Miguel godinezddddd

Page 1

Nombre miguel eliseo godíNez goNzález

CatedrátiCo saNdra ralda.

Curso eleCtriCidad seCCióN a


CeNtral hidroeléCtriCa Corte transversal de una represa hidroeléctrica. En una central hidroeléctrica se utiliza energía hidráulica para la generación de energía eléctrica. Son el resultado actual de la evolución de los antiguos molinos que aprovechaban la corriente de los ríos para mover una rueda. En general, estas centrales aprovechan la energía potencial gravitatoria que posee la masa de agua de un cauce natural en virtud de un desnivel, también conocido como salto geodésico. El agua en su caída entre dos niveles del cauce se hace pasar por una turbina hidráulica la cual transmite la energía a un generador donde se transforma en energía eléctrica.

Aprovechamiento de la energía hidráulica. Los antiguos aprovechaban ya la energía del agua; utilizaban ruedas hidráulicas para moler trigo. Sin embargo, la posibilidad de emplear esclavos y animales de carga retrasó su aplicación generalizada hasta el siglo XII.


Durante la Edad Media, las enormes ruedas hidráulicas de madera desarrollaban una potencia máxima de cincuenta caballos. La energía hidroeléctrica debe su mayor desarrollo al ingeniero civil británico John Smeaton, que construyó por primera vez grandes ruedas hidráulicas de hierro colado. La hidroelectricidad tuvo mucha importancia durante la Revolución Industrial. Impulsó a las industrias textiles y del cuero y los talleres de construcción de máquinas a principios del siglo XIX. Aunque las máquinas de vapor ya estaban perfeccionadas, el carbón era escaso y la madera poco satisfactoria como combustible. La energía hidráulica ayudó al crecimiento de las nuevas ciudades industriales que se crearon en Europa y América hasta la construcción de canales a mediados del siglo XIX, que proporcionaron carbón a bajo precio. Las presas y los canales eran necesarios para la instalación de ruedas hidráulicas sucesivas cuando el desnivel era mayor de cinco metros. La construcción de grandes presas de contención todavía no era posible; el bajo caudal de agua durante el verano y el otoño, unido a las heladas en invierno, obligaron a sustituir las ruedas hidráulicas por máquinas de vapor en cuanto se pudo disponer de carbón. Las formas más frecuentemente utilizadas para explotar la energía hidráulica son: Desvío del cauce de agua. El principio fundamental de esta forma de aprovechamiento hidráulico de los ríos se basa en el hecho de que la velocidad del flujo de estos es básicamente constante a lo largo de su cauce, el cual siempre es descendente. Este hecho revela que la energía potencial no es íntegramente convertida en energía cinética como sucede en el caso de una masa en caída libre, la cual se acelera, sino que ésta es invertida en las llamadas pérdidas, es decir, la energía potencial se "pierde" en vencer las fuerzas de fricción con el suelo, en el transporte de partículas, en formar remolinos, etc.. Entonces esta energía potencial podría ser aprovechada si se pueden evitar las llamadas pérdidas y hacer pasar al agua a través de una turbina. El conjunto de obras que permiten el aprovechamiento de la energía anteriormente mencionada reciben el nombre de central hidroeléctrica o Hidráulica. El balance de energía arriba descrito puede ser ilustrado mejor a través del principio de Bernoulli.


Interceptación de la corriente del agua Este método consiste en la construcción de una represa o embalse de agua que retenga el cauce de agua causando un aumento del nivel del río en su parte anterior a la presa de agua, el cual podría eventualmente convertirse en un embalse. El dique establece una corriente de agua no uniforme y modifica la forma de la superficie de agua libre del río antes y después de éste, que toman forma de las llamadas curvas de remanso. El establecimiento de las curvas de remanso determinan un nuevo salto geodésico aprovechable de agua. Características de una central hidroeléctrica.

Presa Hidroeléctrica en Grandas de Salime (Asturias, España).

Casa de Máquinas Central Hidroeléctrica del Guavio, Colombia. Las dos características principales de una central hidroeléctrica, desde el punto de vista de su capacidad de generación de electricidad son: •

La potencia, que está en función del desnivel existente entre el nivel medio del embalse y el nivel medio de las aguas debajo de la central, y del caudal máximo turbinable, además de las características de las turbinas y de los generadores usados en la transformación.


La energía garantizada en un lapso de tiempo determinado, generalmente un año, que está en función del volumen útil del embalse, y de la potencia instalada.

La potencia de una central puede variar desde unos pocos MW (megavatios), como en el caso de las mini centrales hidroeléctricas, hasta 14.000 MW como en Paraguay y Brasil donde se encuentra la segunda mayor central hidroeléctrica del mundo (la mayor es la Presa de las Tres Gargantas, en China, con una potencia de 22.500 MW), la Itaipú que tiene 20 turbinas de 700 MW cada una. Las centrales hidroeléctricas y las centrales térmicas (que usan combustibles fósiles) producen la energía eléctrica de una manera muy similar. En ambos casos la fuente de energía es usada para impulsar una turbina que hace girar un generador eléctrico, que es el que produce la electricidad. Una Central térmica usa calor para, a partir de agua, producir el vapor que acciona las paletas de la turbina, en contraste con la planta hidroeléctrica, la cual usa la fuerza del agua directamente para accionar la turbina.

