Tema 3 teoría nivel de interred v3

Page 1

Tema 3. Teoría. Nivel de interred

SMR

Tema 3. Teoría Nivel de interred

Página 1 de 53


Tema 3. Teoría. Nivel de interred

SMR

Página 2 de 53

Índice de contenido Internet Protocol............................................................................................................................................ 3 Dirección IP................................................................................................................................................... 5 Classful network............................................................................................................................................ 9 Classless Inter-Domain Routing................................................................................................................... 10 Cabecera IP................................................................................................................................................. 15 IPv6............................................................................................................................................................. 19 Encaminamiento.......................................................................................................................................... 27 Repetidor..................................................................................................................................................... 32 Concentrador............................................................................................................................................... 33 Conmutador................................................................................................................................................ 35 Router......................................................................................................................................................... 38 Zeroconf...................................................................................................................................................... 43 Dynamic Host Configuration Protocol.......................................................................................................... 45


Tema 3. Teoría. Nivel de interred

SMR

Página 3 de 53

Internet Protocol Internet Protocol (IP) Familia Función Última versión Aplicación Transporte Red Enlace

Familia de protocolos de Internet Envío de paquetes de datos tanto a nivel local como a través de redes. IPv6 Ubicación en la pila de protocolos http, ftp, ... TCP, UDP, ..... IP Ethernet, Token Ring, FDDI, ... Estándares RFC 791 (1981) RFC 2460 (IPv6, 1998)

Internet Protocol (en español Protocolo de Internet) o IP es un protocolo de comunicación de datos digitales clasificado funcionalmente en la Capa de Red según el modelo internacional OSI Su función principal es el uso bidireccional en origen o destino de comunicación para transmitir datos mediante un protocolo no orientado a conexión que transfiere paquetes conmutados a través de distintas redes físicas previamente enlazadas según la norma OSI de enlace de datos .

• •

• •

1 Descripción funcional 2 Direccionamiento IP y enrutamiento 2.1 Dirección IP 2.2 Enrutamiento 3 Véase también 4 Enlaces externos

Descripción funcional

El diseño del protocolo IP se realizó presuponiendo que la entrega de los paquetes de datos sería no confiable por lo cual IP tratará de realizarla del mejor modo posible, mediante técnicas de encaminamiento, sin garantías de alcanzar el destino final pero tratando de buscar la mejor ruta entre las conocidas por la máquina que este usando IP. Los datos en una red basada en IP son enviados en bloques conocidos como paquetes o datagramas (en el protocolo IP estos términos se suelen usar indistintamente). En particular, en IP no se necesita ninguna configuración antes de que un equipo intente enviar paquetes a otro con el que no se había comunicado antes. IP provee un servicio de datagramas no fiable (también llamado del "mejor esfuerzo", en inglés best-effort), lo hará lo mejor posible pero garantizando poco). IP no provee ningún mecanismo para determinar si un paquete alcanza o no su destino y únicamente proporciona seguridad (mediante checksums o sumas de comprobación) de sus cabeceras y no de los datos transmitidos. Por ejemplo, al no garantizar nada sobre la recepción del paquete, éste podría llegar dañado, en otro orden con respecto a otros paquetes, duplicado o simplemente no llegar. Si se necesita fiabilidad, ésta es proporcionada por los protocolos de la capa de transporte, como TCP.


Tema 3. Teoría. Nivel de interred

SMR

Página 4 de 53

Si la información a transmitir ("datagramas") supera el tamaño máximo "negociado" (MTU) en el tramo de red por el que va a circular podrá ser dividida en paquetes más pequeños, y reensamblada luego cuando sea necesario. Estos fragmentos podrán ir cada uno por un camino diferente dependiendo de como estén de congestionadas las rutas en cada momento. Las cabeceras IP contienen las direcciones de las máquinas de origen y destino (direcciones IP), direcciones que serán usadas por los enrutadores (routers) para decidir el tramo de red por el que reenviarán los paquetes. El IP es el elemento común en el Internet de hoy. El actual y más popular protocolo de red es IPv4. IPv6 es el sucesor propuesto de IPv4; poco a poco Internet está agotando las direcciones disponibles por lo que IPv6 utiliza direcciones de fuente y destino de 128 bits(lo cual asigna a cada milímetro cuadrado de la superficie de la Tierra la colosal cifra de 670.000 millones de direcciones IP), muchas más direcciones que las que provee IPv4 con 32 bits. Las versiones de la 0 a la 3 están reservadas o no fueron usadas. La versión 5 fue usada para un protocolo experimental. Otros números han sido asignados, usualmente para protocolos experimentales, pero no han sido muy extendidos.

Direccionamiento IP y enrutamiento

Quizás los aspectos más complejos de IP son el direccionamiento y el enrutamiento. El direccionamiento se refiere a la forma como se asigna una dirección IP y cómo se dividen y se agrupan subredes de equipos. El enrutamiento consiste en encontrar un camino que conecte una red con otra y, aunque es llevado a cabo por todos los equipos, es realizado principalmente por routers, que no son más que computadoras especializadas en recibir y enviar paquetes por diferentes interfaces de red, así como proporcionar opciones de seguridad, redundancia de caminos y eficiencia en la utilización de los recursos.

Dirección IP Artículo principal:

Dirección IP.

Una dirección IP es un número que identifica de manera lógica y jerárquicamente a una interfaz de un dispositivo (habitualmente una computadora) dentro de una red que utilice el protocolo de Internet (Internet Protocol), que corresponde al nivel de red o nivel 3 del modelo de referencia OSI. Dicho número no se ha de confundir con la dirección MAC que es un número físico que es asignado a la tarjeta o dispositivo de red (viene impuesta por el fabricante), mientras que la dirección IP se puede cambiar. El usuario al conectarse desde su hogar a Internet utiliza una dirección IP. Esta dirección puede cambiar al reconectar. A la posibilidad de cambio de dirección de la IP se denomina dirección IP dinámica. Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados, generalmente tienen una dirección IP fija(IP fija o IP estática); es decir, no cambia con el tiempo. Los servidores de correo, dns, ftp públicos, servidores web, conviene que tengan una dirección IP fija o estática, ya que de esta forma se facilita su ubicación. Las máquinas manipulan y jerarquizan la información de forma numérica, y son altamente eficientes para hacerlo y ubicar direcciones IP. Sin embargo, los seres humanos debemos utilizar otra notación más fácil de recordar y utilizar, por ello las direcciones IP pueden utilizar un sinónimo, llamado nombre de dominio (Domain Name), para convertir los nombres de dominio en direcciones IP, se utiliza la resolución de nombres de dominio DNS. Existe un protocolo para asignar direcciones IP dinámicas llamado DHCP (Dynamic Host Configuration Protocol).

Enrutamiento Artículo principal:

Enrutamiento.

En comunicaciones, el encaminamiento (a veces conocido por el anglicismo ruteo o enrutamiento) es el mecanismo por el que en una red los paquetes de información se hacen llegar desde su origen a su destino final, siguiendo un camino o ruta a través de la red. En una red grande o en un conjunto de redes interconectadas el camino a seguir hasta llegar al destino final puede suponer transitar por muchos nodos intermedios. Asociado al encaminamiento existe el concepto de métrica, que es una medida de lo "bueno" que es usar un camino determinado. La métrica puede estar asociada a distintas magnitudes: distancia, coste, retardo de transmisión, número de saltos, etc., o incluso a una combinación de varias magnitudes. Si la métrica es el retardo, es mejor un camino cuyo retardo total sea menor que el de otro. Lo ideal en una red es


Tema 3. Teoría. Nivel de interred

SMR

Página 5 de 53

conseguir el encaminamiento óptimo: tener caminos de distancia (o coste, o retardo, o la magnitud que sea, según la métrica) mínimos. Típicamente el encaminamiento es una función implantada en la capa 3 (capa de red) del modelo de referencia OSI.


Tema 3. Teoría. Nivel de interred

SMR

Página 6 de 53

Dirección IP Una dirección IP es una etiqueta numérica que identifica, de manera lógica y jerárquica, a un interfaz (elemento de comunicación/conexión) de un dispositivo (habitualmente una computadora) dentro de una red que utilice el protocolo IP (Internet Protocol), que corresponde al nivel de red del Modelo OSI. Dicho número no se ha de confundir con la dirección MAC, que es un identificador de 48bits para identificar de forma única la tarjeta de red y no depende del protocolo de conexión utilizado ni de la red. La dirección IP puede cambiar muy a menudo por cambios en la red o porque el dispositivo encargado dentro de la red de asignar las direcciones IP decida asignar otra IP (por ejemplo, con el protocolo DHCP). A esta forma de asignación de dirección IP se denominadirección IP dinámica (normalmente abreviado como IP dinámica). Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados generalmente tienen una dirección IP fija(comúnmente, IP fija o IP estática). Esta no cambia con el tiempo. Los servidores de correo, DNS, FTP públicos y servidores de páginas web necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización en la red. Los ordenadores se conectan entre sí mediante sus respectivas direcciones IP. Sin embargo, a los seres humanos nos es más cómodo utilizar otra notación más fácil de recordar, como los nombres de dominio; la traducción entre unos y otros se resuelve mediante los servidores de nombres de dominio DNS, que a su vez facilita el trabajo en caso de cambio de dirección IP, ya que basta con actualizar la información en el servidor DNS y el resto de las personas no se enterarán, ya que seguirán accediendo por el nombre de dominio.

• •

1 Direcciones IPv4 1.1 Direcciones privadas 1.2 Máscara de subred 1.3 Creación de subredes 1.4 IP dinámica 1.4.1 Ventajas 1.4.2 Desventajas 1.4.3 Asignación de direcciones IP 1.5 IP fija 2 Direcciones IPv6

Direcciones IPv4 Artículo principal:

IPv4.

Las direcciones IPv4 se expresan por un número binario de 32 bits, permitiendo un espacio de direcciones de hasta 4.294.967.296 (232) direcciones posibles. Las direcciones IP se pueden expresar como números de notación decimal: se dividen los 32 bits de la dirección en cuatro octetos. El valor decimal de cada octeto está comprendido en el rango de 0 a 255 [el número binario de 8 bits más alto es 11111111 y esos bits, de derecha a izquierda, tienen valores decimales de 1, 2, 4, 8, 16, 32, 64 y 128, lo que suma 255]. En la expresión de direcciones IPv4 en decimal se separa cada octeto por un carácter único ".". Cada uno de estos octetos puede estar comprendido entre 0 y 255, salvo algunas excepciones. Los ceros iniciales, si los hubiera, se pueden obviar. •

Ejemplo de representación de dirección IPv4: 10.128.001.255 o 10.128.1.255 En las primeras etapas del desarrollo del Protocolo de Internet,1 los administradores de Internet interpretaban las direcciones IP en dos partes, los primeros 8 bits para designar la dirección de red y el resto para individualizar la computadora dentro de la red.


Tema 3. Teoría. Nivel de interred

SMR

Página 7 de 53

Este método pronto probó ser inadecuado, cuando se comenzaron a agregar nuevas redes a las ya asignadas. En 1981 el direccionamiento internet fue revisado y se introdujo la arquitectura de clases (classful network architecture).2 En esta arquitectura hay tres clases de direcciones IP que una organización puede recibir de parte de la Internet Corporation for Assigned Names and Numbers (ICANN): clase A, clase B y clase C. •

• • • •

En una red de clase A, se asigna el primer octeto para identificar la red, reservando los tres últimos octetos (24 bits) para que sean asignados a los hosts, de modo que la cantidad máxima de hosts es 224 2 (se excluyen la dirección reservada para broadcast (últimos octetos en 255) y de red (últimos octetos en 0)), es decir, 16.777.214 hosts. En una red de clase B, se asignan los dos primeros octetos para identificar la red, reservando los dos octetos finales (16 bits) para que sean asignados a los hosts, de modo que la cantidad máxima de hosts es 216 - 2, o 65.534 hosts. En una red de clase C, se asignan los tres primeros octetos para identificar la red, reservando el octeto final (8 bits) para que sea asignado a los hosts, de modo que la cantidad máxima de hosts es 28 - 2, ó 254 hosts. N° de N° de Host Por Máscara de Clase Rango Broadcast ID Redes Red Red 1.0.0.0 A 127 16.777.214 255.0.0.0 x.255.255.255 126.255.255.255 128.0.0.0 B 16.384 65.534 255.255.0.0 x.x.255.255 191.255.255.255 192.0.0.0 C 2.097.152 254 255.255.255.0 x.x.x.255 223.255.255.255 224.0.0.0 (D) histórico 239.255.255.255 240.0.0.0 (E) histórico 255.255.255.255 La dirección 0.0.0.0 es reservada por la IANA para identificación local. La dirección que tiene los bits de host iguales a cero sirve para definir la red en la que se ubica. Se denomina dirección de red. La dirección que tiene los bits correspondientes a host iguales a uno, sirve para enviar paquetes a todos los hosts de la red en la que se ubica. Se denomina dirección de broadcast. Las direcciones 127.x.x.x se reservan para designar la propia máquina. Se denomina dirección de bucle local o loopback. El diseño de redes de clases (classful) sirvió durante la expansión de internet, sin embargo este diseño no era escalable y frente a una gran expansión de las redes en la década de los noventa, el sistema de espacio de direcciones de clases fue reemplazado por una arquitectura de redes sin clases Classless Inter-Domain Routing (CIDR)3 en el año 1993. CIDR está basada en redes de longitud de máscara de subred variable (variable-length subnet masking VLSM) que permite asignar redes de longitud de prefijo arbitrario. Permitiendo una distribución de direcciones más fina y granulada, calculando las direcciones necesarias y "desperdiciando" las mínimas posibles.

