Pomen hitrosti in pospeťevanja nogometni igri Srdjan Djordjević TMG-BMC Ljubljana
Koordinacija in hitrost
Robni pogoji v nogometu
• Hitrost gibanja –razmerje hitrost avtomatizem gibanja o Linearno gibanja o Nelinearno gibanje o Ciklično gibanja/aciklično gibanje
• Sposobnost pospeševanja in ustavljanja(pojemki) o Štartni pospeški o Stranska pospeševanja/pojemki
• Struktura igre o igra z žogo o igra brez žoge
• Specifična hitrostna/pospeševalna vzdržlivost
o 15-20m (30-60x v 90 min), 20 x 20m , 60s pavza pavza o Robna hitrostna vzdržljivost (3 x 50m, cca 25-30s maksimalna anaerobna vz)
Trening hitrosti • Maksimalna hitrost je element ki ga je najtežje trenirati • Trening maksimalne hitrosti o Nevralna in mišična komponenta
• Trening optimalne hitrosti(ekonomija teka) • Optimizacija gibalnih vzorcev (tehnika teka) • Večina hitrih gibanj poteka učinkovito brez poseganja zavestnega-popolni avtomatizem je edini učinkovit način delovanja • Žoga je omejevalni dejavnik pri hitrosti gibanja
Trening ±pospeševanja in sprememb smeri • Vse oblika teka so (gledano 3D prostoru) kombinacija pospeškov in pojemkov(negativni pospešku) • Pospeški v smeri gor dol pri trdi podlagi presegajo 24g na določenih segmentih telesa , ostale osi čez 10g • Pri vsakem koraku se najprej ustavimo potem pospešujemo, kar velja v smeri naprej nazaj, gor dol in levo desno! • Vadbena sredstva so kratki teki z obremenitvijo do 2 s dolgi ( sani 5-25kg) • Spremembe smeri l-d in nazaj naprej (do 3s) • Pospeševanja skupaj z skoki zahtevajo najvišjo aktivacijo
Glavne miĹĄiÄ?ne skupine v nogometu
Erector spinae Gliteus maximus/medius Gastocnemius med/lat Biceps femoris
Rectus femoris Tibialis anterior Abdominal/obliqus Adductor longus Vastus medialis/lateralis
Testiranja za klasifikacijo in oceno sposobnosti( hitrost, pospeševanja) • Maksima hitrost 10-20m letečih • Makimalno pospeševanje 10-20m • Testi stranskih pospeškov cik cak gibanja (različne razdalje in koti spreemb smeri do 13s • Testi motorične adaptacije pri maksimalnem lateralnem pospeševanju do 10s • Visoko frekvenča vzdržljivost 15-20x 20m , 60s • Maksimalna anareobna vzdržljivost 3 x 50-60m • Kombinirani motorični lateralni testi s sprejemom in oddajanjem žoge • Kombinirani lateralni testi s kontrastnimi nalogami
Nadaljevanje motoričnih in kognitivno motoričnih testov • Testi motorične adaptacije pri maksimalnem lateralnem pospeševanju do 10s • Visoko frekvenča vzdržljivost 15-20x 20m , 60s • Maksimalna anaerobna vzdržljivost 3 x 50-60m • Kombinirani motorični lateralni testi s sprejemom in oddajanjem žoge • Kombinirani lateralni testi s kontrastnimi nalogami • Testi skočnosti (enonožni in sonožni) • Testi hitrega odločanja in maksimalnega kontroliranega gibanja • Testiranja deficitarnih mišičnih skupin/mišični testi
PROBLEMI • Sposobnost pospeševanja je težko anaizarati brez posebnih senzorskih tehnologij (pospeške slabo zaznavamo z prostim očesom in iz počasnih posnetkov • Pospeški in pojemki najbolj obremenjujejo skeletnomišični sistem ( F= a x m) energetsko in funkcionalno • Hitrost gibanja omejuje natančnost gibanja • Vzdržljivost (splošna) in hitrost/visoka intenziteta sta slaba soseda • Razvoj maksimalne hitrosti in sposobnosti pospeševanja zahteva dodatno specfično delo z žogo (situacijska vadba) • Pomankljive analize pospeškov/odvodov teh med igro • Koordinacija in sprint težko sodelujeta /se poajvljata • Utrujenost prprečuje aktivacijo hitrih ME in s tem onemogoča učinkovito vadbo! • Skoraj nemogoče je hkrati enako trenirati mišice in tetive
Visoka in hitrost-poškodbe mišično tetivnega kompleksa • Čim višja je hitrost gibanja tem bolj je mišično tetivni kompleks izpostavljen poškodbam • Vrhunski igralec nogometa je 1000 x bolj izpostavljen poškodbam kot fizični delavec! • Potreben so nove tehnologije za natačno zaznavo obremenitev ( popeški in trzljaji-jerk) in kritično presojo obsega in optimizacijo gibanja • Mišice se nekajkart hitreje adaptirajo kot tetive • Čim močnejša je mišica tem bolj toga je tetiva
