Couv_3114_2016.qxp_Couverture.qxd 07.12.16 09:27 Page1
Cet ouvrage présente une introduction aux notions mathématiques nécessaires à l’utilisation des méthodes numériques employées dans les sciences de l’ingénieur. ! La plupart des phénomènes physiques, chimiques ou biologiques, issus de la technologie moderne, sont régis par des systèmes complexes d’équations aux dérivées partielles. La résolution numérique de ces systèmes d’équations au moyen d’un ordinateur nécessite des connaissances approfondies en mathématiques. Ce livre a donc pour but de fournir au lecteur les notions mathématiques de base qui lui permettront d’aborder ce sujet. ! L’ouvrage s’adresse tout particulièrement aux étudiants du 1er cycle universitaire en sciences de l’ingénieur, en physique et en mathématiques, ainsi qu’à tous ceux qui désirent s’initier à la simulation numérique et au calcul scientifique. ! Cette troisième édition constitue le compagnon indispensable du cours en ligne (MOOC) du même nom, que le lecteur pourra suivre au travers des liens renvoyant à chacune des vidéos.
De nationalité française, Marco Picasso est né en 1963 en Italie. Il obtient un diplôme d’ingénieur ECAM de Lyon en 1986, puis le DESS d’ingénierie mathématiques et calcul scientifique de l’Université de Besançon en 1987. En 1988, il entreprend un travail de recherche dans le groupe du Professeur Jacques Rappaz, en collaboration avec le département des matériaux de l’Ecole Polytechnique Fédérale de Lausanne. En 1992, il soutient sa thèse de doctorat concernant la simulation numérique des traitements de surface par laser. Depuis 1993, il est responsable du calcul scientifique au sein de la chaire d’analyse et simulation numérique du département de mathématiques de l’EPFL. Actuellement, il est chargé de cours pour l’enseignement de l’analyse numérique aux ingénieurs.
Presses polytechniques et universitaires romandes
Introduction à l’analyse numérique Jacques Rappaz Marco Picasso
Jacques Rappaz Marco Picasso
De nationalité suisse, Jacques Rappaz est né en 1947 à Lausanne. Il obtient un diplôme d’ingénieur physicien à l’Ecole Polytechnique Fédérale de Lausanne en 1971 et soutient sa thèse de doctorat consacrée à l’approximation spectrale d’opérateurs provenant de la physique des plasmas en 1976. Après sa thèse, il poursuit ses recherches en analyse numérique à l’Ecole Polytechniques de Paris où il séjourne trois ans. De retour à l’EPFL, il occupe un poste d’adjoint scientifique au département de mathématiques et oriente une partie de ses recherches vers des applications industrielles. En 1985, il est nommé professeur d’analyse numérique à l’Université de Neuchâtel. Depuis 1987, il est professeur à l’EPFL où il enseigne l’analyse et l’analyse numérique. Sa recherche est orientée sur les aspects théoriques et pratiques de la résolution numérique des équations aux dérivées partielles. Il dirige plusieurs projets en collaboration avec les milieux industriels et il est auteur ou co-auteur de nombreuses publications dans ce domaine.
Introduction à l’analyse numérique
Introduction à l’analyse numérique
Presses polytechniques et universitaires romandes
Dans la collection
Recueil d’exercices et aide-mémoire vol. 2
Analyse
Recueil d’e xercices et aide-m
Analyse
Analyse
AnalyJacques se Douchet
Recueil d’e xerci et aide-mém ces oire vol. 1 Troisièm
e édit revue et aug ion mentée
Jacques Do uc
het
émo Ja Presses polytechniques et universitaires romandes
Presses pol
ytechniques
et universita
ires romand es
Analyse avancée pour ingénieurs Troisième édition
Bernard Dacorogna Chiara Tanteri
Presses polytechniques et universitaires romandes
Presses polytechniques et universitaires romandes Editeur scientifique et technique
www.ppur.org
Introduction à l’analyse numérique
Introduction à l’analyse numérique Jacques Rappaz Marco Picasso
Presses polytechniques et universitaires romandes
!*+#"4(*4-+#*(#/=A')(*4-#-*6*-1)*&(#/=?1%/*#.%/0(*12&)34*#@A'A-"/*#'*#!"4+"&&*# '%&(#/*#+%4()*&#@)&"&1)*-#"#-*&'4#.%++);/*#/"#.4;/)1"()%&#'*#1*(#%45-">*C !"#$%&"%'(&&)'*+(#%,)#$)+-#).)#*%!)$%."*/0."*+12)$3 !+4+-0)%5"4%&)%54(6)$$)24%4(7)4*%'8%!"&"#()*+$*,-.//0%123.1*,13,.230'%)* O"134*+#P%412*(#*(#Q-4&%#RS"2/*& !"#$%&"#'()*+,,+'(-./#+("/(-+(0,/'&+/)'(12)&23,+'()*+,,+' 42)*5617,%1+$1.*,-8191%+.+16,13,).-1:;0;&.%1,<&*",=,13,> O"134*+#P%412*( ?)<&.%:/).%1,12,;)3@ T5*+#Q)%//*(B#U6*/#E2"";%4&)#*(#O%"12)6#V(4;;* 4&+#($"55+#$+)('+'(*%/-+'(6(,.78!9 4.-1:;0;&.%1,-8)2)*561 H*)&-)12#W"(X)&>*42)*561,)<)2+01,#&$%,.2'02.1$%6 Q*-&"-'#P"1%-%>&"#*(#E2)"-"#K"&(*-) 3UpSDUHU VHV pWXGHV VFLHQWL¿TXHV H"&+DOY->#94..*& :#%)"-/$%&"#(2/;(<"#$%&"#'(%)&="#"5*%)&>/+'?(( ,"=2)&%@5&>/+'(+%(+;0"#+#%&+,,+'
!"#$%&'"()%&#'*+#,-*++*+#.%/0(*12&)34*+#*(#4&)5*-+)(")-*+#-%6"&'*+#7,,89:#.4;/)*# .-)&1)."/*6*&(#/*+#(-"5"4<#'=*&+*)>&*6*&(#*(#'*#-*12*-12*#'*#/=?1%/*#.%/0(*12&)34*# @A'A-"/*#'*#!"4+"&&*#7?,$!:B#'*+#4&)5*-+)(A+#*(#'*+#2"4(*+#A1%/*+#@-"&1%.2%&*+C# ,,89B#?,$!D9%/*<#!*"-&)&>#E*&(*-B#E,#FFGB#EHDFIFJ#!"4+"&&*B### SSXU#HSÃ&#x20AC; FK WpO ID[ !!!"##$%"&%' ,6%1 K-%)+)L6*#A')()%& Â&#x2039; 3UHVVHV SRO\WHFKQLTXHV HW XQLYHUVLWDLUHV URPDQGHV Â&#x2039; 3UHVVHV SRO\WHFKQLTXHV HW XQLYHUVLWDLUHV URPDQGHV SRXU OD GHX[LqPH pGLWLRQ Â&#x2039; 3UHVVHV SRO\WHFKQLTXHV HW XQLYHUVLWDLUHV URPDQGHV SRXU OD SUHPLqUH pGLWLRQ# K%4+#'-%)(+#-A+*-5A+ 9*.-%'41()%&B#6M6*#."-()*//*B#+%4+#34*/34*#@%-6*# %4#+4-#34*/34*#+4..%-(#34*#1*#+%)(B)&(*-')(*#+"&+#/="11%-'#A1-)(#'*#/=A')(*4-C N6.-)6A#*&#N("/)*
En 2012, nous avons réalisé un cours en ligne (MOOC) basé sur les chapitres 1, 2, 3, 4/5/6, 8, 9 et 10 du livre. Ce cours est disponible sur coursera.org, il contient des vidéos (6 à 10 vidéos de 10 minutes pour chaque chapitre), des quiz, et des exercices. Les vidéos sont disponibles également sur : KWWS JR HSIO FK DQDO\VH QXPHULTXH YLGHRV Tout au long de ce livre, des symboles sont reproduits dans la marge; ils renvoient aux vidéos du MOOC. Par exemple !"! renvoie à la vidéo 1 du chapitre 1.
!
Finalement, nous avons aussi développé quelques applets java pour illustrer certains des chapitres du livre. Des symboles sont reproduits dans la marge; ils renvoient aux applets correspondantes. Par exemple # renvoie au fichier : analyse-numerique.org/node3.html qui contient l’applet en question.
!
LU LU LU LU
p
n≥0 p0 p1 p2 . . .
t0 t1 t2 . . . tn pn p(tj ) = pj
0 ≤ j ≤ n.
!
p(t) = a0 + a1 t + a2 t2 + · · · + an tn a0 a1 a2 . . . an aj 0 ≤ j ≤ n n+1 a0 + a1 tj + a2 t2j + a3 t3j + · · · + an tnj = pj ,
T
0 ≤ j ≤ n. a 0 a1 a2 . . . an
(n + 1) × (n + 1) 1 1 1 T = 1 · 1
t0 t1 t2 t3 · tn T
t0 t1 t2 . . . tn
p
tj pj 0 ≤ j ≤ n (n + 1) (n + 1)
t20 t21 t22 t23 · t2n
t30 t31 t32 t33 · t3n
... ... ... ... ... ...
tn0 tn1 tn2 . tn3 · tnn
!a
p !
(n + 1)
a0 a1 !a = a2 , an
p0 p1 p! = p2 , pn
T!a = p!. p !a T
p! (n + 1)
(n + 1)
p p
pj k pk = 1
ϕk (t) =
pj = 0
0 j $= k
n
ϕk
t
(t − t0 )(t − t1 ) · · · (t − tk−1 )(t − tk+1 ) · · · (t − tn ) . (tk − t0 )(tk − t1 ) · · · (tk − tk−1 )(tk − tk+1 ) · · · (tk − tn ) ϕk n
n t
(i) ϕk (ii) ϕk (tj ) = 0 (iii) ϕk (tk ) = 1.
ϕ0 ϕ1 α0 α1 α2 . . . αn ∀t ∈ R t = tk
ϕk tj j $= k ϕ2 . . . ϕn (n + 1)
0=
n ( j=0
j $= k
n, j $= k, 0 ≤ j ≤ n,
tk tk
(t−tj ) ϕk
αj ϕj (tk ) = αk , ) *+ , 0 1
j"=k j=k
n
'n
j=0
αj ϕj (t) = 0
αk k = 0, 1, . . . , n Pn n
Pn
1, t, t2 , t3 , . . . , tn n Pn
(n + 1) ϕ0 , ϕ1 , ϕ2 , . . . , ϕn
ϕ0 , ϕ1 , ϕ2 , . . . , ϕn t0 , t1 , t2 , . . . , tn
Pn
n = 2 t0 = −1 t1 = 0 t2 = 1 −1 0 1
P2
ϕ0 , ϕ1 , ϕ2
!"
(t − t1 )(t − t2 ) 1 1 1 = t(t − 1) = t2 − t; (t0 − t1 )(t0 − t2 ) 2 2 2 (t − t0 )(t − t2 ) ϕ1 (t) ≡ = −(t + 1)(t − 1) = 1 − t2 ; (t1 − t0 )(t1 − t2 ) (t − t0 )(t − t1 ) 1 1 1 ϕ2 (t) ≡ = (t + 1)t = t2 + t. (t2 − t0 )(t2 − t1 ) 2 2 2 ϕ0 (t) ≡
ϕ0 ϕ1 ϕ2
[−1, +1]
1 0.8
ϕ1
0.6 ϕ0
0.4
ϕ2
0.2 0 -0.2 -1
0 P2
1 −1 0
1
p p0 p1 p2 . . . pn t0 t1 t2 . . . tn
n
ϕ0 , ϕ1 , ϕ2 , . . . , ϕn t2 . . . tn
p(t) = p0 ϕ0 (t) + p1 ϕ1 (t) + · · · + pn ϕn (t) = p ϕ2 . . . ϕn p ∈ Pn
t0 t1
Pn p n (
pj ϕj (t).
j=0
(n + 1) n
p
ϕ0 ϕ1 n ϕj
k = 0, 1, 2, . . . , n p(tk ) =
n ( j=0
pj ϕj (tk ) = pk ) *+ , 0 1
j"=k j=k
p 0 , p 1 , . . . , pn !a p!
t1 = 0 ϕ1
T
p1 = 3
t2 = 1
t0 = −1 p0 = 8 p2 = 6 p(t) = 8ϕ0 (t) + 3ϕ1 (t) + 6ϕ2 (t) ϕ0
ϕ2 p(t) = 8
-
. . 1 2 1 1 2 1 t − t + 3(1 − t2 ) + 6 t + t 2 2 2 2
= 4t2 − t + 3.
f :R→R
t0 t1 t2 . . . tn (n + 1) f
p p
tj 0 ≤ j ≤ n p(tj ) = f (tj ), f (t)
0 ≤ j ≤ n.
n n
pj = f (tj ) 0 ≤'j ≤ n n p(t) = j=0 pj ϕj (t) ϕj 0 ≤ Pn t0 , t1 , t2 , . . . , tn
j≤n p(t) =
n ( j=0
f (tj )ϕj (t)
∀t ∈ R.
p f
n
t0 , t1 , t2 , . . . , tn f (t) = et
f f
2
eϕ2 (t)
−1 0
1 p(t) = e−1 ϕ0 (t) + e0 ϕ1 (t) +
ϕ0 , ϕ1 , ϕ2
p(t) = =
1 e -
-
. . 1 2 1 1 2 1 t − t + (1 − t2 ) + e t + t 2 2 2 2 . . 1 e 2 e 1 −1+ t + − t + 1. 2e 2 2 2e f
2
−1 0
1 3 f p
2.5 2 1.5 1 0.5 0 -1
0
1 f (t) = et
f 2
[a, b] tj j = 0, 1, 2, . . . , n j = 0, 1, 2, . . . , n t0 , t1 , . . . , tn n
−1 0 n
p
1 f : [a, b] → R [a, b]
h = (b − a)/n
p
f
tj = a + jh n
pn pn
pn (t) =
n (
f (tj )ϕj (t),
j=0
ϕ0 , ϕ1 , . . . , ϕn
Pn
t0 , t1 , . . . , tn
f [a, b]
(n + 1)
pn
max |f (t) − pn (t)| ≤
t∈[a,b]
1 2(n + 1)
-
b−a n
.(n+1)
max |f (n+1) (t)|
t∈[a,b]
f (n+1) (t) = dn+1 f (t)/dtn+1 pn
n
f [a, b] n
t0 , t1 , t2 , . . . , tn
1 n→∞ 2(n + 1) lim
-
b−a n
.(n+1)
maxt∈[a,b] |f (n+1) (t)|
n
[−1, +1] |f (n) (1)| ... n
n=5
= 0.
f (t) = 1/(1 + 25t2 ) f (t)
[−1, +1] n
pn n = 10
n
tj = −1 + 2j/n j = 0 1
2 f p5 p10
1.5 1 0.5 0 -0.5 -1
-0.5
0
0.5
1
f (t) = 1/(1 + 25t2 )
[−1, +1]
n
tj = a +
t0 , t1 , . . . , tn (b − a) 2
. (2j + 1)π 1 + cos , 2(n + 1)
j = 0, 1, 2, . . . , n,
pn
f
maxt∈[a,b] |f (t) − pn (t)|
n 2 f p10
1.5 1 0.5 0 -0.5 -1
-0.5
0
0.5
1
f (t) = 1/(1 + 25t2 )
p& (t)
p(t)
p0 , p1 , p&0 , p&1
t0 < t 1 p p(t0 ) = p0 , p& (t0 ) = p&0 , p& (t)
p
p(t1 ) = p1 , p& (t1 ) = p&1 ,
t p&
p
p t0
t0 t1
t1
p(t) = a0 + a1 t + a2 t2 + a3 t3 ; a0 a1 a2
a3 4
4
a 0 a1 a2
p0 , p1 , p&0 , p&1 p
a3
ϕ0 , ϕ1 , ψ0 , ψ1 t0
t1
ϕ0
ϕ0 ϕ&0 (t0 ) = ϕ0 (t1 ) = ϕ&0 (t1 ) = 0.
ϕ0 (t0 ) = 1,
ϕ0 (t) = − ϕ1
ϕ1 (t) = − ψ0
ψ0& (t0 )
ϕ1
ϕ&1 (t1 )
ϕ1 (t1 ) = 1,
ψ0
(t − t1 )2 (2t + t1 − 3t0 ) . (t0 − t1 )3
= 1,
(t − t0 )2 (2t + t0 − 3t1 ) . (t1 − t0 )3 ψ0 (t0 ) = ψ0 (t1 ) = ψ0& (t1 ) = 0.
ψ0 (t) = ψ1 ψ1& (t1 ) = 1,
= ϕ1 (t0 ) = ϕ&1 (t0 ) = 0.
(t − t1 )2 (t − t0 ) . (t0 − t1 )2 ψ1
ψ1 (t1 ) = ψ1 (t0 ) = ψ1& (t0 ) = 0.
ψ1 (t) =
(t − t0 )2 (t − t1 ) . (t1 − t0 )2 ϕ0 , ϕ1 , ψ0 , ψ1 ϕ0 , ϕ1 , ψ0 , ψ1
P3 t0
ϕ0 ϕ1 ψ0
t1
ψ1
[t0 , t1 ] ϕ0 , ϕ1 , ψ0 , ψ1 t0 , t1
p
3 p(t) = p0 ϕ0 (t) + p1 ϕ1 (t) + p&0 ψ0 (t) + p&1 ψ1 (t), p f [t0 , t1 ]
p
p(t) = f (t0 )ϕ0 (t) + f (t1 )ϕ1 (t) + f & (t0 )ψ0 (t) + f & (t1 )ψ1 (t), p
f
[t0 , t1 ] p(t0 ) = f (t0 ), p& (t0 ) = f & (t0 ),
p(t1 ) = f (t1 ), p& (t1 ) = f & (t1 ).
1
Ï&#x2022;0
Ï&#x2022;1
0.8 0.6 0.4 Ï&#x2C6;0
0.2 0 -0.2
Ï&#x2C6;1
t0
t1
f x0 = a < x1 < x2 < x3 < . . . < xN = b [xi , xi+1 ]
[a, b]
N +1 [a, b]
nâ&#x2C6;&#x2019;1
xi,1 < xi,2 < xi,3 < . . . < xi,nâ&#x2C6;&#x2019;1 . t0 = xi tj = xi,j 1 â&#x2030;¤ j â&#x2030;¤ n â&#x2C6;&#x2019; 1 tn = xi+1 f tj 0 â&#x2030;¤ j â&#x2030;¤ n n h=
max
0â&#x2030;¤iâ&#x2030;¤N â&#x2C6;&#x2019;1
[xi , xi+1 ]
|xi+1 â&#x2C6;&#x2019; xi |,
fh : x â&#x2C6;&#x2C6; [a, b] â&#x2C6;&#x2019;â&#x2020;&#x2019; fh (x) â&#x2C6;&#x2C6; R
n fh
n
f
n (n + 1) [a, b]
fh
f : [a, b] â&#x2020;&#x2019; R n xi 1 â&#x2030;¤ i â&#x2030;¤ N â&#x2C6;&#x2019; 1
C
max |f (x) â&#x2C6;&#x2019; fh (x)| â&#x2030;¤ Chn+1 .
xâ&#x2C6;&#x2C6;[a,b]
fh
[xi , xi+1 ] [a, b] 1 max |f (t) − fh (t)| ≤ t∈[xi ,xi+1 ] 2(n + 1)
max
t∈[xi ,xi+1 ]
-
|f (t) − fh (t)| ≤ C
xi+1 − xi n
-
max
.(n+1)
0≤j≤N −1
max
t∈[xi ,xi+1 ]
|f (n+1) (t)|.
.n+1 |xj+1 − xj |
C C=
!
1 max |f (n+1) (t)| 2(n + 1)n(n+1) t∈[a,b]
i = 0, 1, 2, . . . , N −1
n
N
x1 , x2 , . . . , xN
h h i = 0, 1, 2, . . . , N
xi = a + ih
N maxx∈[a,b] |f (x)−fh (x)| h = (b − a)/N
max |f (x) − fh (x)| ≤ Chn+1 .
x∈[a,b]
N
0.8 N = 4 x4 = 0.8
n
n=1
f (x) = x1.7 + 0.1e3x sin(13x) a = 0 b = x0 = 0 x1 = 0.2 x2 = 0.4 x3 = 0.6 [xi , xi+1 ]
n=1
n = 2 xi,1 =
[xi , xi+1 ]
xi +xi+1 2
!
xi C1
[xi , xi+1 ]
f
[a, b]
[xi , xi+1 ]
f f
[t0 , t1 ] f (xi )
xi C
1
[a, b]
f & (xi )
1.2 1 0.8
x1.7 + 0.1e3x sin(13x) interpolant
0.6 0.4 0.2 0 -0.2 -0.4 0 a = x0
0.2 x1
0.4 x2
0.6 x3
0.8 b = x4
0.5 0.6 x2,1 x3
0.7 0.8 x3,1 b = x4
0.6 x3
0.8 b = x4
f 1.2 1 0.8
x1.7 + 0.1e3x sin(13x) interpolant
0.6 0.4 0.2 0 -0.2 -0.4 0 a = x0
0.1 0.2 x0,1 x1
0.3 0.4 x1,1 x2 f
1.2 1 0.8
x1.7 + 0.1e3x sin(13x) interpolant
0.6 0.4 0.2 0 -0.2 -0.4 0 a = x0
0.2 x1
0.4 x2 f
f (t) t f (k), k = 0, ±1, ±2, . . . t∈R t
p(t)
f (t)
f t t
t∈R t
p(t)
k = E[t] p
/ 0 k − 1, f (k − 1) ,
/ 0 k, f (k) ,
t
/ 0 k + 1, f (k + 1) ,
t ∈]k, k+1[
/ 0 k + 2, f (k + 2) .
p = p(t)
1 ψ0 (x) := − x(x − 1)(x − 2) 6 1 ψ1 (x) := (x + 1)(x − 1)(x − 2) 2 1 ψ2 (x) := − (x + 1)x(x − 2) 2 1 ψ3 (x) := (x + 1)x(x − 1) 6 t
t
ψ0 ψ1 ψ2 ψ3
k
k := E[t] t=k
t
p := fk ; p(t) p
:= fk−1 ∗ ψ0 (t − k) +fk ∗ ψ1 (t − k) +fk+1 ∗ ψ2 (t − k) +fk+2 ∗ ψ3 (t − k)
p p(t) =f (k − 1)ϕ0 (t) + f (k)ϕ1 (t) + f (k + 1)ϕ2 (t) + f (k + 2)ϕ3 (t), ϕ0 ϕ1 ϕ2 ϕ3 k−1 k k+1 k+2 1 ϕ0 (t) = − (t − k)(t − k − 1)(t − k − 2), 6 1 ϕ1 (t) = (t − k + 1)(t − k − 1)(t − k − 2), 2 1 ϕ2 (t) = − (t − k + 1)(t − k)(t − k − 2), 2 1 ϕ3 (t) = (t − k + 1)(t − k)(t − k − 1). 6 x = t−k ψ0 ψ1 ψ2 ψ3
x ∈]0, 1[ ψ0 (x) = ϕ0 (x + k), ψ2 (x) = ϕ2 (x + k),
t ∈]k, k + 1[
ψ1 (x) = ϕ1 (x + k), ψ3 (x) = ϕ3 (x + k),
1 ψ0 (x) = − x(x − 1)(x − 2), 6 1 ψ1 (x) = (x + 1)(x − 1)(x − 2), 2 1 ψ2 (x) = − (x + 1)x(x − 2), 2 1 ψ3 (x) = (x + 1)x(x − 1). 6
p(t) =f (k − 1)ψ0 (t − k) + f (k)ψ1 (t − k)
+ f (k + 1)ψ2 (t − k) + f (k + 2)ψ3 (t − k).
p(t)
t∈R
fk = f (tk )
t0 < t 1 ε < t 1 − t0
p
ε pε pε (t0 ) = pε (t0 + ε) = 1, pε (t1 ) = pε (t1 + ε) = 0.