Un ejemplo de estas es el Proyecto Hidroeléctrico Palomino,1 ubicado en las inmediaciones de los municipios de Padre Las Casas, Provincia Azua y Bohechio, Provincia San Juan, República Dominicana, el proyecto hidroeléctrico Palomino le ahorrará al país alrededor de 400 mil barriles de petróleo al año que, a la tasa actual, representa 60 millones de dólares por ahorro de la factura petrolera. Potencia de una central hidroeléctrica La potencia de una central hidroeléctrica se mide generalmente en Megavatios (MW) y se calcula mediante la fórmula siguiente:

donde: •

Pe = potencia en vatios (W)

ρ = densidad del fluido en kg/m³

ηt = rendimiento de la turbina hidráulica (entre 0,75 y 0,94)

ηg = rendimiento del generador eléctrico (entre 0,92 y 0,97)


ηm = rendimiento mecánico del acoplamiento turbina alternador (0,95/0.99)

Q = caudal turbinable en m3/s

H = desnivel disponible en la presa entre aguas arriba y aguas abajo, en metros (m)

En una central hidroeléctrica se define: •

Potencia media: potencia calculada mediante la fórmula de arriba considerando el caudal medio disponible y el desnivel medio disponible.

Potencia instalada: potencia nominal de los grupos generadores instalados en la central.

Tipos de centrales hidroeléctricas Según su concepción arquitectónica •

Centrales al aire libre, al pie de la presa, o relativamente alejadas de esta. Están conectadas por medio de una tubería en presión.

Centrales en caverna, generalmente conectadas al embalse por medio de túneles, tuberías en presión, o por la combinación de ambas.

Represa de Itapuá, Brasil y Paraguay. La central hidroeléctrica que produce más energía en el mundo.2

Según su régimen de flujo


Bolívar Venezuela. •

Centrales de agua fluyente.

También denominadas centrales de filo de agua o de pasada, utilizan parte del flujo de un río para generar energía eléctrica. Operan en forma continua porque no tienen capacidad para almacenar agua, no disponen de embalse. Turbinan el agua disponible en el momento, limitadamente a la capacidad instalada. En estos casos las turbinas pueden ser de eje vertical, cuando el río tiene una pendiente fuerte u horizontal cuando la pendiente del río es baja.

Centrales de embalse.

Es el tipo más frecuente de central hidroeléctrica. Utilizan un embalse para reservar agua e ir graduando el agua que pasa por la turbina. Es posible generar energía durante todo el año si se dispone de reservas suficientes. Requieren una inversión mayor. • •

Centrales de regulación. Almacenamiento del agua que fluye del río capaz de cubrir horas de consumo. Centrales de bombeo o reversibles

Una central hidroeléctrica reversible es una central hidroeléctrica que además de poder transformar la energía potencial del agua en electricidad, tiene la capacidad de hacerlo a la inversa, es decir, aumentar la energía potencial del agua (por ejemplo subiéndola a un embalse) consumiendo para ello energía eléctrica. De esta manera puede utilizarse como un método de almacenamiento de energía (una especie de batería gigante). Están concebidas para satisfacer la demanda energética en horas pico y almacenar energía en horas valle. Aunque lo habitual es que esta centrales turbinen/bombeen el agua entre dos embalse a distinta altura, existe un caso particular llamado centrales de


bombeo purodonde el embalse superior se sustituye por un gran depósito cuya única aportación de agua es la que se Según su altura de caída del agua •

Centrales de alta presión

Que corresponden con el high head, y que son las centrales de más de 200 m de caída del agua, por lo que solía corresponder con centrales con turbinas Pelton. •

Centrales de media presión

Son las centrales con caída del agua de 20 a 200 m, siendo dominante el uso de turbinas Francis, aunque también se puedan usar Kaplan. •

Centrales de baja presión

Que corresponden con el low head, son centrales con desniveles de agua de menos de 20 m, siendo usadas las turbinas Kaplan.

Centrales de muy baja presión

Son centrales correspondientes con nuevas tecnologías, pues llega un momento en el cuál las turbinas Kaplan no son aptas para tan poco desnivel. Serían en inglés lasvery low head, y suelen situarse por debajo de los 4m.

Otros tipos de centrales hidroeléctricas. •

Centrales mareomotrices

Artículo principal: Energía mareomotriz. Utilizan el flujo y reflujo de las mareas. Pueden ser ventajosas en zonas costeras donde las diferencias entre las mareas son amplias y las condiciones morfológicas de la costa permiten la construcción de una presa que corta la entrada y salida de la marea en una bahía. Se genera energía tanto en el momento del llenado como en el momento del vaciado de la bahía.