Direcciones privadas Hay ciertas direcciones en cada clase de dirección IP que no están asignadas y que se denominan direcciones privadas. Las direcciones privadas pueden ser utilizadas por los hosts que usan traducción de dirección de red (NAT) para conectarse a una red pública o por los hosts que no se conectan a Internet. En una misma red no pueden existir dos direcciones iguales, pero sí se pueden repetir en dos redes privadas que no tengan conexión entre sí o que se conecten mediante el protocolo NAT. Las direcciones privadas son: • • •

Clase A: 10.0.0.0 a 10.255.255.255 (8 bits red, 24 bits hosts). Clase B: 172.16.0.0 a 172.31.255.255 (12 bits red, 20 bits hosts). 16 redes clase B contiguas, uso en universidades y grandes compañías. Clase C: 192.168.0.0 a 192.168.255.255 (16 bits red, 16 bits hosts). 256 redes clase C continuas, uso de compañías medias y pequeñas además de pequeños proveedores de internet (ISP). Muchas aplicaciones requieren conectividad dentro de una sola red, y no necesitan conectividad externa. En las redes de gran tamaño a menudo se usa TCP/IP. Por ejemplo, los bancos pueden utilizar TCP/IP para


Tema 3. Teoría. Nivel de interred

SMR

Página 8 de 53

conectar los cajeros automáticos que no se conectan a la red pública, de manera que las direcciones privadas son ideales para estas circunstancias. Las direcciones privadas también se pueden utilizar en una red en la que no hay suficientes direcciones públicas disponibles. Las direcciones privadas se pueden utilizar junto con un servidor de traducción de direcciones de red (NAT) para suministrar conectividad a todos los hosts de una red que tiene relativamente pocas direcciones públicas disponibles. Según lo acordado, cualquier tráfico que posea una dirección destino dentro de uno de los intervalos de direcciones privadas no se enrutará a través de Internet.

Máscara de subred La máscara permite distinguir los bits que identifican la red y los que identifican el host de una dirección IP. Dada la dirección de clase A 10.2.1.2 sabemos que pertenece a la red 10.0.0.0 y el host al que se refiere es el 2.1.2 dentro de la misma. La máscara se forma poniendo a 1 los bits que identifican la red y a 0 los bits que identifican el host. De esta forma una dirección de clase A tendrá como máscara 255.0.0.0, una de clase B 255.255.0.0 y una de clase C 255.255.255.0. Los dispositivos de red realizan un AND entre la dirección IP y la máscara para obtener la dirección de red a la que pertenece el host identificado por la dirección IP dada. Por ejemplo un router necesita saber cuál es la red a la que pertenece la dirección IP del datagrama destino para poder consultar la tabla de encaminamiento y poder enviar el datagrama por la interfaz de salida. Para esto se necesita tener cables directos. La máscara también puede ser representada de la siguiente forma 10.2.1.2/8 donde el /8 indica que los 8 bits más significativos de máscara están destinados a redes, es decir /8 = 255.0.0.0. Análogamente (/16 = 255.255.0.0) y (/24 = 255.255.255.0).

Creación de subredes El espacio de direcciones de una red puede ser subdividido a su vez creando subredes autónomas separadas. Un ejemplo de uso es cuando necesitamos agrupar todos los empleados pertenecientes a un departamento de una empresa. En este caso crearíamos unasubred que englobara las direcciones IP de éstos. Para conseguirlo hay que reservar bits del campo host para identificar la subred estableciendo a uno los bits de red-subred en la máscara. Por ejemplo la dirección 172.16.1.1 con máscara 255.255.255.0 nos indica que los dos primeros octetos identifican la red (por ser una dirección de clase B), el tercer octeto identifica la subred (a 1 los bits en la máscara) y el cuarto identifica el host (a 0 los bits correspondientes dentro de la máscara). Hay dos direcciones de cada subred que quedan reservadas: aquella que identifica la subred (campo host a 0) y la dirección para realizar broadcast en la subred (todos los bits del campo host en 1).

IP dinámica Una dirección IP dinámica es una IP asignada mediante un servidor DHCP (Dynamic Host Configuration Protocol) al usuario. La IP que se obtiene tiene una duración máxima determinada. El servidor DHCP provee parámetros de configuración específicos para cada cliente que desee participar en la red IP. Entre estos parámetros se encuentra la dirección IP del cliente. DHCP apareció como protocolo estándar en octubre de 1993. El estándar RFC 2131 especifica la última definición de DHCP (marzo de 1997). DHCP sustituye al protocolo BOOTP, que es más antiguo. Debido a la compatibilidad retroactiva de DHCP, muy pocas redes continúan usando BOOTP puro. Las IP dinámicas son las que actualmente ofrecen la mayoría de operadores. El servidor del servicio DHCP puede ser configurado para que renueve las direcciones asignadas cada tiempo determinado.

Ventajas • •

Reduce los costos de operación a los proveedores de servicios de Internet (ISP). Reduce la cantidad de IP asignadas (de forma fija) inactivas.

Desventajas •

Obliga a depender de servicios que redirigen un host a una IP.

Asignación de direcciones IP

Dependiendo de la implementación concreta, el servidor DHCP tiene tres métodos para asignar las direcciones IP: •

manualmente, cuando el servidor tiene a su disposición una tabla que empareja direcciones MAC con direcciones IP, creada manualmente por el administrador de la red. Sólo clientes con una dirección MAC válida recibirán una dirección IP del servidor. automáticamente, donde el servidor DHCP asigna permanentemente una dirección IP libre, tomada de un rango prefijado por el administrador, a cualquier cliente que solicite una.


Tema 3. Teoría. Nivel de interred

SMR

Página 9 de 53

dinámicamente, el único método que permite la reutilización de direcciones IP. El administrador de la red asigna un rango de direcciones IP para el DHCP y cada ordenador cliente de la LAN tiene su software de comunicación TCP/IP configurado para solicitar una dirección IP del servidor DHCP cuando su tarjeta de interfaz de red se inicie. El proceso es transparente para el usuario y tiene un periodo de validez limitado.

IP fija

Una dirección IP fija es una dirección IP asignada por el usuario de manera manual (Que en algunos casos el ISP o servidor de la red no lo permite), o por el servidor de la red (ISP en el caso de internet, router o switch en caso de LAN) con base en la Dirección MACdel cliente. Mucha gente confunde IP Fija con IP Pública e IP Dinámica con IP Privada. Una IP puede ser Privada ya sea dinámica o fija como puede ser IP Pública Dinámica o Fija. Una IP pública se utiliza generalmente para montar servidores en internet y necesariamente se desea que la IP no cambie por eso siempre la IP Pública se la configura de manera Fija y no Dinámica, aunque si se podría. En el caso de la IP Privada generalmente es dinámica asignada por un servidor DHCP, pero en algunos casos se configura IP Privada Fija para poder controlar el acceso a internet o a la red local, otorgando ciertos privilegios dependiendo del número de IP que tenemos, si esta cambiara (fuera dinámica) sería más complicado controlar estos privilegios (pero no imposible). Las IP Públicas fijas actualmente en el mercado de acceso a Internet tienen un costo adicional mensual. Estas IP son asignadas por el usuario después de haber recibido la información del proveedor o bien asignadas por el proveedor en el momento de la primera conexión. Esto permite al usuario montar servidores web, correo, FTP, etc. y dirigir un nombre de dominio a esta IP sin tener que mantener actualizado el servidor DNS cada vez que cambie la IP como ocurre con las IP Públicas dinámicas.

Direcciones IPv6 Artículo principal: IPv6. Véase también: Dirección

IPv6.

La función de la dirección IPv6 es exactamente la misma que la de su predecesor IPv4, pero dentro del protocolo IPv6. Está compuesta por 128 bits y se expresa en una notación hexadecimal de 32 dígitos. IPv6 permite actualmente que cada persona en la Tierra tenga asignados varios millones de IPs, ya que puede implementarse con 2128 (3.4×1038 hosts direccionables). La ventaja con respecto a la dirección IPv4 es obvia en cuanto a su capacidad de direccionamiento. Su representación suele ser hexadecimal y para la separación de cada par de octetos se emplea el símbolo ":". Un bloque abarca desde 0000 hasta FFFF. Algunas reglas de notación acerca de la representación de direcciones IPv6 son: •

Los ceros iniciales, como en IPv4, se pueden obviar. Ejemplo: 2001:0123:0004:00ab:0cde:3403:0001:0063 -> 2001:123:4:ab:cde:3403:1:63

Los bloques contiguos de ceros se pueden comprimir empleando "::". Esta operación sólo se puede hacer una vez. Ejemplo: 2001:0:0:0:0:0:0:4 -> 2001::4. Ejemplo no válido: 2001:0:0:0:2:0:0:1 -> 2001::2::1 (debería ser 2001::2:0:0:1 ó 2001:0:0:0:2::1).


Tema 3. TeorĂ­a. Nivel de interred

SMR

PĂĄgina 10 de 53

Classful network A classful network is a network-addressing architecture used in the Internet from 1981 until the introduction of Classless Inter-Domain Routing in 1993. The method divides the address space for Internet Protocol Version 4 (IPv4) into five address classes. Each class, coded in the first four bits of the address, defines either a different network size, i.e. number of hosts for unicast addresses (classes A, B, C), or a multicast network (class D). The fifth class (E) address range is reserved for future or experimental purposes. Since its discontinuation, remnants of classful network concepts remain in practice only in limited scope in the default configuration parameters of some network software and hardware components (e.g., default subnet mask), but the terms are often still used in general discussions of network structure among network administrators.


Tema 3. Teoría. Nivel de interred

SMR

Página 11 de 53

Classless Inter-Domain Routing Classless Inter-Domain Routing o CIDR (en español «enrutamiento entre dominios sin clases») se introdujo en 1993 por IETF y representa la última mejora en el modo de interpretar las direcciones IP. Su introducción permitió una mayor flexibilidad al dividir rangos de direcciones IP en redes separadas. De esta manera permitió: • •

Un uso más eficiente de las cada vez más escasas direcciones IPv4. Un mayor uso de la jerarquía de direcciones (agregación de prefijos de red), disminuyendo la sobrecarga de los enrutadores principales de Internet para realizar el encaminamiento.

• • • • • • • •

1 2 3 4 5 6 7 8

Introducción Bloques CIDR Asignación de bloques CIDR CIDR y máscaras de subred Agregación de prefijos Antecedentes históricos Véase también Enlaces externos

Introducción

CIDR reemplaza la sintaxis previa para nombrar direcciones IP, las clases de redes. En vez de asignar bloques de direcciones en los límites de los octetos, que implicaban prefijos «naturales» de 8, 16 y 24 bits, CIDR usa la técnica VLSM (variable lenght subnet mask, en españól «máscara de subred de longitud variable»), para hacer posible la asignación de prefijos de longitud arbitraria. CIDR engloba: •

La técnica VLSM para especificar prefijos de red de longitud variable. Una dirección CIDR se escribe con un sufijo que indica el número de bits de longitud de prefijo, p.ej. 192.168.0.0/16 que indica que la máscara de red tiene 16 bits (es decir, los primeros 16 bits de la máscara son 1 y el resto 0). Esto permite un uso más eficiente del cada vez más escaso espacio de direcciones IPv4 La agregación de múltiples prefijos contiguos en superredes, reduciendo el número de entradas en las tablas de ruta globales.

Bloques CIDR


Tema 3. Teoría. Nivel de interred

SMR

Página 12 de 53

CIDR es un estándar de red para la interpretación de direcciones IP. CIDR facilita el encaminamiento al permitir agrupar bloques de direcciones en una sola entrada de tabla de rutas. Estos grupos, llamados comúnmente Bloques CIDR, comparten una misma secuencia inicial de bits en la representación binaria de sus direcciones IP. Los bloques CIDR IPv4 se identifican usando una sintaxis similar a la de las direcciones IPv4: cuatro números decimales separados por puntos, seguidos de una barra de división y un número de 0 a 32; A.B.C.D/N. Los primeros cuatro números decimales se interpretan como una dirección IPv4, y el número tras la barra es la longitud de prefijo, contando desde la izquierda, y representa el número de bits comunes a todas las direcciones incluidas en el bloque CIDR. Decimos que una dirección IP está incluida en un bloque CIDR, y que encaja con el prefijo CIDR, si los N bits iniciales de la dirección y el prefijo son iguales. Por tanto, para entender CIDR es necesario visualizar la dirección IP en binario. Dado que la longitud de una dirección IPv4 es fija, de 32 bits, un prefijo CIDR de N-bits deja quiere decir que

bits sin encajar, y hay

combinaciones posibles con los bits restantes. Esto

direcciones IPv4 encajan en un prefijo CIDR de N-bits.

Nótese que los prefijos CIDR cortos (números cercanos a 0) permiten encajar un mayor número de direcciones IP, mientras que prefijos CIDR largos (números cercanos a 32) permiten encajar menos direcciones IP. Una dirección IP puede encajar en varios prefijos CIDR de longitudes diferentes. CIDR también se usa con direcciones IPv6, en las que la longitud del prefijo varia desde 0 a 128, debido a la mayor longitud de bit en las direcciones, con respecto a IPv4. En el caso de IPv6 se usa una sintaxis similar a la comentada: el prefijo se escribe como una dirección IPv6, seguida de una barra y el número de bits significativos.

Asignación de bloques CIDR •

El bloque 208.128.0.0/11, un bloque CIDR largo que contenía más de dos millones de direcciones, había sido asignado por ARIN, (el RIR Norteamericano) a MCI.


Tema 3. Teoría. Nivel de interred

SMR

Página 13 de 53

Automation Research Systems, una empresa intermediaria del estado de Virginia, alquiló de MCI una conexión a Internet, y recibió el bloque 208.130.28.0/22, capaz de admitir 1024 direcciones IP ( ; ) ARS utilizó un bloque 208.130.29.0/24 para sus servidores públicos, uno de los cuales era 208.130.29.33. Todos estos prefijos CIDR se utilizaron en diferentes enrutadores para realizar el encaminamiento. Fuera de la red de MCI, el prefijo 208.128.0.0/11 se usó para encaminar hacia MCI el tráfico dirigido no solo a 208.130.29.33, sino también a cualquiera de los cerca de dos millones de direcciones IP con el mismo prefijo CIDR (los mismos 11 bits iniciales). En el interior de la red de MCI, 208.130.28.0/22 dirigiría el tráfico a la línea alquilada por ARS. El prefijo 208.130.29.0/24 se usaría sólo dentro de la red corporativa de ARS.

CIDR y máscaras de subred Una máscara de subred es una máscara que codifica la longitud del prefijo de una forma similar a una dirección IP - 32 bits, comenzando desde la izquierda, ponemos a 1 tantos bits como marque la longitud del prefijo, y el resto de bits a cero, separando los 32 bits en cuatro grupos de ocho bits. CIDR usa máscaras de subred de longitud variable (VLSM) para asignar direcciones IP a subredes de acuerdo a las necesidades de cada subred. De esta forma, la división red/host puede ocurrir en cualquier bit de los 32 que componen la dirección IP. Este proceso puede ser recursivo, dividiendo una parte del espacio de direcciones en porciones cada vez menores, usando máscaras que cubren un mayor número de bits. Las direcciones de red CIDR/VLSM se usan a lo largo y ancho de la Internet pública, y en muchas grandes redes privadas. El usuario normal no ve este uso puesto en práctica, al estar en una red en la que se usarán, por lo general, direcciones de red privadas recogidas en el RFC 1918.