0<
ϕ(t0 ) = 1 ϕ(t1 ) = ϕ& (t0 ) = ϕ& (t1 ) =
ϕ(t) = lim pε (t) ε→0
0
ϕ
ϕ0 ϕ1 ϕ2 ϕ3 t1 t1 + ε
t0 t0 + ε
P3 pε (t) = ϕ0 (t) + ϕ1 (t).
(t − t0 − ε)(t − t1 )(t − t1 − ε) , (−ε)(t0 − t1 )(t0 − t1 − ε) (t − t0 )(t − t1 )(t − t1 − ε) ϕ1 (t) = . ε(t0 − t1 + ε)(t0 − t1 ) ϕ0 (t) =
pε (t) =
=
(t − t1 )(t − t1 − ε) ε(t0 − t1 )(t0 − t1 − ε)(t0 − t1 + ε) . × (t0 − t1 − ε)(t − t0 ) − (t0 − t1 + ε)(t − t0 − ε) (t − t1 )(t − t1 − ε)(3t0 − t1 − 2t + ε) . (t0 − t1 )(t0 − t1 − ε)(t0 − t1 + ε) ϕ ϕ(t) = lim pε (t) = ε→0
(t − t1 )2 (3t0 − t1 − 2t) , (t0 − t1 )3
2(t − t1 )(3t0 − t1 − 2t) − 2(t − t1 )2 (t0 − t1 )3 (t − t1 )(t0 − t) =6 . (t0 − t1 )3
ϕ& (t) =
ϕ(t0 ) = 1 ϕ(t1 ) = ϕ& (t0 ) = ϕ& (t1 ) = 0 ϕ t0
t1
f p 1 +1 p(t)dt −1
f (−1), f (0)
f f (+1)
[−1, +1] −1, 0, +1
p p(t) = f (−1)ϕ0 (t) + f (0)ϕ1 (t) + f (+1)ϕ2 (t), ϕ0 ϕ1 ϕ2 2
+1
p(t)dt = f (−1)
−1
2
+1
ϕ0 (t)dt + f (0)
−1
2
+1 −1
−1, 0, +1
P2
1 ϕ0 (t)dt = , 3
2
+1
ϕ1 (t)dt + f (+1)
−1
2
+1
−1
+1
p(t)dt =
−1
2
+1
ϕ2 (t)dt.
−1
4 ϕ1 (t)dt = , 3
2
+1
ϕ2 (t)dt =
−1
1 , 3
4 13 f (−1) + 4f (0) + f (+1) . 3 1 +1 −1
J(f ) =
2
f (t)dt
J(f )
4 13 f (−1) + 4f (0) + f (+1) . 3 J(f ) J(f )
2
+1
q(t)dt = J(q) −1
q
t0 = a < t 1 < . . . < t n = b S(t0 ) = f (t0 )
. . . S(tn ) = f (tn )
f : [a, b] → R S [a, b]
(n + 1) S : [a, b] → R
[tj−1 , tj ] 1 ≤ j ≤ n
TM TM
TM
f f&
R
R
x0 ∈ R f (x0 + h) − f (x0 ) h f (x0 ) − f (x0 − h) = lim h→0 h f (x0 + h/2) − f (x0 − h/2) = lim . h→0 h
f & (x0 ) = lim
h→0
f&
f
x0
h ∆h f (x0 ) h
∇h f (x0 ) h
δh f (x0 ) h
∆h f (x0 ) = f (x0 + h) − f (x0 ), def
∇h f (x0 ) = f (x0 ) − f (x0 − h), def
δh f (x0 ) = f (x0 + h/2) − f (x0 − h/2). def
h>0 ∆h f
∆h f : R → R ∆h f (x) = f (x + h) − f (x) ∇h δh h > 0
∆h ∇h
δh
∆h ∇h
δh
∆h α
β
f, g : R → R
∆h (αf + βg)(x) = αf (x + h) + βg(x + h) − αf (x) − βg(x) = α∆h f (x) + β∆h g(x)
∀x ∈ R.
∇h
δh !
f x0
!
1 f (x0 + h) = f (x0 ) + f & (x0 )h + f && (ξ)h2 , 2 ξ
[x0 , x0 + h] 5 5 5 & 5 5f (x0 ) − ∆h f (x0 ) 5 = 1 |f && (ξ)|h. 5 5 2 h h0 > 0
f :R→R
x0 ∈ R C
5 5 5 & 5 5f (x0 ) − ∆h f (x0 ) 5 ≤ Ch, 5 5 h C=
!
ξ ∈ [x0 , x0 + h0 ]
∀h ≤ h0 .
1 max |f && (x)|. 2 x∈[x0 ,x0 +h0 ]
1 && 2 |f (ξ)|
h ≤ h0
≤C !
∆h f (x0 ) !
∇h f (x0 )
f & (x0 ) f
!
δh f (x0 ) h
- .2 - .3 h f &&& (ξ) h + , 2 3! 2 - .2 - .3 h f && (x0 ) h f &&& (η) h & f (x0 − h/2) = f (x0 ) − f (x0 ) + − , 2 2! 2 3! 2 f (x0 + h/2) = f (x0 ) + f & (x0 )
h f && (x0 ) + 2 2!
ξ
[x0 , x0 + h/2]
η
[x0 â&#x2C6;&#x2019; h/2, x0 ]
5 5 5 &&& 5 2 &&& 5 & 5 5 5 5f (x0 ) â&#x2C6;&#x2019; δh f (x0 ) 5 = 5 f (ξ) + f (η) 5 h 5 5 5 5 8 h 6 &&& &&& |f (ξ)| + |f (η)| h2 â&#x2030;¤ . 2 24 h0 C=
h0 > 0
â&#x2C6;&#x2020;h f (x0 ) h
1 max |f &&& (x)|, 24 xâ&#x2C6;&#x2C6;[x0 â&#x2C6;&#x2019;h0 /2,x0 +h0 /2]
f :Râ&#x2020;&#x2019;R
x0 â&#x2C6;&#x2C6; R C
5 5 5 & 5 5f (x0 ) â&#x2C6;&#x2019; δh f (x0 ) 5 â&#x2030;¤ Ch2 , 5 5 h
δh f (x0 ) h
!
â&#x2C6;&#x20AC;h â&#x2030;¤ h0 . f
f & (x0 ) h
h
h2 â&#x2C6;&#x2020;h f (x0 )/h
â&#x2C6;&#x2021;h f (x0 )/h
5 5 5 & 5 5f (x0 ) â&#x2C6;&#x2019; â&#x2C6;&#x2020;h f (x0 ) 5 5 5 h f & (x0 )
h2
f & (x0 )
5 5 5 & 5 5f (x0 ) â&#x2C6;&#x2019; â&#x2C6;&#x2021;h f (x0 ) 5 5 5 h h 1 h δh f (x0 )/h
2
h 5 5 5 & 5 5f (x0 ) â&#x2C6;&#x2019; δh f (x0 ) 5 5 5 h
!
c
c c = 1/3 c
c˜
c˜ = 0.333333
c˜
N N
0.333333 = 0.333333 100 34.2456 = 0.342456 102 0.000345033 = 0.345033 10−3 3.42550 1018 = 0.342550 1019
c |c − c˜|
c˜ N c
η = 10
−N
|c − c˜| ≤ 5|c|η c = 1/3 c˜ = 0.333333 η = 10−6
c |c − c˜| = 13 10−6 ≤ 5|c|η
c f & (x0 )
∆h f (x0 )/h ∆h f (x0 )/h
f (x) = x2 x0 = 7 h = 0.06
h=
0.01 h = 0.06
h = 0.01
∆h f (x0 ) (7.06)2 − (7.00)2 49.8 − 49.0 = , , 13.3, h 0.0600 0.0600 ∆h f (x0 ) (7.01)2 − (7.00)2 49.1 − 49.0 h = 0.01 : = , , 10.0. h 0.0100 0.0100 h = 0.06 :
f & (x0 ) = 14 ∆h f (x0 )/h
h = 0.01
h = 0.06
∆h f (x0 ) (7.06000)2 − (7.00000)2 49.8436 − 49.0000 = = = 14.0600, h 0.0600000 0.0600000 ∆h f (x0 ) (7.01000)2 − (7.00000)2 49.1401 − 49.0000 h = 0.01 : = = = 14.0100. h 0.0100000 0.0100000 h = 0.06 :
η |c − c˜|
c˜ ∼
|c − c˜| ≤ 5|c|η
c
|c|η
∆h f (x0 ) f (x0 + h) − f (x0 ) = def h h h = 10−7
h 10
−8
... f (x0 + h) ∼ η |f (x0 + h)|;
f (x0 )
∼ η |f (x0 )|;
∆h f (x0 ) 4 ∼ η |f (x0 + h)| + |f (x0 )| , 2η |f (x0 )|; 3
∆h f (x0 )/h
∼ 2η
|f (x0 )| . h ∆h f (x0 )/h
2η |f (x0 )|/h er
∆h f (x0 )/h
5 5 5 2ηf (x0 )/h 5 2η|f (x0 )| 2η|f (x0 )| 5 5= er ∼ 5 , & ; ∆h f (x0 )/h 5 |f (x0 + h) − f (x0 )| |f (x0 )|h h
f (x0 ) = 49 f & (x0 ) = 14 er , h = 0.01 10−3 er = 10−3 −5 η , 10 /7 , 10−6
∇h f (x0 )/h
δh f (x0 )/h
7η . h ∆h f (x0 )/h N = 6
f : R→R
Eth = 12 |f && (x0 )|h
x0 ∈ R h f & (x0 ) f & (x0 ) , ∆h f (x0 )/h
Eah = 2η|f (x0 )|/h f & (x0 ) η
η ∆h f (x0 )/h
E h = Eah + Eth Eh Eh =
1 && |f (x0 )| |f (x0 )|h + 2η . 2 h h
Eh
g g(x) = ax +
b x
a = 12 |f && (x0 )| b = 2η|f (x0 )| x¯
∀x ∈ R, h
g(x)
x>0
b g & (x) = a − 2 x 6 g & (¯ x) = 0 x ¯ = b/a g && (¯ x) > 0 g(x) x>0 Eh 7 η|f (x0 )| h=2 . |f && (x0 )|
p p=2
7
x ¯
x ¯ h
|f (x0 )| |f && (x0 )|
f & (x0 )
∆h f (x0 )/h N
h
p · 10−N/2 &
f & (x0 )
f (x0 ) , ∇h f (x0 )/h
δh f (x0 )/h Eh ,
1 &&& |f (x0 )| |f (x0 )|h2 + 2η 24 h
f & (x0 ) f & (x0 ) ,
h=2
-
3η|f (x0 )| |f &&& (x0 )|
.1/3
.
!
m
1 m−1 ∆m f ), h f = ∆h (∆h m−1 ∇m f ), h f = ∇h (∇h
δhm f = δh (δhm−1 f ).
3 4 δh2 f (x) =δh δh f (x) = δh (f (x + h/2) − f (x − h/2)) =δh f (x + h/2) − δh f (x − h/2) =f (x + h/2 + h/2) − f (x + h/2 − h/2)
− [f (x − h/2 + h/2) − f (x − h/2 − h/2)] =f (x + h) − 2f (x) + f (x − h). m=1
m ∆m h ∇h
δhm f
f
C m+1
f
C m+2
x0 ∈ R ∆m h f (x0 ) , hm
∇m h f (x0 ) , hm
f (m) (x0 )
m h h
h
2
δhm f (x0 ) hm f
x0
h
m x0 ∈ R
h0 > 0
C 5 5 m 5 (m) 5 5f (x0 ) − ∆h f (x0 ) 5 ≤ Ch 5 5 m h 5 5 m 5 (m) 5 5f (x0 ) − ∇h f (x0 ) 5 ≤ Ch 5 hm 5
f : R → R
∀h ≤ h0 , ∀h ≤ h0 .
(m + 1)
m x0 ∈ R
h0 > 0
f : R → R
C 5 5 m 5 (m) 5 5f (x0 ) − δh f (x0 ) 5 ≤ Ch2 5 5 m h f && (x0 )
f IV (x0 )
m=2
(m + 2)
∀h ≤ h0 .
m=4
f (x0 + h) − 2f (x0 ) + f (x0 − h) , h2 f (x0 + 2h) − 4f (x0 + h) + 6f (x0 ) − 4f (x0 − h) + f (x0 − 2h) f IV (x0 ) , . h4 f && (x0 ) ,
h2
f
h h m
h 0, 1, 2, 3, . . .
f :R→R xj = x0 + jh
x0 ∈ R j =
m ∆h f (x0 ) ∆2 f (x0 ) (x − x0 ) + h 2 (x − x0 )(x − x1 ) h 2!h ∆3h f (x0 ) + (x − x0 )(x − x1 )(x − x2 ) + · · · 3!h3 ∆m f (x0 ) + h m (x − x0 )(x − x1 ) · · · (x − xm−1 ). m!h pm m pm (x0 ), pm (x1 ), . . .
pm (x) = f (x0 ) +
pm (x0 ) = f (x0 ), ∆h f (x0 ) f (x1 ) − f (x0 ) (x1 − x0 ) = f (x0 ) + h = f (x1 ), h h ∆h f (x0 ) ∆2 f (x0 ) pm (x2 ) = f (x0 ) + (x2 − x0 ) + h 2 (x2 − x0 )(x2 − x1 ) h 2h 2 = f (x0 ) + ∆h f (x0 ) · 2 + ∆h f (x0 ) = f (x0 ) + 2(f (x1 ) − f (x0 )) + (f (x2 ) − 2f (x1 ) + f (x0 )) = f (x2 ). pm (x1 ) = f (x0 ) +
pm
pm (xj ) = f (xj ) j = 0, 1, 2, . . . , m pm x0 , x1 , x2 , . . . , xm
m f
(m + 1) m
m
dm ∆m h f (x0 ) p (x) = . m dxm hm
pm j = 0, 1, 2, · · · , m
xj = x0 + jh (i)
∆h f (x0 ) ∆2 f (x0 ) (x − x0 ) + h m (x − x0 )(x − x1 ) h 2!h ∆m f (x ) 0 + · · · + h m (x − x0 )(x − x1 ) · · · (x − xm−1 ); m!h dm ∆m h f (x0 ) p (x ) = . m 0 m dx hm
f
(m + 1)
pm max
x∈[x0 ,x0 +mh]
|f (x) − pm (x)| ≤
1 hm+1 max |f (m+1) (x)|. 2(m + 1) x∈[x0 ,x0 +mh] pm x = x0
f
f
f
pm (x) = f (x0 ) +
(ii)
f
m
q2 x0 − h x0
∇m h
δhm
x0 + h
d2 δh2 f (x0 ) f (x0 + h) − 2f (x0 ) + f (x0 − h) q (x ) = = . 2 0 2 2 dx h h2 f q2 (x0 , f (x0 ))
f h
q2
f q2
x0 − h x0 x0 + h f
q2
x0 − h
x0 x0 + h f - .2 - .3 h f &&& (x0 ) h + 2 3! 2 - .4 - .5 IV V f (x0 ) h f (ξ) h + + , 4! 2 5! 2 - .2 - .3 h h f && (x0 ) h f &&& (x0 ) h & f (x0 − ) = f (x0 ) − f (x0 ) + − 2 2 2! 2 3! 2 - .4 - .5 IV V f (x0 ) h f (η) h + − , 4! 2 5! 2 h h f && (x0 ) f (x0 + ) = f (x0 ) + f & (x0 ) + 2 2 2!
[x0 , x0 + h2 ]
ξ
η
[x0 − h2 , x0 ]
f (x0 + h/2) − f (x0 − h/2) f &&& (x0 ) 2 f V (ξ) + f V (η) 4 = f & (x0 ) + h + h h 24 5!25 δh f (x0 ) δh f (x0 ) f &&& (x0 ) 2 = f & (x0 ) + h + O(h4 ), h 24 O(h4 ) h
h4
h
h/2 δh/2 f (x0 ) f &&& (x0 ) h2 = f & (x0 ) + + O(h4 ). h/2 24 4
δh f (x0 ) 8δh/2 f (x0 ) − = −3f & (x0 ) + O(h4 ) h h
f & (x0 ) =
8δh/2 f (x0 ) − δh f (x0 ) + O(h4 ). 3h δh
8δh/2 f (x0 ) − δh f (x0 )
= 8f (x0 + h/4) − 8f (x0 − h/4) − f (x0 + h/2) + f (x0 − h/2),
8f (x0 + h/4) − 8f (x0 − h/4) + f (x0 − h/2) − f (x0 + h/2) 3h f & (x0 )
6 8 ... h δh/4 f (x0 ) δh/8 f (x0 ) . . .
h4 f & (x0 )
m = 4 C
f 6 ∀h ≤ h0
5 5 4 5 (4) 5 5f (x0 ) − δh f (x0 ) 5 ≤ Ch2 . 5 5 4 h
3 / / 0 04 / 0 δh4 f (x0 ) = δh δh3 f (x0 ) = δh δh δh2 f (x0 ) = δh2 δh2 f (x0 ) . δh2 δh4 f (x0 ) = δh2 f (x0 + h) − 2δh2 f (x0 ) + δh2 f (x0 − h) = f (x0 + 2h) − 4f (x0 + h) + 6f (x0 ) − 4f (x0 − h) + f (x0 − 2h).
f x0 (2h)1 (2h)2 (2h)3 + f && (x0 ) + f &&& (x0 ) 1! 2! 3! 4 5 (2h) (2h) (2h)6 + f (4) (x0 ) + f (5) (x0 ) + f (6) (η1 ) , 4! 5! 6! 1 2 3 (2h) (2h) (2h) f (x0 − 2h) = f (x0 ) − f & (x0 ) + f && (x0 ) − f &&& (x0 ) 1! 2! 3! (2h)4 (2h)5 (2h)6 (4) (5) (6) + f (x0 ) − f (x0 ) + f (η2 ) , 4! 5! 6! h1 h2 h3 f (x0 + h) = f (x0 ) + f & (x0 ) + f && (x0 ) + f &&& (x0 ) 1! 2! 3! h4 h5 h6 (4) (5) (6) + f (x0 ) + f (x0 ) + f (η3 ) , 4! 5! 6! 1 2 3 h h h f (x0 − h) = f (x0 ) − f & (x0 ) + f && (x0 ) − f &&& (x0 ) 1! 2! 3! 4 5 h h h6 + f (4) (x0 ) − f (5) (x0 ) + f (6) (η4 ) , 4! 5! 6! f (x0 + 2h) = f (x0 ) + f & (x0 )
η1 ∈ ]x0 , x0 + 2h[ η2 ∈ ]x0 − 2h, x0 [ η3 ∈ ]x0 , x0 + h[
η4 ∈ ]x0 − h, x0 [
δh4 f (x0 ) = f (4) (x0 )h4 - 3 4 4 3 4. 64 (6) + f (η1 ) + f (6) (η2 ) − f (6) (η3 ) + f (6) (η4 ) h6 . 6! 6! h0 > 0
C= h ≤ h0
5 4 5 5 δh f (x0 ) 5 (4) 2 5 5 − f (x ) 0 5 ≤ Ch . 5 h4
x0 ∈ R
f : R → R h>0
g(x) = f (x0 ) + ξ0 ∈ [x0 , x1 ]
5 5 17 5 (6) 5 max 5f (x)5 . 90 x∈[x0 −2h0 ,x0 +2h0 ]
x1 = x0 + h x2 = x0 + 2h
∆h f (x0 ) ∆2 f (x0 ) (x − x0 ) + h 2 (x − x0 )(x − x1 ). h 2h
g(xj ) = f (xj ) ξ1 ∈ [x1 , x2 ]
j = 0, 1, 2
f & (ξ0 ) = g & (ξ0 ) ,
f & (ξ1 ) = g & (ξ1 ).
g
r η ∈ [ξ0 , ξ1 ]
r(x) = f (x) − g(x) r&& (η) = 0 2 x 2 x r&& (x) = r&&& (t)dt = f &&& (t)dt. η
η
|f (x) − g(x)| ≤ 2h3 max |f &&& (t)| t∈[x0 ,x2 ]
g
x ∈ [x0 , x2 ].
g(x0 ) = f (x0 )
∆h g(x1 ) = f (x0 ) + ∆h f (x0 ) = f (x0 + h) = f (x1 ),
g(x2 ) = f (x0 ) + 2∆h f (x0 ) + ∆2h f (x0 ) = 2f (x0 + h) − f (x0 ) + ∆2h f (x0 ). ∆2h 3 4 ∆2h f (x0 ) = ∆h f (x0 + h) − f (x0 ) 3 4 3 4 = ∆h f (x0 + h) − ∆h f (x0 )
= f (x0 + 2h) − 2f (x0 + h) + f (x0 ),
g(x2 ) = f (x0 + 2h) = f (x2 ) r r(x) = f (x) − g(x) r(x0 ) = r(x1 ) = r(x2 ) = 0 ∃ξ0 ∈ [x0 , x1 ] ∃ξ1 ∈ [x1 , x2 ]
r& (ξ0 ) = 0
f & (ξ0 ) = g & (ξ0 ),
r& (ξ1 ) = 0
f & (ξ1 ) = g & (ξ1 ).
r& (ξ0 ) = r& (ξ1 ) = 0
r
r& r&& (η) = 0.