Centrales mareomotrices sumergidas.

Utilizan la energía de las corrientes submarinas. En 2002, en Gran Bretaña se implementó la primera de estas centrales a nivel experimental. •

Centrales que aprovechan el movimiento de las olas.


Este tipo de central es objeto de investigación desde la década de los 80. A inicios de agosto de 1995, el "Ocean Swell Powered Renewable Energy (OSPREY)" construyó la primera central que utiliza la energía de las olas en el norte de Escocia. La potencia de esta central es de 2 MW. Lamentablemente fue destruida un mes más tarde por un temporal. Los tipos de turbinas que hay son Francis, Turgo, Kaplan y Pelton. Para la transformación de la energía mecánica en energía eléctrica.

Partes de una central hidráulica •

Tubería forzada y o canal

Presa

Turbina

Generador

Transformador

Líneas eléctricas

Compuertas hidráulicas y Válvulas hidráulicas

Rejas y limpia rejas

Embalse

Casa de turbinas

Funcionamiento.


Turbina hidráulica y generador eléctrico. El tipo de funcionamiento de una central hidroeléctrica puede variar a lo largo de su vida útil. Las centrales pueden operar en régimen de: • •

generación de energía de base; generación de energía en períodos de punta. Estas a su vez se pueden dividir en:

centrales tradicionales;

centrales reversibles o de bombeo.

La demanda de energía eléctrica de una ciudad, región, o país, tiene una variación a lo largo del día. Esta variación es función de muchos factores, entre los que se destacan: •

tipos de industrias existentes en la zona, y turnos que estas realizan en su producción;

tipo de cocina doméstica que se utiliza más frecuentemente;

tipo de calentador de agua que se permite utilizar;

la estación del año;

la hora del día en que se considera la demanda.

La generación de energía eléctrica debe seguir la curva de demanda, así, a medida que aumenta la potencia demandada deberá incrementarse el caudal turbinado, o iniciar la generación con unidades adicionales, en la misma central, e incluso iniciando la generación en centrales reservadas para estos períodos.

Impactos ambientales potenciales.


Los potenciales impactos ambientales de los proyectos hidroeléctricos son siempre significativos. Sin embargo existen muchos factores que influyen en la necesidad de aplicar medidas de prevención en todo. Principalmente: La construcción y operación de la represa y el embalse constituyen la fuente principal de impactos del proyecto hidroeléctrico. 3 Los proyectos de las represas de gran alcance pueden causar cambios ambientales irreversibles, en una área geográfica muy extensa; por eso, tienen el potencial de causar impactos importantes. Ha aumentado la crítica de estos proyectos durante la última década. Los críticos más severos sostienen que los costos sociales, ambientales y económicos de estas represas pesan más que sus beneficios y que, por lo tanto, no se justifica la construcción de las represas grandes. Otros mencionan que, en algunos casos, los costos ambientales y sociales puede ser evitados o reducidos a un nivel aceptable, si se evalúan, cuidadosamente, los problemas potenciales y se implantan medidas correctivas que son costosas. Algunas presas presentan fallos o errores de construcción como es el caso de la Presa Sabaneta,4 ubicada en La Provincia San Juan, República Dominicana. Esta presa ha presentado grandes inconvenientes en las temporadas ciclónicas pasadas, producto de su poca capacidad de desagüe y también a que su dos vertederos comienzan a operar después que el embalse está lleno. El área de influencia de una represa se extiende desde los límites superiores del embalse hasta los esteros y las zonas costeras y costa afuera, e incluyen el embalse, la represa y la cuenca del río, aguas abajo de la represa. Hay impactos ambientales directos asociados con la construcción de la represa (p.ej., el polvo, la erosión, problemas con el material prestado y de los desechos), pero los impactos más importantes son el resultado del embalse del agua, la inundación de la tierra para formar el embalse, y la alteración del caudal de agua, aguas abajo. Estos efectos ejercen impactos directos en los suelos, la vegetación, la fauna y las tierras silvestres, la pesca, el clima y la población humana del área.

Los efectos indirectos de la represa incluyen los que se asocian con la construcción, el mantenimiento y el funcionamiento de la represa (p.ej., los


caminos de acceso, los campamentos de construcción, las líneas de transmisión de energía) y el desarrollo de las actividades agrícolas, industriales o municipales que posibilita la represa. Además de los efectos directos e indirectos de la construcción de la represa sobre el medio ambiente, se deberán considerar los efectos del medio ambiente sobre la represa. Los principales factores ambientales que afectan el funcionamiento y la vida de la represa son aquellos que se relacionan con el uso de la tierra, el agua y los otros recursos en las áreas de captación aguas arriba del reservorio (p.ej., la agricultura, la colonización, el desbroce del bosque) que pueden causar una mayor acumulación de limos, y cambios en la cantidad y calidad del agua del reservorio y del río. Se tratan estos aspectos en los estudios de ingeniería.

