Reinforces Concrete Structures 1.
Tamás Juhász
Reinforces Concrete Structures 1.
Pécs 2019
The Reinforces Concrete Structures 1. course material was developed under the project EFOP 3.4.3-16-2016-00005 "Innovative university in a modern city: openminded, value-driven and inclusive approach in a 21st century higher education model".
EFOP 3.4.3-16-2016-00005 "Innovative university in a modern city: open-minded, value-driven and inclusive approach in a 21st century higher education model".
Tamás Juhász
Reinforces Concrete Structures 1.
Pécs 2019
A Reinforces Concrete Structures 1. tananyag az EFOP-3.4.3-16-2016-00005 azonosító számú, „Korszerű egyetem a modern városban: Értékközpontúság, nyitottság és befogadó szemlélet egy 21. századi felsőoktatási modellben” című projekt keretében valósul meg.
EFOP-3.4.3-16-2016-00005 Korszerű egyetem a modern városban: Értékközpontúság, nyitottság és befogadó szemlélet egy 21. századi felsőoktatási modellben
REINFORCED CONCRETE I JUHÁSZ TAMÁS ------------------------------------------------------------------------------------------------------------------------------------------------------------
SECTION GEOMETRY: FREE SPAN:
l' 4000
WIDTH OF SUPPORTS:
a1 200
WIDTH OF SECTION:
b 300
HEIGHT OF SECTION:
h 500
CONCRETE COVER:
cc 20
ACCIDENTAL REBAR REPLACEMENT:
δ 10
EFFECTIVE DEPTHS:
a2 200
VALUES ARE GIVEN IN mm, N AND THEIR COMBINATIONS
TENSILE BARS:
COMPRESS BARS:
d min( 0.9 h h 50) 450
d' 50
p g
a
l'
a
MATERIAL CLASSES: fck 20
C20/25 3
Ecm 33 10 ϕt 2.55 S500B
Eceff
fyk 500 ξ c0
γc 1.5
fck fcd 13.333 γc
1.05 Ecm 1 ϕt
9760.563
fctm 2.9
ε cu 0.35%
fyk γs 1.15 fyd 434.783 γs 560
700 fyd
0.493
ξ'c0
α 1 fbd 2.3
Es 200 10 560 700 fyd
3
2.111
1
LOADS: PERMANENT LOADS: g k 25
γg.sup 1.35
g d γg.sup g k 33.75
LIVE LOADS, IMPOSED LOADS: q k 27
γq 1.5
ψ2 0.3
q d γq q k 40.5
LOAD COMBINATION FOR ULS ANALYSIS: p Ed g d q d 74.25 LOAD COMBINATION FOR SLS ANALYSIS (QUASI PARMANENT COMBINATION): p qp
p qp g k ψ2 q k 33.1
p Ed
44.579 %
DESIGN VALUES OF EFFECTS: a1 a2 h 4200 2
LENGTH OF STATIC MODEL: leff l' min LOAD FUNCTION:
L( x ) p Ed
REACTIONS:
leff 1 RA L( x ) dx 2 0
SHEAR FUNCTION:
5
RA 1.559 10
x
V( x ) RA p Ed dx 0
5
2 10 V ( x)
0
2100
4200
SHEAR (ULS):
5
2 10
5
VEd.max V( 0 ) 1.559 10 x
BENDING MOMENT FUNCTION:
x
M ( x ) V( x ) dx 0
0
2100
8
M ( x) 1 10
8
2 10
x
4200
BENDING MOMENT (ULS): leff M Ed M 1.637 108 2
BENDING MOMENT (SLS): p qp 7 M qp M Ed 7.299 10 p Ed
2
BENDING DESIGN OPTIMAL BENDING MOMENT: ξc0 2 M 0 ξ c0 d b α fcd 1 3.011 108 2
ΔM M Ed M 0 1.374 10
8
COMPRESS REINFORCEMENT: ΔM
A's.req
if ΔM 0
fyd ( d d')
0
0 otherwise
TENSILE REINFORCEMENT:
σ's
ξc0 d
fyd if
d'
ξ'c0
0
0 if A's.req = 0 ε cu Es 1.25 ξc0 d d' otherwise 1.25 ξ c0 d
Given xc 797.33179382256389671 x c M Ed = x c b α fcd d 2 102.66820617743614829 * ORIGIN 1
As.req
x c 102.668 2
ξc0 d b α fcd A's.req σ's fyd
if ΔM 0
944.547
x c b α fcd 2
otherwise
fyd
APPLIED REINFORCEMENT: TENSILE: φ 16 COMPRESS: φ' 10