Lateralna pospeševanja
Hitrost-pospeševanje/ utrujanje
• Različni tipi utrujenja od 8s do 9h…. • Centralno utrujanje, utrujanje zaznave in odločanja, lokalno mišično utrujanje • Pospeševanje pri teku, ki je dolg 60 m porabi 85-90% celotne energije ( mehanska in metabolna-toplota…) • Z klasično vadbo moči in hitrosti se ne moremo izogniti zgodnji utrujenosti pri večjem številu(n≥30 maksimalnih pospeševanj (2s) • Napake pri maksimalni hitrosti gibanja in maksimalnem pospešku ne moremo enako ovrednotiti kot napake pri operativni hitrosti! Zelo hitri igralci delajo več napak!!! • Nekontrolirano utrujanje povečuje verjetnost napak in poškodb ( biceps femoris-neustrezna adaptacija)
Komponente zmogljivosti in utrujanja pri šprintu
Neural Influences on Sprint Running
411
Sprint performance
Acceleration
Maximum speed
Speed maintenance
Stride length
Stride rate
Range of movement · Muscle and tendon length and flexibility · Joint range
Time on ground and time in air
Power (rate of and quantity of force application) · Fibre type/cross sectional area · Muscle strength · Contraction speed · Muscle recruitment · Muscle, tendon and joint stiffness/elasticity
Anthropometric characteristics Technique · Direction of force application throughout stance phase Fatigue · Metabolic, decreased ATP and CP · Increased acidosis · Neural, decreased firing frequency · Pain tolerance
Muscle contraction/relaxation rate Power (rate of and quantity of force application) · Fibre type/cross sectional area · Muscle strength · Contraction speed · Muscle recruitment · Muscle, tendon and joint stiffness/elasticity
Anthropometric characteristics Technique · Recovery mechanics · Direction of force application Fatigue · Metabolic, decreased ATP and CP · Increased acidosis · Neural, decreased firing frequency · Pain tolerance
Fig. 1. Components of sprint performance. Components in italics are not neurally influenced. ATP = adenosine triphosphate; CP =
creatine phosphate.
spinal tract did not differ during the two fatiguing contractions. Furthermore, the amplitude of the superimposed twitch in response to cortical stimulation during the brief MVCs performed immediately after task failure was similar for the two tasks. However, the increase in the duration of the accompanying silent period, which is attributable to increases in inhibition at cortical and spinal levels, was only statistically significant during the force task
et al., 2007; Mottram et al., 2006; Shemmell et al., 2009), but that the more rapid depression of spinal excitability during the position task involves greater modulation of Ia afferent feedback by presynaptic inhibition (Fig. 10). This scheme provides greater feedback to supraspinal centers to adjust the descending drive by integrating feedforward control with long-latency reflexes (Chew et al., 2008; Scott, 2008; Suminiski et al., 2007). Consistent with this
Supraspinalna komponenta
Fig. 10. A proposed scheme for how the nervous system manages force and position control. To perform a voluntary contraction, the nervous system first identifies the required control strategy (task selection) and then supraspinal centers generate a motor command that is sent to alpha and gamma motor neurons in the spinal cord. When performing position control, activation of the gamma motor neurons is modulated above that required for force control to augment the reflex responsiveness of the muscle spindles (1) and increase the afferent feedback to spinal and supraspinal centers (2). The increase in afferent feedback to supraspinal centers is used to correct deviations of limb position from the target position, whereas supraspinal centers modulate the afferent input to spinal networks (3).