Manejo de la cuenca hidrográfica. Es un fenómeno común, ver el aumento en la presión sobre las áreas altas encima de la represa, como resultado del reasentamiento de la gente de las áreas inundadas y la afluencia incontrolada de los recién llegados al área. Se degrada el medio ambiente del sitio, la calidad del agua se deteriora, y las tasas de sedimentación del reservorio aumentan, a raíz del desbroce del bosque para agricultura, la presión sobre los pastos, el uso de químicos agrícolas, y la tala de los árboles para madera o leña. Asimismo, el uso del terreno de la cuenca alta afecta la calidad y cantidad del agua que ingresa al río. Por eso, es esencial que los proyectos de las represas sean planificados y manejados considerando el contexto global de la cuenca del río y los planes regionales de desarrollo, incluyendo, tanto las áreas superiores de captación, aguas arriba de la represa y la planicie de inundación, como las áreas de la cuenca hidrográfica, aguas abajo.

Otros impactos ambientales


Los proyectos hidroeléctricos, necesariamente, implican la construcción de líneas de transmisión para transportar la energía a los centros de consumo.

Beneficio

Represa Yacyretá, Argentina - Paraguay.

El beneficio obvio del proyecto hidroeléctrico es la energía eléctrica, la misma que puede apoyar el desarrollo económico y mejorar la calidad de la vida en el área servida. Los proyectos hidroeléctricos requieren mucha mano de obra y ofrecen oportunidades de empleo. Los caminos y otras infraestructuras pueden dar a los pobladores mayor acceso a los mercados para sus productos, escuelas para sus hijos, cuidado de salud y otros servicios sociales.

Además, la generación de la energía hidroeléctrica proporciona una alternativa para la quema de los combustibles fósiles, o laenergía nuclear, que permite satisfacer la demanda de energía sin producir agua caliente, emisiones atmosféricas, ceniza, desechos radioactivos ni emisiones de

.

Si el reservorio es, realmente, una instalación de usos múltiples, es decir, si los diferentes propósitos declarados en el análisis económico no son, mutua.


La intensificación de la agricultura, localmente, mediante el uso del riego, puede, a su vez, reducir la presión que existe sobre los bosques primarios, los hábitats intactos de la fauna, y las áreas en otras partes que no sean adecuadas para la agricultura. Asimismo, las represas pueden crear pesca en el reservorio y posibilidades para producción agrícola en el área del reservorio que pueden más que compensar las pérdidas sufridas por estos sectores debido a su construcción.

eNergía térmiCa La temperatura de un gas ideal monoatómico es una medida relacionada con la energía cinética promedio de sus moléculas al moverse. En esta animación, la relación deltamaño de los átomos de helio respecto a su separación se conseguiría bajo una presión de 1950 atmósferas. Estos átomos a temperatura ambiente tienen una cierta velocidad media (aquí reducida dos billones de veces). La energía térmica o calorífica es la parte de energía interna de un sistema termodinámico en equilibrio que es proporcional a su temperatura absoluta y se incrementa o disminuye por transferencia de energía, generalmente en forma de calor o trabajo, en procesos termodinámicos. A nivel microscópico y en el marco de la Teoría cinética, es el total de laenergía cinética media presente como el resultado de los movimientos aleatorios de átomos y moléculas o agitación térmica, que desaparecen en el cero absoluto.


La energía térmica y sus aplicaciones La energía solar térmica se define como aquella energía que tiene la materia debido a su temperatura. La energía térmica está muy presente en nuestra vida diaria y tiene numerosas aplicaciones. El sol la produce de manera natural, otra manera de obtenerla de forma artificial es mediante electricidad, gas, carbón, petróleo, biodiesel y prácticamente cualquier combustible (todos generan calor), aunque no es eficiente generar energía térmica con estos combustibles. Sus aplicaciones se pueden clasificar en domésticas e industriales. El máximo aprovechamiento de la energía térmica se obtiene cuando se almacena en depósitos de agua. El agua se calienta con la energía térmica y luego éste agua se puede utilizar para infinidad de aplicaciones.

La aplicación doméstica por excelencia para la energía solar térmica es el calentamiento de agua mediante paneles solares térmicos, con los que se calienta el agua de consumo doméstico. Otra aplicación usual es la calefacción con suelo radiante (tubos de agua caliente instalados debajo del suelo de la vivienda que desprenden calor y calientan las estancias). Estas aplicaciones domésticas están muy extendidas. El Código Técnico de la Edificación (CTE DB HE 4 – Ahorro de Energía) aprobado en España en 2006 establece laobligatoriedad de instalar paneles solares de origen térmico para la obtención de agua caliente sanitaria en los edificios de nueva


construcción y en la rehabilitación de edificios existentes de cualquier uso en los que exista una demanda de agua caliente. En cuanto a las aplicaciones industriales de la energía solar térmica, se basan principalmente en calentar agua para posteriormente ser utilizada en procesos de lavado y secado de cualquier tipo de productos. Otras aplicaciones donde se puede utilizar es en procesos de limpieza de lavanderías industriales o para lavado de piezas, de coches o de cualquier otro producto industrial.

turbiNa FraNCis

La turbina Francis fue desarrollada por James B. Francis.. una turbomáquina motora a reacción y de flujo mixto.

