โˆ’3

The dimensions (area and hydraulic diameter) of the core and blanket are: 4๐ด๐ด๐ถ๐ถ โˆš3 2 ๐œ‹๐œ‹๐ท๐ท๐ถ๐ถ2 ๐ด๐ด๐ถ๐ถ = ๐‘ƒ๐‘ƒ๐ถ๐ถ โˆ’ = 1.321 ร— 10โˆ’5 m2 ๐ท๐ท๐‘’๐‘’๐‘’๐‘’ = = 3.959 ร— 10โˆ’3 m ๐œ‹๐œ‹๐ท๐ท๐ถ๐ถ 4 8 2 2 ๐œ‹๐œ‹๐ท๐ท 4๐ด๐ด โˆš3 2 ๐ต๐ต ๐ต๐ต ๐‘ƒ๐‘ƒ๐ต๐ต โˆ’ = 2.711 ร— 10โˆ’5 m2 ๐ท๐ท๐‘’๐‘’๐‘’๐‘’ = = 4.369 ร— 10โˆ’3 m ๐ด๐ด๐ต๐ต = ๐œ‹๐œ‹๐ท๐ท 4 8 ๐ต๐ต 2

For the 10 m/s case the Reynolds number for the core and blanket; respectfully, are: Re๐ถ๐ถ =

๐œŒ๐œŒ๐œŒ๐œŒ10 ๐ท๐ท๐‘’๐‘’๐‘’๐‘’ = 1.422 ร— 105 ๐œ‡๐œ‡

Re๐ต๐ต =

๐œŒ๐œŒ๐œŒ๐œŒ10 ๐ท๐ท๐ท๐ท๐ต๐ต = 1.57 ร— 105 ๐œ‡๐œ‡

๐œŒ๐œŒ๐œŒ๐œŒ1 ๐ท๐ท๐‘’๐‘’๐‘’๐‘’ = 1.422 ร— 104 ๐œ‡๐œ‡

Re๐ต๐ต =

๐œŒ๐œŒ๐œŒ๐œŒ1 ๐ท๐ท๐ท๐ท๐ต๐ต = 1.57 ร— 104 ๐œ‡๐œ‡

For the 1 m/s case the Reynolds number for the core and blanket, respectfully, are: Re๐ถ๐ถ =

From Figure 10.7, the maximum (ฯตM/v)max is a function of Reynolds number and pitch-to-diameter ratio. For the 10 m/s case this parameter for the core and blanket are:

For the 1 m/s case they are

๐œ–๐œ–๐‘€๐‘€ ๏ฟฝ = 120 ๐‘ฃ๐‘ฃ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š,๐ถ๐ถ

๏ฟฝ

๐œ–๐œ–๐‘€๐‘€ ๏ฟฝ = 180 ๐‘ฃ๐‘ฃ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š,๐ต๐ต

๐œ–๐œ–๐‘€๐‘€ ๏ฟฝ = 18 ๐‘ฃ๐‘ฃ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š,๐ถ๐ถ

๏ฟฝ

๏ฟฝ

๐œ–๐œ–๐‘€๐‘€ ๏ฟฝ = 22 ๐‘ฃ๐‘ฃ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š,๐ต๐ต

๏ฟฝ

Using Equation 10.71, the ratio of ฯตH/ฯตm for the 10 m/s case is

258

rev 112420


Chapter 10 - Single-Phase Heat Transfer

๐œ–๐œ–๐ป๐ป ๏ฟฝ = 1โˆ’ ๐œ–๐œ–๐‘š๐‘š ๐ถ๐ถ

1.82 = 0.510 ๐œ–๐œ–๐‘€๐‘€ 1.4 ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ๏ฟฝ ๐‘ฃ๐‘ฃ ๏ฟฝ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š,๐ถ๐ถ

๐œ–๐œ–๐ป๐ป ๏ฟฝ =1โˆ’ ๐œ–๐œ–๐‘š๐‘š ๐ต๐ต

1.82 = โˆ’5.979 ๐œ–๐œ–๐‘€๐‘€ 1.4 ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ๏ฟฝ ๐‘ฃ๐‘ฃ ๏ฟฝ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š,๐ถ๐ถ

๐œ–๐œ–๐ป๐ป ๏ฟฝ =1โˆ’ ๐œ–๐œ–๐‘š๐‘š ๐ต๐ต

Finally for the 1 m/s case, the results are ๐œ–๐œ–๐ป๐ป ๏ฟฝ = 1โˆ’ ๐œ–๐œ–๐‘š๐‘š ๐ถ๐ถ

1.82 = 0.722 ๐œ–๐œ–๐‘€๐‘€ 1.4 ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ๏ฟฝ ๐‘ฃ๐‘ฃ ๏ฟฝ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š,๐ต๐ต

Both of these results are negative and therefore taken as 0.

1.82 = โˆ’4.27 ๐œ–๐œ–๐‘€๐‘€ 1.4 ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ ๏ฟฝ ๐‘ฃ๐‘ฃ ๏ฟฝ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š,๐ต๐ต

PROBLEM 10.5 QUESTION Reynolds Analogy and Equivalent Diameter Problem (Section 10.3) Consider a uniformly heated tube (constant heat flux) of diameter 0.025 m with fluid flowing at an average velocity of 0.5 m/s. Find the fully developed heat transfer coefficient for two different fluids (Fluid A and Fluid B, whose properties are given in Table 10.8) by the following two procedures: Procedure 1: Use only friction factor data. If you find this procedure not valid, state the reason. Procedure 2: Select the relevant heat transfer correlation. In summary, you are asked to provided four answers, that is, Procedure #1 Procedure #2

Fluid A

Fluid B

๏จ=? ๏จ=?

๏จ=? ๏จ=?

TABLE 10.8 Fluid Properties for Problem 10.5 Fluid Properties

Fluid A

Fluid B

k (W/mยฐC)

0.5

63

ฯ (kg/m3)

700

818

ฮผ (kg/m s)

8.7 ร— 10โˆ’5

2.3 ร— 10โˆ’4

cp (J/kgยฐC)

6250

1250

Answers: Procedure #1:

259

rev 112420


Chapter 10 - Single-Phase Heat Transfer

Fluid A: ๏จ = 5025 W/m2 K Fluid B: ๏จ = cannot be computed Procedure #2: Fluid A: ๏จ = 4780 W/m2 K Fluid B: ๏จ = 22,000 W/m2 K

PROBLEM 10.5 S OLUTION Reynolds Analogy and Equivalent Diameter Problem (Section 10.3) From the problem statement: โˆ’ tube diameter, D = 0.025 m โˆ’ fluid average velocity, ฯ… = 0.5 m/s The following properties are given in Table 10.8; โˆ’ conductivity, kA = 0.5 W/m K and kB = 63 W/m K โˆ’ density, ฯA = 700 kg/m3 and ฯB = 818 kg/m3 โˆ’ viscosity, ฮผA = 8.7 ร— 10โˆ’5 Pa s and ฮผB = 2.3 ร— 10โˆ’4 Pa s J

J

โˆ’ specific heat, CPA = 6250 kg K and CPB = 1250 kg K

The Prandtl number for fluid A and fluid B are Pr๐ด๐ด =

๐œ‡๐œ‡๐ด๐ด ๐‘๐‘๐‘๐‘ ๐ด๐ด ๐œ‡๐œ‡๐ต๐ต ๐‘๐‘๐‘๐‘๐‘๐‘ = 1.087 Pr๐ต๐ต = = 4.563 ร— 10โˆ’3 ๐‘˜๐‘˜๐ด๐ด ๐‘˜๐‘˜๐ต๐ต

The Reynolds number for fluid A and fluid B are Re๐ด๐ด =

๐œŒ๐œŒ๐ด๐ด ๐œ๐œ๐œ๐œ = 1.006 ร— 105 ๐œ‡๐œ‡๐ด๐ด

Re๐ต๐ต =

๐œŒ๐œŒ๐ต๐ต ๐œ๐œ๐œ๐œ = 4.446 ร— 104 ๐œ‡๐œ‡๐ต๐ต

Procedure #1: Only fluid A is valid for the Reynolds analogy, fluid B has a low Pr number. The friction factor of fluid A using the McAdams correlation is ๐‘“๐‘“๐ด๐ด = 0.184๐‘…๐‘…๐‘…๐‘…๐ด๐ดโˆ’0.2 = 0.018

The heat transfer coefficient from the Reynolds analogy is โ„๐ด๐ด1 =

๐‘“๐‘“๐ด๐ด ๐œŒ๐œŒ๐ด๐ด ๐‘๐‘๐‘๐‘๐‘๐‘ ๐œ๐œ ๐‘Š๐‘Š = 5025 2 8 ๐‘š๐‘š ๐พ๐พ

Procedure #2: For fluid A the Dittus Boelter correlation can be used to calculate the Nusselt number,

260

rev 112420


Chapter 10 - Single-Phase Heat Transfer

Nu๐ด๐ด = 0.023Re๐ด๐ด0.8 Pr๐ด๐ด0.4 = 238.941

The heat transfer coefficient is therefore

โ„๐ด๐ด2 =

Nu๐ด๐ด ๐‘˜๐‘˜๐ด๐ด ๐‘Š๐‘Š = 4779 2 ๐ท๐ท ๐‘š๐‘š ๐พ๐พ

For fluid B, the Peclet number can be calculated with

Pe๐ต๐ต = Re๐ต๐ต Pr๐ต๐ต = 202.877

Using the Lyon correlation for the Nusselt number (Equation 10.126a) yields Nu๐ต๐ต = 7 + 0.025Pe0.8 = 8.753

The heat transfer coefficient is then

โ„๐ต๐ต2 =

Nu๐ต๐ต ๐‘˜๐‘˜๐ต๐ต W = 22057 2 ๐ท๐ท m K

PROBLEM 10.6 QUESTION Determining the Temperature of the Primary Side of a Steam Generator (Section 10.5) Consider the flow of high pressure water through the U-tubes of a PWR steam generator. There are 5700 tubes with outside diameter 19 mm, wall thickness 1.2 mm, and average length 16.0 m. The steady-state operating conditions are: โˆ’ Total primary flow through the tubes = 5100 kg/s โˆ’ Total heat transfer from primary to secondary = 820 MW โˆ’ Secondary pressure = 5.6 MPa (272ยฐC saturation) 1. What is the primary temperature at the tube inlet? 2. What is the primary temperature at the tube outlet? Use a Dittusโ€“Boelter equation for the primary side heat transfer coefficient. Assume that the tube wall surface temperature on the secondary side is constant at 276ยฐC. Properties For water at 300ยฐC and 15 MPa: Density = 726 kg/m3 Specific heat = 5.7 kJ/kg K Viscosity = 92 ฮผPa s Thermal conductivity = 0.56 W/m K For tube wall Thermal conductivity = 26 W/m K Hint: Consideration of the axial variation of the primary coolant bulk temperature is required.

261

rev 112420


Chapter 10 - Single-Phase Heat Transfer

Answers: 1. Tp, in = 307.2ยฐC 2. Tp, out = 279.0ยฐC

PROBLEM 10.6 SOLUTION Determining the Temperature of the Primary Side of a Steam Generator (Section 10.5) From the problem statement: โˆ’ the number of tubes, N = 5700 โˆ’ tube outside diameter, Do = 19 mm โˆ’ tube wall thickness, t = 1.2 mm โˆ’ tube inside diameter, Di = Do โ€“ 2t = 16.6 mm โˆ’ average tube length, L = 16 m โˆ’ total primary flow through the tubes, ๐‘š๐‘šฬ‡๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก = 5100 kgโ„s

โˆ’ total heat transfer from primary to secondary, ๐‘„๐‘„ฬ‡ = 820 MW โˆ’ secondary side pressure, Pss = 5.6 MPa

โˆ’ secondary side wall surface temperature, Twss = 276 ยฐC The following water properties are given for the primary side: โˆ’ density, ฯPS = 726 kg/m3 โˆ’ specific heat, cpPS = 5.7 kJ/kg K โˆ’ viscosity, ฮผPS = 92 ฮผPa s โˆ’ thermal conductivity, kPS = 0.56 W/m K โˆ’ Prandtl number, PrPS =

For tube wall

ฮผPSC cpPS kPS

= 0.936

kw = 26W/m K The unknown primary temperatures at the tube inlet, T(0), and tube outlet, T(L), can be expressed in two equations. First, the following equation involving the total heat transfer from primary to the secondary side:

262

rev 112420


Chapter 10 - Single-Phase Heat Transfer

(1) Second, following the hint in the problem statement develops the expression for the axial variation of the primary coolant temperature in a tube, i. For a differential length, conservation of energy for the primary side is (2) At an arbitrary location z, the heat transfer to the wall is = qiโ€ฒโ€ฒ( z ) ๏จ PS (T ( z ) โˆ’ TwPS ( z ) )

(3)

Conduction through the wall can be represented by (4)

Eliminating the wall temperature from the primary side in Equation (4) by use of Equation (3), the heat flux is qiโ€ฒโ€ฒ( z ) =

๏จ PS (T ( z ) โˆ’ TwSS ( z ) )

(5)

๏ฃซD ๏ฃถ ๏จ PS Di ln ๏ฃฌ o ๏ฃท ๏ฃญ Di ๏ฃธ 1+ 2k w

Substituting the heat flux from Equation (5) into Equation (2), the conservation of energy equation becomes ๏จ PS ฯ€ Di dT = โˆ’ โˆ’ A (T ( z ) โˆ’ TwSS ( z ) ) (T ( z ) โˆ’ TwSS ( z ) ) = Do ๏ฃน dz ๏ฃฎ ๏ฃฏ ๏จ PS Di ln D ๏ฃบ i ๏ฃบ m๏€ฆ i c pPS ๏ฃฏ1 + k 2 ๏ฃฏ ๏ฃบ w ๏ฃฏ๏ฃฐ ๏ฃบ๏ฃป

To evaluate the parameter A, the heat transfer, the tube mass flow rate,

(6)

, and the heat transfer

coefficient, h, are needed and evaluated as follows: The mass flow rate for tube is

and the flow area per tube is

๐‘š๐‘šฬ‡๐‘–๐‘– =

๐‘š๐‘šฬ‡๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก = 0.895 kgโ„s ๐‘๐‘

263

(7)

rev 112420


Chapter 10 - Single-Phase Heat Transfer

๐ด๐ด๐‘–๐‘– =

๐œ‹๐œ‹ 2 ๐ท๐ท = 2.164 ร— 10โˆ’4 m2 4 ๐‘–๐‘–

(8)

The primary side Reynolds number can be calculated with Re =

๐‘š๐‘šฬ‡๐‘–๐‘– ๐ท๐ท๐‘–๐‘– = 7.459 ร— 105 ๐ด๐ด๐‘–๐‘– ๐œ‡๐œ‡๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

(9)

The friction factor can be calculated from the McAdams correlation ๐‘“๐‘“ = 0.184Reโˆ’0.2 = 0.012

(10)

Nu = 0.023Re0.8 Pr 0.4 = 1118.1

(11)

Using the Dittus-Boelter correlation the Nusselt number is and thus the heat transfer coefficient is โ„๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ =

The mass flow rate for tube is = A

Nu๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜ W = 3.772 ร— 104 2 ๐ท๐ท๐‘–๐‘– m K

๏จ PS ฯ€ Di 1 0.147 = m ๏ฃฎ ๏ฃซ Do ๏ฃถ ๏ฃน ๏ฃฏ ๏จ PS Di ln ๏ฃฌ ๏ฃท๏ฃบ ๏ฃญ Di ๏ฃธ ๏ฃบ m๏€ฆ i c pPS ๏ฃฏ1 + ๏ฃฏ ๏ฃบ 2k w ๏ฃฏ ๏ฃบ ๏ฃฐ๏ฃฏ ๏ฃป๏ฃบ

(12)

(13)

Solving the differential Equation (6) yields T (L) = TwSS + (T (0) โ€“ TwSS) exp (โ€“AL)

(14)

In this equation neither the primary side inlet temperature, T(0), nor the primary side outlet temperature, T(L), are known. However, the primary side temperature difference is known and expressed in Equation (1). Therefore there are two equations, (1) and (14), and two unknowns, T(0) and T(L). Solving these equations simultaneously yields a primary inlet temperature of T(0) = 307.2ยบC and a primary outlet temperature of T(L) = 279.0ยบC

264

rev 112420


Chapter 10 - Single-Phase Heat Transfer

PROBLEM 10.7 QUESTION Comparison of Heat Transfer Characteristics of Water and Helium (Section 10.5) Consider a new design of a thermal reactor that requires square arrays of fuel rods. Heat is being generated uniformly along the fuel rods. Water and helium are being considered as single-phase coolants. Relevant coolant properties are given in Table 10.9. The design condition is that the maximum cladding surface temperature should remain below 316ยฐC. 1. Find the minimum mass flow rate of water to meet the design requirement. 2. Would the required mass flow rate of helium be higher or lower than that of water? Geometry of square array P = pitch = 1.4 cm D = fuel rod diameter = 1.09 cm H = fuel height = 3.66 m Operating conditions Heat flux = 78.9 W/cm2 Coolant inlet temperature = 260ยฐC TABLE 10.9 Coolant Properties for Problem 10.7 Coolant ฯ (kg/m3) cp (kJ/kg K)

ฮผ (kg/m s)

k (W/m K)

Water

5.317

0.955 ร— 10โˆ’4

0.564

5.225

0.298 ร— 10โˆ’4

0.230

735.3

Helium

0.865

Answers: 1. ๐‘š๐‘šฬ‡๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค = 0.451 kgโ„s 2. ๐‘š๐‘šฬ‡๐ป๐ป๐ป๐ป = 0.491 kgโ„s

PROBLEM 10.7 SOLUTION

Comparison of Heat Transfer Characteristics of Water and Helium (Section 10.5) From the problem statement: โˆ’ pitch, P = 1.4 cm โˆ’ fuel rod diameter, D = 1.09 cm

265

rev 112420


Chapter 10 - Single-Phase Heat Transfer

โˆ’ fuel height, H = 3.66 m โˆ’ heat flux, qโ€ณ = 78.9 W/cm2 โˆ’ coolant inlet temperature, Tin = 260 ยฐC โˆ’ max cladding surface temperature, Tco,max = 316 ยฐC Thermodynamic properties from Table 10.9 (subscript w for water and h for helium): โˆ’ density, ฯw = 735.3 kg/m3 and ฯh = 0.865 kg/m3 โˆ’ specific heat, cpw = 5.317 kJ/kg K and cph = 5.225 kJ/kg K โˆ’ viscosity, ฮผw = 0.955 ร— 10โˆ’4 kg/m s and ฮผh = 0.298 ร— 10โˆ’4 kg/m s โˆ’ conductivity, kw = 0.564 W/m K and kh = 0.230 W/m K The flow area and hydraulic diameter of the geometry is

and

๐ด๐ด๐‘“๐‘“ = ๐‘ƒ๐‘ƒ2 โˆ’

๐œ‹๐œ‹ 2 ๐ท๐ท = 1.027 ร— 10โˆ’4 m2 4

๐ท๐ท๐‘’๐‘’ =

4๐ด๐ด๐‘“๐‘“ = 0.012 m ๐œ‹๐œ‹๐œ‹๐œ‹

(1)

(2)

The Reynolds number is a function of the mass flow rate, which for each of the fluids is represented by

and

Re๐‘ค๐‘ค (๐‘š๐‘šฬ‡๐‘ค๐‘ค ) =

๐‘š๐‘šฬ‡๐‘ค๐‘ค ๐ท๐ท๐‘’๐‘’ ๐ด๐ด๐‘“๐‘“ ๐œ‡๐œ‡๐‘ค๐‘ค

Reโ„Ž (๐‘š๐‘šฬ‡โ„Ž ) =

๐‘š๐‘šฬ‡โ„Ž ๐ท๐ท๐‘’๐‘’ ๐ด๐ด๐‘“๐‘“ ๐œ‡๐œ‡โ„Ž

(3)

(4)

The Prandtl number of each fluid is calculated with

and

Pr๐‘ค๐‘ค = Prโ„Ž =

๐œ‡๐œ‡๐‘ค๐‘ค ๐‘๐‘๐‘๐‘๐‘๐‘ = 0.9 ๐‘˜๐‘˜๐‘ค๐‘ค

๐œ‡๐œ‡โ„Ž ๐‘๐‘๐‘๐‘โ„Ž = 0.677 ๐‘˜๐‘˜โ„Ž

(5)

(6)

The Nusselt number for water can be calculated with Equation 10.104b and for helium with Equation 10.103b. Each of these formulations depend on the Reynolds number which is not known yet since we are trying to solve for the mass flow rate. Therefore we write this quantity as a function of mass flow rate for each fluid,

266

rev 112420


Chapter 10 - Single-Phase Heat Transfer

and

๐‘ƒ๐‘ƒ Nu๐‘ค๐‘ค (๐‘š๐‘šฬ‡๐‘ค๐‘ค ) = 0.023Re๐‘ค๐‘ค (๐‘š๐‘šฬ‡๐‘ค๐‘ค )0.8 Pr 0.333 ๏ฟฝ1.826 ๏ฟฝ ๏ฟฝ โˆ’ 1.0430๏ฟฝ ๐ท๐ท

(7)

๐‘ƒ๐‘ƒ ๐‘ƒ๐‘ƒ Nuโ„Ž (๐‘š๐‘šฬ‡โ„Ž ) = 0.023Reโ„Ž (๐‘š๐‘šฬ‡โ„Ž )0.8 Pr 0.333 ๏ฟฝ0.9217 + 0.1478 ๏ฟฝ ๏ฟฝ โˆ’ 0.1130 exp ๏ฟฝโˆ’7 ๏ฟฝ๏ฟฝ ๏ฟฝ โˆ’ 1๏ฟฝ๏ฟฝ๏ฟฝ ๐ท๐ท ๐ท๐ท

(8)

Thus, the heat transfer coefficients can be represented by

and

โ„๐‘ค๐‘ค (๐‘š๐‘šฬ‡๐‘ค๐‘ค ) = โ„โ„Ž (๐‘š๐‘šฬ‡โ„Ž ) =

Nu๐‘ค๐‘ค (๐‘š๐‘šฬ‡๐‘ค๐‘ค )๐‘˜๐‘˜๐‘ค๐‘ค ๐ท๐ท๐‘’๐‘’

Nuโ„Ž (๐‘š๐‘šฬ‡โ„Ž )๐‘˜๐‘˜โ„Ž

๐ท๐ท๐‘’๐‘’

(9)

(10)

The maximum surface cladding temperature will occur at the exit first. Since we only have the bulk inlet temperature of the fluid, this temperature difference can be represented by ๐ป๐ป๐ป๐ป๐ป๐ป 1 ๐‘‡๐‘‡๐‘๐‘๐‘๐‘,๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– = ๐‘ž๐‘ž โ€ณ ๏ฟฝ + ๏ฟฝ ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ โ„(๐‘š๐‘šฬ‡)

(11)

The first term in the parentheses represents the temperature difference to the bulk outlet and the second term represents the convective heat transfer from the surface of the cladding. Therefore, the only unknown in this formulation is the mass flow rate, which depends on the Reynolds number formulation, Nusselt number formulation and heat transfer coefficient. Solving these equations simultaneously yields a mass flow rate for water of and a mass flow rate for helium of

๐‘š๐‘šฬ‡๐‘ค๐‘ค = 0.451 kgโ„s

(12)

๐‘š๐‘šฬ‡โ„Ž = 0.491 kgโ„s

(13)

PROBLEM 10.8 QUESTION Hydraulic and Thermal Analysis of the Emergency Core Spray System in a BWR (Chapters 9 and Section 10.5) The emergency spray system of a BWR delivers cold water to the core after a large-break loss of coolant accident has emptied the reactor vessel. The system comprises a large water pool, a pump, a spray nozzle, and connecting pipes (Figure 10.18). All pipes are smooth round tubes made of stainless steel with 10 cm internal diameter and 5 mm thickness. The pipe lengths are shown in Figure 10.18. Two sharp 90ยฐ elbows connect the vertical pipe to the horizontal pipe and the horizontal pipe to the spray nozzle. Each elbow has a form loss coefficient of 0.9. The spray nozzle

267

rev 112420


Chapter 10 - Single-Phase Heat Transfer

has a total flow area of 26 cm2 and a form loss coefficient of 15. The suction pipe in the pool has a sharp-edged entrance with a form loss coefficient of 0.5. 1. Calculate the pumping power required to deliver 50 kg/s of cold water to the core. (Assume steady-state and constant water properties. Do not neglect the acceleration terms in the momentum equation. Neglect entry region effects in calculating the friction factor. To calculate the irreversible term of the spray nozzle form loss, use the value of the mass flux in the pipe. Neglect the vertical dimension of the pump. The isentropic efficiency of the pump is 80%). 2. The horizontal pipe leading to the spray nozzle is exposed to superheated steam at 200ยฐC and 0.1 MPa. The length of the exposed section is 5 m. Estimate the heat transfer rate from the steam to the water inside the pipe. (Assume that the heat transfer coefficient on the outer surface of the pipe is 5000 W/m2 K. Neglect entry region effects in calculating the heat transfer coefficient within the pipe). 3. In light of the results in (2) judge the accuracy of the constant property assumption made in calculating the pumping power in (1). Relevant water, steam, and stainless steel properties are given in Table 10.10.

FIGURE 10.18 Emergency spray system.

TABLE 10.10 Property Values for Problem 10.8 Properties of Water at Room Temperature (25ยฐC) Property

Value

Density

997 kg/m3

Viscosity

9 ร— 10โˆ’4 Pa s

268

rev 112420


Chapter 10 - Single-Phase Heat Transfer

Thermal conductivity

0.61 W/m K

Specific heat

4.2 kJ/kg K

Properties of Steam at 200ยฐC and 0.1 MPa Property

Value

Density

0.46 kg/m3

Viscosity

2 ร— 10โˆ’5 Pa s

Thermal conductivity

0.03 W/m K

Specific heat

2.0 kJ/kg K

Properties of Stainless Steel Property

Value

Density

8000 kg/m3

Thermal conductivity

14 W/m K

Specific heat

0.47 kJ/kg K

Answers: i. ๐‘Š๐‘Šฬ‡๐‘๐‘ โ‰ˆ 48 kW ii. ๐‘„๐‘„ฬ‡ โ‰ˆ 463 kW

PROBLEM 10.8 S OLUTION

Hydraulic and Thermal Analysis of the Emergency Core Spray System in a BWR (Chapters 9 and Section 10.5) From the problem statement, we are given: โˆ’ loss coefficient of elbow, Kelb = 0.9 โˆ’ area of spray nozzle, As = 26 cm2 โˆ’ exit loss coefficient, Kex = 15 โˆ’ inlet loss coefficient, Kin = 0.5 โˆ’ isentropic efficiency of pump, ฮทp = 0.8 โˆ’ mass flow rate, แน = 50 kg/s โˆ’ tube inner diameter, Di = 10 cm โˆ’ tube wall thickness, tw = 5 mm

269

rev 112420


Chapter 10 - Single-Phase Heat Transfer ฯ€

โˆ’ flow area of tube, A = 4 D2i = 7.854 ร— 10โˆ’3 m2 โˆ’ steam temperature, Tฯ… = 200 ยฐC

โˆ’ length of exposed section, L = 5m โˆ’ heat transfer coefficient from outer tube wall to steam, hฯ… = 5000 W/m2 K From Table 10.10, thermodynamic properties are (โ€˜wโ€™ for water, โ€˜vโ€™ for steam and โ€˜sโ€™ for stainless steel): โˆ’ density, ฯw = 997 kg/m3, ฯฯ… = 0.46 kg/m3 and ฯs = 8000 kg/m3 โˆ’ viscosity, ฮผw = 9 ร— 10โˆ’4 Pa s, ฮผฯ… = 2 ร— 10โˆ’5 Pa s โˆ’ thermal conductivity, kw = 0.61 W/m K, kฯ… = 0.03 W/m K and ks = 14 W/m K โˆ’ specific heat, cpw = 4.2 kJ/kg K, Cpv = 2.0 kJ/kg K and cps = 0.47 kJ/kg K โˆ’ primary side water temperature, T = 25 ยฐC The Reynolds number of water is Re =

๐‘š๐‘šฬ‡๐ท๐ท๐‘–๐‘– = 7.074 ร— 105 ๐ด๐ด๐œ‡๐œ‡๐‘ค๐‘ค

(1)

Since the flow is turbulent, the friction factor can be estimated using the McAdams correlation, ๐‘“๐‘“ = 0.184๐‘…๐‘…๐‘…๐‘… โˆ’0.2 = 0.0124

(2)

โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘” = ๐œŒ๐œŒ๐‘ค๐‘ค ๐‘”๐‘”๐‘”๐‘” = 161.3 kPa

(3)

The overall pressure drop of the system is 0. The gravitational pressure drop can be calculated with where H is the net height of 16.5 m according to Figure 10.8. The frictional pressure loss including form losses can be calculated with โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“ = ๏ฟฝ๐พ๐พ๐‘–๐‘–๐‘–๐‘– + ๐‘“๐‘“

๐ฟ๐ฟ๐‘–๐‘– ๐œŒ๐œŒ๐‘ค๐‘ค ๐œ๐œ 2 + 2๐พ๐พ๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ + ๐พ๐พ๐‘’๐‘’๐‘’๐‘’ ๏ฟฝ = 424.7 kPa ๐ท๐ท๐‘–๐‘– 2

(4)

In the frictional pressure loss, Li = 29 m, the length of the pipe and the velocity of water can be determined from continuity, ๐œ๐œ =

๐‘š๐‘šฬ‡ = 6.385 m/s ๐œŒ๐œŒ๐‘ค๐‘ค ๐ด๐ด

(5)

The inlet pressure form loss due to acceleration (reversible component) is โˆ†๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž,๐‘–๐‘– =

๐œŒ๐œŒ๐‘ฃ๐‘ฃ 2 2

(6)

while the exit pressure form loss due to acceleration is

270

rev 112420


Chapter 10 - Single-Phase Heat Transfer

๐œŒ๐œŒ๐‘ฃ๐‘ฃ22 ๐œŒ๐œŒ๐‘ฃ๐‘ฃ 2 โˆ†๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž,๐‘œ๐‘œ = โˆ’ 2 2

(7)

The exit velocity can be determined from continuity since the mass flow rates must remain the same before and after the nozzle, ๐‘ฃ๐‘ฃ2 = ๐‘ฃ๐‘ฃ

๐ด๐ด = 19.3 m/s ๐ด๐ด๐‘ ๐‘ 

(8)

Therefore, the overall acceleration pressure drop can be determined to be ฮ”๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž =

๐œŒ๐œŒ๐œ๐œ22 = 185.5 kPa 2

(9)

These pressure losses must be supplied by the pump,

ฮ”๐‘ƒ๐‘ƒ๐‘๐‘ = ฮ”๐‘ƒ๐‘ƒ๐‘”๐‘” + ฮ”๐‘ƒ๐‘ƒ๐‘“๐‘“ + ฮ”๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = 771.5 kPa

(10)

The pumping power is therefore,

The Prandtl number for water is

๐‘Š๐‘Šฬ‡๐‘๐‘ =

ฮ”๐‘ƒ๐‘ƒ๐‘๐‘ ๐‘š๐‘šฬ‡ = 48.1 kW ๐œŒ๐œŒ๐‘ค๐‘ค ๐œ‚๐œ‚๐‘๐‘

Pr๐‘ค๐‘ค =

๐œ‡๐œ‡๐‘ค๐‘ค ๐‘๐‘๐‘๐‘๐‘๐‘ = 6.197 ๐‘˜๐‘˜๐‘ค๐‘ค

(11)

(12)

The Nusselt number can be determined from the Dittus-Boelter equation, Nu = 0.023Re0.8 Pr 0.4 = 2282

(13)

The primary side heat transfer coefficient is thus โ„๐‘๐‘ =

Nu๐‘˜๐‘˜๐‘ค๐‘ค = 1.392 ร— 104 W/m2 K ๐ท๐ท๐‘–๐‘–

(14)

The outer diameter of the pipe is

๐ท๐ท๐‘œ๐‘œ = ๐ท๐ท๐‘–๐‘– + 2๐‘ก๐‘ก๐‘ค๐‘ค = 0.11 m

(15)

Therefore the linear heat rate is can be calculated from the convection of the primary side water to the wall, conduction through the wall and convection to the steam, ๐‘ž๐‘ž โ€ฒ =

๐‘‡๐‘‡๐‘ ๐‘  โˆ’ ๐‘‡๐‘‡๐‘๐‘ kW = 92.7 ๐ท๐ท m ln ๏ฟฝ ๐ท๐ท๐‘œ๐‘œ ๏ฟฝ 1 1 ๐‘–๐‘– + + ๐œ‹๐œ‹๐ท๐ท๐‘–๐‘– โ„๐‘๐‘ 2๐œ‹๐œ‹๐‘˜๐‘˜๐‘ ๐‘  ๐œ‹๐œ‹๐ท๐ท๐‘œ๐‘œ โ„๐‘ ๐‘ 

(16)

The overall heat transfer rate is

๐‘„๐‘„ฬ‡ = ๐‘ž๐‘ž โ€ฒ ๐ฟ๐ฟ = 463.6 kW

271

(17)

rev 112420


Chapter 10 - Single-Phase Heat Transfer ๐‘„๐‘„ฬ‡

The water temperature rise due to heating from the steam is small, โˆ†๐‘‡๐‘‡๐‘ค๐‘ค = ๐‘š๐‘š๐‘š๐‘šฬ‡ assumption of constant properties used in part i is accurate.

๐‘๐‘๐‘๐‘

= 2.2ยฐC, so the

PROBLEM 10.9 QUESTION Coolant Selection for an Advanced High-Temperature Reactor (Chapters 8, 9, 10 - Section 10.5) To improve the thermalโ€“hydraulic performance of an advanced high temperature reactor (AHTR), a vendor wishes to compare two alternative coolants, that is, a liquid metal (Na) and a liquid salt (LiF โ€“ BeF2). In the AHTR core the coolant flows inside 10 m long round channels arranged in a hexagonal lattice and surrounded by a solid fuel matrix. Consider the unit cell of this core (Figure 10.19).

FIGURE 10.19 Cross-sectional view of the core unit cell. 1. The friction pressure drop in the coolant channel is to be limited to 200 kPa. Calculate the maximum allowable mass flow rate for the two candidate coolants. (Neglect surface roughness and entry effects). 2. Calculate the pumping power for the mass flow rates computed in (1). (Assume ฮทp = 100%). 3. The coolant temperature at the channel inlet is 600ยฐC. Assuming that the temperature in the fuel cannot exceed 1000ยฐC, calculate the maximum allowable linear power for each coolant. (Hint: approximate the geometry of the fuel around the coolant channel as an equivalent annulus that conserves the fuel volume. Then solve the heat conduction equation for this annulus with a zero heat flux boundary condition, Assume axially and radially uniform heat generation rate within the fuel). 4. In view of the above results, which coolant should the vendor select and why? The properties for all materials in the system are given in Table 10.11.

272

rev 112420


Chapter 10 - Single-Phase Heat Transfer

TABLE 10.11 Properties (All Properties Constant with Temperature) for Problem 10.9 Material

ฯ (kg/m3)

k (W/mK)

Liquid Na

780

60

1.7 ร— 10โˆ’4

1300

Liquid LiF-BeF2

1940

1

2.0 ร— 10โˆ’3

2410

Fuel matrix

8530

6

Not applicable

500

ฮผ (Pa s)

cp (J/kg K)

Answers: Liquid Na (1) แน = 0.357 kg/s (2) แบ†p โ‰ˆ 91W (3) qโ€ฒ = 9.4 kW/m

Liquid LiF โ€“ BeF2 แน = 0.443 kg/s แบ†p โ‰ˆ 46 W qโ€ฒ = 12.5 kW/m

PROBLEM 10.9 SOLUTION Coolant Selection for an Advanced High-Temperature Reactor (Chapters 8, 9, 10 - Section 10.5) From the problem statement and Figure 10.19, the given geometric parameters are: โˆ’ length of channel, L = 10 m โˆ’ minimal diameter of hexagonal unit cell, Dhex = 3 cm โˆ’ diameter of flow channel, Di = 1 cm ๐œ‹๐œ‹

โˆ’ flow area, ๐ด๐ด๐‘–๐‘– = 4 ๐ท๐ท๐‘–๐‘–2 = 7.854 ร— 10โˆ’5 m2

Thermodynamic properties given in Table 10.11 (โ€œNaโ€ for liquid sodium, โ€œLiโ€ for liquid salt, โ€œfโ€ for fuel matrix): โˆ’ density, ฯNa = 780 kg/m3, ฯLi = 1940 kg/m3 and ฯf = 8530 kg/m3 โˆ’ thermal conductivity, kNa = 60 W/m K, kLi = 1 W/m K and kf = 6 W/m K โˆ’ viscosity, ฮผNa = 1.7 ร— 10โˆ’4 Pa s and ฮผLi = 2.0 ร— 10โˆ’3 Pa s โˆ’ specific heat, cpNa = 1300 J/kg K, cpLi = 2410 J/kg K and cpf = 500 J/kg K Since the mass flow rate is not known yet, all of the equations presented will be functions of the mass flow rate. The Reynolds number for each fluid is

273

rev 112420


Chapter 10 - Single-Phase Heat Transfer

Re๐‘๐‘๐‘๐‘ (๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ ) =

๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ ๐ท๐ท๐‘–๐‘– ๐ด๐ด๐‘–๐‘– ๐œ‡๐œ‡๐‘๐‘๐‘๐‘

Re๐ฟ๐ฟ๐ฟ๐ฟ (๐‘š๐‘šฬ‡๐ฟ๐ฟ๐ฟ๐ฟ ) =

๐‘š๐‘šฬ‡๐ฟ๐ฟ๐ฟ๐ฟ ๐ท๐ท๐‘–๐‘– ๐ด๐ด๐‘–๐‘– ๐œ‡๐œ‡๐ฟ๐ฟ๐ฟ๐ฟ

(1)

Assuming turbulent flow, the friction factor can be calculated with the McAdams correlation for the liquid sodium and the Blasius relation for the liquid salt, ๐‘“๐‘“๐‘๐‘๐‘๐‘ (๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ ) = 0.184 Re๐‘๐‘๐‘๐‘ (๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ )โˆ’0.2 ๐‘“๐‘“๐ฟ๐ฟ๐ฟ๐ฟ (๐‘š๐‘šฬ‡๐ฟ๐ฟ๐ฟ๐ฟ ) = 0.316 Re๐ฟ๐ฟ๐ฟ๐ฟ (๐‘š๐‘šฬ‡๐ฟ๐ฟ๐ฟ๐ฟ )โˆ’0.25

(2)

The frictional pressure drop, ฮ”pf which is 200 kPa can be represented for each fluid with 2 ๐ฟ๐ฟ ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ โˆ†๐‘๐‘๐‘๐‘ = ๐‘“๐‘“๐‘๐‘๐‘๐‘ (๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ ) ๐ท๐ท๐‘–๐‘– 2๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๐ด๐ด2๐‘–๐‘–

โˆ†๐‘๐‘๐‘๐‘ = ๐‘“๐‘“๐ฟ๐ฟ๐ฟ๐ฟ (๐‘š๐‘šฬ‡๐ฟ๐ฟ๐ฟ๐ฟ )

(3)

2 ๐ฟ๐ฟ ๐‘š๐‘šฬ‡๐ฟ๐ฟ๐ฟ๐ฟ ๐ท๐ท๐‘–๐‘– 2๐œŒ๐œŒ๐ฟ๐ฟ๐ฟ๐ฟ ๐ด๐ด2๐‘–๐‘–

(4)

Using the respective Reynolds number and friction factor relations for each fluid to solve for the mass flow rate in the pressure drop formula, the resulting flow rates are ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ = 0.357 kg/s

๐‘š๐‘šฬ‡๐ฟ๐ฟ๐ฟ๐ฟ = 0.443 kg/s.