∃η ∈ [ξ0 , ξ1 ] r&&& &&
&&
&&
r (x) = r (x) − r (η) =
2
x
r&&& (t)dt.
η
r&&& (t) = f &&& (t)−g &&& (t) =
g f &&& (t) &&
r (x) =
2
η
x
f &&& (t)dt.
x ∈ [x0 , x1 ] r(x0 ) = 0
x ∈ [x1 , x2 ]
f (x) − g(x) = r(x) = r(x) − r(x0 ) =
|f (x) − g(x)| ≤
2
x
x0
2
&
|r (s)|ds ≤
x1
x
r& (s)ds.
x0
|r& (s)|ds ≤ h max |r& (s)|. x0 ≤s≤x1
x0
r& (ξ0 ) = 0 2 r& (s) = r& (s) − r& (ξ0 ) =
s ∈ [x0 , x1 ]
2
s
r&& (t)dt.
ξ0
|r& (s)| ≤ |
2
s
ξ0
2
|r&& (t)|dt| ≤
x1
x0
|r&& (t)|dt ≤ h max |r&& (t)|. x0 ≤t≤x1
t ∈ [x0 , x1 ] r&& (t) =
2
t
f &&& (u)du,
η
|r&& (t)| ≤ |
2
η
t
|f &&& (u)|du| ≤
2
x2
x0
|f &&& (u)|du ≤ 2h max |f &&& (u)|. x0 ≤u≤x2
|f (x) − g(x)| ≤ 2h3 max |f &&& (s)|. x0 ≤s≤x2
x ∈ [x0 , x2 ] ξ ∈ [x0 , x]
f f (x) = G(x) +
f &&& (ξ) (x − x0 )3 , 6
G G(x) = f (x0 ) + f & (x0 )(x − x0 ) +
f && (x0 ) (x − x0 )2 . 2
x ∈ [x0 , x2 ] f &&& (ξ) (x − x0 )3 | 6 (x2 − x0 )3 ≤ max |f &&& (t)| x0 ≤t≤x2 6 4 = h3 max |f &&& (t)|. 3 x0 ≤t≤x2
|f (x) − G(x)| = |
g G
f x0
x0
f [x0 , x0 + 2h] x0
n=2
g
x0 +2h
G
h
G
f g
n
!
f : x ∈ [a, b] → f (x) ∈ R [a, b] 2
!
b
f (x)dx.
a
[a, b] [xi , xi+1 ] i = 0, 1, 2, . . . , N − 1 xi i = 0, 1, 2, . . . , N a = x0 < x1 < x2 < x3 < · · · · · · < xN −1 < xN = b. h=
max
0≤i≤N −1
|xi+1 − xi | N xi
h=
b−a N
xi = a + ih,
2
a
b
f (x)dx =
N −1 2 xi+1 ( i=0
xi
h
i = 0, 1, . . . , N.
f (x)dx.
2
xi+1
f (x)dx
xi
[−1, +1]
t=2
x − xi −1 xi+1 − xi
x ∈ [xi , xi+1 ]
t ∈ [−1, +1]
2
xi+1
xi
x = xi + (xi+1 − xi )
t+1 , 2
xi+1 − xi f (x)dx = 2
2
+1
gi (t)dt,
−1
gi . t+1 gi (t) = f xi + (xi+1 − xi ) , 2 1 +1 −1
[−1, +1]
t ∈ [−1, +1].
g(t)dt g
g
[−1, +1]
!
J(g) =
def
M M M J(g)
g β
M (
ωj g(tj )
j=1
−1 ≤ t1 < t2 < · · · < tM ≤ 1 ω1 ω2 . . . ωM M 1 +1 −1 g(t)dt
,
[−1, +1]
J(αg + β,) = αJ(g) + βJ(,).
α
M =2 t1 = −1, t2 = +1, ω1 = 1, ω2 = 1 J(g) = g(−1) + g(1). J(g)
1 +1 −1
g
g(t)dt
J(g)
g(t)
t −1 = t1
0
1 = t2 [−1, +1]
1 xi+1 xi
1 +1 −1
f (x)dx
gi (t)dt
J(gi )
. M xi+1 − xi ( tj + 1 ωj f xi + (xi+1 − xi ) . 2 2 j=1 1b a
Lh (f ) =
N −1 ( i=0
f (x)dx
. M xi+1 − xi ( tj + 1 ωj f xi + (xi+1 − xi ) . 2 2 j=1
t1 = −1 t2 = 1 ω1 = ω2 = 1 Lh (f ) =
N −1 ( i=0
4 xi+1 − xi 3 f (xi ) + f (xi+1 ) . 2 Lh (f )
f
t x0
x1
x2
x3 1b a
1b a
f (x)dx M
[xi , xi+1 ]
Lh (f ) t1 , t2 , . . . , tM
x4
f (x)dx
N =4
M
ω 1 , ω 2 , . . . , ωM [a, b] Lh (f )
xi
J(g) !
J(g) =
M (
ωj g(tj )
j=1
1 +1 −1
r≥0
g(t)dt
J(p) =
2
+1
p(t)dt
−1
p
≤r J(·)
Lh (f )
1b a
f
J(g) =
M (
f (x)dx
ωj g(tj )
j=1
r
f
1 +1 −1
g(t)dt [a, b]
Lh (f )
h r+1 C
f [a, b]
xi
52 5 5 b 5 5 5 f (x)dx − Lh (f )5 ≤ Chr+1 . 5 5 a 5 Lh (f ) p
1
!
p
p(t) = αt + β α, β ∈ R 2
+1
p(t)dt = J(p).
−1
1 +1 −1
r=1 [a, b] i = 0, 1, 2, . . . , N [a, b]
N
h = (b−a)/N xi = a+ih
f 52 5 5 b 5 5 5 f (x)dx − Lh (f )5 ≤ Ch2 , 5 5 a 5
C
N
1b a
g(t)dt
h
f (x)dx
N h 1b a
f (x)dx h r
Lh (f )
tj
ωj 1 ≤ j ≤ M
J(·)
r
!
M [−1, +1] −1 ≤ t1 < t2 < t3 < · · · < tM ≤ 1
J(g) =
ω 1 , ω 2 , . . . , ωM
'M
j=1 ωj g(tj )
r ϕ1 , ϕ2 , . . . , ϕM ϕj
t1 t2 . . . tM M −1
PM−1
ϕj (t) =
(t − t1 )(t − t2 ) · · · (t − tj−1 )(t − tj+1 ) · · · (t − tM ) , (tj − t1 )(tj − t2 ) · · · (tj − tj−1 )(tj − tj+1 ) · · · (tj − tM )
j = 1, 2, . . . , M
g : t ∈ [−1, +1] → g(t) ∈ R M −1 t1 , . . . , tM
g˜
g˜(t) =
M (
g(tj )ϕj (t).
j=1
1 +1 −1
2
+1
g˜(t)dt =
−1
g(t)dt M (
−1
g(tj )
ωj =
2
g˜(t)dt
+1
ϕj (t)dt,
−1
j=1
2
1 +1
+1
ϕj (t)dt
−1
J(g) =
'M
j=1
1 +1
ωj g(tj )
−1
t1 < t 2 < · · · < t M M ϕ1 , ϕ2 , · · · , ϕM
[−1, +1]
J(g) =
M (
PM−1
ωj g(tj )
j=1
M −1 ωj =
2
+1
ϕj (t)dt,
j = 1, 2, . . . , M.
−1
J(·) M −1 J(p) =
M ( j=1
ωj p(tj ) =
2
+1
−1
p(t)dt,
g(t)dt
M
p ∈ PM−1 J(ϕk ) =
p = ϕk k = 1, 2, . . . , M
M (
ωj ϕk (tj ) =
j $= k
+1
ϕk (t)dt.
−1
j=1
ϕk (tj ) = 0
2
ϕk (tk ) = 1 2 +1 ωk = ϕk (t)dt. −1
M −1 M −1 t1 , t2 , . . . , tM
p PM−1 p(t) =
M (
p(tj )ϕj (t).
j=1
2
M (
+1
p(t)dt =
−1
j=1
M (
=
p(tj )
2
+1
ϕj (t)dt
−1
p(tj )ωj = J(p).
!
j=1
ω1 ω2 . . . ωM 'M t1 , t2 , . . . , tM j=1 ϕj (t) M t 1 t2 . . . tM M (
ωj =
+1
−1
j=1
−1
2
M −1 1
2 M ( ϕj (t) dt =
1
+1
dt = 2,
−1
j=1
2 M = 2 t1 = ϕ1 ϕ2
t2 = +1 t1 t2 ϕ1 (t) =
ω1 =
t − t2 (1 − t) = t1 − t 2 2
ϕ2 (t) =
2
ω2 =
+1
−1
ϕ1 (t)dt = 1
2
t − t1 (t + 1) = . t2 − t 1 2 +1
−1
ϕ2 (t)dt = 1,
M −1 r
r
M −1
(M = 1) t1 = 0. t1 = 0
P0 ϕ1 (t) = 1,
ω1 =
∀t ∈ [−1, +1].
2
+1
ϕ1 (t)dt = 2
−1
J(g) = 2g(0). 1 +1 −1
g(t)dt
[−1, +1]
p ∈ P1
p ∈ P1
p(t) = αt + β 1 +1
α, β ∈ R
g(0)
−1
p(t)dt = 2β = 2p(0)
g(t)
t −1
0 = t1
+1 [−1, +1]
Lh (f ) =
N −1 ( i=0
(xi+1 − xi )f
-
xi + xi+1 2
.
52 5 5 b 5 5 5 f (x)dx − Lh (f )5 ≤ Ch2 . 5 5 a 5 [xi , xi+1 ] ξi
f (ξi )
[xi , xi+1 ]
!
t2 = 0 t3 = +1
ϕ1 ϕ2 ϕ3 1 2 (t − t), 2
ϕ1 (t) =
ω1 =
2
+1
ϕ1 (t)dt =
−1
1 , 3
ϕ2 (t) = 1 − t2 ,
ω2 =
2
+1
ϕ2 (t)dt =
−1
J(g) =
M = 3 t1 = −1
P2
ϕ3 (t) =
4 , 3
ω3 =
1 2 (t + t). 2
2
+1
ϕ3 (t)dt =
−1
1 . 3
1 4 1 g(−1) + g(0) + g(1). 3 3 3 1/3
2/3
Lh (f ) =
N −1 ( i=0
2 g(t) = t3
xi+1 − xi 6
. . xi + xi+1 f (xi ) + 4f + f (xi+1 ) . 2
J(g) = 0
1 +1 −1
g(t)dt =
1 +1 −1
52 5 5 b 5 5 5 f (x)dx − Lh (f )5 ≤ Ch4 . 5 5 a 5 h4
Lh (f ) h
3 3
t dt = 0
1b a
f (x)dx
!
t1 , t2 , . . . , tM 1 +1 â&#x2C6;&#x2019;1 p(t)dt 1b a
h
J(p) = p
r
f
Lh (f )
'M
j=1
f (x)dx
r 1b a
f (x)dx
Lh (f )
M 1
LM (t) =
2M M !
dM 2 (t â&#x2C6;&#x2019; 1)M . dtM
tâ&#x2C6;&#x2C6;R L0 (t) = 1,
L1 (t) = t,
L2 (t) =
3t2 â&#x2C6;&#x2019; 1 , 2
···
L0 L1 L2 . . .
L0 L1 L2 . . . L0 L1 . . . LM PM 1 +1 i $= j Li (t)Lj (t)dt = 0 â&#x2C6;&#x2019;1 LM ] â&#x2C6;&#x2019; 1, +1[
M
Lj (t)
j
L 0 , L 1 , L 2 , . . . , LM PM i>j 2+1 Li (t)Lj (t)dt
Ï&#x2030;j p(tj )
=
1 2(i+j) i!j!
â&#x2C6;&#x2019;1
2+1
â&#x2C6;&#x2019;1
=
di 2 dj (t â&#x2C6;&#x2019; 1)i j (t2 â&#x2C6;&#x2019; 1)j dt i dt dt
<5 5t=1 j 5 diâ&#x2C6;&#x2019;1 2 5 i d 2 j5 5 (t â&#x2C6;&#x2019; 1) j (t â&#x2C6;&#x2019; 1) 5 5 iâ&#x2C6;&#x2019;1 (i+j) dt 2 i!j! dt 1
t=â&#x2C6;&#x2019;1
â&#x2C6;&#x2019;
2+1
â&#x2C6;&#x2019;1
= j+1 diâ&#x2C6;&#x2019;1 2 i d 2 j (t â&#x2C6;&#x2019; 1) j+1 (t â&#x2C6;&#x2019; 1) dt . dtiâ&#x2C6;&#x2019;1 dt
2
i
(t − 1)
(t2 − 1)i
i 1 t = −1
t=1
2+1 Li (t)Lj (t)dt =
−1
(−1) 2(i+j) i!j!
2+1
−1
−1
(i − 1)
di−1 2 dj+1 (t − 1)i j+1 (t2 − 1)j dt. i−1 dt dt
j 2+1 Li (t)Lj (t)dt
=
−1
=
(−1)j 2(i+j) i!j!
2+1
−1
(−1)j (2j)! 2(i+j) i!j!
2j di−j 2 i d (t − 1) (t2 − 1)j dt 2j dti−j dt ) *+ , (2j)!
2+1
−1
di−j 2 (t − 1)i dt dti−j
5 5t=1 5 (−1) (2j)! 55 di−j−1 2 i5 (t − 1) = 0. 5 5 i−j−1 (i+j) 2 i!j! dt t=−1 j
= t1 , t2 , . . . , ts
−1
LM s≤M
+1 LM
p(t) = (t − t1 )(t − t2 )(t − t3 ) . . . (t − ts ) p ∈ Ps p p(t)LM (t) ≥ 0 ∀t ∈ [−1, +1] p(t)LM (t)
tj 1 ≤ j ≤ s p(t)LM (t) ≤ 0 ∀t ∈ [−1, +1]
2+1 p(t)LM (t)dt $= 0.
−1
α0 , α1 , α2 , . . . , αs p(t) =
s (
αj Lj (t)
j=0
2+1 2+1 2+1 s ( p(t)LM (t)dt = αj Lj (t)LM (t)dt = αs Ls (t)LM (t)dt. j=0
−1
M
1 +1
−1
p(t)LM (t)dt LM t1 , t2 , . . . , tM !
−1
−1
s=M
J(g) =
M (
ωj g(tj )
j=1
M t1 < t 2 < · · · < t M M
LM
ω 1 , ω 2 , . . . , ωM 2 ωj =
M
+1
ϕj (t)dt,
j = 1, 2, . . . , M,
−1
ϕ1 , ϕ2 , . . . , ϕM
M
PM−1
M
M
≥1
r = 2M − 1 J(g) =
'M
j=1
ωj g(tj ) 2M − 1
M
p t∈R
p˜(t) =
M (
p(tj )ϕj (t),
j=1
ϕ1 , ϕ2 , . . . , ϕM t1 , t2 , . . . , tM M −1 M
PM−1 p˜
q(t) = p(t) − p˜(t) q t1 , t2 , . . . , tM v
p
t1 , t2 , . . . , tM q
q(tj ) = 0 M
∀t ∈ R.
2M − 1 j = 1, 2, . . . , M q
v(t) = (t − t1 )(t − t2 )(t − t3 ) · · · (t − tM ) w
M −1
q(t) = v(t)w(t) v
∀t ∈ R.
M
M M
v(t) = αLM (t)
∀t ∈ R,
LM α
∀t ∈ R.
w
M −1 w(t) =
M−1 (
β0 , β1 , β2 , . . . , βM−1 ∈ R
βk Lk (t).
k=0
2
+1
q(t)dt =
−1
2
+1
v(t)w(t)dt = α
−1
M−1 (
βk
2
p˜(t)dt,
2
k=0
q 2
+1
p(t)dt =
−1
+1
LM (t)Lk (t)dt = 0. −1
+1 −1
p˜ 2
+1
p(t)dt =
−1
M (
p(tj )
2
+1
ϕj (t)dt =
−1
j=1
M (
ωj p(tj ) = J(p).
j=1
! ωj j = 1, 2, ..., M ϕ2j
M
0<
2
+1 −1
ϕ2j (t)dt = J(ϕ2j ) =
M (
2M − 2 ωk ϕ2j (tk ) = ωj .
k=1
M p
2M 2
+1
−1
p(t)dt $= J(p).
p(t) = 1 +1 −1
p(t)dt > 0
>M
j=1 (t
− tj )2
J(p) = 0
M f
[a, b]
f
Lh (f ) 52 5 5 b 5 5 5 f (x)dx − Lh (f )5 ≤ Ch2M , 5 5 a 5
2M
xi i = 0, 1, . . . , N
C [a, b]
L1 (t) = t
L1
t1 = 0 h2
L2 (t) = 12 (3t2 − 1)
L2
1 t1 = − √ 3
1 t2 = √ . 3
ϕ1 ϕ2
t1 t2 √ 3t + 1 ϕ2 (t) = 2
P2 √ 1 − 3t ϕ1 (t) = 2
ω1 =
2
+1
ϕ1 (t)dt = 1
ω2 =
−1
2
+1
ϕ2 (t)dt = 1.
−1
3 3 √ 4 √ 4 J(g) = g −1/ 3 + g 1/ 3 , Lh (f ) =
N −1 ( i=0
< ? @ √ xi+1 − xi 3−1 f xi + √ (xi+1 − xi ) 2 2 3 ? @= √ 3+1 +f xi + √ (xi+1 − xi ) . 2 3
f C 52 5 5 b 5 5 5 f (x)dx − Lh (f )5 ≤ Ch4 . 5 5 a 5
xi
!
α t2 = −α t3 = α t4 = +1
0<α<1 ω 1 , ω2 , ω3 , ω4
J(g) =
4 (
ωj g(tj ),
j=1
g
[−1, +1]
t1 = −1
ω1 , ω2 , ω3 , ω4 p α α
α 1 +1
J(p) =
−1
r>3 ω1 , ω2 , ω3 , ω4
ωi =
J(p) =
p(t)dt
1 +1 −1
p(t)dt
p
r
r
2
1
ϕi (t)dt,
−1
ϕi i = 1, 2, 3, 4 t1 t2 t3 t4
P3
t+α −1 + α t+1 ϕ2 (t) = −α + 1 ϕ1 (t) =
ω1 =
2
t−α t−1 · , −1 − α −1 − 1 t−α t−1 · · , −α − α −α − 1 ·
1
ϕ1 (t)dt =
−1 1
ω2 =
2
ϕ2 (t)dt =
−1
ω4 = ω1
1 1 − 3α2 · , 3 1 − α2 1 2 · . 3 1 − α2
ω3 = ω2
J(p)
p p r−1
p(t) = atr + q(t)
r a∈R J(p) = a
4 (
ωj trj + J(q)
j=1
2
+1
p(t)dt = a
−1
J(p) = J(q) =
1 +1 −1
q(t)dt
2
+1 r
t dt +
−1
1 +1 −1
2
q(t)dt.
−1
p(t)dt
p q
J(tr ) =
+1
2
r−1 +1
−1
tr dt.
r
q
3 4
J(t ) =
4 (
ωj t4j
j=1
1 +1
J(t4 )
ω1 = ω4 =
1 6
−1
1
t4 dt =
−1
2 . 5
√ α = 1/ 5
t4 dt
ω2 = ω3 =
J(g) =
2
2 1 − 3α2 + 2α4 = , 3 1 − α2
α
5 6
. - 3 3 √ 4. √ 4 1 5 g(−1) + g(1) + g −1/ 5 + g 1/ 5 . 6 6
t5 5
J(t ) = 0 =
2
1
t5 dt.
−1
t6 . . √ 46 3 √ 46 1 5 3 26 6 6 J(t ) = (−1) + (1) + −1/ 5 + 1/ 5 = 6 6 75 2 1 2 $= t6 dt = . 7 −1 6
r=5
t3 = α
0 < α ≤ 1 ω 1 , ω2 , ω3
t1 = −α t2 = 0
J(g) =
3 (
ωj g(tj ),
j=1
g
[−1, 1] ω1 ω2 ω3 p
α J(p) =
α
J(p) = 11
−1
α
p(t)dt
11
−1
p(t)dt p
ωi =
2
1
ϕi (t)dt,
−1
ϕi i = 1, 2, 3 t1 t2 t3
P2
t t−α · , α 2α t+α t−α ϕ2 (t) = · . α −α ϕ1 (t) =
ω1 =
2
1
ϕ1 (t)dt =
1 , 3α2
ϕ2 (t)dt =
−2 + 2. 3α2
−1 1
ω2 =
2
−1
ω3 = ω1
J(p)
p J(t3 ) =
1 +1 −1
3 t3 dt
J(t3 ) = ω1 (−α)3 + ω2 · 0 + ω3 α3 = 0, 2
+1
1 A 4 Bt=+1 t t=−1 = 0. 4
t3 dt =
−1
1 +1 −1
J(t4 ) =
4 t4 dt J(t4 ) = ω1 (−α)4 + ω2 · 0 + ω3 α4 = 2ω1 α4 , 1 +1 −1
t4 dt = 2/5
ω1 α4 = 1/5
J(t5 ) =
2
+1
α=
t5 dt = 0
−1
α =
5
6 3/5
L3 L3 (t) =
. 5 3 t t2 − . 2 5
6 3/5
t6= 0 α = 3/5
t=±
6 3/5
3 r = 2·3−1 = 5
−1
+1 −1 +1 LM M = 2 & 2 M = 3 √ √ L3 (t) = (15t − 3)/2 t = −1/ 5 t = 1/ 5
M = 1 L&3 2M − 1
TM TM
TM
!"
N
A!x = !b. A !b
N ×N
N N
!x
N
a11 a21 A= aN 1 N
a12 a22
··· ···
aN 2
···
xj a1N a2N , aN N
aij 1 ≤ i, j ≤ N bj 1 ≤ j ≤ N 1≤j≤N
b1 b2 !b = , bN
x1 x2 !x = . xN
x1 , x2 , . . . , xN a11 x1 + a12 x2 + · · · + a1N xN a21 x1 + a22 x2 + · · · + a2N xN
aN 1 x1 + aN 2 x2 + · · · + aN N xN
= b1 , = b2 , = bN .