Se

trata

de

Las turbinas Francis son turbinas hidráulicas que se pueden diseñar para un amplio rango de saltos y caudales, siendo capaces de operar en rangos de desnivel que van de los dos metros hasta varios cientos de metros. Esto, junto con su alta eficiencia, ha hecho que este tipo de turbina sea el más ampliamente usado en el mundo, principalmente para la producción de energía eléctrica en centrales hidroeléctricas.


Desarrollo Las norias y turbinas hidráulicas han sido usadas históricamente para accionar molinos de diversos tipos, aunque eran bastante ineficientes. En el siglo XIX las mejoras logradas en las turbinas hidráulicas permitieron que, allí donde se disponía de un salto de agua, pudiesen competir con la máquina de vapor. En 1826 Benoit Fourneyron desarrolló una turbina de flujo externo de alta eficiencia (80%). El agua era dirigida tangencialmente a través del rodete de la turbina provocando su giro. Alrededor de 1820 Jean V. Poncelet diseñó una turbina de flujo interno que usaba los mismos principios, y S. B. Howd obtuvo en 1838 una patente en los EE.UU. para un diseño similar. En 1848 James B. Francis mejoró estos diseños y desarrolló una turbina con el 90% de eficiencia. Aplicó principios y métodos de prueba científicos para producir la turbina más eficiente elaborada hasta la fecha. Más importante, sus métodos matemáticos y gráficos de cálculo mejoraron el nivel de desarrollo alcanzado (estado del arte) en lo referente al diseño e ingeniería de turbinas. Sus métodos analíticos permitieron diseños seguros de turbinas de alta eficiencia.

Partes Cámara espiral Tiene como función distribuir uniformemente el fluido en la entrada del rodete. La forma en espiral o caracol se debe a que la velocidad media del fluido debe permanecer constante en cada punto de la misma. La sección transversal de la misma puede ser rectangular o circular, siendo esta última la más utilizada. Pre distribuidor


Está compuesto por álabes fijos que tienen una función netamente estructural, para mantener la estructura de la caja espiral y conferirle rigidez transversal, que además poseen una forma hidrodinámica para minimizar las pérdidas hidráulicas. Distribuidor Es un órgano constituido por álabes móviles directores, cuya misión es dirigir convenientemente el agua hacia los álabes del rodete (fijos) y regular el caudal admitido, modificando de esta forma la potencia de la turbina de manera que se ajuste en lo posible a las variaciones de carga de la red eléctrica, a la vez de direccionar el fluido para mejorar el rendimiento de la máquina. Este recibe el nombre de distribuidor Fink. Rotor o rodete Es el corazón de la turbina, ya que aquí tiene lugar el intercambio de energía entre la máquina y el fluido. En forma general, la energía del fluido al momento de pasar por el rodete es una suma de energía cinética, energía de presión y energía potencial.

La turbina convierte esta energía en energía mecánica que se manifiesta en el giro del rodete. El rodete a su vez transmite esta energía por medio de un eje a un generador eléctrico dónde se realiza la conversión final en energía eléctrica. El rotor puede tener diversas formas dependiendo del número específico de revoluciones para el cual esté diseñada la máquina, que a su vez depende del salto hidráulico y del caudal de diseño.

Tubo de aspiración Es la salida de la turbina. Su función es darle continuidad al flujo y recuperar el salto perdido en las instalaciones que están por encima del nivel de agua a la salida. En general se construye en forma de difusor, para generar un efecto de aspiración, el cual recupera parte de la energía que no fuera entregada al rotor en su ausencia. •


Álabes directores (en color amarillo) configurados para mínimo caudal (vista interior). •

Álabes directores (en color amarillo) configurados para máximo caudal (vista interior). •

Rodete de una turbina Francis, Presa Grand Coulee.

Espiral de entrada de una turbina Francis, Presa Grand Coulee. Aplicaciones Se utilizan para producción de electricidad. Las grandes turbinas Francis se diseñan de forma individual para cada aprovechamiento hidroeléctrico, a efectos de lograr el máximo rendimiento posible, habitualmente más del 90%. Son muy costosas de diseñar, fabricar e instalar, pero pueden funcionar durante décadas. También pueden utilizarse para el bombeo y almacenamiento hidroeléctrico, utilizando dos embalses, uno a cota superior y otro inferior (contra embalsé); el embalse superior se llena mediante la turbina (en este caso funcionando como bomba) durante los períodos de baja demanda eléctrica, y luego se usa como turbina para generar energía durante los períodos de alta demanda eléctrica. Se fabrican micro turbinas Francis baratas para la producción individual de energía para saltos menores de 52 metros.

VeNtajas y desVeNtajas Ventajas de la turbina Francis o también llamada VGR •

Su diseño hidrodinámico permite bajas perdidas hidráulicas, por lo cual se garantiza un alto rendimiento.