(5)

Re๐‘๐‘๐‘๐‘ = 2.672 ร— 105

Re๐ฟ๐ฟ๐ฟ๐ฟ = 2.821 ร— 104

(6)

To verify that the correct friction factor relations were chosen, the Reynolds number were calculated: Therefore since the liquid salt Reynolds number is less than 30,000, it was correct to use the Blasius relation. Next, knowing the mass flow rate and associated pressure drop, the pumping power can be easily calculated for each fluid, ๐‘Š๐‘Šฬ‡๐‘๐‘,๐‘๐‘๐‘๐‘ = ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘

โˆ†๐‘๐‘๐‘๐‘ = 91 W ๐œŒ๐œŒ๐‘๐‘๐‘๐‘

๐‘Š๐‘Šฬ‡๐‘๐‘,๐ฟ๐ฟ๐ฟ๐ฟ = ๐‘š๐‘šฬ‡๐ฟ๐ฟ๐ฟ๐ฟ

โˆ†๐‘๐‘๐‘๐‘ = 46 W ๐œŒ๐œŒ๐ฟ๐ฟ๐ฟ๐ฟ

(7)

To calculated the linear heat rate, the fuel around the coolant channel must be converted into an equivalent annulus that conserves volume. The area of fuel is ฯ€ โˆš3 2 ๐ท๐ทโ„Ž๐‘’๐‘’๐‘’๐‘’ โˆ’ ๐ท๐ท๐‘–๐‘–2 = 7.009 ร— 10โˆ’4 m2 2 4

(8)

4 ๐œ‹๐œ‹ ๐ท๐ท๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ = ๏ฟฝ ๏ฟฝ๐ด๐ด๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ + ๐ท๐ท๐‘–๐‘–2 ๏ฟฝ = 0.031502 m ๐œ‹๐œ‹ 4

(9)

๐ด๐ด๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ =

The outer diameter of the annulus can then be calculated by also including the area of the coolant channel so that

The Prandtl numbers of the fluid are Pr๐‘๐‘๐‘๐‘ =

๐œ‡๐œ‡๐‘๐‘๐‘๐‘ ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ = 3.683 ร— 10โˆ’3 ๐‘˜๐‘˜๐‘๐‘๐‘๐‘ 274

Pr๐ฟ๐ฟ๐ฟ๐ฟ =

๐œ‡๐œ‡๐ฟ๐ฟ๐ฟ๐ฟ ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ = 4.82 ๐‘˜๐‘˜๐ฟ๐ฟ๐ฟ๐ฟ

(10)

rev 112420


Chapter 10 - Single-Phase Heat Transfer

To calculate the Reynolds number, the Lyon correlation is used for the liquid sodium (metallic) and the Dittus-Boelter is used for the liquid salt, and

Nu๐‘๐‘๐‘๐‘ = 7 + 0.025(Re๐‘๐‘๐‘๐‘ Pr๐‘๐‘๐‘๐‘ )0.8 = 13.201

(11)

0.4 Nu๐ฟ๐ฟ๐ฟ๐ฟ = 0.023Re0.8 ๐ฟ๐ฟ๐ฟ๐ฟ Pr๐ฟ๐ฟ๐ฟ๐ฟ = 156.757

(12)

Thus, the heat transfer coefficients are

and

โ„๐‘๐‘๐‘๐‘ =

Nu๐‘๐‘๐‘๐‘ ๐‘˜๐‘˜๐‘๐‘๐‘๐‘ = 7.921 ร— 104 W/m2 K ๐ท๐ท๐‘–๐‘–

โ„๐ฟ๐ฟ๐ฟ๐ฟ =

Nu๐ฟ๐ฟ๐ฟ๐ฟ ๐‘˜๐‘˜๐ฟ๐ฟ๐ฟ๐ฟ = 1.568 ร— 104 W/m2 K ๐ท๐ท๐‘–๐‘–

(13)

(14)

In general, the temperature difference between the bulk inlet temperature and the bulk outlet temperature is ๐‘‡๐‘‡๐‘๐‘,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ โˆ’ ๐‘‡๐‘‡๐‘๐‘,๐‘–๐‘–๐‘–๐‘– =

๐‘ž๐‘ž โ€ฒ ๐ฟ๐ฟ ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘

(15)

The temperature difference between the bulk fluid temperature at the outlet and inner surface temperature of the fuel matrix is ๐‘‡๐‘‡๐‘ ๐‘  โˆ’ ๐‘‡๐‘‡๐‘๐‘,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ =

๐‘ž๐‘ž โ€ฒ ๐œ‹๐œ‹๐ท๐ท๐‘–๐‘– โ„

(16)

Finally, for an annulus with internal cooling, the temperature difference can be represented by 2 ๐ท๐ท๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐ท๐ท๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘ž๐‘ž โ€ฒ 1 ๏ฟฝโˆ’ ๏ฟฝ ๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š โˆ’ ๐‘‡๐‘‡๐‘ ๐‘  = ๏ฟฝ 2 ln ๏ฟฝ 2 2๐œ‹๐œ‹๐‘˜๐‘˜๐‘“๐‘“ ๐ท๐ท๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ โˆ’ ๐ท๐ท๐‘–๐‘– ๐ท๐ท๐‘–๐‘– 2

(17)

This is very similar to Eq. 8.75 after some manipulation and assuming a constant thermal conductivity. Combining the three heat transfer equations above and solving for the linear heat rate, ๐‘ž๐‘ž โ€ฒ =

2 ๐ท๐ท๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“

๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š โˆ’ ๐‘‡๐‘‡๐‘๐‘,๐‘–๐‘–๐‘–๐‘–

๐ท๐ท๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ 1 1 1 1 ๏ฟฝ 2 2 ln ๏ฟฝ ๐ท๐ท ๏ฟฝ โˆ’ 2๏ฟฝ + ๐œ‹๐œ‹๐ท๐ท โ„ + ๐‘š๐‘š๐‘๐‘ 2๐œ‹๐œ‹๐‘˜๐‘˜๐‘“๐‘“ ๐ท๐ท๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ โˆ’ ๐ท๐ท๐‘–๐‘– ๐‘–๐‘– ๐‘๐‘ ๐‘–๐‘–

(18)

where Tmax = 1000 ยฐC and Tb,in = 600 ยฐC. Plugging in the appropriate parameters for each fluid, the resulting linear heat rates are and

โ€ฒ ๐‘ž๐‘ž๐‘๐‘๐‘๐‘ = 9.40 kW/m

275

(19)

rev 112420


Chapter 10 - Single-Phase Heat Transfer โ€ฒ ๐‘ž๐‘ž๐ฟ๐ฟ๐ฟ๐ฟ = 12.51 kW/m

(20)

The thermal-hydraulic analysis indicates that a liquid salt coolant is the better choice, as it affords higher heat removal rates while requiring lower pumping power. The good thermalhydraulic performance of the liquid salt is due mainly to its high heat capacity.

276

rev 112420


Chapter 10 - Single-Phase Heat Transfer

PROBLEM 10.10 QUESTION Effect of Geometry on Single-Phase Heat Transfer in Straight Tubes (Chapters 9, 10โ€”Sections 10.2 (10.2.1, 10.2.2, 10.2.3) and 10.5 (10.5.4)) Consider a smooth round tube (2 cm in diameter) and a smooth square tube (2 cm ร— 2 cm), each 4 m in length (shown in Figure 10.20). Each tube has a fluid flowing through it at the conditions given in Table 10.12. 1. Determine if the flow is laminar or turbulent for both tubes. Justify your answer using calculations. 2. Given a uniform velocity profile at Point a (shown below in Figure 10.21), sketch the velocity profiles at Points b and c for the round tube. Explain changes you see, if any in the profiles at Points b and c. 3. Which tube has a higher heat transfer coefficient at Point c? Justify your answer using calculations. Give proper justification for the heat transfer correlation you choose. 4. Suppose that the flow rate triples. Which tube has a higher heat transfer coefficient at Point c?

FIGURE 10.20 Round and square tubes (figure not to scale).

FIGURE 10.21 Velocity profile at Point a.

277

rev 112420


Chapter 10 - Single-Phase Heat Transfer

TABLE 10.12 Fluid Properties for Problem 10.10 Parameter

Value

Density (ฯ)

914 kg/m3

Viscosity (ฮผ)

9 ร— 10โˆ’5 Pa s

Specific heat (cp)

5.8 kJ/(kgโ€งยฐC)

Thermal conductivity (k) 0.54 W/(mโ€งยฐC) Mass flow rate ( m๏€ฆ )

2.822 ร— 10โˆ’3 kg/s

Wall temperature

Constant throughout the length of the tube

Answers: 1. Laminar flow, Re = 1996 (round), Re = 1568 (square) 3. Round tube 4. Round tube

PROBLEM 10.10 S OLUTION Effect of Geometry on Single-Phase Heat Transfer in Straight Tubes From the problem statement and Table 10.12 the following parameters are given: โˆ’ density, ฯ = 914 kg/m3 โˆ’ viscosity, ฮผ = 9 ร— 10โˆ’5 Pa s โˆ’ specific heat, cp = 5.8 kJ/kg K โˆ’ thermal conductivity, k = 0.54 W/m K โˆ’ mass flow rate, แน = 2.822 ร— 10โˆ’3 kg/s โˆ’ round tube diameter, D = 2 cm ๐œ‹๐œ‹

โˆ’ round tube flow area, ๐ด๐ด = 4 ๐ท๐ท2 = 3.142 ร— 10โˆ’4 m2

The Reynolds number for the round tube is

and for the square

Re1 =

๐‘š๐‘šฬ‡๐ท๐ท = 1996 ๐ด๐ด๐ด๐ด

278

(1)

rev 112420


Chapter 10 - Single-Phase Heat Transfer

Re2 =

๐‘š๐‘šฬ‡๐ท๐ท = 1568 ๐ท๐ท2 ๐œ‡๐œ‡

(2)

We must first calculate if Points b and c, shown in Figures A and B of SM-10.2, are in the entry or fully developed region. For laminar flow, the length of the entry region, ze, can be calculated as. Thus, ze = 1.996 m (round tube) and ze = 1.568 m (square tube), and it can be concluded that Points b and c are in the entry region and fully-developed region, respectively, for both tubes. The qualitative velocity profile at Point b and c is:

Fig. A - Point b

Fig. B - Point c Figure SM-10.2 Velocity Profiles in the Entry (Fig. A) and Fully Developed Regions (Fig. B) In order to select a heat transfer coefficient correlation, we note that: - Pr = 0.97, thus the fluid is non-metallic. โˆ’ The flow regime is laminar. โˆ’ The geometry is round tube and square tube. โˆ’ The boundary condition is constant wall temperature, โˆ’ Point c is in the fully-developed region (for both velocity and temperature profiles) Thus, the Nusselt number for laminar flow in a round tube with constant wall temperature is 3.66, while for a square tube is 2.98. The corresponding heat transfer coefficients are approx.

279

rev 112420


Chapter 10 - Single-Phase Heat Transfer

99.8W/m2K and 80.5 W/m2K, respectively, i.e., the round tube has a higher heat transfer coefficient. If the flow rate triples, the Reynolds number triples (i.e., Re = 5998 for round tube and Re = 4704 for the square tube), taking the flow regime from laminar to turbulent. The situation is still one of fully-developed flow (ze=40 De=0.8m<zc). For turbulent flow in the fully developed region, the heat transfer is insensitive to geometry and boundary conditions. Since the round tube has a higher Reynolds number than the square tube, its heat transfer coefficient will also be higher. Note that the Dittus-Boelter correlation cannot be used because it is valid for Re>10,000.

280

rev 112420


Chapter 11 Two-Phase Flow Dynamics Contents Problem 11.1

Methods of describing two phase flow ......................................................... 282

Problem 11.2

Flow regime transitions ................................................................................. 284

Problem 11.3

Regime map for vertical flow ....................................................................... 285

Problem 11.4

Comparison of correlations for flooding ....................................................... 287

Problem 11.5

Impact of slip model on the predicted void fraction ..................................... 288

Problem 11.6

Level swell in a vessel due to two-phase conditions .................................... 290

Problem 11.7

Void fraction evaluation using the EPRI correlation .................................... 293

Problem 11.8

Void, quality and pressure drop problem ...................................................... 296

Problem 11.9

Calculation of a pipeโ€™s diameter for a specific pressure drop ....................... 299

Problem 11.10 Flow dynamics of nanofluids ........................................................................ 302 Problem 11.11 HEM pressure loss ........................................................................................ 305 Problem 11.12 Analysis of a liquid metal reactor vessel ...................................................... 307

281

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

PROBLEM 11.1 QUESTION Methods of Describing Two-Phase Flow (Section 11.2) Consider vertical flow through a subchannel formed by fuel rods (12.5 mm outer diameter) arranged in a square array (pitch 16.3 mm). Neglect effects of spacers and unheated walls and assume the following: 1. Saturated water at 7.2 MPa (288 ยฐC); liquid density = 740kg/m3; vapor density = 38kg/m3. 2. For vapor fraction determination in the slug flow regime, use the drift flux representation (substituting subchannel hydraulic diameter for tube diameter). 3. Consider a simplified flow regime representation, including bubbly flow, slug flow, and annular flow. The slug-to-bubbly transition occurs at a vapor fraction of 0.15. The slug-to annular transition occurs at a vapor fraction of 0.75. Calculate and draw on a graph with axes the superficial vapor velocity, {jv} (abscissa, from 0 to 40 m/s); and the superficial liquid velocity, {jโ„“} (ordinate, from 0 to 3 m/s). Answers: 1. Bubbly-to-slug {jโ„“} = โˆ’0.10 + 4.55{jv} or {jv}= 0.0235 + 0.22 jv 2. Slug-to-annular {jโ„“} = โˆ’0.10 + 0.11{jv} or {jv}= 0.966 + 9.0 jโ„“

PROBLEM 11.1 SOLUTION Methods of Describing Two-Phase Flow (Section 11.2) The following parameters are given in the problem statement: โ€“ Fuel rod diameter, D = 12.5 mm โ€“ Fuel rod pitch, S = 16.3 mm โ€“ Liquid density, ฯl = 740kg/m3 โ€“ Vapor density, ฯฯ… = 38kg/m3 โ€“ Bubbly-to-slug transition void fraction, ฮฑsb = 0.15 โ€“ Slug-to-annular transition void fraction, ฮฑsa = 0.75 The hydraulic diameter can be calculated as ๐ท๐ท๐‘’๐‘’ =

The drift flux model is given as

๐œ‹๐œ‹ 4 ๏ฟฝ๐‘†๐‘† 2 โˆ’ 4 ๐ท๐ท2 ๏ฟฝ ๐œ‹๐œ‹๐œ‹๐œ‹

= 0.01456 m

282

(1)

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

๐›ผ๐›ผ =

๐‘—๐‘—๐œ๐œ ๐ถ๐ถ๐‘œ๐‘œ ๐‘—๐‘— + ๐œ๐œ๐œ๐œ๐œ๐œ

(2)

where the drift velocity can be represented as

๐œ๐œ๐œ๐œ๐œ๐œ = (1 โˆ’ ๐›ผ๐›ผ)๐‘›๐‘› ๐œ๐œโˆž

(3)

TABLE 11.3 Values of n and Vโˆž for Various Regimes Regime

n

Vโˆž

Small bubbles (d < 0.5 cm)

3

g ( ฯ๏ฌ โˆ’ ฯv ) d

Large bubbles (d < 2 cm)

1.5

2

18 ยต ๏ฌ

๏ฃฎฯƒ g (ฯ โˆ’ ฯ ) ๏ฃน 1.53 ๏ฃฏ๏ฃฐ ๏ฃบ๏ฃป ฯ

1/ 4

๏ฃฎฯƒ g (ฯ โˆ’ ฯ ) ๏ฃน 1.53 ๏ฃฏ๏ฃฐ ๏ฃบ๏ฃป ฯ

1/ 4

v

๏ฌ

2

๏ฌ

Churn flow

0

v

๏ฌ

2

๏ฌ

Slug flow (in tube of diameter D)

0

0.35

๏ฃซฯ โˆ’ฯ ๏ฃถ ๏ฃทD ๏ฃญ ฯ ๏ฃธ

g ๏ฃฌ

v

๏ฌ

๏ฌ

For slug flow, Table 11.3 shows n = 0 and Co = 1.2. The drift velocity from Table 11.3 is therefore ๐œ๐œ๐œ๐œ๐œ๐œ = ๐œ๐œโˆž = 0.35๏ฟฝ๐‘”๐‘” ๏ฟฝ

๐œŒ๐œŒ๐‘™๐‘™ โˆ’ ๐œŒ๐œŒ๐œ๐œ ๏ฟฝ ๐ท๐ท = 0.119 mโ„s ๐œŒ๐œŒ๐‘™๐‘™

(4)

We can rearrange Equation (2) into the following form:

๐‘—๐‘—๐œ๐œ = ๐›ผ๐›ผ๐ถ๐ถ๐‘œ๐‘œ ๐‘—๐‘— + ๐›ผ๐›ผ๐›ผ๐›ผ๐œ๐œ๐œ๐œ ๐‘—๐‘—๐œ๐œ = ๐›ผ๐›ผ๐ถ๐ถ๐‘œ๐‘œ ๐‘—๐‘—๐œ๐œ + ๐›ผ๐›ผ๐›ผ๐›ผ๐‘œ๐‘œ ๐‘—๐‘—๐‘™๐‘™ + ๐›ผ๐›ผ๐›ผ๐›ผ๐œ๐œ๐œ๐œ ๐‘—๐‘—๐œ๐œ =

๐›ผ๐›ผ๐œ๐œ๐œ๐œ๐œ๐œ ๐›ผ๐›ผ๐ถ๐ถ๐‘œ๐‘œ ๐‘—๐‘—๐‘™๐‘™ + 1 โˆ’ ๐›ผ๐›ผ๐ถ๐ถ๐‘œ๐‘œ 1 โˆ’ ๐›ผ๐›ผ๐›ผ๐›ผ๐‘œ๐‘œ

(5)

For bubbly-to-slug we can determine the coefficients as

283

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

๐›ผ๐›ผ๐‘ ๐‘ ๐‘ ๐‘  ๐œ๐œ๐œ๐œ๐œ๐œ ๐›ผ๐›ผ๐‘ ๐‘ ๐‘ ๐‘  ๐ถ๐ถ๐‘œ๐‘œ = 0.220 = 0.0218 mโ„s 1 โˆ’ ๐›ผ๐›ผ๐‘ ๐‘ ๐‘ ๐‘  ๐ถ๐ถ๐‘œ๐‘œ 1 โˆ’ ๐›ผ๐›ผ๐‘ ๐‘ ๐‘ ๐‘  ๐ถ๐ถ๐‘œ๐‘œ

For slug-to-annular we can determine the coefficients as

๐›ผ๐›ผ๐‘ ๐‘ ๐‘ ๐‘  ๐œ๐œ๐œ๐œ๐œ๐œ ๐›ผ๐›ผ๐‘ ๐‘ ๐‘ ๐‘  ๐ถ๐ถ๐‘œ๐‘œ = 9.0 = 0.8952 mโ„s 1 โˆ’ ๐›ผ๐›ผ๐‘ ๐‘ ๐‘ ๐‘  ๐ถ๐ถ๐‘œ๐‘œ 1 โˆ’ ๐›ผ๐›ผ๐‘ ๐‘ ๐‘ ๐‘  ๐ถ๐ถ๐‘œ๐‘œ

After inverting Equation (5), we get the following transition equations: 1. Bubbly-to-slug {jโ„“} = โˆ’0.10 + 4.55{jv} or {jv}= 0.0235 + 0.22 jv 2. Slug-to-annular {jโ„“} = โˆ’0.10 + 0.11{jv} or {jv}= 0.966 + 9.0 jโ„“

PROBLEM 11.2 QUESTION Flow Regime Transitions (Section 11.3) Line B of the flow regime map of Taitel et al. [70] is given as Equation 11.10. Derive this equation assuming that, because of turbulence, a Taylor bubble cannot exist with a diameter larger than:

where k = 1.14

๐œŽ๐œŽ 3โ„5 ๐‘‘๐‘‘๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = ๐‘˜๐‘˜ ๏ฟฝ ๏ฟฝ (๐œ–๐œ–)โˆ’2โ„5 ๐‘๐‘๐‘™๐‘™ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘—๐‘— ๐œ–๐œ– = ๏ฟฝ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œŒ๐œŒ๐‘š๐‘š

Use the friction factor (f) = 0.046 (jD/ฯ…๏ฌ)โˆ’0.2 and the fact that for small bubble the critical diameter that can be supported by the surface tension is given by: 0.5 0.4๐œŽ๐œŽ ๐‘‘๐‘‘๐‘๐‘๐‘๐‘ = ๏ฟฝ ๏ฟฝ (๐œŒ๐œŒ๏ฌ โˆ’ ๐œŒ๐œŒ๐‘ข๐‘ข )๐‘”๐‘”

PROBLEM 11.2 SOLUTION Flow Regime Transitions (Section 11.3) From the problem statement we have

where k = 1.14

๐œŽ๐œŽ 3โ„5 ๐‘‘๐‘‘๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = ๐‘˜๐‘˜ ๏ฟฝ ๏ฟฝ (๐œ–๐œ–)โˆ’2โ„5 ๐œŒ๐œŒ๐‘™๐‘™

284

(1)

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘—๐‘— ๐œ–๐œ– = ๏ฟฝ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œŒ๐œŒ๐‘š๐‘š

(2)

The pressure gradient is related to the friction factor with ๐‘‘๐‘‘๐‘‘๐‘‘ 2๐‘“๐‘“ = ๐œŒ๐œŒ ๐‘—๐‘— 2 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐ท๐ท ๐‘š๐‘š

where

๐‘“๐‘“ = 0.046 ๏ฟฝ

(3)

๐‘—๐‘—๐‘—๐‘— โˆ’0.2 ๏ฟฝ ๐œ๐œ๐‘™๐‘™

(4)

Substituting these equations, the max diameter is

๐œŽ๐œŽ 3โ„5 2 ๐‘—๐‘—๐‘—๐‘— โˆ’0.2 ๐‘—๐‘— ๐‘‘๐‘‘๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = ๐‘˜๐‘˜ ๏ฟฝ ๏ฟฝ ๏ฟฝ 0.046 ๏ฟฝ ๏ฟฝ ๐‘ƒ๐‘ƒ๐‘š๐‘š ๐‘—๐‘— 2 ๏ฟฝ ๐œŒ๐œŒ๐‘™๐‘™ ๐ท๐ท ๐œ๐œ๐‘™๐‘™ ๐œŒ๐œŒ๐‘š๐‘š

โˆ’2โ„5

(5)

The critical diameter is

๐‘‘๐‘‘๐‘๐‘๐‘๐‘ = ๏ฟฝ

0.5 0.4๐œŽ๐œŽ ๏ฟฝ (๐œŒ๐œŒ๐‘™๐‘™ โˆ’ ๐œŒ๐œŒ๐‘ข๐‘ข )๐‘”๐‘”

(6)

If the critical diameter is set to the max diameter then

0.5 0.4๐œŽ๐œŽ ๐œŽ๐œŽ 3โ„5 2 ๐‘—๐‘—๐‘—๐‘— โˆ’0.2 ๐‘—๐‘— ๏ฟฝ ๏ฟฝ = ๐‘˜๐‘˜ ๏ฟฝ ๏ฟฝ ๏ฟฝ 0.046 ๏ฟฝ ๏ฟฝ ๐‘ƒ๐‘ƒ๐‘š๐‘š ๐‘—๐‘— 2 ๏ฟฝ (๐œŒ๐œŒ๐‘™๐‘™ โˆ’ ๐œŒ๐œŒ๐œ๐œ )๐‘”๐‘” ๐œ๐œ๐‘™๐‘™ ๐œŒ๐œŒ๐‘™๐‘™ ๐ท๐ท ๐œŒ๐œŒ๐‘š๐‘š

โˆ’2โ„5

(7)

Solving for the total superficial velocity

๐œŽ๐œŽ 0.0893 0.446 ๐ท๐ท0.429 ๏ฟฝ ๏ฟฝ (๐œŒ๐œŒ๐‘™๐‘™ โˆ’ ๐œŒ๐œŒ๐œ๐œ )๐‘”๐‘” ๐œŒ๐œŒ๐‘™๐‘™ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๐‘—๐‘— = ๐‘—๐‘—๐‘™๐‘™ + ๐‘—๐‘—๐œ๐œ = 4 ๏ฟฝ ๐œŒ๐œŒ๐‘™๐‘™ ๐œ๐œ๐‘™๐‘™0.0714

(8)

PROBLEM 11.3 QUESTION Regime Map for Vertical Flow (Section 11.2) Construct a flow regime map based on coordinates {jฯ…} and {j๏ฌ} using the transition criteria of Taitel et al. [67] for the secondary side of the vertical steam generator. Assume that the length of the steam generator is 3.7 m and the characteristic hydraulic diameter is the volumetric hydraulic diameter:

Operation conditions Saturated water at 282ยฐC

๐ท๐ท๐œ๐œ =

4(๐‘›๐‘›๐‘›๐‘›๐‘ก๐‘ก ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ) ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ 

285

= 0.134 m

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

Liquid density = 747 kg/m3 Vapor density = 34 kg/m3 Surface tension = 17.6 ร— 10โˆ’3 N/m Answers: {j๏ฌ} = 3.0 {jv} - 0.14

Bubbly-to-slug:

Bubbly-to-dispersed bubbly: {j๏ฌ} + {jv} = 5.554 Disperse bubble-to-slug:

{j๏ฌ} = 0.923 {jv}

Slug to-churn:

{j๏ฌ} + {jv} = 0.527

Churn-to-annular:

{jv} = 1.78

PROBLEM 11.3 SOLUTION Regime Map for Vertical Flow (Section 11.2) From the problem statement, the operating conditions are โ€“ liquid density, ฯ๏ฌ = 747 kg/m3 โ€“ vapor density, ฯv = 34kg/m3 โ€“ surface tension, 17.6 N/m โ€“ D = 0.134 i) For bubbly-to-slug, the transition occurs at {ฮฑ} = 0.25. Using Equation 11.5 1โ„4

{๐‘—๐‘—๐œ๐œ } {๐‘—๐‘—๏ฌ } ๐‘”๐‘”(๐œŒ๐œŒ๏ฌ โˆ’ ๐œŒ๐œŒ๐‘ฃ๐‘ฃ ) = โˆ’ 1.53 ๏ฟฝ ๏ฟฝ {1 โˆ’ ๐›ผ๐›ผ} {๐›ผ๐›ผ} ๐œŒ๐œŒ๏ฌ2

(1)

Substituting in the appropriate conditions,

(2)

{๐‘—๐‘—๏ฌ } = 3.0{๐‘—๐‘—๐œ๐œ } โˆ’ 0.14

ii) bubbly-to-dispersed bubbly, using Equation 11.10

0.446

๐ท๐ท0.429 (๐œŽ๐œŽโ„๐œŒ๐œŒ๏ฌ )0.089 ๐‘”๐‘”(๐œŒ๐œŒ๏ฌ โˆ’ ๐œŒ๐œŒ๐‘ฃ๐‘ฃ ) {๐‘—๐‘—๏ฌ } + {๐‘—๐‘—๐œ๐œ } = 4 ๏ฟฝ ๏ฟฝ ๏ฟฝ ๐œŒ๐œŒ๏ฌ ๐œ๐œ๏ฌ0.072

For saturated water, v๏ฌ = 0.13 ร— 10โˆ’6 m2/s

{๐‘—๐‘—๏ฌ } + {๐‘—๐‘—๐œ๐œ } = 5.554

๏ฟฝ

(3)

(4)

iii) disperse bubbly-to-slug, using Equation 11.12

286

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

0.52 =

Therefore,

{๐‘—๐‘—๐œ๐œ } {๐‘—๐‘—๏ฌ } + {๐‘—๐‘—๐œ๐œ }

{๐‘—๐‘—๏ฌ } = 0.923{๐‘—๐‘—๐œ๐œ }

(5)

(6)

iv) slug-to-churn, using Equation 11.13

If we put lฯต = 3.7 m, Then

{๐‘—๐‘—} ๐‘™๐‘™๐œ–๐œ– = 40.6 ๏ฟฝ + 0.22๏ฟฝ ๐ท๐ท ๏ฟฝ๐‘”๐‘”๐‘”๐‘” {๐‘—๐‘—} = {๐‘—๐‘—๏ฌ } + {๐‘—๐‘—๐œ๐œ } = 0.527

(7)

(8)

v) churn-to-annular, using Equation 11.19

{๐‘—๐‘—๐œ๐œ }๐œŒ๐œŒ๐œ๐œ1โ„2 = 3.1 [๐œŽ๐œŽ๐œŽ๐œŽ(๐œŒ๐œŒ๏ฌ โˆ’ ๐œŒ๐œŒ๐œ๐œ )]1โ„4

Therefore,

{๐‘—๐‘—๐œ๐œ } = 1.78

(9)

(10)

PROBLEM 11.4 QUESTION Comparison of Correlations for Flooding (Section 11.2) 1. It was experimentally verified that for tubes with a diameter larger than about 6.35 cm flooding is independent of diameter for air water mixtures at low pressure conditions. Test this assertion against Wallis correlation and the Pushkin and Sorokin correlation (Equation 11.28) by finding the diameter at which they are equal at atmospheric pressure. 2. Repeat question 1 for a saturated steam water mixture at 6.9 MPa. Note: For the j๏ฌ = 0 condition, the terms flooding and flow reversal are effectively synonymous. Answers: 1. D = 3.91 cm 2. D = 2.58 cm The Taylor bubble diameter should be less than the tube diameter if the tube diameter is not to influence flooding. At extremely low pressure situations, the limiting value of bubble diameter can reach 6.35 cm. Thus the assertion that for D > 6.35 cm, flooding is independent of diameter is applicable.

287

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

PROBLEM 11.4 SOLUTION Comparison of Correlations for Flooding (Section 11.2) Properties at atmospheric pressure are โ€” saturated liquid density, ฯf = 958.37kg/m โ€” saturated vapor density, ฯg = 0.598 kg/m

3

3

โ€” surface tension, ฯƒ = 0.05892 N/m โ€” Kutateladze number, Kฯ… = 3.2 from Equation 11.28 โ€” geometric constants, C = 0.9 and m = 1.0

Using the Wallis correlation (Equations 11.23 and 11.25), {๐‘—๐‘—๐œ๐œ } ๏ฟฝ

0.5 ๐œŒ๐œŒ๐œ๐œ ๏ฟฝ = ๐ถ๐ถ ๐‘”๐‘”๐‘”๐‘”(๐œŒ๐œŒ๐‘™๐‘™ โˆ’ ๐œŒ๐œŒ๐œ๐œ )

(1)

The Kutateladze number is defined as

๐พ๐พ๐พ๐พ๐œ๐œ = {๐‘—๐‘—๐œ๐œ } ๏ฟฝ

0.5 ๐œŒ๐œŒ๐œ๐œ ๏ฟฝ [๐‘”๐‘”๐‘”๐‘”(๐œŒ๐œŒ๐‘™๐‘™ โˆ’ ๐œŒ๐œŒ๐œ๐œ )]0.5

(2)

Substituting Equation (1) into Equation (2) and solving for the diameter we get ๐พ๐พ๐พ๐พ๐œ๐œ 2 ๏ฟฝ๐‘”๐‘”๐‘”๐‘”๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ โˆ’ ๐œŒ๐œŒ๐‘”๐‘” ๏ฟฝ๏ฟฝ ๐ท๐ท = ๏ฟฝ 2 ๏ฟฝ ๐ถ๐ถ ๐‘”๐‘”๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ โˆ’ ๐œŒ๐œŒ๐‘”๐‘” ๏ฟฝ

0.5

(3)

Plugging in values the diameter is At 6.4 MPa, the properties are:

๐ท๐ท = 3.91 cm

(4)

3

โ€” saturated liquid density, ฯf = 750.576 kg/m โ€” saturated vapor density, ฯg = 33.07kg/m

3

โ€” surface tension, ฯƒ = 0.019033 N/m

Using Equation (3), and the new properties, the diameter is ๐ท๐ท = 2.58 cm

(5)

PROBLEM 11.5 QUESTION Impact of Slip Model on the Predicted Void Fraction (Section 11.4) In a water channel, the flow conditions are such that: โ€“ Mass flow rate: แน = 0.29 kg/s

288

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

โ€“ Flow area: A = 1.5 ร— 10โˆ’4 m2 โ€“ Flow quality: x = 0.15 โ€“ Operating pressure: P = 7.2 MPa Calculate the void fraction using (1) the HEM model, (2) Bankoffโ€™s slip correlation, and (3) the drift flux model using Dixโ€™s correlation for Co and Vฯ…j calculated assuming churn flow conditions. Answers: 1. {ฮฑ} = 0.775 2. {ฮฑ} = 0.631 3. {ฮฑ} = 0.703

PROBLEM 11.5 SOLUTION Impact of Slip Model on the Predicted Void Fraction (Section 11.4) In a water channel, the flow conditions are such that: โ€“ Mass flow rate: แน = 0.29 kg/s โ€“ Flow area: A = 1.5 ร— 10โˆ’4 m2 โ€“ Flow quality: x = 0.15 โ€“ Operating pressure: P = 7.2 MPa The thermodynamic properties for this operating condition are: โ€“ Saturated liquid water density, ฯf = 736.2 kg/m3 โ€“ Saturated water vapor density, ฯg = 37.7 kg/m3 HEM Model The void fraction for the HEM model is ๐›ผ๐›ผ๐ป๐ป๐ป๐ป๐ป๐ป =

1 = 0.775 1 โˆ’ ๐‘ฅ๐‘ฅ ๐œŒ๐œŒ๐‘”๐‘” 1 + ๐‘ฅ๐‘ฅ ๐œŒ๐œŒ ๐‘“๐‘“

(1)

Bankoff Correlation The K factor in the Bankoff correlation is given by ๐พ๐พ = 0.71 + 0.0001๐‘๐‘ = 0.814

where p is in units of psi. The volumetric flow fraction is equivalent to the void fraction from the HEM model, ๐›ฝ๐›ฝ = ๐›ผ๐›ผ๐ป๐ป๐ป๐ป๐ป๐ป = 0.775

The void fraction from the Bankoff model is

๐›ผ๐›ผ๐ต๐ต๐ต๐ต = ๐พ๐พ๐พ๐พ = 0.631 289

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

Drift Flux - Dixโ€™s Correlation From Dixโ€™s correlation, the b factor is 0.1

๐œŒ๐œŒ๐‘”๐‘” ๐‘๐‘ = ๏ฟฝ ๏ฟฝ ๐œŒ๐œŒ๐‘“๐‘“

The Co parameter is given as

= 0.743

๐‘๐‘ 1 ๐ถ๐ถ๐‘œ๐‘œ = ๐›ฝ๐›ฝ ๏ฟฝ1 + ๏ฟฝ โˆ’ 1๏ฟฝ ๏ฟฝ = 1.084 ๐›ฝ๐›ฝ

For Churn flow, n = 0 and the drift velocity is given as

0.25

๐œŽ๐œŽ๐œŽ๐œŽ๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ โˆ’ ๐œŒ๐œŒ๐‘”๐‘” ๏ฟฝ ๐‘‰๐‘‰๐œ๐œ๐œ๐œ = 1.53 ๏ฟฝ ๏ฟฝ ๐œŒ๐œŒ๐‘“๐‘“2

The total superficial velocity is given as ๐‘—๐‘— =

= 0.186 mโ„s

๐‘š๐‘šฬ‡(1 โˆ’ ๐‘ฅ๐‘ฅ) ๐‘š๐‘šฬ‡๐‘ฅ๐‘ฅ + = 9.925 mโ„s ๐ด๐ด๐œŒ๐œŒ๐‘“๐‘“ ๐ด๐ด๐ด๐ด๐‘”๐‘”

The void fraction is calculated to be

๐›ผ๐›ผ๐ท๐ท๐ท๐ท =

๐›ฝ๐›ฝ

๐‘‰๐‘‰๐œ๐œ๐œ๐œ ๐ถ๐ถ๐‘œ๐‘œ + ๐‘—๐‘—

= 0.703

PROBLEM 11.6 QUESTION Level Swell in a Vessel due to Two-Phase Conditions (Section 11.4) Compute the level swell in a cylindrical vessel with volumetric heat generation under thermodynamic equilibrium and steady-state conditions. The vessel is filled with vertical fuel rods such that De = 0.0122 m. The collapsed water level is 2.13 m. Operating conditions No inlet flow to the vessel P = 5.516 MPa Qโ€ด (volumetric heat source) = 4.14 ร— 106 W/m3 Water properties ฯƒ = 0.07 N/m hfg = 1.6 ร— 106 J/kg ฯg = 28.14kg/m3 ฯf = 767.5 kg/m3 Assumptions Flow regime Selected values from Table 11.3 (n, Vโˆž)

290

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

Bubbly large bubbles TABLE 11.3 Values of n and Vโˆž for Various Regimes Regime

n

Vโˆž

Small bubbles (d < 0.5

3

g ( ฯ๏ฌ โˆ’ ฯv ) d

cm)

2

18 ยต ๏ฌ

Large bubbles (d < 2 cm)

1.5

๏ฃฎฯƒ g (ฯ โˆ’ ฯ ) ๏ฃน ๏ฃฏ๏ฃฐ ๏ฃบ๏ฃป ฯ

1/ 4

๏ฃฎฯƒ g (ฯ โˆ’ ฯ ) ๏ฃน 1.53 ๏ฃฏ๏ฃฐ ๏ฃบ๏ฃป ฯ

1/ 4

1.53

v

๏ฌ

2

๏ฌ

Churn flow

0

v

๏ฌ

2

๏ฌ

Slug flow (in tube of

0

0.35

diameter D)

๏ฃซฯ โˆ’ฯ ๏ฃถ ๏ฃทD ๏ฃญ ฯ ๏ฃธ

g ๏ฃฌ

v

๏ฌ

๏ฌ

Select appropriate transition for flow regimes so that there is a continuous shape for the ฮฑ versus z curve. For these conditions, the following result for ฮฑ versus z is known:

Answer: Hswell = 2.56 m

{๐›ผ๐›ผ}๐‘‰๐‘‰โˆž (1 โˆ’ {๐›ผ๐›ผ})๐‘›๐‘›โˆ’1 =

๐‘„๐‘„โ€ด ๐‘ง๐‘ง โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐œŒ๐œŒ๐‘”๐‘”

PROBLEM 11.6 SOLUTION Level Swell in a Vessel due to Two-Phase Conditions (Section 11.4) From the problem statement, we are given: โ€“ pressure, P = 5.516 MPa โ€” heat of vaporization, hfg = 1600 kJ/kg โ€” equivalent diameter, De = 0.0122 m

โ€“ surface tension, ฯƒ = 0.07 N/m

291

rev 112420


Chapter 11 - Two-Phase Flow Dynamics โ€” saturated liquid density, ฯf = 767.5 kg/m

3

โ€“ saturated vapor density, ฯg = 28.14kg/m3 โ€“ collapsed height, Hc = 2.13 m โ€ด

โ€” volumetric heat generation, Q

= 4.14 MW/m3

First, we need to determine the transition height between large bubbly and slug flow. From Table 11.3 the velocity of the bubbles for large bubbly (nb = 1.5) and slug (ns = 0) are 0.25

and

๐œŽ๐œŽ๐œŽ๐œŽ๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ โˆ’ ๐œŒ๐œŒ๐‘”๐‘” ๏ฟฝ ๐œ๐œ๐‘๐‘ = 1.53 ๏ฟฝ ๏ฟฝ ๐œŒ๐œŒ๐‘“๐‘“2

= 0.262 mโ„s

(1)

= 0.119 mโ„s

(2)

๐›ผ๐›ผ๐‘ก๐‘ก๐‘ก๐‘ก ๐œ๐œ๐‘๐‘ (1 โˆ’ ๐›ผ๐›ผ๐‘ก๐‘ก๐‘ก๐‘ก )๐‘›๐‘›๐‘๐‘โˆ’1 = ๐›ผ๐›ผ๐‘ก๐‘ก๐‘ก๐‘ก ๐œ๐œ๐‘ ๐‘  (1 โˆ’ ๐›ผ๐›ผ๐‘ก๐‘ก๐‘ก๐‘ก )๐‘›๐‘›๐‘œ๐‘œ โˆ’1

(3)

๐›ผ๐›ผ๐‘ก๐‘ก๐‘ก๐‘ก = 0.41

(4)

0.5

๐œŒ๐œŒ๐‘“๐‘“ โˆ’ ๐œŒ๐œŒ๐‘”๐‘” ๏ฟฝ ๐ท๐ท๐‘’๐‘’ ๏ฟฝ ๐œ๐œ๐‘ ๐‘  = 0.35 ๏ฟฝ๐‘”๐‘” ๏ฟฝ ๐œŒ๐œŒ๐‘“๐‘“

The transition void fraction can be determined with Solving for the transition void fraction, we get

The transition height can be determined from the given formula, {๐›ผ๐›ผ}๐‘‰๐‘‰โˆž (1 โˆ’ {๐›ผ๐›ผ})๐‘›๐‘›โˆ’1 =

This height is calculated to be

๐‘„๐‘„โ€ด ๐‘ง๐‘ง โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐œŒ๐œŒ๐‘”๐‘”

(5)

๐ป๐ป๐‘ก๐‘ก๐‘ก๐‘ก = 0.898 m

(6)

๐‘š๐‘š๐‘“๐‘“,๐‘–๐‘– = ๐‘š๐‘š๐‘“๐‘“,๐‘“๐‘“ + ๐‘š๐‘š๐‘”๐‘”

(7)

To solve for the swelled level from the collapsed level, a mass balance approach can be used. All of the original liquid must either stay as liquid or turn to vapor. This can be represented mathematically as where mf,i is the original amount of liquid mass, mf, f is the final amount of liquid mass and mg is the final mass of vapor. Substituting in for density and volume (area is constant), these masses can be calculated as ๐ป๐ป๐‘ก๐‘ก

๐œŒ๐œŒ๐‘“๐‘“ ๐ป๐ป๐‘๐‘ = ๏ฟฝ ๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ ๏ฟฝ1 โˆ’ ๐›ผ๐›ผ(๐‘ง๐‘ง) + ๐œŒ๐œŒ๐‘”๐‘” ๐›ผ๐›ผ(๐‘ง๐‘ง)๏ฟฝ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ 0

(8)

where Ht is the final swelled height. Therefore, we can break this calculation up for the bubbly and slug regions,

292

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

๐œŒ๐œŒ๐‘“๐‘“ ๐ป๐ป๐‘๐‘ = ๏ฟฝ

๐ป๐ป๐‘ก๐‘ก๐‘ก๐‘ก

0

๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ ๏ฟฝ1 โˆ’ ๐›ผ๐›ผ๐‘๐‘ (๐‘ง๐‘ง) + ๐œŒ๐œŒ๐‘”๐‘” ๐›ผ๐›ผ๐‘๐‘ (๐‘ง๐‘ง)๏ฟฝ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ +๏ฟฝ

๐ป๐ป๐‘ก๐‘ก

๐ป๐ป๐ป๐ป๐ป๐ป

(9)

๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ ๏ฟฝ1 โˆ’ ๐›ผ๐›ผ๐‘ ๐‘  (๐‘ง๐‘ง) + ๐œŒ๐œŒ๐‘”๐‘” ๐›ผ๐›ผ๐‘ ๐‘  (๐‘ง๐‘ง)๏ฟฝ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘

In the bubbly flow region, the void distribution is described by ๐›ผ๐›ผ๐‘๐‘ (๐‘ง๐‘ง)๐œ๐œ๐‘๐‘ ๏ฟฝ1 โˆ’ ๐›ผ๐›ผ๐‘๐‘ (๐‘ง๐‘ง)๏ฟฝ

=

๐‘„๐‘„โ€ด ๐‘ง๐‘ง โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐œŒ๐œŒ๐‘”๐‘”

=

๐‘„๐‘„โ€ด ๐‘ง๐‘ง โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐œŒ๐œŒ๐‘”๐‘”

0.5

(10)

This formula cannot be explicitly solve for the void fraction. For the slug flow region, the void distribution is described by ๐›ผ๐›ผ๐‘ ๐‘  (๐‘ง๐‘ง)๐œ๐œ๐‘ ๐‘  ๏ฟฝ1 โˆ’ ๐›ผ๐›ผ๐‘ ๐‘  (๐‘ง๐‘ง)๏ฟฝ

โˆ’1

Solving for the void fraction, we get

๐‘„๐‘„โ€ด ๐‘ง๐‘ง ๐œ๐œ๐‘ ๐‘  โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐œŒ๐œŒ๐‘”๐‘” ๐›ผ๐›ผ๐‘ ๐‘  (๐‘ง๐‘ง) = ๐‘„๐‘„โ€ด 1+ ๐‘ง๐‘ง ๐œ๐œ๐‘ ๐‘  โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐œŒ๐œŒ๐‘”๐‘”

(11)

(12)

Solving Equations. (9), (10) and (12) numerically for the final swelled height, Ht, we get ๐ป๐ป๐‘ก๐‘ก = 4.69 m

Therefore swelled level from the collapsed level is

๐ป๐ป๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = ๐ป๐ป๐‘ก๐‘ก โˆ’ ๐ป๐ป๐‘๐‘ = 2.56 m

PROBLEM 11.7 QUESTION Void Fraction Evaluation Using the EPRI Correlation (Section 11.5.4) Using the EPRI correlation, evaluate the void fraction for a saturated water-steam mixture at a total mass flux, G, of 40 kg/m2s at 50% quality in a tube of diameter 20 mm at 7.45 MPa pressure. Use the fluid properties of Table 11.8. TABLE 11.8 Fluid Properties for Problem 11.7 ฯf = 731.76 kg/m3 ฯg = 39.18 kg/m3 ฮผf = 89.63 ฮผPa s ฮผg = 19.16 ฮผPa s ฯƒ = 0.0166 N/m

Answer: {ฮฑ} = 0.62

293

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

PROBLEM 11.7 SOLUTION Void Fraction Evaluation Using the EPRI Correlation (Section 11.5.4) Using the EPRI correlation, evaluate the void fraction for a saturated water-steam mixture at a total mass flux, G, of 40 kg/m2s at 50% quality in a tube of diameter 20 mm at 7.45 MPa pressure. Use the fluid properties of Table 11.8. Therefore for this problem we are given that: โ€“ total mass flux, G = 40 kg/m2s โ€” quality, x = 0.5 โ€” diameter, D = 20 mm โ€” pressure, P = 7.45 MPa 3

