Clase 04 teorema de castigliano

Page 1

Análisis Estructural Teorema de Castigliano Carlos Alberto Riveros Jerez

Departamento de Ingeniería Sanitaria y Ambiental Facultad de Ingeniería Obras Civiles – Ingeniería Sanitaria UdeA


Teorema de Castigliano “La componente de desplazamiento del punto de aplicación de una acción sobre una estructura en la dirección de dicha acción, se puede obtener evaluando la primera derivada parcial de la energía interna de deformación de la estructura con respecto a la acción aplicada”. 2 2 2 ∂w ∂  N 2  M V T ∆P = = dx + ∫ dx + ∫ dx + ∫ dx  ∫ ∂P ∂P  2 AE 2 EI 2G ( A / α ) 2GJ 

Obras Civiles – Ingeniería Sanitaria UdeA


Teorema de Castigliano Tomando como referencia: we = 1/ 2 fi .Di

Obras Civiles – Ingeniería Sanitaria UdeA


Teorema de Castigliano

Ejemplo 1 Calcular la rotación en el punto medio (c) de la viga en voladizo.

∂w M ∂M θC = =∫ dx ∂m EI ∂m Obras Civiles – Ingeniería Sanitaria UdeA


Teorema de Castigliano

Solución 1: corte 1-1 ⌢ +∑ M

1 1

= 0;

M1 = −Px ∂M =0 ∂m

Obras Civiles – Ingeniería Sanitaria UdeA

Px + M1 = 0


Teorema de Castigliano

Solución 1: corte 2-2 ⌢ +∑ M

2 2

= 0;

Px + m + M2 = 0

M 2 = − [ m + Px ]

∂M = −1 ∂m

Obras Civiles – Ingeniería Sanitaria UdeA


Teorema de Castigliano

Solución 1 1 θC = EI

L L 2   ∫ ( −Px )( 0 ) dx + ∫ ( −Px )( −1) dx   0  L2

1 P  2 L2  θC = ×  L −  EI 2  4

3PL2 θC = 8EI

Obras Civiles – Ingeniería Sanitaria UdeA


Ejemplo 2 Para la viga simplemente apoyada que soporta la carga lineal w, determinar el valor de la deflexión en el centro de la luz.

∂w M ∂M ∆c ↓= =∫ dx ∂P EI ∂P Obras Civiles – Ingeniería Sanitaria UdeA


Solución 2 ⌢ + ∑ 11 = 0;

wx 2  wL P  − + × x + + M1 2 2  2

wx 2  wL P  M1 =  + × x − 2 2 2 

∂M 1 = x ∂P 2 2 ∆C ↓= EI

L2

∫ 0

w 2  wL x − x  ( 0.5 x ) dx  2 2  

( )

 L  wL 2 ∆C ↓= 2  3  4 

3

w ( 2) − L

4

5wL3 ∆C ↓= 384EI Obras Civiles – Ingeniería Sanitaria UdeA

4

4

    


Ejemplo 3 Calcular el desplazamiento en el extremo libre B de la viga en voladizo.

∂U M ∂M ∆B ↓= =∫ dx ∂P EI ∂P

Obras Civiles – Ingeniería Sanitaria UdeA


Solución 3 corte 1-1 ∩ +

∑M

1 1

wX 2 = 0 : PX + + M1 = 0 2

 wX 2  M1 = −  PX +  2  

∂M = −X ∂P

Obras Civiles – Ingeniería Sanitaria UdeA


Solución 3 L 1  wX 2  ∆B ↓=  − PX −  ( − X ) dx ∫ 2  EI 0  L 1  wX 3  2 =  PX +  dx ∫ 2  EI 0 

L

1  PX 3 wX 4  = +   EI  3 8 0

1  PL3 wL4  = +   EI  3 8 

Obras Civiles – Ingeniería Sanitaria UdeA


ESTRUCTURAS ESTATICAMENTE INDETERMINADAS Si B se mueve todo se mueve վ y no hay problema.

Si C se mueve վ, se tienen que distribuir los esfuerzos en A y B.

Obras Civiles – Ingeniería Sanitaria UdeA


ESTRUCTURAS ESTATICAMENTE INDETERMINADAS

Obras Civiles – Ingeniería Sanitaria UdeA


ESTRUCTURAS ESTATICAMENTE INDETERMINADAS

Obras Civiles – Ingeniería Sanitaria UdeA


ESTRUCTURAS ESTATICAMENTE INDETERMINADAS Indeterminada

Para convertirla en determinada: (Se quita el apoyo simple)

Obras Civiles – Ingeniería Sanitaria UdeA


ESTRUCTURAS ESTATICAMENTE INDETERMINADAS Una estructura es estáticamente indeterminada si no pueden ser analizados sus aspectos internos y reacciones por las ecuaciones de equilibrio estático. • Método de carga unitaria • Método de Castigliano Cualquier estructura puede convertirse en estáticamente determinada suprimiendo las acciones sobrantes o híper estáticas. Obras Civiles – Ingeniería Sanitaria UdeA


ESTRUCTURAS ESTATICAMENTE INDETERMINADAS

GIE = 2 NE + NR − 2 NN − C NE = 3

GIE = 2

NR = 4 NN = 4

Obras Civiles – Ingeniería Sanitaria UdeA


ESTRUCTURAS ESTATICAMENTE INDETERMINADAS

Estructura primaria

∆1 = 0 = ∆1' + ∆11 + ∆12 ∆ 2 = 0 = ∆ '2 + ∆ 21 + ∆ 22

Obras Civiles – Ingeniería Sanitaria UdeA


ESTRUCTURAS ESTATICAMENTE INDETERMINADAS

Definición coeficientes flexibilidad ∆11 = ∂11 X 1 ∆12 = ∂12 X 2 ∆ 21 = ∂ 21 X1 ∆ 22 = ∂ 22 X 2

∆1' + ∂11 X 1 + ∂12 X 2 = 0 ∆ '2 + ∂ 21 X 1 + ∂ 22 X 2 = 0

m1(Se quitan P, Q ∧ w) m2(Se quitan P, Q ∧ w)

Obras Civiles – Ingeniería Sanitaria UdeA


ESTRUCTURAS ESTATICAMENTE INDETERMINADAS • Por Carga Unitaria: Mm1 dx EI

∆1' = ∫ ∆ '2 = ∫

Mm2 dx EI

m1m2 dx EI mm ∂11 = ∫ 1 1 dx EI

∂12 = ∫

m2 m1 dx EI mm = ∫ 2 2 dx EI

∂ 21 = ∫

∂ 22

• Por Método Castigliano ∂w ∆1 = =0 ∂X 1

∂w ∆2 = =0 ∂X 2

……

∂w ∆n = ∂X n

Obras Civiles – Ingeniería Sanitaria UdeA


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.