N
A aij = 0 i≤N
i, j
1≤j<
1≤i<j≤N A
A A aii 1, 2, . . . , N
A
aii $= 0 i = aii = 1 i = 1, 2, . . . , N
A xN , xN −1 , . . . , x1 xN = bN i = N − 1, N − 2, . . . , 3, 2, 1 xi = bi −
N (
aij xj .
j=i+1
A A!x = !b
N =3
A!x = !b
4 8 A = 3 8 2 9
12 13 , 18
4 !b = 5 . 11
4x1 + 8x2 + 12x3 = 4, 3x1 + 8x2 + 13x3 = 5, 2x1 + 9x2 + 18x3 = 11. a11 = 4 x1 + 2x2 + 3x3 = 1.
3 2 x1
x2
+ 2x2 2x2 5x2
+ 3x3 + 4x3 + 12x3
x3
= 1, = 2, = 9.
x1
2
x2 + 2x3 = 1. 5 x1
+
2x2 x2
+ +
3x3 2x3 2x3
= = =
1, 1, 4,
3x3 2x3 x3
= = =
1, 1, 2.
2 x1
+ 2x2 x2
+ +
x3 , x2 , x1
x3 = 2,
x2 = −3,
x1 = 1.
!"
A(i) i
!b(i)
!"
A(i)
A(i)
i
1 0 0 0 =
(i)
(i)
a12 1 0 0
(i)
a13 (i) a23 1 0
a14 (i) a24 (i) a34 1
··· ··· ··· ···
(i)
···
(i)
···
aN i
A
(i) a1N (i) a2N (i) a3N (i) a4N . (i) aiN (i) aN N
A(i)
!b(i+1)
i
A(i)
i (i+1)
aij
(i)
(i)
= aij /aii ,
i
(i)
aii
j = i + 1, i + 2, . . . , N.
(i+1)
bi
(i)
(i)
= bi /aii . A(i) k = i + 1, i + 2, . . . , N k = i + 1, i +
k (i) aki
(i+1)
··· ··· ··· ···
aii
!b(i)
akj
(i)
1 0
(i+1)
2, . . . , N
a1i (i) a2i (i) a3i (i) a4i
(i)
(i)
(i+1)
= akj − aki ∗ aij (i+1)
bk
,
(i)
j = i + 1, i + 2, . . . , N.
(i)
(i+1)
= bk − aki ∗ bi
.
i (i) akj i + 1 ≤ k, j ≤ N aij := aij /aii ,
j = i + 1, i + 2, . . . , N, aij /aii
aij
N
G
i=1 ···
N
N −1
aij 1 ≤ i, j ≤ N
bj 1 ≤ j ≤ N
A
aij 1 ≤ i < j ≤ N
!b
bj 1 ≤ j ≤ N
!b
i=1
N −1
p := 1/aii j =i+1 aij := p ∗ aij
xi i N
i
b := p ∗ bi i k =i+1 N j =i+1 N akj := akj − aki ∗ aij bk := bk − aki ∗ bi
i
bi
i k aki
i
k aki
p := 1/aN N
bi
bk
N
bN := p ∗ bN
bN
N
i = 1, 2, 3, . . . N −1 1 0 0 0
a12 1 0
a13 a23 1
··· ··· ···
···
···
0
a1N a2N a3N 1 !x
x1 x2 x3 xN
=
b1 b2 b3 bN
!b
i = N − 1 1( N ' bi := bi − aij ∗ bj
− 1)
j=i+1
!b
!x
aii = 0 aii
Ak
k
k×k
A
Ak
aij 1 ≤ i, j ≤ k 1 ≤ k ≤ N Ak
A
k = 1, 2, . . . , N
A A(i)
i (i) Ak
k 1≤k≤N
(i)
Ai
(i)
(i)
Ai = aii . A
Ai
i
A
(1)
A1 = A1 , (1) (2) A2 = a11 A2 , (1) (2) (3) A3 = a11 a22 A3 , (1) (2)
(i−1)
Ai = a11 a22 . . . ai−1,i−1
(1) (2) (N ) a11 , a22 , . . . , aN N
Ai $= 0
(i)
Ai ,
i = 1, 2, . . . , N !
Nm
Nm
=
N −1H (
I (N − i) + 1 + (N − i)(N − i + 1) + 1
i=1
=
N −1H (
I2 (N − i + 1) + 1
i=1
= =
N 2 + (N − 1)2 + (N − 2)2 + · · · + 22 + 12 N (
j2.
j=1
N (
j2 =
j=1
N3 N2 N + + , 3 2 6 Nm = N 3 /3 + O(N 2 )
N N
2
N →∞
j2 =
N (
j2
=
j=1
2
j
1 x2 dx + j − . 3 j−1
N 2 ( j=1
= =
2
N
j
x2 dx +
j−1
N ( j=1
j−
N 3
(N + 1)N N − 2 3 0 3 2 N N N + + . 3 2 6 x2 dx +
N 3 /3
23
N
O(N 2 )
A
i=1
0x1 5x1 6x1
+ x2 + 2x2 + 8x2
+ + +
3x3 3x3 x3
= = =
1, 4, 1,
6x1 5x1 0x1
+ 8x2 + 2x2 + x2
+ + +
x3 3x3 3x3
= = =
1, 4, 1.
N −1
p := 1/aii A
aii
i = 1, 2, . . . , N N (
aij xj = bi ,
j=1
ri > 0
max ri | aij |= 1.
1≤j≤N
i
k := i
xi
m := abs(aii )
i
m =| aii |
j =i+1 N s := abs(aji ) m<s k := j m := s k=i
i m k m=0 k=i xi
j=i t := aij aij := akj akj := t
N
k
i
aij
akj
bi
bk
t := bi
bi := bk bk := t
i
i N2 N3
J
4.218613x1 3.141592x1
+ +
6.327917x2 4.712390x2
= =
10.546530 7.853982. A
x1 = x2 = 1. →
↓
4.218611x1 3.141594x1 ↑
+ 6.327917x2 + 4.712390x2
x1 = −5,
= 10.546530 = 7.853980. ↑
x2 = +5.
Ox1 , x2
A yj 1 ≤ j ≤ N
N ×N
N
1 !y 1=
N ( j=1
1/2
yj2
y!
A ||| A |||= max y "=0 %
!x
1 A!y 1 . 1 !y 1
N 1 A!x 1≤||| A ||| · 1 !x 1 .
A AT A
N ×N A
AT
ω ||| A |||=
√
ω
AT A ω 1 , ω 2 , ω 3 , . . . , ωN ϕ ! j $= 0 AT A ωj AT A! ϕj = ωj ϕ !j 1 A! ϕj 12 = ϕ ! Tj AT A! ϕj = ωj ϕ ! Tj ϕ ! j = ωj 1 ϕ ! j 12 T ωj ≥ 0 j = 1, 2, . . . , N A A ω = max ω 1≤j≤N j √ ω D N ×N ω 1 , ω 2 , . . . , ωN N ×N Q AT A = QT DQ.
1 A!y 12 !y T AT A!y y!T QT DQ!y = max = max T T 2 T y"=0 1 y % y "=0 % y "=0 ! % !1 y! y! y Q Q!y 'N 2 !z T D!z j=1 ωj zj = max T = max 'N . 2 z "=0 ! % % z "=0 z !z j=1 zj
||| A |||2 = max
!z
N
N ( j=1
ωj zj2 ≤
N (
ωzj2 = ω
j=1
N (
zj2 .
j=1
N N (
ωj zj2 = ω
j=1
k
ω = ωk !
N (
zj2
j=1
zj = 0 ∀j $= k |||A|||2 = ω
zk = 1
A A
N ×N χ(A) =||| A ||| · ||| A−1 |||
A−1
A A A λ1 , λ2 , . . . , λN
N ×N
χ(A) =
max | λj |
1≤j≤N
min | λj |
.
1≤j≤N
AT A = A2
A T
A A
λ21 , λ22 , . . . , λ2N ||| A |||= max |λj |. 1≤j≤N
A−1
−1 −1 λ−1 1 , λ2 , . . . , λN
||| A−1 |||= max |λ−1 j |= 1≤j≤N
1 . min |λj |
1≤j≤N
! N
N
A!x = !b. ! δb
!b ! A!y = !b + δb,
! !y = !x + δx ! 1δx1/1! x1
! = δb. ! Aδx ! !b1 1δb1/1
A ! δb N ! = δb ! A!x = !b Aδx
N ×N
!b
!x
!b ! δx
N N
! ! 1δx1 1δb1 ≤ χ(A) 1!x1 1!b1
χ(A)
A
A−1
A
! ! ! 1δx1 1A−1 δb1 1δb1 = ≤ |||A−1 ||| . 1!x1 1!x1 1!x1 1!b1 = 1A!x1 ≤||| A ||| ·1!x1, 1 ||| A ||| ≤ . 1!x1 1!b1 ! !x !b
χ(A)
! !b1 1δb1/1
! 1δx1/1! x1
! !b1 1δb1/1 χ(A)
A
! 1δx1/1! x1 ! ! χ(A)·1δb1/1b1 ! ! !b1 1δx1/1! x1 = χ(A) · 1δb1/1 −p η = 10 ! 1δx1/1! x1
p
χ(A) · η = 10log10 χ(A) · 10−p = 10log10 χ(A)−p . p [p − log10 χ(A)] [·] χ(A)
107
A
M ×N N !x M
N
M
!b
M
A!x = !b N A!x , !b 1 A!x − !b 1
!x N N
!x
!x
N
!y
1 A!x − !b 1≤1 A!y − !b 1 . A!x = !b
A N !x
M ×N
!x
(M ≥ N )
AT A!x = AT !b B = AT A
B N
N ×N !z T B!z
!z
!z T B!z = !z T AT A!z =1 A!z 12 . !z T B!z = 0
A!z = 0
A AT A
N !z = 0 N
!x AT A!x = AT !b. !x
N
!x 1 A!x − !b 1<1 A!y − !b 1 . !z = !x − !y
!z $= 0
y! $= !x
1 A!y − !b 12 =1 (A!x − !b) − A!z 12 3 4T 3 4 = (A!x − !b) − A!z (A!x − !b) − A!z
=1 A!x − !b 12 −!z T AT (A!x − !b) − (A!x − !b)T A!z + !z T AT A!z =1 A!x − !b 12 −2!z T AT (A!x − !b) + !z T AT A!z =1 A!x − !b 12 −2!z T (AT A!x − AT !b)+ 1 A!z 12 .
y!
!x 1 A!y − !b 12 =1 A!x − !b 12 + 1 A!z 12 . A
N
A!z $= 0 p!
1A!y −!b1 p!
N
!z $= 0 1A! p − !b1 ≤ p ! = !x 1A!x −!b1 < 1A! p −!b1
N
!y !x p! ! A
AT A A!x = !b N
N
N
AT A!x = AT !b.
A
!b
M ×N
M
N N
!r (!y ) = A!y − !b. !r
!x
A!x = !b
∀!y ∈ RN , AT A!x = AT !b
1 !r (!x) 1≤1 !r (!y ) 1,
p 1 , p 2 , . . . , pM M (
M (
pi ri2 (!y )
i=1
p 1 , p 2 , . . . , pM
D
i=1
A!x = !b M ×M D=
M ( i=1
ri2 (!y ),
√ √ √ ( p1 , p2 , . . . , pM ),
pi ri2 (!y ) = !rT (!y )D2!r (!y ) = 1 D(A!y − !b) 12 . N
!x
1 DA!x − D!b 1 A DA !b
AT D2 A!x = AT D2!b
D!b
M > N !y
A!x = !b
p 1 , p 2 , . . . , pM
A N ×N λ1 , λ2 , λ3 , . . . λN | λ1 |≥| λ2 |≥| λ3 | ≥ · · · ≥| λN | . ϕ ! 1, ϕ !2, . . . , ϕ !N A! ϕj = λj ϕ !j , ε ! = ε! δb ϕN
!x
! δx
!b
1 ≤ j ≤ N. ! δb
N
A!x = !b
N
!b = ϕ !1 ! ! Aδx = δb
! ! 1δx1 1δb1 = χ(A) 1!x1 1!b1 χ(A)
A !x
! δx
A!x = ϕ !1
A
!x =
1 ϕ !1 λ1
! = ε ϕ δx !N , λN
! ! 1δx1 |λ1 | 1ε! ϕN 1 |λ1 | 1δb1 = = . 1!x1 |λN | 1! ϕ1 1 |λN | 1!b1 A
χ(A) =
|λ1 | . |λN |
y(t) = αe−βt ,
! = ε! Aδx ϕN
α
β t = t1 , t2 , . . . , tN
y(t) = y1 , y2 , . . . , yN ln y(t) = ln α− βt α ˜ β
α ˜ = ln α ln yi = α ˜ − βti ,
1 ≤ i ≤ N. α ˜
β A!x = !b 1 1 A= 1
t1 t2 tN
N AT A = N '
ti
i=1
α ˜
−β
!x =
G
α ˜ −β
K
ln y1 ln y2 !b = . ln yN
AT A!x = AT !b N ' ln y i i=1 AT !b = N ' ti ln yi
ti i=1 N ' t2i N '
i=1
i=1
AT A
N ×N
A
h = π/(N + 1)
2 −1 −1 2 A=
−1
. −1 2 −1 −1 2
sin(α − β) + sin(α + β) = 2 sin α cos β,
A λk = 2 − 2 cos kh,
1 ≤ k ≤ N,
ϕ ! k = (sin kh, sin 2kh, . . . , sin N kh)T ,
1 ≤ k ≤ N.
A χ(A) χ(A) = N
1 − cos N h 1 + cos h = . 1 − cos h 1 − cos h 1 − h2/2
cos h
2
O(N )
N
χ(A) , 4/h2 = A
A!x = !b !r (!x) = A!x − !b 1 · 1∞
1·1
1!y1∞ = max1≤i≤M |yi | N !x 1A!x − !b1∞ ≤ 1A!y − !b1∞ , N
y!
1!r (!x)1
!r(!x)
LU
LU A
!"
N ×N A!x = !b
A
N ×N A = LU
L
U U
A(i)
i A(i) S (i)
L
U
LU
i
S (i)
(i)
si
1 0 0 1 0 0 =
(i)
= 1/aii
(i)
0 0 1
0
1
0 (i) si (i) si+1 (i) si+2
1 0
1
(i)
sN (i)
(i)
sk = −aki /aii
1
i
k = i + 1, i + 2, . . . , N (i) aii S (i) A(i)
A(i+1) = S (i) · A(i) . A(N +1)
U
U = A(N +1) = S (N ) A(N ) = S (N ) S (N −1) A(N −1) = . . . = S (N ) S (N −1) . . . S (1) A(1) . A(1) = A L(j) = [S (j) ]−1
S (j) A = L(1) L(2) L(3) . . . L(N ) U.
A = LU, L(1) L(2) L(3) . . . L(N )
L LU
LU
A
A A = L 1 U1 = L 2 U2 , L1 L2 L1
U1 U2 L2
1 U1
A U2
−1 L−1 2 L 1 = U2 U1 .
LU
L−1 2 L1
U2 U1−1 1 U2 U1−1 −1 L2 L1 U2 U1−1 L2 = L1 U2 = U1 !
L−1 2 L1
LU
1
A A
i, j ≤ 3
3 ,ij
a11 a21 a31 )
a12 a22 a32 *+ A
L
a13 a23 a33 ,
A
=
3 1≤j≤i≤3
,11 ,21 ,31 )
0 ,22 ,32 *+
a11 a21 a31
=
L
L
aij 1 ≤
uij 1 ≤ i < j ≤ 3
0 0 ,33 ,
U ,11 ,21 . ,31
1 u12 u13 0 1 u23 . 0 0 1 ) *+ , U
U A a12 = ,11 u12
a13 = ,11 u13 ,
,11 u12 = a12 /,11 ,
u13 = a13 /,11 . L
U L
L U ,21 u12 + ,22 = a22
,31 u12 + ,32 = a32
,22 = a22 − ,21 u12
,32 = a32 − ,31 u12 . U
L
U ,21 u13 + ,22 u23 = a23 u23 = (a23 − ,21 u13 )/,22 .
LU
L U
,33 ,33 = a33 − ,31 u13 − ,32 u23 . A
k−1 (2 ≤ k < N ) U i
N ×N k−1 k
L k L (k ≤ i)
U k
L L
k
U
aik = ,i1 u1k + ,i2 u2k + · · · + ,i,k−1 uk−1,k + ,ik ,ik = aik − k L
k−1 (
,ij ujk .
j=1
U U (k + 1 ≤ i)
i
k
aki = ,k1 u1i + ,k2 u2i + · · · + ,kk uki
uki
k−1 ( 1 = aki − ,kj uji . ,kk j=1
L
U
A
,11 ,21 ,31 ,N 1
u12 ,22 ,32
u13 u23 ,33
··· ··· ···
,N 2
,N 3
···
N ×N
u1N u2N u3N . ,N N
LU
A A
LU LU
!"
LU N3
N
LU m A !x (() = !b (() ,
, = 1, 2, . . . , m,
LU
LU aij 1 ≤ i, j ≤ N
A
aij 1 ≤ j ≤ i ≤ N
L
aij 1 ≤ i < j < N
i=2
U
N
U
a1i := a1i /a11
k=2
1 N −1
L
1 L
k−1 '
akk := akk − akj ∗ ajk j=1 i=k+1 N k−1 a := a − ' a ∗ a ik ij jk ik j=1 4 k−1 ' 1 3 aki := aki − akj ∗ aji akk j=1 N' −1 aN N := aN N − aN j ∗ ajN
A U ,kk
k
L
k
U ,N N
j=1
!x
((−1)
, = 2, 3, . . . , m !b (() m=2
!x (1) , !x (2) , . . . A !x(1) = !b(1) ,
A!x(2) = 1!x(1) 12 !x(1) , !b(1)
!b(2) = 1!x(1) 12 !x(1)
N m A
LU
m A LU!x(() = !b(() ,
, = 1, 2, . . . , m.
y!(() = U!x(() , , = 1, 2, . . . , m L!y (() = !b(() ,
LU
U!x(() = !y (() .
LU LU
N ×N U L
det(A) = det(L) · det(U ) det(U ) = 1 det(L) = ,11 .,22 .,33 . . . ,N N L det(A) =
N L
A
,jj ,
j=1
det(A) A
LU
N! N N ! = 100! , 10158
N = 100
109 10149
200
3 10141
100! LU
A A
100
LU
LU
A (1 ≤ k < N )
k
k
A
j
akk
j > k A
LU A
A
LU
A!x = !b !b
LU
A L LU
N
p!
pk = j k
j
!" T
T
A=A
N ×N
A
T
!y A!y ≥ 0
A
N
y!
T
!y A!y = 0
!y = 0
A
A !z
N ×N
N ×N
Ak k !z T Ak !z
k
y! =
G
!z 0
K
Ak N
!y
}k } (N − k)
,
!z T Ak !z = y! T A!y . (ii) !z T Ak !z ≥ 0
(iii) !z T Ak !z = 0 !
!z = 0
A L
A = LLT
Ak
LU
A LU
A
˜ A = LU U Ak
N ×N ˜ L ˜k L Uk
˜ k Uk Ak = L
˜ L
˜ k A L ,˜kk 1 ≤ k ≤ N Ak
U
det Ak = ,˜11 .,˜22 .,˜33 . . . ,˜kk > 0. k = 1, 2, 3, . . . , N ,˜jj > 0,
j = 1, 2, . . . , N.
D
N ×N -M . M M M D= ,˜11 , ,˜22 , ,˜33 , . . . , ,˜N N def
E 3 4 ,˜11 , ,˜22 , ,˜33 , . . . , ,˜N N .
E = D2 = N ×N
ˆ L
ˆ = LE ˜ −1 L
ˆ A = LEU A ˆT . A = AT = U T E L
LU
ˆT L UT E A ˆ T = U. L
ˆ L ˆ T = LDD ˆ ˆT . A = LE L
N ×N
N ×N
L ˆ L = LD A = LLT .
A = MMT M LLT = M M T LT M −T = L−1 M M
−T
M LT
M −T
LT M −T
L−1 M L−1 M ,jj mjj = , mjj ,jj ,jj
1 ≤ j ≤ N, N ×N L−1 M = I
mjj
I M =L !
L A = LLT
L LU
˜ L
L
k akj = ajk
√ akk
A
A
A!x = !b, A A = LLT L!y = !b,
LT !x = y!.
LU
(aij )1≤j≤i≤N
A
A (aij )1≤j≤i≤N
a11 :=
A = LLT
L
√ a11
,11
i=2
N
ai1 := ai1 /a11
akk
aN N
L
k =2 N −1 3 k−1 ' 2 41/2 := akk − akj
L ,kk
j=1
i=k+1 N 4 k−1 ' 1 3 aik := aik − aij ∗ akj akk j=1 3 41/2 N' −1 2 := aN N − aN j
k
L ,N N
j=1
A
N ×N N aij = 0
, ,
A
aij 1 ≤ i, j ≤ N
i, j
1 ≤ i, j ≤ N
| i − j |≥ , , ,=1 ,=2 LU LLT A
N ×N LU
, LLT
A
, LU
LLT
N ,2
N
A
LLT
LU A
∗ ∗ ∗ ∗ ∗ A = 0 0 0 0 0 0
∗
∗
∗
∗
0
0
0
0
0
∗
∗
∗
∗
∗
0
0
0
0
∗
∗
∗
∗
∗
∗
0
0
0
∗
∗
∗
∗
∗
∗
∗
0
0
∗
∗
∗
∗
∗
∗
∗
∗
0
∗
∗
∗
∗
∗
∗
∗
∗
∗
0
∗
∗
∗
∗
∗
∗
∗
∗
0
0
∗
∗
∗
∗
∗
∗
∗
0
0
0
∗
∗
∗
∗
∗
∗
0
0
0
0
∗
∗
∗
∗
∗
0
0
0
0
0
∗ ∗ " ,
∗
∗
,
2 −1 −1 2 A=
0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ !
# ,
$
∗
N ×N
0
A
!"
. −1 2 −1 −1 2
−1
A d!
A = LLT !e
dj
LU
1â&#x2030;¤jâ&#x2030;¤N
ej 1 â&#x2030;¤ j â&#x2030;¤ N â&#x2C6;&#x2019; 1  d1  e  1   L=    
L 
d2
dN â&#x2C6;&#x2019;1 eN â&#x2C6;&#x2019;1
LLT d21 = 2; e22 d1 =
+
A
e1 d1 = â&#x2C6;&#x2019;1;
d23
dN
     .    