โ€” saturated liquid water density, ฯf = 731.76 kg/m

โ€“ saturated water vapor density, ฯg = 39.18 kg/m3 โ€“ saturated liquid water viscosity, ฮผf =89.63 ร— 10โˆ’6 Pa ยท s โˆ’6

โ€” saturated water vapor viscosity, ฮผg = 19.16 ร— 10

Pa ยท s

โ€“ surface tension, ฯƒ = 0.0166 N/m โ€“ critical pressure, Pc = 22.1 MPa Total Superficial Velocity and Volumetric Flow Fraction: The phasic superficial velocities can be calculated as follows: ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 0.51 mโ„s ๐œŒ๐œŒ๐‘”๐‘” (1 โˆ’ ๐‘ฅ๐‘ฅ)๐บ๐บ = 0.027 mโ„s ๐‘—๐‘—๐‘“๐‘“ = ๐œŒ๐œŒ๐‘“๐‘“ ๐‘—๐‘—๐‘”๐‘” =

(1) (2)

The total superficial velocity is jus the sum of the individual phasic superficial velocities, ๐‘—๐‘— = ๐‘—๐‘—๐‘”๐‘” + ๐‘—๐‘—๐‘“๐‘“ = 0.538 mโ„s

(3)

The volumetric flow fraction can be expressed as the ratio of the gas phasic superficial velocity to the total superficial velocity, ๐›ฝ๐›ฝ =

๐‘—๐‘—๐‘”๐‘” = 0.949 ๐‘—๐‘—

(4)

Evaluation of Co: To evaluate the parameter Co we can first calculated the parameter C1, 4๐‘ƒ๐‘ƒ๐‘๐‘2 ๐ถ๐ถ1 = ๏ฟฝ ๏ฟฝ = 17.9 ๐‘ƒ๐‘ƒ(๐‘ƒ๐‘ƒ๐‘๐‘ โˆ’ ๐‘ƒ๐‘ƒ) 294

(5)

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

To calculate the parameter A1, the Reynolds number of each phase is computed, ๐œŒ๐œŒ๐‘“๐‘“ ๐‘—๐‘—๐‘“๐‘“ ๐ท๐ท = 4.463 ร— 103 ๐œ‡๐œ‡๐‘“๐‘“ ๐œŒ๐œŒ๐‘”๐‘” ๐‘—๐‘—๐‘”๐‘” ๐ท๐ท = 2.088 ร— 104 ๐‘…๐‘…๐‘…๐‘…๐‘”๐‘” = ๐œ‡๐œ‡๐‘”๐‘”

๐‘…๐‘…๐‘…๐‘…๐‘“๐‘“ =

(6) (7)

Since the gas phase Reynolds number is greater than the liquid phase Reynolds number, the gas phase is chosen as the reference value to calculate the parameter A1, ๐ด๐ด1 =

1

โˆ’๐‘…๐‘…๐‘…๐‘… = 0.586 1 + ๐‘’๐‘’ 00000

(8)

Since A1 is less than 0.8, the parameter B1 is defined as ๐ต๐ต1 = ๐ด๐ด1 = 0.586

(9)

Knowing this parameter, the parameter K0 can be determined to be 0.25

๐œŒ๐œŒ๐‘”๐‘” ๐พ๐พ0 = ๐ต๐ต1 + (1 โˆ’ ๐ต๐ต1 ) ๏ฟฝ ๏ฟฝ ๐œŒ๐œŒ๐‘“๐‘“

The parameter r is given as

๐‘Ÿ๐‘Ÿ =

๐œŒ๐œŒ๐‘”๐‘” 0.25 1 + 1.57 ๏ฟฝ๐œŒ๐œŒ ๏ฟฝ ๐‘“๐‘“

1 โˆ’ ๐ต๐ต1

= 0.785

= 2.619

(10)

(11)

Finally, the parameter Co can be expressed as a function of the void fraction. Since we are ultimately trying to solve for the void fraction, having this be unknown at this step is acceptable: 1 โˆ’ ๐‘’๐‘’ โˆ’๐ถ๐ถ1๐›ผ๐›ผ ๏ฟฝ 1 โˆ’ ๐‘’๐‘’ โˆ’๐ถ๐ถ1 ๐ถ๐ถ๐‘œ๐‘œ (๐›ผ๐›ผ) = ๐พ๐พ0 + (1 โˆ’ ๐พ๐พ0 )๐›ผ๐›ผ ๐‘Ÿ๐‘Ÿ ๏ฟฝ

(12)

Evaluation of Drift Velocity: To begin this evaluation, the parameter C5 can be evaluated as 1

๐œŒ๐œŒ๐‘”๐‘” 2 ๐ถ๐ถ5 = ๏ฟฝ150 ๏ฟฝ ๏ฟฝ๏ฟฝ = 2.834 ๐œŒ๐œŒ๐‘“๐‘“

(13)

๐ถ๐ถ2 = 1

(14)

Since C5 is greater than unity and the ratio of the phasic densities is greater than 18, The parameter C3 is given as

โˆ’4462

๐ถ๐ถ3 = max ๏ฟฝ0.5, ๐‘’๐‘’ โˆ’300000 ๏ฟฝ = 1.97

(15)

The parameter C7 is given as

295

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

0.09144 0.6 ๏ฟฝ = 2.489 ๐ถ๐ถ7 = ๏ฟฝ ๐ท๐ท

(16)

Since C7 is greater than unity,

๐ถ๐ถ4 = 1

(17)

The drift velocity is also a function of the void fraction given as 1 ๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ โˆ’ ๐œŒ๐œŒ๐‘”๐‘” ๏ฟฝ๐‘”๐‘”๐‘”๐‘” 4 ๐‘‰๐‘‰๐œ๐œ๐œ๐œ (๐›ผ๐›ผ) = 1.41 ๏ฟฝ ๏ฟฝ (1 โˆ’ ๐›ผ๐›ผ)๐ต๐ต1 ๐ถ๐ถ2 ๐ถ๐ถ3 ๐ถ๐ถ4 ๐œŒ๐œŒ๐‘“๐‘“2

(18)

We can define the void fraction in the drift flux form as ๐›ผ๐›ผ =

๐›ฝ๐›ฝ

๐ถ๐ถ๐‘œ๐‘œ (๐›ผ๐›ผ) +

๐‘‰๐‘‰๐œ๐œ๐œ๐œ (๐›ผ๐›ผ) ๐‘—๐‘—

(19)

Here, the parameter Co and the drift velocity are functions of the void fraction. This expression can be solved iterative along with Equations. (3), (4) and (12) to yield a void fraction of ๐›ผ๐›ผ = 0.62

(20)

PROBLEM 11.8 QUESTION Void, Quality and Pressure Drop Problem (Sections 11.4 and 11.5) Consider an adiabatic water channel 3 m long and 1 cm in diameter operating in homogeneous flow at 7.4 MPa pressure with a void (steam) distribution as shown in Fig. 11.31. The total flow rate is 0.3 kg/s. Talee the liquid viscosity at the operating conditions as 8.7 ร— 10โˆ’5 kg/m s. 1. Find the values of {ฮฑ}, {ฮฒ}, and x for the channel, i.e., volume averaged values. 2. Which values of Part 1 would change if the local flow velocities of the two phases remain equal but the flow rate was reduced sufficiently to yield a laminar flow distribution while the void distribution of Figure 11.31 remains unchanged? 3. Compare the pressure loss within the 3 m length

296

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

FIGURE 11.31 Void distribution. Answers: 1. {ฮฑ} = {ฮฒ} = 0.041, x = 0.0023 2. {ฮฒ} and x would change 3. ฮ”Ptotal = 63.3 kPa

PROBLEM 11.8 SOLUTION Void, Quality and Pressure Drop Problem (Sections 11.4 and 11.5) Consider an adiabatic water channel 3 m long and 1 cm in diameter operating in homogeneous flow at 7.4 MPa pressure with a void (steam) distribution as shown in Fig. 11.31. The total flow rate is 0.3 kg/s. Take the liquid viscosity at the operating conditions as 8.7 ร— 10โˆ’5 kg/m ยท s. In this problem, we are given the following: โ€” Channel length, L = 3 m โ€” Channel diameter, D = 1cm

โ€“ Pressure, P = 7.4 MPa โ€“ Mass flow rate, แน = 0.3 kg/s โ€“ Liquid viscosity, ฮผf = 8.7 ร— 10โˆ’5Paยทs โ€” Bubble diameter, db = 0.25 cm

Part 1 Find the values of {ฮฑ}, {ฮฒ}, and x for the channel, i.e., volume averaged values. The cross section area of the channel is ๐œ‹๐œ‹ ๐ด๐ด = ๐ท๐ท2 = 7.854 ร— 10โˆ’5 m2 (1) 4

The liquid only Reynolds number is calculated as

297

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

Re =

๐‘š๐‘šฬ‡๐ท๐ท = 4.39 ร— 105 ๐œ‡๐œ‡๐‘“๐‘“ ๐ด๐ด

(2)

Therefore turbulent flow and the HEM model can be assumed since this is a high mass flux. The volume of spherical bubbles (4 of them) is collectively 4 ๐‘‘๐‘‘๐‘๐‘ 3 ๐‘‰๐‘‰๐‘๐‘ = 4 ๏ฟฝ ๐œ‹๐œ‹ ๏ฟฝ ๏ฟฝ ๏ฟฝ = 3.272 ร— 10โˆ’8 m3 3 2

The total volume of the region is ๐œ‹๐œ‹ ๐‘‰๐‘‰ = ๐ท๐ท2 (1 cm) = 7.854 ร— 10โˆ’7 m3 4

(3)

(4)

The void fraction is calculated as the ratio of the volumes ๐›ผ๐›ผ =

๐‘‰๐‘‰๐‘๐‘ = 0.041 ๐‘‰๐‘‰

(5)

Since we me assuming HEM model, the volumetric flow fraction is equivalent to the void fraction, ๐›ฝ๐›ฝ = ๐›ผ๐›ผ = 0.041

(6)

The quality can then be determined from the void fraction assuming slip ratio is 1.0, ๐‘ฅ๐‘ฅ =

1 = 0.0023 1 โˆ’ ๐›ผ๐›ผ ๐œŒ๐œŒ๐‘“๐‘“ 1 + ๐›ผ๐›ผ ๐œŒ๐œŒ ๐‘”๐‘”

(7)

where ฯf = 732.64kg/m3 and ฯg = 38.88kg/m3.

Part 2 Which values of Part 1 would change if the local flow velocities of the two phases remain equal but the flow rate was reduced sufficiently to yield a laminar flow distribution condition but the void distribution of Figure 11.31 remained unchanged? ฮฒ and x would change. Explanation: In part A, because the Re was high, a turbulent flow exists, the HEM model was assumed applicable and a slip ratio of unity followed. In part B the problem statement indicates laminar flow with its attendant velocity distribution exists. Equation 11.45 illustrates that the slip ratio departs from unity due to non-uniform void distribution but there is no local slip per the problem statement because the problem statement explicitly states to assume the local flow velocities of the two phases remain equal. However the velocity distribution becomes laminar, with a central peak, which is quite different from the effectively uniform turbulent distribution. Hence more vapor volumetric flow than liquid flow occurs because the void distribution shown in Figure 11.31 places vapor preferentially in the center tube region where the velocity is higher than the average velocity. Thus, both the slip ratio exceeds unity and ฮฒ (Equation 5.51) increases.

298

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

The void fraction, a, determined solely by the areas occupied the phases, Equation 5.28, remains constant since the instantaneous void distribution of Figure 11.31 remains unchanged. However the quality, x, is a function involving S, and since S is higher than unity but alpha is constant, the value of x will increase as Equation 5.55 indicates. Part 3 Compare the pressure loss within the 3 m length. The photographic density is calculated as ๐œŒ๐œŒ๐‘š๐‘š = (1 โˆ’ ๐›ผ๐›ผ)๐œŒ๐œŒ๐‘“๐‘“ + ๐›ผ๐›ผ๐›ผ๐›ผ๐‘”๐‘” = 703.733 kgโ„m

The pressure loss due to gravity is

3

(8)

โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘” = ๐œŒ๐œŒ๐‘š๐‘š ๐‘”๐‘”๐‘”๐‘” = 20.704 kPa

(9)

๐‘“๐‘“ = 0.184๐‘…๐‘…๐‘…๐‘… โˆ’0.2 = 0.014

(10)

The friction factor can be calculated from the Reynolds number using the McAdams correlation The pressure loss due to friction is given as

The total pressure loss is

โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“ = ๐‘“๐‘“

๐ฟ๐ฟ ๐‘š๐‘šฬ‡2 = 42.566 kPa ๐ท๐ท 2๐œŒ๐œŒ๐‘š๐‘š ๐ด๐ด2

โˆ†๐‘ƒ๐‘ƒ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก = โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘” + โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“ = 63.3 kPa

(11)

(12)

Note there is no acceleration pressure drop since the void fraction is not changing in the channel.

PROBLEM 11.9 QUESTION Calculation of a Pipeโ€™s Diameter for a Specific Pressure Drop (Section 11.5) For the vertical plate riser shown in Figure 11.32, calculate the steam-generation rate and the riser diameter necessary for operation at the flow conditions given below: Geometry: Downcomer height = riser height = 4.6 m Flow conditions: T (feed) = 226.7ยฐC Steam pressure = 6.7 MPa Thermal power = 856 MWth (from heater primary side to fluid in riser)

299

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

FIGURE 11.32 Vertical user schematic for Problem 11.9. Closed heater primary side not shown. Assumptions: Homogenous flow model is applicable. Friction losses in the downcomer, upper plenum, lower plenum and heater are negligible. Riser and downcomer are adiabatic. Quality at heater exit (xout) is 0.10. Answers: Steam flow rate = 475 kg/s D = 0.583 m

PROBLEM 11.9 SOLUTION Calculation of a Pipeโ€™s Diameter for a Specific Pressure Drop (Section 11.5) For the vertical plate riser shown in Figure 11.32, calculate the steam-generation rate and the riser diameter necessary for operation at the flow conditions given below: โ€” Downcomer and riser height, H = 4.6 m โ€” Feedwater temperature, Tfw = 226.7 ยฐC โ€” Steam pressure, P = 6.7 MPa โ€” Thermal power, ๐‘„๐‘„ฬ‡ = 856 MW โ€” Exit quality, xout = 0.10

300

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

Thermodynamic properties evaluated at the system pressure are: โ€” Feedwater enthalpy, hfw = 975.7 kJ/kg โ€” Saturated vapor enthalpy, hg = 2776 kJ/kg โ€” Saturated liquid enthalpy, hf = 1252 kJ/kg 3

โ€” Saturated liquid density, ฯf = 745.1kg/m โ€” Saturated vapor density, ฯg = 34.8 kg/m

3

โ€” Saturated liquid viscosity, ฮผf = 92.386 ฮผPa s

The steam mass flow rate can be determined from an energy balance, ๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘  =

๐‘„๐‘„ฬ‡ = 475 kgโ„s โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“๐‘“๐‘“

To determine the total mass flow rate ๐‘š๐‘šฬ‡๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก observe that the feed water input flow rate ๐‘š๐‘šฬ‡๐‘“๐‘“๐‘“๐‘“ makes up for the steam flow rate which is discharged which is 0.1 ๐‘š๐‘šฬ‡๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก . Hence ๐‘š๐‘šฬ‡๐‘“๐‘“๐‘“๐‘“ = 0.1 ๐‘š๐‘šฬ‡๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก

Applying the first law to the closed heater control volume obtain ๐‘„๐‘„ฬ‡ = โ„Ž๐‘”๐‘” 0.1๐‘š๐‘šฬ‡๐‘ก๐‘ก โˆ’ โ„Ž๐‘“๐‘“๐‘“๐‘“ 0.1๐‘š๐‘šฬ‡๐‘ก๐‘ก

Hence ๐‘š๐‘šฬ‡๐‘ก๐‘ก =

๐‘„๐‘„ฬ‡ 856 ร— 106 W = 0.1(โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“๐‘“๐‘“) 0.1(2.776 ร— 106 ) โˆ’ (0.975 ร— 106 )J/kg

The total mass flow rate is thus

๐‘š๐‘šฬ‡๐‘ก๐‘ก = 4.75 ร— 103 kgโ„s

From above the feedwater input flow, ๐‘š๐‘šฬ‡๐‘“๐‘“๐‘“๐‘“ which equals the steam generation rate, is 0.1 ๐‘š๐‘šฬ‡๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก Hence ๐‘š๐‘šฬ‡๐‘“๐‘“๐‘“๐‘“ = 0.1(4.75 ร— 103 ) kgโ„s ๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘  = ๐‘š๐‘šฬ‡๐‘“๐‘“๐‘“๐‘“ = 475 kgโ„s

Pressure loss in the downcomer: The pressure loss in the downcomer is just due to gravity. Therefore the density of the liquid in the downcomer can be calculated from the enthalpy of the fluid in the downcomer. Using an energy in the mixing region, this enthalpy can be determined as โ„Ž๐ท๐ท๐ท๐ท = โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐‘ฅ๐‘ฅ + โ„Ž๐‘“๐‘“ (1 โˆ’ ๐‘ฅ๐‘ฅ) = 1.224 ร— 103 kJโ„kg

The density can be evaluated from this enthalpy and operating pressure, ๐œŒ๐œŒ๐ท๐ท๐ท๐ท = 755.2 kgโ„m3 301

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

The pressure loss can be calculated as โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘”,๐ท๐ท๐ท๐ท = โˆ’๐œŒ๐œŒ๐ท๐ท๐ท๐ท ๐‘”๐‘”๐‘”๐‘” = โˆ’34.069 kPa Pressure loss in the riser: The pressure loss in the riser is due to both gravity and friction. The void fraction can be calculated as (assuming HEM) ๐›ผ๐›ผ = The static mixture density is therefore

1 = 0.704 1 โˆ’ ๐‘ฅ๐‘ฅ ๐œŒ๐œŒ๐‘”๐‘” 1 + ๐‘ฅ๐‘ฅ ๐œŒ๐œŒ ๐‘“๐‘“

๐œŒ๐œŒ๐‘š๐‘š = (1 โˆ’ ๐›ผ๐›ผ)๐œŒ๐œŒ๐‘“๐‘“ + ๐›ผ๐›ผ๐œŒ๐œŒ๐‘”๐‘” = 244.936 kgโ„m3

The gravitational pressure drop is

โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘”,๐‘‡๐‘‡ = ๐œŒ๐œŒ๐‘š๐‘š ๐‘”๐‘”๐‘”๐‘” = 11.049 kPa

Since the diameter is unknown, the frictional pressure drop will be left in terms of the diameter. The cross sectional area is ๐ด๐ด(๐ท๐ท) =

๐œ‹๐œ‹ 2 ๐ท๐ท 4

The liquid only Reynolds number is given as function of this diameter, Re(๐ท๐ท) =

๐‘š๐‘šฬ‡๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก ๐ท๐ท ๐ด๐ด(๐ท๐ท)๐œ‡๐œ‡๐‘“๐‘“

The friction factor, assuming McAdams correlation is

๐‘“๐‘“(๐ท๐ท) = 0.184๐‘…๐‘…๐‘…๐‘…(๐ท๐ท)โˆ’0.2

The frictional pressure drop is therefore,

2 ๐ฟ๐ฟ ๐‘š๐‘šฬ‡๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“,๐‘Ÿ๐‘Ÿ (๐ท๐ท) = ๐‘“๐‘“(๐ท๐ท) ๐ท๐ท 2๐œŒ๐œŒ๐‘š๐‘š ๐ด๐ด(๐ท๐ท)2

Overall Pressure Drop: Combining all of the pressure losses, we get an equation that is only a function of the unknown diameter, โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘”,๐ท๐ท๐ท๐ท + โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘”,๐‘Ÿ๐‘Ÿ + โˆ†๐‘ƒ๐‘ƒ(๐ท๐ท) = 0

Since the diameter is the only unknown, this equation can be solved yielding ๐ท๐ท = 0.583 m

PROBLEM 11.10 QUESTION Flow Dynamics of Nanofluids (Section 11.5) Nanofluids are suspensions of solid nanoparticles in a base fluid (e.g., water), and were

302

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

investigated at MIT for their potential as coolants in nuclear systems. The flow behavior of nanofluids can be analyzed as a two-phase liquid/solid mixture. Since the particles are so small, they can be assumed to move homogeneously with the base fluid, i.e., the slip ratio is equal to one. Consider a water-based nanofluid with alumina nanoparticles. It flows at steady state through a tube of 2.5 cm diameter. The nanofluid volumetric flowrate is 400 cm3/s and the nanoparticle volumetric fraction is 0.05. 1. Find the mass flow rate of the nanoparticles and the total mass flow rate of the nanofluid. 2. Find the pressure gradient within the tube if the flow direction is vertically downward. To calculate the friction pressure gradient, assume fully developed flow, zero surface roughness and fTP โˆ’ flo. 3. If the nanoparticles were made of a material denser than alumina, how would the components of the pressure gradient (e.g. friction, gravity) change? Assume that the nanofluid volumetric flow rate and the nanoparticle volumetric fraction are held at 400 cm3/s and 0.05, respectively. The slip ratio is still equal to one. Provide a qualitative answer. Properties: Water: Density 1 g/cm3, viscosity 10โˆ’3 Pa s Alumina: Density 4 g/cm3, specific heat 780 J/kg K Answers: 1. แนnp = 80g/s ๐‘‘๐‘‘๐‘‘๐‘‘

2. ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ

๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก

แนtot = 460 g/s

= โˆ’10.9 ๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜โ„๐‘š๐‘š

PROBLEM 11.10 SOLUTION

Flow Dynamics of Nanofluids (Section 11.5) In the problem statement we are given: โ€” Tube diameter, D = 2.5 cm 3

โ€” Volumetric flow rate of nanofluid, Q = 400 cm /s โ€” Volumetric flow fraction, ฮฒ = 0.05 โ€” Density of water, ฯw = 1 g/cm โˆ’3

โ€” Viscosity of water, ฮผw = 10

3

Pa s 3

โ€” Density of nanoparticle, ฯnp = 4 g/cm

โ€” Specific heat of nanoparticle, cnp = 780 J/kg K

Part 1: Find the mass flow rate of the nanoparticles and the total mass flow rate of the

303

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

nanofluid. The volumetric flow rate of the nanoparticles is ฬ‡ = ๐‘„๐‘„๐‘„๐‘„ = 2 ร— 10โˆ’5 m3 โ„s ๐‘‰๐‘‰๐‘›๐‘›๐‘›๐‘›

The volumetric flow rate of the water is

๐‘‰๐‘‰๐‘ค๐‘คฬ‡ = ๐‘‰๐‘‰ฬ‡ (1 โˆ’ ๐›ฝ๐›ฝ) = 3.8 ร— 10โˆ’5 m3 โ„s

The mass flow rate of nanoparticles is

ฬ‡ ๐œŒ๐œŒ๐‘›๐‘›๐‘›๐‘› = 80 gโ„s ๐‘š๐‘šฬ‡๐‘›๐‘›๐‘›๐‘› = ๐‘‰๐‘‰๐‘›๐‘›๐‘›๐‘›

The mass flow rate of water is

๐‘š๐‘šฬ‡๐‘ค๐‘ค = 380 gโ„s

The total mass flow rate is therefore

๐‘š๐‘šฬ‡๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก = ๐‘š๐‘šฬ‡๐‘›๐‘›๐‘›๐‘› + ๐‘š๐‘šฬ‡๐‘ค๐‘ค = 460 gโ„s

Part 2: Find the pressure gradient within the tube if the flow direction is vertically downward. Assuming HEM model, the void fraction is equivalent to the volumetric flow fraction, ๐›ผ๐›ผ = ๐›ฝ๐›ฝ = 0.05

The mean density is therefore

๐œŒ๐œŒ๐‘š๐‘š = (1 โˆ’ ๐›ผ๐›ผ)๐œŒ๐œŒ๐‘ค๐‘ค + ๐›ผ๐›ผ๐œŒ๐œŒ๐‘›๐‘›๐‘›๐‘› = 1.15 gโ„cm3

The pressure change gradient due to gravity is ๏ฟฝ

๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ = โˆ’๐œŒ๐œŒ๐‘š๐‘š ๐‘”๐‘” = โˆ’11.278 kPaโ„m ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘”๐‘”

The cross sectional area of the tube is

๐ด๐ด =

The liquid only Reynolds number is

๐œ‹๐œ‹ 2 ๐ท๐ท = 4.909 ร— 10โˆ’4 m2 4

๐‘…๐‘…๐‘…๐‘… =

The friction factor is

๐‘š๐‘šฬ‡๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก ๐ท๐ท = 2.343 ร— 104 ๐ด๐ด๐ด๐ด๐‘ค๐‘ค

๐‘“๐‘“ = 0.316๐‘…๐‘…๐‘…๐‘… โˆ’0.25 = 0.026

The pressure change gradient due to friction is

2 ๐‘‘๐‘‘๐‘‘๐‘‘ 1 ๐‘š๐‘šฬ‡๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก ๏ฟฝ ๏ฟฝ = ๐‘“๐‘“ = 0.39 kPaโ„m ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘“๐‘“ ๐ท๐ท 2๐œŒ๐œŒ๐‘š๐‘š ๐ด๐ด2

The total pressure loss gradient is

304

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ ๏ฟฝ = ๏ฟฝ ๏ฟฝ + ๏ฟฝ ๏ฟฝ = โˆ’10.9 kPaโ„m ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘”๐‘” ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘“๐‘“

PROBLEM 11.11 QUESTION

HEM Pressure Loss (Section 11.5) Consider a 3 meter long water channel of circular cross sectional area 1.5 ร— 10โˆ’4 m2 operating in upflow at the following conditions: แน = 0.29 kg/s P = 7.2 MPa Compute the pressure loss under homogeneous equilibrium assumptions for the following additional conditions: 1. Adiabatic channel with inlet flow quality of 0.15. 2. Uniform axial heat flux of sufficient magnitude to heat the entering saturated coolant (xin = 0) to an exit quality of 0.15. Answers: 1. ฮ”Ptot = 36.6 kPa 2. ฮ”Ptot = 44.0 kPa

PROBLEM 11.11 SOLUTION HEM Pressure Loss (Section 11.5) In the problem statement we are given the following parameters: โ€“ mass flow rate, แน = 0.29 kg/s โ€“ pressure, P = 7.2 MPa โ€“ tube area, A = 1.5 ร— 10โˆ’4 m2 โ€“ channel length, L = 3 m Thermodynamic properties: โ€“ saturated liquid density, ฯf = 736.2 kg/m3 โ€“ saturated vapor density, ฯg = 37.7 kg/m3 โ€“ saturated liquid viscosity, ฮผf = 90.5 ร— 10โˆ’6 Pa s Part 1: Adiabatic channel with inlet flow quality of 0.15. For this part the quality is constant at

305

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

๐‘ฅ๐‘ฅ = 0.15

The diameter of the channel is

๐ท๐ท = ๏ฟฝ

4๐ด๐ด = 0.014 m ๐œ‹๐œ‹

Assuming HEM model, the void fraction can be calculated as ๐›ผ๐›ผ = The mean density is

1 = 0.775 1 โˆ’ ๐‘ฅ๐‘ฅ ๐œŒ๐œŒ๐‘”๐‘” 1 + ๐‘ฅ๐‘ฅ ๐œŒ๐œŒ ๐‘“๐‘“

๐œŒ๐œŒ๐‘š๐‘š = (1 โˆ’ ๐›ผ๐›ผ)๐œŒ๐œŒ๐‘“๐‘“ + ๐›ผ๐›ผ๐œŒ๐œŒ๐‘”๐‘” = 194.8 kgโ„m3

The gravitational pressure drop is therefore The Reynolds number is given as

โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘” = ๐œŒ๐œŒ๐‘š๐‘š ๐‘”๐‘”๐‘”๐‘” = 5.731 kPa ๐‘…๐‘…๐‘…๐‘… =

๐‘š๐‘šฬ‡๐ท๐ท = 2.952 ร— 105 ๐ด๐ด๐œ‡๐œ‡๐‘“๐‘“

The friction factor can be calculated with the McAdams correlation The frictional pressure drop is

The total pressure drop is

๐‘“๐‘“ = 0.184๐‘…๐‘…๐‘…๐‘… โˆ’0.2 = 0.015 โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“ = ๐‘“๐‘“

๐ฟ๐ฟ ๐‘š๐‘šฬ‡2 = 30.863 kPa ๐ท๐ท 2๐œŒ๐œŒ๐‘š๐‘š ๐ด๐ด2

โˆ†๐‘ƒ๐‘ƒ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก = โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘” + โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“ = 36.6 kPa

Part 2: Uniform axial heat flux. The inlet quality is while the exit quality is

๐‘ฅ๐‘ฅ๐‘–๐‘–๐‘–๐‘– = 0 ๐‘ฅ๐‘ฅ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = 0.15

Therefore, the quality can be expressed as a function of axial position ๐‘ฅ๐‘ฅ(๐‘ง๐‘ง) =

๐‘ฅ๐‘ฅ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๐‘ง๐‘ง ๐ฟ๐ฟ

The void fraction at any location can be computed using the HEM model

306

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

๐›ผ๐›ผ(๐‘ง๐‘ง) = And the mean density is given as

1 1 โˆ’ ๐‘ฅ๐‘ฅ(๐‘ง๐‘ง) ๐œŒ๐œŒ๐‘”๐‘” 1+ ๐‘ฅ๐‘ฅ(๐‘ง๐‘ง) ๐œŒ๐œŒ๐‘“๐‘“

๐œŒ๐œŒ๐‘š๐‘š (๐‘ง๐‘ง) = ๏ฟฝ1 โˆ’ ๐›ผ๐›ผ(๐‘ง๐‘ง)๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ + ๐›ผ๐›ผ(๐‘ง๐‘ง)๐œŒ๐œŒ๐‘”๐‘”

The acceleration pressure drop is given as

๐‘š๐‘šฬ‡ 2 1 1 โˆ†๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž = ๏ฟฝ ๏ฟฝ ๏ฟฝ โˆ’ ๏ฟฝ = 14.112 kPa ๐ด๐ด ๐œŒ๐œŒ๐‘š๐‘š (๐ฟ๐ฟ) ๐œŒ๐œŒ๐‘“๐‘“

The gravitational pressure drop is given as ๐ฟ๐ฟ

โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘” = ๏ฟฝ ๐œŒ๐œŒ๐‘š๐‘š (๐‘ง๐‘ง)๐‘”๐‘”๐‘”๐‘”๐‘”๐‘” = 10.361 kPa 0

The frictional pressure drop (friction factor taken as liquid only friction factor computed above) is ๐ฟ๐ฟ

The total pressure drop is

โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“ = ๏ฟฝ ๐‘“๐‘“ 0

1 ๐‘š๐‘šฬ‡2 ๐‘‘๐‘‘๐‘‘๐‘‘ = 19.515 kPa ๐ท๐ท 2๐œŒ๐œŒ๐‘š๐‘š (๐‘ง๐‘ง)๐ด๐ด2

โˆ†๐‘ƒ๐‘ƒ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก = โˆ†๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž + โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘” + โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“ = 44.0 kPa

PROBLEM 11.12 QUESTION

Analysis of a Liquid-Metal Reactor Vessel (Section 11.7) Fast reactors have attracted renewed attention within the nuclear community because of their ability to consume the actinides from the LWR spent fuel. Consider the vessel of a liquid-leadcooled fast reactor, which is made of stainless steel with the dimensions shown in Figure 11.33. The top of the vessel is filled with a cover gas (nitrogen) whose opening temperature and pressure are 400 ยฐC and 0.5 MPa, respectively. The pressure outside the vessel is 0.1 MPa. Relevant material and fluid properties are given in Table 11.9. 1. A high magnitude earthquake causes a 10 cm2 crack in the vessel. Calculate the mass flow rate through the crack, immediately after the earthquake, for the following two cases: (a) The crack occurs at the very bottom of the vessel (b) The crack occurs at the very top of the vessel, i.e., in the cover gas region (The flow through the crack can be treated as steady-state, adiabatic and inviscid in both cases. The pressure outside the vessel can be assumed constant at 0.1 MPa. Liquid lead can be treated as an incompressible liquid and nitrogen as a perfect gas.) 2. Which of the two cases considered in Part 1 would you judge more dangerous from a safety

307

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

viewpoint?

FIGURE 11.33 Schematic and dimensions of the vessel. TABLE 11.9 Properties for Problem 11.12 Stainless

Maximum allowable stress intensity factor, (Sm) = 138 MPa at 400 ยฐC,

steel

ฯ = 7500 kg/m3

Lead

ฯ = 10,500 kg/m3, ฮผ = 1.6 ร— 10โˆ’3 Pa s, boiling point 1750ยฐC

Nitrogen

cp = 1039 J/kg K, Rsp = 297 J/kg K, ฮณ = 1.4

Answers: 1. แน = 215 kg/s 2. แน = 0.766 kg/s

PROBLEM 11.12 SOLUTION Analysis of a Liquid-Metal Reactor Vessel (Section 11.7) In the problem statement we are given: โ€“ pressure inside the vessel, P = 0.5 MPa โ€“ pressure outside the vessel, Pb = 0.1 MPa โ€“ break area, Ab = 10 cm2 โ€“ height of lead, H = 17.5 m โ€“ density of lead, ฯl = 10500 kg/m3

308

rev 112420


Chapter 11 - Two-Phase Flow Dynamics

โ€“ viscosity of lead, ฮผl = 1.6 ร— 10โˆ’3 Pa s โ€“ specific heat at constant pressure for nitrogen, cpN = 1039 J/kg K โ€“ gas constant for nitrogen, RN = 297 J/kg K โ€“ gamma factor for nitrogen, ฮณ = 1.4 Part 1(a): Crack at bottom of vessel. The pressure at the bottom of the vessel is ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž = ๐‘ƒ๐‘ƒ + ๐œŒ๐œŒ๐‘™๐‘™ ๐‘”๐‘”๐‘”๐‘” = 2.302 MPa

Since the flow is assumed inviscid in both cases, the Bernoulli equation can be applied: ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž ๐‘ƒ๐‘ƒ๐‘๐‘ ๐œ๐œ๐‘๐‘2 = + ๐‘ƒ๐‘ƒ๐‘™๐‘™ ๐‘ƒ๐‘ƒ๐‘™๐‘™ 2

Solving for the break velocity and converting it to a mass flow rate, ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž โˆ’ ๐‘ƒ๐‘ƒ๐‘๐‘ ๏ฟฝ = 215 kgโ„s ๐‘š๐‘šฬ‡ = ๐œŒ๐œŒ๐‘™๐‘™ ๐ด๐ด๐‘๐‘ ๏ฟฝ2 ๏ฟฝ ๐œŒ๐œŒ๐‘™๐‘™

Part 1(b): Crack at the top of vessel. Since the flow is compressible, the critical pressure for critical flow is calculated for a perfect gas ๐›พ๐›พ

2 ๐›พ๐›พโˆ’1 ๏ฟฝ ๐‘ƒ๐‘ƒ๐‘๐‘๐‘๐‘ = ๐‘ƒ๐‘ƒ ๏ฟฝ = 0.264 MPa ๐›พ๐›พ + 1

Since the back pressure is lower than the critical pressure, critical flow condition exists. The density of the nitrogen gas is calculated using the ideal gas law ๐œŒ๐œŒ๐‘๐‘ =

๐‘ƒ๐‘ƒ = 2.501 kgโ„m3 ๐‘…๐‘…๐‘๐‘ ๐‘‡๐‘‡

The choked mass flow rate can then be calculated with the critical pressure as 2

๐›พ๐›พ+1

๐‘ƒ๐‘ƒ๐‘๐‘๐‘๐‘ ๐›พ๐›พ ๐‘ƒ๐‘ƒ๐‘๐‘๐‘๐‘ ๐›พ๐›พ ๐‘š๐‘šฬ‡ = ๐ด๐ด๐‘๐‘ ๐œŒ๐œŒ๐‘๐‘ ๏ฟฝ2๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘‡๐‘‡ ๏ฟฝ๏ฟฝ ๏ฟฝ โˆ’ ๏ฟฝ ๏ฟฝ ๏ฟฝ = 0.766 kgโ„s ๐‘ƒ๐‘ƒ ๐‘ƒ๐‘ƒ

Part 2: The first case (i.e., break at the bottom of the vessel) is far more dangerous from a safety viewpoint, because it has the potential to empty the vessel and uncover the core. The second case merely results in a depressurization of the reactor without any loss of coolant (the boiling point of lead is very high, so it does not flash upon depressurization).

309

rev 112420


Chapter 12 Pool Boiling Contents Problem 12.1 Comparison of liquid superheat required for nucleation in water and sodium ........................................................................................................... 311 Problem 12.2 Nucleate boiling initiation and termination on a heat exchanger tube ........... 313 Problem 12.3 Evaluation of pool boiling conditions at high pressure .................................. 316 Problem 12.4 Shell and tube horizontal evaporator .............................................................. 319 Problem 12.5 Comparison of stable film boiling conditions in water and sodium ............... 322 Problem 12.6 Analysis of decay heat removal during a severe accident .............................. 324 Problem 12.7 Void fraction and pressure drop in an isolation condenser ............................ 326

310

rev 112420


Chapter 12 - Pool Boiling

PROBLEM 12.1 QUESTION Comparison of Liquid Superheat Required for Nucleation in Water and Sodium (Section 12.2) 1. Calculate the relation between superheat and equilibrium bubble radius for sodium at 1 atmosphere using Equation 12.7. Repeat for water at 1 atmosphere. Does sodium require higher or lower superheat than water? 2. Consider bubbles of 10ฮผm radius. Evaluate the vapor superheat and the bubble pressure difference for the bubbles of question 1. Answer: 1

1. For sodium: ๐‘‡๐‘‡โ„“ โˆ’ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = 2.517 ร— 10โˆ’4 ๐‘Ÿ๐‘Ÿ 1

For water: ๐‘‡๐‘‡โ„“ โˆ’ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = 3.250 ร— 10โˆ’5 ๐‘Ÿ๐‘Ÿ

๐‘’๐‘’

๐‘’๐‘’

2. (T๏ฌ โˆ’Tsat)sodium = 25.2ยฐC; (T๏ฌ -Tsat)water = 3.25ยบC (Pv - P๏ฌ)sodium = 22.6 kN/m2; (Pv - P๏ฌ)water = 11.7 kN/m2

PROBLEM 12.1 SOLUTION Comparison of Liquid Superheat Required for Nucleation in Water and Sodium (Section 12.2) 1. Calculate the relation between superheat and equilibrium bubble radius for sodium at 1 atmosphere using Equation 12.7. Repeat for water at 1 atmosphere. Does sodium require higher or lower superheat than water? The relation between superheated and equilibrium bubble radius from Equation 12.7, is: (12.7)

(a) For sodium at 1 atm (= 1.0135 ร— 105 Pa) Tsat = 881ยบC = 1154 K

311

rev 112420


Chapter 12 - Pool Boiling

R= sp

R = 361.5 J/ kgK M

hfg = 3.78 MJ/kg ฯƒ = 0.113 N/m vf = 1.3477 ร— 10-3 m3/kg vg = 3.6496 m3/kg Note: These properties must be searched on line. They fall just beyond Table E.8, and interpolation from Table E.7 would be too inaccurate. (b) For water at 1 atm Tsat = 373 K

R= sp

R = 461.9 J/ kgK M

hfg = 2.256 MJ/kg ฯƒ = 0.05878 N/m vf = 1.0435 ร— 10-3 m3/kg vg = 1.6736 m3/kg Thus, for sodium, Tb โˆ’ Tsat=

2(0.113)(1154)(3.6496 โˆ’ 1.3477 ร—10โˆ’3 ) ๏ฃซ 1 ๏ฃถ โˆ’4 1 ๏ฃฌ ๏ฃท= 2.517 ร—10 6 3.78 ร—10 r* ๏ฃญ r*๏ฃธ

(1)

2(0.05878)(373)(1.673 โˆ’ 1.0435 ร—10โˆ’3 ) ๏ฃซ 1 ๏ฃถ โˆ’5 1 ๏ฃฌ ๏ฃท= 3.250 ร—10 6 2.2569 ร—10 r* ๏ฃญ r*๏ฃธ

(2)

and for water Tb โˆ’ Tsat=

where r* is in meters From the two equations above, we see that sodium requires a much larger superheat. This is primarily due to the fact that ฯƒsodium > ฯƒwater.

312

rev 112420


Chapter 12 - Pool Boiling

2. Vapor superheat and the bubble pressure difference for the bubble of question 1. For r* = 10ฮผm Equation 12.6 is (12.6) where ฮ”Tsat for sodium and water are available from Equations (1) and (2). Hence for sodium 2.517 ร—10โˆ’4 โˆ†Tsat = = 25.2ยฐC 10 ร—10โˆ’6

While for water โˆ†Tsat =

3.250 ร—10โˆ’5 = 3.25ยฐC 10 ร— 10โˆ’6

PROBLEM 12.2 QUESTION Nucleate Boiling Initiation and Termination on a Heat Exchanger Tube (Chapter 8, 10, and 12 - Section 12.2) A heat exchanger tube is immersed in a water cooling tank at 290 K, as illustrated in Figure 12.13. Hot water (single phase, 550 K) enters the tube inlet and is cooled as it flows at 2 kg/s through the 316 grade stainless steel tube (19 mm outside diameter and 15.8 mm inside diameter). Neglect entrance effects. 1. Compute the length along the horizontal inlet length of the tube where nucleate boiling on the tube outside diameter is initiated. 2. Compute the length where nucleate boiling on the tube outside diameter is terminated. The heat transfer coefficient between the outer tube wall and the water cooling tank is 500 W/m2K for single phase conditions and 5000W/m2K for nucleate boiling conditions. The wall superheat for incipient nucleation is 15ยฐC for this configuration. Estimate and justify any additional

313

rev 112420


Chapter 12 - Pool Boiling

information you need to execute the solution. Fluid properties of inlet water (assume they stay constant) k, thermal conductivity = 0.5 W/mยบC

ฯ, density = 704 kg/m3 ยต, viscosity = 8.69

10-5 kg/m s

cp, heat capacity =6270 J/kgยบC

Answer:

FIGURE 12.13

Cooling tankโ€”heat exchange diagram.