Agregación de prefijos

Otro beneficio de CIDR es la posibilidad de agregar prefijos de encaminamiento, un proceso conocido como "supernetting". Por ejemplo, dieciséis redes /24 contiguas pueden ser agregadas y publicadas en los enrutadores de Internet como una sola ruta /20 (si los primeros 20 bits de sus respectivas redes coinciden). Dos redes /20 contiguas pueden ser agregadas en una /19, etc. Esto permite una reducción significativa en el número de rutas que los enrutadores en Internet tienen que conocer (y una reducción de memoria, recursos, etc.) y previene una explosión de tablas de encaminamiento, que podría sobrecargar a los routers e impedir la expansión de Internet en el futuro.

CIDR IPv4 CID No. de redes por clase R

Hosts*

/32

1/256 C

1

/31

1/128 C

2

/30

1/64 C

4

/29

1/32 C

8

/28

1/16 C

16

/27

1/8 C

32

/26

1/4 C

64

/25

1/2 C

128

/24 /23 /22

1/1 C 2C 4C

256 512 1,024

Máscara 255.255.255.2 55 255.255.255.2 54 255.255.255.2 52 255.255.255.2 48 255.255.255.2 40 255.255.255.2 24 255.255.255.1 92 255.255.255.1 28 255.255.255.0 255.255.254.0 255.255.252.0


Tema 3. Teoría. Nivel de interred

SMR

Página 14 de 53

/21 /20 /19 /18 /17 /16 /15 /14 /13 /12 /11 /10 /9 /8 /7 /6 /5

8C 2,048 255.255.248.0 16 C 4,096 255.255.240.0 32 C 8,192 255.255.224.0 64 C 16,384 255.255.192.0 128 C 32,768 255.255.128.0 256 C, 1 B 65,536 255.255.0.0 512 C, 2 B 131,072 255.254.0.0 1,024 C, 4 B 262,144 255.252.0.0 2,048 C, 8 B 524,288 255.248.0.0 4,096 C, 16 B 1,048,576 255.240.0.0 8,192 C, 32 B 2,097,152 255.224.0.0 16,384 C, 64 B 4,194,304 255.192.0.0 32,768 C, 128B 8,388,608 255.128.0.0 65,536 C, 256B, 1 A 16,777,216 255.0.0.0 131,072 C, 512B, 2 A 33,554,432 254.0.0.0 262,144 C, 1,024 B, 4 A 67,108,864 252.0.0.0 524,288 C, 2,048 B, 8 A 134,217,728 248.0.0.0 1,048,576 C, 4,096 B, 16 /4 268,435,456 240.0.0.0 A 2,097,152 C, 8,192 B, 32 /3 536,870,912 224.0.0.0 A 4,194,304 C, 16,384 B, 64 1,073,741,8 /2 192.0.0.0 A 24 8,388,608 C, 32,768 B, 2,147,483,6 /1 128.0.0.0 128 A 48 16,777,216 C, 65,536 B, 4,294,967,2 /0 0.0.0.0 256 A 96 (*) En la práctica hay que restar 2 a este número. La dirección menor (más baja - todos los bits de host a 0) del bloque se usa para identificar a la propia red (toda la red), y la dirección mayor (la más alta - todos los bits de host a 1) se usa como dirección de broadcast. Por tanto, en un bloque CIDR /24 podríamos disponer de

direcciones IP para asignar a dispositivos.

Antecedentes históricos Originalmente, direcciones IP se ssseparaban en dos partes: la dirección de red (que identificaba una red o subred), y la dirección de host (que identificaba la conexión o interfaz de una máquina específica a la red). Esta división se usaba para controlar la forma en que se encaminaba el tráfico entre redes IP. Históricamente, el espacio de direcciones IP se dividía en cinco clases principales de redes (A, B, C, D y E), donde cada clase tenía asignado un tamaño fijo de dirección de red. La clase, y por extensión la longitud de la dirección de red y el número de host, se podían determinar comprobando los bits más significativos (a la izquierda) de la dirección IP: • • • • •

0 para las redes de Clase A 10 para las redes de Clase B 110 para las redes de Clase C 1110 para las redes de Clase D (usadas para transmisiones multicast) 11110 para las redes de Clase E (usadas para investigación y experimentación) Sin una forma de especificar la longitud de prefijo, o la máscara de red, los algoritmos de encaminamiento en los enrutadores tenían que usar forzosamente la clase de la dirección IP para determinar el tamaño de los prefijos que se usarían en las tablas de ruta. Esto no representaba un gran problema en la Internet original, donde sólo había unas decenas/cientos de ordenadores, y los routers podían almacenar en memoria todas las rutas necesarias para alcanzarlos. A medida que la red TCP/IP experimental se expandió en los años 80 para formar Internet, el número de ordenadores con dirección IP pública creció exponencialmente, forzando a los enrutadores a incrementar


Tema 3. Teoría. Nivel de interred

SMR

Página 15 de 53

la memoria necesaria para almacenar las tablas de rutas, y los recursos necesarios para mantener y actualizar esas tablas. La necesidad de un esquema de direcciones más flexible se hacía cada vez más patente. Esta situación condujo al desarrollo sucesivo de las subredes y CIDR. Dado que se ignora la antigua distinción entre clases de direcciones, el nuevo sistema se denominó encaminamiento sin clases (classless routing). Esta denominación conllevó que el sistema original fuera denominado encaminamiento con clases (classful routing). VLSM parte del mismo concepto que CIDR. El término VLSM se usa generalmente cuando se habla de redes privadas, mientras que CIDR se usa cuando se habla de Internet (red pública).


Tema 3. Teoría. Nivel de interred

SMR

Página 16 de 53

Cabecera IP Formato de la cabecera IP1 Formato de la Cabecera IP (Versión 4) 16-1 0-3 4-7 8-15 19-31 8 Versió Tamaño Tipo de Longitud Total n Cabecera Servicio Posición de Identificador Flags Fragmento Suma de Control de Time To Live Protocolo Cabecera Dirección IP de Origen Dirección IP de Destino Opciones Relleno

Descripción de cada uno de los campos Versión: 4 bits Siempre vale lo mismo (0100). Este campo describe el formato de la cabecera utilizada. En la tabla se describe la versión 4.

Tamaño Cabecera (IHL): 4 bits Longitud de la cabecera, en palabras de 32 bits. Su valor mínimo es de 5 para una cabecera correcta, y el máximo de 15.

Tipo de Servicio: 8 bits Indica una serie de parámetros sobre la calidad de servicio deseada durante el tránsito por una red. Algunas redes ofrecen prioridades de servicios, considerando determinado tipo de paquetes "más importantes" que otros (en particular estas redes solo admiten los paquetes con prioridad alta en momentos de sobrecarga). Estos 8 bits se agrupan de la siguiente manera: · Los 3 primeros bits están relacionados con la precedencia de los mensajes, un indicador adjunto que indica el nivel de urgencia basado en el sistema militar de precedencia (véase Message Precedence) de la CCEB, un organización de comunicaciones electrónicas militares formada por 5 naciones. La urgencia que estos estados representan aumenta a medida que el número formado por estos 3 bits lo hace, y responden a los siguientes nombres. 000: 001: 010: 011: 100: 101: 110: 111:

De rutina. Prioritario. Inmediato. Relámpago. Invalidación relámpago. Procesando llamada crítica y de emergencia. Control de trabajo de Internet. Control de red.

· Los 5 bits de mayor peso son independientes e indican características del servicio. Desglose de bits: Bits 0 a 2: prioridad. Bit 3: retardo. 0 = normal ; 1 = bajo. Bit 4: Caudal. 0= normal; 1= alto. Bit 5: fiabilidad. 0=normal; 1= alta. Bit 6-7: no usados. Reservados para uso futuro.


Tema 3. Teoría. Nivel de interred

SMR

Página 17 de 53

Longitud Total: 16 bits Es el tamaño total, en octetos, del datagrama, incluyendo el tamaño de la cabecera y el de los datos. El tamaño mínimo de los datagramas usados normalmente es de 576 octetos (64 de cabeceras y 512 de datos). Una máquina no debería enviar datagramas menores o mayores de ese tamaño a no ser que tenga la certeza de que van a ser aceptados por la máquina destino. En caso de fragmentación este campo contendrá el tamaño del fragmento, no el del datagrama original.

Identificador: 16 bits Identificador único del datagrama. Se utilizará, en caso de que el datagrama deba ser fragmentado, para poder distinguir los fragmentos de un datagrama de los de otro. El originador del datagrama debe asegurar un valor único para la pareja origen-destino y el tipo de protocolo durante el tiempo que el datagrama pueda estar activo en la red. El valor asignado en este campo debe ir en formato de red.

Flags: 3 bits Actualmente utilizado sólo para especificar valores relativos a la fragmentación de paquetes: bit 2: Reservado; debe ser 0 bit 1: 0 = Divisible, 1 = No Divisible (DF) bit 0: 0 = Último Fragmento, 1 = Fragmento Intermedio (le siguen más fragmentos) (MF) La indicación de que un paquete es indivisible debe ser tenida en cuenta bajo cualquier circunstancia. Si el paquete necesitara ser fragmentado, no se enviará.

Posición de Fragmento: 13 bits En paquetes fragmentados indica la posición, en unidades de 64 bits, que ocupa el paquete actual dentro del datagrama original. El primer paquete de una serie de fragmentos contendrá en este campo el valor 0.

Tiempo de Vida (TTL): 8 bits Indica el máximo número de enrutadores que un paquete puede atravesar. Cada vez que algún nodo procesa este paquete disminuye su valor en 1 como mínimo, una unidad. Cuando llegue a ser 0, el paquete será descartado.

Protocolo: 8 bits Indica el protocolo de las capas superiores al que debe entregarse el paquete Vea Números de protocolo IP para comprender como interpretar este campo.

Suma de Control de Cabecera: 16 bits Suma de Contol de cabecera. Se recalcula cada vez que algún nodo cambia alguno de sus campos (por ejemplo, el Tiempo de Vida). El método de cálculo -intencionadamente simple- consiste en sumar en complemento a 1 cada palabra de 16 bits de la cabecera (considerando valor 0 para el campo de suma de control de cabecera) y hacer el complemento a 1 del valor resultante.

Dirección IP de origen: 32 bits Ver Direcciones IP. Debe ser dada en formato de red.

Dirección IP de destino: 32 bits Ver Direcciones IP. Debe ser dada en formato de red.

Opciones: Variable Aunque no es obligatoria la utilización de este campo, cualquier nodo debe ser capaz de interpretarlo. Puede contener un número indeterminado de opciones, que tendrán dos posibles formatos:

Formato de opciones simple Se determina con un sólo octeto indicando el Tipo de opción, el cual está dividido en 3 campos. •

Indicador de copia: 1 bit. En caso de fragmentación, la opción se copiará o no a cada nuevo fragmento según el valor de este campo: 0 = no se copia 1 = se copia.


Tema 3. Teoría. Nivel de interred

Clase de opción: 2 bits. Las posibles clases son: 0 = control 1 = reservada 2 = depuración y mediciones 3 = ya esta.

Número de opción: 5 bits. Identificador de la opción.

SMR

Página 18 de 53

Formato de opciones compuesto

Un octeto para el Tipo de opción, otro para el Tamaño de opción, y uno o más octetos conformando los Datos de opción. El Tamaño de opción incluye el octeto de Tipo de opción, el de Tamaño de opción y la suma de los octetos de datos. La siguiente tabla muestra las opciones actualmente definidas: Clas e 0 0 0

Númer o 0 1 2

0

3

0

9

0 0 2

7 8 4

Tamañ Descripción o Final de lista de opciones. Formato simple. Ninguna operación (NOP). Formato simple. 11 Seguridad. Enrutado desde el Origen, abierto (Loose Source variable Routing). Enrutado desde el Origen, estricto (Strict Source variable Routing). variable Registro de Ruta (Record Route). 4 Identificador de flujo (Stream ID). variable Marca de tiempo (Internet Timestamping).

Final de Lista de Opciones: Se usa al final de la lista de opciones, si ésta no coincide con el final de la cabecera IP. Ninguna Operación (NOP): Se puede usar para forzar la alineación de las opciones en palabras de 32 bits. Seguridad: Especifica niveles de seguridad que van desde "No Clasificado" hasta "Máximo Secreto", definidos por la Agencia de Seguridad de la Defensa (de EE.UU.). Enrutado desde el Origen (abierto) y Registro de Ruta (LSSR): Esta opción provee el mecanismo para que el originador de un datagrama pueda indicar el itinerario que ha de seguir a través de la red y para registrar el camino seguido. Los Datos de Opción consisten en un puntero (un octeto) y una lista de direcciones IP (4 octetos cada una) que se han de alcanzar ("procesar"): El puntero indica la posición de la siguiente dirección de la ruta, dentro de la Opción; así, su valor mínimo es de 4. Cuando un nodo de Internet procesa la dirección de la lista apuntada por el puntero (es decir, se alcanza esa dirección) incrementa el puntero en 4, y redirige el paquete a la siguiente dirección. Si el puntero llega a ser mayor que el Tamaño de Opción significa que la información de ruta se ha procesado y registrado completamente y se redirigirá el paquete a su dirección de destino. Si se alcanza la dirección de destino antes de haber procesado la lista de direcciones completa (el puntero es menor que el Tamaño de Opción) la siguiente dirección de la lista reemplaza a la dirección de destino del paquete y es a su vez reeemplazada por la dirección del nodo que está procesando el datagrama ("Ruta Registrada"), incrementando, además, el puntero en 4.


