5 minute read
Kinder Scout
Kinder, Derbyshire, United Kingdom
Using natural materials to protect vulnerable communities and reduce flood risk. Six years ago, over 50,000 Sphagnum spp. moss plug plants were planted into previously revegetated areas on Kinder Scout, the highest peak in the Peak District National Park. This area now forms part of the newly extended National Nature Reserve (NNR), looked after by the National Trust. Sphagnum moss is a key component of blanket bogs and can hold up to 20 times its weight in water. The source material for the sphagnum was harvested locally and nursery grown in a polytunnel. Each plug contained a mix of 11 species of sphagnum commonly found in the Peak District. After planting, the impact was closely monitored and has been proven to significantly slow water running off the hills after rainfall, reducing peak streamflow (the maximum amount of water at any one time in a river after a storm) by 65%. There is a similarly remarkable increase in the lag time (the time it takes the water to enter the river system). This has important benefits for downstream communities vulnerable to flooding, as water is less likely to overtop riverbanks. The findings of the six-year study—implemented by the Moors for the Future Partnership as part of the MoorLIFE 2020 project, funded by the European Union’s L’Instrument Financier pour l’Environnement (EU LIFE)—confirm the vital part sphagnum moss could play in widespread and effective flood-risk reduction for downstream communities.
Article Cover: Across the streamflow network in the experimental catchment, sphagnum has reached 85% cover in total and 100% in many places. (Photo by Moors for the Future Partnership)
Producing Efficiencies
The site has formed part of an “outdoor laboratory” created to study the impacts of peat restoration, including its important role in natural flood management (NFM). The reintroduction of sphagnum has significant benefits, which are improving with time. As it grows and thickens, it creates a dense, rough surface over the peat, slowing down water flowing across the catchment and into the streams. Stormwater is fed into the river system more gradually, reducing flood risk and severity in the valleys. On a landscape scale, the impact would be global in terms of climate change, water quality, and flood severity.
Using Natural Processes
NFM uses natural processes to reduce the risk of floods and droughts, making catchment areas more resilient to the impacts of climate change and extreme storm events. Sphagnum plug plants introduced four years after revegetation and gully blocking made a significant difference in peak discharge and lag times. Six years after its addition, the sphagnum has decreased peak discharge by 65 percentage points (compared to the untreated control) and drastically increased lag time by 680 percentage points. The most abundant sphagnum species in the stream channels today are S. cuspidatum, S. fallax, S. fimbriatum, and S. palustre.
Broadening Benefits
This most recent study shows that upland restoration can cost-effectively minimize flood risk in compromised rural areas while maximizing the many benefits of NFM restoration work. If the Kinder Scout restoration was replicated across the landscape, peak river levels would be lowered—even in the biggest flood-relevant storms—significantly reducing the likelihood and severity of flooding for communities in its shadow. The effects of introducing sphagnum on peatlands with dominant native moorland plant species were also observed. Monitoring has shown that sphagnum planting into dense heather (Calluna vulgaris) may have slowed the flow of water from the hills. This effect will likely increase as it continues to grow and spread.
Promoting Collaboration
MoorLIFE 2020 was a Moors for the Future Partnership project in the European Union–designated South Pennine Moors Special Area of Conservation funded by EU LIFE with support from Severn Trent, Yorkshire Water, and United Utilities. For Protect NFM, Moors for the Future Partnership worked alongside the University of Manchester on the findings. The outdoor laboratories are situated on land managed by the National Trust. The project benefited immensely from extensive stakeholder and community engagement. Much of the planting was accomplished with the help of volunteers, and hundreds of presentations and events promoted the project and raised awareness around environmental and conservation efforts.