1. x = 0 m 2. L = 35.16 m

PROBLEM 12.2 SOLUTION Nucleate Boiling Initiation and Termination on a Heat Exchanger Tube (Chapter 8, 10, and 12 - Section 12.2) Neglecting entrance effects, the maximum wall temperature will occur at the entrance since the water in the tube begins cooling at the entrance continuously along the length of the tube. 1. Applying the concept of thermal resistance:

Hence,

๐‘Ÿ๐‘Ÿ ln ๏ฟฝ ๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ ๏ฟฝ 1 1 ๐‘–๐‘– + + ๏ฟฝ ๐‘‡๐‘‡๐ต๐ต๐ต๐ต โˆ’ ๐‘‡๐‘‡๐ต๐ต๐ต๐ต = ๐‘ž๐‘ž โ€ฒ ๏ฟฝ 2๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ๐‘–๐‘– โ„Ž๐‘–๐‘– 2๐œ‹๐œ‹๐œ‹๐œ‹ 2๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ โ„Ž๐‘œ๐‘œ

314

rev 112420


Chapter 12 - Pool Boiling

๐‘‡๐‘‡๐ป๐ป๐ต๐ต โˆ’ ๐‘‡๐‘‡๐ถ๐ถ๐ต๐ต ๐‘ž๐‘ž = ๐‘Ÿ๐‘Ÿ ln ๏ฟฝ ๐‘œ๐‘œ ๏ฟฝ ๐‘Ÿ๐‘Ÿ๐‘–๐‘– 1 1 + + 2๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ๐‘–๐‘– โ„Ž๐‘–๐‘– 2๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ โ„Ž๐‘œ๐‘œ 2๐œ‹๐œ‹๐œ‹๐œ‹ โ€ฒ

โ„Ž๐‘œ๐‘œ = 500W/mK

To calculate hi, u = constant โ‡’ u (TBH) = u (Ti)

For u = uw we make use of the Dittus-Boelter correlation: ๐‘š๐‘šฬ‡ = ๐œŒ๐œŒ๐œŒ๐œŒ๐œŒ๐œŒ = 14.49m/s

๐œŒ๐œŒ๐œŒ๐œŒ๐œŒ๐œŒ = 1.85 ร— 106 ๐œ‡๐œ‡

Re =

Pr =

๐ถ๐ถ๐‘ƒ๐‘ƒ ๐œ‡๐œ‡ = 1.09 ๐‘˜๐‘˜

For fully developed flow, all conditions are satisfied so hi can be found:

Thus, and since: then

โ„Ž๐‘–๐‘– =

๐พ๐พ (0.023)Re0.8 ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ 0.3 = 77.24kW/km2 ๐ท๐ท๐ป๐ป ๐‘ž๐‘ž โ€ฒ = 7450.69W/m ๐‘ž๐‘ž โ€ฒ = 2๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ โ„Ž๐‘œ๐‘œ (๐‘‡๐‘‡0 โˆ’ ๐‘‡๐‘‡๐ต๐ต๐ต๐ต ) ๐‘‡๐‘‡0 = 539.65K

Pressure at the pipe is calculated by:

๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž + ๐œŒ๐œŒ๐œŒ๐œŒ๐œŒ๐œŒ = 1.15 ร— 105Pa โŸน ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = 103.58โ„ƒ

since T0 > Tsat + 15 boiling will first occur at x = 0 m.

2. Boiling terminates at z > Z(T0 = Tsat + 15ยฐC) where Tsat + 15 = 118.58ยฐC = 391.73 K qโ€ฒ at the location where boiling terminates is: ๐‘ž๐‘ž โ€ฒ = 2๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ โ„Ž๐‘œ๐‘œ (๐‘‡๐‘‡0 โˆ’ ๐‘‡๐‘‡๐ต๐ต๐ต๐ต ) = 30.36kW/m

๐‘Ÿ๐‘Ÿ ln ๏ฟฝ ๐‘œ๐‘œ ๏ฟฝ 1 1 ๐‘Ÿ๐‘Ÿ๐‘–๐‘– ๐‘‡๐‘‡๐ต๐ต๐ต๐ต = ๐‘ž๐‘ž โ€ฒ ๏ฟฝ + + ๏ฟฝ + ๐‘‡๐‘‡๐ต๐ต๐ต๐ต = 433.92K 2๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ๐‘–๐‘– โ„Ž๐‘–๐‘– 2๐œ‹๐œ‹๐œ‹๐œ‹ 2๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ โ„Ž๐‘œ๐‘œ 315

rev 112420


Chapter 12 - Pool Boiling

so q' simplifies to: ๐‘ž๐‘ž โ€ฒ =

๐‘‡๐‘‡๐ต๐ต๐ต๐ต โˆ’ 290 4.7404 ร— 10โˆ’3

๐‘ž๐‘ž โ€ฒ โˆ†๐‘ง๐‘ง = ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡๐ต๐ต๐ต๐ต โˆ’ ๐‘‡๐‘‡๐ธ๐ธ ) โŸน ๐‘‡๐‘‡๐ธ๐ธ = ๐‘‡๐‘‡๐ต๐ต๐ต๐ต โˆ’

๐‘ž๐‘ž โ€ฒ โˆ†๐‘ง๐‘ง ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘

Thus, to determine the location where boiling on the outside surface terminates, the following procedure must be executed: โ€“ Set TBH = 550 K ๐‘‡๐‘‡

โˆ’290

๐ต๐ต๐ต๐ต โ€“ Solve for qโ€ฒ using the equation, ๐‘ž๐‘ž โ€ฒ = 4.7404ร—10 โˆ’3

โ€“ Chose a small โˆ†z โ€“ Calculate qโ€ฒ โˆ†z

โ€“ Calculate TBH at the end of the interval and set TE equal to TBH โ€“ Set TBH = TE and repeat steps 1 through 6 until TE = 433.92 K โ€“ Sum the โˆ†z's Executing this procedure yields: โˆ’๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘

๐‘‘๐‘‘๐‘‘๐‘‘๐ต๐ต๐ต๐ต ๐‘‡๐‘‡๐ต๐ต๐ต๐ต (๐‘ง๐‘ง) โˆ’ 290 = ๐‘‘๐‘‘๐‘‘๐‘‘ 4.7404 ร— 10โˆ’3

Integrating for TBH from 550 to 433.92 from z = 0 to z =zb produces:

and finally:

[โˆ’ ln(๐‘‡๐‘‡๐ต๐ต๐ต๐ต (๐‘ง๐‘ง) โˆ’ 290)]433.92 = 550

(๐‘ง๐‘ง๐‘๐‘ โˆ’ 0) ๐‘š๐‘š๐‘๐‘๐‘๐‘ 4.7404 ร— 10โˆ’3

๐‘ง๐‘ง๐‘๐‘ = 35.16m

PROBLEM 12.3 QUESTION Evaluation of Pool Boiling Conditions at High Pressure (Section 12.4) 1. A manufacturer has free access on the weekends to a supply of 8000 amps of 440 V electric power. If his boiler operates at 3.35 MPa, how many 2.5 cm diameter, 2 m-long electric emersion heaters would be required to utilize the entire available electric power? He desires to operate at 80% of critical heat flux. 2. At what heat flux would incipient boiling occur? Assume that the water at the saturation temperature corresponds to 3.35 MPa. The natural convection heat flux is given by:

316

rev 112420


Chapter 12 - Pool Boiling โ€ณ ๐‘ž๐‘ž๐‘๐‘๐‘๐‘ = 2.63(โˆ†๐‘‡๐‘‡)1.25 kW/m2

P =3.35 MPa Tsat = 240ยบC hfg = 1766 kJ/kg ฯf = 813 kg/m3 ฯg = 16.8 kg/m3 ฯƒ = 0.0286 N/m kf = 0.63185 W/mยบC cpf = 4.7719 kJ/kgยบC ยตf = 1.109 10-4 kg/m s

Assume that the maximum cavity radius is very large. You may use the Rohsenow correlation for nucleate pool boiling taking Csf = 0.0130 in Equation 12.18c. Answer: 1. N = 6 (based on Cโ„“ = 0.18 in Equation 12.31) 2. ๐‘ž๐‘ž๐‘–๐‘–โ€ณ = 3.76 kW/m2

PROBLEM 12.3 SOLUTION

Evaluation of Pool Boiling Conditions at High Pressure (Section 12.4) 1. Total available power: Q = 8000(400) = 3.52 MW N

number of heaters

Heated Surface Area, As = Nฯ€DL = Nฯ€(0.025 m)(2 m) = 0.157 N m2 Then calculate the heat flux: The critical heat flux for saturated conditions in pool boiling is given by Equation 12.31 as:

= qcrโ€ฒโ€ฒ h fg ฯ = g jg

jg 2.97 ร—104 jg kJ m3 (1766 kJ kg ) (16.8 kg m3 )=

where

and C1 = 0.18 (Rohsenow), thus: which if run at 80% power, solving for N:

317

rev 112420


Chapter 12 - Pool Boiling

2. At the incipient condition, where

N = 5.6 โ‰… 6

= incipient heat flux = natural convection heat flux

Per the problem statement:

, hence

For the pool condition, the incipient heat flux and โˆ†Tsat are related by the Rohsenow correlation, Equation 12.18c: (12.18c) where, for water, Csf = 0.013, n = 0.33, and since conditions are saturated, = ฯf and ฯv = ฯg . Now inserting the expression above for into the Rohsenow correlation obtain the following explicit equation for :

Inserting the properties of saturated water at 3.35 MPa, obtain

= 0.013 (370.08)(13.4)0.33 (3.67 ร— 10-6)0.167 (0.8376) = 0.013 (370.08)(2.355)(0.124)(0.8376)

Therefore,

318

rev 112420


Chapter 12 - Pool Boiling

PROBLEM 12.4 QUESTION Shell and Tube Horizontal Evaporator (Chapters 9, 10, 12 - Section 12.4) A shell-and-tube horizontal evaporator is to be designed with 30 tubes 1 cm diameter. Inside the tubes water at 100 psia (690 kN/m2) enters at one end at 130ยฐC and leaves at the other end at 120ยฐC. The water velocity v in the tubes is 3 m/s. In the shell side, atmospheric pressure steam is generated at 100ยฐC. Calculate: 1. The length of the tubes 2. Rate of evaporation, kg/s 3. Rate of flow of the water on the tube side, kg/s 4. Pressure drop in the tubes on the water side, (Assume fully developed flow and neglect entrance and exit losses). โ€“ For the boiling side, use the Rohsenow correlation (Equation 12.18c and Csf = 0.013). โ€“ Make your calculations for heat flux at mid-point where the liquid is at 125ยฐC. Neglect thermal resistance of the thin tube wall. โ€“ Assume properties of liquid inside the tubes at 690 kPa in the range 120-130ยฐC are the same as those at 1 atm and 100ยฐC given in Table 12.4. TABLE 12.4 Water Properties for Problem 12.4 Liquid Vapor ฯ (kg/m3)

960

0.60

cp (kJ/kgยฐC)

4.2

ฮผ (kg/m s)

3 ร— 10

1.3 ร— 10โˆ’5

k (W/mยฐC)

0.68

0.025

2 โˆ’4

ฯƒ (N/m)

0.06

hfg (kJ/kg)

2280

Pr

1.75

0.97

Properties for water at P = 1 atm. Tsat = 100ยฐC

Answer: 1. L = 1.31 m 2. Rate of evaporation = 0.125 kg/s 3. Mass flow rate = 6.79 kg/s 4. โˆ†P = 10.2 kPa

319

rev 112420


Chapter 12 - Pool Boiling

PROBLEM 12.4 SOLUTION Shell and Tube Horizontal Evaporator (Chapters 9, 10, 12 - Section 12.4) Changes/corrections made to text problem statement in this solution: โ€ข โ€ข

For boiling use the Rohsenow correlation Equation 12.18c and take Csf as 0.013. Table 12.4 โ€“ specific heat for vapor = 2 kJ/kg-K Pr liquid at 100ยบC = 1.75

Solution: First, letโ€™s compute parameters needed later in the solution. D 2 (ฯ€ 4 ) (10โˆ’2 )= m 2 7.85 ร—10โˆ’5 m 2 (ฯ€ 4 ) = = q m๏€ฆ W cp (TIN โˆ’ T= Total energy transfer: ( 6.7858 kg s )( 4.2 kJ kgยฐC )(130 โˆ’ 120ยฐC ) OUT )

Flow area per tube: = AF

= 2.85 ร—105 W

Prandtl number:

ยต๏ฌ

ยต๏ฌ

( 960 kg m ) ( 3m s ) (10 m=) 9.6 ร—10 3

GD ฯ๏ฌVD Reynolds number: Re= = = ๏ฌ

โˆ’2

4

โˆ’4

3 ร—10 kg m s

(see above)

Dittus-Boelter heat transfer coefficient: ๏จ = 0.023 k๏ฌ D Re

0.8

Pr 0.3

๏ฃซ 0.68 W mยฐC ๏ฃถ 0.3 4 0.8 2.3 ร—10โˆ’2 ๏ฃฌ 9.6 10 = ร— (1.75) ( ) ๏ฃท โˆ’2 ๏ฃญ 10 m ๏ฃธ = 1.79 ร—104 W m 2 ยฐC Question 1: Length of the tubes, L(m) Total surface area of tubes, = AF ฯ€= DLN

qT qโ€ฒโ€ฒ

Now per problem statement, take qโ€ฒโ€ฒ as qโ€ฒโ€ฒ at mid-point of tube length where the liquid is 125ยบC and neglect thermal resistance of the thin tube wall. Hence,

L=

qT ฯ€ DN qatโ€ฒโ€ฒ mid length

To find qโ€ฒโ€ฒ take a radial traverse through the evaporator from the mixed (bulk) liquid temperature of 125ยบC (= TB) to the shell side steam at 100ยบC (= TS) at the tube mid-length. Hence,

TB โˆ’ TW =๏จ qโ€ฒโ€ฒ within the tube

(1)

and Equation 12.18c from Rohsenow

320

rev 112420


Chapter 12 - Pool Boiling 13

12 ๏ฃฑ ๏ฃผ ยตc ๏ฃฎ ๏ฃน hfg โ€ฒโ€ฒ q ฯƒ ๏ฃด ๏ฃด ๏ฃซ ๏ฌ p๏ฌ ๏ฃถ TW โˆ’ TS = Csf ๏ฃฒ ๏ฃฏ ๏ฃบ ๏ฃฝ ๏ฃฌ ๏ฃท cp๏ฌ ๏ฃด๏ฃณ ยต๏ฌ hfg ๏ฃฐ๏ฃฏ ( ฯ๏ฌ โˆ’ ฯg ) g ๏ฃป๏ฃบ ๏ฃด๏ฃพ ๏ฃญ k๏ฌ ๏ฃธ

(2)

Taking TW from Equation 1 into Equation 2 yields

TB โˆ’

qโ€ฒโ€ฒ โˆ’ TS = RHS of Equation 2 ๏จ = RHS of Equation 2

Now

hfg cp๏ฌ

= C sf

(3)

2280 kJ kg = ( 0.013 ) 7.06ยฐC 4.2 kJ kgยฐC

( 3 ร—10 kg m s ) 4.2 ร—10 J kgยฐC = = 1.85 โˆ’4

ยต๏ฌ cp๏ฌ

3

0.68 W mยฐC

k๏ฌ

12

12

๏ฃฎ ๏ฃน 0.06 N m or kg s 2 ๏ฃฏ ๏ฃบ 2.53 ร—10โˆ’3 m = 3 2 ๏ฃฏ๏ฃฐ ( 960 โˆ’ 0.6 ) kg m ( 9.81 m s ) ๏ฃบ๏ฃป ๏ฃฎ qโ€ฒโ€ฒ ( W m 2 ) ๏ฃน 1 qโ€ฒโ€ฒ ( W m 2 ) qโ€ฒโ€ฒ ๏ฃบ ๏ฃฏ = = ยต๏ฌ hfg ( 3 ร—10โˆ’4 kg m s ) ( 2280 kJ kg ) ๏ฃฏ 684 ๏ฃบ m ๏ฃป ๏ฃฐ ๏ฃฎ ๏ฃน ฯƒ = ๏ฃฏ ๏ฃบ ๏ฃฏ๏ฃฐ ( ฯ๏ฌ โˆ’ ฯg ) g ๏ฃบ๏ฃป

Then Equation 3 becomes 1/3

๏ฃฑ qโ€ฒโ€ฒ W m 2 ๏ฃผ qโ€ฒโ€ฒ W m 2 25 โˆ’ = 7.06 2.53 ร—10โˆ’3 ) ๏ฃฝ 1.85(ยฐC) ( ๏ฃฒ 4 1.79 ร—10 ๏ฃณ 684 ๏ฃพ 2 13 qโ€ฒโ€ฒ W m 2 ๏ฃฎ ๏ฃน โ€ฒโ€ฒ = 25 โˆ’ 0.202 q W m ( ) ๏ฃฐ ๏ฃป 1.79 ร—104

โ€ฒโ€ฒ 2.3 ร—105 W m 2 Solving, obtain q= Now solving for L,

= L

qT 2.85 ร—105 W = = ฯ€ DNqโ€ฒโ€ฒ ฯ€ ( 0.01 m ) 30 ( 2.3 ร—105 W m 2 )

1.31 m

Question 2: Rate of evaporation (kg/s) q 2.85 ร—105 W m๏€ฆ= = = 0.125 kg s V hfg 2.28 ร—106 W s kg Question 3: Rate of water flow on the tube side (kg/s) m๏€ฆ W = N ฯ๏ฌ vAF =30 ( 960 kg m3 ) ( 3 m s ) ( 7.85 ร—10โˆ’5 m 2 ) = 6.788 kg s

321

rev 112420


Chapter 12 - Pool Boiling

Question 4: Pressure drop in tubes on the water side L ฯV 2 โˆ†P = f D 2 f per Figure 9.19 (Moody) โ‰… 0.018

3 2 2 2 ๏ฃซ 1.31 ๏ฃถ 960 kg m ( 3 m s ) = = โˆ† P 0.018 ๏ฃฌ 1.019 ร—104 Pa ๏ฃท 2 ๏ฃญ 0.01 ๏ฃธ

PROBLEM 12.5 QUESTION Comparison of Stable Film Boiling Conditions in Water and Sodium (Section 12.5) Compare the value of the wall superheat required to sustain film boiling on a horizontal steel wall as predicted by Berensonโ€™s correlation to that predicted by Henryโ€™s correlation (Table 12.3). 1. Consider the cases of saturated water at (a) atmospheric pressure and (b) P = 7.0 MPa., 2. Consider the case of saturated sodium at atmospheric pressure. Answers: Berenson

Henry

1. H 2 O at 0.1 MPa: M

TB โˆ’ Tsat = 68.9 ยฐC

M

TH โˆ’ Tsat = 187 ยฐC

H 2 O at 7.0 MPa: M

TB โˆ’ Tsat = 1042 ยฐC

M

TH โˆ’ Tsat = 1443 ยฐC

(too high in physical sense) (too high in physical sense) 2. Na at 0.1 MPa: M

TB โˆ’ Tsat = 30.6 ยฐC

M

TH โˆ’ Tsat = 411ยฐC

(too low in physical sense)

PROBLEM 12.5 SOLUTION Comparison, of Stable Film Boiling Conditions in Water and Sodium (Section 12.5) Berensonโ€™s correlation:

322

rev 112420


Chapter 12 - Pool Boiling 2โ„3

๐‘‡๐‘‡๐ต๐ต๐‘€๐‘€ โˆ’ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = 0.127 Henryโ€™s correlation:

๐œŒ๐œŒ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐‘”๐‘”๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ โˆ’ ๐œŒ๐œŒ๐‘”๐‘” ๏ฟฝ ๏ฟฝ ๐œŒ๐œŒ + ๐œŒ๐œŒ ๏ฟฝ ๐‘˜๐‘˜๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ ๐‘“๐‘“ ๐‘”๐‘” 1โ„2

๐‘”๐‘”๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ โˆ’ ๐œŒ๐œŒ๐‘”๐‘” ๏ฟฝ ๏ฟฝ ๏ฟฝ ๐‘”๐‘”๐‘๐‘ ๐œŽ๐œŽ

1โ„3

๐‘”๐‘”๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ โˆ’ ๐œŒ๐œŒ๐‘ข๐‘ข๐‘ข๐‘ข ๏ฟฝ ๏ฟฝ ๏ฟฝ ๐œ‡๐œ‡ ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ

๏ฟฝ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๏ฟฝโ„“ โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐‘‡๐‘‡๐ป๐ป๐‘€๐‘€ โˆ’ ๐‘‡๐‘‡๐ต๐ต๐‘€๐‘€ ๏ฟฝ = 0.42 ๏ฟฝ ๏ฟฝ ๐‘€๐‘€ ๐‘‡๐‘‡๐ต๐ต โˆ’ ๐‘‡๐‘‡โ„“ ๏ฟฝ๐œŒ๐œŒ๐œŒ๐œŒ๐‘๐‘๐‘๐‘ ๏ฟฝ ๐‘๐‘๐‘๐‘,๐‘ค๐‘ค (๐‘‡๐‘‡๐ต๐ต๐‘€๐‘€ โˆ’ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  )

0.6

๐‘ค๐‘ค

1. a) Applying Berensonโ€™s correlation for water at 0.1 MPa: ๐‘‡๐‘‡๐ต๐ต๐‘€๐‘€ โˆ’ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = 68.9โ„ƒ

which appears to be too high in a physical sense.

Applying Henryโ€™s correlation for water at 0.1 MPa: ๐‘‡๐‘‡๐ป๐ป๐‘€๐‘€ โˆ’ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = 187โ„ƒ

which appears to be too low in a physical sense,

b) Applying Berensonโ€™s correlation for water at 7.0 MPa: ๐‘‡๐‘‡๐ต๐ต๐‘€๐‘€ โˆ’ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = 1042โ„ƒ

which appears to be too high in a physical sense.

Applying Henryโ€™s correlation for water at 7.0 MPa: ๐‘‡๐‘‡๐ป๐ป๐‘€๐‘€ โˆ’ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = 1443โ„ƒ

which appears to be too low in a physical sense

2. a) Applying Berensonโ€™s correlation for sodium at 0.1 MPa: ๐‘‡๐‘‡๐ต๐ต๐‘€๐‘€ โˆ’ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = 30.6โ„ƒ

Applying Henryโ€™s correlation for sodium at 0.1 MPa:

๐‘‡๐‘‡๐ป๐ป๐‘€๐‘€ โˆ’ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = 411โ„ƒ

Both of which appears to be too low in a physical sense.

323

rev 112420


Chapter 12 - Pool Boiling

PROBLEM 12.6 QUESTION Analysis of Decay Heat Removal During a Severe Accident (Chapter 3, 4, 12 Section 12.5) Extreme events in which the reactor core melts partially or completely are designated by nuclear engineers as โ€˜severe accidentsโ€™. Consider a severe accident during which the core has completely melted, thus falling to the bottom of the pressure vessel. The situation is illustrated in Figure 12.14. The molten mixture of fuel (UO2), fission products, clad (Zr), control rod material (B4C) and coresupporting structures (steel) is known in severe accident analysis as โ€˜coriumโ€™. In the situation considered here, the corium melt fills the bottom of the vessel up to the junction of the hemispherical lower head with the cylindrical beltline region. There is water above the corium and water outside the vessel. The fuel decay heat is removed by boiling above the corium, and by conduction through the vessel walk The whole system is at atmospheric pressure. Figure 12.14 The lower head of the reactor vessel during a severe accident with complete melting of the core.

FIGURE 12.14

The lower head of the reactor vessel during a severe accident with complete melting of the core.

1. At normal operating conditions the thermal power of this reactor is 3400 MWth. Three hours after reactor shutdown, the corium melt is at 2000ยบC, the temperature on the outer surface of the vessel is 112ยบC and the temperature of the water above the corium is 100ยบC. At this time is the corium heating up, cooling down or staying at steady temperature? (Hint: assume that the temperature distribution within the corium melt is uniform). 2. At a certain time during the accident, the heat flux at the upper surface of the corium melt is 200 kW/m2. Calculate the average void fraction in the (stagnant) water above the corium melt. (Use the drift-flux model with Co = l and the expression of Vvj for churn flow. Assume water at saturated conditions). 3. With regard to Question 2, would an HEM approach be acceptable? Why? In solving Question 1 use the following film boiling heat transfer correlation with convection (by Berenson) and radiation components (see Equation 12.30b). Table 12.5 lists materials properties which should be used in the solution of this problem.

324

rev 112420


Chapter 12 - Pool Boiling

TABLE 12.5 Materials Properties for Problem 12.6 Parameter Tsat (ยฐC/K) ฯf (kg/m3) ฯg (kg/m3) hf (kJ/kg) hg (kJ/kg) cpf [kJ/(kgยฐC)] cpg [kJ/(kgยฐC)] ฮผf (Pa s) ฮผg (Pa s) kf [W/(mยฐC)] kg [W/(mยฐC)] ฯƒ (N/m)

Value 100 (373) 960 0.6 419 2675 4.2 2.1 2.8 ร— 10โˆ’4 1.2 ร— 10โˆ’5 0.68 0.02 0.06

Note: Coriumโ€”density: 8000 kg/m3; specific heat: 530 J/kgยฐC; Emissivity: 0.5. Vessel steelโ€”density: 7500 kg/m3; thermal conductivity: 30 W/mยฐC. Water surrounding vesselโ€”saturated at atmospheric pressure.

Answers: 1. Heating up. 2. ฮฑ โ‰ˆ 0.381 3. HEM is a poor approach since the liquid is nearly stagnant while the vapor is flowing upward.

PROBLEM 12.6 SOLUTION Analysis of Decay Heat Removal During a Severe Accident (Chapter 3, 4, 12 Section 12.5) 1. The energy balance equation for the corium melt is: ๐‘š๐‘š๐‘๐‘ ๐ถ๐ถ๐‘๐‘

๐‘‘๐‘‘๐‘‘๐‘‘๐‘๐‘ = ๐‘„๐‘„ฬ‡๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๐‘„๐‘„ฬ‡๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ โˆ’ ๐‘„๐‘„ฬ‡๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘‘๐‘‘๐‘‘๐‘‘

Assuming the reactor was operating for a long time before shutdown: ๐‘„๐‘„ฬ‡๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ 0.066๐‘„๐‘„ฬ‡0 ๐‘ก๐‘ก โˆ’0.2 โ‰ˆ 35.0 MW

Since the thickness-diameter ratio for the lower vessel head is small (<<1), it is approximated as a flat wall with little loss of accuracy: ๐‘‡๐‘‡๐‘๐‘ โˆ’ ๐‘‡๐‘‡๐‘ฃ๐‘ฃ,๐‘œ๐‘œ ๐œ‹๐œ‹ 2 ๐‘„๐‘„ฬ‡๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ = ๐‘˜๐‘˜๐‘ฃ๐‘ฃ ๐ท๐ท โ‰ˆ 9.3 MW ๐›ฟ๐›ฟ 2

The film boiling coefficient, hFB, is calculated using the Berenson correlation to yield:

325

rev 112420


Chapter 12 - Pool Boiling

๐œ‹๐œ‹ ๐‘„๐‘„ฬ‡๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ = โ„Ž๐น๐น๐น๐น (๐‘‡๐‘‡๐‘๐‘ โˆ’ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ) ๐ท๐ท2 โ‰ˆ 13.8 MW 4

Calculating the value of the right hand side of the energy balance equation yields: ๐‘„๐‘„ฬ‡๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๐‘„๐‘„ฬ‡๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ โˆ’ ๐‘„๐‘„ฬ‡๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ = 11.9 MW

which is greater than 0 so the corium is heating up.

2. The void fraction is calculated with the drift-flux model: ๐›ผ๐›ผ =

๐‘—๐‘—๐‘ฃ๐‘ฃ ๐ถ๐ถ0๐‘—๐‘— + ๐‘‰๐‘‰๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ

where for churn flow,๐ถ๐ถ0 = 1 and V๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ = 1.53 ๏ฟฝ

๐œŽ๐œŽ๐œŽ๐œŽ๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ โˆ’๐œŒ๐œŒ๐‘”๐‘” ๏ฟฝ ๐œŒ๐œŒ๐‘“๐‘“2

(11.38) ๏ฟฝ

0.25

โ‰ˆ 0.24 m/s

Now, in the pool of water above the corium, the liquid is stagnant, while the vapor flows upward (due to buoyancy). Therefore, one has jl = 0 and also j = jv. The vapor superficial velocity, jv, in general can be calculated as xG/ ฯg. In this case, x = l (only vapor is flowing so the flow quality is one) and G is equal to the vapor generation rate per unit area of the corium surface. Thus

From the drift-flux model: ๐‘‰๐‘‰

๐บ๐บ =

๐‘ž๐‘ž โ€ณ = 0.09 kg/m2 s โ„Ž๐‘“๐‘“๐‘“๐‘“ ฮฑ โ‰ˆ 0.381

3. HEM ๏ฟฝ๐‘†๐‘† = ๐‘‰๐‘‰๐‘ฃ๐‘ฃ ๏ฟฝ = 1 would have clearly been a bad choice because the velocity of the liquid is ๐‘™๐‘™

zero, while the velocity of the vapor is greater than zero. In fact, in this case the slip ratio S is infinite.

PROBLEM 12.7 QUESTION Void Fraction and Pressure Drop in an Isolation Condenser (Chapters 6, 9, 10, 11 - Section 12.7) A modern BWR uses an isolation condenser to remove the decay heat from the core following a feedwater pump trip. The isolation condenser receives 50 kg/s of saturated dry steam at 280ยบC and condenses it completely. The isolation condenser consists of 200 horizontal round tubes of 3-cm inner diameter and 12-m length. The condensing steam flows inside the tubes (see Figure 12.15). The tubes sit in a pool of water at atmospheric pressure. 1. Calculate the isolation condenser heat removal rate. (The properties of saturated water at 280ยบC are presented in Table 12.6) 2. Using the simplified Chato correlation (Eq. 12.46), estimate the temperature on the inner surface of the tubes. (Assume an axially uniform heat flux in the tubes)

326

rev 112420


Chapter 12 - Pool Boiling

3. Sketch the axial profile of the void fraction in the tubes. (Assume linear variation of the quality in the tubes. Use the HEM to calculate the void fraction) 4. Calculate the acceleration, friction, gravity and total pressure drops within the tubes. (Use the HEM approach with fTP = fโ„“o to calculate the friction pressure drop) 5. How would the acceleration, friction and gravity pressure drops within the tubes change, if the tubes were vertical and the steam flow were downward? (A qualitative answer is acceptable)

FIGURE 12.15

Isolation condenser tubes.

TABLE 12.6 Properties of Saturated Water at 280ยฐC for Use in Problem 12.7 Parameter vf (m3/kg) vg (m3/kg) hf (kJ/kg) hg (kJ/kg) ฮผf (Pa s) ฮผg (Pa s) kf [W/(mยฐC)] kg [W/(mยฐC)]

Value 0.0013 0.03 1237 2780 9.8 ร— 10โˆ’5 1.9 ร— 10โˆ’5 0.574 0.061

Answer: 1. Qฬ‡ = 77.15 MWth 2. Tw โ‰ˆ 216ยบC

4. โˆ†Pacc โ‰ˆ โˆ’3594 Pa โˆ†Pfric โ‰ˆ 7060 Pa โˆ†Ptot โ‰ˆ 3466 Pa

327

rev 112420


Chapter 12 - Pool Boiling

PROBLEM 12.7 SOLUTION Void Fraction and Pressure Drop in an Isolation Condenser (Chapters 6, 9, 10, 11 - Section 12.7) 1) Saturated steam is completely condensed at a rate of 50 kg/s. Thus, the heat removal rate can be calculated from the energy balance as: =77.15 MWth where the subscripts โ€œoโ€ and โ€œiโ€ refer to the tube outlet and inlet, respectively. 2) The average heat flux at the inner surface of the tubes, qโ€ณ, is: โ‰ˆ 341 kW/m2 The inner wall temperature can be readily found from Newtonโ€™s law of cooling:

where hD is from the simplified Chato correlation. Solving for Tw, one gets Twโ‰ˆ216ยฐC. 3) For HEM the void fraction can be calculated as:

where x is the flow quality, assumed to vary linearly with the axial location, z, from 1 (inlet) to 0 (outlet), i.e., x(z)=1-z/L. This equation can be used to sketch ฮฑ vs. z, as shown in Figure SM-12.1. Void fraction 1

0

L Figure SM-12.1

328

z

rev 112420


Chapter 12 - Pool Boiling

4) The gravity pressure drop is zero, because the tubes are horizontal. Acceleration: ๏ฃซ 1 1 ๏ฃถ โˆ†Pacc = G 2 ๏ฃฌ๏ฃฌ + โˆ’ + ๏ฃท๏ฃท โ‰ˆ -3,594 Pa ๏ฃญ ฯo ฯi ๏ฃธ

where the subscripts โ€œoโ€ and โ€œiโ€ refer to the tube outlet and inlet, respectively. Note that in this case, ฯ i+ = ฯ g =33.3 kg/m3, ฯ o+ = ฯ f =769.2 kg/m3, and G=50/200/(ฯ€/4ร—0.032) โ‰ˆ 354 kg/m2s. Friction:

1 G2 ๏ฃซ dP ๏ฃถ = f โ‹… ๏ฃฌ ๏ฃท TP D 2ฯTP ๏ฃญ dz ๏ฃธ fric

where D=3cm, f TP = f ๏ฌo = 0.184 โ‰ˆ0.018 ( Re ๏ฌo = 0.2 Re ๏ฌo

(5)

GD โ‰ˆ108,400). Also, for HEM, ยตf

1 x 1โˆ’ x . Thus, Equation 5 can be integrated: = + ฯTP ฯ g ฯf 1

1 L G2 ๏ฃฎ x 1โˆ’ x ๏ฃน L G 2 ๏ฃซ๏ฃฌ x 2 / 2 x โˆ’ x 2 / 2 ๏ฃถ๏ฃท 1 G2 dz = f ๏ฌo dx f โˆ†Pfric = โˆซ f TP + = + โ‰ˆ 7,060 Pa ๏ฃฏ ๏ฃบ ๏ฌo โˆซ ๏ฃท ๏ฃฌ ฯ D D D 2 2 2 ฯ ฯ ฯ ฯ ๏ฃฏ ๏ฃบ TP f ๏ฃป f 0 0๏ฃฐ g ๏ฃธ0 ๏ฃญ g L

where again a linear variation of x along the tubes has been assumed (i.e., x(z)=1-z/L). Total: โ‰ˆ -3,594+7,060 = 3,466 Pa where โˆ†Ptot = Pin - Pout 5) The acceleration and friction pressure drops would not change. The gravity pressure drop would be negative because the flow direction is downward.

329

rev 112420


Chapter 13 Flow Boiling Contents Problem 13.1 Nucleation in pool and flow boiling ............................................................. 331 Problem 13.2 Factors affecting incipient superheat in a flowing system ........................... 334 Problem 13.3 Heat transfer problems for a BWR channel ................................................. 337 Problem 13.4 Thermal parameters in a heated channel in two-phase flow ........................ 342 Problem 13.5 CHF calculation with the Bowring correlation ............................................ 344 Problem 13.6 Boiling crisis on the vessel outer surface during a severe accident ............. 346 Problem 13.7 Calculation of CPR for a BWR hot channel ................................................. 349 Problem 13.8 Reduction in a PHWR CHF margin upon a local channel power ................ 353

330

rev 112420


Chapter 13 - Flow Boiling

PROBLEM 13.1 QUESTION Nucleation in Pool and Flow Boiling (Section 13.2) A platinum heat surface has conical cavities of uniform size, R, of 10 microns. 1. If the surface is used to heat water at 1 atm in pool boiling, what is the value of the wall superheat and surface heat flux required to initiate nucleation? 2. If the same surface is now used to heat water at 1 atm in forced circulation, what is the value of the wall superheat required to initiate nucleate boiling? What is the surface heat flux required to initiate nucleation? Answers: 1. โˆ†Tsat = 3.3 K Rohsenow method: qโ€ณ = 4.68 kW/m2 using Csf = 0.013 Stephan and Abdelsalam method: qโ€ณ = 2.85 kW/m2 Cooper method: qโ€ณ = 2.67 kW/m2 2. โˆ†Tsat = 6.5 K qโ€ณ = 221 kW/m2

PROBLEM 13.1 SOLUTION Nucleation in Pool and Flow Boiling (Section 13.2) All the cavities on the heat surface are assumed to be conical and of uniform size. ๐‘Ÿ๐‘Ÿ = 10ฮผm

The following properties of saturated water at 1 atm pressure (101.325 kPa) may be found using tables or computer programs. โ€“ saturation temperature, Tsat = 373 K โ€“ surface tension, ฯƒ = 0.05892 N/m โ€“ density, ฯf = 958.4 kg/m3 and ฯg = 0.5977 kg/m3 1

1

โ€“ v๐‘”๐‘” = ๐‘๐‘ = 0.5977 = 1.673 m3 /kg ๐‘”๐‘”

โ€“ specific enthalpy, h f = 419 kJ/kg and h g = 2676 kJ/kg โ€“ h fg = h g = h f = 2257 kJ/kg โ€“ specific heat, cPf = 4.216 kJ/kg K โ€“ viscosity, ฮผf = 281.8 ร— 10โˆ’6 Pa s

331

rev 112420


Chapter 13 - Flow Boiling

โ€“ conductivity, kf = 0.6791 W/m K 1. If the surface is used to heat water at 1 atmosphere in pool boiling, what is the value of the wall superheat and surface heat flux required to initiate nucleation? The wall superheat required to initiate nucleation in pool boiling may be calculated rearranging Equation 12.7. โˆ†๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  =

2๐œŽ๐œŽ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ฃ๐‘ฃ๐‘”๐‘” 2(0)(05892)(373)(1.673) = = 3.259 K = 3.3 K โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐‘Ÿ๐‘Ÿ (2257 ร— 103 )(10โˆ’6 )

(1)

Several correlations are available for calculating the surface heat flux required to initiate nucleation. Three different correlations have been used in this solution: Rohsenow, Stephan and Abdelsalam, and Cooper. Rohsenow method Equation 12.18c may be used applying a coefficient Csf = 0.013, which is suitable for a platinum heat surface in water. 1/2 0.33

๐‘๐‘๐‘๐‘๐‘๐‘ โˆ†๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ž๐‘žโ€ณ ๐œŽ๐œŽ = ๐ถ๐ถ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ ๏ฟฝ ๏ฟฝ โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐œ‡๐œ‡๐‘“๐‘“ โ„Ž๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ โˆ’ ๐œŒ๐œŒ๐‘”๐‘” ๏ฟฝ๐‘”๐‘”

๏ฟฝ

๐œ‡๐œ‡๐‘“๐‘“ ๐‘๐‘๐‘๐‘๐‘๐‘ ๏ฟฝ ๏ฟฝ ๐‘˜๐‘˜๐‘“๐‘“

(2)

0.33

1/2 ๐‘ž๐‘žโ€ณ 4.216(3.259) 0.05892 ๏ฟฝ ๏ฟฝ ๏ฟฝ = 0.013 ๏ฟฝ 2257 (281.8 ร— 10โˆ’6 )2257 (958.4 โˆ’ 0.5977)9.81

Solving for qโ€ณ:

281.8 ร— 10โˆ’6 )(4.216 ร— 103 ) ร—๏ฟฝ ๏ฟฝ 0.6791 (3)

๐‘ž๐‘ž โ€ณ = 4.68 kWโ„m2

Stephan and Abdelsalam method Equation 12.22a may be used: 0.674

๐‘ž๐‘žโ€ณ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ž๐‘žโ€ณ๐‘‘๐‘‘๐‘‘๐‘‘ = 0.23 ๏ฟฝ ๏ฟฝ โˆ†๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘˜๐‘˜๐‘“๐‘“ ๐‘˜๐‘˜๐‘“๐‘“ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ 

0.297

๐œŒ๐œŒ๐‘”๐‘” ๏ฟฝ ๏ฟฝ ๐œŒ๐œŒ๐‘“๐‘“

โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐‘‘๐‘‘๐‘‘๐‘‘2 ๏ฟฝ 2 ๏ฟฝ ๐›ผ๐›ผ๐‘“๐‘“

0.371

๐œŒ๐œŒ๐‘“๐‘“ โˆ’ ๐œŒ๐œŒ๐‘”๐‘” ๏ฟฝ ๏ฟฝ ๐œŒ๐œŒ๐‘“๐‘“

โˆ’1.73

0.35

๐›ผ๐›ผ๐‘“๐‘“2 ๐‘ƒ๐‘ƒ๐‘“๐‘“ ๏ฟฝ ๏ฟฝ ๐œŽ๐œŽ. ๐‘‘๐‘‘๐‘‘๐‘‘

(4)

Where dd is given by Equation 12.22b, assuming a contact angle of ฮธ = 25ยฐ: 2๐œŽ๐œŽ

1โ„2

๐‘‘๐‘‘๐‘‘๐‘‘ = (0.146)๐œƒ๐œƒ ๏ฟฝ ๏ฟฝ ๐‘”๐‘”๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ โˆ’ ๐œŒ๐œŒ๐‘”๐‘” ๏ฟฝ = 0.01293 m

โ„

1 2 2(0.05892) = 0.146(25) ๏ฟฝ ๏ฟฝ 9.81(958.4 โˆ’ 0.5977)

(5)

And the thermal diffusivity of the liquid is: ๐›ผ๐›ผ๐‘“๐‘“ =

๐‘˜๐‘˜๐‘“๐‘“ 0.6791 m2 โˆ’7 = = 1.681 ร— 10 ๐œŒ๐œŒ๐‘“๐‘“ ๐‘๐‘๐‘๐‘๐‘๐‘ 958.4(4.216 ร— 103 ) s

(6)

The main equation can now be solved:

332

rev 112420


Chapter 13 - Flow Boiling 0.674

3.259(0.6791) ๐‘ž๐‘ž โ€ณ (0.01293) ๐‘ž๐‘ž = 0.23 ๏ฟฝ ๏ฟฝ 0.01293 0.6791(373) โ€ณ

0.371

(2257 ร— 103 )0.012932 ๏ฟฝ ๏ฟฝ (1.681 ร— 10โˆ’7 )2

๏ฟฝ

0.5977 0.297 ๏ฟฝ 958.4

0.35

958.4 โˆ’ 0.5977 โˆ’1.73 (1.681 ร— 10โˆ’7 )2 (958.4) ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ 958.4 0.05892(0.01293) ๐‘ž๐‘ž โ€ณ = 2.85 kW/m2

(7)

Cooper method Applying Equation 12.23: (0.12โˆ’0.211 log10 ๐œ–๐œ–)

โ„Ž = ๐ด๐ด ๏ฟฝ๐‘ƒ๐‘ƒ๐‘…๐‘…

๏ฟฝ [โˆ’log10 ๐‘ƒ๐‘ƒ๐‘…๐‘… ]โˆ’0.55 ๐‘€๐‘€โˆ’0.5 ๐‘ž๐‘žโ€ณ2โ„3

(8)

Where M = 18 is the molar mass of water, while the heat transfer coefficient is given by the general relation: โ„=

We will consider ๐œ–๐œ– = 1๐œ‡๐œ‡๐œ‡๐œ‡ and A = 55. The pressure ratio is given by: ๐‘ƒ๐‘ƒ๐‘…๐‘… =

๐‘ž๐‘žโ€ณ โˆ†๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ 

(9)

๐‘ƒ๐‘ƒ 101.325 = = 4.59 ร— 10โˆ’3 ๐‘ƒ๐‘ƒ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ 22060

(10)

Substituting into the previous equation yields: (0.12โˆ’0.211log10 ฯต)

๐‘ž๐‘ž โ€ณ = ๏ฟฝ๐ด๐ด ๏ฟฝ๐‘ƒ๐‘ƒ๐‘…๐‘…

3

๏ฟฝ [โˆ’10log10 ๐‘ƒ๐‘ƒ๐‘…๐‘… ]โˆ’0.55 ๐‘€๐‘€โˆ’0.5 โˆ†๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ

๐‘ž๐‘ž โ€ณ = ๏ฟฝ55[4.59 ร— 10โˆ’3 ](0.12โˆ’0.211log101) [โˆ’log10 4.59 ร— 10โˆ’3 ]โˆ’0.55 18โˆ’0.5 3.259๏ฟฝ = 2.67 kWโ„m2

3

(11)

2. If the same surface is now used to heat water at 1 atm in forced circulation, what is the value of the wall superheat required to initiate nucleate boiling? What is the surface heat flux required to initiate nucleation? The condition required for bubble nucleation in flow boiling is given by Equation 13.2: ๐‘Ÿ๐‘Ÿ โˆ— = ๏ฟฝ

2๐œŽ๐œŽ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ฃ๐‘ฃ๐‘”๐‘” ๐‘˜๐‘˜๐‘“๐‘“ โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐‘ž๐‘žโ€ณ

(12)

We may solve this equation to obtain the desired heat flux value. 10 ร— 10โˆ’6 = ๏ฟฝ

2(0.05892)(373)(1.673)(0.6791) 2257 ร— 103 ๐‘ž๐‘žโ€ณ

โ‡’ ๐‘ž๐‘ž โ€ณ = 221 kWโ„m2

(13)

(14)

In forced convection, the minimum wall superheat required to initiate nucleation can be expressed by Equation 13.5.