Tema 3. Teoría. Nivel de interred

SMR

Página 19 de 53

Utilizando este método de sustituir la dirección especificada en origen por la Ruta Registrada se asegura que el tamaño de la Opción (y de la cabecera IP) no varía durante su recorrido por la red. Se considera que la ruta especificada por el originador es "abierta" porque cualquier nodo que procesa el paquete es libre de dirigirlo a la siguiente dirección siguiendo cualquier otra ruta intermedia. Sólo puede usarse una vez en un datagrama, y, en caso de fragmentación, la opción se copiará a los paquetes resultantes. Enrutado desde el Origen (estricto) y Registro de Ruta (SSRR): Exactamente igual que LSSR, excepto en el tratamiento que los nodos harán de este datagrama. Al ser la ruta especificada "estricta", un nodo debe reenviar el paquete directamente a la siguiente dirección, es decir, no podrá redireccionarlo por otra red. Registro de Ruta: Mediante el uso de esta Opción se puede registrar el itinerario de un datagrama. Los Datos de Opción consisten en un puntero (un octeto) y un espacio relleno de ceros que contendrá la Ruta Registrada para el paquete. Cuando un nodo recibe un paquete en el que está presente esta opción, escribirá su dirección IP en la posición indicada por el puntero, siempre que ésta sea menor que el Tamaño de Opción, e incrementará el puntero en 4. Es preciso que el espacio reservado para la Ruta Registrada tenga una longitud múltiplo de 4; si al intentar grabar su dirección un nodo detecta que existe espacio libre pero es menor de 4 octetos, el paquete no se reenvía (se pierde) y se notifica el error, mediante ICMP, al originador del datagrama. Esta Opción no se copia en caso de fragmentación, y sólo puede aparecer una vez en un paquete.

Relleno: Variable Utilizado para asegurar que el tamaño, en bits, de la cabecera es un múltiplo de 32. El valor usado es el 0.


Tema 3. Teoría. Nivel de interred

SMR

Página 20 de 53

IPv6 El Internet Protocol version 6 (IPv6) (en español: Protocolo de Internet versión 6) es una versión del protocolo Internet Protocol (IP), definida en el RFC 2460 y diseñada para reemplazar a Internet Protocol version 4 (IPv4) RFC 791, que actualmente está implementado en la gran mayoría de dispositivos que acceden a Internet. Diseñado por Steve Deering de Xerox PARC y Craig Mudge, IPv6 está destinado a sustituir a IPv4, cuyo límite en el número de direcciones de red admisibles está empezando a restringir el crecimiento de Internet y su uso, especialmente en China, India, y otros países asiáticos densamente poblados. El nuevo estándar mejorará el servicio globalmente; por ejemplo, proporcionará a futuras celdas telefónicas y dispositivos móviles sus direcciones propias y permanentes. A principios de 2010, quedaban menos del 10% de IPs sin asignar.1 En la semana del 3 de febrero del 2011, la IANA (Agencia Internacional de Asignación de Números de Internet, por sus siglas en inglés) entregó el último bloque de direcciones disponibles (33 millones) a la organización encargada de asignar IPs en Asia, un mercado que está en auge y no tardará en consumirlas todas. IPv4 posibilita 4,294,967,296 (232) direcciones de red diferentes, un número inadecuado para dar una dirección a cada persona del planeta, y mucho menos a cada vehículo, teléfono, PDA, etcétera. En cambio, IPv6 admite 340.282.366.920.938.463.463.374.607.431.768.211.456 (2128 o 340 sextillones de direcciones) —cerca de 6,7 × 1017 (670 mil billones) de direcciones por cada milímetro cuadrado de la superficie de La Tierra. Otra vía para la popularización del protocolo es la adopción de este por parte de instituciones. El gobierno de los Estados Unidosordenó el despliegue de IPv6 por todas sus agencias federales en el año 20082

• •

• • • •

1 Motivación y orígenes de los IP 2 Cambios y nuevas características 2.1 Capacidad extendida de direccionamiento 2.2 Autoconfiguración de direcciones libres de estado (SLAAC) 2.3 Multicast 2.4 Seguridad de Nivel de Red obligatoria 2.5 Procesamiento simplificado en los routers 2.6 Movilidad 2.7 Soporte mejorado para las extensiones y opciones 2.8 Jumbogramas 3 Direccionamiento IPv6 3.1 Notación para las direcciones IPv6 3.2 Identificación de los tipos de direcciones 4 Paquete IPv6 4.1 Cabecera Fija 4.2 Cabeceras de extensión 4.3 Carga Útil 5 IPv6 y el Sistema de Nombres de Dominio 5.1 Mecanismos de transición a IPv6 6 Despliegue de IPv6 7 Anuncios importantes sobre IPv6

Motivación y orígenes de los IP Durante la primera década de operación de Internet basado en TCP/IP, a fines de los 80s, se hizo aparente que se necesitaba desarrollar métodos para conservar el espacio de direcciones. A principios de los 90s,


Tema 3. Teoría. Nivel de interred

SMR

Página 21 de 53

incluso después de la introducción del rediseño de redes sin clase, se hizo claro que no sería suficiente para prevenir el agotamiento de las direcciones IPv4 y que se necesitaban cambios adicionales. A comienzos de 1992, circulaban varias propuestas de sistemas y a finales de 1992, la IETF anunció el llamado para white papers (RFC 1550) y la creación de los grupos de trabajo de "IP de próxima generación" ("IP Next Generation") o (IPng). IPng fue propuesto por el Internet Engineering Task Force (IETF) el 25 de julio de 1994, con la formación de varios grupos de trabajo IPng. Hasta 1996, se publicaron varios RFCs definiendo IPv6, empezando con el RFC 2460. La discusión técnica, el desarrollo e introducción de IPv6 no fue sin controversia. Incluso el diseño ha sido criticado por la falta de interoperabilidad con IPv4 y otros aspectos, por ejemplo por el científico de computación D. J. Bernstein.3 Incidentalmente, IPng (IP Next Generation) no pudo usar la versión número 5 (IPv5) como sucesor de IPv4, ya que ésta había sido asignada a un protocolo experimental orientado al flujo de streaming que intentaba soportar voz, video y audio. Se espera ampliamente que IPv6 sea soportado en conjunto con IPv4 en el futuro cercano. Los nodos solo-IPv4 no son capaces de comunicarse directamente con los nodos IPv6, y necesitarán ayuda de un intermediario.

Cambios y nuevas características En muchos aspectos, IPv6 es una extensión conservadora de IPv4. La mayoría de los protocolos de transporte -y aplicación- necesitan pocos o ningún cambio para operar sobre IPv6; las excepciones son los protocolos de aplicación que integran direcciones de capa de red, como FTP o NTPv3, NTPv4. IPv6 especifica un nuevo formato de paquete, diseñado para minimizar el procesamiento del encabezado de paquetes. Debido a que las cabeceras de los paquetes IPv4 e IPv6 son significativamente distintas, los dos protocolos no son interoperables. Algunos de los cambios de IPv4 a IPv6 más relevantes son:

Capacidad extendida de direccionamiento


Tema 3. Teoría. Nivel de interred

SMR

Página 22 de 53

Una ilustración de una dirección IP (versión 6), enhexadecimal y binario.

El interés de los diseñadores era que direcciones más largas permiten una entrega jerárquica, sistemática y en definitiva mejor de las direcciones y una eficiente agregación de rutas. Con IPv4, se desplegaron complejas técnicas de Classless Interdomain Routing (CIDR) para utilizar de mejor manera el pequeño espacio de direcciones. El esfuerzo requerido para reasignar la numeración de una red existente con prefijos de rutas distintos es muy grande, como se discute en RFC 2071 y RFC 2072. Sin embargo, con IPv6, cambiando el prefijo anunciado por unos pocos routers es posible en principio reasignar la numeración de toda la red, ya que los identificadores de nodos (los 64 bits menos significativos de la dirección) pueden ser auto-configurados independientemente por un nodo. El tamaño de una subred en IPv6 es de 264 (máscara de subred de 64-bit), el cuadrado del tamaño de la Internet IPv4 entera. Así, las tasas de utilización del espacio de direcciones será probablemente menor en IPv6, pero la administración de las redes y el ruteo serán más eficientes debido a las decisiones de diseño inherentes al mayor tamaño de las subredes y la agregación jerárquica de rutas.

Autoconfiguración de direcciones libres de estado (SLAAC) Los nodos IPv6 pueden configurarse a sí mismos automáticamente cuando son conectados a una red ruteada en IPv6 usando los mensajes de descubrimiento de routers de ICMPv6. La primera vez que son conectados a una red, el nodo envía una solicitud de router de link-local usando multicast (router solicitación) pidiendo los parámetros de configuración; y si los routers están configurados para esto, responderán este requerimiento con un "anuncio de router" (router advertisement) que contiene los parámetros de configuración de capa de red. Si la autoconfiguración de direcciones libres de estado no es adecuada para una aplicación, es posible utilizar Dynamic Host Configuration Protocol para IPv6 (DHCPv6) o bien los nodos pueden ser configurados en forma estática. Los routers presentan un caso especial de requerimientos para la configuración de direcciones, ya que muchas veces son la fuente para información de autoconfiguración, como anuncios de prefijos de red y anuncios de router. La configuración sin estado para routers se logra con un protocolo especial de renumeración de routers.

Multicast


Tema 3. Teoría. Nivel de interred

Artículo principal:

SMR

Página 23 de 53

Multicast.

Multicast, la habilidad de enviar un paquete único a destinos múltiples es parte de la especificación base de IPv6. Esto es diferente a IPv4, donde es opcional (aunque usualmente implementado). IPv6 no implementa broadcast, que es la habilidad de enviar un paquete a todos los nodos del enlace conectado. El mismo efecto puede lograrse enviando un paquete al grupo de multicast de enlace-local todos los nodos (all hosts). Por lo tanto, no existe el concepto de una dirección de broadcast y así la dirección más alta de la red (la dirección de broadcast en una red IPv4) es considerada una dirección normal en IPv6. Muchos ambientes no tienen, sin embargo, configuradas sus redes para rutear paquetes multicast, por lo que en éstas será posible hacer "multicasting" en la red local, pero no necesariamente en forma global. El multicast IPv6 comparte protocolos y características comunes con IPv4, pero también incorpora cambios y mejoras. Incluso cuando se le asigne a una organización el más pequeño de los prefijos de ruteo global IPv6, ésta también recibe la posibilidad de usar uno de los 4.2 billones de grupos multicast IPv6 ruteables de fuente específica para asignarlos para aplicaciones multicast intra-dominio o entre-dominios (RFC 3306). En IPv4 era muy difícil para una organización conseguir incluso un único grupo multicast ruteable entre-dominios y la implementación de las soluciones entre-dominios eran anticuadas (RFC 2908). IPv6 también soporta nuevas soluciones multicast, incluyendo Embedded Rendezvous Point (RFC 3956), el que simplifica el despliegue de soluciones entre dominios.

Seguridad de Nivel de Red obligatoria Internet Protocol Security (IPsec), el protocolo para cifrado y autenticación IP forma parte integral del protocolo base en IPv6. El soporte IPsec es obligatorio en IPv6; a diferencia de IPv4, donde es opcional (pero usualmente implementado). Sin embargo, actualmente no se está usando normalmente IPsec excepto para asegurar el tráfico entre routers de BGP IPv6.

Procesamiento simplificado en los routers Se hicieron varias simplificaciones en la cabecera de los paquetes, así como en el proceso de reenvío de paquetes para hacer el procesamiento de los paquetes más simple y por ello más eficiente. En concreto, •

El encabezado del paquete en IPv6 es más simple que el utilizado en IPv4, así los campos que son raramente utilizados han sido movidos a opciones separadas; en efecto, aunque las direcciones en IPv6 son 4 veces más largas, el encabezado IPv6 (sin opciones) es solamente el doble de largo que el encabezado IPv4 (sin opciones). Los routers IPv6 no hacen fragmentación. Los nodos IPv6 requieren ya sea hacer descubrimiento de MTU, realizar fragmentación extremo a extremo o enviar paquetes menores al MTU mínimo de IPv6 de 1280 bytes. El encabezado IPv6 no está protegido por una suma de comprobación (checksum); la protección de integridad se asume asegurada tanto por el checksum de capa de enlace y por un checksum de nivel superior (TCP, UDP, etc.). En efecto, los routers IPv6 no necesitan recalcular la suma de comprobación cada vez que algún campo del encabezado (como el contador de saltos o Tiempo de Vida) cambian. Esta mejora puede ser menos necesaria en routers que utilizan hardware dedicado para computar este cálculo y así pueden hacerlo a velocidad de línea (wirespeed), pero es relevante para routers por software. El campo Tiempo de Vida de IPv4, conocido como TTL (Time To Live), pasa a llamarse Límite de saltos, reflejando el hecho de que ya no se espera que los routers computen el tiempo en segundos que tarda en atravesarlo (que en cualquier caso siempre resulta menor de 1 segundo). Se simplifica como el número de saltos entre routers que se permita realizar al paquete IPv6.

Movilidad

A diferencia de IPv4 móvil, IPv6 móvil (MIPv6) evita el ruteo triangular y por lo tanto es tan eficiente como el IPv6 normal. Los routers IPv6 pueden soportar también Movilidad de Red (NEMO, por Network Mobility) (RFC 3963), que permite que redes enteras se muevan a nuevos puntos de conexión de routers sin reasignación de numeración. Sin embargo, ni MIPv6 ni MIPv4 o NEMO son ampliamente difundidos hoy, por lo que esta ventaja es más bien teórica.

Soporte mejorado para las extensiones y opciones Los cambios en la manera en que se codifican las opciones de la cabecera IP permiten límites menos rigurosos en la longitud de opciones, y mayor flexibilidad para introducir nuevas opciones en el futuro.

Jumbogramas


Tema 3. Teoría. Nivel de interred

SMR

Página 24 de 53

IPv4 limita los paquetes a 64 KiB de carga útil. IPv6 tiene soporte opcional para que los paquetes puedan superar este límite, los llamados jumbogramas, que pueden ser de hasta 4 GiB. El uso de jumbogramas puede mejorar mucho la eficiencia en redes de altos MTU. El uso de jumbogramas está indicado en el encabezado opcional Jumbo Payload Option.

Direccionamiento IPv6 Artículo principal:

Dirección IPv6.

El cambio más grande de IPv4 a IPv6 es la longitud de las direcciones de red. Las direcciones IPv6, definidas en el RFC 2373 y RFC 2374 pero fue redefinida en abril de 2003 en la RFC 3513, son de 128 bits; esto corresponde a 32 dígitos hexadecimales, que se utilizan normalmente para escribir las direcciones IPv6, como se describe en la siguiente sección. El número de direcciones IPv6 posibles es de 2128 ≈ 3.4 x 1038. Este número puede también representarse como 1632, con 32 dígitos hexadecimales, cada uno de los cuales puede tomar 16 valores (véase combinatoria). En muchas ocasiones las direcciones IPv6 están compuestas por dos partes lógicas: un prefijo de 64 bits y otra parte de 64 bits que corresponde al identificador de interfaz, que casi siempre se genera automáticamente a partir de la dirección MAC de la interfaz a la que está asignada la dirección.