As.req n round 4 0.5 0 5 φ2 π n'
STIRRUP: ζ max( 20 φ)
φk 8
A's.req 0.5 0 if A's.req 0 0 φ'2 π
round 4
0 otherwise 2
A's.prov n'
φ' π 4
2
0
φ π As.prov n 1005.31 4
As.prov As.req
106.433 %
3
ALLOWABLE NUMBER OF REBARS IN EACH ROWS n 1
b 2 cc φk ζ δ φζ
7.056
APPLIED NUMBER OF REBARS: 1ST ROW: n a
2ND ROW:
trunc n 1
if n 1 n
5
n n a
n f
n otherwise
if n 1 n
0
0 otherwise
EFFECTIVE DEPTH: nf φ d prov h cc φk ( φ ζ) δ 454 2 n
c φ φ' δ if A' c k s.prov 0 2
d'prov
0 otherwise VERIFICATION:
x c.prov x c.prov d prov
As.prov A's.prov fyd 109.273 b α fcd
x c.prov
0.241 PLASTIC
d'prov
PLASTIC
EC2 REGULATIONS FOR REINFORCEMENT RATIO:
ρsl
As.prov A's.prov b d prov
0.738 %
fctm ρsl.min max 0.13% 0.26 0.151 % fyk ρsl.max 4%
ρsl.max ρsl ρsl.min
OK
BENDING CAPACITY: x c.prov M Rd x c.prov b α fcd d A's.prov fyd d prov d'prov 1.728 108 2
EFFICIENCY:
M Ed M Rd
94.741 %
4
SHEAR DESIGN: VEd ( x )
V d prov
if x d
Vdprov
if x leff d
V( x ) otherwise VEd.red V( d )
VEd.red 1.225 10
5
SHEAR RESISTANCE WITHOUT STIRRUPS: As.prov
ρl b d prov
3
200
d prov
k min 2
2
1
νmin 0.035 k fck
2
1 0.18 3 v Rdc max k 100 ρl fck νmin 0.195 SHEAR STRENGTH: γc
SHEAR RESISTANCE:
VRdc( x ) v Rdc b d prov
VRdc( 0 ) 26611.111
SINCE THE EFFECTIVE DEPTH COULD CHANGE ALONG THE BEAM DUE TO THE CHANGE OF LONGITUDINAL REINFORCEMENT, VRd.c IS NOT CONSTANT.
155925
d
2650.903
V Ed( x) V ( x) 0
V Rdc( x)
1000
2000
3000
4000
155925 x
t root V( x ) VRdc( x ) x DUE TO THE LINEAR SYMMETRIC SHEAR FUNCTION VRd.c CUTS THE BEAM TO TWO PARTS. AT THE SUPPORTS VEd > VRd.c WHILE ALONG THE MIDSECTION VEd < VRd.c. THEREFORE AT THE SUPPORTS THE SHEAR REINFORCEMENT IS DESIGNED WHILE THE MIDSECTION IS REINFORCED WITH THE MINIMUM STIRRUP DENSITY ACCORDING TO THE EC2 REGULATIONS. tn leff 2 t STRUT RESISTANCE:
5
fck 1 VRd.max b 0.9 d prov 0.6 1 fcd 4.511 105 2 250 VEd.max REINFORCEABLE SECTION 34.566 % VRd.max REQUIRED STRIRRUP DENSITY: 2
Asw 2
φk π 4
Asw fyd sreq 0.9d 144.493 VEd.red
100.531
REEQUIRED REINFORCEMENT RATIO: Asw ρw 0.232 % sreq b EC2 REGULATIONS: UPPER BOUND OF SHEAR REINFORCEMENT: fck 1 0.6 1 f 2 250 cd ρw.max 0.585 % ( 1 cos( 90) ) fyd THEREFORE: Asw smin 57.332 ρw.max b
ρw.min
0.08 fck fyk
0.072 %
Asw smax1 468.321 ρw.min b
MAXIMUM ALLOWABLE DISTANCE BETWEEN STIRRUPS: Vagyis:
LOWER BOUND OF SHEAR REINFORCEMENT :
smax2 0.75 d prov 340.5
smax min smax1 smax2 340.5 LOWER BOUND OF STIRRUP DENSITY ALONG THE BEAM (IT IS TO BE APPLIED WHERE VRdc>VEd ) :
smax sprov.tn 10 round 0.5 0 340 10 WHILE AT SUPPORTS sprov.A
sprov.tn if sreq sprov.tn
140
sreq 10 round 0.5 0 if smin sreq sprov.tn 10 "HIBA" otherwise STIRRUP DENSITY CAN BE REDUCED IN ACCORDANCE WITH THE SHEAR CURVE
6
LONGITUDINAL REBAR REDUCEMENET, CURTAILMENT: ANCHORAGE LENGTH (BASIC VALUE): φ fyd lb.d 756.144 4 fbd ANCHORAGE LENGTH (NETTO VALUE): SMOOTH END:
HOOKED END:
lb.net lb.d
lb.eq.k 0.7 lb.net 529.301
MINIMAL ANCHORING:
lb.min max 10 φ 100 0.3 lb.d 226.843 nyomatéki ábra eltolásának mértéke a többlet húzóerő figyelmbevételére: al