333

rev 112420


Chapter 13 - Flow Boiling 1โ„2

8๐œŽ๐œŽ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ฃ๐‘ฃ๐‘”๐‘” ๐‘ž๐‘ž โ€ณ โˆ†๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = ๏ฟฝ ๏ฟฝ โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐‘˜๐‘˜๐‘“๐‘“ = 6.5 K

โ„

8(0.05892)(373)(1.673)(221000) 1 2 ๏ฟฝ =๏ฟฝ (2257 ร— 103 )(0.6791)

(15)

PROBLEM 13.2 QUESTION

Factors Affecting Incipient Superheat in a Flowing System (Section 13.2) 1. Saturated liquid water at atmospheric pressure flows inside a 20 mm diameter tube. The mass velocity is adjusted to produce a single phase heat transfer coefficient equal to 10 kW/m2K, What is the incipient boiling heat flux? What is the corresponding wall superheat? 2. Provide answers to the same questions for saturated liquid water at 290ยฐC, flowing through a tube of the same diameter, and with a mass velocity adjusted to produce the same singlephase heat transfer coefficient. 3. Provide answers to the same questions if the flow rate in the 290ยฐC case is doubled. Answers: 1. qโ€ณ = 1.92ร—104 W/m2 TW โ€“ Tsat =1.92 ยฐC 2. qโ€ณ = 230 W/m2 TW โ€“ Tsat = 0.023 ยฐC 3. q" = 698.5 W/m2 TW โ€“ Tsat = 0.04 ยฐC

PROBLEM 13.2 SOLUTION Factors Affecting Incipient Superheat in a Flowing System (Section 13.2) The tube diameter is: ๐ท๐ท = 0.0220 m The following properties of saturated water at 1 atm pressure (101.325 kPa) may be found using tables or computer programs. โ€“ saturation temperature, Tsat = 373 K โ€“ surface tension, ฯƒ = 0.05892 N/m โ€“ specific volume, vg = 1.673 m3/kg

334

rev 112420


Chapter 13 - Flow Boiling

โ€“ specific enthalpy, hf = 419 kJ/kg and hg = 2676 kJ/kg โ€“ hfg = hg โˆ’ hf = 2256 kJ/kg โ€“ viscosity, ฮผf = 0.0002818 Pa s โ€“ conductivity, kf = 0.6791 W/m K The mass velocity is adjusted to produce a single-phase heat transfer coefficient equal to: โ„ = 10 kWโ„m2 K

1. What is the incipient boiling heat flux? What the corresponding wall superheat? In forced convection, the minimum wall superheat required to initiate nucleation is given by Equation 13.5. 1โ„2

8๐œŽ๐œŽ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  v๐‘”๐‘” ๐‘ž๐‘žโ€ณ (1) โˆ†๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = ๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = ๏ฟฝ ๏ฟฝ โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐‘˜๐‘˜๐‘“๐‘“ At the point of boiling inception, the condition of minimum wall superheat has to satisfy also the single-phase heat transfer equation: ๐‘ž๐‘ž โ€ณ = โ„โˆ†๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ 

(2)

Notice that per the problem statement at boiling inception the coolant bulk temperature is Tsat. Combining those two equations and solving: 1โ„2

8๐œŽ๐œŽ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  v๐‘”๐‘” ๐‘ž๐‘žโ€ณ ๐‘ž๐‘žโ€ณ =๏ฟฝ ๏ฟฝ โ„ โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐‘˜๐‘˜๐‘“๐‘“

1โ„2

8(0.05892)(373)(1.673)๐‘ž๐‘žโ€ณ ๐‘ž๐‘žโ€ณ =๏ฟฝ ๏ฟฝ 3 10 ร— 10 (2256 ร— 103 )(0.6791) โ‡’ ๐‘ž๐‘ž โ€ณ = 1.92 ร— 104 Wโ„m2

โ‡’ โˆ†๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  =

๐‘ž๐‘žโ€ณ 1.92 ร— 104 = = 1.92 ยฐC โ„ 10 ร— 103

(3)

(4) (5)

2. Provide answers to the same questions for saturated liquid water at 290ยฐC, flowing through a tube of the same diameter, and with a mass velocity adjusted to produce the same single-phase heat transfer coefficient. The following properties of saturated water at 290ยฐC (563.1 K) temperature may be found using tables or computer programs. ๐œŽ๐œŽ = 0.0167 Nโ„m

v๐‘”๐‘” = 0.02556 m3 โ„kg โ„Ž๐‘“๐‘“ = 1290 kJโ„kg

335

rev 112420


Chapter 13 - Flow Boiling

โ„Ž๐‘”๐‘” = 2677 kJโ„kg

โ„Ž๐‘“๐‘“๐‘“๐‘“ = โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“ = 2677 โˆ’ 1290 = 1477 kJโ„kg ๐œ‡๐œ‡๐‘“๐‘“ = 8.967 ร— 10โˆ’5 Pa s ๐‘˜๐‘˜๐‘“๐‘“ = 0.565 Wโ„m K

Solving the equations already seen in Part 1, and keeping the same heat transfer coefficient: 1โ„2

8๐œŽ๐œŽ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  v๐‘”๐‘” ๐‘ž๐‘žโ€ณ ๐‘ž๐‘žโ€ณ =๏ฟฝ ๏ฟฝ โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐‘˜๐‘˜๐‘“๐‘“ โ„

1โ„2

๐‘ž๐‘žโ€ณ 8(0.0167)(563.1)(0.02556)๐‘ž๐‘žโ€ณ =๏ฟฝ ๏ฟฝ 3 10 ร— 10 (1477 ร— 103 )(0.565)

(7)

โ‡’ ๐‘ž๐‘ž โ€ณ = 230 Wโ„m2

โ‡’ โˆ†๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  =

(6)

๐‘ž๐‘žโ€ณ 230 = = 0.023 ยฐC โ„ 10 ร— 103

(8)

3. Provide answers to the same questions if the flow rate in the 290ยฐC case is doubled. The single-phase heat transfer coefficient may be expressed using the Dittus-Boelter/Mc Adams correlation, Equation 10.91, as: Nu = 0.023Re0.8 Pr 0.4 0.8

๐บ๐บ๐บ๐บ โ„๐ท๐ท = 0.023 ๏ฟฝ ๏ฟฝ ๐‘˜๐‘˜๐‘“๐‘“ ๐œ‡๐œ‡๐‘“๐‘“

(9) 0.4

๐‘๐‘๐‘๐‘๐‘๐‘ ๐œ‡๐œ‡๐‘“๐‘“ ๏ฟฝ ๏ฟฝ ๐‘˜๐‘˜๐‘“๐‘“

(10)

Since the mass flow rate is doubled, G is doubled with respect to part 2 of this problem. All the terms in the equation above are constant except h and G. The new heat transfer coefficient may be calculated as: โ„ = โ„๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘2 (20.8 ) = (10 ร— 103 )(20.8 ) = 17.41 ร— 103 Wโ„m2 K

(11)

Updating the equations already seen in part 2 with the new heat transfer coefficient and solving: 1โ„2

8๐œŽ๐œŽ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ฃ๐‘ฃ๐‘”๐‘” ๐‘ž๐‘žโ€ณ ๐‘ž๐‘žโ€ณ =๏ฟฝ ๏ฟฝ โ„ โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐‘˜๐‘˜๐‘“๐‘“

1โ„2

๐‘ž๐‘žโ€ณ 8(0.0167)(563.1)(0.02556)๐‘ž๐‘žโ€ณ = ๏ฟฝ ๏ฟฝ 17.41 ร— 103 (1477 ร— 103 )(0.565) 336

(12)

rev 112420


Chapter 13 - Flow Boiling

โ‡’ ๐‘ž๐‘ž โ€ณ = 698.5 Wโ„m2

โ‡’ โˆ†๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  =

๐‘ž๐‘žโ€ณ 698.5 = = 0.040 ยฐC โ„ 17.41 ร— 103

(13) (14)

PROBLEM 13.3 QUESTION Heat Transfer Problems for a BWR Channel (Section 13.3) Consider a heated tube operating at BWR pressure conditions with a cosine heat flux distribution. Relevant conditions are as follows: Channel geometry D = 11.20 mm L = 3.588 m Operating conditions P = 7.14 MPa Tin = 278.3 C G = 1625 kg/m2s qโ€ฒmax= 47.24 kW/m 1. Find the axial position where the equilibrium quality, xe, is zero. 2. What is the axial extent of the channel where the actual quality is zero? That is, this requires finding the axial location of boiling incipience, commonly called ONB, onset of nuclear boiling. (It is sufficient to provide a final equation with all parameters expressed numerically to determine this answer without solving for the final result). 3. Find the axial location of maximum wall temperature assuming the heat transfer coefficient given by the Thom et al. correlation for nuclear boiling heat transfer (Equation 13.23b). Hint! Example 14.5 treats a similar question. 4. Find the axial location of maximum wall temperature assuming the heat transfer coefficient is not constant but varies as is calculated by relevant correlations. Here, you are not asked for the exact location, but whether the location is upstream or downstream from the value from Part 3. Answers: 1. Z OSB = 0.61 m (from the bottom of the channel) 2. Z ONB = 0.21 m 3. 1.79 m 4. Upstream

337

rev 112420


Chapter 13 - Flow Boiling

PROBLEM 13.3 SOLUTION Heat Transfer Problems for a BWR Channel (Section 13.3) The following parameters are known: โ€“ tube diameter, D = 11.2 ร—10โˆ’3 m โ€“ tube length, L = 3.588 m โ€“ inlet temperature, Tin = 278.3 ยฐC โ€“ pressure, P = 7.14 MPa โ€“ mass flux, G = 1625 kg/m2s โ€“ peak linear heat generation rate, qโ€ฒmax = 47.24 kW/m The following parameters may be taken from tables or software with water properties. โ€“ enthalpy: โ„Ž๐‘“๐‘“ = โ„Ž(๐‘ƒ๐‘ƒ = 7.14 MPa, ๐‘ฅ๐‘ฅ = 0) = 1275 kJโ„kg

โ„Ž๐‘”๐‘” = โ„Ž(๐‘ƒ๐‘ƒ = 7.14 MPa, ๐‘ฅ๐‘ฅ = 1) = 1771 kJโ„kg

โ„Ž๐‘“๐‘“๐‘“๐‘“ = โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“ = 2771 โˆ’ 1275 = 2771 โˆ’ 1275 = 1496 kJโ„kg โ„Ž๐‘–๐‘–๐‘–๐‘– = โ„Ž(๐‘‡๐‘‡ = 278.3 ยฐC, ๐‘๐‘ = 7.14 MPa) = 1228 kJโ„kg

โ€“ viscosity, ฮผf = ฮผ(P = 7.14MPa, x = 0) = 90.73 ร— 10โˆ’6 Pa s

โ€“ specific heat, cpf = cp (P = 7.14 MPa, x = 0) = 5.431 kJ/kg K โ€“ conductivity, kf = k (P = 7.14 MPa, x = 0) = 0.570 W/m K โ€“ saturation temperature, Tsat = Tsat (P = 7.14 MPa) = 287.2 ยฐC For a cosine heat flux distribution, the axial peaking factor is equal to ฯ€/2. The total channel power is hence: ๐‘ž๐‘žฬ‡ = ๐‘ž๐‘ž๏ฟฝ โ€ฒ ๐ฟ๐ฟ =

๐‘ž๐‘žโ€ฒ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š 47.24 ๐ฟ๐ฟ = 3.588 = 107.9 kW ๐œ‹๐œ‹โ„2 ๐œ‹๐œ‹โ„2

(1)

The inlet equilibrium quality is: ๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘–๐‘–๐‘–๐‘– =

โ„Ž๐‘–๐‘–๐‘–๐‘– โˆ’ โ„Ž๐‘“๐‘“ 1228 โˆ’ 1275 = = โˆ’0.0314 โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“ 2771 โˆ’ 1275

(2)

The area of the heated tube is:

338

rev 112420


Chapter 13 - Flow Boiling

๐œ‹๐œ‹๐œ‹๐œ‹2 ๐œ‹๐œ‹(11.2 ร— 10โˆ’3 )2 ๐ด๐ด = = = 9.852 ร— 10โˆ’5 m2 4 4

(3)

The mass flow rate is:

๐‘š๐‘šฬ‡ = ๐บ๐บ๐บ๐บ = (1625)(9.852 ร— 10โˆ’5 ) = 0.160 kgโ„s

(4)

The heat flux distribution is:

๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘ž๐‘žโ€ฒ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š cos ๏ฟฝ ๐ฟ๐ฟ ๏ฟฝ ๐‘ž๐‘žโ€ฒ(๐‘ง๐‘ง) (5) ๐‘ž๐‘ž โ€ณ(๐‘ง๐‘ง) = = ๐œ‹๐œ‹๐œ‹๐œ‹ ๐œ‹๐œ‹๐œ‹๐œ‹ 1. Find the axial position where the equilibrium quality, xe, is zero. Applying the conservation of energy to the heated tube with a cosine heat flux distribution, Equation 14.33b is obtained, which yields the equilibrium quality as a function of z. The equilibrium quality is set to be equal to zero to obtain zOSB. ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง) = ๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘–๐‘–๐‘–๐‘– +

๐‘ž๐‘žฬ‡ ๐œ‹๐œ‹๐œ‹๐œ‹ ๏ฟฝsin ๏ฟฝ ๏ฟฝ + 1๏ฟฝ = 0 ฬ‡ ๐‘“๐‘“๐‘“๐‘“ ๐ฟ๐ฟ 2๐‘š๐‘šโ„Ž

107.9 ๐œ‹๐œ‹๐œ‹๐œ‹๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ โˆ’0.0314 + ๏ฟฝsin ๏ฟฝ ๏ฟฝ + 1๏ฟฝ = 0 2(0.160)(1496) 3.588

(6)

Solving numerically:

๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ = โˆ’1.184 m

(7)

Measuring this location from the channel inlet instead of the midplane: ๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ = ๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ +

๐ฟ๐ฟ 3.588 = โˆ’1.184 + = 0.61 m 2 2

(8)

2. What is the axial extent of the channel where the actual quality is zero? That is, this requires finding the axial location of boiling incipience commonly called ONB, onset of nucleate boiling. (It is sufficient to provide a final equation with all parameters expressed numerically to determine this answer without solving for the final result). The location of axial boiling incipience may be determined as the location where the single-phase heat transfer curve intersects the nucleate boiling curve described by the Thom correlation. The Prandtl number is: Pr =

๐‘๐‘๐‘๐‘๐‘๐‘ ๐œ‡๐œ‡๐‘“๐‘“ (5431)(90.73 ร— 10โˆ’6 ) = = 0.864 ๐‘˜๐‘˜๐‘“๐‘“ 0.570

Re๐‘’๐‘’๐‘’๐‘’ =

๐บ๐บ๐บ๐บ (1625)(11.2 ร— 10โˆ’3 ) = = 2.01 ร— 105 ๐œ‡๐œ‡๐‘“๐‘“ 90.73 ร— 10โˆ’6

(9)

The liquid only Reynolds number is:

(10)

The flow is turbulent. The Dittus-Boelter/McAdams relation may be applied (Equation 10.91) to obtain the heat transfer coefficient hDB:

339

rev 112420


Chapter 13 - Flow Boiling

Nu = 0.023Re0.8 Pr 0.4

Nu = 0.023(2.01 ร— 105 )0.8 (0.864)0.4 = 378.7 โ„๐ท๐ท๐ท๐ท =

๐‘˜๐‘˜๐‘“๐‘“ ๐‘›๐‘›๐‘ข๐‘ข 0.570 ร— 378.7 = = 19.3 kWโ„m2 K ๐ท๐ท 11.2 ร— 10โˆ’3

(11)

(12)

The coolant bulk temperature is given by Equation 14.14: ๐‘‡๐‘‡๐‘๐‘ (๐‘ง๐‘ง) = ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– +

๐‘ž๐‘žโ€ฒ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐ฟ๐ฟ ๐œ‹๐œ‹๐œ‹๐œ‹ ๏ฟฝsin ๏ฟฝ ๏ฟฝ + 1๏ฟฝ ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ ๐œ‹๐œ‹ ๐ฟ๐ฟ

(13)

The wall temperature according to the Dittus-Boelter/McAdams relation is: ๐‘‡๐‘‡๐‘ค๐‘ค,๐ท๐ท๐ท๐ท (๐‘ง๐‘ง) = ๐‘‡๐‘‡๐‘๐‘ (๐‘ง๐‘ง) +

๐‘ž๐‘žโ€ณ(๐‘ง๐‘ง) โ„๐ท๐ท๐ท๐ท

(14)

๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘ž๐‘žโ€ฒ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š cos ๏ฟฝ ๐ฟ๐ฟ ๏ฟฝ ๐‘ž๐‘žโ€ฒ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐ฟ๐ฟ ๐œ‹๐œ‹๐œ‹๐œ‹ ๐œ‹๐œ‹๐œ‹๐œ‹ = ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– + ๏ฟฝsin ๏ฟฝ ๏ฟฝ + 1๏ฟฝ + ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ ๐œ‹๐œ‹ ๐ฟ๐ฟ โ„๐ท๐ท๐ท๐ท

๐œ‹๐œ‹๐œ‹๐œ‹ 47.24 cos ๏ฟฝ ๏ฟฝ 47.24(3.588) ๐œ‹๐œ‹๐œ‹๐œ‹ 3.588 = 278.3 + ๏ฟฝsin ๏ฟฝ ๏ฟฝ + 1๏ฟฝ + 3.588 0.160(5.431)๐œ‹๐œ‹ ๐œ‹๐œ‹(11.2 ร— 10โˆ’3 )(19.3) = 278.3 + 62.1 sin(0.876๐‘ง๐‘ง) + 69.6 cos(0.876๐‘ง๐‘ง)

The wall temperature according to the Thom correlation is given rearranging Equation 13.23b: ๐‘‡๐‘‡๐‘ค๐‘ค,๐‘‡๐‘‡โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ (๐‘ง๐‘ง) = ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + 22.7๏ฟฝ

๐‘ž๐‘žโ€ณ๐‘€๐‘€๐‘€๐‘€โ„๐‘š๐‘š2 (๐‘ง๐‘ง) exp(2๐‘ƒ๐‘ƒโ„8.7)

(15)

๏ฟฝ ๐œ‹๐œ‹๐œ‹๐œ‹ โƒ“ (47.24)cos ๏ฟฝ3.688๏ฟฝ โƒ“ โƒ“ ๏ฟฝ ๏ฟฝ โƒ“ 1000๐œ‹๐œ‹(11.2 ร— 10โˆ’3 ) โƒ“ โƒ“ = 287.2 + 227โƒ“ โƒ“ โƒ“ 7.14 โƒ“ exp ๏ฟฝ2 ๏ฟฝ 8.7 ๏ฟฝ๏ฟฝ โŽท

The final expression is:

= 287.2 + 11.6๏ฟฝcos(0.876๐‘ง๐‘ง)

๐‘‡๐‘‡๐‘ค๐‘ค,๐ท๐ท๐ท๐ท (๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ ) = ๐‘‡๐‘‡๐‘ค๐‘ค,๐‘‡๐‘‡โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ (๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ )

(16)

278.3 + 62.1 sin (0.876๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ ) + 69.6 cos(0.876๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ ) = 287.2 + 11.6๏ฟฝcos(0.876๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ ) 340

rev 112420


Chapter 13 - Flow Boiling

Solving numerically: ๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ = โˆ’1.58 ๐‘š๐‘š

(17)

Measuring this location from the channel inlet instead of the midplane: ๐ฟ๐ฟ 3.588 (18) = โˆ’1.58 + = 0.21 m 2 2 3. Find the axial location of maximum wall temperature assuming the heat transfer coefficient given by the Thom et al. correlation for nuclear boiling heat transfer (Equation 13.28b). Equation 13.28b provides the heat flux as: ๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ = ๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ +

๐‘ž๐‘žโ€ณ๐‘€๐‘€๐‘€๐‘€โ„๐‘š๐‘š2 =

๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’(2๐‘ƒ๐‘ƒMPa /8.7) (๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡sat )2 (22.7)2

(19)

The parameters in bold are constant in our model. Therefore, observing the Thom et al. correlation we can notice that the maximum wall temperature occurs at the location of maximum heat flux, which is the core midplane: (20)

๐‘ง๐‘ง = 0.00 m

Measuring this location from the channel inlet instead of the midplane: ๐ฟ๐ฟ 3.588 (21) = 0+ = 1.79 m 2 2 4. Find the axial location of maximum wall temperature assuming the heat transfer coefficient is not constant but varies as is calculated by relevant correlations. Here, you are not asked for the exact location, but whether the location is upstream or downstream from the value from Part 3. The solution to this question may be given qualitatively. The general heat transfer equation is: ๐‘๐‘ = ๐‘ง๐‘ง +

๐‘ž๐‘ž โ€ณ = โ„(๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘๐‘ )

(22)

In the location of interest the water bulk has an enthalpy comprised between hf and hg. Therefore, its temperature is fixed as Tsat. The wall temperature is hence: ๐‘‡๐‘‡๐‘ค๐‘ค = ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  +

๐‘ž๐‘žโ€ณ โ„

(23)

Observing this equation we notice that the location of maximum wall temperature should have a high heat flux q" and a low heat transfer coefficient โ„. The heat flux has a cosine axial shape and is maximum at the channel midplane, while the heat transfer coefficient increases as z increases. This occurs because the boiling process and the turbulence caused by boiling enhance the heat transfer. Therefore, if the location of maximum wall temperature is not at z = 0, it must be necessarily where the heat transfer coefficient is lower: upstream from that point.

341

rev 112420


Chapter 13 - Flow Boiling

PROBLEM 13.4 QUESTION Thermal Parameters in a Heated Channel in Two-Phase Flow (Sections 13.3 and 13.4) Consider a 3 m long water channel of circular cross-sectional area 1.5 ร— 10โˆ’4 m2 operating at the following conditions: ๐‘š๐‘šฬ‡ = 0.29 kgโ„s ๐‘ƒ๐‘ƒ = 7.2 MPa

โ„Ž๐‘–๐‘–๐‘–๐‘– = saturated liquid ๐‘ž๐‘ž โ€ณ = axially uniform ๐‘ฅ๐‘ฅ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = 0.15

Compute the following: 1. Fluid temperature

2. Wall temperature using Jens and Lottes correlation 3. Determine CPR using the Groeneveld lookup table Answers: 1. 287.7 ยฐC 2. 294.3 ยฐC 3. CPR= 2.75

PROBLEM 13.4 SOLUTION Thermal Parameters in a Heated Channel in Two-Phase Flow (Sections 13.3 and 13.4) The following parameters are known: โ€“ flow area, A = 1.5ร—10โˆ’4 m2 โ€“ mass flow rate, แน = 0.29 kg/s โ€“ channel length, L = 3m โ€“ pressure, P = 7.2 MPa โ€“ outlet equilibrium quality, xe,out = 0.15 The following parameters may be taken from water properties:

342

rev 112420


Chapter 13 - Flow Boiling

โ€“ enthalpy: โ„Ž๐‘–๐‘–๐‘–๐‘– = โ„Ž๐‘“๐‘“ = โ„Ž(๐‘ƒ๐‘ƒ = 7.2 MPa, ๐‘ฅ๐‘ฅ = 0) = 1278 kJโ„kg โ„Ž๐‘”๐‘” = โ„Ž(๐‘ƒ๐‘ƒ = 7.2 MPa, ๐‘ฅ๐‘ฅ = 1) = 2770 kJโ„kg

โ€“ saturation temperature, Tsat = Tsat (P = 7.2 MPa) = 287.7 ยฐC The following parameters are calculated:

โ€“ tube diameter, ๐ท๐ท = 2๏ฟฝ๐ด๐ดโ„๐œ‹๐œ‹ = 2๏ฟฝ1.5 ร— 10โˆ’4โ„๐œ‹๐œ‹ = 0.01382 m โ€“ mass flux, G = แน/A = 0.29/1.5ร—10โˆ’4 = 1933 kg/m2s

The heat flux, which is axially constant, is given by solving the following energy balance (Equation 13.44b): ๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = ๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘–๐‘–๐‘–๐‘– +

1 4๐ฟ๐ฟ๐ฟ๐ฟโ€ณ โ„Ž๐‘“๐‘“๐‘“๐‘“ ๐บ๐บ๐บ๐บ

1 4(3๐‘ž๐‘ž โ€ณ ) 0.15 + 0 + 2770 โˆ’ 1278 1933(0.01382)

(1)

โ‡’ ๐‘ž๐‘ž โ€ณ = 498 kWโ„m2

(2)

๐‘‡๐‘‡๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ = ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = 287.7 ยฐC

(3)

1. Compute the fluid temperature The fluid is at saturation, so it has the same temperature throughout the channel, which is: 2. Compute the wall temperature using Jens and Lottes correlation A numerical solution of the Jens and Lottes correlation, Equation 13.23a, yields the wall temperature: ๐‘ž๐‘žโ€ณ ๐‘€๐‘€๐‘€๐‘€ ๏ฟฝ๐‘š๐‘š2 =

exp(4๐‘ƒ๐‘ƒ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ /6.2) (๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  )4 (25)4

498โ„1000 =

exp(4(7.2))โ„6.2) (๐‘‡๐‘‡๐‘ค๐‘ค โˆ’ 287.7)4 (25)4

(4)

โ‡’ ๐‘‡๐‘‡๐‘ค๐‘ค = 294.3 ยฐC

(5)

๐พ๐พ1 = ๏ฟฝ8โ„๐ท๐ท๐‘š๐‘š๐‘š๐‘š = ๏ฟฝ0.008โ„0.01382 = 0.761

(6)

3. Determine MCPR using the Groeneveld Lookup Table First of all, we determine the diameter correction factor as given in Table 13.5:

The Groeneveld CHF lookup table provides the critical heat flux requiring three input parameters: quality, mass flux and pressure. In our case, mass flux and pressure are known and constant, while the quality varies with the channel power.

343

rev 112420


Chapter 13 - Flow Boiling

The critical heat flux decreases with increasing quality. In this problem we are dealing with a constant heat flux distribution, so the location where we expect dryout to occur is the channel outlet. The Critical Power Ratio, which is the ratio between the channel power that leads to critical condition and the operating power, is calculated iteratively, increasing the power until the heat flux matches the CHF. The results of these iterations can be seen in Table SM-13.1, where the nominal power is multiplied by a tentative coefficient called โ€œpower ratioโ€. The exit quality is calculated using Equation 13.44b (see above). The uncorrected CHF is determined using the lookup table at the given exit quality, and then multiplied by K1 to obtain the corrected CHF. Note: See www.CRCPRESS.com/PRODUCT/ISBN/9781433980887 for the interpolation procedure of the Groeneveld lookup table. TABLE SM-13.1 Iterations for CHF calculation Power ratio Heat flux Exit quality Uncorrected CHF Corrected CHF 1 2 2.5 2.8 2.75

498 996 1245 1394 1370

0.15 0.30 0.37 0.42 0.41

3544 2545 2147 1712 1804

2697 1937 1634 1303 1373

The Critical Power Ratio is hence equal to 2.75.

PROBLEM 13.5 QUESTION CHF Calculation with the Bowring Correlation (Section 13.4) Using the data of Example 13.3, calculate the minimum critical heat flux ratio using Bowring correlation. Consider an axially-uniform linear heat generation rate: qโ€ฒ = 35.86 kW/m. Answer: MCHFR = 2.13

PROBLEM 13.5 SOLUTION CHF Calculation with the Bowring Correlation (Section 13.4) The following parameters are known: โ€“ tube diameter, D = 10.0 ร— 10โˆ’3 m

344

rev 112420


Chapter 13 - Flow Boiling

โ€“ pressure, P = 6.89 MPa โ€“ tube length, L = 3.66 m โ€“ inlet temperature, Tin = 204 ยฐC โ€“ mass flux, G = 2000 kg/m2s โ€“ linear heat generation rate, qโ€ฒ = 35.86 kW/m The following specific enthalpy values may be taken from tables or software with water properties: โ„Ž๐‘“๐‘“ = โ„Ž(๐‘ƒ๐‘ƒ = 6.89 MPa, ๐‘ฅ๐‘ฅ = 0) = 1262 kJโ„kg โ„Ž๐‘”๐‘” = โ„Ž(๐‘ƒ๐‘ƒ = 6.89 MPa, ๐‘ฅ๐‘ฅ = 1) = 2774 kJโ„kg

โ„Ž๐‘“๐‘“๐‘“๐‘“ = โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“ = 2774 โˆ’ 1262 = 1512 kJโ„kg

โ„Ž๐‘–๐‘–๐‘–๐‘– = โ„Ž(๐‘‡๐‘‡ = 204 ยฐC, ๐‘ƒ๐‘ƒ = 6.89 MPa) = 872 kJโ„kg

The area of the heated tube is: ๐ด๐ด =

The mass flow rate is:

๐œ‹๐œ‹๐ท๐ท2 ๐œ‹๐œ‹(10.0 ร— 10โˆ’3 )2 = = 7.854 ร— 10โˆ’5 m2 4 4

๐‘š๐‘šฬ‡ = ๐บ๐บ๐บ๐บ = 2000(7.854 ร— 10โˆ’5 ) = 0.157 kgโ„s

(1)

(2)

The exit enthalpy is:

โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = โ„Ž๐‘–๐‘–๐‘–๐‘– +

The exit quality is:

๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ =

The operating heat flux is:

๐‘ž๐‘ž โ€ณ =

๐‘ž๐‘žโ€ฒ๐ฟ๐ฟ 35.86(3.66) = 872 + = 1708 kJโ„kg ๐‘š๐‘šฬ‡ 0.157 โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ โˆ’ โ„Ž๐‘“๐‘“ 1708 โˆ’ 1262 = = 0.295 โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“ 2774 โˆ’ 1262

๐‘ž๐‘žโ€ฒ 35.86 = = 1141 kWโ„m2 ๐œ‹๐œ‹๐œ‹๐œ‹ ๐œ‹๐œ‹10.0 ร— 10โˆ’3

(3)

(4)

(5)

Calculate the minimum critical heat flux ratio using Bowring correlation. The Bowring correlation is given by Equation 13.49a โ€ณ ๐‘ž๐‘ž๐‘๐‘๐‘๐‘ =

๐ด๐ด โˆ’ ๐ต๐ตโ„Ž๐‘“๐‘“๐‘“๐‘“ ๐‘ฅ๐‘ฅ ๐ถ๐ถ

(6)

The parameters A, B and C are calculated as follows, using the equations from 13.49b to 13.49h. ๐‘ƒ๐‘ƒ๐‘Ÿ๐‘Ÿ = 0.145๐‘ƒ๐‘ƒ ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ = 0.145(6.89) = 1.00

345

(7)

rev 112420


Chapter 13 - Flow Boiling

๐‘›๐‘› = 2.0 โˆ’ 0.5๐‘ƒ๐‘ƒ๐‘Ÿ๐‘Ÿ = 2.0 โˆ’ 0.5(1.00) = 1.5

(8)

๐น๐น1 = ๐น๐น2 = ๐น๐น3 = ๐น๐น4 = 1.00

(9)

For the particular case of Pr = 1, it may be easily verified (Equations 13.49g and 13.49h) that the coefficients F1, F2, F3, F4 are all equal to unity.

๐ด๐ด =

2.317๏ฟฝโ„Ž๐‘“๐‘“๐‘“๐‘“ ๐ท๐ท๐ท๐ท โ„4๏ฟฝ๐น๐น1 2.317(1512(0.01) 2000โ„4) = = 4.54 ร— 103 โ„ 1 2 1 + 0.0143๐น๐น2 ๐ท๐ท ๐บ๐บ 1 + 0.0143โˆš0.01(2000)

๐ถ๐ถ =

๐ต๐ต =

(10) (11)

๐ท๐ท๐ท๐ท 0.01(2000) = = 5.00 4 4

0.077๐น๐น3 ๐ท๐ท๐ท๐ท 0.077(0.01)2000 ๐‘›๐‘› = 1.5 = 0.950 ๐บ๐บ 2000 1 + 0.347๐น๐น4 ๏ฟฝ ๏ฟฝ 1 + 0.347 ๏ฟฝ ๏ฟฝ 1356 1356 โ€ณ ๐‘ž๐‘ž๐‘๐‘๐‘๐‘ =

(12)

๐ด๐ด โˆ’ ๐ต๐ตโ„Ž๐‘“๐‘“๐‘“๐‘“ ๐‘ฅ๐‘ฅ 4.54 ร— 103 โˆ’ 5.00(1512)๐‘ฅ๐‘ฅ = ๐ถ๐ถ 0.950

(13)

The critical heat flux decreases when quality increases. In this problem we are dealing with a constant heat flux distribution, so the location where we expect the minimum CHFR is the channel outlet. โ€ณ ๐‘ž๐‘ž๐‘๐‘๐‘๐‘,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ =

๐ด๐ด โˆ’ ๐ต๐ตโ„Ž๐‘“๐‘“๐‘“๐‘“ ๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ 4.54 ร— 103 โˆ’ 5.00(1512)0.295 = = 2433 kWโ„m2 ๐ถ๐ถ 0.950

(14)

The MCHFR is given, applying Equation 13.64a, by: MCHFR =

โ€ณ ๐‘ž๐‘ž๐‘๐‘๐‘๐‘,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ 2433 = = 2.13 ๐‘ž๐‘žโ€ณ 1141

(15)

PROBLEM 13.6 QUESTION

Boiling Crisis on the Vessel Outer Surface during a Severe Accident (Section 13.4) Consider water boiling on the outer surface of the vessel where water flows in a hemispherical gap between the surface of the vessel and the vessel insulation (Figure 13.31). The gap thickness is 20 cm. The system is at atmospheric pressure. 1. The water inlet temperature is 80 ยฐC and the flow rate in the gap is 300 kg/s. The heat flux on the outer surface of the vessel is a uniform 350 kW/m2 in the hemispherical region (0 โ‰ค ฮธ โ‰ค 90ยฐ) and zero in the beltline region (ฮธ > 90ยฐ). If a boiling crisis occurred in this system, what type of boiling crisis would it be (DNB or Dryout)? 2. At what angle ฮธ within the channel would you expect the boiling crisis to occur first and why?

346

rev 112420


Chapter 13 - Flow Boiling

Answers: 1. DNB 2. ฮธ = 90ยฐ

FIGURE 13.31 Two-phase flow in the gap between the outer surface of the vessel and the vessel insulation.

PROBLEM 13.6 SOLUTION Boiling Crisis on the Vessel Outer Surface during a Severe Accident (Section 13.4) The system shown in Figure 13.31 is at atmospheric pressure. Some of the known parameters of the problem are written in the figure. The heat flux on the outer surface of the vessel, the mass flow rate and the pressure are, respectively: ๐‘ž๐‘ž โ€ณ = 350 kW/m2 ๐‘š๐‘šฬ‡ = 300 kg/s

๐‘ƒ๐‘ƒ = 1 atm = 101.325 kPa

The heated surface can be calculated as follows, considering a hemisphere of radius r = 5.2 m: ๐ด๐ด =

1 1 (4๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ 2 ) = (4๐œ‹๐œ‹)(5.2โ„2)2 = 42.5 m2 2 2

(1)

The total heat produced by the hemispherical surface is:

๐‘ž๐‘žฬ‡ = ๐‘ž๐‘ž โ€ณ ๐ด๐ด = 350(42.5) = 149 MW

(2)

1. If a boiling crisis occurred in this system, what type of boiling crisis would it be (DNB or Dryout)? Let us determine the water enthalpy at the inlet and at the outlet of the control volume. The inlet enthalpy can be determined from water properties as: โ„Ž๐‘–๐‘–๐‘–๐‘– = โ„Ž(๐‘‡๐‘‡ = 80โ„ƒ, ๐‘ƒ๐‘ƒ = 101.325 kPa) = 335 kJ/kg

The outlet enthalpy is given by a simple energy balance:

347

rev 112420


Chapter 13 - Flow Boiling

๐‘ž๐‘žฬ‡ 14.9 ร— 103 โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = โ„Ž๐‘–๐‘–๐‘–๐‘– + = 335 + = 384.7 kJ/kg ๐‘š๐‘šฬ‡ 300

While the saturated liquid and vapor enthalpies are:

โ„Ž๐‘“๐‘“ = โ„Ž(๐‘ฅ๐‘ฅ๐‘’๐‘’ = 0, ๐‘ƒ๐‘ƒ = 101.325 kPa) = 419 kJ/kg

โ„Ž๐‘”๐‘” = โ„Ž(๐‘ฅ๐‘ฅ๐‘’๐‘’ = 1, ๐‘ƒ๐‘ƒ = 101.325 kPa) = 2506 kJ/kg

The exit equilibrium quality is: ๐‘ฅ๐‘ฅ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ =

โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ โˆ’ โ„Ž๐‘“๐‘“ 385 โˆ’ 419 = = โˆ’0.016 (i. e. below saturation condition) โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“ 2506 โˆ’ 419

(3)

The DNB is a boiling crisis observed at low-quality or even subcooled conditions, while film Dryout is observed at moderately high quality. Since our system has a maximum equilibrium quality of just -1.6% (and an outle temperature of 91.8ยบC), the boiling crisis type which is expected to occur is DNB. To find the coolant temperature of 91.8 degrees C where cP,f = 4.2 kJ/ยบC, solve the following equation

Tout =+ Tin

q๏€ฆ 14.9 ร— 103 =+ 80 = 91.8ยบ C ๏€ฆ P, f mc 300 ( 4.2 )

2. At what angle ฮธ within the channel would you expect the boiling crisis to occur first and why? Let us analyze the trends of the coolant and heat transfer parameters in the control volume. โ€“ Pressure: Decreases from inlet to outlet due to friction, gravity and acceleration. โ€“ Equilibrium quality: increases from inlet to outlet. โ€“ Mass flux: Decreases from inlet to outlet, as the flow area increases. โ€“ Heat flux: Constant. Therefore, at the exit of the control volume the coolant has the lowest pressure and mass flux and the highest equilibrium quality. We may notice observing the Groeneveld LUTs (or using other critical condition prediction methods) that at, a pressure around 1 atm and equilibrium quality lower than 0.1, the critical heat flux: โ€“ Decreases when equilibrium quality increases. โ€“ Decreases when mass flux decreases. โ€“ Decreases when pressure decreases. According to the trend of those three parameters, the lowest critical heat flux occurs at the outlet. Since the heat flux is constant on the whole surface, the location with the lowest CHFR is the outlet. Therefore, we expect that DNB could occur first at an angle: ๐œƒ๐œƒ = 90โˆ— 348

(4)

rev 112420


Chapter 13 - Flow Boiling

PROBLEM 13.7 QUESTION Calculation of CPR for a BWR Hot Channel (Section 13.4) Consider a BWR channel operating at 100% power at the conditions noted below. Using the Henchโ€“Gillis correlation (Equation 13.57a) determine the CPR at 100% power. Operating conditions

๐‘ง๐‘ง 1 ๐œ‹๐œ‹๐œ‹๐œ‹ โ€ฒ ๐‘ž๐‘ž โ€ฒ (๐‘ง๐‘ง) = ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ exp ๏ฟฝโˆ’๐›ผ๐›ผ ๏ฟฝ + ๏ฟฝ๏ฟฝ cos ๏ฟฝ ๏ฟฝ ๐ฟ๐ฟ 2 ๐ฟ๐ฟ

where z = 0 defines the channel midplane.