Notación para las direcciones IPv6 Las direcciones IPv6, de 128 bits de longitud, se escriben como ocho grupos de cuatro dígitos hexadecimales. Por ejemplo, 2001:0db8:85a3:08d3:1319:8a2e:0370:7334 es una dirección IPv6 válida. Se puede comprimir un grupo de cuatro dígitos si éste es nulo (es decir, toma el valor "0000"). Por ejemplo, 2001:0db8:85a3:0000:1319:8a2e:0370:7344 ---2001:0db8:85a3::1319:8a2e:0370:7344 Siguiendo esta regla, si más de dos grupos consecutivos son nulos, también pueden comprimirse como "::". Si la dirección tiene más de una serie de grupos nulos consecutivos la compresión sólo se permite en uno de ellos. Así, las siguientes son representaciones posibles de una misma dirección: 2001:0DB8:0000:0000:0000:0000:1428:57ab 2001:0DB8:0000:0000:0000::1428:57ab 2001:0DB8:0:0:0:0:1428:57ab 2001:0DB8:0::0:1428:57ab 2001:0DB8::1428:57ab son todas válidas y significan lo mismo, pero 2001::25de::cade --no es válida porque no queda claro cuántos grupos nulos hay en cada lado. Los ceros iniciales en un grupo también se pueden omitir: 2001:0DB8:02de::0e13 2001:DB8:2de::e13 Si la dirección es una dirección IPv4 empotrada, los últimos 32 bits pueden escribirse en base decimal, así: ::ffff:192.168.89.9


Tema 3. Teoría. Nivel de interred

SMR

Página 25 de 53

::ffff:c0a8:5909 No se debe confundir con: ::192.168.89.9 ::c0a8:5909 El formato ::ffff:1.2.3.4 se denomina dirección IPv4 mapeada, y el formato ::1.2.3.4 dirección IPv4 compatible. Las direcciones IPv4 pueden ser transformadas fácilmente al formato IPv6. Por ejemplo, si la dirección decimal IPv4 es 135.75.43.52 (en hexadecimal, 0x874B2B34), puede ser convertida a 0000:0000:0000:0000:0000:0000:874B:2B34 o::874B:2B34. Entonces, uno puede usar la notación mixta dirección IPv4 compatible, en cuyo caso la dirección debería ser::135.75.43.52. Este tipo de direcciónIPv4 compatible casi no está siendo utilizada en la práctica, aunque los estándares no la han declarado obsoleta. Cuando lo que se desea es identificar un rango de direcciones diferenciable por medio de los primeros bits, se añade este número de bits tras el carácter de barra "/". Por ejemplo: 2001:0DB8::1428:57AB/96 sería equivalente a 2001:0DB8:: 2001:0DB8::874B:2B34/96 sería equivalente a 2001:0DB8:: y por supuesto también a 2001:0DB8::1428:57AB/96

Identificación de los tipos de direcciones Los tipos de direcciones IPv6 pueden identificarse tomando en cuenta los rangos definidos por los primeros bits de cada dirección. ::/128 La dirección con todo ceros se utiliza para indicar la ausencia de dirección, y no se asigna ningún nodo. ::1/127 La dirección de loopback es una dirección que puede usar un nodo para enviarse paquetes a sí mismo (corresponde con 127.0.0.1de IPv4). No puede asignarse a ninguna interfaz física. ::1.2.3.4/96 La dirección IPv4 compatible se usa como un mecanismo de transición en las redes duales IPv4/IPv6. Es un mecanismo que no se usa. ::ffff:0:0/96 La dirección IPv4 mapeada se usa como mecanismo de transición en terminales duales. fe80::/10 El prefijo de enlace local (en inglés link local) específica que la dirección sólo es válida en el enlace físico local. fec0:: El prefijo de emplazamiento local (en inglés site-local prefix) específica que la dirección sólo es válida dentro de una organización local. La RFC 3879 lo declaró obsoleto, estableciendo que los sistemas futuros no deben implementar ningún soporte para este tipo de dirección especial. Se deben sustituir por direcciones Local IPv6 Unicast. ff00::/8 El prefijo de multicast. Se usa para las direcciones multicast. Hay que resaltar que no existen las direcciones de difusión (en inglés broadcast) en IPv6, aunque la funcionalidad que prestan puede emularse utilizando la dirección multicast FF01::1/128, denominada todos los nodos (en inglés all nodes)

Paquete IPv6 Un paquete en IPv6 está compuesto principalmente de dos partes: la cabecera (que tiene una parte fija y otra con las opciones) y la carga útil (los datos).

Cabecera Fija Los primeros 40 bytes (320 bits) son la cabecera del paquete y contiene los siguientes campos:


Tema 3. Teoría. Nivel de interred

Offset del Octeto

SMR

0

1

Página 26 de 53

2

3

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Offset

• • • • • • • •

0 0 Versión Clase de Tráfico Etiqueta de Flujo 4 32 Longitud del campo de datos Cabecera Siguiente Límite de Saltos 8 64 C 96 Dirección de Origen 10 128 14 160 18 192 1C 224 Dirección de Destino 20 256 24 288 direcciones de origen (128 bits) direcciones de destino (128 bits) versión del protocolo IP (4 bits) clase de tráfico (8 bits, Prioridad del Paquete) Etiqueta de flujo (20 bits, manejo de la Calidad de Servicio), Longitud del campo de datos (16 bits) Cabecera siguiente (8 bits) Límite de saltos (8 bits, Tiempo de Vida). Hay dos versiones de IPv6 levemente diferentes. La ahora obsoleta versión inicial, descrita en el RFC 1883, difiere de la actual versión propuesta de estándar, descrita en el RFC 2460, en dos campos: hay 4 bits que han sido reasignados desde "etiqueta de flujo" (flow label) a "clase de tráfico" (traffic class). El resto de diferencias son menores. En IPv6 la fragmentación se realiza sólo en el nodo origen del paquete, al contrario que en IPv4 en donde los routers pueden fragmentar un paquete. En IPv6, las opciones también desaparecen de la cabecera estándar y son especificadas por el campo "Cabecera Siguiente" (Next Header), similar en funcionalidad en IPv4 al campo Protocolo. Un ejemplo: en IPv4 uno añadiría la opción "ruta fijada desde origen" (Strict Source and Record Routing) a la cabecera IPv4 si quiere forzar una cierta ruta para el paquete, pero en IPv6 uno modificaría el campo "Cabecera Siguiente" indicando que viene una cabecera de encaminamiento. La cabecera de encaminamiento podrá entonces especificar la información adicional de encaminamiento para el paquete, e indicar que, por ejemplo, la cabecera TCP será la siguiente. Este procedimiento es análogo al de AH y ESP en IPsec para IPv4 (que aplica a IPv6 de igual modo, por supuesto).

Cabeceras de extensión El uso de un formato flexible de cabeceras de extensión opcionales es una idea innovadora que permite ir añadiendo funcionalidades de forma paulatina. Este diseño aporta gran eficacia y flexibilidad ya que se pueden definir en cualquier momento a medida que se vayan necesitando entre la cabecera fija y la carga útil. Hasta el momento, existen 8 tipos de cabeceras de extensión, donde la cabecera fija y las de extensión opcionales incluyen el campo de cabecera siguiente que identifica el tipo de cabeceras de extensión que viene a continuación o el identificador del protocolo de nivel superior. Luego las cabeceras de extensión se van encadenando utilizando el campo de cabecera siguiente que aparece tanto en la cabecera fija como en cada una de las citadas cabeceras de extensión. Como resultado de la secuencia anterior, dichas cabeceras de extensión se tienen que procesar en el mismo orden en el que aparecen en el datagrama. La Cabecera principal, tiene a diferencia de la cabecera de la versión IPv4 un tamaño fijo de 40 octetos.Específica para asignarlos para aplicaciones multicast intra-dominio o entre-dominios (RFC 3306). En IPv4 era muy difícil para una organización co Todas o parte de estas cabeceras de extensión tienen que ubicarse en el datagrama en el orden especificado: Cabecera de Extensión

Tip Tamañ

Descripción


Tema 3. Teoría. Nivel de interred

SMR

o Opciones salto a salto (Hop-By-Hop Options)

0

Ruteo (Routing)

43

Cabecera de fragmentación (Fragment) 44 Cabecera de autenticación (Authentication Header (AH))

51

Página 27 de 53

o Contiene datos que deben ser examinados por variable cada nodo a través de la ruta de envío de un paquete. Métodos para especificar la forma de rutear un variable datagrama. (Usado con IPv6 móvil) Contiene parámetros para la fragmentación de los 64 bits datagramas. Contiene información para verificar la variable autenticación de la mayor parte de los datos del paquete (VerIPsec)

Encapsulado de seguridad de la carga Lleva la información cifrada para comunicación útil (Encapsulating Security Payload 50 variable segura (Ver IPsec). (ESP)) Opciones para el destino (Destination Información que necesita ser examinada 60 variable Options) solamente por los nodos de destino del paquete. No Next Header 59 vacío Indica que no hay más cabeceras Cada cabecera de extensión debe aparecer como mucho una sola vez, salvo la cabecera de opción destino, que puede aparecer como mucho dos veces, una antes de la cabecera ruteo y otra antes de la cabecera de la capa superior.

Carga Útil La carga útil del paquete puede tener un tamaño de hasta 64 KB en modo estándar, o mayor con una opción de carga jumbo (jumbo payload) en el encabezado opcional Hop-By-Hop. La fragmentación es manejada solamente en el host que envía la información en IPv6: los routers nunca fragmentan un paquete y los hosts se espera que utilicen el Path MTU discovery.

IPv6 y el Sistema de Nombres de Dominio

Las direcciones IPv6 se representan en el Sistema de Nombres de Dominio (DNS) mediante registros AAAA (también llamados registros de quad-A, por tener una longitud cuatro veces la de los registros A para IPv4) El concepto de AAAA fue una de las dos propuestas al tiempo que se estaba diseñando la arquitectura IPv6. La otra propuesta utilizaba registros A6 y otras innovaciones como las etiquetas de cadena de bits (bit-string labels) y los registros DNAME. Mientras que la idea de AAAA es una simple generalización del DNS IPv4, la idea de A6 fue una revisión y puesta a punto del DNS para ser más genérico, y de ahí su complejidad. La RFC 3363 recomienda utilizar registros AAAA hasta tanto se pruebe y estudie exhaustivamente el uso de registros A6. La RFC 3364 realiza una comparación de las ventajas y desventajas de cada tipo de registro.

Mecanismos de transición a IPv6 Artículo principal:

Mecanismos de transición IPv6.

Ante el agotamiento de las direcciones IPv4, y los problemas que este está ocasionando ya, sobretodo en los países emergentes de Asia como India o China, el cambio a IPv6 ya ha comenzado. Se espera que convivan ambos protocolos durante un año, aunque se piensa que la implantación mundial y total en internet de IPv6 se hará realidad hacia finales de 2012, dada la celeridad con la que se están agotando las direcciones IPv4. La red no podrá aguantar mucho más sin el cambio, y de no realizarse pronto este las consecuencias podrían ser muy graves. [cita requerida] Existe una serie de mecanismos que permitirán la convivencia y la migración progresiva tanto de las redes como de los equipos de usuario. En general, los mecanismos de transición pueden clasificarse en tres grupos: • • •

Doble pila Túneles Traducción

RFC 24

RFC 24 6275,

RFC 24

RFC 43

RFC 43

RFC 24

RFC 24


Tema 3. Teoría. Nivel de interred

SMR

Página 28 de 53

La doble pila hace referencia a una solución de nivel IP con doble pila (RFC 4213), que implementa las pilas de ambos protocolos, IPv4 e IPv6, en cada nodo de la red. Cada nodo con doble pila en la red tendrá dos direcciones de red, una IPv4 y otra IPv6. • •

A favor: Fácil de desplegar y extensamente soportado. En contra: La topología de red requiere dos tablas de encaminamiento y dos procesos de encaminamiento. Cada nodo en la red necesita tener actualizadas las dos pilas. Los túneles permiten conectarse a redes IPv6 "saltando" sobre redes IPv4. Estos túneles trabajan encapsulando los paquetes IPv6 en paquetes IPv4 teniendo como siguiente capa IP el protocolo número 41, y de ahí el nombre proto-41. De esta manera, se pueden enviar paquetes IPv6 sobre una infraestructura IPv4. Hay muchas tecnologías de túneles disponibles. La principal diferencia está en el método que usan los nodos encapsuladores para determinar la dirección a la salida del túnel. La traducción es necesaria cuando un nodo que sólo soporta IPv4 intenta comunicar con un nodo que sólo soporta IPv6. Los mecanismos de traducción se pueden dividir en dos grupos basados en si la información de estado está guardada o no:

• •

Con estado: NAT-PT (RFC 2766), TCP-UDP Relay (RFC 3142), Socks-based Gateway (RFC 3089) Sin estado: Bump-in-the-Stack, Bump-in-the-API (RFC 276)

Despliegue de IPv6

Varios de los mecanismos mencionados más arriba se han implementado para acelerar el despliegue de IPv6. Los distintos servicios de control de Internet han ido incorporando soporte para IPv6, así como los controladores de los dominios de nivel superior (o ccTLD, en inglés).

Anuncios importantes sobre IPv6 •

• • •

En 2003, Nihon Keizai Shimbun informa que Japón, China y Corea del Sur han tomado la determinación de convertirse en las naciones líderes en la tecnología de Internet, que conjuntamente han dado forma parcialmente al desarrollo de IPv6, y que lo adoptarán completamente a partir de 2005. ICANN anunció el 20 de julio de 2004 que los registros AAAA de IPv6 de código de país para Japón (.jp) y Corea (.kr) ya son visibles en los servidores raíz de DNS.4 El registro IPv6 para Francia (.fr) fue añadido poco después.5 El 4 de febrero de 2008 se añade a los servidores raíz de la red (Master Address books) direcciones en IP versión 6 (IPv6). Esto significa que por primera vez las máquinas que utilicen IPv6 pueden encontrarse una a la otra sin la participación de toda la tecnología IPv4.6 Desde el 2006 muchos sistemas operativos han estado trabajando en IPv6 paralelamente con IPv4, sistemas como GNU/Linux, Mac,7 Unix y Windows.8 El 8 de junio de 2011 los principales proovedores de servicios de Internet (Telefónica, Claro y Nextel) realizan una prueba para comprobar el funcionamiento de esta tecnología El 6 de junio de 2012 a las 00:00 GMT, los principales proveedores de servicios de Internet y Compañías web (Akamai, AT&T, Cisco, Comcast, D-Link, Facebook, Free Telecom, Google, Internode, Kddi, Limelight, Microsoft Bing, Time Warner, XS4ALL, Yahoo!, etc) habilitaron permanentemente IPv6 en sus productos y servicios .