noka / Journal of Biomechanics 45 (2012) 427–433
ard was named, ciety describes though he did ocomotion over presentation of g its attributes. ame initials and uted more than His name was ontributions to or at the Colle´ge are described in 92). Marey and their relatively a conference to ing of cinema dicated to EJM
e an historical but rather to the ideas that r the occasion eed from ideas h to challenges ing motor unit atigue, and the
element of the s movement. It
Twitch
1.25x CT Type F
Type S 40 Hz for 330 ms at 1/s
0s
0s
120 s
30 s 300 s 60 s
Type FF
Type FR
Fig. 1. The protocol used by Burke et al. (1973) to classify motor units in the cat gastrocnemius muscle into three categories based on contractile properties. The protocol comprised three steps: (1) recording the twitch response to a single electrical stimulus applied to the motor axon and measuring the time to reach peak force (contraction time, CT); (2) delivering a train of stimuli with an interval of 1.25 ! CT between successive stimuli and observing whether or not the tetanus exhibited sag; and (3) administering a fatigue test that involved measuring the decline in force in response to repetitive trains of 40 Hz stimulation. Those motor units that exhibited sag were classified as type F units and then were characterized as being fatigue sensitive (type FF) or fatigue resistant (type FR) based on the decline in tetanic force during the fatigue test.
caused by a transient reduction in the duration of the contractile state (Carp et al., 1999).
Lokalna manifestacia utrujanja
discussed in the 2011 Muybridge Award lecture: motor unit types and muscle fatigue, myoelectric manifestations of fatigue, and fatigue and fatigability. Although the motor units in a population do exhibit a range of fatigability values, there are not distinct groups of motor units and the concept that some motor units are resistant to fatigue emerged from protocols in which motor units were activated by electrical stimulation rather than voluntary activation. The concept of distinct motor unit types should be abandoned. The second example discussed in the lecture was the use of surface EMG signals to assess fatigue-related adjustments in motor unit activity. The critical assumption with this approach is that the association between surface EMG amplitude and muscle force remains constant during fatiguing contractions. Unfortunately, the relation does not remain constant and a series of computational studies demonstrate the magnitude of the discrepancy, including the absence of an association with the activation signal emerging from the spinal cord and that received by the muscle. The third example concerned the concepts of fatigue and fatigability. It has long been recognized that fatigue involves both sensations and impairments in motor function, and the final part of the lecture urged the integration of the two constructs into a single scheme in which fatigue can be modulated either independently or by interactions between perceptions of fatigue and the mechanisms that establish levels of fatigability. The expectation is that such critical evaluations of the concepts and approaches to the study of fatigue will provide a more effective foundation from which to identify the factors that contribute to fatigue in health and disease. & 2011 Elsevier Ltd. All rights reserved.
Koncept miĹĄiÄ?nega utrujanja Enoka et al.
Centralna
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428 fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lokalna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 sion of EMG amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
³³³³³³³³³³³³³³³³³³³³³³³³³³³³³
³³³³³³³³³³³³³³³³³³³³³³³³³³³³³ ³
î
³ïç
î
³ïç
ì
³ïè
ì
³ïè
ê
³ïé
ê
³ïé
è
³ïê
è
³ïê
³³
³ïë
³³
³ïë
³î
³ïì
³î
³ïì
³ì
³ïí
³ì
³ïí
³ê
³ïî
³ê
³ïî
³è
³ï³
³è
³ï³
î³ ³
î
ì
ê ³³³³³Ã³Ã
Tek na 100m nove tehnologije detekcije STFT
è
³³
ó³ÃóóóÃÃÃÃ
³
³
³
î³ ³ î ³³³³³³³³³³³³³³³³³³³³³³³³³³³³³
ì
³
ó³ÃóóóÃÃÃÃ
ó³ÃóóóÃÃÃÃ
³
³
ê ³³³³³Ã³Ã ³
î
³ïç
ì
³ïè
ê
³ïé
è
³ïê
³³
³ïë
³î
³ïì
³ì
³ïí
³ê
³ïî
³è
³ï³
î³ ³
î
ì
ê ³³³³³Ã³Ã
è
³³
è
³³
³
Testi stranske uÄ?inkovitosti stranskega pospeĹĄevanja in hitrosti gibanja
Podatkovno breme, podatki podatki‌
RazliÄ?ni tipi igralcev in obremenitev
Praktični model vadbe hitrosti in pospeševanja • Bazična mišična diagnostika (tensiomiografija, tensimiografija in M-val, dinamometrija(RFD), kinetika • Motorična testiranja hitrosti( maksimalna, štartna hitrost) • Motorična testiranja pospeševanja( 3D) in eksplozivne moči(skoki) • Testi utrudljivosti( lokalna mišična utrujenost, sistemska živčno mišična utrudljivost) • Testiranja trendov in optimizacija trenažnega procesa • Kombinirani testi hitrosti in odločanja/koordinacije
Izdelava individualnih programov • Individualizacija je bistveni dejavnik uspešnosti/ učinkovitosti vadbe( glede na starost, mišični status, morfologija, motorične - živčno mišične predispozicije, kognitivne sposobnosti…) • Dva aspekta se spremljajo( tedensko) absolutna/relativen korelacija ter trend sprememb • Korelacija priprave s pozicijo igralca in konceptom igre • Vadba optimizacije tehnike teka (hitrost-koordinacija) • Vadba za preventivo nekontaktnih poškodb( biceps femoris , rectus femoris, adductor longus...)