1 2
0.9 d prov 204.3
A húzott mennyiség felének elhagyásának legkorábbi helye: n half round
n
2
0.4 3
2
φ π As.half n half 603.186 4 d half
Given
454
d prov if n f = 0 nf φ h cc φk 2 na
n half n half
( φ ζ) δ if n half n a
x c.half x c.half b α fcd = As.half fyd solve x c.half 65.5636727705695948 x c.half 65.564
M Rd.half x c.half b α fcd d half NUMBER OF CUT BARS: n l n n half 2
M Rd( x ) M Rd
x c.half 2
1.105 108
xal M 2 ( x ) V( x ) dx 0 M Rd.half ( x ) M Rd.half
7
M Ed 1.637 10
8
8
1 10
M ( x) M Rd( x)
0
3
1 10
3
2 10
M Rd.half ( x) M 2( x)
8
1 10
8
2 10
x
8
SERVICEABILITY LIMIT STATE DESIGN: DEFLECTION: CROSS-SECTIONAL PROPERTIES (INTACT SECTION):
Es αE 20.491 Eceff
M qp 7.299 10
7
IDEAL SECTION AREA:
5
AiI h b αE 1 As.prov A's.prov 1.696 10 NEUTRAL AXIS POSITION: 1 x iI
2
h b αE 1 As.prov d prov A's.prov d'prov 2
AiI
273.569
INERTIA:
IxiI
b x iI 3
3
b h x iI
3
αE 1 As.prov d x iI
3
2
A's.prov x iI d'prov
2
9
IxiI 3.818 10
CRACKING MOMENT: M cr
fctm IxiI h x iI
4.89 10
7
M cr M qp
67.002 %
CRACKED SECTION
9
CROSS-SECTIONAL PROPERTIES (CRACKED SECTION):
Given 1 x iII x iII =
2
x b αE As.prov d prov αE 1 A's.prov d'prov 2 iII
ORIGIN 1
IxiII
x iII b αE As.prov αE 1 A's.prov
327.62885369493123555 190.29939705316096593 *
x iII 190.299 2
b x iII
3
2 2 2 α A E s.prov d x iII2 αE 1 A's.prov x iII2 d'prov 3
IxiII 2.078 10
9
STRESS CONTROL: M qp M qp M qp σc x iII 6.682 σs αE d prov x iII 189.741 σ's αE x d'prov 136.926 2 2 IxiII IxiII IxiII iII2 REINFORCEMENT REMAINS ELASTIC
DEFORMATIONS ACCORDING TO SS1 AND SS2: INTACT SECTION (SS1): CURVATURE:
κI
M qp Eceff IxiI
1.958 10
6
DEFLECTION:
eI
5
p qp leff
4
5
p qp leff
4
3.599 384 Eceff IxiI
CRACKED SECTION (SS2): CURVATURE:
κII
M qp Eceff IxiII
3.598 10
6
DEFLECTION:
eII
6.611 384 Eceff IxiII
10
COMBINATION FACTOR FOR LONG TERM LOADING: 2
Mcr ζ' 1 0.5 77.553 % M qp CALCULATED DEFORMATIONS: eEC
eI if M cr M qp
5.935
ζ' eII ( 1 ζ')eI otherwise κEC
κI if M cr M qp
3.23 10
6
ζ' κII ( 1 ζ') κI otherwise VERIFICATION: emax
leff 200
21
emax eEC OK CRACK WIDTH CONTROL: REBAR STARIN:
ε s
CONCRETE STRAIN BESIDE THE REBARS :
ε c
σs Es
0.095 %
fctm Eceff
0.03 %
TENSION STIFFENING: BETWEEN "A" AND "B" THEORETICAL CRACKS THE TENSILED CONCRETE STIFFENS THE REBARS EFFECTIVE CONCRETE AREA FOR TENSION STIFFENING: x iII h h c.eff min2.5 h d prov h 3 2
ε sc
fctm Aceff Es As.prov
Aceff b h c.eff 34500
0.05 %
DURABILITY OF LOADS: LONGTERM LOADING
k t 0.4
STRAIN DIFFERENCE BETWEEN THE CONCRETE AND THE REBARS: Δε ε s k t ε sc k t ε c 0.063 % MAXIMUM RELATIVE DISTANCE BETWEEN TWO CRACKS: φ Aceff sr.max 3.4 cc 0.425 0.8 0.5 161.344 As.prov
11
COMPUTED CRACK WIDTH: wk sr.max Δε 0.102 wk.max 0.3
wk.max wk
CHECKED
Beton feszültség ellenőrzése tartós terhelésre: CHARACTERISTIC LOAD COMBINATION:
p car g k q k 52 p car leff
2
az ehhez tartozó nyomaték:
M car
COMPRESSION STRESS IN CONCRETE:
M car σc.car x 10.498 IxiII iII2
8
8
1.147 10
σc.car.max 0.6 fck 12
ACCEPTABLE
12
13