B Pro - March Urban Design Bartlett School of Architecture University College London
09-2021
RC-18
Lo-Fi. Agriculture Lo-Fi. Agriculture Lo-Fi. Agriculture Siwei Hu / Tingting Peng / Han Yan
Portfolio B-Pro March Urban Design RC 18 / 2020 - 2021 Bartlett School of Architecture University College London
Lo-Fi. Agriculture Design Tutors: Enriqueta Llabres-Valls Zachary Fluker Submitted by: Siwei Hu Tingting Peng Han Yan September, 2021
1
2
CONTENTS
CHAPTER 3 Land Intelligence 3.1 Space Reprogramme by Generative Adversarial Network 3.2 Match the Site
CHAPTER 6 User Interface
3
CHAPTER 1 Introduction
CHAPTER 2 Sensing Environment
1.1 Nitrogen Imbalance & Nitrogen Pollution 1.2 The Baltic Sea 1.3 Metabolic Rift 1.4 New Territory 1.5 Theory Development 1.6 Methodology 1.7 Design Question
2.1 Data Mining 2.2 Nitrogen Deposition Simulation 2.3 Shaping Agricultural Patches
CHAPTER 4 Crop Reprograamming 4.1 Pixel Farming 4.2 Crop Rotation
CHAPTER 7 Summary
CHAPTER 5 Prefabricated Tensegrity 5.1 Learn the Structure 5.2 The Module 5.3 Multi-Objectives Optimization 5.4 The Cluster 5.5 Structure Intelligence
CHAPTER 8 Bibliography Appendix
4
PREWORD The boundary and separation between urban and rural areas are destroying our living environment. Industrialized agricultural production and the increasing division of urban and rural areas lead to the disruption of the metabolic interaction between human and nature. This kind of metabolic rift not only blocks the path of nutrient metabolism in the city, but also wastes the potential fertilizer and pollutes the river and soil. While the urban environment is widely discussing, the countryside is largely off people’s radar. This project _ Lofi-Agriculture is Trying to solve the great separation from a rural perspective. We are using a series of high-tech methods to monitor and operate the mechanism. In Contrast, we designed a series of traditional and low-tech ways to bring these mechanisms to farmers’ daily lives. It is an installation, a platform, and a concept to redefine and repair the rift between city and country.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
Tensegrity Module Construction
Materials
Construction Detail 2
Elastic Loops Elastic Cable Greenhouse Entrance
3 Struts
Struts
Fabric Soil Sensor 8 Caps 8 Rings Crops Geotexture
4 Sensors Struts Water Channel 5 Geotexture
83
Soil Body
84
Greenhouse Module & Planting Pattern
85
Height = 3 m Base Area = 16 m2
Height = 4.2 m Bottom Area = 16 m2
Height = 4.2 m Bottom Area = 16 m2
Height = 6.6 m Bottom Area = 16 m2
Height = 5.4 m Bottom Area = 16 m2
Height = 7.2 m Bottom Area = 256 m2
86
Planting CLusters
87
88
Permanent Architecture Location
89
90
Multi-objectives Optimization Input
Fitness Objectives 1 Shorten the Distance among Main Buildings
91
Generation List Gen: 9 Ind: 2
Gen: 9 Ind: 0
Gen: 8 Ind: 8
Gen: 8 Ind: 5
2 Shorten the Distance from Entrance toMain Buildings
Gen: 8 Ind: 3
Gen: 7 Ind: 8
Gen: 7 Ind: 6
Gen: 7 Ind: 0
3 Shorten the Distance from Main Buildings to Water Channel
Gen: 6 Ind: 8
Gen: 6 Ind: 2
Gen: 5 Ind: 9
Gen: 5 Ind: 4
4 Maximize Solar Explosure Time
Gen: 5 Ind: 8
Gen: 4 Ind: 8
Gen: 4 Ind: 6
Gen: 4 Ind: 4
92
Module Combination
Permancy
Mobility
Gen: 9 Ind: 2
Gen: 9 Ind: 2 FV.1:0.005057 FV.2:84.851881 FV.3:411.167571FV.4:0.000033 Data input 1: 17.888544 Data input 2: 32.984845 Data input 3: 32.984845 Data input 4: 48.0 Data input 5: 17.888544 Data input 6: 48.0 Data input 7: 21.540659 Data input 8: 46.8188 Data input 9: 16. 492423 Data input 10: 142.52246 Data input 11: 133.715155 Data input 12: 134.929956
1 Shorten the Distance among Main Buildings
4 Maximize Solar Explosure Time
2 Shorten the Distance from Entrance toMain Buildings
3 Shorten the Distance from Main Buildings to Water Channel
93
94
Permanent Cluster Type