= 2;
â&#x2C6;&#x161; 2
e21 + d22 = 2;
e3 d3 = â&#x2C6;&#x2019;1;
e2 d2 = â&#x2C6;&#x2019;1;
e2N â&#x2C6;&#x2019;1 + d2N = 2,
···;
j = 1, 2, . . . , N â&#x2C6;&#x2019; 1 ej = â&#x2C6;&#x2019;1/dj
dj+1 = LLT
d1 = 
M 2 â&#x2C6;&#x2019; e2j . A
â&#x2C6;&#x161; 2
j =1 N â&#x2C6;&#x2019;1    ej := â&#x2C6;&#x2019;1/dj  M dj+1 := 2 â&#x2C6;&#x2019; e2j . ej dj =
7
A
N Ã&#x2014;N
j+1 j
dj ej = â&#x2C6;&#x2019;
7
j . j+1
!"
B
N Ã&#x2014;N
Aâ&#x2C6;&#x2019;1 B
(bij )1â&#x2030;¤i,jâ&#x2030;¤N
N2
(bij )1â&#x2030;¤i,jâ&#x2030;¤N B
(bij )1â&#x2030;¤i,jâ&#x2030;¤N C
N Ã&#x2014;N AC = B
C = Aâ&#x2C6;&#x2019;1 B !j 1â&#x2030;¤jâ&#x2030;¤N B
(bij )1â&#x2030;¤i,jâ&#x2030;¤N Aâ&#x2C6;&#x2019;1 B
!j C
C j
B
C
!j = B !j 1 ≤ j ≤ N AC
AC = B A = LLT
A
N
N
!j = B !j 1 ≤ j ≤ N LX !j = X !j 1 ≤ j ≤ N L C (bij )1≤i,j≤N
N
T
B X
C
A−1 B bij 1 ≤ i, j ≤ N
B
bij 1 ≤ i, j ≤ N
C
di 1 ≤ i < N
L
ei 1 ≤ i < N − 1
d1 =
L
√ 2
L i=1
N −1
ei := −1/di 6 di+1 := 2 − e2i j=1 N b := b1j /d1 1j i=2 N j=1 N bij := (bij − ei−1 ∗ bi−1,j )/di j=1 N b := bN j /dN Nj i=N −1 1 −1 j=1 N bij := (bij − ei ∗ bi+1,j )/di
!a
!b
N
LX = B
LT C = X
ai i = 1, . . . , N !c
(N − 1)
bi
ci
LU
i = 1, . . . , N − 1
A=
N ×N
A
a1
b1
b2 . bN −1 aN
a2
aN −1 c1
c2
...
cN −1
A
L
U
L=
d1 d2
dN −1 f1
f2
...
fN −1
dN
A
1 , U =
A
e1
e2 . eN −1 1
1
1
A = LU
L
U
A = LU
Ak
k
ai A
k = 1, 2, . . . , N − 1
A
LU L
U A
d1 = a1
f 1 = c1 LU
LU A N −1
b1 = d1 e1 A
di = ai ,
f i = ci ,
A A
LU ei =
bi , di
i = 1, 2, . . . , N − 1. A
aN = f1 e1 + · · · + fN −1 eN −1 + dN , dN = aN −
N −1 ( j=1
fj ej .
LU
LU ai 1 ≤ i ≤ N b i
ci 1 ≤ i ≤ N − 1 A
ai 1 ≤ i ≤ N c i 1 ≤ i ≤ N − 1 L d!
!a bi 1 ≤ i ≤ N − 1
i=1
U !b
!e
(N − 1)
N −1
L
bi := bi /ai
aN := aN −
N' −1 j=1
L
1 L
1
TM
A U
b j ∗ cj
LU U
f!
!c
TM
N A!x = !b, A N
N ×N
!b
(aij )1≤i,j≤N (bi )1≤i≤N
N !x
(xi )1≤i≤N LU
A
LLT
A
A N3 N N
!x0 , !x1 , !x2 , . . . , !xn , . . . lim 1!x − !xn 1 = 0.
n→∞
j !x
j
!x
!xj
i A
xji N ×N
K
M A = K − M.
K K!x = M !x + !b !x = K −1 M !x + K −1!b. !x0
N n = 0, 1, 2, 3, . . .
!xn+1 = K −1 M !xn + K −1!b. !c = M !x + !b
!xn+1
!xn
n
K!xn+1 = !c K K!xn+1 = !c
K A A=D−E−F
D A i ≤ N eij = 0 1≤j≤i≤N
1 ≤ i ≤ j ≤ N A
A=
−F D −E
aii $= 0
xn+1 i
.
i = 1, 2, . . . , N K=D
K −1 = D−1 =
A = K −M
fij
(aii )1≤i≤N −E eij = −aij 1 ≤ j < −F = −aij 1 ≤ i < j ≤ N fij = 0
K =D M = E+F (1/a11 , 1/a22 , 1/a33 , . . . , 1/aN N )
N ( 1 = aij xnj + bi , − aii j=1 j!=i
D (D − E) K =D−E
1 ≤ i ≤ N.
n+1
1≤i≤N !xn
xni
!x J
1≤i≤N
J = K −1 M = D−1 (E + F )
K = D−E
A=K −M
M =F
(D − E)!xn+1 = F !xn + !b !xn+1
xn+1 i
( 1 ( = − aij xn+1 − aij xnj + bi , j aii j<i j>i (xni )1≤i≤N
xn+1 1
xn+1 2
xn+1 3
!xn
xn+1 , xn+1 , xn+1 ,... 1 2 3
N 1 ( = − a1j xnj + b1 a11 j=2 N ( 1 = −a21 xn+1 − a2j xnj + b2 1 a22 j=3 N ( 1 = −a31 xn+1 − a32 xn+1 − a3j xnj + b3 1 2 a33 j=4
G G = K −1 M = (D − E)−1 F
xn+1 i
!b !x0
1 ≤ i ≤ N.
xn+1 i
B
N ×N
λ1 , λ2 , . . . , λN
B
ρ(B) = max |λj |, 1≤j≤N
|λj |
λj 1 ≤ j ≤ N
ρ(K −1 M )
K −1 M
A
A aii 1 ≤ i ≤ N
D−E
λ (D − E)−1 F ϕ !
|λ| < 1 N
ϕ1 , ϕ2 , . . . , ϕN (D − E)−1 F ϕ ! = λ! ϕ,
ϕ !
(D − E)−1 F
λ Fϕ ! = λ(D − E)! ϕ
A! ϕ = (D − E − F )! ϕ = (1 − λ)(D − E)! ϕ. λ
A! ϕ=0 A ϕ !∗
ϕ !=0 ϕ !∗ T
ϕ ! ∗
ϕ ! A! ϕ = (1 − λ)! ϕ∗ (D − E)! ϕ. ϕ ! ∗ A! ϕ
A
ϕ ! α = (1 − λ)! ϕ∗ (D − E)! ϕ λ)! ϕ∗ (D − E)! ϕ
ET = F ¯ ϕ∗ (D − F )! α = (1 − λ)! ϕ,
(1 −
¯ λ (1 − λ)
¯ (1 − λ)
λ ¯ = |1 − λ|2 ϕ (2 − λ − λ)α ! ∗ (2D − E − F )! ϕ
|1 − λ|
(1 − λ)
α=ϕ ! ∗ A! ϕ
A = D −E −F
¯ − |1 − λ|2 )α = |1 − λ|2 ϕ (2 − λ − λ ! ∗ Dϕ !. D ϕ ! ∗ Dϕ !
λ $= 1
α>0
¯ − |1 − λ|2 > 0. 2−λ−λ ¯ = 1−λ−λ ¯ + |λ|2 |1 − λ|2 = (1 − λ)(1 − λ) 1 − |λ|2 > 0, |λ| < 1 !
A
2D−A
N ×N
A
2
−1 A=
−1 2
. −1 2 −1 −1 2
−1
A!x = !b λk k = 1, . . . , N D = 2I 4 − λk = 2 + 2 cos(kπ/(N + 1)) k = 1, . . . , N
A 2D − A
2D − A A!x = !b
A
D = 2I J = D−1 (E + F )
1 J = D−1 (E + F − D + D) = D −1 (D − A) = I − D −1 A = I − A. 2 J
1 − λk /2 = cos(kπ/(N + 1)) J
k = 1, . . . , N J ρ(J) = cos
π . N +1
ρ(J) < 1 A!x = !b cos x = 1 − x2 /2 + O(x4 ) N
x
|1 − ρ(J)| ≤ C
C 1 , N2
∀N > 1.
N ρ(J)
A
J 1
1 ρ(J) ρ(J)
1
ρ(J) N G = (D − E)−1 F A ρ(G) = ρ(J)2 N =2 |1 − ρ(G)| ≤ C/N 2 ∀N > 1
A 1≤i≤N
N ×N
aii A A = D − E − F.
ω
A=K −M
. 1 1−ω A= D−E− D+F , ω ω K = ω −1 D − E M = ω −1 (1 − ω)D + F -
. . 1 1−ω n+1 D − E !x = D + F !xn + !b. ω ω ω=1
ω<1
ω>1
Gω =
-
1 D−E ω
.−1 -
1−ω D+F ω
.
. ρ(Gω ) ωopt
ω ρ(Gωopt ) < ρ(Gω )
ω
ωopt
A 0<ω<2 ωopt ωopt = ρ(J) ρ(Gω )
2 6 , 1 + 1 − ρ(J)2 J
ω ωopt ω>1 ωopt
f (ω) = ρ(Gω ) lim f & (ω) = −∞
ω→ωopt ω<ωopt
E
F
E
-
lim f & (ω) = 1,
ω→ωopt ω>ωopt
F E
. . 1 1−ω n D − E y! = D + F !xn + !b, ω ω . . 1 1−ω n+1 D − F !x = D + E !y n + !b, ω ω
F
ρ(Gω ) 1 ρ(G) = ρ(J)2 ωopt − 1 ω 1
ωopt
ρ(Gω )
2 ω
!y n
A
!xn+1
!xn
ω
A A!x = !b
!b
N
N L(!y ) = R
1 T !y A!y − !bT !y . 2
L(!y ) A A!x = !b
!y
RN
L N ×N
!x N
!y
!x
L(!x) < L(!y ). !x
A!x = !b !z = !x − y!
!y
N
!x L
1 (!x − !z )T A(!x − !z ) − !bT (!x − !z ) 2 1 1 1 1 = !xT A!x − !bT !x − !z T A!x − !xT A!z + !z T A!z + !bT !z . 2 2 2 2
L(!y ) = L(!x − !z ) =
!xT A!z = !z T A!x
A
!bT !z = !z T !b
A!x = !b
1 L(!y ) = L(!x) − !z T A!x + !z T !b + !z T A!z 2 3 4 1 = L(!x) − !z T A!x − !b + !z T A!z , 2 1 L(!y ) = L(!x) + !z T A!z . 2
A !z T A!z > 0
!z L(!y ) > L(!x) ! A!x = !b
!x
L
!xn
L
!xn+1
L(!xn+1 ) < L(!xn )
w ! n+1 !xn+1 = !xn + αn+1 w ! n+1
αn+1
f (α) / 0 f (α) = L !xn + αw ! n+1 . !xn+1
w !
!xn
n+1
L
L
!x
N =2
!xn %
w ! n+1
'
!xn+1 & !x (
L
N =2
αn+1 n+1
f (α
) ≤ f (α) ∀α ∈ R
αn+1 &
f (α)
N N ( 1 ( L(!y ) = aij yi yj − bi yi 2 i,j=1 i=1
A N
( ∂ L(!y ) = aij yj − bi . ∂yi j=1
N (
∂ L(!xn + αw ! n+1 ) ∂y i i=1 N N ( ( / 0 = win+1 aij xnj + αwjn+1 − bi
f & (α) =
win+1
i=1
= (w !
j=1
3 / 4 0 ) A !xn + αw ! n+1 − !b .
n+1 T
αn+1
f & (αn+1 ) = 0
n+1
α
αn+1 =
3 4 (w ! n+1 )T !b − A!xn (w ! n+1 )T Aw ! n+1
.
!rn = !b − A!xn n !xn+1
!xn w ! n+1
αn+1 =
(w ! n+1 )T !rn ; (w ! n+1 )T Aw ! n+1
!xn+1 = !xn + αn+1 w ! n+1 w ! n+1 n+1 w ! n+1 !rn+1 = !b − A!xn+1 = !b − A(!xn + αn+1 w ! n+1 ) = !rn − αn+1 Aw ! n+1 . (w ! n+1 )T !rn+1 = 0
L n+1
w ! = ∂L(!y )/∂yi
−−−→
n
L(!x ) w ! n+1 =
!xn i
−−−→
−−−→
L
L(!y )
L(!xn ) = A!xn − !b = −!rn . !rn
L
n
!x !rn $= 0
n
n
!rn
!x
αn+1 = −
1!rn 12 . (!rn )T A!rn
!rn+1
!rn
/ 0 !rn+1 = !b − A!xn+1 = !b − A !xn + αn+1 w ! n+1 = !rn + αn+1 A!rn .
!z n+1 !r
n+1
n
!z n+1 = −A!rn
n+1 n+1
= !r − α
!z
!x0 !xn+1
n = 0, 1, 2, . . .
!rn+1
!r0 = !b − A!x0
!z n+1 = −A!rn , αn+1 =
1!rn 12 , (!rn )T !z n+1
!xn+1 = !xn − αn+1!rn ,
!rn+1 = !rn − αn+1 !z n+1 ,
!rn+1 = 0 :
).
!rn
A
A
!xn n+1
n
!x
!x −!rn
1 · 1A
w !n n+1
!x !x 1!y1A = (!y T A!y )1/2
N
y!
w ! n+1 = −!rn + β n w ! n, βn
1!x − !xn+1 1A βn βn =
(!rn )T Aw !n . (w ! n )T Aw !n !z n
!z n = Aw !n
/ 0 !rn = !b − A!xn = !b − A !xn−1 + αn w ! n = !rn−1 − αn !z n . !x0
w ! 1 = −!r0 α1 =
(!r0 )T w !1 , (w ! 1 )T !z 1
!x1 = !x0 + α1 w ! 1.
!r0 = !b − A!x0
!z 1 = Aw ! 1,
!rn β n w ! n+1 !z n+1 αn+1 !xn+1
n = 1, 2, 3, . . .
!rn = !rn−1 − αn !z n , βn =
!rn = 0 :
),
n T n
(!r ) !z , (w ! n )T !z n
w ! n+1 = −!rn + β n w ! n, !z n+1 = Aw ! n+1 ,
αn+1 =
(!rn )T w ! n+1 , (w ! n+1 )T !z n+1
!xn+1 = !xn + αn+1 w ! n+1 . (w ! n )T !z n !rn
A N
ne !r0 , !r1 , . . . , !rn−1
N ×N
!x
!rn = 0
n≤N
χ(A) C −1 A!x = C −1!b
A
A!x = !b
C χ(C −1 A)
χ(A) C −1 A!x = C −1!b
C −1 A C C = LLT ,
L C b −1!
L
−T
L
−1
A!x = L
A* = L−1 AL−T ,
−T
L
−1!
b
L
−1
AL
!x* = LT !x C −1 A!x = C −1!b A* !x* = !b* .
−T
T
L !x = L
−1!
b
!b* = L−1!b.
C −1 A!x =
A*
C
−1 A= −1 2
Gω
2
ω 1 − ω 2 Gω = ω ω2 . (1 − ω) 1 − ω + 2 4 J
ρ(J) =√1/2 ωopt = 8 − 4 3
ωopt
ρ(Gω ) = (1 − ω + ρ(Gω ) = ω − 1
ω2 ω6 2 )+ ω − 16ω + 16 8 8 ω → ρ(Gω )
f
lim f & (ω) = −∞
Gω =
g11
g12
g21
g22
2 ω Gω = −1
2 ω −1
ω ∈ [ωopt , 2].
f (ω) = ρ(Gω ) lim f & (ω) = 1.
ω→ωopt ω<ωopt
ω ∈ [0, ωopt ],
ω→ωopt ω>ωopt
−1 1−ω 0 2 ω 2 0 ω
1−ω 0 g11 2 ω 2 = g21 0 ω
1 g11 1− ω = 2 g21 ω
2 ω −1
g12 . g22
0 g12 1 2 = 1− ω, g22 2 ω ω
g12 = ω/2 g22 = 1 − ω + ω 2 /4
g11 = 1 − ω g21 = ω(1 − ω)/2
Gω
1 0 J = D−1 (E + F ) = 2 1 λ
1 , 0
1 −λ 1 2 det(J − λI) = det 1 = λ2 − . 4 −λ 2 det(J − λI) = 0 √λ = ±1/2 ωopt = 8 − 4 3
ρ(J) = 1/2
ω 1−ω−λ 2 2 det(Gω − λI) = det ω ω (1 − ω) 1 − ω + −λ 2 4 . 2 ω = λ2 − λ 2(1 − ω) + + (1 − ω)2 . 4 Gω
λ1
λ2
ω .2 ω2 ∆ = 2(1 − ω) + − 4(1 − ω)2 4 . ω2 2 =ω 1−ω+ 16 2 3 √ 43 √ 4 ω = ω − (8 + 4 3) ω − (8 − 4 3) . 16 ω√ 0 ≤ ω ≤ 2 0 ≤ ω ≤ 8 − 4 3 = ωopt ∆≥0 P ω2 ω λ1 = (1 − ω) + + 1−ω+ 8 2P ω2 ω λ2 = (1 − ω) + − 1−ω+ 8 2
ω2 , 16 ω2 , 16
ρ(Gω ) = max{|λ1 |, |λ2 |} = (1 − ω) + ωopt < ω ≤ 2
∆<0
ω2 ω6 2 + ω − 16ω + 16. 8 8
P ω2 ω λ1 = (1 − ω) + +i −(1 − ω + 8 2P ω2 ω λ2 = (1 − ω) + −i −(1 − ω + 8 2
ω2 ), 16 ω2 ), 16
ρ(Gω ) = max{|λ1 |, |λ2 |} = ω − 1. ω → ρ(Gω ) 1
ρ(G) = ρ(J)2 = 0.25 ωopt − 1 0 0
1 √ ωopt = 8 − 4 3
2
ω → ρ(Gω )
f (ω) = ρ(Gω )
ω > ωopt
f & (ω) = 1
lim f & (ω) = 1.
ω→ωopt ω>ωopt
ω < ωopt f & (ω) = −1 +
ω 16 2 ω(2ω − 16) + ω − 16ω + 16 + √ 4 8 16 ω 2 − 16ω + 16 lim f & (ω) = −∞.
ω→ωopt ω<ωopt
A!x = !b
A
2
A= −1
−1
3/2 !x0 = 2 A!x = !b L
2
A
1 !b = . 1
,
!x2 = !x
!x
!x0 !x1 !x2
L A
λ
2−λ det(A − λI) = det −1
det(A − λI) = 0
λ=1
0 , !r0 = b − A!x0 = −3/2 −3/2 , !z 1 = Aw !1 = 3 3/2 , !x1 = !x0 + α1 w !1 = 5/4 (!r1 )T !z 1 1 = , (w ! 1 )T !z 1 4 9/8 , !z 2 = Aw !2 = 0 1 !x2 = !x1 + α2 w !2 = . 1 β1 =
!b
−1
= (2 − λ)2 − 1, 2−λ
λ=3 A
w ! 1 = −!r0 , (!r0 )T w !1 1 =− , 1 T (w ! ) !z 1 2 −3/4 , !r1 = !r0 − α1 !z 1 = 0 3/4 , w ! 2 = −!r1 + β 1 w !1 = 3/8 α1 =
α2 =
(!r1 )T w !2 2 =− , 2 T (w ! ) !z 2 3
A
A!x = !b
!x2 = !x 2×2
2 y1 !y = y2
L 1 T y! A!y − !bT !y 2 = y12 + y22 − y1 y2 − y1 − y2 3 1 = (y1 − y2 )2 + (y1 + y2 )2 − y1 − y2 . 4 4
L(!y ) =
L
(1, 1)
2.5 !x0
2
% α1 w !1 $ !x2 ( !x1 (
1.5 1 0.5 0
0
0.5
1
1.5 L
2
2.5
N ×N λ1 λ2 . . . λN
A
ϕ !1 ϕ !2 . . . ϕ !N A! ϕj = λj ϕ !j ,
1 ≤ j ≤ N. N ×N
N
A
p(λ) = I
N ×N
(λI − A),
N
p(λ) = λN + aN −1 λN −1 + aN −2 λN −2 + · · · + a1 λ + a0 , aj 1 ≤ j ≤ N − 1 λ
A=
−aN −1
−aN −2
1
0 1
−aN −3
···
···
−a0
1
0
0 1
ϕj = λN −j 1 ≤ N N N ≥5
ϕ ! j≤N
A
A λ1 , λ2 , λ3 , . . . , λN
N ×N
|λ1 | ≥ |λ2 | ≥ |λ3 | ≥ . . . ≥ |λN |. RN
ϕ !1, ϕ ! 2, . . . , ϕ !N A! ϕj = λj ϕ !j , ϕ ! Tj ϕ ! k = δjk , δkj N ×N
1 ≤ j ≤ N, 1 ≤ j, k ≤ N, j =k Q ϕ ! 1, ϕ !2, . . . , ϕ !N Q ϕ ! Tk A! ϕj = λj δjk 1 ≤ j, k ≤ N
(QT = Q−1 ) QT AQ = D; D
D=
(λ1 , λ2 , . . . , λN )
λ1 ϕ !1
!x(0) (!x(n) )∞ n=1
(µ(n) )∞ n=1
!x(n) = A!x(n−1) , µ(n) =
n = 1, 2, . . . ,
!x(n)T A!x(n) !x(n)T !x(n+1) = (n)T (n) , (n) 2 1!x 1 !x !x
n = 1, 2, . . . . !x(n) = An !x(0)
λ1 !x(0)
ϕ !1 ϕ !1 ϕ ! Tk !x(n) = 0, n→∞ 1! x(n) 1 lim
A |λ1 | > |λk | k = 2, 3, . . . , N ϕ ! T1 !x(0) $= 0 k = 2, 3, . . . , N,
lim µ(n) = λ1 .
n→∞
RN
ϕ !1, ϕ ! 2, . . . , ϕ !N !x(0) !x(0) =
N (
αj ϕ !j
j=1
αj = ϕ ! Tj !x(0) ,
1 ≤ j ≤ N.