โ€ฒ ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ = 104.75 kW/m

๐›ผ๐›ผ = 1.96

๐บ๐บ = 1569.5 kg/m2 s ๐‘ƒ๐‘ƒ = 7.14 MPa ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– = 278.3โ„ƒ

Channel conditions

๐ฟ๐ฟ = 3.588 m

๐ท๐ท = 0.0112 m

๐ด๐ด๐‘“๐‘“๐‘“๐‘“โ„Ž = 1.42 ร— 10โˆ’4 m2 ๐ด๐ด๐‘“๐‘“ = 9.718 ร— 10โˆ’3 m2

Henchโ€“Gillis correlation for simplicity assume, from Example 13.5:

๐ฝ๐ฝ = 1.032

๐น๐น๐‘๐‘ = โˆ’1.66 ร— 10โˆ’3

Answer: CPR = 1.17

PROBLEM 13.7 SOLUTION Calculation of CPR for a BWR Hot Channel (Section 13.4) The following parameters are given: โ€“ reference linear heat generation rate, qโ€ฒref = 104.75 kW/m

349

rev 112420


Chapter 13 - Flow Boiling

โ€“ axial heat distribution coefficient, ฮฑ = 1.96 โ€“ inlet temperature, Tin = 278.3 ยฐC โ€“ pressure, P = 7.14 MPa โ€“ mass flux, G = 1569.5 kg/m2s โ€“ heated length, L = 3.588 m โ€“ rod diameter, D = 0.0112 m โ€“ subchannel flow area, Afch = 1.42 ร— 10โˆ’4 m2 โ€“ bundle flow area, Af = 9.718 ร— 10โˆ’3 m2 The linear heat distribution is given by the following equation: ๐‘ง๐‘ง 1 ๐œ‹๐œ‹๐œ‹๐œ‹ โ€ฒ exp ๏ฟฝโˆ’๐›ผ๐›ผ ๏ฟฝ + ๏ฟฝ๏ฟฝ cos ๏ฟฝ ๏ฟฝ ๐‘ž๐‘ž โ€ฒ(๐‘ง๐‘ง) = ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๐ฟ๐ฟ 2 ๐ฟ๐ฟ

(1)

The following parameters may be taken from tables or software with water properties: โ„Ž๐‘“๐‘“ = โ„Ž(๐‘ƒ๐‘ƒ = 7.14 MPa, ๐‘ฅ๐‘ฅ = 0) = 1275 kJ/kg

โ„Ž๐‘”๐‘” = โ„Ž(๐‘ƒ๐‘ƒ = 7.14 MPa, ๐‘ฅ๐‘ฅ = 1) = 2771 kJ/kg

โ„Ž๐‘“๐‘“๐‘“๐‘“ = โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“ = 2771 โˆ’ 1275 = 2771 โˆ’ 1275 = 1496 kJ/kg The inlet quality is:

โ„Ž๐‘–๐‘–๐‘–๐‘– = โ„Ž(๐‘‡๐‘‡ = 278.3โ„ƒ, ๐‘ƒ๐‘ƒ = 7.14 MPa) = 1228 kJ/kg

๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘–๐‘–๐‘–๐‘– =

โ„Ž๐‘–๐‘–๐‘–๐‘– โˆ’ โ„Ž๐‘“๐‘“ 1228 โˆ’ 1275 = = โˆ’0.0314 โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“ 2771 โˆ’ 1275

(2)

The mass flow rate in the subchannel of interest is:

๐‘š๐‘šฬ‡ = ๐บ๐บ(๐ด๐ด๐‘“๐‘“๐‘“๐‘“โ„Ž ) = 1569.5(1.42 ร— 10โˆ’4 ) = 0.223 kg/s

(3)

Calculation of zOSB The equilibrium quality distribution is given by Equation 14.33a as: ๐ฟ๐ฟ

1 ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง) = ๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘–๐‘–๐‘–๐‘– + ๏ฟฝ ๐‘ž๐‘žโ€ฒ(๐‘ง๐‘ง)๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘š๐‘šฬ‡โ„Ž๐‘“๐‘“๐‘“๐‘“

(4)

โˆ’๐ฟ๐ฟโ„2

Setting the equilibrium quality equal to zero and integrating numerically, the OSB location zOSB can be found. ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ ) = 0

350

(5)

rev 112420


Chapter 13 - Flow Boiling

1 = 0.0314 + 0.223(1496)

๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚

๏ฟฝ

โˆ’3.588โ„2

104.75 exp ๏ฟฝโˆ’1.96 ๏ฟฝ โ‡’ ๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ = โˆ’1.26 m

๐‘ง๐‘ง 1 ๐œ‹๐œ‹๐œ‹๐œ‹ + ๏ฟฝ๏ฟฝ cos ๏ฟฝ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ = 0 3.588 2 3.588

(6)

Equilibrium quality profile Applying the same equation, the equilibrium quality profile is: 1 ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง) = โˆ’0.0314 + 0.223(1496)

๐‘ง๐‘ง

๏ฟฝ

โˆ’3.588โ„2

104.75

๐‘ง๐‘ง 1 ๐œ‹๐œ‹๐œ‹๐œ‹ ร— exp ๏ฟฝโˆ’1.96 ๏ฟฝ + ๏ฟฝ๏ฟฝ cos ๏ฟฝ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ 3.588 2 3.588

(7)

Hench-Gillis correlation The Hench-Gillis correlation is given by Equation 13.57a: ๐‘ฅ๐‘ฅ๐‘๐‘ =

๐ด๐ด๐ด๐ด (2 โˆ’ ๐ฝ๐ฝ) + ๐น๐น๐‘๐‘ ๐ต๐ต + ๐‘๐‘

(8)

To use the Hench Gillis correlation, we have to convert the mass flux into British units.

Where:

๐บ๐บ = 1569.5 kgโ„m2 s โ‡’ GBrit = 1.157 Mlbm โ„hft 2

(9)

โˆ’0.43 ๐ด๐ด = 0.50๐บ๐บ๐ต๐ต๐ต๐ต๐ต๐ต๐ต๐ต = 0.5(1.157โˆ’0.43 ) = 0.470

(10)

๐ฝ๐ฝ = 1.032

(12)

2.3 ๐ต๐ต = 165 + 115๐บ๐บ๐ต๐ต๐ต๐ต๐ต๐ต๐ต๐ต = 165 + 115(1.1572.3 ) = 326

(11)

๐น๐น๐‘๐‘ = โˆ’1.66 ร— 10โˆ’3

(13)

๐‘๐‘ =

๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐ฟ๐ฟ๐ต๐ต ๐œ‹๐œ‹(0.0012)74๐ฟ๐ฟ๐ต๐ต = = 267.9๐ฟ๐ฟ๐ต๐ต ๐ด๐ด๐‘“๐‘“ 9.718 ร— 10โˆ’3

(14)

Substituting all those values in Equation 13.57a:

351

rev 112420


Chapter 13 - Flow Boiling

๐‘ฅ๐‘ฅ๐‘๐‘ =

0.470(267.9๐ฟ๐ฟ๐ต๐ต ) (2 โˆ’ 1.032) โˆ’ 1.66 ร— 10โˆ’3 326 + 267.9๐ฟ๐ฟ๐ต๐ต =

(15)

121.9๐ฟ๐ฟ๐ต๐ต โˆ’ 1.66 ร— 10โˆ’3 326 + 267.9๐ฟ๐ฟ๐ต๐ต

The boiling length LB is defined as the distance from the OSB location: ๐ฟ๐ฟ๐ต๐ต = ๐‘ง๐‘ง โˆ’ ๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ = ๐‘ง๐‘ง โˆ’ (โˆ’1.26 m) = z + 1.26m

(16)

๐ฟ๐ฟ๐ต๐ต = ๐‘ง๐‘ง โˆ’ ๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚

(17)

Determination of the CPR The critical power ratio can be determined graphically, by plotting the distributions of the Hench-Gillis critical quality x c (z) and of the equilibrium quality x e (z) while increasing the channel power. We will plot equilibrium quality and critical quality as a function of the boiling length L B , which is defined as the distance from the OSB location:

Notice that the OSB location is equal to -1.26 m, as calculated above, only for nominal power. When the power increases, the OSB location must be re-calculated. As the following figure shows, the CPR is 1.17.

FIGURE SM-13.1 Axial distribution of equilibrium quality and critical quality as a function of the boiling length

352

rev 112420


Chapter 13 - Flow Boiling

PROBLEM 13.8 QUESTION Reduction in a PHWR CHF Margin upon a Local Channel Power Increase due to Increased Two Phase Pressure Drop and Corresponding Reduction in Channel Mass Flux Consider a horizontal flow channel of typical PHWR geometry operating at typical PHWR full power conditions of 2700 ๐‘€๐‘€๐‘Š๐‘Š๐‘ก๐‘กโ„Ž with 480 channels. The relevant geometric and steady state channel operating conditions are given in Table 13.7 below. In this example we will postulate a local increase in power and assess the reduction in CHF margin. Since there are more than hundred channels connected to the same inlet and outlet manifolds/headers (boundary conditions), a heat up in one or a few channels would not affect the boundary conditions (i.e. the inlet and outlet pressure conditions) noticeably. Local heat up / power increase could be due to movement of local reactivity devices, or (abnormal) online fueling of a channel. (Normally the on line fueling causes about 10% increase for central channels and as much as 15% for peripheral channels). Using the Groeneveld 2006 CHF lookup table [34] determine the following quantities: a) The margin to CHF at steady state full power channel conditions of 6 MW b) The changed margin to CHF upon an increase in channel power by 15% Assume: a) The heat flux is uniform along the channel b) Treat the friction factor in the subcooled region of the channel as single phase coolant c) Use heavy water properties d) Homogeneous Equilibrium Model (HEM) TABLE 13.7 PHWR Flow Channel Geometry and Operating Conditions at Full Power Parameter Inlet pressure Outlet pressure Inlet temperature Channel power Channel internal diameter Channel length Number of bundle pins in the channel Pin outside diameter

Symbol ๐‘ƒ๐‘ƒ๐‘–๐‘–๐‘–๐‘– ๐‘ƒ๐‘ƒ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– ๐‘ž๐‘žฬ‡ ๐ท๐ท1 ๐ฟ๐ฟ ๐‘›๐‘› ๐ท๐ท2

353

Value 11.0 MPa 10.0 MPa 267 โ„ƒ 6 MW 0.1 m 6m 37 0.013 m

rev 112420


Chapter 13 - Flow Boiling

Pressure loss coefficients Inlet feeder and end-fitting Outlet feeder and end-fitting Fuel channel minor losses Fuel channel skin friction

๐พ๐พ๐‘–๐‘–๐‘–๐‘– ๐พ๐พ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๐พ๐พ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐พ๐พ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“

4.609 3.770 6.396 7.755

Answer: a) Steady State: MCHFR = 5.82 b) Transient (channel power increase by 15%): MCHFR = 3.17

PROBLEM 13.8 SOLUTION Reduction in a PHWR CHF Margin upon a Local Channel Power Increase due to Increased Two Phase Pressure Drop and Corresponding Reduction in Channel Mass Flux 1. Steady state In steady state, the mass conservation equation (Equation 5.63) applied to the heated channel reduces to: ๐‘š๐‘šฬ‡๐‘–๐‘–๐‘–๐‘– = ๐‘š๐‘šฬ‡๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = ๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘ 

(1)

๐‘ž๐‘žฬ‡ ๐‘ ๐‘ ๐‘ ๐‘  = ๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘  (โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ โˆ’ โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘– )

(2)

where โ€œssโ€ indicates the steady state. In the energy conservation equation (Equation 5.159), the time-dependent terms are zero because it is a steady state problem, the potential energy terms cancel out because the channel is horizontal, we neglect the kinetic terms, we neglect the shear term and the heat source term is zero. After integration we obtain:

where ๐‘ž๐‘žฬ‡ ๐‘ ๐‘ ๐‘ ๐‘  is given in Table 13.7, โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘– can be calculated from ๐‘ƒ๐‘ƒ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘– and ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘– , and โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ can be expressed as a function of outlet quality ๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ and saturation enthalpies at the outlet conditions, using heavy water properties: ๐‘˜๐‘˜๐‘˜๐‘˜

โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘– = โ„Ž๏ฟฝ๐‘ƒ๐‘ƒ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘– , ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘– ๏ฟฝ = โ„Ž(11 ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€, 267 โ„ƒ) = 1127.25 ๐‘˜๐‘˜๐‘˜๐‘˜ โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = ๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ โ„Ž๐‘”๐‘”,๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ + ๏ฟฝ1 โˆ’ ๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๏ฟฝโ„Ž๐‘“๐‘“,s๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๐‘˜๐‘˜๐‘˜๐‘˜

(3)

๐‘˜๐‘˜๐‘˜๐‘˜

โ„Ž๐‘”๐‘”,๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = 2529 ๐‘˜๐‘˜๐‘˜๐‘˜ and โ„Ž๐‘“๐‘“,๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = 1350.14 ๐‘˜๐‘˜๐‘˜๐‘˜

354

rev 112420


Chapter 13 - Flow Boiling

The inlet quality can be calculated from the saturation enthalpies at the inlet conditions. At the inlet the fluid is sub-cooled since at the inlet pressure 11 ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ the saturation temperature is 317.06 โ„ƒ. kJ

kJ

Since โ„Ž๐‘”๐‘”,๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘– = 2511.8 kg and โ„Ž๐‘“๐‘“,๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘– = 1389.95 kg , then: ๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘– =

โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘– โˆ’ โ„Ž๐‘“๐‘“,๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘– 1127.25 โˆ’ 1389.95 = = โˆ’0.234 โ„Ž๐‘”๐‘”,๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘– โˆ’ โ„Ž๐‘“๐‘“,๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘– 2511.8 โˆ’ 1389.95

To calculate the coordinate at which the fluid transitions to 2-phase conditions, we start by guessing a value of ๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘  , then we calculate the corresponding โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ and ๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ from Equation (2) and Equation (3). ๐‘˜๐‘˜๐‘˜๐‘˜

For ๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘  = 24 ๐‘ ๐‘  (๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– ๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘๐‘๐‘๐‘ ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ), obtain: ๐‘˜๐‘˜๐‘˜๐‘˜

โ„Ž๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = 1377.25 ๐‘˜๐‘˜๐‘˜๐‘˜ and ๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = 0.023

Denoting ๐ฟ๐ฟ the channel length and ๐‘Ž๐‘Ž the coordinate at which the fluid transitions from 1-phase to 2-phase conditions, and assuming that the fluidโ€™s quality grows linearly in the channel (which is reasonable, as the heat flux is constant), then: ๐‘Ž๐‘Ž = ๐ฟ๐ฟ ๏ฟฝ๐‘ฅ๐‘ฅ

โˆ’๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘–

๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ โˆ’๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘–๐‘–๐‘–๐‘–

๏ฟฝ = 6๏ฟฝ

โˆ’(โˆ’0.234)

(4)

๏ฟฝ = 5.463 m

0.023โˆ’(โˆ’0.234)

Hydraulic loss coefficients provided in Table 13.7 are derived as follows: ๐พ๐พ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š โ€“ There are 12 fuel bundles, each with two separate minor losses. One at mid-length where the spacers are located, and one at bundle beginning/end where the fuel elements are attached to the bundle end plates. The ๐พ๐พ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š provided in Table 13.7 is the sum of all minor losses in the 6 ๐‘š๐‘š long channel.

๐พ๐พ๐‘–๐‘–๐‘–๐‘– and ๐พ๐พ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ โˆ’ Provided to capture all hydraulic losses (friction and minor losses) in the inlet feeder pipe (between inlet header and beginning of heated section), and ๐พ๐พ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ in the outlet feeder (between the exit of heated channel and the outlet header). ๐พ๐พ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ โ€“ The fuel channel skin friction loss is given as ๐พ๐พ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ in Table 13.7.

In the heated channel, to calculate the pressure drop due to friction and minor losses, minor losses (๐พ๐พ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ) in the heated length of the channel can be treated continuously for simplicity. Then, treating the single and two-phase regions separately: โˆ†๐‘ƒ๐‘ƒ๐‘๐‘โ„Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ + โˆ†๐‘ƒ๐‘ƒ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = (๐พ๐พ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ + ๐พ๐พ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ) 2๐œŒ๐œŒ

355

2 ๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘ 

๐‘“๐‘“,๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๐ด๐ด2

๐‘Ž๐‘Ž

๐ฟ๐ฟโˆ’๐‘Ž๐‘Ž

2 ๏ฟฝ๐ฟ๐ฟ + ๏ฟฝ ๐ฟ๐ฟ ๏ฟฝ ๐œ™๐œ™๐ฟ๐ฟ๐ฟ๐ฟ ๏ฟฝ

(5)

rev 112420


Chapter 13 - Flow Boiling

where we used the liquid saturation density at an intermediate pressure (10.5 MPa): and:

๐œŒ๐œŒ๐‘“๐‘“,๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = 750

๐œ‹๐œ‹

kg m3

๐ด๐ด = 4 (๐ท๐ท12 โˆ’ 37๐ท๐ท22 ) = 2.94 ร— 10โˆ’3 m2

(6)

For the HEM model, the 2-phase flow multiplier is expressed as: ๐‘“๐‘“2๐‘๐‘ ๐œŒ๐œŒ๐‘“๐‘“

2 ๐œ™๐œ™๐ฟ๐ฟ๐ฟ๐ฟ = ๐‘“๐‘“

We make the following simplifying assumptions: โ€ข โ€ข

๐‘“๐‘“2๐‘๐‘ = ๐‘“๐‘“๐ฟ๐ฟ๐ฟ๐ฟ ๐œŒ๐œŒ๐‘“๐‘“

๐œŒ๐œŒ๐‘š๐‘š

(7)

๐ฟ๐ฟ๐ฟ๐ฟ ๐œŒ๐œŒ๐‘š๐‘š

๐œŒ๐œŒ

= 1 + ๐‘ฅ๐‘ฅ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“ โˆ’ 1๏ฟฝ

(11.82)

๐‘”๐‘”

In Equation 8 we assume that ๐‘ฅ๐‘ฅ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž =

๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ 2

is an average quality value in the 2-phase zone, and

๐œŒ๐œŒ๐‘“๐‘“ and ๐œŒ๐œŒ๐‘”๐‘” are calculated at the outlet conditions. Finally, Equation 5 becomes:

โˆ†๐‘ƒ๐‘ƒ๐‘๐‘โ„Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ + โˆ†๐‘ƒ๐‘ƒ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = (๐พ๐พ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ + ๐พ๐พ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ) 2๐œŒ๐œŒ

2 ๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘ 

๐‘Ž๐‘Ž

๐‘ฅ๐‘ฅ

๐ฟ๐ฟโˆ’๐‘Ž๐‘Ž

๐œŒ๐œŒ

๐ด๐ด2

๏ฟฝ ๐‘“๐‘“,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ โˆ’ 1๏ฟฝ๏ฟฝ๏ฟฝ (8) ๏ฟฝ๐ฟ๐ฟ + ๏ฟฝ ๐ฟ๐ฟ ๏ฟฝ ๏ฟฝ1 + ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ 2 ๐œŒ๐œŒ

๐‘š๐‘šฬ‡2

(9)

๐‘“๐‘“,๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž

The expressions of inlet and outlet pressure drop terms are: โˆ†๐‘ƒ๐‘ƒ๐‘–๐‘–๐‘–๐‘– = ๐พ๐พ๐‘–๐‘–๐‘–๐‘– 2๐œŒ๐œŒ ๐‘ ๐‘ ๐‘ ๐‘ ๐ด๐ด2

๐‘”๐‘”,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ

๐‘“๐‘“,๐‘–๐‘–๐‘–๐‘–

โˆ†๐‘ƒ๐‘ƒ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = ๐พ๐พ๐‘–๐‘–๐‘–๐‘– 2๐œŒ๐œŒ

2 ๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘ 

๐‘“๐‘“,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ

๐ด๐ด2

2 ๐œ™๐œ™๐ฟ๐ฟ๐ฟ๐ฟ = ๐พ๐พ๐‘–๐‘–๐‘–๐‘– 2๐œŒ๐œŒ

The acceleration pressure drop term is:

2 ๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘ 

๐‘“๐‘“,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ

๐‘š๐‘šฬ‡2

โˆ†๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = ๏ฟฝ ๐ด๐ด๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ ๏ฟฝ๐œŒ๐œŒ+

๐‘š๐‘š,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ

We make the following assumptions: โ€ข โ€ข

+ ๐œŒ๐œŒ๐‘š๐‘š,๐‘–๐‘–๐‘–๐‘– = ๐œŒ๐œŒ๐‘“๐‘“,๐‘–๐‘–๐‘–๐‘–

โˆ’1 ๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ 1โˆ’๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ + ๏ฟฝ In HEM: ๐œŒ๐œŒ๐‘š๐‘š,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = ๏ฟฝ ๐œŒ๐œŒ + ๐œŒ๐œŒ ๐‘”๐‘”,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ

1

๐ด๐ด2

๐‘“๐‘“,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ

๐œŒ๐œŒ

๏ฟฝ1 + ๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๏ฟฝ๐œŒ๐œŒ๐‘“๐‘“,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ โˆ’ 1๏ฟฝ๏ฟฝ ๐‘”๐‘”,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ

1

โˆ’ ๐œŒ๐œŒ+ ๏ฟฝ ๐‘š๐‘š,๐‘–๐‘–๐‘–๐‘–

(10)

(11.59a)

(11.73)

Finally, Equation (11.59a) becomes:

356

rev 112420


Chapter 13 - Flow Boiling ๐‘š๐‘šฬ‡2

The total pressure loss is:

๐‘ฅ๐‘ฅ

โˆ†๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = ๏ฟฝ ๐ด๐ด๐‘ ๐‘ ๐‘ ๐‘  ๏ฟฝ ๏ฟฝ๏ฟฝ ๐œŒ๐œŒ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ + ๐‘”๐‘”,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ

1โˆ’๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๐œŒ๐œŒ๐‘“๐‘“,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ

๏ฟฝโˆ’

1

๐œŒ๐œŒ๐‘“๐‘“,๐‘–๐‘–๐‘–๐‘–

(11)

๏ฟฝ

(12)

โˆ†๐‘ƒ๐‘ƒ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก = 1๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ = โˆ†๐‘ƒ๐‘ƒ๐‘–๐‘–๐‘–๐‘– + โˆ†๐‘ƒ๐‘ƒ๐‘๐‘โ„Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž + โˆ†๐‘ƒ๐‘ƒ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ + โˆ†๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž

The only unknowns in Equation (11) and Equation (12) are ๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘  and ๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ . We can solve the system of equations iteratively, guessing a mass flow rate ๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘  , then calculating the corresponding ๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ until these values are consistent. The solution is: ๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘  = 22.8

kg s

๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = 0.03

The corresponding steady state mass flux is: ๐‘š๐‘šฬ‡

kg

(13)

๐บ๐บ๐‘ ๐‘ ๐‘ ๐‘  = ๐ด๐ด๐‘ ๐‘ ๐‘ ๐‘  = 7755 m2 s

The Groeneveld lookup table [34] provide the values of Critical Heat Flux (CHF), as function of mass flux ๐บ๐บ, fluid pressure ๐‘ƒ๐‘ƒ and thermodynamic quality ๐‘ฅ๐‘ฅ. In case of constant heat rate profile, the minimum departure from nucleate boiling ratio is at the channel exit. Thus, we use the tables to find CHF๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ : CHF๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = CHF๏ฟฝ๐บ๐บ๐‘ ๐‘ ๐‘ ๐‘  , ๐‘ƒ๐‘ƒ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ , ๐‘ฅ๐‘ฅ๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๏ฟฝ = CHF ๏ฟฝ7755

The steady state heat flux is:

โ€ฒโ€ฒ ๐‘ž๐‘ž๐‘ ๐‘ ๐‘ ๐‘  = ๐ด๐ด

๐‘ž๐‘žฬ‡ ๐‘ ๐‘ ๐‘ ๐‘ 

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™

๐‘ž๐‘žฬ‡

kg kW , 10.0 MPa , 0.03๏ฟฝ = 3849.4 2 2 m s m

6 MW

kW

๐‘ ๐‘ ๐‘ ๐‘  = 37๐œ‹๐œ‹๐ท๐ท = 37๐œ‹๐œ‹(0.013mร—6m) = 661.77 m2 ๐ฟ๐ฟ 2

(14)

The Minimum CHF Ratio (MCHFR) is then:

2. Transient

MCHFR = min(CHFR) =

CHF๐‘ ๐‘ ๐‘ ๐‘ ,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ โ€ฒโ€ฒ ๐‘ž๐‘ž๐‘ ๐‘ ๐‘ ๐‘ 

3849.4

= 661.77 = 5.82

(15)

The transient consists of a local heat rate increase of 15%, due potentially to at-power fueling of the fuel channel, which brings the system to a new equilibrium state. ๐‘ž๐‘žฬ‡ ๐‘ก๐‘ก = 1.15๐‘ž๐‘žฬ‡ ๐‘ ๐‘ ๐‘ ๐‘  = 6.9 MW

(16)

The boundary conditions are pressure and temperature at the inlet plenum and pressure at the outlet plenum; they are assumed not to change with respect to the steady state analysis since

357

rev 112420


Chapter 13 - Flow Boiling

increasing the power in a single channel does not change the boundary conditions since there are 90 to 120 channels connected to the same plena. On the other hand, the fluid quality at the outlet is higher in the new post-transient equilibrium state due to the larger heat rate. Saturation is reached earlier in the channel, so the 2-phase portion of the channel is longer. This results in a decreased post transient mass flow rate ๐‘š๐‘šฬ‡๐‘ก๐‘ก because of the increased hydraulic flow resistance within the channel. We follow a procedure analogous to the steady state case, with an initial guess of ๐‘š๐‘šฬ‡๐‘ก๐‘ก lower than in the steady state: ๐‘š๐‘šฬ‡๐‘ก๐‘ก = 21

kg s

Then we use the same equations as in the steady state to calculate: โ„Ž๐‘ก๐‘ก,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = 1455.821 ๐‘ฅ๐‘ฅ๐‘ก๐‘ก,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = 0.09

kJ kg

The new coordinate ๐‘Ž๐‘Ž๐‘ก๐‘ก (e.g., the coordinate where the fluid transitions from 1 to 2-phase conditions) is: ๐‘Ž๐‘Ž๐‘ก๐‘ก = 4.338 m

We assume that form, minor and friction loss coefficients do not change in the transient. After a few iterations we find that the post-transient mass flow rate and exit quality are: ๐‘š๐‘šฬ‡๐‘ก๐‘ก = 20.6

kg s

๐‘ฅ๐‘ฅ๐‘ก๐‘ก,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = 0.095 kg

The post-transient mass flux is ๐บ๐บ๐‘ ๐‘ ๐‘ ๐‘  = 7000 m2 s. Using once again the Groeneveld lookup tables, we find that:

CHF๐‘ก๐‘ก,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = CHF๐‘ก๐‘ก ๏ฟฝ๐บ๐บ๐‘ก๐‘ก , ๐‘ƒ๐‘ƒ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ , ๐‘ฅ๐‘ฅ๐‘ก๐‘ก,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๏ฟฝ = CHF๐‘ก๐‘ก ๏ฟฝ7000

kg kW , 10.0 MPa , 0.095๏ฟฝ = 2413.3 2 2 m s m

The post-transient steady state heat flux is 15% higher than the steady state value: ๐‘ž๐‘ž๐‘ก๐‘กโ€ฒโ€ฒ = 661.77

๐‘˜๐‘˜๐‘˜๐‘˜ kW (1.15) = 761.04 ๐‘š๐‘š2 m2

The post-transient Minimum Departure from Nucleate Boiling Ratio (MDNBR) is then: MCHFR = min(CHFR) =

CHF๐‘ก๐‘ก,๐‘œ๐‘œ๐‘ข๐‘ข๐‘ข๐‘ข 2413.3 = = 3.17 ๐‘ž๐‘ž๐‘ก๐‘กโ€ฒโ€ฒ 761.04

358

rev 112420


Chapter 13 - Flow Boiling

A 15% increase of the heat rate results in the MCHFR decreasing by almost half! 3. Transient*: result due to power increase only If we only accounted for the power increase (e.g. if we neglected the associated reduction in flow rate), the results would be different. We indicate the quantities related to this case with an asterisk (*). To show this, we assume that ๐‘ž๐‘ž โˆ—ฬ‡ = 1.15๐‘ž๐‘žฬ‡ ๐‘ ๐‘ ๐‘ ๐‘  = 6.9 MW

but the mass flow rate doesnโ€™t change with respect to the steady state: ๐‘š๐‘šฬ‡ โˆ— = 22.8

kg s

โˆ— โˆ— At this point, the exit quality ๐‘ฅ๐‘ฅ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ is the only unknown in the following equation., where โˆ†๐‘ƒ๐‘ƒ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก is from Table 13.7. โˆ— โˆ— โˆ— โˆ— โˆ— โˆ†๐‘ƒ๐‘ƒ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก = 1๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ = โˆ†๐‘ƒ๐‘ƒ๐‘–๐‘–๐‘–๐‘– + โˆ†๐‘ƒ๐‘ƒ๐‘๐‘โ„Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž + โˆ†๐‘ƒ๐‘ƒ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ + โˆ†๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž

โˆ— Solving for ๐‘ฅ๐‘ฅ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ we get:

โˆ— ๐‘ฅ๐‘ฅ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = 0.044

The mass flux is the same as in the steady state: ๐บ๐บ โˆ— =

๐‘š๐‘šฬ‡๐‘ ๐‘ ๐‘ ๐‘  kg = 7755 2 ๐ด๐ด m s

The heat flux is the same as in the transient:

๐‘ž๐‘ž๐‘ก๐‘กโ€ฒโ€ฒ = 770.8

kW m2

Using once again the Groeneveld lookup tables, we find that: โˆ— โˆ— ) CHF๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = CHF โˆ— (๐บ๐บ โˆ— , ๐‘ƒ๐‘ƒ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ , ๐‘ฅ๐‘ฅ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = CHF๐‘ก๐‘ก ๏ฟฝ7755

The Minimum CHF Ratio (MCHFR) is then:

MCHFRโˆ— = min(CHFRโˆ— ) =

359

kg kW , 10.0 MPa , 0.044๏ฟฝ = 3529.6 m2 s m2

โˆ— CHF๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ 3529.6 = = 4.6 โ€ฒโ€ฒ ๐‘ž๐‘ž๐‘ก๐‘ก 761.04

rev 112420


Chapter 13 - Flow Boiling

In Summary: Description MCHFR Comparison with steady state value

Steady State Normal operations

Transient* Power increase only

5.82

Transient Power increase and mass flow rate decrease 3.17

5.82/5.82 = 1

3.17/5.82 = 0.54

4.60/5.82 = 0.79

360

4.60

rev 112420


Chapter 14 Single Heated Channel: Steady-State Analysis Contents Problem 14.1 Heated channel power limits ....................................................................... 362 Problem 14.2 Specification of power profile for a given clad temperature ....................... 366 Problem 14.3 Pressure drop-flow rate characteristic for a fuel channel ............................ 367 Problem 14.4 Pressure drop in a two-phase flow channel ................................................. 368 Problem 14.5 Critical heat flux for PWR channel ............................................................. 373 Problem 14.6 Nonuniform linear heat rate of a BWR ....................................................... 376 Problem 14.7 Thermal hydraulic analysis of a pressure tube reactor ................................ 380 Problem 14.8 Maximum clad temperature for SFBR ........................................................ 389 Problem 14.9 Flow-levitated control rod in a PWR .......................................................... 390 Problem 14.10 Thermal behavior of a plate fuel element following a loss of coolant ........ 395

361

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

PROBLEM 14.1 QUESTION Heated Channel Power Limits (Section 14.5) How much power can be extracted from a PWR with the geometry and operating conditions of Examples 14.1 and 14.2 and a Bessel Function radial power distribution if: 1. The coolant exit temperature is to remain subcooled. 2. The maximum clad temperature is to remain below saturation conditions, 3. The fuel maximum temperature is to remain below the melting temperature of 2400ยฐC (ignore sintering effects). Answers: 1. Qฬ‡ = 2421 MW 2. Qฬ‡ = 1501 MW 3. Qฬ‡ = 2312 MW

PROBLEM 14.1 SOLUTION Heated Channel Power Limits (Section 14.5) The following parameters are known: โ€”

pressure, P = 15.51 MPa

โ€”

inlet temperature, Tin = 293.1 ยฐC

โ€”

fuel rod outer diameter, D = 9.5 ร— 10โˆ’3 m

โ€”

fuel pellet diameter, Df = 8.192 ร— 10โˆ’3 m

โ€”

heated length, L = 3.658 m

โ€”

peak linear heat generation rate, ๐‘ž๐‘ž0โ€ฒ = 44.6 kW/m

โ€”

mass flow rate, แน = 0.335 kg/s

โ€”

number of fuel rods in the core, NrodsCore = Na Nrods = 193(264) = 50952

โ€”

cladding thickness, tclad = 0.572 ร— 10โˆ’3 m

โ€”

gap thickness, tgap = 0.0826 ร— 10โˆ’3 m

โ€”

clad conductivity, kc = 13.85 W/m K

โ€”

fuel conductivity, kf = 2.163 W/m K

362

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis โ€”

gap conductance, hgap = 5.7 kW/m2 K

The following specific enthalpy values may be taken from tables or software with water properties: โ„Ž๐‘“๐‘“ = โ„Ž(๐‘ƒ๐‘ƒ = 15.51 MPa, ๐‘ฅ๐‘ฅ = 0) = 1630 kJ/kg โ„Ž๐‘”๐‘” = โ„Ž(๐‘ƒ๐‘ƒ = 1551 MPa, ๐‘ฅ๐‘ฅ = 1) = 2596 kJ/kg โ„Ž๐‘“๐‘“๐‘“๐‘“ = โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“ = 2596 โˆ’ 1630 = 966 kJ/kg

โ„Ž๐‘–๐‘–๐‘–๐‘– = โ„Ž(๐‘‡๐‘‡ = 293.1 ยฐC, ๐‘ƒ๐‘ƒ = 15.51 MPa) = 1301 kJ/kg

The following geometrical parameters are calculated: โ€” โ€” โ€” โ€”

๐ท๐ท

0.0095

pellet outer radius, ๐‘…๐‘…๐‘“๐‘“ = 2๐‘“๐‘“ =

0.008192

cladding outer radius, ๐‘…๐‘…๐‘๐‘๐‘๐‘ = 2 =

2

= 0.00475 m

cladding inner radius, ๐‘…๐‘…๐‘๐‘๐‘๐‘ = ๐‘…๐‘…๐‘๐‘๐‘๐‘ โˆ’ ๐‘ก๐‘ก๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ = 0.00475 โˆ’ 0.000572 = 0.00418 m gap radius, ๐‘…๐‘…๐‘”๐‘” =

๐‘…๐‘…๐‘“๐‘“ +๐‘…๐‘…๐‘๐‘๐‘๐‘ 2

๐ท๐ท

=

2

= 0.004096 m

0.004096+0.00418 2

= 0.00414 m

1. How much power can be extracted from a PWR, with the geometry and operating conditions of Examples 14.1 and 14.2 and a Bessel function radial power distribution, if the hot channel exit enthalpy is to remain subcooled. From a simple energy balance, the hot channel exit enthalpy is: โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ,๐ป๐ป๐ป๐ป = โ„Ž๐‘–๐‘–๐‘–๐‘– +

๐‘ž๐‘žฬ‡ ๐ป๐ป๐ป๐ป ๐‘š๐‘šฬ‡

(1)

If the hot channel exit enthalpy is to remain subcooled, hout,HC must be at most equal to hf . This condition may be used to obtain the hot channel power. โ„Ž๐‘“๐‘“ = โ„Ž๐‘–๐‘–๐‘–๐‘– +

๐‘ž๐‘žฬ‡ ๐ป๐ป๐ป๐ป ๐‘š๐‘šฬ‡

1630 = 1301 +

๐‘ž๐‘žฬ‡ ๐ป๐ป๐ป๐ป 0.335

โ‡’ ๐‘ž๐‘žฬ‡ ๐ป๐ป๐ป๐ป = 110.2kW

(2)

(3)

The radial peaking factor is given in Table 3.6 and may be verified by integrating the Bessel function. (4) ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘…๐‘… = 2.32 The total power that can be extracted from a PWR under those conditions is: ๐‘„๐‘„ฬ‡ =

๐‘๐‘๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๐‘ž๐‘žฬ‡ ๐ป๐ป๐ป๐ป 50952(110.2) = = 2421 MW ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘…๐‘… 2.32 363

(5)

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

2. How much power can be extracted from a PWR, with the geometry and operating conditions of Examples 14.1 and 14.2 and a Bessel function radial power distribution, if the maximum cladding temperature is to remain below saturation conditions. The saturation temperature at the operating pressure can be taken from tables with water properties: ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  (๐‘ƒ๐‘ƒ = 15.51 MPa) = 344.8ยฐC

(6)

โ„ = 34 kW/m2 K

(7)

For simplicity, we may take from Table K.2 a typical PWR single-phase heat transfer coefficient and the specific heat calculated at average PWR conditions:

(8)

๐‘๐‘๐‘๐‘ = 5.742 kJ/kg K

The location of maximum cladding temperature is given by Equation 14.22b: ๐‘ง๐‘ง๐‘๐‘ =

=

๐ฟ๐ฟ ๐ท๐ท๐ท๐ทโ„ tanโˆ’1 ๏ฟฝ ๏ฟฝ ๐œ‹๐œ‹ ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘

(9)

(9.5 ร— 10โˆ’3 )(3.658)(34) 3.658 tanโˆ’1 ๏ฟฝ ๏ฟฝ = 0.641 m ๐œ‹๐œ‹ 0.335(5.742)

Equation 14.19 provides the cladding temperature as a function of z. ๐‘‡๐‘‡๐‘๐‘๐‘๐‘ (๐‘ง๐‘ง) = ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– + ๐‘ž๐‘ž0โ€ฒ ๏ฟฝ

๐ฟ๐ฟ ๐œ‹๐œ‹๐œ‹๐œ‹ 1 ๐œ‹๐œ‹๐œ‹๐œ‹ ๏ฟฝsin ๏ฟฝ ๏ฟฝ + 1๏ฟฝ + cos ๏ฟฝ ๏ฟฝ๏ฟฝ ๐œ‹๐œ‹๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ ๐ฟ๐ฟ 2๐œ‹๐œ‹๐‘…๐‘…๐ถ๐ถ๐ถ๐ถ โ„ ๐ฟ๐ฟ

(10)

We may impose the condition that, at the location of maximum cladding temperature, the cladding temperature is equal to the saturation temperature: ๐‘‡๐‘‡๐‘๐‘๐‘๐‘ (๐‘ง๐‘ง๐‘๐‘ ) = ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  = 344.8ยฐC. Thus: Solving for ๐‘ž๐‘ž0โ€ฒ :

=

๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– + ๐‘ž๐‘ž0โ€ฒ ๏ฟฝ

๐ฟ๐ฟ ๐œ‹๐œ‹๐‘ง๐‘ง๐‘๐‘ 1 ๐œ‹๐œ‹๐‘ง๐‘ง๐‘๐‘ ๏ฟฝsin ๏ฟฝ ๏ฟฝ + 1๏ฟฝ + cos ๏ฟฝ ๏ฟฝ๏ฟฝ = ๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐œ‹๐œ‹๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ ๐ฟ๐ฟ 2๐œ‹๐œ‹๐‘…๐‘…๐ถ๐ถ๐ถ๐ถ โ„ ๐ฟ๐ฟ

๐‘ž๐‘ž0โ€ฒ =

(11)

๐‘‡๐‘‡๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘–

(12)

๐ฟ๐ฟ ๐œ‹๐œ‹๐‘ง๐‘ง 1 ๐œ‹๐œ‹๐‘ง๐‘ง ๏ฟฝsin ๏ฟฝ ๐ฟ๐ฟ ๐‘๐‘ ๏ฟฝ + 1๏ฟฝ + cos ๏ฟฝ ๐ฟ๐ฟ ๐‘๐‘ ๏ฟฝ ๐œ‹๐œ‹๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ 2๐œ‹๐œ‹๐‘…๐‘…๐ถ๐ถ๐ถ๐ถ โ„

344.8 โˆ’ 293.1 3.658 ๐œ‹๐œ‹0.641 1 ๐œ‹๐œ‹0.641 ๏ฟฝsin ๏ฟฝ ๏ฟฝ + 1๏ฟฝ + cos ๏ฟฝ ๏ฟฝ 3.658 3.658 2๐œ‹๐œ‹(0.00475)34 ๐œ‹๐œ‹(0.335)(5.742) = 29.3 kW/m

The total power that can be extracted from a PWR core under the aforesaid conditions is: ๐‘„๐‘„ฬ‡ =

๐‘๐‘๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๐‘ž๐‘ž0โ€ฒ ๐ฟ๐ฟ 50952(29.3)(3.658) = = 1501 MW ๐œ‹๐œ‹ ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘…๐‘… ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐ด๐ด 2.32 2 364

(13)

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

Where the axial peaking factor for a cosine power distribution is PFA = ฯ€/2. 3. How much power can be extracted from a PWR with the geometry and operating conditions of Examples 14.1 and 14.2 and a Bessel function radial power distribution if the fuel maximum temperature is to remain below the melting temperature of 2400ยฐC (ignore sintering effects). First of all, let us evaluate the sum of the thermal resistance terms between the fuel centerline and the coolant, neglecting for simplicity the oxide film: ๐‘†๐‘† =

=

1 1 ๐‘…๐‘…๐‘๐‘๐‘๐‘ 1 1 + ln ๏ฟฝ ๏ฟฝ + + 4๐œ‹๐œ‹๐‘˜๐‘˜๐‘“๐‘“ 2๐œ‹๐œ‹๐‘˜๐‘˜๐‘๐‘ ๐‘…๐‘…๐‘๐‘๐‘๐‘ 2๐œ‹๐œ‹๐‘…๐‘…๐‘”๐‘” โ„Ž๐‘”๐‘”๐‘”๐‘”๐‘”๐‘” 2๐œ‹๐œ‹๐‘…๐‘…๐‘๐‘๐‘๐‘ โ„

(14)

1 1 0.00475 1 ๏ฟฝ+ + ln ๏ฟฝ 4๐œ‹๐œ‹2.163 2๐œ‹๐œ‹13.85 0.00418 2๐œ‹๐œ‹(0.00414)(5.7 ร— 103 ) 1 + 2๐œ‹๐œ‹(0.00475)(34 ร— 103 )

= 0.0368 + 0.00147 + 0.00674 + 0.00085 = 0.0460 mK/W

The axial location where the fuel reaches the maximum temperature is given by Equation 14.25. ๐‘ง๐‘ง๐‘“๐‘“ =

=

๐ฟ๐ฟ ๐ฟ๐ฟ tanโˆ’1 ๏ฟฝ ๏ฟฝ ๐œ‹๐œ‹ ๐‘†๐‘†๐‘†๐‘†๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘

(15)

3.658 3.658 ๏ฟฝ tanโˆ’1 ๏ฟฝ ๐œ‹๐œ‹ 0.0460๐œ‹๐œ‹(0.335)(5.742 ร— 103 ) = 0.015 m

Equation 14.24 provides the fuel centerline temperature. ๐‘‡๐‘‡๐‘๐‘๐‘๐‘ (๐‘ง๐‘ง) = ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– + ๐‘ž๐‘ž0โ€ฒ ๏ฟฝ

๐ฟ๐ฟ ๐œ‹๐œ‹๐œ‹๐œ‹ ๐œ‹๐œ‹๐œ‹๐œ‹ ๏ฟฝsin ๏ฟฝ ๏ฟฝ + 1๏ฟฝ + ๐‘†๐‘† cos ๏ฟฝ ๏ฟฝ๏ฟฝ ๐œ‹๐œ‹๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ ๐ฟ๐ฟ ๐ฟ๐ฟ

(16)

We can impose the condition that, at the location of maximum fuel temperature, the fuel centerline temperature is equal to the melting temperature: Tcl(zf) = Tmelt = 2400ยฐC.