Tema 3. Teoría. Nivel de interred

SMR

Página 29 de 53

Encaminamiento

Cálculo de una ruta óptima para vehículos entre un punto de origen (en verde) y un punto de destino (en rojo) a partir de cartografía del proyecto OpenStreetMap.

Encaminamiento (o enrutamiento, ruteo) es la función de buscar un camino entre todos los posibles en una red de paquetes cuyas topologíasposeen una gran conectividad. Dado que se trata de encontrar la mejor ruta posible, lo primero será definir qué se entiende por mejor ruta y en consecuencia cuál es la métrica que se debe utilizar para medirla.

• •

• • •

1 Parámetros 1.1 Métrica de la red 1.2 Mejor Ruta 2 Encaminamiento en redes de circuitos virtuales y de datagramas 3 Clasificación de los métodos de encaminamiento 3.1 Determinísticos o estáticos 3.2 Adaptativos o dinámicos 4 Encaminamiento adaptativo con algoritmos distribuidos 4.1 Algoritmos por “vector de distancias” 4.2 Algoritmos de “estado de enlace” 5 Protocolos de encaminamiento y sistemas autónomos 6 Véase también 7 Referencias

Parámetros

Métrica de la red Puede ser por ejemplo de saltos necesarios para ir de un nodo a otro. Aunque ésta no se trata de una métrica óptima ya que supone “1” para todos los enlaces, es sencilla y suele ofrecer buenos resultados. Otro tipo es la medición del retardo de tránsito entre nodos vecinos, en la que la métrica se expresa en unidades de tiempo y sus valores no son constantes sino que dependen del tráfico de la red.


Tema 3. Teoría. Nivel de interred

SMR

Página 30 de 53

Mejor Ruta Entendemos por mejor ruta aquella que cumple las siguientes condiciones: • • •

Consigue mantener acotado el retardo entre pares de nodos de la red. Consigue ofrecer altas cadencias efectivas independientemente del retardo medio de tránsito Permite ofrecer el menor costo. El criterio más sencillo es elegir el camino más corto, es decir la ruta que pasa por el menor número de nodos. Una generalización de este criterio es el de “coste mínimo”. En general, el concepto de distancia o coste de un canal sae

Encaminamiento en redes de circuitos virtuales y de datagramas

Cuando la red de conmutación de paquetes funciona en modo circuito virtual, generalmente la función de encaminamiento establece una ruta que no cambia durante el tiempo de vida de ese circuito virtual. En este caso el encaminamiento se decide por sesión. Una red que funciona en modo datagrama no tiene el compromiso de garantizar la entrega ordenada de los paquetes, por lo que los nodos pueden cambiar el criterio de encaminamiento para cada paquete que ha de mandar. Cualquier cambio en la topología de la red tiene fácil solución en cuanto a encaminamiento se refiere, una vez que el algoritmo correspondiente haya descubierto el nuevo camino óptimo.

Clasificación de los métodos de encaminamiento Los algoritmos de encaminamiento pueden agruparse en:

Determinísticos o estáticos No tienen en cuenta el estado de la subred al tomar las decisiones de encaminamiento. Las tablas de encaminamiento de los nodos se configuran de forma manual y permanecen inalterables hasta que no se vuelve a actuar sobre ellas. Por tanto, la adaptación en tiempo real a los cambios de las condiciones de la red es nula. El cálculo de la ruta óptima es también off-line por lo que no importa ni la complejidad del algoritmo ni el tiempo requerido para su convergencia. Ej: algoritmo de Dijkstra. Estos algoritmos son rígidos, rápidos y de diseño simple, sin embargo son los que peores decisiones toman en general...

Adaptativos o dinámicos Pueden hacer más tolerantes a cambios en la subred tales como variaciones en el tráfico, incremento del retardo o fallas en la topología. El encaminamiento dinámico o adaptativo se puede clasificar a su vez en tres categorías, dependiendo de donde se tomen las decisiones y del origen de la información intercambiada: •

Adaptativo centralizado. Todos los nodos de la red son iguales excepto un nodo central que es quien recoge la información de control y los datos de los demás nodos para calcular con ellos la tabla de encaminamiento. Este método tiene el inconveniente de que consume abundantes recursos de la propia red. Adaptativo distribuido. Este tipo de encaminamiento se caracteriza porque el algoritmo correspondiente se ejecuta por igual en todos los nodos de la subred. Cada nodo recalcula continuamente la tabla de encaminamiento a partir de dicha información y de la que contiene en su propia base de datos. A este tipo pertenecen dos de los más utilizados en Internet que son los algoritmos porvector de distancias y los de estado de enlace. Adaptativo aislado. Se caracterizan por la sencillez del método que utilizan para adaptarse al estado cambiante de la red. Su respuesta a los cambios de tráfico o de topología se obtiene a partir de la información propia y local de cada nodo. Un caso típico es el encaminamiento “por inundación” cuyo mecanismo consiste en reenviar cada paquete recibido con destino a otros nodos, por todos los enlaces excepto por el que llegó.


Tema 3. Teoría. Nivel de interred

Tipos de

Decisión

Adaptación

de encaminamiento

a los cambios

Información

Encaminamient o

de control

SMR

Página 31 de 53

Determinísticos ESTÁTICOS

NO

OFF-LINE

NO

CUASIESTÁTICO NO S

OFF-LINE

REDUCIDA

NODO CENTRAL

SI

CADA NODO

SI

CADA NODO

SI

Adaptativos NODO CENTRALIZADO CENTRAL DISTRIBUIDO AISLADO

ENTRE NODOS NO

Encaminamiento adaptativo con algoritmos distribuidos

El encaminamiento mediante algoritmos distribuidos constituye el prototipo de modelo de encaminamiento adap algoritmos se ejecutan en los nodos de la red con los últimos datos que han recibido sobre su estado y converge rápidamente optimizando sus nuevas rutas.

El resultado es que las tablas de encaminamiento se adaptan automáticamente a los cambios de la red y a las s de tráfico. A cambio, los algoritmos tienen una mayor complejidad. Existen dos tipos principales de algoritmos d encaminamiento adaptativo distribuido.

Algoritmos por “vector de distancias” Artículo principal:

Vector de distancias.

Estos métodos utilizan el algoritmo de Bellman-Ford. Busca la ruta de menor coste por el método de búsqueda in El vector de distancias asociado al nodo de una red, es un paquete de control que contiene la distancia a los nod red conocidos hasta el momento.

Cada nodo envía a sus vecinos las distancias que conoce a través de este paquete. Los nodos vecinos examinan información y la comparan con la que ya tienen, actualizando su tabla de encaminamiento. Ejemplos de protocolos por vector de distancias: RIP (versión 1 y 2), .IGRP

Algoritmos de “estado de enlace” Artículo principal:

Estado de enlace.

Este tipo de encaminamiento se basa en que cada nodo llegue a conocer la topología de la red y los costes (reta asociados a los enlaces, para que a partir de estos datos, pueda obtener el árbol y la tabla de encaminamiento t el algoritmo de coste mínimo (algoritmo de Dijkstra) al grafo de la red Los protocolos estado de enlace incluyen OSPF e IS-IS.

Protocolos de encaminamiento y sistemas autónomos


Tema 3. Teoría. Nivel de interred

SMR

Página 32 de 53

Esquemas de Ruteo

anycast

broadcast

multidifusión

unicast

geocast

Artículo principal:

Sistema Autónomo.

En Internet, un sistema autónomo (AS) se trata de un conjunto de redes IP y routers que se encuentran bajo el c una misma entidad (en ocasiones varias) y que poseen una política de encaminamiento similar a Internet. Depen la relación de un router con un sistema autónomo (AS), encontramos diferentes clasificaciones de protocolos:

1. Protocolos de encaminamiento Ad hoc. Se encuentran en aquellas redes que tienen poca o ninguna infraestru

2. IGPs (Interior Gateway Protocols). Intercambian información de encaminamiento dentro de un único sistema a


Tema 3. Teoría. Nivel de interred

SMR

Página 33 de 53

Los ejemplos más comunes son: • • • • •

IGRP (Interior Gateway Routing Protocol). La diferencia con la RIP es la metrica de enrutamiento EIGRP (Enhanced Interior Gateway Routing Protocol). Es un protocolo de enrutamiento vector-distancia y estado OSPF (Open Shortest Path First). Enrutamiento jerárquico de pasarela interior RIPv2T (Routing Information Protocol). No soporta conceptos de sistemas autonomos IS-IS (Intermediate System to Intermediate System). Protocolo de intercambio enrutador de sistema intermedio a intermedio 3. EGPs (Exterior Gateway Protocol). Intercambian rutas entre diferentes sistemas autónomos. Encontramos:

• •

EGP. Utilizado para conectar la red de backbones de la Antigua Internet. BGP (Border Gateway Protocol). La actual versión, BGPv4 data de 1995.1


Tema 3. Teoría. Nivel de interred

SMR

Página 34 de 53

Repetidor

Esquema de un repetidor.

Un repetidor es un dispositivo electrónico que recibe una señal débil o de bajo nivel y la retransmite a una potencia o nivel más alto, de tal modo que se puedan cubrir distancias más largas sin degradación o con una degradación tolerable. En telecomunicación el término repetidor tiene los siguientes significados normalizados:

• •

Un dispositivo analógico que amplifica una señal de entrada, independientemente de su naturaleza (analógica o digital). Un dispositivo digital que amplifica, conforma, retemporiza o lleva a cabo una combinación de cualquiera de estas funciones sobre una señal digital de entrada para su retransmisión. En el modelo de referencia OSI el repetidor opera en el nivel físico. En el caso de señales digitales el repetidor se suele denominar regenerador ya que, de hecho, la señal de salida es una señalregenerada a partir de la de entrada. Los repetidores se utilizan a menudo en los cables transcontinentales y transoceánicos ya que la atenuación (pérdida de señal) en tales distancias sería completamente inaceptable sin ellos. Los repetidores se utilizan tanto en cables de cobre portadores de señales eléctricas como en cables de fibra óptica portadores de luz. Los repetidores se utilizan también en los servicios de radiocomunicación. Un subgrupo de estos son los repetidores usados por losradioaficionados. Asimismo, se utilizan repetidores en los enlaces de telecomunicación punto a punto mediante radioenlaces que funcionan en el rango de las microondas, como los utilizados para distribuir las señales de televisión entre los centros de producción y los distintos emisores o los utilizados en redes de telecomunicación para la transmisión de telefonía. En comunicaciones ópticas el término repetidor se utiliza para describir un elemento del equipo que recibe una señal óptica, la convierte en eléctrica, la regenera y la retransmite de nuevo como señal óptica. Dado que estos dispositivos convierten la señal óptica en eléctrica y nuevamente en óptica, estos dispositivos se conocen a menudo como repetidores electroópticos. Los repetidores telefónicos consistentes en un receptor (auricular) acoplado mecánicamente a un micrófono de carbón fueron utilizados antes de la invención de los amplificadores electrónicos dotados de tubos de vacío.


Tema 3. Teoría. Nivel de interred

SMR

Página 35 de 53

Concentrador

Concentrador para 4 puertos Ethernet.

Un concentrador o hub es un dispositivo que permite centralizar el cableado de una red y poder ampliarla. Esto significa que dicho dispositivo recibe una señal y repite esta señal emitiéndola por sus diferentes puertos. En la actualidad, la tarea de los concentradores la realizan, con frecuencia, losconmutadores o switchs.

• • • • • •

1 2 3 4 5 6

Información técnica Concentradores de doble velocidad Usos Bibliografía Véase también Enlaces externos

Información técnica

Una red Ethernet se comporta como un medio compartido, es decir, sólo un dispositivo puede transmitir con éxito a la vez y cada uno es responsable de la detección de colisiones y de la retransmisión. Con enlaces 10BASE-T y 100Base-T (que generalmente representan la mayoría o la totalidad de los puertos en un concentrador) hay parejas separadas para transmitir y recibir, pero que se utilizan en modo half duplex el cual se comporta todavía como un medio de enlaces compartidos (véase 10BASE-T para las especificaciones de los pines). Un concentrador, o repetidor, es un dispositivo de emisión bastante sencillo. Los concentradores no logran dirigir el tráfico que llega a través de ellos, y cualquier paquete de entrada es transmitido a otro puerto (que no sea el puerto de entrada). Dado que cada paquete está siendo enviado a través de cualquier otro puerto, aparecen las colisiones de paquetes como resultado, que impiden en gran medida la fluidez del tráfico. Cuando dos dispositivos intentan comunicar simultáneamente, ocurrirá una colisión entre los paquetes transmitidos, que los dispositivos transmisores detectan. Al detectar esta colisión, los dispositivos dejan de transmitir y hacen una pausa antes de volver a enviar los paquetes. La necesidad de hosts para poder detectar las colisiones limita el número de centros y el tamaño total de la red. Para 10 Mbit/s en redes, de hasta 5 segmentos (4 concentradores) se permite entre dos estaciones finales. Para 100 Mbit/s en redes, el límite se reduce a 3 segmentos (2 concentradores) entre dos estaciones finales, e incluso sólo en el caso de que los concentradores fueran de la variedad de baja demora. Algunos concentradores tienen puertos especiales (y, en general, específicos del fabricante) les permiten ser combinados de un modo que consiente encadenar a través de los cables Ethernet los


Tema 3. Teoría. Nivel de interred

SMR

Página 36 de 53

concentradores más sencillos, pero aun así una gran red Fast Ethernet es probable que requiera conmutadores para evitar el encadenamiento de concentradores. La mayoría de los concentradores detectan problemas típicos, como el exceso de colisiones en cada puerto. Así, un concentrador basado en Ethernet, generalmente es más robusto que el cable coaxial basado en Ethernet. Incluso si la partición no se realiza de forma automática, un concentrador de solución de problemas la hace más fácil ya que las luces puede indicar el posible problema de la fuente. Asimismo, elimina la necesidad de solucionar problemas de un cable muy grande con múltiples tomas.