!x(1) !x(1) = A!x(0) =
N (
αj A! ϕj =
j=1
!x(n) =
N (
N (
αj λj ϕ !j.
j=1
αj λnj ϕ !j .
j=1
1!x(n) 1 =
N ( j=1
1/2
α2j λ2n j
,
k = 2, 3, . . . , N -
λk λ1
.n
αk ϕ ! Tk !x(n) αk λnk = = . ? @1/2 ? - .2n @1/2 1!x(n) 1 N N ' ' λ j α2j λ2n α2j j λ1 j=1 j=1 α1 = ϕ ! T1 !x(0) |λ1 | > |λk |
k = 2, . . . , N
(n)
µ
!x(n)T !x(n+1) = (n)T (n) = !x !x
N '
j=1
α2j λ2n+1 j
N '
j=1
.2n+1 λj λ1 j=1 = λ1 - .2n . N ' 2 λj αj λ1 j=1 N '
α2j
α1
-
α2j λ2n j
|λ1 | > |λk |
k = 2, 3, . . . , N
.2n+1 λj λ1 α2 j=1 lim = 12 = 1, . 2n n→∞ ' N α1 λj α2j λ1 j=1 N '
α2j
-
!
µ(n) =
!x(n)T A!x(n) 1!x(n) 12
A !x(n) 1!x(n) 1 n ϕ !1
ϕ !2, ϕ ! 3, . . . , ϕ !N
ϕ ! T1 !x(0) $= 0 !x(0)
ϕ !1
ϕ !1 |λ1 | > |λk |
k = 2, 3, . . . , N
|λ1 | = |λ2 | > |λk |
k = 3, 4, . . . , N,
λ1
λ1 = λ2 λ1
λ1 = −λ2
ϕ ! Tk !x(n) = 0, n→∞ 1! x(n) 1 lim
k = 3, 4, . . . , N,
limn→∞ µ(n) = λ1 = λ2 A A + εI
I
N ×N
ε ε
A + εI ε µ(n)
λj + ε 1 ≤ j ≤ N |λ2 + ε| A
|λ1 + ε| A + εI λ1 + ε λ2 + ε
n
C
n
|λ1 − µ(n) | ≤ C µ(n)
-
λ2 λ1
.2n
,
λ1
λ2 /λ1
A λN
N ×N
λ1 , λ2 , . . . ϕ ! 1, ϕ !2, . . . , ϕ !N µ µ $= λj ,
1 ≤ j ≤ N.
A − µI ωj 1 ≤ j ≤ N
(A − µI)−1 ωj = (λj − µ)−1 ,
1 ≤ j ≤ N.
k |λk − µ| < |λj − µ|,
j = 1, 2, . . . , N ; j $= k. λk
µ A
2µ − λk |ωk | > |ωj |,
j = 1, 2, . . . , N ; j $= k.
ωk A n = 1, 2, . . .
λk (A − µI)−1 (A − µI)−1
(A − µI)−1 A !x(n)
!x(0)
!x(n) = (A − µI)−1 !x(n−1) . !x(0)
A !x(n) = (A − µI)−n !x(0) =
N (
αj ωjn ϕ !j ,
j=1
αj µ(n) =
!x(n)T A!x(n) , 1!x(n) 12
!x(n)T (A − µI)!x(n) 1!x(n) 12 - .2n−1 N ' ωj α2j ωk j=1 = (λk − µ) - .2n . N ' ωj 2 αj ωk j=1
µ(n) − µ =
αk
lim µ(n) = λk .
n→∞
ωj λk − µ = ωk λj − µ µ |ωk |
λk
µ !x(0)
ϕ !k µ(n−1) =
!x(n−1)T A!x(n−1) , 1!x(n−1) 12
!x(n) = (A − µ(n−1) I)−1 !x(n−1) , !x(n)
n = 1, 2, 3, . . .
(A − µ(n−1) I)!x(n) = !x(n−1) .
µ(n)
λk
n (A − µ(n−1) I)
(A − λk I) !x(n)
rn
1rn !x(n) 1 = 1
A
A
QT AQ = D, D
λ1 , λ2 , . . . , λN {Q(k) }∞ k=1 lim Q(1) Q(2) Q(3) . . . Q(k) = Q.
k→∞
T (k) T (k) = Q(k)T Q(k−1)T . . . Q(1)T AQ(1) Q(2) . . . Q(k) .
lim T (k) = D.
k→∞
A
T (0) = A T (k) = Q(k)T T (k−1) Q(k) ,
T
(k−1)
(k) (k) tij qij (k−1) tmn m (k)
Q Q(k)
k = 1, 2, . . . ,
1 ≤ i, j ≤ N
T
(k)
T (k) Q(k) T (k−1)
$= n
(k) tmn
(k) (k) qmm = qnn = cos θk , (k) (k) qmn = −qnm = sin θk , (k)
qii = 1 (k) qij
i $= m
i $= n,
=0
, (k)
θk
tmn mn t(k) mn =
N (
(k) (k−1) (k) qjn
qim tij
i,j=1 (k) (k−1) (k) (k) (k−1) (k) =qmm tmn qnn + qmm tmm qmn (k) (k−1) (k) (k) (k−1) (k) + qnm tnn qnn + qnm tnm qmn .
T (k) 4 / 2 0 3 (k−1) (k−1) t(k) cos θk − sin2 θk + t(k−1) (cos θk sin θk ) mn = tmn mm − tnn
(k−1) t(k) cos 2θk + mn = tmn
4 1 3 (k−1) tmm − t(k−1) sin 2θk . nn 2 (k)
θk
tmn = 0 (k−1)
2θk =
T (k)
tnn
(k−1)
− tmm
(k−1)
2tmn
.
T (k−1)
θk
(k)
(k)
(k−1)
(k) tnj
(k) tjn
(k−1) tmj
tmj = tjm = tmj
(k−1)
cos θk − tnj
sin θk ,
j $= m
j $= n,
(k−1) = = sin θk + tnj cos θk , j $= m j $= (k−1) 2 (k−1) t(k) sin2 θk − 2t(k−1) sin θk cos θk , mm = tmm cos θk + tnn mn 2 (k) (k−1) (k−1) 2 (k−1) tnn = tmm sin θk + tnn cos θk + 2tmn sin θk cos θk , (k) t(k) mn = tnm = 0, (k) (k−1) tij = tij , (i, j).
n,
θk sin θk
cos θk sin θk
cos θk
α=
T =
θk
(k−1)
− tmm
tnn
(k−1)
(k−1)
2tmn
α=
1 = 2
-
1 −T T
2θk . .
=
1 − T2 , 2T
T T 2 + 2αT − 1 = 0. √ 1 + α2 − α √ T = − 1 + α2 − α T = T
1 cos θk = √ 1 + T2
h = T t(k−1) mn ,
α ≥ 0, α < 0.
sin θk = √
1 C= √ , 1 + T2
S = T C,
T . 1 + T2
τ=
S , 1+C
C2 + S2 = 1 (k)
(k)
(k)
(k)
3 4 (k−1) (k−1) − S tnj + τ tmj 3 4 (k−1) (k−1) (k−1) = tnj + S tmj − τ tnj (k−1)
tmj = tjm = tmj tnj = tjn
(k−1) t(k) mm = tmm − h, (k−1) t(k) + h, nn = tnn (k) t(k) mn = tnm = 0;
T (k−1) A
j $= m
j $= n,
j $= m
j $= n,
A anm α = (ann − amm )/2amn T h = T amn C = (1 + T 2 )−1/2 S = T C τ = S/(1 + C) m
n
A
amj = ajm := amj − S (anj + τ amj ) , anj = ajn := anj + S (amj − τ anj ) ,
j $= m, j $= n, j= $ m, j $= n,
amm := amm − h, ann := ann + h, amn = anm := 0.
A amn A
a21 , a31 , a41 , . . . , aN 1 , a32 , a42 , . . . , aN 2 , . . . ε amn
R
(k)
=Q
(1)
Q
(2)
Q
amn |amn | < ε
A . . . Q(k) (= R(k−1) Q(k) )
(3)
A
2
A= −1
−1 . 2
R(k)
amn =
!x(0) !x(0) A2 A3
(0) x1 = (0) $= 0. x2 A4 µ(3)
!x(3)
!x(4) !x(0)
µ(3) A (0)
(0)
µ(3)
x1 = x2
n = 1, 2, . . . (n)
!x
(n−1)
= A!x
!x(3) = A3 !x(0)
= A2 !x(n−2) = · · · = An !x(0) . !x(4) = A4 !x(0)
4
A
2
A2 = −1
−1 2 −1 5 −4 = . 2 −1 2 −4 5
−13 A3 = A2 A = −13 14 !x(3) = A3 !x(0)
!x(4) = A4 !x(0)
µ(3) =
−40 . A4 = A3 A = −40 41
14
41
(0) −13 x1 , = (0) −13 14 x2 (0) 41 −40 x1 . = (0) −40 41 x2 14
!x(3)T !x(4) !x(0)T A3 A4 !x(0) = (0)T 3 3 (0) . (3) 2 1!x 1 !x A A !x
−13 14 −13 365 −364 = , A3 A3 = −13 14 −13 14 −364 365 14 −13 41 −40 1094 −1093 = . A3 A4 = −13 14 −40 41 −1093 1094 14
A3
(0)
(0)
x1 = 0
x2 = 0 µ(3) =
1094 , 2.997. 365 A
1
µ(3)
3 A (0)
(0)
µ(3) = 1
x1 = x2
!x(0)
A
(0)
1
!x
3 A 2 A= 0
0 . 1 !x(0)
A !x(0) (0)
(0)
0 < x1 < x2 limn→∞ µ(n) = 1
(0) x1 = (0) . x2 (0)
(0)
0 < x2 < x1 limn→∞ µ(n) = 2 µ(n−1) (n−1) x1
!x(n−1) (n−1)
x1
(n−1)
$= 0
x2
(n−1) x2
$= 0,
n=1
(n−1)
µ
(n−1) 2
=
2(x1
(n−1) 2 )
(x1
2 − µ(n−1) 0
2
(n−1) 2
) + (x2
)
(n−1) 2 )
+ (x2
0 1 − µ(n−1)
?
= ?
(n)
x1
(n)
x2
(n−1)
x1
(n−1)
x2
(n−1)
x1
(n−1)
x2
=
@2
@2
(n−1)
x1
(n−1)
x2
+1
+1
.
.
µ(n−1) 1
2 (n)
(n−1)
x1
=
(n) x2
x1
(n)
x1
(n)
x2 (n)
x1 (n)
x1
(n)
x2
=−
?
(n−1)
x1
(n−1)
x2
(0)
(0)
x1 < x2 (0)
=−
=
x2 ?
(0)
1 − µ(n−1) . 2 − µ(n−1)
(n−1)
x1
(n−1)
x2
@3
.
$= 0
(n−2)
x1
(n−2)
x2
@32
= · · · = (−1)n
?
(0)
x1
(0)
x2
@3n
.
(n)
lim
x1
lim
x1
n→∞
x2 < x1
?
(n)
$= 0
@3
·
(n−1) x2
(n)
x2
=0
lim µ(n) = 1,
n→∞
(n)
n→∞
(n) x2
lim µ(n) = 2.
= +∞
n→∞
A
LR
QR A A = QR
A Q
R
A A = LR
L
R
1 LU
A2 = R1 Q1 Ak = Qk Rk Ak
LR LR QR QR LR Ak Ak+1
A1 = A A1 = Q1 R1 QR LR = Rk Q k A2 = R1 Q1 = QT1 AQ1
Ak+1 = Rk Qk = QTk Ak Qk = (Q1 . . . Qk )T A(Q1 . . . Qk ). Ak k A
TM
TM
LR
QR
!
f :Râ&#x2020;&#x2019;R
x ¯
f (¯ x) = 0
x¯ f x0 x0
x1 , x2 , x3 , . . . , xn , . . .
lim xn = x ¯,
nâ&#x2020;&#x2019;â&#x2C6;&#x17E;
α
β
x¯
f (α)f (β) < 0 f α α β
β f x1
f (¯ x) = 0.
f β
α x0 = (α + β)/2 f (x0 ) = 0 x0 f (x0 )
x0
f (x0 )f (α) > 0 α := x0
f
x0 x1 = (α + β)/2
β
α
f (x0 )f (α) < 0 β := x0
f
x0 x1 = (α + β)/2
α
β
x0 x2
β
α
(xn )â&#x2C6;&#x17E; n=1
x1
x1
x2
x1 x ¯ M
f (¯ x) = 0 ε = |β â&#x2C6;&#x2019; α|
|¯ x − xM | ≤
ε 2M+1
,
y
β
x1
x2 x0
x
α
p p
C |¯ x − xn+1 | ≤ C|¯ x − xn |p .
p=1
C <1
p=2 p=3 p=1
C = Cn
Cn
n
limn→∞ Cn = 0
f (x) = x−cos x x ¯ = cos x ¯ f x0 = 0.75
x ¯
x¯
f (¯ x) = 0
x¯ = cos x¯ xn+1 = cos xn ,
n = 0, 1, 2, . . . , x1 , x2 , . . .
x0 ∈ R
x0
x¯
y = cos(x) y=x
1 y
0 -1 0
x ¯1
x
x ¯
2
3
x ¯ = cos x¯
x0 â&#x2C6;&#x2C6; [0, 1] x1 = cos x0 â&#x2C6;&#x2C6; [â&#x2C6;&#x2019;1, +1] x2 = cos x1 â&#x2C6;&#x2C6; [0, 1] x0 x0 â&#x2C6;&#x2C6; [0, 1] x ¯ = cos x ¯
x2
52 5 |¯ x â&#x2C6;&#x2019; xn+1 | = | cos x¯ â&#x2C6;&#x2019; cos xn | = 55
xn
x ¯
x0 â&#x2C6;&#x2C6; [0, 1] x1 = cos x0 â&#x2C6;&#x2C6; [0, 1] xn+1 = cos xn â&#x2C6;&#x2C6; [0, 1] n = 1, 2, . . .
5 5 sin tdt55 .
|¯ x â&#x2C6;&#x2019; xn+1 | â&#x2030;¤ max | sin t| · |¯ x â&#x2C6;&#x2019; xn |. tâ&#x2C6;&#x2C6;[0,1]
Ï&#x2021; = maxtâ&#x2C6;&#x2C6;[0,1] | sin t| |¯ x â&#x2C6;&#x2019; xn+1 | â&#x2030;¤ Ï&#x2021;|¯ x â&#x2C6;&#x2019; xn |, |¯ x â&#x2C6;&#x2019; xn | â&#x2030;¤ Ï&#x2021;n |¯ x â&#x2C6;&#x2019; x0 |. Ï&#x2021; < 1
(xn )â&#x2C6;&#x17E; n=1
x ¯
! x ¯
x â&#x2020;&#x2019; cos x
x ¯ = cos x ¯
!
f (x) = 0 f (x) = 0 x = g(x).
!
g(x) = x − f (x), g(x) = x + αf (x) α ∈ R α $= 0 x
g
x ¯
α
x¯ ∈ R g
x ¯ = g(¯ x)
x ¯∈R
g
x ¯
x ¯ f x0
x ¯
g
xn+1 = g(xn ) n = 0, 1, 2, . . .
x g
(xn )∞ n=0 x
g
x = lim xn+1 = lim g(xn ) = g(x). n→∞
n→∞
g I
g : x ∈ I → g(x) ∈ R I
R g
χ<1 |g(x) − g(y)| ≤ χ|x − y|,
∀x, y ∈ I.
g (yn )∞ I n=1 |g(x) − g(yn )| ≤ χ|x − yn |
x I limn→∞ g(yn ) = g(x)
I
R g
g
g : I → R
I
g(I) ⊂ I g
x ¯ xn+1 = g(xn ), x ¯
n
x∈I I
g(x) ∈ I
x0 ∈ I
n = 0, 1, 2, . . . ,
(xn )∞ n=0
g xn+1 = g(xn ) n = 0, 1, 2, . . . n = 1, 2, . . . I
i)
ii) ii) i)
x0 ∈ I
xn
|xn+1 − xn | = |g(xn ) − g(xn−1 )| ≤ χ|xn − xn−1 | χ<1 n |xn+1 − xn | ≤ χn |x1 − x0 |,
n = 0, 1, 2, . . . .
m |xn+m − xn | = |xn+m − xn+m−1 + xn+m−1 − xn+m−2 + xn+m−2 − · · · + xn+1 − xn | ≤ |xn+m − xn+m−1 | + |xn+m−1 − xn+m−2 | + · · · + |xn+1 − xn |.
/ 0 |xn+m − xn | ≤ χn+m−1 + χn+m−2 + . . . + χn |x1 − x0 | / 0 ≤ χn 1 + χ + χ2 + . . . + χm−1 |x1 − x0 |, |xn+m − xn | ≤ χn χ
1 − χm |x1 − x0 |. 1−χ
(xn )∞ n=0
x ¯ limn→∞ xn = x ¯ I g
x ¯
I g
x ¯ n
n |¯ x − xn+1 | = |g(¯ x) − g(xn )| ≤ χ|¯ x − xn |. x¯ I y¯ = x ¯ !
y¯ χ
g I |¯ x − y¯| = |g(¯ x) − g(¯ y)| ≤ χ|¯ x − y¯|
g(x) = cos x
I = [0, 1] x, y ∈ I
52 5 |g(x) − g(y)| = | cos x − cos y| = 55
y
x
≤ max | sin t| · |x − y|. t∈[0,1]
5 5 sin tdt55
xn+1
Ï&#x2021; = maxtâ&#x2C6;&#x2C6;[0,1] | sin t| I x ¯ I = cos xn x0 â&#x2C6;&#x2C6; [0, 1]
Ï&#x2021;<1
g x ¯
x0 â&#x2C6;&#x2C6; R
g:Râ&#x2020;&#x2019;R g x ¯ = g(¯ x) |g & (¯ x)| < 1 |¯ x â&#x2C6;&#x2019; x0 | â&#x2030;¤ ε
!
x0 !
xn+1 = g(xn ),
!
x ¯
x ¯ ε>0
n = 0, 1, 2, . . . ,
n
|g & (¯ x)| < 1
g& |g & (x)| â&#x2030;¤ Ï&#x2021;,
I = [¯ x â&#x2C6;&#x2019; ε, x ¯ + ε]
ε>0
Ï&#x2021;<1
x â&#x2C6;&#x2C6; [¯ x â&#x2C6;&#x2019; ε, x ¯ + ε]. x, y
52 5 |g(x) â&#x2C6;&#x2019; g(y)| = 55
x
y
y=x ¯
I
5 5 g & (t)dt55 â&#x2030;¤ max |g & (t)| · |x â&#x2C6;&#x2019; y| â&#x2030;¤ Ï&#x2021;|x â&#x2C6;&#x2019; y|. tâ&#x2C6;&#x2C6;I
|g(x) â&#x2C6;&#x2019; x ¯| = |g(x) â&#x2C6;&#x2019; g(¯ x)| â&#x2030;¤ Ï&#x2021;|x â&#x2C6;&#x2019; x ¯| â&#x2030;¤ |x â&#x2C6;&#x2019; x ¯| â&#x2030;¤ ε, g(x)
I
x
I g
!
!
f xn
f :Râ&#x2020;&#x2019;R f (¯ x) = 0 x ¯
x ¯ f & (¯ x) $= 0 xn+1 f
Ox (xn , f (xn ))
y
f (xn ) x ¯ xn+1
y = f (x)
x0
x xnâ&#x2C6;&#x2019;1
f (xn )/(xn â&#x2C6;&#x2019; xn+1 ) = f & (xn )
x ¯ xn+1 = xn â&#x2C6;&#x2019;
xn
f (xn ) , f & (xn )
n = 0, 1, 2, . . . .
x¯ g(x) = x â&#x2C6;&#x2019; f (x) = 0 f & (x) $= 0
f (x) , f & (x)
x = g(x)
x ¯ xn+1 = g(xn ) g & (x) g & (¯ x)
f g & (x) = 1 â&#x2C6;&#x2019; f (¯ x) = 0
f & (x)2 â&#x2C6;&#x2019; f (x)f && (x) f & (x)2
f & (¯ x) $= 0 g & (¯ x) = 0.
x¯ |¯ x â&#x2C6;&#x2019; x0 | â&#x2030;¤ ε x¯
f f (¯ x) = 0 f & (¯ x) $= 0 (xn )â&#x2C6;&#x17E; n=0
g(x) = x â&#x2C6;&#x2019; f (x)/f & (x)
ε>0
x0 !
|g & (¯ x)| < 1
g & (¯ x) = 0 f
xn
f (x) = f (xn ) + f & (xn )(x − xn ) + ξx
x f & (xn )
0
f && (ξx ) (x − xn )2 2 xn
x = x¯ f (¯ x) =
f (xn ) f && (ξx¯ ) 2 + x¯ − xn + & (¯ x − xn ) = 0. & f (xn ) 2f (xn )
|¯ x − xn+1 | =
|f && (ξx¯ )| |¯ x − xn |2 . 2|f & (xn )| max
C=
x∈[¯ x−ε,¯ x+ε]
2
min
|f && (x)|
x∈[¯ x−ε,¯ x+ε]
|f & (x)|
|¯ x − xn+1 | ≤ C|¯ x − xn |2 .
! x0
x ¯
f f f & (¯ x) = 0 x0
f & (xn )
f & (xn )
xn+1 = xn −
f (xn ) , f & (x0 )
x0
f & (x0 )
n = 0, 1, 2, . . . .
(xn )∞ n=0 x ¯ = g(¯ x)
x¯
f & (x0 ) g(x) = x − f (x)/f & (x0 ) xn+1 = g(xn ) g
f (¯ x) = 0
y
x ¯
x x2 x1
y = f (x)
x¯ |¯ x â&#x2C6;&#x2019; x0 | â&#x2030;¤ ε x¯
x0
f f (¯ x) = 0 f & (¯ x) $= 0 (xn )â&#x2C6;&#x17E; n=0
ε>0
f ε >0
Ï&#x2021;<1
x0
x0
f & (¯ x) $= 0
I = [¯ x â&#x2C6;&#x2019; ε, x ¯ + ε] 5 5 5 f & (x) 55 |g & (x)| = 551 â&#x2C6;&#x2019; & â&#x2030;¤ Ï&#x2021;, f (x0 ) 5
x â&#x2C6;&#x2C6; I.
!
! N
f : R â&#x2020;&#x2019; R f (¯ x) = 0
x ¯ x1 , x2 , . . . , xN x
x 
x â&#x2C6;&#x2C6; RN 1 â&#x2030;¤ j â&#x2030;¤ N
f (x) â&#x2C6;&#x2C6; RN f
N
x1
N x â&#x2C6;&#x2C6; RN
x
N

     x2   x=  .     xN f (x)
N RN
fj R
f1 (x)
f1 (x1 , x2 , . . . , xN )
f2 (x) f2 (x1 , x2 , . . . , xN ) . f (x) = = fN (x) fN (x1 , x2 , . . . , xN ) f (x) = 0 N
N
x1
x2 . . . xN f1 (x1 , x2 , . . . , xN ) = 0, f2 (x1 , x2 , . . . , xN ) = 0,
fN (x1 , x2 , . . . , xN ) = 0. f 1 , f 2 , . . . , fN Df (x)
N ×N
x ∈ RN
f
∂f1 ∂x1 (x) ∂f2 (x) Df (x) = ∂x1 ∂fN (x) ∂x1
∂f1 (x) ∂x2 ∂f2 (x) ∂x2 ∂fN (x) ∂x2
... ...