Su diseño es robusto, de tal modo se obtienen décadas de uso bajo un costo de mantenimiento menor con respecto a otras turbinas.

Junto a sus pequeñas dimensiones, con lo cual la turbina puede ser instalada en espacios con limitaciones físicas, también permiten altas velocidades de giro.

Junto a la tecnología y a nuevos materiales, las nuevas turbinas requieren cada vez menos mantenimiento.

Desventajas • • •

No es recomendado para altura mayores de 800 m, por las presiones existentes en los sellos de la turbina. Hay que controlar el comportamiento de la cavitación. No es la mejor opción para utilizar frente a grandes variaciones de caudal debido a que el rendimiento cae al disminuir el caudal de diseño, por lo que se debe tratar de mantener un flujo de caudal constante previsto, antes de la instalación.

Turbina Pelton

Una turbina Pelton es uno de los tipos más eficientes de turbina hidráulica. Es una turbomáquina motora, de flujo transversal, admisión parcial y de acción. Consiste en una rueda (rodete o rotor) dotada de cucharas en su periferia, las cuales están especialmente realizadas para convertir la energía de un chorro de agua que incide sobre las cucharas.

Las turbinas Pelton están diseñadas para explotar grandes saltos hidráulicos de bajo caudal. Las centrales hidroeléctricas dotadas de este tipo de turbina cuentan, la mayoría de las veces, con una larga tubería llamada galería de


presión para trasportar al fluido desde grandes alturas, a veces de hasta más de doscientos metros. Al final de la galería de presión se suministra el agua a la turbina por medio de una o varias válvulas de aguja, también llamadas inyectores, los cuales tienen forma de tobera para aumentar la velocidad del flujo que incide sobre las cucharas.

Funcionamiento

Proyección cilíndrica en el diámetro Pelton de una cuchara.


La tobera o inyector lanza directamente el chorro de agua contra la serie de paletas en forma de cuchara montadas alrededor del borde de una rueda, el doble de la distancia entre el eje de la rueda y el centro del chorro de agua se denomina diámetro Pelton. El agua acciona sobre las cucharas intercambiando energía con la rueda en virtud de su cambio de cantidad de movimiento, que es casi de 180°. Obsérvese en la figura anexa un corte de una pala en el diámetro Pelton; el chorro de agua impacta sobre la pala en el medio, es dividido en dos, los cuales salen de la pala en sentido casi opuesto al que entraron, pero jamás puede salir el chorro de agua en dirección de 180° ya que si fuese así el chorro golpearía a la pala sucesiva y habría un efecto frenante. La sección de entrada del fluido a la cuchara se denomina 1, así como 2 a la sección de salida. El estudio analítico de la interacción agua-pala puede ser sumamente complicado debido al desplazamiento relativo entre la pala y el chorro de agua. Por otro lado se simplifica el estudio de las turbinas Pelton a la sección cilíndrica del diámetro Faubert. Así la energía convertida por unidad de masa de agua está dada por la ley de Euler de las turbomáquinas:

Donde: •

es la energía específica convertida.

y es la velocidad tangencial de la cuchara en los puntos donde el agua llega y sale de la misma respectivamente.

y son, respectivamente, las proyecciones de la velocidad absoluta del fluido sobre la velocidad tangencial de la cuchara en los puntos de llegada y salida de la misma.

Como la velocidad tangencial de rotación de la rueda Pelton es la misma en todos los puntos del diámetro pelton (recuérdese la fórmula de la velocidad angular ) las velocidades Entonces la fórmula de Euler se puede simplificar:

y

son iguales.

La turbina Pelton es un tipo de turbina de impulso, y es la más eficiente en aplicaciones donde se cuenta con un salto de agua de gran altura.


Dado que el agua no es un fluido compresible, casi toda la energía disponible se extrae en la primera etapa de la turbina. Por lo tanto, la turbina Pelton tiene una sola rueda, al contrario que las turbinas que operan con fluidos compresibles. Historia Lester Allan Pelton o llamado por sus amigos el carpintero de VGR ya que inventó una de las turbinas más importantes del mundo, carpintero y montador de ejes y poleas, inventó la turbina Pelton en 1879, mientras trabajaba en California. Obtuvo su primera patente en 1880. Aplicaciones

Instalación común de una turbina Pelton con dos inyectores. Existen turbinas Pelton de muy diversos tamaños. Hay turbinas de varias toneladas montadas en vertical sobre cojinetes hidráulicos en las centrales hidroeléctricas. Las turbinas Pelton más pequeñas, solo de unos pocos centímetros, se usan en equipamientos domésticos. En general, a medida que la altura de la caída de agua aumenta, se necesita menor caudal de agua para generar la misma potencia. La energía es la fuerza por la distancia, y, por lo tanto, una presión más alta puede generar la misma fuerza con menor caudal. Cada

instalación tiene, por lo tanto, su propia combinación de presión,velocidad y volumen de funcionamiento más eficiente. Usualmente, las pequeñas instalaciones usan paletas estandarizadas y adaptan la turbina a una de las familias de generadores y ruedas, adecuando para ello las canalizaciones. Las pequeñas turbinas se pueden ajustar algo variando el número de toberas y paletas por rueda, y escogiendo diferentes diámetros por rueda.