95
96
Solar Radiation
Crop Transpiration
Rain Water
Crop Transpiration Nitrogen Sensor
Water Channel
97
Irrigation
Water Channel
98
99
100
101
102
103
104
105
106
60 days
145 days
46 days
91 days
88 days 180 days
55 days 63 days 13 days
63 days 164 days
7 days
91 days
Fallow Timing System 107
108
Nitrogen Concentration Fluctuation Monitoring System
109
110
N
0 111
100
200m 112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
Koolhaas, R. et al., 2020. Countryside : a report / AMO ; Rem Koolhaas., Carpo, M. 2017. The Second Digital Turn: Design Beyond Intelli gence, Cambridge, MA and London, MIT Press. Mitchell, M. 2019. Artificial Intelligence: A Guide for Thinking Humans, London, Pelican. Negroponte, N. 1976. Soft Architecture Machines, Cambridge, MA, MIT Press. Bratton, B. H. 2016. The Stack: On Software and Sovereignty, Cam bridge, MA, MIT Press. Ellis, E. C. 2018. Anthropocene: A Very Short Introduction, New York, NY, Oxford University Press. Edwards, P. N. 2013. A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming, Cambridge, MA, MIT Press. Batty, M. 2013. The New Science of Cities, Cambridge, MA, MIT Press. Creswell, J. W. & Creswell, J. D. 2017. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, London, Sage publi cations. Bottazzi, R. 2018. Digital Architecture Beyond Computer: Frag ments of a Cultural History of Computational Design, London, Bloomsbury Visual Arts. Hillier, B. 2007. Space Is the Machine: A Configurational Theory of Architecture, London, Space Syntax. Menges, A. & Ahlquist, S. (eds.) 2011. Computational Design Thinking, West Sussex: Wiley and Sons Ltd. Mitchell, W. J. 1998. The Logic of Architecture: Design, Computa tion and Cognition, Cambridge, MIT Press. Steenson, M. W. 2017. Architectural Intelligence: How Designers and Architects Created the Digital Landscape, Cambridge, MA, MIT Press. Coyne, R. 2010. The Tuning of Place: Sociable Spaces and Pervasive Digital Media, Cambridge, MA & London, MIT Press. Di Carlo, I. 2016. The Aesthetics of Sustainability. Systemic Think ing and Self-Organization in the Evolution of Cities. University of Trento Holland, J. H. 2014. Complexity: A Very Short Introduction, Ox ford, Oxford University Press. Lohmann, L., Hällström, N., Österbergh, R. & Nordberg, O. 2006. Carbon Trading: A Critical Conversation on Climate Change, Pri vatisation and Power, Dag Hammarskjöld Centre Uppsala.
Lidar Data Arduino Sensor Polish Farming Research
Mougeot, L. J. 1994. Urban Food Production: Evolution, Official Support and Significance. Cities feeding people series; rept. 8. Food and Agriculture Organization of the United Nations. 2021. Statistics. [online] Available at: <http://www.fao.org/statistics/en/> [Accessed 6 September 2021]. Ec.europa.eu. 2021. Home - Eurostat. [online] Available at: <https://ec.europa.eu/eurostat> [Accessed 6 September 2021]. Stat.gov.pl. 2021. Statistics Poland / Search. [online] Available at: <https://stat.gov.pl/en/search/search.html> [Accessed 6 September 2021]. Maps.helcom.fi. 2021. Helcom Map And Data Service. [online] Available at: <http://maps.helcom.fi/website/mapservice/?datasetID=70d72fd4-801f-41ff-b064-2839430eac79> [Accessed 6 September 2021]. Motro, R., 2003. Tensegrity : structural systems for the future / René Motro., London ; Sterling, VA: Kogan Page Science. Tenu, V., 2009. Minimal surfaces as self-organizing systems: a particle-spring system simulation for generating triply periodic minimal surface tensegrity structure, pp.Masters thesis, UCL (University College London). Piker, D., 2011. Tensegrity structures. [online] Grasshopper3d.com. Available at: <https://www.grasshopper3d.com/group/ kangaroo/forum/topics/tensegrity-structures> [Accessed 6 September 2021].
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146