Temeljna načela treninga hitrosti • Trajanje obremenitev pri maksimalni intenziteti gibanja do 8s • Vadba hitrosti in maksimalnega pospeševanja zahteva samostojno vadbeno enoto ali je na začetku vadbe • Pavze med obremenitvami (razvoj čiste hitrosti) do 90% okrevanja (2s è 90s, 3 s è180s, 6s è500s) • Trening specifične moči tarčnih mišic do 40min 2 x tedensko v pripravljalni fazi sicer 1 x) • Situacijski trening pospeševanj (10-20% breme) • Vadba deficitarnih mišičnih skupin 3 x tedensko 5-8 min • Razmerje vaj med upogibalkami in iztegovalkami kolena 1:1(qudriceps/hamstrings)
Distance covered in different work Intensities
CD
14.1 – 19 km/h
7 080 ± 420 m
1 380 ± 232 m* 225
1 257 ± 244 m*
11.1 – 14 km/h
14.1 – 19 km/h
n. s.
1st half > 2nd half p < 0.05
n. s.
n. s.
n. s.
n. s.
2nd half > 1st half p < 0.001
1st half > 2nd half p < 0.001
1st half > 2nd half p < 0.01
2nd half > 1st half p < 0.05
1st half > 2nd half p < 0.05
n. s.
n. s.
1st half > 2nd half p < 0.05
n. s.
+
+
ED
7 012 ± 377 m
1 590 ± 257 m
1 730 ± 262 m
CM
7 061 ± 272 m
1 965 ± 288 m#
2 116 ± 369 m†
EM
6 960 ± 601 m
1 743 ± 309 mº
1 987 ± 412 m†
6 958 ± 438 m
+
F
cant differences
11.1 – 14 km/h
Vpliv pozicije na zahteve
erences between the first versus the second half according to positional roles 0 – 11 km/h
0 – 11 km/h
19.1 – 23 km/h
1 562 ± 295 m
> 23 km/h
+
1 683 ± 413 m
+
11.1 – 19 km/h: * significantly smaller than any other subgroup; significantly different from CD, CM, EM
different from CD, ED, CM, F; † significantly Fig. 1 Techno-tactical assignment todifferent posi- from CD, ED, F. 19.1 – 23 km/h: * significantly smaller # significantly greater than any other subgroup. > 23 km/h: * significantly smaller than any other subgr EM; tional roles based on match-analyses.
n. s.
n. s.
n. s.
n. s.
n. s.
n. s.
n. s.
Distancen. s.
Table 3 Total distance covered (meters and %) in possession of the positional roles n.ball s. by players of different n. s.