Energía geotérmica


Planta de energía geotérmica en las Filipinas.

La Energía geotérmica es aquella energía que puede obtenerse mediante el aprovechamiento del calor del interior de la Tierra. El término "geotérmico" viene del griego geo (Tierra), y thermos (calor); literalmente "calor de la Tierra". Este calor interno calienta hasta las capas de agua más profundas: al ascender, el agua caliente o el vapor producen manifestaciones, como los géiseres o las fuentes termales, utilizadas para calefacción desde la época de los romanos. Hoy en día, los progresos en los métodos de perforación y bombeo permiten explotar la energía geotérmica en numerosos lugares del mundo. La Tierra posee una importante actividad geológica. Esta es la responsable de la topografía actual de nuestro mundo, desde la configuración de tierras altas y bajas (continentes y lechos de océanos) hasta la formación de montañas. Las manifestaciones más instantáneas de esta actividad son el vulcanismo y los fenómenos sísmicos

Tipos de yacimientos geotérmicos según la temperatura del agua •

Energía geotérmica de alta temperatura. La energía geotérmica de alta temperatura existe en las zonas activas de la corteza. Esta temperatura está comprendida entre 150 y 400 °C, se produce vapor en la superficie y mediante una turbina, genera electricidad. Se requieren varias condiciones para que se dé la posibilidad de existencia de un campo geotérmico: una capa superior compuesta por una cobertura de rocas impermeables; 1 un acuífero, o depósito, de permeabilidad elevada, entre 0,3 y 2 km de profundidad; suelo fracturado que permite una circulación de fluidos por


convección, y por lo tanto la trasferencia de calor de la fuente a la superficie, y una fuente de calor magmático, entre 3 y 15 km de profundidad, a 500600 °C. La explotación de un campo de estas características se hace por medio de perforaciones según técnicas casi idénticas a las de la extracción del petróleo. •

Energía geotérmica de temperaturas medias. La energía geotérmica de temperaturas medias es aquella en que los fluidos de los acuíferos están a temperaturas menos elevadas, normalmente entre 70 y 150 °C. Por consiguiente, la conversión vapor-electricidad se realiza con un rendimiento menor, y debe explotarse por medio de un fluido volátil. Estas fuentes permiten explotar pequeñas centrales eléctricas, pero el mejor aprovechamiento puede hacerse mediante sistemas urbanos reparto de calor para su uso en calefacción y en refrigeración (mediante máquinas de absorción).

Energía geotérmica de baja temperatura. La energía geotérmica de temperaturas bajas es aprovechable en zonas más amplias que las anteriores; por ejemplo, en todas las cuencas sedimentarias. Es debida al gradiente geotérmico. Los fluidos están a temperaturas de 50 a 70 °C.

Energía geotérmica de muy baja temperatura. La energía geotérmica de muy baja temperatura se considera cuando los fluidos se calientan a temperaturas comprendidas entre 20 y 50 °C. Esta energía se utiliza para necesidades domésticas, urbanas o agrícolas, como la climatización geotérmica (bomba de calor geotérmica).

Las fronteras entre los diferentes tipos de energías geotérmicas es arbitraria; si se trata de producir electricidad con un rendimiento aceptable la temperatura mínima está entre 120 y 180 °C, pero las fuentes de temperatura más baja son muy apropiadas para los sistemas de calefacción urbana y rural.

Tipos de fuentes geotérmicas


Esquema de las fuentes de energía geotérmicas. En áreas de aguas termales muy calientes a poca profundidad, se aprovecha el calor desprendido por el interior de la tierra. El agua caliente o el vapor pueden fluir naturalmente, por bombeo o por impulsos de flujos de agua y de vapor. El método a elegir depende del que en cada caso sea económicamente rentable. Un ejemplo, en Inglaterra, fue el "Proyecto de Piedras Calientes HDR" (sigla en inglés: HDR, Hot Dry Rocks), abandonado después de comprobar su inviabilidad económica en 1989. Los programas HDR se están desarrollando en Australia,Francia, Suiza, Alemania. Los recursos de magma (rocas fundidas) ofrecen energía geotérmica de altísima temperatura, pero con la tecnología existente no se pueden aprovechar económicamente esas fuentes. En la mayoría de los casos la explotación debe hacerse con dos pozos (o un número par de pozos), de modo que por uno se obtiene el agua caliente y por otro se vuelve a inyectar en el acuífero, tras haber enfriado el caudal obtenido. Las ventajas de este sistema son múltiples: •

Hay menos probabilidades de agotar el yacimiento térmico, puesto que el agua reinyectada contiene todavía una importante cantidad de energía térmica.

Tampoco se agota el agua del yacimiento, puesto que la cantidad total se mantiene.