...
Df (x)
Df (x)ij =
∂fi (x), ∂xj
∂f1 (x) ∂xN ∂f2 (x) ∂xN ; ∂fN (x) ∂xN
1 ≤ i, j ≤ N.
xn+1 = xn − Df (xn )−1 f (xn ),
n = 0, 1, 2, . . . ,
0
x
x ¯
f (¯ x) = 0
n xn
x x g : RN → RN g(x) = x − Df (x)−1 f (x), x ¯
x ¯
f (¯ x) = 0 x ¯ = g(¯ x)
Df (¯ x)
x¯
g |·|
g & (¯ x) x¯
I 1·1
Dg(¯ x)
f (¯ x) = 0
Df (¯ x)
N ×N
(xn )∞ n=0
f xj 1 ≤ j ≤ N x ¯
x0
n x¯
1x0 − x ¯1 =
N ( j=1
1/2
(x0j − x¯j )2
lim 1xn − x ¯1 = 0.
n→∞
C 1 xn+1 − x ¯ 1≤ C 1 xn − x¯ 12 , xn+1
n = 0, 1, 2, . . . .
xn
Df (xn )(xn − xn+1 ) = f (xn ),
n = 0, 1, 2, . . . ,
!b = f (xn )
LU
A = Df (xn ) A!y = !b LLT A
xn+1 = xn − !y Df (xn )
xn+1 = xn − Df (x0 )−1 f (xn ),
n = 0, 1, 2, . . . . Df (x0 )
LU
LL
T
xn+1 !b = f (xn ) L!z = !b
xn
U!y = !z n+1
x
n
= x â&#x2C6;&#x2019; y!
!
λ x ¯ x ¯ = λex¯ . λ < 1/e x ¯1 < x ¯2
λ > 1/e
λ = 1/e
λ < 1/e
x ¯1
x¯2
x0 xn+1 = λexn ,
n = 0, 1, 2, . . . ,
xn+1 = ln xn â&#x2C6;&#x2019; ln λ,
n = 0, 1, 2, . . . . x ¯1
x0
x ¯1
x¯2
x0
x ¯2
x â&#x2020;&#x2019; λex λ = 1 > 1/e λ = 1/e λ = 1/e2 < 1/e λ = 1/e x â&#x2020;&#x2019; λex x â&#x2020;&#x2019; x x = 1 x ¯ = λex¯ λ = 1/e x ¯=1 λ < 1/e x¯ = λex¯ 1 x¯1 x¯2 λ < 1/e
λ > 1/e x¯ = λex¯
x¯1
x ¯2 g(x) = λex x¯1
xn+1 = g(xn ) g g |g & (¯ x1 )| = λex¯1 = x ¯1 < 1.
g g & (x) = λex
4 x ex e−1 ex e−2 ex
3 2 1 0 -1 -2 -4
-3
-2
-1
0
1
x → λex
xn+1 = g(xn ) x ¯1 x0 < x ¯2 x ¯2
(xn )∞ n=0
2
3
4
λ = 1 λ = 1/e λ = 1/e2
x ¯1
x0 g
x0
g(x) = ln x − ln λ x ¯ = ln x ¯ − ln λ
x¯2 x ¯2 g g
xn+1 = g(xn ) x¯
ex¯ = eln x¯−ln λ =
x ¯ , λ
x¯
g
g & (x) = 1/x
x ¯2 > 1 |g & (¯ x2 )| =
1 < 1. x ¯2
xn+1 = g(xn ) x ¯2 x0 > x ¯1
x ¯2
x0 x0
x ¯1
x ¯
x0 = 1
x0 = 0
f (x) = x3 − x − 3
f (x) = x3 − x − 3 f (xn ) f & (xn ) x3 − xn − 3 = xn − n 2 3xn − 1 3 2x + 3 = n2 , 3xn − 1
xn+1 = xn −
n = 1, 2, . . . x0 x1 x2 x3 x0 = 1
f x0 = 0
x0
x ¯
f (x) f (x)
x ¯ x0 = 1 xn n = 1, 2, . . .
x0 = 0
30 20 10 0
♦
-10
x0
♦♦ ♦ x3 x2 x1
1
2
-20 -30 -3
-2
-1
0
3
f (x) = x3 − x − 3 x0 = 1
A x0 1 xn+1 = xn + (A − x2n ), 2
√ A
(xn )∞ n=0
√ − A |x0 −
n = 0, 1, 2, . . . .
√ A| ≤ ε
A ∈]0, 4[ (xn )∞ n=0
√ ε > 0 A
30 20 10 0♦ ♦ x1 x2 -10
♦ x3
♦ x0
-1
0
-20 -30 -3
-2
1
2
3
f (x) = x3 − x − 3 x0 = 0 √ − A
(xn )∞ n=0 x0 = 1
√ − √A − A
x0
x2 − A = 0
A (xn )∞ n=0
x ¯
1 x¯ = x¯ + (A − x ¯2 ), 2 √ x ¯=± A
x¯2 = A
xn+1 = g(xn )
g
1 g(x) = x + (A − x2 ). 2
x ¯=
√ A
g & (x) = 1 − x g & (¯ x) = 1 − x ¯=1−
√ A.
0<A<4 |g & (¯ x)| = |1 − (xn )∞ n=0 A=2
√ A| < 1.
ε>0 √ x ¯= A √ x0 < − A x0
|¯ x − x0 | < ε
√ − A
g
x0
√ x0 > − A (xn )∞ n=0
(xn )∞ n=0
√ − A √ A 3 2
x g(x)
1 0 -1 -2 -3 -3
-2
-1
0
1
2
3
g(x) = x + (A − x2 )/2
A=2
f (x) = x2 − A
f
xn+1 = xn −
f (xn ) x2n − A = x − , n f & (x0 ) 2x0
n = 0, 1, 2, . . . .
x0 = 1 xn+1 = xn −
x2n − A 1 = xn + (A − x2n ), 2 2
n = 0, 1, 2, . . . .
f (x) = x2 − A = 0
x0 = 1 f (x) = x2 − A = 0
xn+1 = xn − √
A
f (xn ) x2n − A x2n + A = x − = , n f & (xn ) 2xn 2xn
n = 0, 1, 2, . . . .
√ A x0 > 0
x0
x0
Df (xn )(xn â&#x2C6;&#x2019; xn+1 ) = f (xn ),
Df (xn )
x0 x0
n = 0, 1, 2, . . . .
!
!
f : (x, t) ∈ R × R t
+
R+ 3 f (x, t) ∈ R → x
x t t
f
u0 ∈ R u0 u : t ∈ R+ → u(t) ∈ R u(t) ˙ = f (u(t), t)
t > 0,
u(0) = u0 , u(t) ˙ = du(t)/dt
u
f (x, t) = 3x−3t u(t) ˙ = 3u(t) − 3t
u0 = α t > 0,
u(0) = α;
u(t) = (α − 1/3)e3t + t + 1/3
f (x, t) = u(t) ˙ =
√ 3 x u0 = 0
6 3 u(t)
t > 0,
u(0) = 0; u
u(t) = 0
t≥0
u(t) = ±
6 8t3 /27
f (x, t) = x3 u0 = 1 u(t) ˙ = u3 (t),
t > 0,
u(0) = 1; u
1/2
t ∈ [0, ∞[
√ u(t) = 1/ 1 − 2t
t ∈ [0, 1/2[ t
limt→1/2 u(t) = +∞ t<1/2
t=∞ f : R × R+ → R
!
t∈R
, : t ∈ R+ → ,(t) ∈ R
+
x, y ∈ R
(f (x, t) − f (y, t)) (x − y) ≤ ,(t)|x − y|2 .
f : R × R+ → R K ∂f (x, t) ≤ K, ∂x t ∈ R+
∀x ∈ R,
∀t ≥ 0.
ξ f (x, t) − f (y, t) =
x, y ∂f (ξ, t)(x − y). ∂x
x, y ∈ R
(f (x, t) − f (y, t)) (x − y) =
∂f (ξ, t)(x − y)2 ≤ K(x − y)2 . ∂x ,(t) = K ∀t ∈ R+
f 2
u(t) ˙ = −u3 (t) + e−t
/2
,
t > 0,
u(0) = 1, 2
f (x, t) = −x3 + e−t
∂f ∂x (x, t)
/2
f = −3x2 ≤ 0
f t ∈ R+
R × R+
L
x, y ∈ R
|f (x, t) − f (y, t)| ≤ L|x − y|.
f 2
(f (x, t) − f (y, t)) (x − y) ≤ L |x − y| , , !
∀x, y ∈ R, ∀t ∈ R+ .
,(t) = L ∀t ≥ 0
2
f (x, t) = |x| + sin x + e−t
u(t)
/2
u0 = 1
5 5 |f (x, t) − f (y, t)| = 5|x| − |y| + sin x − sin y 5 5 5 2 x 5 5 5 = 5|x| − |y| + cos θdθ55 y 5 5 ≤ 5|x| − |y|5 + |x − y| ≤ 2|x − y|.
u(t) u(t)
t ∈ R+
R+ un+1
0 = t0 < t1 < t2 < t3 < . . . < tn < tn+1 < . . . un u t = tn n u , u(tn ) u t = tn+1 un un+1 − un = f (un , tn ), tn+1 − tn un+1 = un + (tn+1 − tn )f (un , tn ). u0 = u(0) = u0
u
u1
u2
3
|u(tn ) − un |
n = 1, 2, . . . ,
!
f (x, t) = 3x − 3t
u(t) =
u0 = α.
. 1 3t 1 α− e +t+ . 3 3 t = 10
α = 0.333333
u(10) = 10 + α=
1 3 1 3
=
u(10) = (0.333333 − 13 )e30 + 10 + = − 31 10−6 · e30 +
1 7 3 10
u(10)
α =
31 3
1 3
31 3 ,
1 −6 · e30 3 10
10−6 106 α=
α = 0.333333 u(10)
1 3
1 3
10−16 10
−4
u(10)
f (x, t) = −3x − 3t u0 = α
f (x, t) = 3x − 3t
1 1 u(t) = (α − )e−3t − t + . 3 3
α=
1 3
u(10) = −10 +
1 3
= − 29 3
u(10) = − 13 10−6 e−30 − 10 +
α = 0.333333
1 3
1 −19 , − 29 3 − 3 10
Ot
t 0 t1 t2
... 0 = t0 < t1 < t2 < . . . < tn < tn+1 < . . . . hn = tn+1 − tn u(t ˙ n) un
u(tn+1 ) − u(tn ) . hn
u(t ˙ n+1 ) u(tn )
!
un+1 − un = f (un , tn ), hn u0 = u0 .
n = 0, 1, 2, . . . ,
!
un+1 − un = f (un+1 , tn+1 ), hn u0 = u0 .
n = 0, 1, 2, . . . ,
un+1 u ,u ,u ,... 1
2
3
un u0 un+1
u
n
un+1 = un + hn f (un , tn ). un+1
un
f
un+1 − hn f (un+1 , tn+1 ) = un . un+1 g(x) = x − hn f (x, tn+1 ) − un g(x) x0 = un xm+1 = xm −g(xm )/g & (xm ) g (x) = 1 − hn ∂f (x, tn+1 )/∂x &
m = 0, 1, . . . x0 = un ,
xm+1 = xm −
xm − hn f (xm , tn+1 ) − un , ∂f 1 − hn (xm , tn+1 ) ∂x
m = 0, 1, . . . .
lim xm = un+1
m→∞
f
x0
un+1
!
hn
f (x, t) = −βx f (x, t) = −βx
β
u(t) ˙ = −βu(t), u(0) = u0 ,
t > 0,
u(t) = e−βt u0 u(t)
β t
Ot n = 0, 1, 2, . . .
tn = nh
h > 0
un+1 = (1 − βh)un ,
n = 0, 1, 2, . . .
un = (1 − βh)n u0 ,
n = 0, 1, 2, . . . .
u(t) u0 $= 0 n
t un
1 − βh < −1
−1 ≤ 1 − βh
h h≤
2 . β h
t (1 + βh)un+1 = un ,
n
u =
-
1 1 + βh
.n
u0 ,
n = 0, 1, 2, . . .
n = 0, 1, 2, . . . . h>0
lim un = 0;
n→∞
h f (x, t) = −βx T |u(T ) − uN | u(t)
uN
tn = nh
u(tn+1 ) = e−βh u(tn ),
/ 0n u(tn ) = e−βh u0 ,
u h = T /N N n = 0, 1, 2, . . . , N
n = 0, 1, 2, . . . , N − 1, n = 0, 1, 2, . . . , N.
β>0
e−βh = 1 − βh + O(h2 ), O(h2 )
h2
h
N
|u(T )−u |
n=N
|u(T ) − uN | = |(e−βh )N − (1 − βh)N | · |u0 |. N ≥ βT
(1 − βh) ≥ 0
/ 0 aN − bN = (a − b) aN −1 + aN −2 b + aN −3 b2 + · · · + abN −2 + bN −1 , 1 − βx ≤ e−βx
∀x ∈ R,
|u(T ) − uN | ≤ |e−βh − (1 − βh)| · N e−β(N −1)h |u0 |. eβh ≤ e
1 − βh ≥ 0
e−β(N −1)h = eβh e−βT ≤ e · e−βT .
|e−βh − (1 − βh)| ≤
|u(T ) − uN | ≤
β 2 h2 β2T 2 = . 2 2N 2
eβ 2 T 2 e−βT 1 |u0 | · . 2 N u(T )
limN →∞ u
e−βh =
f
N
uN
= u(T )
1 1 1 = = + O(h2 ). eβh 1 + βh + O(h2 ) 1 + βh
−βx
f : RÃ&#x2014;R+ â&#x2020;&#x2019; R x t u(t) T >0 h = T /N C T
N n = 0, 1, 2, . . . , N
tn = nh N
N |u(T ) â&#x2C6;&#x2019; uN | â&#x2030;¤
C C = h, N T
u 0 , u 1 , . . . , uN limN â&#x2020;&#x2019;â&#x2C6;&#x17E; |u(T ) â&#x2C6;&#x2019; uN | = 0
1/N
h
u(T ) uN 1/N = h/T = O(h) h h
h |u(T ) â&#x2C6;&#x2019; uN | = O(h)
t=T h
!
u
tn
tn+1 u(tn+1 ) â&#x2C6;&#x2019; u(tn ) = un
2
f (u(t), t)dt. tn
un+1
u(tn )
un+1 â&#x2C6;&#x2019; un =
tn+1
u(tn+1 )
4 1 3 hn f (un , tn ) + f (un+1 , tn+1 ) , 2 hn = tn+1 â&#x2C6;&#x2019; tn
h
h2 un+1 un+1 uË&#x153;n+1 = un + hn f (un , tn ).
n = 0, 1, 2 . . . ,
un u
n+1
u ˜n+1 u
n+1
u ˜n+1
p1 = f (un , tn ), p2 = f (un + hn p1 , tn+1 ), hn un+1 = un + (p1 + p2 ). 2
tn+1/2 = (tn + tn+1 )/2 [tn , tn+1 ] un+1 − un = hn f (un+1/2 , tn+1/2 ), un+1/2
u(tn+1/2 ) un+1/2 un+1/2 = un +
hn f (un , tn ). 2 un
p1 = f (un , tn ), hn hn p2 = f (un + p1 , tn + ), 2 2 un+1 = un + hn p2 .
2 h
u
t = tn
u
n+1
u
un t = tn+1
p1 = f (un , tn ), hn hn p2 = f (un + p1 , tn + ), 2 2 hn hn p3 = f (un + p2 , tn + ), 2 2 n p4 = f (u + hn p3 , tn+1 ), hn un+1 = un + (p1 + 2p2 + 2p3 + p4 ). 6 h t=T
T N
h=
T N
tj = jh j = 0, 1, 2, . . . , N f |u(T ) − uN | ≤ Ch4 = C N
N
T4 , N4
C T h
f
t
!
f! : (!x, t) ∈ R
M
M
×R !u0
+
! x, t) ∈ R → f(! M M
!u : t ∈ R+ → !u(t) ∈ RM !u˙ (t) = f!(!u(t), t),
t > 0,
!u(0) = !u0 . M M u1 (t), u2 (t), . . . , uM (t) !u(t) !u˙ (t) u˙ 1 (t), u˙ 2 (t), . . . , u˙ M (t)
1·1 ! y , t))T (!x − !y ) (f!(!x, t) − f(!
(f (x, t) − f (y, t))(x − y)
|·|
!un+1 = !un + hn f!(!un , tn ). !un !un+1
!u(tn )
!u(tn+1 )
f : (x, y, t) ∈ R2 × R+ → f (x, y, t) ∈ R u0
v0
u : t ∈ R+ → u(t) ∈ R, u¨(t) = f (u(t), u(t), ˙ t), t > 0, u(0) = u0 , u(0) ˙ = v0 , u¨(t) = d2 u(t)/dt2
t v(t) = u(t) ˙ u(t)
v(t)
u(t) ˙ = v(t), v(t) ˙ = f (u(t), v(t), t), t > 0, u(0) = u0 v(0) = v0 . 2 2
f f (x, y, t) = g(x, t) u¨(t) = g(u(t), t), u(0) = u0 ,
t > 0,
u(0) ˙ = v0 .
h>0
un
tn = nh n = 0, 1, 2, . . .
u(tn ) un+1 − 2un + un−1 = g(un , tn ), h2 u0 = u0 , 1 u1 = u0 + hv0 + h2 g(u0 , 0). 2
n = 1, 2, . . . ,
un+1
u1 = u(0) + hu(0) ˙ +
u(h)
h2 u¨(0); 2
t=0
g(x, t) = −λx λ > 0 u ¨(t) = −λu(t), u(0) = u0 ,
t > 0,
u(0) ˙ = v0 ,
u0 , v0 g(x, t) = −λx √ √ v0 u(t) = √ sin λt + u0 cos λt, λ √ P = 2π/ λ . λh2 α= 1− , 2
un+1 = 2αun − un−1 , 0
u = u0 ,
u1 = αu0 + hv0 .
n = 1, 2, . . . ,
un
un−1
r2 = 2αr − 1, r
2
un−1
1 un
r2 = α −
6 α2 − 1.
r
un+1
|α| r1 = α +
6 α2 − 1
un = a(r1 )n + b(r2 )n ,
a= un
1 h u0 + √ v0 , 2 2 α2 − 1
un
n = 0, 1, 2, . . .
b=
1 h u0 − √ v0 , 2 2 α2 − 1
u(tn ) √ √ v0 u(tn ) = √ sin λtn + u0 cos λtn . λ
|u(tn )|
n
|r1 | ≤ 1 n
|r2 | ≤ 1
5 5 6 5 5 5α ± α2 − 15 ≤ 1.
|α| > 1√ √ 2 α ± i 1 − α2 √α ± α − 1 = |α± α2 − 1| = (α2 +(1−α2 ))1/2 = 1
|α| ≤ 1
i
2 h≤ √ . λ √ P = 2π/ λ
|un |
|α| ≤ 1
u
h
T >0
g
tn = nh
h n = 0, 1, 2, . . . , N N
h = T /N |u(T ) − uN | h2 N
9!10
u(t) ˙ = −(u(t))m + cos(t) u(0) = 0,
t > 0,
m h
tn = nh n = 0, 1, 2, . . . u(tn ) n = 0, 1, 2, . . . un+1 un
un
u1
f (x, t) = −xm + cos t
u0 = 0
m
∂f (x, t) = −mxm−1 ≤ 0, ∂x f (f (x, t) − f (y, t))(x − y) ≤ 0
∀x, y ∈ R. ,(t) = 0
u
n+1
. n+1 m = u + h −(u ) + cos(tn+1 ) , n
n = 0, 1, 2, . . . ,
u0 = 0.
un+1 u
n
u1 . u1 = u0 + h −(u1 )m + cos(t1 ) . = h −(u1 )m + cos(h) . u1
g g(x) = x + hxm − h cos(h).
g g(xk ) g & (xk ) xk + h(xk )m − h cos(h) = xk − . 1 + mh(xk )m−1
xk+1 = xk −
x0 = u0 = 0 x1 = h cos(h). u1
x1
β >0 u(t) ˙ = −βu(t), u(0) = u0 , u0 un
t > 0,
h u(tn ) n = 0, 1, 2, . . .
tn = nh
lim un = 0
n→∞
p1 = −βun , p2 = −β(un + hp1 ) = βun (−1 + βh), . h β 2 h2 n+1 n u = u + (p1 + p2 ) = 1 − βh + un . 2 2
un =
q
.n β 2 h2 1 − βh + u0 , 2
limn→∞ un = 0 5 5 2 25 5 51 − βh + β h 5 < 1. 5 2 5
q(x) = 1−x+x2 /2 |q(x)| < 1
0<x<2
βh < 2 limn→∞ un = 0 h<
2 . β h ≤ 2/β
e
1 − x + x2 /2
−x
2 1 0 -1 -1
0
1
2
3
x → 1 − x + x2 /2
p1 = −βun , . . h βh n n p2 = −β u + p1 = βu −1 + , 2 2 . . h βh β 2 h2 p3 = −β un + p2 = βun −1 + − , 2 2 4 . β 2 h2 β 3 h3 p4 = −β (un + hp3 ) = βun −1 + βh − + , 2 4 h un+1 = un + (p1 + 2p2 + 2p3 + p4 ) 6 . β 2 h2 β 3 h3 β 4 h4 = 1 − βh + − + un . 2 6 24 .n β 2 h2 β 3 h3 β 4 h4 u = 1 − βh + − + u0 , 2 6 24 n
limn→∞ un = 0 5 5 2 2 3 3 4 45 5 51 − βh + β h − β h + β h 5 < 1. 5 2 6 24 5
r(x) = 1 − x + x2 /2 − x3 /6 + x4 /24 |r(x)| < 1 0 < x < x ¯ βh < 2.78
r x ¯ , 2.785 limn→∞ un = 0
h<
2.78 . β
h ≤ x¯/β
r(x) e−x
2 1 0 -1 -1
0
1
2
3
x → 1 − x + x2 /2 − x3 /6 + x4 /24
u
n
u un+1
n
u
un+1 un−2 . . .
n−1
!