Table 4 Distanc work in
%
119 ± 67 m
1.2 ± 0.6%
ED
220 ± 99 m
1.9 ± 0.9%
Total
CM
230 ± 92 m
1.9 ± 0.8%
0 – 11 km/h
EM
286 ± 114 m
2.4 ± 1.1%
11.1 – 14 km/h
F
212 ± 92 m
1.9 ± 0.8%
14.1 – 19 km/h
Training & Testing
CD
iew see [11, 31]) for the distance covered by players covered by the CD. To date, there have been only a few compara19.1 – 23 km/h > 23 km/h tches, our results are in accordance with recent in- ble studies [4, 6,11,16, 20, 22, 29], to our knowledge, that have inWith the ball Table 2 Assessment of positional differences in distance covered at different work using sophisticated measurement technologies, vestigated the influence ofintensities positional role on the distance covthat the mean distance covered by male elite out- ered during a game. However, recent data confirm the results of Distance covered in different work Intensities A major limitation previous match-analyses the numpositions and quantify demands placed on the players in each of is about 11000 m [3]. Also, ofthe highest distancesis that these earlier, above-mentioned studies showing that distance Table 5 Differences between the first versus the second half according to positional roles ber of subjects analyzed was very small. The purpose of this inthe individual positions. 0 – 11 km/h 11.1 – 14 km/h 14.1 – 19 km/h 19.1 – 23 km/h > 23 km/h n individual player, about 14 km, are comparable to covered during the match appears to be related to the position vestigation, therefore, was to provide a large-scale study of top 0 – 11 km/h 11.1 – 14 km/h 14.1 – 19 km exerBased upon video analyses by the same experienced observer, aa siged in literature class [11].soccer players and examine the work rate profile, onand the team. In these studies, midfield players also covered CD 7 080 ± 420 m 1 380 ± 232 m* 1 257 ± 244 m* 397 ± 114 m* 215 ± 100 m* cise patterns according to positional role during 20 Spanish Pre- techno-tactical profile of each player has been defined. This pronificantly greater distance per+ game than n.defenders CD s. 1st half > 2nd half †p < 0.05 n. s. + + or forwards ED 7 012and ± 377 590 ± 257 m a file is based 1 730 ± 262 m 179 mand the pri402 ± 165 m mier League matches 10 m Champions League1 games, using on the different activity on 652 the ±pitch, ED n. s. n. s. n. s. aring differentCM positional it could be demon-1 965system. [4,11,16, 20]. The distances reported forcarried midfield players in these + Outfield new developedroles, computerized mary area in which this was out (Fig. 1). † 7 061 ± 272 mtime-motion analysis ± 288 m# 2 116 ± 369 mactivity 627half ± 184 248 116half m*p < 0.001 CM 2nd > 1st m half p < 0.001 1st half ± > 2nd 1st half > 2 players this investigation were to and one of11.4, five posiboth midfield EM team formations (CM, EM), probably1 743earlier studies byin [4,11, 22] (9.9 km, assigned 10.62nd km † # p < 0.05 respecEM half > 1st m half 1st half ± > 2nd n. s. 6 960 ± 601 m ± 309 mº 1 987 ± 412 m 738 ± 174 446 161half m†p < 0.05 tional groups: central defenders (CD), external defenders (ED), + + heir linking role in the team,6covered a significantly1 562tively) markedly shorter, tomidfield F s. data of+ this current 1st half > 2nd half †p < 0.05 n. s. midfield (CM), externaln.621 players (EM) FMethods 958 ± 438 m ± 295 m are central 1 683 ±players 413 m compared ± 161 m 404 ± 140 m and forwards resulting in following numbers of subjects n. s.the = nonsignificant differences nce (p < 0.0001) than both defender groups, as well study. However, our (F) results are comparable to the study per+ # 11.1 – 19 km/h: * significantly any other significantly from subgroups: CD, CM, EM;CD significantly greater thanCM any(nother subgroup; º significantly Twenty Spanish Premiersmaller Leaguethan matches andsubgroup; ten Champions in different the different (n = 63); ED (n = 60); = 67); p of forwards.different The shortest however, was formed by [20], analyzed Premier League +and 3 Chamfrom CD, ED,distance, CM, F; † significantly different from CD, ED, F. 19.1 – 23 km/h: who * significantly smaller18 than any other subgroup; significantly different from CD and
Training &
League games were monitored in the 2002/2003 and 2003/ EM (n = 58); F (n = 52). 223 EM; # significantly greater than any other subgroup. > 23 km/h: * significantly smaller than any other subgroup; † significantly different from CD, CM 2004 seasons, using a multiple-camera match analyses system data (for review see [11, 31]) for the distance covered by players (Amisco Pro®, version 1.0.2, Nice, Movements ofCharacteristics all 20 Statistical analyses Di France). Salvo V et al. Motion in Elite Level Soccer … Int J Sports Med 2007; 28: 222 – 227 in soccer matches, our results are in accordance with recent inoutfield players (goalkeepers were excluded) of the two compet- Statistical analyses were performed using the STATISTICA for vestigations using sophisticated measurement technologies, ing teams were observed during the whole game duration by Windows version 6.0 (StatSoft, Inc., Tulsa, OK, USA) software which show that the mean distance covered by male elite outmeans of 8 stable, synchronized cameras positioned at the top package for IBM-compatible computers. Data were analyzed us-
covered by the ble studies [4, 6 vestigated the ered during a g
Statistika • 90% visoko intenzivnih šprintov /aktivnosti na tekmah v LŠ traja med 2-4,5s! • Čim višja je stopnja tekmovanja tem višja je povprečna hitrost gibanja igralcev • Premori med kratkotrajnimi šprinti so v povprečju med 30-60s. • Posest žoge na igralca je med 190 in 250m na tekmo oziroma med 1,5 in 2.5%! • NA zadnjem SP je največje število max šprintov(≥23 km/h, 8m) bilo 88 (na tekmi) • V povprečju so 2-4 igralca na moštvo sposobna teči hitreje kot 30km/h na tekmi (SP med 8) • Maksimalna izmerjena hitrost atleta je okoli 45 km/h, atletinje okoli 41km/h
Contemporary training strategy 1. 2. 3. 4. 5. 6.