Las posibles sales o emisiones de gases disueltos en el agua no se manifiestan al circular en circuito cerrado por las conducciones, lo que evita contaminaciones.


Desventajas y ventajas

Planta geotérmica de Nesjavellir en Islandia. Esta central energética da servicio a las necesidades de agua caliente del área metropolitana del Gran Reykjavík. Desventajas Estas desventajas hacen referencia exclusivamente a la energía geotérmica que no es de baja entalpía doméstica (climatización geotérmica). En ciertos casos emisión de ácido sulfhídrico que se detecta por su olor a

1.

huevo podrido, pero que en grandes cantidades no se percibe y es letal. Contaminación

2.

de

aguas

próximas

con

sustancias

como arsénico, amoníaco, etc. 3.

Contaminación térmica.

4.

Deterioro del paisaje.

5.

No se puede transportar (como energía primaria).

6.

No está disponible más que en determinados lugares, salvo la que se emplea en la bomba de climatización geotérmica, que se puede utilizar en cualquier lugar de la Tierra.

Ventajas 1.

Es una fuente que evitaría la dependencia energética de los combustibles fósiles y de otros recursos no renovables.

2.

Los residuos que produce son mínimos y ocasionan menor impacto ambiental que los originados por el petróleo y el carbón.

3.

Sistema de gran ahorro, tanto económico como energético.

4.

No genera ruidos exteriores.

5.

Los

recursos

geotérmicos

son

mayores

de carbón, petróleo, gas natural y uranio combinados.

que

los

[cita requerida]

recursos


No está sujeta a precios internacionales, sino que siempre puede

6.

mantenerse a precios nacionales o locales. El área de terreno requerido por las plantas geotérmicas por megavatio es

7.

menor que otro tipo de plantas. No requiere construcción de represas, tala de bosques, ni construcción de conducciones (gasoductos u oleoductos) ni de depósitos de almacenamiento de combustibles. La emisión de CO2, con aumento del efecto invernadero, es inferior al que

8.

se emitiría para obtener la misma energía por combustión. Usos •

Generación eléctrica.

Aprovechamiento directo del calor (calefacción y ACS).

Refrigeración: por absorción y bomba de frío geotérmica.

Generación eléctrica Se produjo energía eléctrica geotérmica por primera vez en Larderello, Italia, en 1904. Desde ese tiempo, el uso de la energía geotérmica para electricidad ha crecido mundialmente a cerca de 8.000 megawatt de los cuales EE. UU. genera 2.700 MW. Desalinización Douglas Firestone comenzó en la desalinización con el sistema evaporación / condensación con aire caliente en 1998, probando que el agua geotermal se puede usar económicamente para producir agua desalinizada, en 2001. En 2005 se ajustó el 5º prototipo desalinizador “Delta T” que usa un ciclo de aire forzado caliente, presión atmosférica, ciclo geotermal de evaporación condensación. El aparato se surte de agua de mar filtrada en el Instituto Scripps de Oceanografía, reduciendo la concentración de sal de 35.000 ppm a 51 ppm a/a.2 Extinción Inyección de agua En varios sitios, ha ocurrido que los depósitos de magma] se agotaron, cesando de dar energía geotérmica, quizás ayudado por la inyección del agua residual fría, en la recarga delacuífero caliente. O sea que la recarga por reinyección, puede enfriar el recurso, a menos que se haga un cuidadoso manejo. En al menos una localidad, el enfriamiento fue resultado de pequeños pero frecuentes terremotos (ver enlace externo abajo). Esto ha traído una


discusión sobre si los dueños de una planta son responsables del daño que un temblor causa.

Extinción del calor Así como hay yacimientos geotérmicos capaces de proporcionar energía durante muchas décadas, otros pueden agotarse y enfriarse. 3 En un informe, el gobierno de Islandia dice:debe entenderse que la energía geotérmica no es estrictamente renovable en el mismo sentido que la hidráulica. Se estima que la energía geotérmica de Islandia podría proporcionar 1700 [[MW] para más de 100 años, en comparación con la producción actual de 140 MW. Sin embargo, el flujo de calor natural de la tierra repone la pérdida de calor en la minería de calor geotérmica.

Coste La energía geotérmica es más competitiva que la combustión (hidrocarburos), sobre todo en países como Islandia, Nueva Zelanda e Italia. Durante el período de precios bajos de energía en la década de 1980 hasta la reciente subida de los precios de los combustibles fósiles petróleo y gas, pocas áreas de recursos geotérmicos en los Estados Unidosfueron capaces de generar electricidad a un coste competitivo con otras fuentes de energía. Salvo para las bombas de calor geotérmicas, no todas las áreas del mundo tienen un recurso geotérmico utilizable, aunque si lo poseen. Además, algunas áreas geotérmicas no tiene una temperatura lo suficientemente alta como para producir vapor. En esas zonas, la energía geotérmica se puede generar mediante un proceso llamado tecnología de ciclo binario, aunque la eficacia



Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.