Solving for ๐‘ž๐‘ž0โ€ฒ :

๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– + ๐‘ž๐‘ž0โ€ฒ ๏ฟฝ

๐œ‹๐œ‹๐‘ง๐‘ง๐‘“๐‘“ ๐œ‹๐œ‹๐‘ง๐‘ง๐‘“๐‘“ ๐ฟ๐ฟ ๏ฟฝsin ๏ฟฝ ๏ฟฝ + 1๏ฟฝ + ๐‘†๐‘† cos ๏ฟฝ ๏ฟฝ๏ฟฝ = ๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐œ‹๐œ‹๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ ๐ฟ๐ฟ ๐ฟ๐ฟ

๐‘ž๐‘ž0โ€ฒ =

๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– ๐œ‹๐œ‹๐‘ง๐‘ง๐‘“๐‘“ ๐œ‹๐œ‹๐‘ง๐‘ง๐‘“๐‘“ ๐ฟ๐ฟ ๏ฟฝsin ๏ฟฝ ๏ฟฝ + 1๏ฟฝ + ๐‘†๐‘† cos ๏ฟฝ ๐œ‹๐œ‹๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ ๐ฟ๐ฟ ๐ฟ๐ฟ ๏ฟฝ

365

(17)

(18)

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

2400 โˆ’ 293.1 3.658 ๐œ‹๐œ‹0.015 ๐œ‹๐œ‹0.015 ๏ฟฝsin ๏ฟฝ ๏ฟฝ + 1๏ฟฝ + (0.0460 ร— 103 ) cos ๏ฟฝ ๏ฟฝ ๐œ‹๐œ‹0.335.5.742 3.658 3.658 = 45.2kW/m

The total power that can be extracted from a PWR core under the aforesaid conditions is: ๐‘„๐‘„ฬ‡ =

๐‘๐‘๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๐‘ž๐‘ž0โ€ฒ ๐ฟ๐ฟ 50952(45.2)(3.658) = = 2312 MW ๐œ‹๐œ‹ ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘…๐‘… ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐ด๐ด 2.35 2

(19)

PROBLEM 14.2 QUESTION

Specification of Power Profile for a Given Cladding Temperature (Section 14.6) Consider a nuclear fuel rod whose cladding outer radius is a. Heat is transferred from the fuel rod to coolant with constant heat transfer coefficient โ„. The coolant mass flow rate along the rod is แน. Coolant specific heat cp is independent of temperature. It is desired that the temperature of the outer surface of the fuel rod t (at radius a) be constant, independent of distance Z from the coolant inlet to the end of the fuel rod. Derive a formula showing how the linear power of the fuel rod q' should vary with Z if the temperature at the outer surface of the fuel rod is to be constant. Answer: ๐‘ž๐‘ž โ€ฒ (๐‘๐‘) = ๐‘ž๐‘žโ€ฒ(0)๐‘’๐‘’

โˆ’

โ„(2ฯ€๐‘Ž๐‘Ž)๐‘๐‘ mฬ‡cp

PROBLEM 14.2 SOLUTION

Specification of Power Profile for a Given Cladding Temperature (Section 14.6) The heat transfer equation that controls the cladding-to-coolant heat exchange along a portion of the channel of length dZ at the axial position Z is: ๐‘ž๐‘ž โ€ฒ (๐‘๐‘)๐‘‘๐‘‘๐‘‘๐‘‘ = โ„Ž 2๐œ‹๐œ‹๐œ‹๐œ‹๏ฟฝ๐‘ก๐‘ก โˆ’ ๐‘‡๐‘‡(๐‘๐‘)๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘

(1)

The coolant temperature as a function of the axial position T(Z) is given by an energy balance between the channel inlet and Z: ๐‘๐‘

๏ฟฝ ๐‘ž๐‘žโ€ฒ(๐‘๐‘ โ€ฒ )๐‘‘๐‘‘๐‘‘๐‘‘โ€ฒ = ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ (๐‘‡๐‘‡(๐‘๐‘) โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– )

(2)

0

366

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

We can now isolate T(Z) in the first equation and then substitute it in the second equation: ๐‘‡๐‘‡(๐‘๐‘) = ๐‘ก๐‘ก โˆ’

๐‘๐‘

๐‘๐‘

๐‘ž๐‘žโ€ฒ(๐‘๐‘) โ„2๐œ‹๐œ‹๐œ‹๐œ‹

๏ฟฝ ๐‘ž๐‘žโ€ฒ(๐‘๐‘ โ€ฒ )๐‘‘๐‘‘๐‘‘๐‘‘โ€ฒ = ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ ๏ฟฝ๐‘ก๐‘ก โˆ’ 0

๏ฟฝ ๐‘ž๐‘žโ€ฒ(๐‘๐‘ โ€ฒ )๐‘‘๐‘‘๐‘‘๐‘‘โ€ฒ = 0

๐‘ž๐‘ž โ€ฒ(๐‘๐‘) โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– ๏ฟฝ โ„2๐œ‹๐œ‹๐œ‹๐œ‹

๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ [(๐‘ก๐‘ก โˆ’ ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– )โ„2๐œ‹๐œ‹๐œ‹๐œ‹ โˆ’ ๐‘ž๐‘žโ€ฒ(๐‘๐‘)] โ„2๐œ‹๐œ‹๐œ‹๐œ‹

(3) (4)

(5)

Where (t โˆ’ Tin)โ„2๐œ‹๐œ‹๐œ‹๐œ‹ is the linear heat generation rate at the channel inlet, q'(0) Hence: ๐‘๐‘

๏ฟฝ ๐‘ž๐‘žโ€ฒ(๐‘๐‘ โ€ฒ )๐‘‘๐‘‘๐‘‘๐‘‘โ€ฒ = 0

๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ [โˆ’๐‘ž๐‘žโ€ฒ(๐‘๐‘โ€ฒ)]0๐‘๐‘ โ„2๐œ‹๐œ‹๐œ‹๐œ‹

(6)

The function q'(Z), which is solution to this equation, is: ๐‘ž๐‘ž

โ€ฒ (๐‘๐‘)

= ๐‘ž๐‘žโ€ฒ(0)๐‘’๐‘’

โˆ’

โ„(2ฯ€๐‘Ž๐‘Ž)๐‘๐‘ mฬ‡cp

(7)

PROBLEM 14.3 QUESTION Pressure Drop-Flow Rate Characteristic for a Fuel Channel (Section 14.6) A designer is interested in determining the effect of a 50% channel blockage on the downstream-clad temperatures in a BWR core. The engineering department proposes to assess this effect experimentally by inserting a prototypical BWR channel containing the requisite blockage in the test loop sketched in Figure 14.15 and running the centrifugal pump to deliver prototypic BWR pressure and single-channel flow conditions. Is the test plan acceptable to you? If not, what changes would you propose and why?

367

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

FIGURE 14.15 Test loop (a) and pump characteristic curve (b). Answer: It is not possible to specify both flow and pressure conditions to be identical to BWR conditions. A suitable modification to the test loop must be accomplished.

PROBLEM 14.3 SOLUTION Pressure Drop-Flow Rate Characteristic for a Fuel Channel (Section 14.6) The proposed test plan is not acceptable. By controlling the centrifugal pump it is not possible to specify both mass flow rate and pressure to be identical to BWR conditions. The test plan may be modified by connecting to the loop a pressurizer, which can be used to set a desired operating pressure. The mass flow rate and the inlet enthalpy at the test section may be adjusted by regulating the pump speed and the heat exchanger operating conditions.

PROBLEM 14.4 QUESTION Pressure Drop in a Two-Phase Flow Channel (Section 14.6) For the BWR conditions given below, using the HEM model determine the acceleration, frictional, gravitational, and total pressure drop (ignore the spacer pressure drop). Compare the frictional pressure drop obtained using the HEM model to that obtained from the Thom approach (Equation 11.97).

368

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

Geometry: โ€“ Consider a vertical tube of 17 mm I.D. and 3.8 m length.

Operating Conditions:

โ€“ Steady state โ€“ Operating pressure = 7550 kPa โ€“ Inlet temperature = 275 ยฐC โ€“ Mass flux = 1700 kg/m2s โ€“ Heat flux (axially constant) = 670 kW/m2

Answers:

The pressure drops (HEM model) are as follows: โˆ†Pacc = 12.5 kPa โˆ†Pgrav = 16.0 kPa โˆ†Pfric = 14.1 kPa โˆ†Ptot = 42.6 kPa โˆ†Pfric,Thom = l5.1 kPa

PROBLEM 14.4 SOLUTION Pressure Drop in a Two-Phase Flow Channel (Section 14.6) The given conditions are: โ€“ โ€“ โ€“ โ€“ โ€“ โ€“

tube inner diameter, D = 0.017 m tube length, L = 3.8m pressure, P = 7550 kPa inlet temperature, Tin = 275 ยฐC mass flux, G = 1700 kg/m2s heat flux, qโ€ณ = 670 kW/m2

The following water properties (specific enthalpy, density, viscosity) are taken from tables or specific computer programs. โ„Ž๐‘“๐‘“ = โ„Ž(๐‘ƒ๐‘ƒ = 7.55 MPa, ๐‘ฅ๐‘ฅ = 0) = 1295 kJ/kg

โ„Ž๐‘”๐‘” = โ„Ž(๐‘ƒ๐‘ƒ = 7.55 MPa, ๐‘ฅ๐‘ฅ = 1) = 1295 kJ/kg

โ„Ž๐‘“๐‘“๐‘“๐‘“ = โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“ = 2765 โˆ’ 1295 = 1470 kJ/kg

โ„Ž๐‘–๐‘–๐‘–๐‘– = โ„Ž(๐‘‡๐‘‡ = 275ยฐC, ๐‘ƒ๐‘ƒ = 7.55 MPa) = 1210 kJ/kg ๐œŒ๐œŒ๐‘“๐‘“ = ๐œŒ๐œŒ(๐‘ƒ๐‘ƒ = 7.55 MPa, ๐‘ฅ๐‘ฅ = 0) = 730 kg/m3

๐œŒ๐œŒ๐‘”๐‘” = ๐œŒ๐œŒ(๐‘ƒ๐‘ƒ = 7.55 MPa, ๐‘ฅ๐‘ฅ = 1) = 39.8 kg/m3 369

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

๐œŒ๐œŒ๐‘–๐‘–๐‘–๐‘– = ๐œŒ๐œŒ(๐‘‡๐‘‡ = 275ยฐC, ๐‘ƒ๐‘ƒ = 7.55 MPa) = 761 kg/m3

๐œ‡๐œ‡๐‘“๐‘“ = ๐œ‡๐œ‡(๐‘ƒ๐‘ƒ = 7.55 MPa, ๐‘ฅ๐‘ฅ = 0) = 89.28 ร— 10โˆ’6 Pa ๐‘ ๐‘  ๐œ‡๐œ‡๐‘”๐‘” = ๐œ‡๐œ‡(๐‘ƒ๐‘ƒ = 7.55 MPa, ๐‘ฅ๐‘ฅ = 1) = 19.2 ร— 10โˆ’6 Pa ๐‘ ๐‘ 

The flow area, mass flow rate, and linear heat generation rate are calculated as follows, ๐ด๐ด =

๐œ‹๐œ‹๐ท๐ท2 ๐œ‹๐œ‹0.0172 = = 2.270 ร— 10โˆ’4 m2 4 4

๐‘š๐‘šฬ‡ = ๐บ๐บ๐บ๐บ = 1700(2.270 ร— 10โˆ’4 ) = 0.3859 ๐‘ž๐‘ž โ€ฒ = ๐œ‹๐œ‹๐œ‹๐œ‹๐‘ž๐‘ž โ€ณ = ๐œ‹๐œ‹0.017(670) = 35.78

kW m

(1) kg s

(2) (3)

The OSB location may be calculated applying a simple energy balance (Equation 14.29): ๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚

๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚

35.78 = 1295 โˆ’ 1210 0.3859 โ‡’ ๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ = 0.917 m

The inlet equilibrium quality is: ๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘–๐‘–๐‘–๐‘– =

๐‘ž๐‘žโ€ฒ = โ„Ž๐‘“๐‘“ โˆ’ โ„Ž๐‘–๐‘–๐‘–๐‘– แน

โ„Ž๐‘–๐‘–๐‘–๐‘– โˆ’ โ„Ž๐‘“๐‘“ 1210 โˆ’ 1295 = = โˆ’0.0578 โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“ 2765 โˆ’ 1295

(4)

(5)

(6)

The equilibrium quality profile is given by Equation = 14.33a: ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง) = ๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘–๐‘–๐‘–๐‘– +

๐‘ž๐‘ž โ€ฒ 35.78 ๐‘๐‘ = โˆ’0.0578 + ๐‘๐‘ ๐‘š๐‘šฬ‡โ„Ž๐‘“๐‘“๐‘“๐‘“ 0.3859(1470)

(7)

= โˆ’0.578 + 0.0631๐‘๐‘

In the region above ZOSB the void fraction profile is determined, considering HEM, as: ๐›ผ๐›ผ(๐‘๐‘) =

1 1 = (1 + 0.0578 โˆ’ 0.0631๐‘๐‘) 39.8 1 โˆ’ ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)๐œŒ๐œŒ๐‘”๐‘” 1+ 1+ (โˆ’0.0578 + 0.0631๐‘๐‘) 730 ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)๐œŒ๐œŒ๐‘“๐‘“ 370

(8)

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

Simplifying: ๐›ผ๐›ผ(๐‘๐‘) =

0.0578 โˆ’ 0.0631๐‘๐‘ 0.0001282 โˆ’ 0.0597๐‘๐‘

(9)

In the region above ZOSB the mixture density is:

= 730 ๏ฟฝ1 โˆ’

(10)

๐œŒ๐œŒ๐‘š๐‘š (๐‘๐‘) = ๐œŒ๐œŒ๐‘“๐‘“ ๏ฟฝ1 โˆ’ ๐›ผ๐›ผ(๐‘๐‘)๏ฟฝ + ๐œŒ๐œŒ๐‘”๐‘” ๐›ผ๐›ผ(๐‘๐‘)

0.0578 โˆ’ 0.0631๐‘๐‘ 0.0578 โˆ’ 0.0631๐‘๐‘ ๏ฟฝ + 39.8 kg/m3 0.0001282 โˆ’ 0.0597๐‘๐‘ 0.0001282 โˆ’ 0.0597๐‘๐‘

Simplifying and approximating:

At the channel outlet:

๐œŒ๐œŒ๐‘š๐‘š (๐‘๐‘) =

โˆ’39.8 kgโ„m3 0.0001282 โˆ’ 0.05966๐‘๐‘

๐œŒ๐œŒ๐‘š๐‘š,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = ๐œŒ๐œŒ๐‘š๐‘š (๐ฟ๐ฟ) =

(11)

โˆ’39.8 175.7kg = 0.0001282 โˆ’ 0.05966(3.8) m3

(12)

Acceleration pressure drop The acceleration pressure drop is given by Equation 14.38a: 1 1 1 1 ๏ฟฝ = 12.5 kPa โˆ†๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = ๐บ๐บ 2 ๏ฟฝ โˆ’ ๏ฟฝ = 17002 ๏ฟฝ โˆ’ 175.7 730 ๐œŒ๐œŒ๐‘š๐‘š,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ ๐œŒ๐œŒ๐‘“๐‘“

(13)

Gravity pressure drop The average density in the region below ZOSB is approximately: ๐œŒ๐œŒฬ…โ„“ =

๐œŒ๐œŒ๐‘–๐‘–๐‘–๐‘– + ๐œŒ๐œŒ๐‘“๐‘“ 761 + 730 = = 746 kg/m3 2 2

(14)

The gravity pressure drop is given by Equation 14.38b: ๐ฟ๐ฟ

โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘” = ๐œŒ๐œŒฬ…โ„“ ๐‘”๐‘” ๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ + ๏ฟฝ ๐œŒ๐œŒ๐‘š๐‘š (๐‘๐‘) ๐‘”๐‘” ๐‘‘๐‘‘๐‘‘๐‘‘

(15)

๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚

3.8

= 746(8.91)(0.917) + ๏ฟฝ

0.917

โˆ’39.8 9.81๐‘‘๐‘‘๐‘‘๐‘‘ 0.0001282 โˆ’ 0.05966๐‘๐‘

Integrating numerically or analytically and solving:

โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘” = 16.0 kPa 371

(16)

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

Friction pressure drop The liquid only Reynolds number is: Reโ„“๐‘œ๐‘œ =

๐บ๐บ๐บ๐บ 1700(0.017) = = 3.24 ร— 105 ๐œ‡๐œ‡๐‘“๐‘“ 89.28 ร— 10โˆ’6

(17)

The flow is turbulent, so the McAdams relation may be applied to calculate the liquid only friction factor: = 0.184(3.24 ร— 105 )โˆ’0.20 = 0.0145 ๐‘“๐‘“โ„“๐‘œ๐‘œ = 0.184Reโˆ’0.20 โ„“๐‘œ๐‘œ

(18)

The HEM two-phase friction multiplier can be expressed using Equation 11.82. 2 (๐‘๐‘) = 1 + ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘๐‘) ๏ฟฝ ฮฆโ„“๐‘œ๐‘œ

๐œŒ๐œŒ๐‘“๐‘“ 730 โˆ’ 1๏ฟฝ = 1 + ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘๐‘) ๏ฟฝ โˆ’ 1๏ฟฝ = 1 + 17.37๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘๐‘) ๐œŒ๐œŒ๐‘”๐‘” 39.8

(19)

= 1 + 17.34(โˆ’0.0578 + 0.0631๐‘๐‘) = โˆ’0.002252 + 1.094๐‘๐‘

We may express the friction pressure drop re-arranging Equation 14.47. ๐ฟ๐ฟ

๐‘“๐‘“โ„“๐‘œ๐‘œ ๐บ๐บ 2 ๐‘“๐‘“โ„“๐‘œ๐‘œ ๐บ๐บ 2 2 (๐‘๐‘)๐‘‘๐‘‘๐‘‘๐‘‘ โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ = ๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ + ๏ฟฝ ฮฆโ„“๐‘œ๐‘œ 2๐ท๐ท๐œŒ๐œŒฬ…โ„“ 2๐ท๐ท๐œŒ๐œŒฬ…๐‘“๐‘“

(20)

๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ 3.8

0.0145(17002 ) 0.0145(17002 ) = 0.917 + ๏ฟฝ (โˆ’0.002252 + 1.094๐‘๐‘)๐‘‘๐‘‘๐‘‘๐‘‘ 2(0.017)(746) 2(0.017)(730) 0.917

Integrating and solving:

โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ = 14.1 kPa

(21)

โˆ†๐‘ƒ๐‘ƒ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก = โˆ†๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž + โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘” + โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ = 12.5 + 16.0 + 14.1 = 42.6 kPa

(22)

Total pressure drop

Friction pressure drop using the Thom approach The Thom approach applies to saturated inlet conditions. The friction pressure drop using the Thom approach may be calculated for a boiling region of length LB using Equation 11.97: โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“,๐‘‡๐‘‡โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ =

๐‘“๐‘“โ„“๐‘œ๐‘œ ๐บ๐บ 2 ๐ฟ๐ฟ๐ต๐ต ๐‘‡๐‘‡ 2๐ท๐ท๐œŒ๐œŒโ„“ 3

(23)

We may read the r3 coefficient from Figure 11.15 knowing the outlet quality and the operating pressure in psi.

372

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = ๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘–๐‘–๐‘–๐‘– +

๐‘ž๐‘ž โ€ฒ 35.78 ๐ฟ๐ฟ = โˆ’0.0578 + 3.8 = 0.182 ๐‘š๐‘šฬ‡โ„Ž๐‘“๐‘“๐‘“๐‘“ 0.3859(1470)

Reading from the table yields:

(24)

๐‘ƒ๐‘ƒ = 7550 kPa โ‡’ 1095 psi

(25)

โ‡’ ๐‘Ÿ๐‘Ÿ3 = 2.8

(26)

The friction pressure drop is composed of two parts: one for the liquid-only region and one for the boiling region. Hence: โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“,๐‘‡๐‘‡โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ =

๐‘“๐‘“โ„“๐‘œ๐‘œ ๐บ๐บ 2 ๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ (๐ฟ๐ฟ โˆ’ ๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ ) ๏ฟฝ + ๏ฟฝ 2๐ท๐ท ๐œŒ๐œŒฬ…โ„“ ๐œŒ๐œŒ๐‘“๐‘“ 0.0145(17002 ) 0.917 2.8(3.8 โˆ’ 0.917) = ๏ฟฝ + ๏ฟฝ 2(0.017) 746 730

(27)

= 15.1 kPa

PROBLEM 14.5 QUESTION Critical Heat Flux for PWR Channel (Section 14.6) Using the conditions of Examples 14.1 and 14.2, determine the minimum critical heat flux ratio (MCHFR) using the W-3 correlation. Answer: MCHFR = 2.41

PROBLEM 14.5 SOLUTION Critical Heat Flux for PWR Channel (Section 14.6) The following parameters are known: โ€“

pressure, P = 15.51 MPa

โ€“

heated length, L = 3.658 m

โ€“

inlet temperature, Tin = 293.1 ยฐC

โ€“

peak linear heat generation rate, q0โ€ฒ = 44.6 kW/m

โ€“

fuel rod outer diameter, D = 9.5 ร—10โˆ’3 m

373

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

โ€“

โ€“

โ€“

mass flux, G = 3807 kg/m2s subchannel area, Ach = 8.79 ร—10โˆ’5 m2 mass flow rate, แน = 0.335 kg/s

The following specific enthalpy values may be taken from tables or software with water properties: โ„Ž๐‘“๐‘“ = โ„Ž(๐‘ƒ๐‘ƒ = 15.51 MPa, ๐‘ฅ๐‘ฅ = 0) = 1630 kJ/kg

โ„Ž๐‘”๐‘” = โ„Ž(๐‘ƒ๐‘ƒ = 15.51 MPa, ๐‘ฅ๐‘ฅ = 1) = 2596 kJโ„kg โ„Ž๐‘“๐‘“๐‘“๐‘“ = โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“ = 2596 โˆ’ 1630 = 966 kJโ„kg

โ„Ž๐‘–๐‘–๐‘–๐‘– = โ„Ž(๐‘‡๐‘‡ = 293.1ยฐC, ๐‘ƒ๐‘ƒ = 15.51 MPa) = 1301 kJโ„kg

The inlet equilibrium quality is:

The rod power is:

๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘–๐‘–๐‘–๐‘– =

โ„Ž๐‘–๐‘–๐‘–๐‘– โˆ’ โ„Ž๐‘“๐‘“ 1301 โˆ’ 1630 = = โˆ’0.341 โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“ 2596 โˆ’ 1630

๐‘ž๐‘žฬ‡ =

๐‘ž๐‘ž0โ€ฒ ๐ฟ๐ฟ 44.6(3.658) = = 103.9 kW ๐œ‹๐œ‹โ„2 ๐œ‹๐œ‹โ„2

The peak heat flux is:

๐‘ž๐‘ž0โ€ฒโ€ฒ =

The cosine heat flux distribution is:

๐‘ž๐‘ž0โ€ฒ 44.6 kW = = 1494 2 ๐œ‹๐œ‹๐œ‹๐œ‹ ๐œ‹๐œ‹0.0095 m

๐‘ž๐‘ž โ€ฒโ€ฒ (๐‘๐‘) = ๐‘ž๐‘ž0โ€ฒโ€ฒ cos ๏ฟฝ

๐œ‹๐œ‹๐œ‹๐œ‹ ๐œ‹๐œ‹๐œ‹๐œ‹ ๏ฟฝ = 1494 cos ๏ฟฝ ๏ฟฝ [kWโ„m2 ] ๐ฟ๐ฟ 3.658

(1)

(2)

(3)

(4)

Equation 14.33b describes the equilibrium quality axial distribution.

๐œ‹๐œ‹๐œ‹๐œ‹ ๏ฟฝ + 1๏ฟฝ ๐ฟ๐ฟ 2๐‘š๐‘šโ„Žฬ‡ ๐‘“๐‘“๐‘“๐‘“ 103.9 ๐œ‹๐œ‹๐œ‹๐œ‹ = โˆ’0.341 + ๏ฟฝsin ๏ฟฝ ๏ฟฝ + 1๏ฟฝ 2(0.335)966 3.658

๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘๐‘) = ๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  + The equivalent diameter is:

๐ท๐ท๐‘’๐‘’ =

๐‘ž๐‘žฬ‡

๏ฟฝsin ๏ฟฝ

4๐ด๐ด๐‘๐‘โ„Ž 4(8.79 ร— 10โˆ’5 ) = = 0.01178 m ๐œ‹๐œ‹๐œ‹๐œ‹ ๐œ‹๐œ‹0.0095

(5)

(6)

W-3 correlation The W-3 correlation is described, for uniform axial heat flux, by Equation

374

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

13.51: โ€ฒโ€ฒ (๐‘๐‘) = ๐พ๐พ1(๐‘ง๐‘ง) ๐พ๐พ2(๐‘ง๐‘ง) ๐พ๐พ3(๐‘ง๐‘ง) ๐พ๐พ4 ๐‘ž๐‘ž๐‘๐‘๐‘๐‘,๐‘ข๐‘ข

(7)

Where the four coefficients are calculated below. To avoid confusion, the equilibrium quality axial distribution is indicated as xe(z) instead of substituting the expression above. ๐พ๐พ1(๐‘ง๐‘ง) = (2.022 โˆ’ 0.06238๐‘ƒ๐‘ƒ) + (0.1722 โˆ’ 0.01427๐‘ƒ๐‘ƒ) exp [(18.177 โˆ’ 0.5987๐‘ƒ๐‘ƒ)๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)]

(8)

= [2.022 โˆ’ 0.06238(15.51)] + [0.1722 โˆ’ 0.01427(15.51)] exp[(18.177 โˆ’ 0.5987(15.51))๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)] = 1.054 โˆ’ 0.04913 exp(8.891๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง))

(9)

๐พ๐พ2(๐‘ง๐‘ง) = (0.1484 โˆ’ 1.596๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง) + 0.1729๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)|๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)|)2.326๐บ๐บ + 3271 = (0.1484 โˆ’ 1.596๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง) + 0.1729๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)|๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)|)2.326(3807) + 3271 = (0.1484 โˆ’ 1.596๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง) + 0.1729๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)|๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)|)8855 + 3271

(10)

๐พ๐พ3(๐‘ง๐‘ง) = ๏ฟฝ1.157 โˆ’ 0.869๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)๏ฟฝ[0.2664 + 0.8357 exp (โˆ’124.1๐ท๐ท๐‘’๐‘’ )]

= ๏ฟฝ1.157 โˆ’ 0.869๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)๏ฟฝ[0.2664 + 0.8357exp (โˆ’124.1)(0.01178)] = 0.4601(1.157 โˆ’ 0.869๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง))

(11)

๐พ๐พ4 = 0.8258 + 0.0003413๏ฟฝโ„Ž๐‘“๐‘“ โˆ’ โ„Ž๐‘–๐‘–๐‘–๐‘– ๏ฟฝ

= 0.8258 + 0.0003413(1630 โˆ’ 1301) = 0.9381

Equations 13.51d and13.51c allow calculating the nonuniform axial heat flux factor, F(z). [1 โˆ’ ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)]4.31 ๐ถ๐ถ(๐‘ง๐‘ง) = 185.6 ๐บ๐บ 0.478

= 185.6 ๐น๐น(๐‘ง๐‘ง) =

(12)

[1 โˆ’ ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)]4.31 โˆ’ 3.606[1 โˆ’ ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)]4.31 38070.478 ๐‘ง๐‘ง

๐ถ๐ถ(๐‘ง๐‘ง) โˆซโˆ’๐ฟ๐ฟโ„2 ๐‘ž๐‘ž โ€ฒโ€ฒ (๐‘ง๐‘ง โ€ฒ ) exp{โˆ’๐ถ๐ถ(๐‘ง๐‘ง)[๐‘ง๐‘ง โˆ’ ๐‘ง๐‘ง โ€ฒ ]}๐‘‘๐‘‘๐‘‘๐‘‘โ€ฒ ๐ฟ๐ฟ ๐‘ž๐‘žโ€ฒโ€ฒ(๐‘ง๐‘ง) ๏ฟฝ1 โˆ’ exp ๏ฟฝโˆ’๐ถ๐ถ(๐‘ง๐‘ง) ๏ฟฝ๐‘ง๐‘ง + 2๏ฟฝ๏ฟฝ๏ฟฝ 375

(13)

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

๐‘ง๐‘ง ๐œ‹๐œ‹๐‘ง๐‘ง โ€ฒ ๏ฟฝ exp{โˆ’[3.606[1 โˆ’ ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)]4.31 ][๐‘ง๐‘ง โˆ’ ๐‘ง๐‘ง โ€ฒ ]}๐‘‘๐‘‘๐‘ง๐‘ง โ€ฒ 3.606[1 โˆ’ ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)]4.31 โˆซโˆ’๐ฟ๐ฟโ„2 1494 cos ๏ฟฝ 3.658 = ๐œ‹๐œ‹๐œ‹๐œ‹ 3.658 1494 cos ๏ฟฝ ๏ฟฝ ๏ฟฝ1 โˆ’ exp ๏ฟฝโˆ’[3.606[1 โˆ’ ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง)]4.31 ] ๏ฟฝ๐‘ง๐‘ง + 2 ๏ฟฝ๏ฟฝ๏ฟฝ 3.658

Equation 13.51b gives the nonuniform DNB heat flux as the ratio between qโ€ณcr,u (z) and F(z): โ€ฒโ€ฒ (๐‘ง๐‘ง) = ๐‘ž๐‘ž๐‘๐‘๐‘๐‘,๐‘›๐‘›

โ€ฒโ€ฒ ๐‘ž๐‘ž๐‘๐‘๐‘๐‘,๐‘ข๐‘ข (๐‘ง๐‘ง) ๐น๐น(๐‘ง๐‘ง)

(14)

The equations above may be implemented in an electronic calculation tool, which may be used to compute the MCHFR:

The result is:

โ€ฒโ€ฒ ๐‘ž๐‘ž๐‘๐‘๐‘๐‘,๐‘›๐‘› (๐‘ง๐‘ง) MCHFR = ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๏ฟฝ ๏ฟฝ , โˆ’๐ฟ๐ฟ/2 โ‰ค ๐‘ง๐‘ง โ‰ค ๐ฟ๐ฟ/2 ๐‘ž๐‘žโ€ฒโ€ฒ(๐‘ง๐‘ง)

MCHFR = 2.41

(15)

(16)

The CHFR (or DNBR) is plotted in Figure SM-14.1 as a function of the distance from the core inlet.

FIGURE SM-14.1 DNBR as a function of the distance from the core inlet

PROBLEM 14.6 QUESTION Nonuniform Linear Heat Rate of a BWR (Section 14.6) For the hot subchannel of a BWR-5, calculate the axial location where bulk boiling starts to occur. Assuming the outlet quality is 29.2%, determine the axial profiles of the hot channel

376

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

enthalpy, hm(z), and thermal equilibrium quality, xe(z). Assume thermodynamic equilibrium and the following axial heat generation profile:

Parameters โ€“

๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘ง๐‘ง 1 โ€ฒ ๐‘ž๐‘ž โ€ฒ (๐‘ง๐‘ง) = ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ exp ๏ฟฝโˆ’๐›ผ๐›ผ ๏ฟฝ + ๏ฟฝ๏ฟฝ cos ๏ฟฝ ๏ฟฝ ๐ฟ๐ฟ 2 ๐ฟ๐ฟ

โˆ’

๐ฟ๐ฟ ๐ฟ๐ฟ โ‰ค ๐‘ง๐‘ง โ‰ค 2 2

peak linear heat generation rate, qโ€ฒmax = 47.24 kW/m

โ€“

inlet temperature, Tin = 278.3 ยฐC

โ€“

heated length, L = 3.588 m

โ€“

outlet equilibrium quality, xe, out = 0.292

โ€“

pressure, P = 7.14 MPa

โ€“

axial heat distribution constant, ฮฑ = 1.96

Answer: ๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ = โˆ’1.29 ๐‘š๐‘š

PROBLEM 14.6 SOLUTION Nonuniform Linear Heat Rate of a BWR (Section 14.6) The following parameters are given by the problem statement: โ€“

peak linear heat generation rate, qโ€ฒmax = 47.24 kW/m

โ€“

inlet temperature, Tin = 278.3 ยฐC

โ€“

heated length, L = 3.588 m

โ€“

outlet equilibrium quality, xe, out = 0.292

โ€“

pressure, P = 7.14 MPa

โ€“

axial heat distribution constant, ฮฑ = 1.96

The axial linear heat generation profile is: ๐‘ง๐‘ง 1 ๐œ‹๐œ‹๐œ‹๐œ‹ โ€ฒ ๐‘ž๐‘ž โ€ฒ (๐‘ง๐‘ง) = ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ exp ๏ฟฝโˆ’๐›ผ๐›ผ ๏ฟฝ + ๏ฟฝ๏ฟฝ cos ๏ฟฝ ๏ฟฝ ๐ฟ๐ฟ 2 ๐ฟ๐ฟ

(1)

This equation represents a bottom shaped axial distribution. Therefore, we expect the location of maximum heat generation zmax to be below the core midplane. To find this point, we look for the location where the first derivative of the axial heat distribution is equal to zero.

377

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

๏ฟฝ

๐œ•๐œ•๐œ•๐œ•โ€ฒ(๐‘ง๐‘ง) ๏ฟฝ ๐œ•๐œ•๐œ•๐œ• ๐‘ง๐‘ง=๐‘ง๐‘ง

=0

(2)

๐‘ง๐‘ง๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = โˆ’0.637 m

(3)

โ€ฒ ๐‘ž๐‘ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = ๐‘ž๐‘žโ€ฒ(๐‘ง๐‘ง๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š )

(4)

โ€ฒ โ‡’ ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ = 104.75kW/m

(5)

๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š

The solution may be found either numerically or analytically as:

Applying the maximum linear heat generation rate qโ€ฒmax to the location zmax we obtain qโ€ฒref.

โˆ’0.637 1 ๐œ‹๐œ‹(โˆ’0.637) โ€ฒ ๏ฟฝ 47.24 = ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ exp ๏ฟฝโˆ’1.96 ๏ฟฝ + ๏ฟฝ๏ฟฝ cos ๏ฟฝ 3.588 2 3.588 The following specific enthalpy values may be taken from water properties: โ„Ž๐‘“๐‘“ = โ„Ž(๐‘ƒ๐‘ƒ = 7.14 MPa, ๐‘ฅ๐‘ฅ = 0) = 1275 kJโ„kg

โ„Ž๐‘”๐‘” = โ„Ž(๐‘ƒ๐‘ƒ = 7.14 MPa, ๐‘ฅ๐‘ฅ = 1) = 2771 kJโ„kg

โ„Ž๐‘“๐‘“๐‘“๐‘“ = โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“ = 2771 โˆ’ 1275 = 2771 โˆ’ 1275 = 1496 kJโ„kg โ„Ž๐‘–๐‘–๐‘–๐‘– = โ„Ž(๐‘‡๐‘‡ = 278.3ยฐC, ๐‘ƒ๐‘ƒ = 7.14 MPa) = 1228 kJโ„kg

The inlet equilibrium quality is:

๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘–๐‘–๐‘–๐‘– =

โ„Ž๐‘–๐‘–๐‘–๐‘– โˆ’ โ„Ž๐‘“๐‘“ 1228 โˆ’ 1275 = = โˆ’0.0314 โ„Ž๐‘”๐‘” โˆ’ โ„Ž๐‘“๐‘“ 2771 โˆ’ 1275

(6)

1. Calculate the axial location where bulk boiling starts to occur. The equilibrium quality distribution is given by Equation 14.33a as: ๐‘ง๐‘ง

1 ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง) = ๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘–๐‘–๐‘–๐‘– + ๏ฟฝ ๐‘ž๐‘žโ€ฒ(๐‘ง๐‘ง)๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘š๐‘šฬ‡โ„Ž๐‘“๐‘“๐‘“๐‘“

(7)

โˆ’๐ฟ๐ฟโ„2

First of all, we set the outlet equilibrium quality condition xe(zout) = 0.292 to obtain the mass flow rate. 0.292 = โˆ’0.0314

1 + ๐‘š๐‘šฬ‡1496

3.588โ„2

๏ฟฝ

โˆ’3.588โ„2

104.75 exp ๏ฟฝโˆ’1.96 ๏ฟฝ

378

๐‘ง๐‘ง 1 ๐œ‹๐œ‹๐œ‹๐œ‹ + ๏ฟฝ๏ฟฝ cos ๏ฟฝ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ 3.588 2 3.588

(8)

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

Solving this equation numerically yields: ๐‘š๐‘šฬ‡ = 0.203 kgโ„s

Now that the mass flow rate is known, we may set the equilibrium quality equal to zero to find the OSB location ZOSB. 1 0 = โˆ’0.0314 + 0.203(1496)

๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚

๏ฟฝ

โˆ’3.588โ„2

1 ๐œ‹๐œ‹๐œ‹๐œ‹ + ๏ฟฝ๏ฟฝ cos ๏ฟฝ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ 2 3.588

๐‘ง๐‘ง 104.75 exp ๏ฟฝโˆ’1.96 ๏ฟฝ 3.588

(9)

Solving this equation numerically yields:

(10)

๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ = โˆ’1.29 m

2. Determine the axial profile of the hot channel enthalpy and equilibrium quality. The axial enthalpy and equilibrium quality distributions are given by Equations 14.29 and 14.33a as: ๐‘ง๐‘ง

1 โ„Ž(๐‘ง๐‘ง) = โ„Ž๐‘–๐‘–๐‘–๐‘– + ๏ฟฝ ๐‘ž๐‘žโ€ฒ(๐‘ง๐‘ง)๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘š๐‘šฬ‡ โˆ’๐ฟ๐ฟโ„2

(11)

๐‘ง๐‘ง

1 ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง) = ๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘–๐‘–๐‘–๐‘– + ๏ฟฝ ๐‘ž๐‘ž โ€ฒ (๐‘ง๐‘ง)๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘š๐‘šฬ‡โ„Ž๐‘“๐‘“๐‘“๐‘“

(12)

โˆ’๐ฟ๐ฟโ„2

Substituting all the parameters, the axial profiles of enthalpy and equilibrium quality are: 1 โ„Ž(๐‘ง๐‘ง) = 128 + 0.203 ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘ง๐‘ง) = โˆ’0.314

๐‘ง๐‘ง

๏ฟฝ

โˆ’3.588โ„2

1 + 0.203(1496)

๐‘ง๐‘ง 1 ๐œ‹๐œ‹๐œ‹๐œ‹ 104.75 exp ๏ฟฝโˆ’1.96 ๏ฟฝ + ๏ฟฝ๏ฟฝ cos ๏ฟฝ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ 3.588 2 3.588

๐‘ง๐‘ง

๏ฟฝ

โˆ’3.588โ„2

๐‘ง๐‘ง 1 ๐œ‹๐œ‹๐œ‹๐œ‹ 104.75 exp ๏ฟฝโˆ’1.96 ๏ฟฝ + ๏ฟฝ๏ฟฝ cos ๏ฟฝ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ 3.588 2 3.588

379

(13)

(14)

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

Those profiles have been plotted in Figures SM-14.2 and SM-14.3.

FIGURE SM-14.2 Enthalpy profile

FIGURE SM-14.3 Equilibrium quality profile

PROBLEM 14.7 QUESTION Thermal Hydraulic Analysis of a Pressure Tube Reactor (Chapters 3, 8, 9, 10, 11, and Section 14.6) Consider the light water-cooled and moderated pressure tube reactor shown in Figure 14.16. The fuel and coolant in the pressure tube are within a graphite matrix. Each pressure tube consists of a graphite matrix that has 24 fuel holes and 12 coolant holes. Part of the graphite matrix and

380

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

a unit cell are also shown in Figure 14.16. An equivalent annuli model for thermal analysis is shown in Figure 14.17. Consider the fuel (although composed of fuel particles in each fuel hole) as operating at a uniform volumetric heat generation rate in the r, ฯ‘ plane. Operating conditions and property data are in Tables 14.5 and 14.6. Assumptions โ€“

HEM (Homogeneous Equilibrium Model) for two phase flow analysis is valid.

โ€“

Saturated coolant data at 6.89 MPa

โ€“

Enthalpy: hf = 1261.6 kJ/kg, hfg = 1511.9 kJ/kg

โ€“

Cosine axial heat flux (neglect extrapolation)

โ€“

Density: ฯf = 742.0 kg/m3, ฯg = 35.94 kg/m3

FIGURE 14.16 Calandria with pressure tubes and unit cell in the pressure tube

FIGURE 14.17 Equivalent annuli model (not to scale)

381

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

TABLE 14.5 Operating Data for Problem 14.7 Reactor system Core thermal power Number of pressure tubes Core radius Core length Primary system Pressure Inlet coolant temperature

Units

Data

MWth m m

2000 740 8.5 6

MPa ยฐC

6.89 245

Units

Data

mm kg/hole

12.8 2.3

Coolant Hole Coolant hole diameter Coolant flow rate

mm kg/s

14.8 1.4

Unit cell pitch

mm

27.5

Fuel Hole Fuel hole diameter Mass of UC

TABLE 14.6 Property Data for Problem 14.7 Parameters Thermal conductivity, k (W/mโ€งK) Dynamic viscosity, ฮผ (Pa s) Specific heat, cp (J/kgโ€งK) Coolant inlet sp. enthalpy, hin (kJ/kg) Single phase density, ฯ (kg/m3)

Fuel 23

Graphite 50

Coolant 0.59 101 ร— 10โˆ’6 5.0 ร— 103 1062.3 776.3

Questions 1. What is the radial peaking factor assuming an axial cosine and radial Bessel function flux shape (neglect extrapolation length)? For the following questions, assume that the total power of the fuel hole is 260 (kW/fuel hole) in the hot channel. 2. What is the coolant outlet temperature in the hot channel? 3. What is the coolant outlet enthalpy in the hot channel? 4. What is the outlet void fraction in the hot channel? 5. What is the nonboiling length in the hot channel? 6. What is the fuel centerline temperature at the position where bulk boiling starts in the hot channel 7. What is the pressure drop in the hot channel? To simplify you calculation, assume a uniform heat flux value that provides total power equivalent to the cosine shape heat flux distribution. Answers: 1. PR = 2.32 2. Tm,out = 284.8ยฐC 3. hout =1433.7 kJ/kg 4. ฮฑout = 0.726

382

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

5. ZOSB = 3.14 m 6. T CL (Z OSB ) = 599.0ยฐC 7. ฮ”P = 542 kPa

PROBLEM 14.7 SOLUTION Thermal Hydraulic Analysis of a Pressure Tube Reactor (Chapters 3, 8, 9, 10, 11, and Section 14.6) The operating conditions and the thermodynamic data for the saturated water coolant given by the problem statement are: โ€ข pressure, P = 6.89 MPa โ€ข length, L = 6 m โ€ข density, ฯf = 742.0 kg/m3, ฯg = 35.94 kg/m3, ฯl = 776.3 kg/m3 โ€ข specific enthalpy, hf = 1261.6 kJ/kg, hfg = 1511.9 kJ/kg, hin = 1062.3 kJ/kg โ€ข inlet temperature, Tin = 245ยบC โ€ข liquid specific heat, cp,l = 5.0 ร— 103 J/kg K โ€ข fuel hole diameter, Df = 0.0128 m โ€ข coolant hole diameter, Dc = 0.0148 m โ€ข unit cell pitch, P = 0.0275 m โ€ข fuel conductivity, kf = 23 W/m K โ€ข graphite conductivity, kg = 50 W/m K โ€ข liquid conductivity, kl = 0.59 W/m K โ€ข liquid viscosity, ยตl = 101ร—10โˆ’6 Pa s 1. What is the radial peaking factor assuming an axial cosine and radial Bessel function flux shape (neglect extrapolation length)? The radial peaking factor is given in Table 3.6 and may be verified by integrating the Bessel function. PR = 2.32

(1)

2. What is the coolant outlet temperature in the hot channel? The fuel hole power in the hot channel is given by the problem statement: qห™ = 260 kW

(2)

The mass flow rate per coolant hole is: mฬ‡CH = 1.4 kg/s

(3)

The Equivalent Annuli Model is applied using the triangle-shaped unit cell shown in Figure 14.16. It is geometrically evident that each unit cell covers one fuel hole and half a coolant hole. Therefore, the mass flow rate of the unit cell is half of the mass flow rate of the coolant hole.