Concentradores de doble velocidad Los concentradores sufrieron el problema de que como simples repetidores sólo podían soportar una única velocidad. Mientras que los PC normales con ranuras de expansión podrían ser fácilmente actualizados a Fast Ethernet con una nueva tarjeta de red, máquinas con menos mecanismos de expansión comunes, como impresoras, pueden ser costosas o imposibles de actualizar. Por lo tanto, un punto medio entre concentrador y conmutador es conocido como concentrador de doble velocidad. Este tipo de dispositivos consisten fundamentalmente en dos concentradores (uno de cada velocidad) y dos puertos puente entre ellos. Los dispositivos se conectan al concentrador apropiado automáticamente, en función de su velocidad. Desde el puente sólo se tienen dos puertos, y sólo uno de ellos necesita ser de 100 Mb/s.

Usos

Históricamente, la razón principal para la compra de concentradores en lugar de los conmutadores era el precio. Esto ha sido eliminado en gran parte por las reducciones en el precio de los conmutadores, pero los concentradores aún pueden ser de utilidad en circunstancias especiales: •

Un analizador de protocolo conectado a un conmutador no siempre recibe todos los paquetes, ya que desde que el conmutador separa a los puertos en los diferentes segmentos. En cambio, la conexión del analizador de protocolos con un concentrador permite ver todo el tráfico en el segmento. Por otra parte, los conmutadores caros pueden ser configurados para permitir a un puerto escuchar el tráfico de otro puerto (lo que se denomina puerto de duplicado); sin embargo, esto supone un gasto mucho más elevado que si se emplean concentradores. Algunos grupos de computadoras o cluster, requieren cada uno de los miembros del equipo para recibir todo el tráfico que trata de ir a la agrupación. Un concentrador hará esto, naturalmente; usar un conmutador en estos casos, requiere la aplicación de trucos especiales. Cuando un conmutador es accesible para los usuarios finales para hacer las conexiones, por ejemplo, en una sala de conferencias, un usuario inexperto puede reducir la red mediante la conexión de dos puertos juntos, provocando un bucle. Esto puede evitarse usando un concentrador, donde un bucle se romperá en el concentrador para los otros usuarios (también puede ser impedida por la compra de conmutadores que pueden detectar y hacer frente a los bucles, por ejemplo mediante la aplicación de Spanning Tree Protocol). Un concentrador barato con un puerto 10BASE2 es probablemente la manera más fácil y barata para conectar dispositivos que sólo soportan 10BASE2 a una red moderna (no suelen venir con los puertos 10BASE2 conmutadores baratos).


Tema 3. Teoría. Nivel de interred

SMR

Página 37 de 53

Conmutador Un conmutador o switch es un dispositivo digital lógico de interconexión de redes de computadoras que opera en la capa de enlace de datos del modelo OSI. Su función es interconectar dos o más segmentos de red, de manera similar a los puentes de red, pasando datos de un segmento a otro de acuerdo con la dirección MAC de destino de las tramas en la red.

Un conmutador en el centro de unared en estrella.

Los conmutadores se utilizan cuando se desea conectar múltiples redes, fusionándolas en una sola. Al igual que los puentes, dado que funcionan como un filtro en la red, mejoran el rendimiento y la seguridad de las redes de área local.

• • • •

• •

1 2 3 4

Interconexión de conmutadores y puentes Introducción al funcionamiento de los conmutadores Bucles de red e inundaciones de tráfico Clasificación 4.1 Atendiendo al método de direccionamiento de las tramas utilizadas 4.1.1 Store-and-Forward 4.1.2 Cut-Through 4.1.3 Adaptative Cut-Through 4.2 Atendiendo a la forma de segmentación de las subredes 4.2.1 Conmutadores de la capa 2 4.2.2 Conmutadores de la capa 3 4.2.2.1 Paquete por paquete 4.2.2.2 Cut-through 4.2.3 Conmutadores de la capa 4 5 Véase también 6 Bibliografía

Interconexión de conmutadores y puentes

Los puentes y conmutadores se conectan unos a los otros pero siempre hay que hacerlo de forma que exista un único camino entre dos puntos de la red. En caso de no seguir esta regla, se forma un bucle o loop en la red, que produce la transmisión infinita de tramas de un segmento al otro. Generalmente estos dispositivos utilizan el algoritmo de spanning tree para evitar bucles, haciendo la transmisión de datos de forma segura.

Introducción al funcionamiento de los conmutadores


Tema 3. Teoría. Nivel de interred

SMR

Página 38 de 53

Conexiones en un conmutador Ethernet.

Los conmutadores poseen la capacidad de aprender y almacenar las direcciones de red de la capa 2 (direcciones MAC) de los dispositivos alcanzables a través de cada uno de sus puertos. Por ejemplo, un equipo conectado directamente a un puerto de un conmutador provoca que el conmutador almacene su dirección MAC. Esto permite que, a diferencia de los concentradores, la información dirigida a un dispositivo vaya desde el puerto origen al puerto de destino. En el caso de conectar dos conmutadores o un conmutador y un concentrador, cada conmutador aprenderá las direcciones MAC de los dispositivos accesibles por sus puertos, por lo tanto en el puerto de interconexión se almacenan las MAC de los dispositivos del otro conmutador.

Dos conmutadores de red Juniper (arriba) y Netgear(abajo) de la Fundación Wikimedia en Ashburn (Virginia)en 2012.

Bucles de red e inundaciones de tráfico

Como anteriormente se comentaba, uno de los puntos críticos de estos equipos son los bucles, que consisten en habilitar dos caminos diferentes para llegar de un equipo a otro a través de un conjunto de conmutadores. Los bucles se producen porque los conmutadores que detectan que un dispositivo es accesible a través de dos puertos emiten la trama por ambos. Al llegar esta trama al conmutador siguiente, este vuelve a enviar la trama por los puertos que permiten alcanzar el equipo. Este proceso provoca que cada trama se multiplique de forma exponencial, llegando a producir las denominadas inundaciones de la red, provocando en consecuencia el fallo o caída de las comunicaciones.

Clasificación

Atendiendo al método de direccionamiento de las tramas utilizadas Store-and-Forward

Los conmutadores Store-and-Forward guardan cada trama en un búfer antes del intercambio de información hacia el puerto de salida. Mientras la trama está en el búfer, el switch calcula el CRC y mide el tamaño de la misma. Si el CRC falla, o el tamaño es muy pequeño o muy grande (un cuadro Ethernet tiene entre 64 bytes y 1518 bytes) la trama es descartada. Si todo se encuentra en orden es encaminada hacia el puerto de salida. Este método asegura operaciones sin error y aumenta la confianza de la red. Pero el tiempo utilizado para guardar y chequear cada trama añade un tiempo de demora importante al procesamiento de las mismas. La demora o delay total es proporcional al tamaño de las tramas: cuanto mayor es la trama, más tiempo toma este proceso.


Tema 3. Teoría. Nivel de interred

SMR

Página 39 de 53

Cut-Through

Los conmutadores cut-through fueron diseñados para reducir esta latencia. Esos switches minimizan el delay leyendo sólo los 6 primeros bytes de datos de la trama, que contiene la dirección de destino MAC, e inmediatamente la encaminan. El problema de este tipo de switch es que no detecta tramas corruptas causadas por colisiones (conocidos como runts), ni errores de CRC. Cuanto mayor sea el número de colisiones en la red, mayor será el ancho de banda que consume al encaminar tramas corruptas. Existe un segundo tipo de switch cut-through, los denominados fragment free, fue proyectado para eliminar este problema. El switch siempre lee los primeros 64 bytes de cada trama, asegurando que tenga por lo menos el tamaño mínimo, y evitando el encaminamiento de runts por la red.

Adaptative Cut-Through Son los conmutadores que procesan tramas en el modo adaptativo y son compatibles tanto con store-and-forward como con cut-through. Cualquiera de los modos puede ser activado por el administrador de la red, o el switch puede ser lo bastante inteligente como para escoger entre los dos métodos, basado en el número de tramas con error que pasan por los puertos. Cuando el número de tramas corruptas alcanza un cierto nivel, el conmutador puede cambiar del modo cut-through a store-and-forward, volviendo al modo anterior cuando la red se normalice. Los conmutadores cut-through son más utilizados en pequeños grupos de trabajo y pequeños departamentos. En esas aplicaciones es necesario un buen volumen de trabajo o throughput, ya que los errores potenciales de red quedan en el nivel del segmento, sin impactar la red corporativa. Los conmutadores store-and-forward son utilizados en redes corporativas, donde es necesario un control de errores.

Atendiendo a la forma de segmentación de las subredes Conmutadores de la capa 2

Son los conmutadores tradicionales, que funcionan como puentes multi-puertos. Su principal finalidad es dividir una LAN en múltiples dominios de colisión, o en los casos de las redes en anillo, segmentar la LAN en diversos anillos. Basan su decisión de envío en la dirección MAC destino que contiene cada trama. Los conmutadores de la capa 2 posibilitan múltiples transmisiones simultáneas sin interferir en otras sub-redes. Los switches de capa 2 no consiguen, sin embargo, filtrar difusiones o broadcasts, multicasts (en el caso en que más de una sub-red contenga las estaciones pertenecientes al grupo multicast de destino), ni tramas cuyo destino aún no haya sido incluido en la tabla de direccionamiento.

Conmutadores de la capa 3

Son los conmutadores que, además de las funciones tradicionales de la capa 2, incorporan algunas funciones de enrutamiento o routing, como por ejemplo la determinación del camino basado en informaciones de capa de red (capa 3 del modelo OSI), validación de la integridad del cableado de la capa 3 por checksum y soporte a los protocolos de routing tradicionales (RIP, OSPF, etc) Los conmutadores de capa 3 soportan también la definición de redes virtuales (VLAN), y según modelos posibilitan la comunicación entre las diversas VLAN sin la necesidad de utilizar un router externo. Por permitir la unión de segmentos de diferentes dominios de difusión o broadcast, los switches de capa 3 son particularmente recomendados para la segmentación de redes LAN muy grandes, donde la simple utilización de switches de capa 2 provocaría una pérdida de rendimiento y eficiencia de la LAN, debido a la cantidad excesiva de broadcasts. Se puede afirmar que la implementación típica de un switch de capa 3 es más escalable que un enrutador, pues éste último utiliza las técnicas de enrutamiento a nivel 3 y enrutamiento a nivel 2 como complementos, mientras que los switches sobreponen la función de enrutamiento encima del encaminamiento, aplicando el primero donde sea necesario. Dentro de los conmutador de la capa 3 tenemos: Paquete por paquete Básicamente, un conmutador paquete por paquete (packet by packet en inglés) es un caso especial de un conmutador Store-and-Forward pues, al igual que este, almacena y examina el paquete, calculando el CRC


Tema 3. Teoría. Nivel de interred

SMR

Página 40 de 53

y decodificando la cabecera de la capa de red para definir su ruta a través del protocolo de enrutamiento adoptado. Cut-through Un conmutador de la capa 3 Cut-Through (no confundir con un conmutador Cut-Through), examina los primeros campos, determina la dirección de destino (a través de la información de los headers o cabeceras de capa 2 y 3) y, a partir de ese instante, establece una conexión punto a punto (a nivel 2) para conseguir una alta tasa de transferencia de paquetes.

Cada fabricante tiene su diseño propio para posibilitar la identificación correcta de los flujos de datos. Como ejemplo, tenemos el "IP Switching" de Ipsilon, el "SecureFast Virtual Networking de Cabletron", el "Fast IP" de 3Com. El único proyecto adoptado como un estándar de hecho, implementado por diversos fabricantes, es el MPOA (Multi Protocol Over ATM). El MPOA, en desmedro de su comprobada eficiencia, es complejo y bastante caro de implementar, y limitado en cuanto a backbones ATM. Además, un switch Layer 3 Cut-Through, a partir del momento en que la conexión punto a punto es establecida, podrá funcionar en el modo "Store-and-Forward" o "Cut-Through"

Conmutadores de la capa 4 Están en el mercado hace poco tiempo y hay una controversia en relación con la clasificación adecuada de estos equipos. Muchas veces son llamados de Layer 3+ (Layer 3 Plus). Básicamente, incorporan a las funcionalidades de un conmutador de la capa 3; la habilidad de implementar la políticas y filtros a partir de informaciones de la capa 4 o superiores, como puertos TCP/UDP, SNMP, FTP, etc.


Tema 3. Teoría. Nivel de interred

SMR

Página 41 de 53

Router

Los routers en el modelo OSI

Un router —anglicismo también conocido comoenrutador o encaminador de paquetes— es un dispositivo que proporciona conectividad a nivel de red o nivel tres en el modelo OSI. Su función principal consiste en enviar o encaminar paquetes de datos de una red a otra, es decir, interconectar subredes, entendiendo por subred un conjunto de máquinas IPque se pueden comunicar sin la intervención de un router (mediante bridges), y que por tanto tienen prefijos de red distintos.

1 2 3 4

Historia Funcionamiento Arquitectura física Tipos de encaminadores 4.1 Conectividad Small Office, Home Office (SOHO) 4.2 Encaminador de empresa 4.2.1 Acceso 4.2.2 Distribución 4.2.3 Núcleo 4.2.4 Borde 4.3 Encaminadores inalámbricos 4.4 Equipos domésticos 5 Los routers en el modelo OSI 5.1 Conmutadores frente a routers 6 Bibliografía 7 Véase también 8 Enlaces externos •

Historia

El primer dispositivo que tenía fundamentalmente la misma funcionalidad que lo que a día de hoy entendemos por router, era el Interface Message Processor o IMP. Los IMPs eran los dispositivos que formaban la ARPANET, la primera red de conmutación de paquetes. La idea de un router (llamado por


Tema 3. Teoría. Nivel de interred

SMR

Página 42 de 53

aquel entonces gateway o compuerta) vino inicialmente de un grupo internacional de investigadores en redes de computadoras llamado el International Network Working Group (INWG). Creado en 1972 como un grupo informal para considerar las cuestiones técnicas que abarcaban la interconexión de redes diferentes, se convirtió ese mismo año en un subcomité del International Federation for Information Processing. Esos dispositivos se diferenciaban de los conmutadores de paquetes que existían previamente en dos características. Por una parte, conectaban tipos de redes diferentes, mientras que por otra parte, eran dispositivos sin conexión, que no aseguraban fiabilidad en la entrega de tráfico, dejando este rol enteramente a los hosts. Esta última idea había sido ya planteada en la red CYCLADES. La idea fue investigada con más detalle, con la intención de crear un sistema prototipo como parte de dos programas. Uno era el promovido por DARPA, programa que creó la arquitectura TCP/IP que se usa actualmente, y el otro era un programa en Xerox PARC para explorar nuevas tecnologías de redes, que produjo el sistema llamado PARC Universal Packet. Debido a la propiedad intelectual que concernía al proyecto, recibió poca atención fuera de Xerox durante muchos años. Un tiempo después de 1974, Xerox consiguió el primer router funcional, aunque el primer y verdadero router IP fue desarrollado por Virginia Stazisar en BBN, como parte de ese esfuerzo promovido por DARPA, durante 1975-76. A finales de 1976, tres routers basados en PDP-11 entraron en servicio en el prototipo experimental de Internet. El primer router multiprotocolo fue desarrollado simultáneamente por un grupo de investigadores del MIT y otro de Stanford en 1981. El router de Stanford se le atribuye a William Yeager y el del MIT a Noel Chiappa. Ambos estaban basados en PDP-11s. Como ahora prácticamente todos los trabajos en redes usan IP en la capa de red, los encaminadores multiprotocolo son en gran medida obsoletos, a pesar de que fueron importantes en las primeras etapas del crecimiento de las redes de ordenadores, cuando varios protocolos distintos de TCP/IP eran de uso generalizado. Los encaminadores que manejan IPv4 e IPv6 son multiprotocolo, pero en un sentido mucho menos variable que un encaminador que procesaba AppleTalk, DECnet, IP, y protocolos de XeroX. Desde mediados de los años 70 y en los años 80, los miniordenadores de propósito general servían como routers. Actualmente, los routers de alta velocidad están altamente especializados, ya que se emplea un hardware específico para acelerar las funciones de routing más específicas, como son el encaminamiento de paquetes y funciones especiales como la encriptación IPsec.