Individualization Lateral and torsion like movement paperns/tasks Hamstrings/gluteus to knee extensor ratio near to 1:1 Length / contraction specialization Different fatigue (local an central) influence on muscle functionapplication Acceleration , short high speed movement ( app 50 on game..)
Local muscle Fatigue
Methods 15 international level athlets Squatting (Smith machine) MC sensor (1 kHz) Motion capture (Qualiysis MCS 8 cameras, 1.3 M pix, 0.5 kHz sampling rate) • Knee torque (dynamic) and angle calculation • MC signal / knee torque • Results visualization: t-Distributed Stochastic Neighbor Embedding (t-SNE) • • • •
poÄ?epi
Enaka vaja pri istih obremenitvah ima na posameznika različen učinek!
• Each person has a unique pattern of the
MTC loading • Frequent monitoring of MTC is necessary for training optimisation and medicalrehabilitation
Meritve dinamike koraka 3D ACC
FFT-XYZ Slika 2. Slika predstavlja frekvenÄ?no analizo HFT narejeneo na osnovi meritev senzorskeha sistem SSD7 (vzorÄ?enje 1kHz), ki je bil s pasom pritrjen v regiji L5- S1 na hrbtu atleta. Prikazan je spekter x osi(gor dol).
Running&Frequency&on&segment&40870&m&and& 708100&m&
Running&frequency&[Hz]&
4.40%
8&First&run& 8&Second&run& 8&Third&run&
4.35% 4.30% 4.25% 4.20% 4.15%
40)70%m% 70)100%m%% 40)70%m% 70)100%m% 40)70%m% 70)100%m%
Run&segments&& Slika 3. Frekvenca korakov na 2. odseku pri vseh maksimanih tekih na 100m staLsLčno značilno nižja kot frekvenca mkorakov na 1 odseku( p≤0.001). Različne barve ponazarjajo različne teke , vrednosL so povprečja vse sprinterjev pri odseku 1 in 2. Dodatne vrednosL prikazujejo standardno napako.
Mišica Biceps femoris LMF 0.9$
mRFDt&(Maximal(RFD(of(Biceps(Femoris(TMG( Twitch)( 3&Before&run& 3&First&run& 3&Second&run& 3&Third&run&
0.85$ 0.8$
38.5# 38#
0.75$
Time%[ms]%
dDm/dt&[mm/ms]&
Time%of%Biceps%Femoris%mRFDt%% 39#
0.7$ 0.65$ 0.6$
37.5# 37# 36.5#
0.55$
0%Before%run% 0%First%run% 0%Second%run% 0%Third%run%
36#
0.5$
35.5#
0.45$ 0.4$ Before$ 10s$
40s$
70s$
10s$
40s$
70s$
10s$
40s$
35#
70s$
Before# 10s#
Time&after&runs&133& Slika 5. Na grafu so prikazane razultati TMG meritev in obdelave signala z mRDT algoritmom/metodo. Meritve so bile opravljene po vsakem teku ( 10 s, 40 s in 70 s po končanem teku)
40s#
70s#
10s#
40s#
70s#
10s#
40s#
Time%after%runs%103% Slika 6. Grafi prikazujejo čas nastanka mRFDt pred teki in 10,40 in 70s po vsakem teku na 100m od 1-3. Vse razlike so statistično značilne.
70s#
Zgodnja diagnostika pred poškodbenih stanj
• Imbalance at the certain level of performance