!
c [0, 1]
f
u
[0, 1] − u&& (x) + c(x)u(x) = f (x)
0 < x < 1,
u(0) = u(1) = 0.
x=0
x=1 f (x) u(x) c(x) = P/EI(x)
P x E
I(x) x −P
f (x)
x=0
x=1
u(x) x=0 f (x)
P
x
x=1 c(x) = 0 ∀x ∈ [0, 1]
f (x) 0
x
1
u(x)
u(0) = 0 u(1) = 0 câ&#x2030;¥0
[0, 1] u(x)
x â&#x2C6;&#x2C6; (0, 1)
!
N 0, 1, 2, . . . , N + 1
h = 1/(N + 1)
x0
x1
x2
0
h
2h
xj = jh j =
xN â&#x2C6;&#x2019;1 xN xN +1 1
u δh2 u(x) + O(h2 ) h2 u(x + h) â&#x2C6;&#x2019; 2u(x) + u(x â&#x2C6;&#x2019; h) = + O(h2 ), h2
u&& (x) =
O(h2 )
h h2 uj â&#x2C6;&#x2019;ujâ&#x2C6;&#x2019;1 + 2uj â&#x2C6;&#x2019; uj+1 + c(xj )uj = f (xj ) h2 u0 = uN +1 = 0.
u(xj ) 1 â&#x2030;¤ j â&#x2030;¤ N,
uj 1≤j≤N !u
u(xj )
uj , u(xj )
u 1 , u 2 , . . . , uN f! f (x1 ), f (x2 ), . . . , f (xN ) A N ×N
N
1 A= 2 h
2 + c1 h2
−1
2 + c 2 h2
−1
−1
−1 −1
−1 2 + cN h2
ci = c(xi ) !u
N
,
! A!u = f.
c(x) ≥ 0
x≥0
A !u A
u
c(x) ≥ 0 ∀x ∈ [0, 1] N
u C
h max | u(xj ) − uj |≤ Ch2 .
1≤j≤N
(uj )1≤j≤N lim
u
max | u(xj ) − uj |= 0.
N →∞ 1≤j≤N
v [0, 1] 2 −
0
[0, 1] 1
u&& (x)v(x)dx +
2
0
1
c(x)u(x)v(x)dx =
2
0
1
f (x)v(x)dx.
!
2
0
1 &
&
&
&
u (x)v (x)dx − u (1)v(1) + u (0)v(0) +
2
1
c(x)u(x)v(x)dx
0
= v 2
1
&
&
u (x)v (x)dx +
0
2
x=0
1
c(x)u(x)v(x)dx =
0
2
2
1
f (x)v(x)dx. 0
x=1
1
f (x)v(x)dx.
0
V
g g(0) = g(1) = 0
g& g
g&
&
g&
[0, 1]
V V
V
V u∈V
v∈V u
u u
u c(x) ≥ 0 ∀x ∈ [0, 1]
u
ϕ1 , ϕ2 , . . . , ϕN
N
V V
ϕi
Vh
Vh
g(x) =
g N (
gi ϕi (x),
i=1
gi
N uh ∈ Vh
2
1
0
u&h (x)vh& (x)dx +
2
1
c(x)uh (x)vh (x)dx =
0
2
1
f (x)vh (x)dx
0
vh ∈ Vh
uh
Vh
uh (x) =
N (
ui ϕi (x),
i=1
u 1 , u 2 , . . . , uN 1 ≤ j ≤ N u 1 , u 2 , . . . , uN N ( i=1
ui
-2
0
1
N
ϕ&i (x)ϕ&j (x)dx
vh = ϕj
+
2
1
0
. c(x)ϕi (x)ϕj (x)dx =
2
1
f (x)ϕj (x)dx 0
j = 1, 2, . . . , N A N ×N 2 1 2 1 & & Aji = ϕi (x)ϕj (x)dx + c(x)ϕi (x)ϕj (x)dx, 0
c=0 N
0
A u 1 , u 2 , . . . , uN fj =
2
!u f!
je
N
1
f (x)ϕj (x)dx, 0
!u ! A!u = f. A
f!
ϕ1 ϕ2 . . . ϕN Vh A A
uh u
N V
V
| · |1
|g|1 =
-2
1
0
.1/2 (g & (x))2 dx
g ∈ V.
c(x) ≥ 0 ∀x ∈ [0, 1]
uh
u
|u − uh |1 ≤ C min |u − vh |1 , vh ∈Vh
C Vh
C = 1+maxx∈[0,1] |c(x)|
c(x) = 0 ∀x ∈ [0, 1]
uh 2
1
(u& (x) − u&h (x)) vh& (x)dx = 0
0
∀vh ∈ Vh .
e(x) = u(x) − uh (x) 2
1
0
2
|e|1 =
2
2
|e|1 ≤
2
1
u
e& (x)vh& (x)dx = 0, | · |1
1
-2
1
2
(e& (x)) dx =
2
1
x
∀vh ∈ Vh .
e& (x)(u& (x) − u&h (x))dx.
0
e& (x)u& (x)dx =
0
0
uh
e
0
2
|e|1 = vh
u
2
1
0
e& (x)(u& (x) − vh& (x))dx,
Vh
.1/2 -2 1 .1/2 (e& (x))2 dx (u& (x) − vh& (x))2 dx , 0
2
|e|1 ≤ |e|1 |u − vh |1 . C=1 !
|e|1
vh ∈ Vh
[0, 1] N +1 N h = 1/(N + 1) xi = ih i = 0, 1, 2, . . . , N + 1 i = 1, 2, . . . , N x−x i−1 xi−1 ≤ x ≤ xi , x − x i i−1 x − xi+1 ϕi (x) = xi ≤ x ≤ xi+1 , x i − xi+1 0 x ≤ xi−1 x ≥ xi+1 . ϕi
ϕi ϕi (xj ) = δij , ϕi|[xj−1 ,xj ] ϕi
0 ≤ j ≤ N + 1, V
1 ≤ j ≤ N + 1. ϕ1 , ϕ2 , . . . , ϕN Vh
x0 , x1 , x2 , . . . , xN +1 [x0 , x1 ], [x1 , x2 ], . . . , [xN , xN +1 ] ϕ1 , ϕ2 , . . . , ϕN
Vh x1 , x2 , . . . , xN
1
0
x x1
x2
...
xi−1
xi
xi+1
. . . xN
xN +1 = 1
ϕi g ∈ Vh
g
ϕi g(x) =
N (
gi ϕi (x),
i=1
g g
g(xj ) = gj 1 ≤ j ≤ N
g(0) = g(1) = 0
g(x) g4 g3 g1 g2 0
x x1
x2
x3
x4
...
xN g
xN +1 = 1 Vh
u∈V rh u =
N (
u(xi )ϕi
i=1
u rh u ∈ Vh min |u − vh |1 ≤ |u − rh u|1 .
vh ∈Vh
|u − uh |1 ≤ C|u − rh u|1 . u
uh u
uh
c(x) ≥ 0 ∀x ∈ [0, 1] Vh |u − uh |1 ≤ Ch,
C
C˜
N
˜ |u − rh u|1 ≤ Ch, N w = u − rh u.
h
u
| · |1 rh u
rh u(xi ) = u(xi ) 0 ≤ i ≤ N + 1 w& (ξi ) = 0 0 ≤ i ≤ N w& (x) =
w(xi ) = 0 ξi ∈]xi , xi+1 [
rh u [xi , xi+1 ] 2
x
2
w&& (s)ds =
ξi
x ∈ [xi , xi+1 ] x
u&& (s)ds.
ξi
x ∈ [xi , xi+1 ] |w& (x)| ≤
2
xi+1
xi
|u&& (s)|ds. x ∈ [xi , xi+1 ]
|w& (x)| ≤
-2
xi+1
12 ds
xi
≤ h1/2
-2
xi+1
xi
.1/2 -2
xi+1 xi
|u&& (s)|2 ds
|u&& (s)|2 ds
.1/2
.1/2
.
[xi , xi+1 ] 2
xi+1 xi
|w& (x)|2 dx ≤ h2
2
xi+1
|u&& (s)|2 ds.
xi
i 2
|u − rh u|21 = |w|21 = =
N 2 ( i=0
= h2
2
0
1
|w& (x)|2 dx
0
xi+1
2
|w (x)| dx ≤ h
xi 1
&
2
N 2 ( i=0
xi+1
xi
|u&& (s)|2 ds
|u&& (s)|2 ds. C˜
C˜ =
-2
0
1
&&
2
|u (s)| ds
.1/2
.
!
A A!u = f!
Aji =
2
0
1
ϕ&i (x)ϕ&j (x)dx +
2
0
1
c(x)ϕi (x)ϕj (x)dx,
f!
1 ≤ i, j ≤ N fj =
2
1
f (x)ϕj (x)dx
1 ≤ j ≤ N.
0
2
1
0
ϕ&i (x)ϕ&j (x)dx
=
2/h
i = j,
−1/h 0 11 0
|i − j| = 1, .
c(x)ϕi (x)ϕj (x)dx
11 0
f (x)ϕj (x)dx 11 0
Lh (,) = h
-
,(x)dx
. 1 1 ,(x0 ) + ,(x1 ) + ,(x2 ) + · · · + ,(xN ) + ,(xN +1 ) . 2 2 hc(x ) j Lh (cϕi ϕj ) = 0
i = j, i $= j,
Lh (f ϕj ) = hf (xj ). 11 c(x)ϕi (x)ϕj (x)dx 0
h
(xj )1≤j≤N ϕi ϕi
Vh u
uh
h h = max |xi+1 − xi |. 0≤i≤N
Vh [xj , xj+1 ]
[0, 1] M +1 M h = 1/(M + 1) xi = ih i = 0, 1, . . . , M + 1 xi+1/2 = xi + h/2 i = 0, 1, . . . , M i = 1, 2, . . . , M (x − xi−1 )(x − xi− 12 ) xi−1 ≤ x ≤ xi , (xi − xi−1 )(xi − xi− 12 ) (x − xi+1 )(x − xi+ 21 ) ψi (x) = xi ≤ x ≤ xi+1 , (xi − xi+1 )(xi − xi+ 12 ) 0 x ≤ xi−1 x ≥ xi+1 ;
i = 0, 1, . . . , M (x − xi )(x − xi+1 ) (x 1 − x )(x 1 − x ) i i+1 i+ 2 i+ 2 ψi+ 12 (x) = 0 ψi
ψi (x
x ≥ xi+1 .
) = 0,
0 ≤ j ≤ M + 1, 0 ≤ j ≤ M,
ψi|[xj−1 ,xj ] ψi+ 12 (xj+ 12 ) = δij , ψi+ 21 (xj ) = 0, ψi+ 21 |[x
x ≤ xi
ψi ψi+1/2 ψi+1/2
ψi (xj ) = δij , j+ 21
xi ≤ x ≤ xi+1 ,
j−1 ,xj ]
, 1 ≤ j ≤ M + 1; 0 ≤ j ≤ M, 0 ≤ j ≤ M + 1, , 1 ≤ j ≤ M + 1.
N = 2M + 1 ϕ1 = ψ1/2 ϕ2 = ψ1 ϕ3 = ψ3/2 ϕ4 = ψ2 ϕ5 = ψ5/2 ϕ6 = ψ3 . . . ϕ2M = ψM ϕ2M+1 = ψM+1/2 ϕ1 ϕ2 . . . ϕN V Vh x0 , x1 , x2 , . . . , xM+1
ψi (x)
# ψi− 12 (x)
1
ψi+ 12 (x)
! xi−1 xi− 12 xi
x
xi+ 12 xi+1 ψi−1/2 ψi
ψi+1/2
[x0 , x1 ], [x1 , x2 ], . . . , [xM , xM+1 ] x1/2 , x3/2 , x5/2 , . . . , xM+1/2 ϕ1 , ϕ2 , . . . , ϕN g ∈ Vh
Vh
g
ϕi g(x) =
N (
gi ϕi (x),
i=1
g
g(xj ) = g2j 1 ≤ j ≤ M g(0) = g(1) = 0 g
g(xj+1/2 ) = g2j+1 0 ≤ j ≤ M
#g(x) g3 g2 g1 x0
x1/2
x1
x3/2
x2
g u∈V rh u =
M ( j=1
u(xj )ϕ2j +
x5/2
x3
x7/2
Vh
M ( j=0
u(xj+ 12 )ϕ2j+1
x4
!
x M =3
u rh u ∈ Vh min |u − vh |1 ≤ |u − rh u|1 .
vh ∈Vh
u C
h
N
|u − rh u|1 ≤ Ch2 .
c(x) ≥ 0 ∀x ∈ [0, 1]
u uh
Vh |u − uh |1 ≤ Ch2 , C
N
k
h
k
!
c x f [0, 1] × R −→ c˜(x, v) ∈ R
u c˜ : (x, v) ∈
− u&& (x) + c˜(x, u(x)) = f (x),
0 < x < 1,
u(0) = u(1) = 0, u
c˜(x, v) = c(x)v
uj
u(xj )
−uj−1 + 2uj − uj+1 + c˜(xj , uj ) = f (xj ) h2 u0 = uN +1 = 0.
1 ≤ j ≤ N,
c(x)
!
N
N
u 1 , u 2 , . . . , uN !u
N RN
RN
F (!u)
2u1 − u2 h2
u 1 , u 2 , . . . , uN
+
−u1 + 2u2 − u3 h2 F (!u) = −u N −2 + 2uN −1 − uN h2 −uN −1 + 2uN h2
c˜(x1 , u1 ) − f (x1 )
+ c˜(x2 , u2 ) − f (x2 ) . + c˜(xN −1 , uN −1 ) − f (xN −1 ) + c˜(xN , uN ) − f (xN ) !u
F (!u) = 0. !u0
!u !un+1 = !un − DF (!un )−1 F (!un ),
n = 0, 1, 2, . . .
c˜
d d(x, v) =
∂ c˜(x, v). ∂v
dnj = d(xj , unj ), def
1 ≤ j ≤ N. DF (!un )
2 + dn1 h2 −1 1 n DF (!u ) = 2 h 4 !un+1
−1
2 + dn2 h2
−1
4
−1 −1
−1 2 + dnN h2 !un
.
F (!un ) ...
DF (!un ) y! DF (!un )!y = F (!un ) !un+1 = !un − !y
!u0
un1 un2
u 1 , u 2 , . . . , uN
unN
!u
F
c˜(x, u) = c(x)u dnj = c(xj ) = cj
c(x)
d(x, u) = DF (!un ) n
A n=1
!
f : [0, 1] → R u : [0, 1] → R . d du − (1 + x) (x) = f (x), dx dx u(0) = u(1) = 0. N
0 < x < 1,
h = 1/(N + 1) xj = jh j = 0, 1, . . . , N + 1 Vh ϕ1 ϕ2 . . . ϕN
v [0, 1]
[0, 1]
−
2
0
1
2
1
0
d dx
. 2 1 du (1 + x) (x) v(x)dx = f (x)v(x)dx. dx 0
Kx=1 2 (1 + x)u (x)v (x)dx − (1 + x)u (x)v(x) = &
&
G
&
x=0
v 2
0
1
(1 + x)u& (x)v & (x)dx =
x=0 2
0
1
f (x)v(x)dx.
0
x=1
1
f (x)v(x)dx.
V
g&
g g(0) = g(1) = 0 u∈V
v∈V Vh
ϕ1 ϕ2 . . . ϕN
uh ∈ Vh 2
1
0
(1 + x)u&h (x)vh& (x)dx =
2
1
f (x)vh (x)dx 0
vh ∈ Vh Aji =
2
0
A
1
(1 + x)ϕ&i (x)ϕ&j (x)dx,
1 ≤ i, j ≤ N.
ϕ&i 1 ≤ i ≤ N [xj−1 , xj ] 1 ≤ j ≤ N + 1 A Aii 1 ≤ i ≤ N Aii =
2
xi
xi−1
(1 + x)ϕ&i (x)ϕ&i (x)dx +
2
xi+1 xi
Ai,i+1 1 ≤ i ≤ N −1
(1 + x)ϕ&i (x)ϕ&i (x)dx
h 1 h 1 (1 + xi−1 + 1 + xi ) 2 + (1 + xi + 1 + xi+1 ) 2 2 h 2 h 2 = (1 + ih). h =
2
xi+1
(1 + x)ϕ&i+1 (x)ϕ&i (x)dx . h 1 = (1 + xi + 1 + xi+1 ) − 2 2 h 1 = − (1 + ih + h/2). h
Ai,i+1 =
xi
f : [0, 1] → R −u&& (x) = f (x)
u(0) = 0, u& (1) + αu(1) = 0.
α u : [0, 1] → R 0 < x < 1,
x=0 N
h = 1/(N + 1) xj = jh j = 0, 1, . . . , N + 1 Vh [xj−1 , xj ] j = 1, 2, . . . , N + 1
v [0, 1]
[0, 1]
− 2
2
1
u&& (x)v(x)dx =
0
2
1
f (x)v(x)dx.
0
1
0
u& (x)v & (x)dx − u& (1)v(1) + u& (0)v(0) = v 2
1
2
1
0
1
f (x)v(x)dx.
0
x=0
u& (x)v & (x)dx − u& (1)v(1) =
&
2
2
1
2
1
f (x)v(x)dx.
0
&
u (x)v (x)dx + αu(1)v(1) =
0
f (x)v(x)dx.
0
V
g&
g g(0) = 0 u∈V
v∈V
V
x=1 ϕ1 ϕ2 ϕN +1
. . . ϕN x − xN xN +1 − xN ϕN +1 (x) = 0
xN ≤ x ≤ xN +1 , .
Vh . . . ϕN ϕN +1 uh ∈ Vh 2 1 2 u&h (x)vh& (x)dx + αuh (1)vh (1) = 0
0
ϕ1 ϕ2
1
f (x)vh (x)dx
vh ∈ Vh Vh
uh
uh =
N +1 (
uj ϕj ,
i=1
vh = ϕ1 vh = ϕ2 . . . vh = ϕN vh = ϕN +1 u1 , u2 , . . . , uN , uN +1 N +1 (
ui
i=1
A!u = f!
-2
1 0
ϕ&i (x)ϕ&j (x)dx
. 2 + αϕi (1)ϕj (1) =
1
f (x)ϕj (x)dx
0
j = 1, 2, . . . , N, N + 1 A (N + 1) × (N + 1)
Aji =
2
1
0
f!
ϕ&i (x)ϕ&j (x)dx + αϕi (1)ϕj (1),
1 ≤ i, j ≤ N + 1,
(N + 1) fj =
2
1
f (x)ϕj (x)dx,
0
1 ≤ j ≤ N + 1.
A ϕ1 ϕ2 . . . ϕN A
N 2 , h
Aii =
AN +1,N +1 =
2
1
0
=
1 Ai,i+1 = − , h
x=1
1 ≤ i ≤ N.
ϕ&N +1 (x)ϕ&N +1 (x)dx + αϕN +1 (1)ϕN +1 (1)
1 + α. h fj
fj =
2
1
f (x)ϕj (x)dx , hf (xj )
0
fN +1 =
2
0
1
f (x)ϕN +1 (x)dx ,
1 ≤ j ≤ N,
h f (xN +1 ). 2
f!
f!
A
2
−1 1 A= h
−1 2
−1 2 −1 −1 2 −1 −1 1 + αh
−1
A!u = f!
f (x1 )
f (x2 ) . f! = h f (xN −1 ) f (xN ) 1/2 f (xN +1 )
Couv_3114_2016.qxp_Couverture.qxd 07.12.16 09:27 Page1
Cet ouvrage présente une introduction aux notions mathématiques nécessaires à l’utilisation des méthodes numériques employées dans les sciences de l’ingénieur. ! La plupart des phénomènes physiques, chimiques ou biologiques, issus de la technologie moderne, sont régis par des systèmes complexes d’équations aux dérivées partielles. La résolution numérique de ces systèmes d’équations au moyen d’un ordinateur nécessite des connaissances approfondies en mathématiques. Ce livre a donc pour but de fournir au lecteur les notions mathématiques de base qui lui permettront d’aborder ce sujet. ! L’ouvrage s’adresse tout particulièrement aux étudiants du 1er cycle universitaire en sciences de l’ingénieur, en physique et en mathématiques, ainsi qu’à tous ceux qui désirent s’initier à la simulation numérique et au calcul scientifique. ! Cette troisième édition constitue le compagnon indispensable du cours en ligne (MOOC) du même nom, que le lecteur pourra suivre au travers des liens renvoyant à chacune des vidéos.
De nationalité française, Marco Picasso est né en 1963 en Italie. Il obtient un diplôme d’ingénieur ECAM de Lyon en 1986, puis le DESS d’ingénierie mathématiques et calcul scientifique de l’Université de Besançon en 1987. En 1988, il entreprend un travail de recherche dans le groupe du Professeur Jacques Rappaz, en collaboration avec le département des matériaux de l’Ecole Polytechnique Fédérale de Lausanne. En 1992, il soutient sa thèse de doctorat concernant la simulation numérique des traitements de surface par laser. Depuis 1993, il est responsable du calcul scientifique au sein de la chaire d’analyse et simulation numérique du département de mathématiques de l’EPFL. Actuellement, il est chargé de cours pour l’enseignement de l’analyse numérique aux ingénieurs.
Presses polytechniques et universitaires romandes
Introduction à l’analyse numérique Jacques Rappaz Marco Picasso
Jacques Rappaz Marco Picasso
De nationalité suisse, Jacques Rappaz est né en 1947 à Lausanne. Il obtient un diplôme d’ingénieur physicien à l’Ecole Polytechnique Fédérale de Lausanne en 1971 et soutient sa thèse de doctorat consacrée à l’approximation spectrale d’opérateurs provenant de la physique des plasmas en 1976. Après sa thèse, il poursuit ses recherches en analyse numérique à l’Ecole Polytechniques de Paris où il séjourne trois ans. De retour à l’EPFL, il occupe un poste d’adjoint scientifique au département de mathématiques et oriente une partie de ses recherches vers des applications industrielles. En 1985, il est nommé professeur d’analyse numérique à l’Université de Neuchâtel. Depuis 1987, il est professeur à l’EPFL où il enseigne l’analyse et l’analyse numérique. Sa recherche est orientée sur les aspects théoriques et pratiques de la résolution numérique des équations aux dérivées partielles. Il dirige plusieurs projets en collaboration avec les milieux industriels et il est auteur ou co-auteur de nombreuses publications dans ce domaine.
Introduction à l’analyse numérique
Introduction à l’analyse numérique
Presses polytechniques et universitaires romandes