383

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

This is also justified by the fact that a pressure tube contains 24 fuel holes and 12 coolant holes, which means 0.5 coolant holes for each fuel hole. Therefore, in the Equivalent Annuli Model illustrated in Figure 14.17, the mass flow rate is:

(4) To find the coolant exit temperature it is convenient to first find the coolant exit enthalpy, which then together with the coolant pressure determines the exit temperature. Hence, (5) hout together with P = 6.89 MPa yields (6) Note that Tout is at the saturation condition indicating that the exit coolant is in an equilibrium two-phase state. 3. What is the coolant outlet enthalpy in the hot channel? (5) 4. What is the coolant outlet void fraction in the hot channel? The exit equilibrium quality is: โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ โˆ’ โ„Ž๐‘“๐‘“ 1433.7 โˆ’ 1261.6 = = 0.1138 ๐‘ฅ๐‘ฅ๐‘’๐‘’,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = (7) โ„Ž๐‘“๐‘“๐‘“๐‘“ 1511.9 Assuming HEM, the exit void fraction is: ๐›ผ๐›ผ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ =

1 1 = = 0.726 ๐œŒ๐œŒ 1 โˆ’ ๐‘ฅ๐‘ฅ๐‘๐‘,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ 1 โˆ’ 0.1138 35.94 ๐‘”๐‘” 1 + ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ 1 + ๏ฟฝ ๐‘ฅ๐‘ฅ 0.1138 742 ๐œŒ๐œŒ๐‘“๐‘“ ๐‘๐‘,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ

(8)

5. What is the nonboiling length in the hot channel? The OSB location may be calculated using Equation 14.31b: โ„Ž๐‘“๐‘“ โˆ’ โ„Ž๐‘–๐‘–๐‘–๐‘– ๐ฟ๐ฟ โˆ’1 6 1261.6 โˆ’ 1062.3 ๏ฟฝ๏ฟฝ sin ๏ฟฝโˆ’1 + 2 ๏ฟฝ ๏ฟฝ๏ฟฝ = sinโˆ’1 ๏ฟฝโˆ’1 + 2 ๏ฟฝ ๐œ‹๐œ‹ โ„Ž๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ โˆ’ โ„Ž๐‘–๐‘–๐‘–๐‘– ๐œ‹๐œ‹ 1433.7 โˆ’ 1062.3 (9) = 0.140 m

๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ =

Calculating the OSB location from the inlet instead of the midplane yields the nonboiling length in the hot channel: ๐ฟ๐ฟ 6 (10) ๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ = ๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ + = 0.140 + = 3.14 m 2 2

384

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

6. What is the fuel centerline temperature at the position where bulk boiling starts in the hot channel? The power generated by one unit cell in the Equivalent Annuli Model represented in Figure 14.17 is: (11) ๐‘ž๐‘žฬ‡ = 260 kW This power follows a cosine axial distribution. The peak linear heat generation rate is: ๐‘ž๐‘ž0โ€ฒ =

๐‘ž๐‘žฬ‡ ๐œ‹๐œ‹ 260 ๐œ‹๐œ‹ ๏ฟฝ ๏ฟฝ= ๏ฟฝ ๏ฟฝ = 68.07 kW/m ๐ฟ๐ฟ 2 6 2

(12)

Now, let us evaluate the area occupied by each region in the unit cell. ๐œ‹๐œ‹๐ท๐ท๐‘“๐‘“2 ๐œ‹๐œ‹0.01282 = 1.287 ร— 10โˆ’4 m2 ๐ด๐ด๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ = 4 4

๐œ‹๐œ‹๐ท๐ท๐‘๐‘2 ๐œ‹๐œ‹0.01482 ๐ด๐ด๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ = 0.5 = = 8.602 ร— 10โˆ’5 m2 4 4

๐‘ƒ๐‘ƒ2 โˆš3 ๐ด๐ด๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”โ„Ž๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– = โˆ’ ๐ด๐ด๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ โˆ’ ๐ด๐ด๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ 4

0.02752 โˆš3 = โˆ’ 1.29 ร— 10โˆ’4 โˆ’ 8.60 ร— 10โˆ’5 4 = 1.127 ร— 10โˆ’4 m2

(13) (14)

(15)

In the Equivalent Annuli Model of Figure 14.17, the central fuel pin is surrounded by an annulus of graphite, which is surrounded by the coolant. The inner and outer radii of the equivalent graphite annulus are respectively: ๐‘…๐‘…๐‘’๐‘’,๐‘“๐‘“ =

๐‘…๐‘…๐‘’๐‘’,๐‘”๐‘” = ๏ฟฝ

๐ท๐ท๐‘“๐‘“ 0.0128 = = 0.00640 m 2 2

(1.287 ร— 10โˆ’4 + 1.127 ร— 10โˆ’4 ) ๏ฟฝ๐ด๐ด๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ + ๐ด๐ด๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”โ„Ž๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– ๏ฟฝ =๏ฟฝ ๐œ‹๐œ‹ ๐œ‹๐œ‹

(16)

(17)

= 0.008766 m

The fuel centerline temperature is to be evaluated by considering the sum of the thermal resistance terms between the fuel centerline and the coolant. For the coolant resistance one could consider either that of the Equivalent Annuli Model or that of the simple circular coolant channel. Below we do both to determine the difference. First adopting the full equivalent annulus geometry: The equivalent diameter for the equivalent annular coolant region is:

The mass flux is:

๐ท๐ท๐‘’๐‘’ =

4๐ด๐ด๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ 4(8.602 ร— 10โˆ’5 ) = = 0.006247 m 2๐œ‹๐œ‹๐‘…๐‘…๐‘’๐‘’,๐‘”๐‘” 2๐œ‹๐œ‹0.008766

385

(18)

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

๐บ๐บ =

The Reynolds number is:

The Prandtl number is:

๐‘š๐‘šฬ‡

๐ด๐ด๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘

=

0.7 = 8138 kgโ„๐‘š๐‘š2 ๐‘ ๐‘  8.602 ร— 10โˆ’5

๐บ๐บ๐ท๐ท๐‘’๐‘’ 8138(0.006247) = = 5.033 ร— 105 ๐œ‡๐œ‡๐‘™๐‘™ 101 ร— 10โˆ’6

Re =

๐‘๐‘๐‘๐‘,๐‘™๐‘™ ๐œ‡๐œ‡๐‘™๐‘™ (5.0 ร— 103 )(101 ร— 10โˆ’6 ) Pr = = = 0.8559 ๐‘˜๐‘˜๐‘™๐‘™ 0.59

(19)

(20)

(21)

The flow is turbulent, and the Dittus-Boelter/McAdams relation, Equation 10.91, may apply. Nu = 0.023Re0.8 Pr 0.4 = 0.023(5.033 ร— 105 )0.8 (0.8559)0.4 = 787.3 โ„=

๐‘˜๐‘˜๐‘™๐‘™ Nu 0.59 ร— 787.3 kW = = 74.36 2 ๐ท๐ท๐‘’๐‘’ 0.006247 m K

๐‘†๐‘† =

๐‘…๐‘…๐‘’๐‘’,๐‘”๐‘” 1 1 1 + In ๏ฟฝ ๏ฟฝ+ 4๐œ‹๐œ‹๐‘˜๐‘˜๐‘“๐‘“ 2๐œ‹๐œ‹๐‘˜๐‘˜๐‘”๐‘” ๐‘…๐‘…๐‘’๐‘’,๐‘“๐‘“ 2๐œ‹๐œ‹๐‘…๐‘…๐‘’๐‘’,๐‘”๐‘” โ„Ž

(22) (23)

Let us evaluate the sum of the thermal resistance terms between the fuel centerline and the coolant in the Equivalent Annuli Model.

=

(24)

1 1 0.008766 1 ๏ฟฝ+ + In ๏ฟฝ 4๐œ‹๐œ‹7 2๐œ‹๐œ‹23 0.00640 2๐œ‹๐œ‹0.008766 ร— 74360

= 0.01137 + 0.002177 + 0.0002442 = 0.01379 m K/W

Equation 14.24 provides the fuel centerline temperature, which we calculate at the OSB position: (25) ๐ฟ๐ฟ ๐œ‹๐œ‹๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ ๐œ‹๐œ‹๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ ๏ฟฝsin ๏ฟฝ ๏ฟฝ + 1๏ฟฝ + ๐‘†๐‘† cos ๏ฟฝ ๏ฟฝ๏ฟฝ ๐œ‹๐œ‹๐‘š๐‘š๐‘๐‘ฬ‡ ๐‘๐‘ ๐ฟ๐ฟ ๐ฟ๐ฟ 6 ๐œ‹๐œ‹0.140 ๐œ‹๐œ‹0.140 ๏ฟฝ + 1๏ฟฝ + 0.01379 cos ๏ฟฝ ๏ฟฝ๏ฟฝ = 1221โ„ƒ = 245 + 68070 ๏ฟฝ ๏ฟฝsin ๏ฟฝ ๐œ‹๐œ‹0.7(5000) 6 6 ๐‘‡๐‘‡๐‘๐‘๐‘๐‘ (๐‘ง๐‘ง๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ ) = ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– + ๐‘ž๐‘ž0โ€ฒ ๏ฟฝ

= 245 + 68070 {0.0005 + 0.0047} = 599ยบC

Second, considering the cylindrical coolant channel geometry: Re = ๏ฟฝ

0.0148 ๏ฟฝ = 5.033 ร— 105 = 1.19 ร— 106 0.006247

1.19 ร— 106 ๏ฟฝ 787.3 = 1566.7 5.033 ร— 105 0.59(1566.7) โ„= = 62.46 kWโ„m2 K 0.0148

๐‘๐‘๐‘ข๐‘ข = ๏ฟฝ

386

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

74360 ๏ฟฝ 0.0002 = 0.0047 ๐‘†๐‘† = 0.0035 + 0.0010 + ๏ฟฝ 63460

Hence, since the value of S is unchanged for this geometry from the full equivalent annulus geometry, the value of the fuel centerline temperature per Equation (25) remains the same as above for the full equivalent annulus geometry at 599ยบC. 7. What is the pressure drop in the hot channel? To simplify your calculation assume a uniform heat flux value that provides total power equivalent to the cosine shape heat flux distribution. The constant linear heat generation rate is: ๐‘ž๐‘žฬ‡ 260 = = 43.3 kW/m ๐ฟ๐ฟ 6

๐‘ž๐‘ž โ€ฒ =

(26)

The OSB location may be calculated applying a simple energy balance (Equation 14.29), where Z, written in capital letter, is measured from the core inlet. ๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚

๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ = The enthalpy distribution is: โ„Ž(๐‘๐‘) = โ„Ž๐‘–๐‘–๐‘–๐‘– +

๐‘ž๐‘ž โ€ฒ = โ„Ž๐‘“๐‘“ โˆ’ โ„Ž๐‘–๐‘–๐‘–๐‘– ๐‘š๐‘šฬ‡

(27)

43.3 = 1261.6 โˆ’ 1062.3 0.7

(28)

โŸน ๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ = 3.22 m

๐‘ž๐‘ž โ€ฒ 43.3 ๐‘๐‘ = 1062.3 + ๐‘๐‘ = 1062.3 + 61.86๐‘๐‘ kJ/kg ๐‘š๐‘šฬ‡ 0.7

(29)

The equilibrium quality distribution is: ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘๐‘)

โ„Ž(๐‘๐‘) โˆ’ โ„Ž๐‘“๐‘“ 1062.3 + 61.86๐‘๐‘ โˆ’ 1261.6 = โ„Ž๐‘“๐‘“๐‘“๐‘“ 1511.9 = โˆ’0.1318 + 0.04091๐‘๐‘

(30)

In the region above ZOSB the void fraction profile is determined, considering HEM, as: ๐›ผ๐›ผ(๐‘๐‘) =

Simplifying:

1 1 โˆ’ ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘๐‘) ๐œŒ๐œŒ๐‘”๐‘” 1+ ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘๐‘) ๐œŒ๐œŒ๐‘“๐‘“ = ๏ฟฝ1 +

[1 โˆ’ (โˆ’0.1318 + 0.04091๐‘๐‘)] 35.94 ๏ฟฝ โˆ’0.1318 + 0.04091๐‘๐‘ 742.0

๐›ผ๐›ผ(๐‘๐‘) =

199.3 โˆ’ 61.86๐‘๐‘ 116.4 โˆ’ 58.86๐‘๐‘ 387

โˆ’1

(31)

(32)

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

In the region above ZOSB the mixture density is: ๐œŒ๐œŒ๐‘š๐‘š (๐‘๐‘) = ๐œŒ๐œŒ๐‘“๐‘“ ๏ฟฝ1 โˆ’ ๐›ผ๐›ผ(๐‘๐‘)๏ฟฝ + ๐œŒ๐œŒ๐‘”๐‘” ๐›ผ๐›ผ(๐‘๐‘)

(33)

199.3 โˆ’ 61.86๐‘๐‘ 199.3 โˆ’ 61.86๐‘๐‘ ๏ฟฝ + 35.94 = 742.0 ๏ฟฝ1 โˆ’ kg/m3 116.4 โˆ’ 58.86๐‘๐‘ 116.4 โˆ’ 58.86๐‘๐‘

Simplifying and approximating:

๐œŒ๐œŒ๐‘š๐‘š (๐‘๐‘) =

At the channel outlet:

๐œŒ๐œŒ๐‘š๐‘š,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ = ๐œŒ๐œŒ๐‘š๐‘š (๐ฟ๐ฟ) =

โˆ’54349 kg/m3 116.4 โˆ’ 58.86๐‘๐‘

(34)

โˆ’54349 = 229.3 kg/m3 116.4 โˆ’ 58.86(6)

(35)

Acceleration pressure drop The acceleration pressure drop is given by Equation 14.38a: โˆ†๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = ๐บ๐บ 2 ๏ฟฝ

1

๐œŒ๐œŒ๐‘š๐‘š,๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ๐‘œ

โˆ’

1 1 1 ๏ฟฝ = 203.6 kPa ๏ฟฝ = 81382 ๏ฟฝ โˆ’ ๐œŒ๐œŒ๐‘™๐‘™ 229.3 776.0

(36)

Gravity pressure drop The gravity pressure drop is given by Equation 14.38b: ๐ฟ๐ฟ

6

๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚

3.22

โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘” = ๐œŒ๐œŒ๐‘™๐‘™ ๐‘”๐‘”๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ + ๏ฟฝ ๐œŒ๐œŒ๐‘š๐‘š (๐‘๐‘)๐‘”๐‘”๐‘”๐‘”๐‘”๐‘” = 776.3(9.81)3.22 + ๏ฟฝ

Integrating numerically or analytically and solving:

โˆ’54349 9.81๐‘‘๐‘‘๐‘‘๐‘‘ 116.4 โˆ’ 58.86๐‘๐‘

โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘” = 35.2 kPa

(37)

(38)

Friction pressure drop For calculating the friction pressure drop we have to abandon the Equivalent Annuli Model and refer to the original coolant hole, whose diameter is Dc. The liquid only Reynolds number is: Reโ„“๐‘œ๐‘œ =

๐บ๐บ๐ท๐ทc 8138(0.0148) = = 1.192 ร— 106 ๐œ‡๐œ‡โ„“ 101 ร— 10โˆ’6

(39)

The flow is turbulent, so the McAdams relation, Equation 9.87, may be applied to calculate the liquid-only friction factor: ๐‘“๐‘“โ„“๐‘œ๐‘œ = 0.184Reโˆ’0.20 = 0.184(1.192 ร— 106 )โˆ’0.20 = 0.0112 โ„“๐‘œ๐‘œ

(40)

The HEM two-phase friction multiplier can be expressed using Equation 11.82. ๐œŒ๐œŒ๐‘“๐‘“ 742.0 2 (๐‘๐‘) = 1 + ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘๐‘) ๏ฟฝ โˆ’ 1๏ฟฝ = 1 + ๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘๐‘) ๏ฟฝ ฮฆโ„“๐‘œ๐‘œ โˆ’ 1๏ฟฝ = 1 + 19.65๐‘ฅ๐‘ฅ๐‘’๐‘’ (๐‘๐‘) ๐œŒ๐œŒ๐‘”๐‘” 35.94

(41)

= 1 + 19.65(โˆ’0.1318 + 0.04091๐‘๐‘) = โˆ’1.1590 + 0.504๐‘๐‘

We may express the friction pressure drop re-arranging Equation 14.47.

388

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis ๐ฟ๐ฟ

๐‘“๐‘“โ„“๐‘œ๐‘œ ๐บ๐บ 2 ๐‘“๐‘“โ„“๐‘œ๐‘œ ๐บ๐บ 2 2 (๐‘๐‘)๐‘‘๐‘‘๐‘‘๐‘‘ โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ = ๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ + ๏ฟฝ ฮฆ๐‘™๐‘™๐‘™๐‘™ 2๐ท๐ทc ๐œŒ๐œŒ๐‘™๐‘™ 2๐ท๐ทc ๐œŒ๐œŒ๐‘“๐‘“

(42)

๐‘๐‘๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚๐‘‚ 6

0.0112(81382 ) 0.0112(81382 ) = 3.22 + ๏ฟฝ (โˆ’1.590 + 0.804๐‘๐‘)๐‘‘๐‘‘๐‘‘๐‘‘ 2(0.0148)776.3 2(0.0148)742.0 3.22

Integrating numerically or analytically and solving:

โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ = 302.8 kPa

(43)

โˆ†๐‘ƒ๐‘ƒ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก = โˆ†๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž + โˆ†๐‘ƒ๐‘ƒ๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘”๐‘” + โˆ†๐‘ƒ๐‘ƒ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ = 203.6 + 35.2 + 302.8 = 542 kPa

(44)

Total pressure drop

PROBLEM 14.8 QUESTION Maximum Cladding Temperature for a SFBR (Chapters 3, 10, and Section 14.6) Derive the relationship between the physical and extrapolated axial lengths for a SFBR core such that the maximum clad temperature occurs at the core outlet during steady-state operating conditions. This relationship describes the truncation of the assumed sinusoidal thermal flux variation along the core axis. Ignore the reactor blankets and assume the following remain constant along the axial length of the core: โ€“

Heated perimeter of channels

โ€“ Mass flux of coolant โ€“ Coolant specific heat โ€“

Film heat transfer coefficient

Answer: ๐ฟ๐ฟ โ‰ค

๐ฟ๐ฟ๐‘’๐‘’ โ„Ž๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘ƒ๐‘ƒโ„Ž 2๐ฟ๐ฟ๐‘’๐‘’ tanโˆ’1 ๏ฟฝ ๏ฟฝ ๐œ‹๐œ‹ ๐œ‹๐œ‹๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘

PROBLEM 14.8 SOLUTION

Maximum Cladding Temperature for a SFBR (Chapters 3, 10, and Section 14.6) As described in Section 14.5.1.2, the location of maximum cladding surface temperature may be determined by taking the derivative of Equation 14.19, and finding the maximum of that

389

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

function. This leads to Equation 14.22b: ๐‘ง๐‘ง๐‘๐‘ =

Where the heated perimeter is:

2๐œ‹๐œ‹๐‘…๐‘…๐‘๐‘๐‘๐‘ ๐ฟ๐ฟ๐‘’๐‘’ โ„Ž๐‘“๐‘“๐‘“๐‘“๐‘™๐‘™๐‘™๐‘™ ๐ฟ๐ฟ๐‘’๐‘’ tanโˆ’1 ๏ฟฝ ๏ฟฝ ๐œ‹๐œ‹ ๐œ‹๐œ‹๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ ๐‘ƒ๐‘ƒโ„Ž = 2๐œ‹๐œ‹๐‘…๐‘…๐‘๐‘๐‘๐‘

Hence: ๐‘ง๐‘ง๐‘๐‘ =

๐ฟ๐ฟ๐‘’๐‘’ โ„Ž๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘ƒ๐‘ƒโ„Ž ๐ฟ๐ฟ๐‘’๐‘’ tanโˆ’1 ๏ฟฝ ๏ฟฝ ๐œ‹๐œ‹ ๐œ‹๐œ‹๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘

(1)

(2)

(3)

The maximum cladding temperature occurs at the core outlet when: ๐‘ง๐‘ง๐‘๐‘ โ‰ฅ

Merging those two equations and re-arranging:

๐ฟ๐ฟ 2

๐ฟ๐ฟ๐‘’๐‘’ โ„Ž๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘ƒ๐‘ƒโ„Ž ๐ฟ๐ฟ๐‘’๐‘’ ๐ฟ๐ฟ tanโˆ’1 ๏ฟฝ ๏ฟฝโ‰ฅ ๐œ‹๐œ‹ ๐œ‹๐œ‹๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ 2 ๐ฟ๐ฟ โ‰ค

๐ฟ๐ฟ๐‘’๐‘’ โ„Ž๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘ƒ๐‘ƒโ„Ž 2๐ฟ๐ฟ๐‘’๐‘’ tanโˆ’1 ๏ฟฝ ๏ฟฝ ๐œ‹๐œ‹ ๐œ‹๐œ‹๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘

(4)

(5)

(6)

PROBLEM 14.9 QUESTION Flow-Levitated Control Rod in a PWR (Chapters 8, 9, 10, and Section 14.5) An engineer has recently proposed a novel control rod design based on flow levitation, to be used in PWRs. The control rod consists of a slug of absorbing material (boron carbide, B4C) that can slide within a guide tube (see Figure 14.18). During normal operating conditions, the control rod is held out of the core by the coolant flow. If the coolant flow suddenly decreases, the control rod falls back into the core. The idea is to create a scram system that would automatically (passively) shut down the reactor in case of loss of flow and loss of coolant accidents. The control rod slug diameter is D = 2 cm and its length is L = 3.7 m. The guide tube diameter is Do = 2.6 cm. The properties of B4C and coolant are reported in Table 14.7. 1. Calculate the minimum flow rate through the guide tube required for control rod levitation. Assume turbulent flow in the annulus between the guide tube and the control rod slug. Use a friction factor equal to 0.017, and form loss coefficients equal to 0.25 and 1.0 for the flow contraction and expansion at the bottom and top of the control rod slug, respectively. Ignore the presence of the stop. Assume steady state. 2 Now consider the operation of this control rod at reduced flow conditions, when it is fully

390

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

inserted in the core. In this situation, the control rod is exposed to a high neutron flux, and so significant heat is generated due to (n, ฮฑ) reactions on the B4C. Because the absorption cross section of B4C is so high, the neutrons only penetrate a few microns beneath the control rod surface. In fact, for all practical purposes, we can assume that the volumetric heat generation rate within the control rod is zero, and describe the situation simply by means of a surface heat flux. Calculate the maximum temperature in the control rod, assuming that the heat flux at its surface has a cosine axial shape with an average of 80 kW/m2. At the conditions of interest, here the coolant flow rate, inlet temperature, and pressure are 0.3 kg/s, 284 ยฐC, and 15.5 MPa, respectively. Answers: 1. แน = 0.54 kg/s 2. To,max = 298.3ยฐC

Figure 14.18 The flow-levitated control rod system (there is a mechanical stop to ensure that the control rod is not ejected by the flow).

TABLE 14.7 Property Data for Problem 14.9 Properties of Liquid Watera Density Viscosity Specific heat Thermal conductivity Properties of Boron Carbide

730 kg/m3 9 ร— 10โˆ’5Pa s 5500 J/kgK 0.56 W/mK

Density

2500 kg/m3

391

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

Specific heat Thermal conductivity a

950 J/kgK 35 W/mK

Assumed constant over the temperature and pressure range of interest.

PROBLEM 14.9 SOLUTION Flow-Levitated Control Rod in a PWR (Chapters 8, 9, 10, and Section 14.5) The following parameters are given by the problem statement. โ€“ control rod slug diameter, D = 0.02 m โ€“ control rod slug length, L = 3.7 m โ€“ โ€“ โ€“ โ€“ โ€“ โ€“ โ€“ โ€“

guide tube inner diameter, D0 = 0.026 m coolant density, ฯl = 730 kg/m3 coolant viscosity, ยตl = 9ร—10โˆ’5 Pa s coolant specific heat, cp,l = 5500 J/kg K coolant conductivity, kl = 0.56 W/m K control rod slug density, ฯCR = 2500 kg/m3 control rod slug specific heat, cp,CR = 950 J/kg K control rod slug conductivity, kCR = 35 W/m K

1. Calculate the minimum flow rate through the guide tube required for control rod levitation. The minimum flow rate through the guide tube required for control rod levitation is given by a balance between the four forces acting on the control rod slug, i.e., rod weight, pressure on the top and bottom faces of the rod, shear stress due to flow friction. The force balance is as follows:

ฯCR

ฯ€

4

D 2 Lg +

ฯ€

4

D 2 Pout =

ฯ€

4

D 2 Pin + ฯ„ ฯ€DL

(1)

where Pout is the pressure immediately above the slug, Pin is the pressure immediately before the slug, and ฯ„ is the shear stress on the lateral surface of the slug, which can be calculated from knowledge of the friction factor, f, as:

ฯ„=

f G2 8 ฯ

which is given as Equation 9.6

(2)

where the problem statement also gives f=0.017. G is the (unknown) mass flux in the annulus between the control rod and guide tube. Substituting Equation (2) into Equation (1) and rearranging the various terms, we get: L G2 (3) ฯ CR Lg = Pin โˆ’ Pout + f D 2ฯ

392

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

The pressure difference Pin - Pout can be found form the momentum equation for the coolant in the annulus: (4) where it was assumed that the acceleration pressure change is negligible because the fluid is incompressible and there is no net change in flow area. Now De=Do-D=0.6 cm is the annulus equivalent diameter, and again from the problem statement Kin=0.25 and Kout=1.0 are the form loss coefficient for the annulus entrance and exit, respectively. Substituting Equation (4) into Equation (3) and solving for G, we get: (5)

Then the mass flow rate in the guide tube is m๏€ฆ = G

ฯ€

( Do2 โˆ’ D 2 ) โ‰ˆ 0.54 kg/s.

4 Note that the Reynolds number in the annulus is Re=GDe/ยตโ‰ˆ167,000, therefore the assumption of turbulent flow is accurate. Finally, it is interesting to note that friction contributes to levitation of the control rod slug in two ways, i.e., it creates the shear stress applied to the lateral area of the control rod, and it decreases the pressure Pout applied to the top face of the control rod. This explains why the friction factor is present twice in Equation (5). 2. Calculate the maximum temperature in the control rod. In this section of the problem the following coolant properties are used: Tin = 284ยบC P = 15.5 MPa mฬ‡ = 0.3 kg/s Because the volumetric heat generation rate is zero, the temperature is constant along the radial coordinate within the control rod. That is, the solution of the heat conduction equation within the control rod is T(r)=To, where To is the temperature at the surface of the control rod. Because the heat flux and the coolant bulk temperature vary along the axial direction, To will also vary axially, and must be found from knowledge of the surface heat flux distribution and heat transfer coefficient in the annulus. The mass flux is: (6) The equivalent diameter, as given in Part 1 is: De = Do - D = 0.6 m

393

(7)

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

The inlet enthalpy and the saturated liquid enthalpy are: (8) (9) The exit enthalpy is given by the following energy balance: โ„Ž๐‘’๐‘’๐‘’๐‘’ = โ„Ž๐‘–๐‘–๐‘–๐‘– +

๐‘ž๐‘ž๏ฟฝโ€ณ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ ๐‘š๐‘šฬ‡

= 1253 +

80(3.7)๐œ‹๐œ‹(0.02) 0.3

= 1315 kJ/kg

(10)

The exit enthalpy is lower than hf. Therefore, the coolant is single phase. The Reynolds number is: (11) The Prandtl number is: (12) The flow is turbulent, and the Dittus-Boelter/McAdams relation, Equation 10.91, may be used to obtain the hat transfer coefficient since entry region effects can be neglected. Nu = 0.023Re0.8Pr0.4 = 0.023(9.22ร—104)0.8(0.8839)0.4 โ‰ˆ 205

= h

kl Nu 0.56(205) 19.1 kW m 2 K = = โˆ’3 6 ร—10 De

(13) (14)

As stated in the problem question the heat flux at the control rod surface has a cosine axial shape where:

qโ€ฒโ€ฒ( z ) =

ฯ€

2

โ€ฒโ€ฒ cos(ฯ€ z / L) qav

โ€ฒโ€ฒ =80 kW/m2 and the origin of the axial coordinate z was taken at the control rod with qav midplane. Therefore, the linear power profile is: ฯ€ 2D โ€ฒโ€ฒ cos(ฯ€ z / L) = qoโ€ฒ cos(ฯ€ z / L) q ' ( z ) = qโ€ฒโ€ฒ( z )ฯ€D = qav (15) 2 ฯ€ 2D โ€ฒโ€ฒ =7.89 kW/m is the linear power at the midplane. Set in these terms, the qav where qoโ€ฒ โ‰ก 2 problem is very similar to the calculation of the maximum outer temperature of the cladding in a fuel rod. The solution to this problem is in Section 14.5 of Chapter 14. Therefore, the location at which the surface temperature has a maximum, zmax, can be found directly from Equation 14.22b:

zmax =

๏ฃฎ DLh ๏ฃน tan โˆ’1 ๏ฃฏ ๏ฃบ ฯ€ ๏ฃฏ๏ฃฐ m๏€ฆ c p ๏ฃบ๏ฃป L

(16)

394

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

And the maximum surface temperature To,max can be found substituting Equation (16) into Equation 14.19 (taking the extrapolation length Le equal to the physical length of the control rod, L): (17)

where Tin is 284ยฐC.

PROBLEM 14.10 QUESTION Thermal Behavior of a Plate Fuel Element Following a Loss of Coolant (Chapters 8, 10, and Section 14.6) A reactor fuel assembly of the MIT research reactor is made up of plate elements as shown in Figure 14.19 (only 5 of 13 elements are shown). Suppose the flow channel between plates 2 and 3 is blocked at the inlet (Figure 14.20). What is the axial location of the maximum fuel temperature in plate 3? Solve this in the following steps: (Steps A and B can be solved independently of each other). A. Find Tw(z) where Tw, is the element 3 surface temperature on the cooled side (RHS). B. Find TFuelLHS(z)โˆ’Tw(z) where TFuelLHS(z) is the element 3 surface temperature on the insulated side (LHS). C. Find the axial location of the maximum TFuelLHS(z). In solving this problem, you can make the following assumptions: โ€“ All heat transfer through the fuel element is radial, that is, there is no axial heat transfer within the fuel element. โ€“ All of the energy generated in plate 3 flows radially to the right to the coolant channel between elements 3 and 4, that is, the left side of element 3 has an insulated boundary (see Figure 14.21). โ€“ For simplicity, we neglect the clad and take the elements as only composed of a metallic fuel. โ€“ Assume the flow is fully developed. Operating Conditions: โ€“

pressure, P = 55 psi (0.379 MPa)

โ€“

inlet temperature, Tin = 123.8 F (51 ยฐC)

โ€“

mass flow rate between plates 3 and 4, แน = 0.32 kg/s

โ€“

peak volumetric heat generation rate, ๐‘ž๐‘ž0โ€ด = (8.54 ร— 105 )cos ๏ฟฝ ๐ฟ๐ฟ ๏ฟฝ kW/m3

๐œ‹๐œ‹๐œ‹๐œ‹

395

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

Geometry: โ€“

axial heated length, L = 23 in (58.42 cm)

โ€“

channel width, s = 0.098 in (0.249 cm)

โ€“

plate width, t = 0.030 in (0.0762 cm)

โ€“

plate depth, w = 2.082 in (5.288 cm)

Properties: โ€“

coolant specific heat, cpฮน = 4.181 kJ/kg K

โ€“

coolant conductivity, kฮน = 0.644 W / m K

โ€“

coolant viscosity, ฮผฮน = 544ร—10โˆ’6 Pa s

โ€“

coolant density, ฯฮน = 987.2 kg/m3

โ€“

Prandtl number, Pr = 3.597

โ€“

fuel conductivity, kfuel = 41.2 W/m K

Answers: 3qโ€ด wtL

ฯ€z

0 ๏ฟฝsin ๏ฟฝ L ๏ฟฝ + 1๏ฟฝ + A. Tw (z) = Tin + 2ฯ€m ฬ‡ c ,ฮน p

qโ€ด(z)t2

B. TFuelLHS (z) โˆ’ Tw (z) = 2k

C. z = 2.7 cm

ฯ€z L

tqโ€ด 0 cos h

fuel

FIGURE 14.19 MIT research reactor fuel plate elements (only 5 of 13 elements are shown).

396

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

FIGURE 14.20 Fuel plate elements with flow blockage between 2 and 3.

FIGURE 14.21 Geometry of fuel plate elements.

PROBLEM 14.10 SOLUTION Thermal Behavior of a Plate Fuel Element Following a Loss of Coolant (Chapters 8, 10, and Section 14.6) The following parameters are given by the problem statement: โ€“ โ€“ โ€“ โ€“ โ€“ โ€“ โ€“ โ€“ โ€“ โ€“

inlet temperature, Tin = 51ยฐC mass flow rate between plates 3 and 4, แน = 0.32 kg/s peak volumetric heat generation rate, ๐‘ž๐‘ž0โ€ด = (8.54 ร— 108 ) W/m3 axial heated length, L = 0.5842 m channel width, s = 0.00249 m plate width, t = 0.000762 m plate depth, w = 0.05288 m coolant specific heat, cp,ฮน = 4181 J/kg K coolant conductivity, kฮน = 0.644 W/m K coolant viscosity, ฮผฮน = 544ร—10โˆ’6 Pa s

397

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

โ€“ โ€“ โ€“

coolant density, ฯฮน = 987.2 kg/m3 Prandtl number, Pr = 3.597 fuel conductivity, kfuel = 41.2 W/m K

A. Find Tw(z), where Tw is the element 3 surface temperature on the cooled side (RHS). The volumetric heat generation rate is radially constant and axially variable with a cosine distribution. ๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘ž๐‘ž โ€ณ (๐‘ง๐‘ง) = ๐‘ž๐‘ž0โ€ด cos ๏ฟฝ ๏ฟฝ (1) ๐ฟ๐ฟ The heat produced by a slice of fuel of thickness dz around the axial position z satisfies the following balance. ๐‘ž๐‘ž โ€ณ (๐‘ง๐‘ง)๐‘ค๐‘ค ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐‘ž๐‘ž โ€ด (๐‘ง๐‘ง) ๐‘ก๐‘ก ๐‘ค๐‘ค ๐‘‘๐‘‘๐‘‘๐‘‘

(2)

๐‘ž๐‘ž โ€ณ (๐‘ง๐‘ง) = ๐‘ž๐‘ž โ€ด (๐‘ง๐‘ง) ๐‘ก๐‘ก = ๐‘ก๐‘ก๐‘ก๐‘ก0โ€ด cos ๏ฟฝ

(3)

Therefore, the axial heat flux distribution is:

๐œ‹๐œ‹๐œ‹๐œ‹ ๏ฟฝ ๐ฟ๐ฟ

Let us assume, for simplicity, that the coolant channel between elements 3 and 4 removes all the heat generated by element 3 and half of the heat generated by element 4. Therefore, for that coolant channel, the peak linear heat generation rate is: 3 3 โ€ฒ (4) ๐‘ž๐‘ž0,๐‘๐‘โ„Ž34 = ๐‘ค๐‘ค๐‘ž๐‘ž0โ€ณ (๐‘ง๐‘ง) ๐‘ค๐‘ค๐‘ž๐‘ž0โ€ด 2 2

The coolant bulk temperature, for the channel between elements 3 and 4, is given by Equation 14.14: โ€ฒ ๐‘ž๐‘ž0,๐‘๐‘โ„Ž34 ๐œ‹๐œ‹๐œ‹๐œ‹ 3๐‘ค๐‘ค๐‘ž๐‘ž0โ€ด ๐ฟ๐ฟ ๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘‡๐‘‡๐‘š๐‘š (๐‘ง๐‘ง) = ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– ๏ฟฝ1 + sin ๏ฟฝ ๏ฟฝ๏ฟฝ = ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– + ๏ฟฝ1 + sin ๏ฟฝ ๏ฟฝ๏ฟฝ (5) ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ , ๐œ„๐œ„๐œ„๐œ„ ๐ฟ๐ฟ 2๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ , ๐œ„๐œ„๐œ„๐œ„ ๐ฟ๐ฟ The equivalent diameter of the coolant channel, taking into account the heated perimeter, is:

The mass flux is:

๐ท๐ท๐‘’๐‘’ = ๐บ๐บ =

4๐‘ค๐‘ค๐‘ค๐‘ค = 2๐‘ ๐‘  = 2(0.00249) = 0.00498 m 2๐‘ค๐‘ค

๐‘š๐‘šฬ‡ 0.32 = = 2430 kg/m2 s ๐‘ค๐‘ค๐‘ค๐‘ค 0.05288(0.00249)

(6)

(7)

The Reynolds number for that coolant channel is: Re =

๐บ๐บ๐ท๐ท๐‘’๐‘’ 2430(0.00498) = = 2.225 ร— 104 ๐œ‡๐œ‡๐œ‡๐œ‡ 544 ร— 10โˆ’6

(8)

The flow is turbulent, and the Dittus-Boelter/McAdams relation, Equation 10.91, may be used to calculate the heat transfer coefficient. Nu = 0.023Re0.8 Pr 0.4 = 0.023(2.225 ร— 104 )0.8 (3.597)0.4 = 115.3 โ„=

๐‘˜๐‘˜๐‘˜๐‘˜Nu 0.644(115.3) W = = 14.91 ร— 103 2 ๐ท๐ท๐‘’๐‘’ 0.00498 m K 398

(9) (10)

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

The wall temperature is calculated rearranging Equation 14.17: ๐‘‡๐‘‡๐‘ค๐‘ค (๐‘ง๐‘ง) = ๐‘‡๐‘‡๐‘š๐‘š (๐‘ง๐‘ง)

๐‘ž๐‘ž โ€ณ(๐‘ง๐‘ง) โ„Ž

๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘ก๐‘ก๐‘ก๐‘ก0โ€ด cos ๏ฟฝ ๏ฟฝ 3๐‘ž๐‘ž0โ€ด ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค ๐œ‹๐œ‹๐œ‹๐œ‹ ๐ฟ๐ฟ ๏ฟฝ1 + sin ๏ฟฝ ๏ฟฝ๏ฟฝ + = ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– + ๐‘š๐‘šฬ‡๐‘๐‘๐‘๐‘ , ๐œ„๐œ„๐œ„๐œ„ ๐ฟ๐ฟ โ„Ž

(11)

B. Find TFuelLHS(z) โ€“ Tw(z), where TFuelLHS(z) is the element 3 surface temperature on the insulated side (LHS). The volumetric heat generation rate qโ€ด(z) is radially constant, so the heat transfer through plate 3 may be calculated integrating Equation 8.30 as follows. ๐‘˜๐‘˜

๐œ•๐œ•๐œ•๐œ•(๐‘ง๐‘ง, ๐‘ฅ๐‘ฅ) + ๐‘ž๐‘ž โ€ด (๐‘ง๐‘ง)๐‘ฅ๐‘ฅ = ๐ถ๐ถ1 ๐‘‘๐‘‘๐‘‘๐‘‘

(12)

where C1 is a constant that can be determined applying a boundary condition. In this case, the boundary condition is zero heat flux on the left side of the plate, at x = 0. ๐‘˜๐‘˜

๐œ•๐œ•๐œ•๐œ•(๐‘ง๐‘ง, ๐‘ฅ๐‘ฅ) |๐‘ฅ๐‘ฅ = 0 = 0 โ‡’ ๐ถ๐ถ1 = 0 ๐œ•๐œ•๐œ•๐œ•

(13)

The heat transfer equation is therefore:

๐œ•๐œ•๐œ•๐œ•(๐‘ง๐‘ง, ๐‘ฅ๐‘ฅ) + ๐‘ž๐‘ž โ€ด (๐‘ง๐‘ง)๐‘ฅ๐‘ฅ = 0 ๐œ•๐œ•๐œ•๐œ•

๐‘˜๐‘˜

(14)

Integrating between the left and the right of plate 3, and assuming constant fuel conductivity: ๐‘˜๐‘˜๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๏ฟฝ๐‘‡๐‘‡๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น (๐‘ง๐‘ง) โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค (๐‘ง๐‘ง)๏ฟฝ = ๐‘ž๐‘ž โ€ด (๐‘ง๐‘ง) ๐‘‡๐‘‡๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น (๐‘ง๐‘ง) โˆ’ ๐‘‡๐‘‡๐‘ค๐‘ค (๐‘ง๐‘ง) = ๐‘ž๐‘ž โ€ด (๐‘ง๐‘ง)

๐‘ก๐‘ก 2 2

๐‘ก๐‘ก 2 2๐‘˜๐‘˜๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“

(15)

(16)

C. Find the axial location of the maximum TFuelLHS(z). Combining the results of part A and part B ๐‘‡๐‘‡๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น (๐‘ง๐‘ง) = ๐‘‡๐‘‡๐‘ค๐‘ค (๐‘ง๐‘ง) + ๐‘ž๐‘ž โ€ด (๐‘ง๐‘ง)

๐‘ก๐‘ก 2 2๐‘˜๐‘˜๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“

๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘ก๐‘ก๐‘ก๐‘ก0โ€ด cos ๏ฟฝ ๐ฟ๐ฟ ๏ฟฝ 3๐‘ž๐‘ž0โ€ด ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค ๐œ‹๐œ‹๐œ‹๐œ‹ ๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘ก๐‘ก 2 โ€ด = ๐‘‡๐‘‡๐‘–๐‘–๐‘–๐‘– + ๏ฟฝ1 + sin ๏ฟฝ ๏ฟฝ๏ฟฝ + + ๐‘ž๐‘ž0 cos ๏ฟฝ ๏ฟฝ ฬ‡ ๐‘๐‘๐‘๐‘ , ๐œ„๐œ„๐œ„๐œ„ ๐ฟ๐ฟ โ„Ž ๐ฟ๐ฟ 2๐‘˜๐‘˜๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ 2๐‘š๐‘š

= 51 +

+

(17)

8

3(8.54 ร— 10 )(0.05288)(0.000762)(0.5842) ๐œ‹๐œ‹๐œ‹๐œ‹ ๏ฟฝ1 + sin ๏ฟฝ ๏ฟฝ๏ฟฝ 2(0.32)4181๐œ‹๐œ‹ 0.5842

๐œ‹๐œ‹๐œ‹๐œ‹ 2 ๏ฟฝ 0.5842 + 8.54 ร— 108 cos ๏ฟฝ ๐œ‹๐œ‹๐œ‹๐œ‹ ๏ฟฝ 0.000762 0.5842 2(41.2)

(0.000762)(8.54 ร— 108 ) cos ๏ฟฝ 14.91 ร— 103

399

rev 112420


Chapter 14 - Single Heated Channel: Steady-State Analysis

= 58.17 + 49.65 cos(5.378๐‘ง๐‘ง) + 7.174 sin(5.378๐‘ง๐‘ง)

The plot of this function is shown in Figure SM-14.4:

FIGURE SM-14.4 LHS fuel temperature as a function of z

The location of the maximum wall temperature can be determined taking the first derivative of the axial distribution function and setting it to zero. ๐‘‘๐‘‘๐‘‘๐‘‘๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น๐น (๐‘ง๐‘ง) = 38.58 cos(5.378๐‘ง๐‘ง) โˆ’ 267.0 sin(5.378๐‘ง๐‘ง) = 0 ๐‘‘๐‘‘๐‘‘๐‘‘ 38.58 cos(5.378๐‘ง๐‘ง) = 267.0 sin(5.378๐‘ง๐‘ง)

(18)

tan(5.378๐‘ง๐‘ง) = 0.1445

Solving for z: ๐‘ง๐‘ง =

1 arctan(0.1445) = 0.027 m 5.378

400

(19)

rev 112420


Turn static files into dynamic content formats.

Createย aย flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.