Funcionamiento

El funcionamiento básico de un router consiste en almacenar un paquete y reenviarlo a otro router o al host final. Cada router se encarga de decidir el siguiente salto en función de su tabla de reenvío o tabla de enrutamiento. Por ser los elementos que forman la capa de red, tienen que encargarse de cumplir las dos tareas principales asignadas a la misma: •

Reenvío de paquetes (Forwarding): cuando un paquete llega al enlace de entrada de un router, éste tiene que pasar el paquete al enlace de salida apropiado. Una característica importante de los routers es que no difunden tráfico broadcast. Enrutamiento de paquetes (routing): mediante el uso de algoritmos de enrutamiento tiene que ser capaz de determinar la ruta que deben seguir los paquetes a medida que fluyen de un emisor a un receptor. Por tanto, debemos distinguir entre reenvío y enrutamiento. Reenvío consiste en coger un paquete en la entrada y enviarlo por la salida que indica la tabla, mientras que por enrutamiento se entiende el proceso de hacer esa tabla.

Arquitectura física


Tema 3. Teoría. Nivel de interred

SMR

Página 43 de 53

Representación simbólica de un router.

En un router se pueden identificar cuatro componentes: •

• •

Puertos de entrada: realiza las funciones de la capa física consistentes en la terminación de un enlace físico de entrada a un router; realiza las funciones de la capa de enlace de datos necesarias para interoperar con las funciones de la capa de enlace de datos en el lado remoto del enlace de entrada; realiza también una función de de búsqueda y reenvío de modo que un paquete renviado dentro del entramado de conmutación del router emerge en el puerto de salida apropiado. Entramado de conmutación: conecta los puertos de entrada del router a sus puertos de salida. Puertos de salida: almacena los paquetes que le han sido reenviados a través del entramado de conmutación y los transmite al enlace de salida. Realiza entonces la función inversa de la capa física y de la capa de enlace que el puerto de entrada. Procesador de enrutamiento: ejecuta los protocolos de enrutamiento, mantiene la información de enrutamiento y las tablas de reenvío y realiza funciones de gestión de red dentro del router.

Tipos de encaminadores

Los encaminadores pueden proporcionar conectividad dentro de las empresas, entre las empresas e Internet, y en el interior de proveedores de servicios de Internet (ISP). Los encaminadores más grandes (por ejemplo, el Alcatel-Lucent 7750 SR) interconectan ISPs, se suelen llamar metro encaminador, o pueden ser utilizados en grandes redes de empresas

Conectividad Small Office, Home Office (SOHO) Los encaminadores se utilizan con frecuencia en los hogares para conectar a un servicio de banda ancha, tales como IP sobre cable oADSL. Un encaminador usado en una casa puede permitir la conectividad a una empresa a través de una red privada virtual segura. Si bien son funcionalmente similares a los encaminadores, los encaminadores residenciales usan traducción de dirección de red en lugar de direccionamiento. En lugar de conectar ordenadores locales a la red directamente, un encaminador residencial debe hacer que los ordenadores locales parezcan ser un solo equipo.

Encaminador de empresa En las empresas se pueden encontrar encaminadores de todos los tamaños. Si bien los más poderosos tienden a ser encontrados en ISPs, instalaciones académicas y de investigación, pero también en grandes empresas. El modelo de tres capas es de uso común, no todos de ellos necesitan estar presentes en otras redes más pequeñas.

Acceso


Tema 3. Teoría. Nivel de interred

SMR

Página 44 de 53

Una captura de pantalla de la interfaz web de LuCI OpenWrt.

Los encaminadores de acceso, incluyendo SOHO, se encuentran en sitios de clientes como sucursales que no necesitan de enrutamiento jerárquico de los propios. Normalmente, son optimizados para un bajo costo.

Distribución

Los encaminadores de distribución agregan tráfico desde encaminadores de acceso múltiple, ya sea en el mismo lugar, o de la obtención de los flujos de datos procedentes de múltiples sitios a la ubicación de una importante empresa. Los encaminadores de distribución son a menudo responsables de la aplicación de la calidad del servicio a través de una WAN, por lo que deben tener una memoria considerable, múltiples interfaces WAN, y transformación sustancial de inteligencia. También pueden proporcionar conectividad a los grupos de servidores o redes externas.En la última solicitud, el sistema de funcionamiento del encaminador debe ser cuidadoso como parte de la seguridad de la arquitectura global. Separado del encaminador puede estar un cortafuegos o VPN concentrador, o el encaminador puede incluir estas y otras funciones de seguridad.Cuando una empresa se basa principalmente en un campus, podría no haber una clara distribución de nivel, que no sea tal vez el acceso fuera del campus. En tales casos, los encaminadores de acceso, conectados a una red de área local (LAN), se interconectan a través del Core routers.

Núcleo En las empresas, el core routers puede proporcionar una "columna vertebral" interconectando la distribución de los niveles de los encaminadores de múltiples edificios de un campus, o a las grandes empresas locales.Tienden a ser optimizados para ancho de banda alto. Cuando una empresa está ampliamente distribuida sin ubicación central, la función del core router puede ser asumido por el servicio deWAN al que se suscribe la empresa, y la distribución de encaminadores se convierte en el nivel más alto.

Borde Los encaminadores de borde enlazan sistemas autónomos con las redes troncales de Internet u otros sistemas autónomos, tienen que estar preparados para manejar el protocolo BGP y si quieren recibir las rutas BGP, deben poseer una gran cantidad de memoria.

Encaminadores inalámbricos A pesar de que tradicionalmente los encaminadores solían tratar con redes fijas (Ethernet, ADSL, RDSI...), en los últimos tiempos han comenzado a aparecer encaminadores que permiten realizar una interfaz entre redes fijas y móviles (Wi-Fi,GPRS, Edge, UMTS, Fritz!Box, WiMAX...) Un encaminador inalámbrico comparte el mismo principio que un encaminador tradicional. La diferencia es que éste permite la conexión de dispositivos inalámbricos a las redes a las que el encaminador está conectado mediante conexiones por cable. La diferencia existente entre este tipo de encaminadores viene dada por la potencia que alcanzan, las frecuencias y los protocolos en los que trabajan. En Wi-Fi estas distintas diferencias se dan en las denominaciones como clase a/b/g/ y n.

Equipos domésticos

Router wifi.

Los equipos que actualmente se le suelen vender al consumidor de a pie como routers no son simplemente eso, si no que son los llamados Customer Premises Equipment (CPE). Los CPE están formados por un módem, un router, un switch y opcionalmente un punto de acceso WiFi.


Tema 3. Teoría. Nivel de interred

SMR

Página 45 de 53

Mediante este equipo se cubren las funcionalidades básicas requeridas en las 3 capas inferiores del modelo OSI.

Los routers en el modelo OSI

Routers y switches en el modelo OSI

En el modelo OSI se distinguen diferentes niveles o capas en los que las máquinas pueden trabajar y comunicarse para entenderse entre ellas. En el caso de los routersencontramos dos tipos de interfaces:

•Interfaces enrutadas: son interfaces de nivel 3, accesibles por IP. Cada una se corresponde con una dirección subred distinta. En IOS se denominan "IP interface". Se distinguen a su vez dos subtipos: •

Interfaces físicas: aquellas accesibles directamente por IP.

Interfaces virtuales: aquellas que se corresponden con una VLAN o un CV. Si dicha interfaz se corresponde con una única VLAN se denomina Switch Virtual Interfaz (SVI), mientras que si se corresponde con un enlace trunk o con un CV, actúan como subinterfaces.

•Interfaces conmutadas: se trata de interfaces de nivel 2 accesibles solo por el módulo de switching. En IOS reciben el nombre de "switch port". Las hay de dos tipos: •

Puertos de acceso: soportan únicamente tráfico de una VLAN.

Puertos trunk: soportan tráfico de varias VLANs distintas.

Estas posibilidades de configuración están únicamente disponibles en los equipos modulares, ya que en los de configuración fija, los puertos de un router actúan siempre como interfaces enrutadas, mientras que los puertos de unswitch como interfaces conmutadas. Además, la única posible ambigüedad en los equipos configurables se da en los módulos de switching, donde los puertos pueden actuar de las dos maneras, dependiendo de los intereses del usuario.

Conmutadores frente a routers Un conmutador, al igual que un router es también un dispositivo de conmutación de paquetes de almacenamiento y reenvío. La diferencia fundamental es que el conmutador opera en la capa 2 (capa de enlace) del modelo OSI, por lo que para enviar un paquete se basa en una dirección MAC, al contrario de un router que emplea la dirección IP.


Tema 3. Teoría. Nivel de interred

SMR

Página 46 de 53

Zeroconf Zeroconf o Zero Configuration Networking es un conjunto de técnicas que permiten crear de forma automática una red IP sin configuración o servidores especiales. También conocida como Automatic Private IP Addressing o APIPA, permite a los usuarios sin conocimientos técnicos conectar ordenadores, impresoras de red y otros elementos y hacerlos funcionar. Sin Zeroconf, un usuario con conocimientos técnicos debe configurar servidores especiales, como DHCP y DNS, o bien configurar cada ordenador de forma manual. Zeroconf fue explotado por Stuart Cheshire, empleado en Apple Computer, durante su migración de AppleTalk a IP.

• •

1 Problemas solucionados 1.1 Seleccionando direcciones 1.2 Resolución de nombres 1.3 Detección de servicios 1.3.1 Protocolo de Apple 1.3.2 Protocolo UPnP 1.3.3 Esfuerzos hacia un protocolo IETF estándar 2 Estandarización 3 Implementaciones 3.1 Bonjour de Apple 3.2 Direcciones IPv4 Link-Local 3.3 Multicast DNS (mDNS) y DNS Service Discovery (DNS-SD) 3.4 Enlaces de implementaciones

Problemas solucionados Actualmente Zeroconf soluciona tres problemas : • • •

Selecciona una dirección IP para los elementos de red. Descubre qué ordenador tiene determinado nombre. Descubre dónde se encuentran los servicios, como el de impresión.

Seleccionando direcciones

Tanto IPv4 como IPv6 tienen formas estándar de escoger direcciones IP sin ayuda. A partir del RFC 3927, IPv4 utiliza el conjunto de direcciones 169.254.* (link-local). Microsoft se refiere a esto como Automatic Private IP Addressing (APIPA).

Resolución de nombres Existen dos maneras muy similares de averiguar qué elemento de red tiene determinado nombre. Multicast DNS (mDNS) de Apple Computer goza de un uso extendido, y su publicación es accesible, aunque no está estandarizado por ninguna entidad. Link-local Multicast Name Resolution (LLMNR) de Microsoft se utiliza con menor frecuencia pero se encuentra en trámites de estandarización por el IETF. Los dos protocolos tienen pequeñas diferencias. mDNS permite a un dispositivo de red seleccionar un nombre de dominio en el espacio de nombres ".local" y anunciarlo utilizando una dirección IP multicast especial. Esto introduce una semántica especial para el espacio de nombres .local, lo que se considera un problema por algunos miembros del IETF[1][2]. El borrador actual de LLMNR permite a un dispositivo de red seleccionar cualquier nombre de dominio, lo que se considera un riesgo de seguridad por algunos


Tema 3. Teoría. Nivel de interred

SMR

Página 47 de 53

miembors del IETF[3]. mDNS es compatible con DNS-SD tal y como se describe en la próxima sección, mientras que LLMNR no lo es. Se pueden encontrar más detalles sobre las diferencias en [4]

Detección de servicios Protocolo de Apple

DNS Service Discovery (DNS-SD) es un protocolo ligero de Apple, utilizado por los productos de Apple, y diferentes impresoras de red además de un considerable número de productos de terceras partes y aplicaciones sobre varios sistemas operativos. Se considera más simple y sencillo de implementar que SSDP porque utiliza DNS en lugar de HTTP. Utiliza los registros de DNS SRV (RFC 2782), TXT, y PTR para advertir los nombres de de los servicios (Service Instance Names), que son informes sobre los servicios disponibles como instancia, tipo, nombre de dominio y parámetros opcionales de configuración. Los tipos de servicio se entregan de un modo informal tal y como llegan. DNS-SD.org mantiene y publica un registro de tipos de servicio.

Protocolo UPnP

Simple Service Discovery Protocol (SSDP) es un protocolo UPnP, utilizado en Windows XP y diferentes márcas de equipos de red. A pesar del nombre, se le considera complejo y requiere mayor esfuerzo para implementarse que DNS-SD. SSDP utiliza notificaciones HTTP que entregan una URI de tipo de servicio y un nombre de servicio único (Unique Service Name, USN). Los tipos de servicio se regulan por el Universal Plug and Play Steering Committee.

Esfuerzos hacia un protocolo IETF estándar Service Location Protocol (SLP) es el único protocolo de detección de servicios que ha alcanzado el estatus de IETF RFC, y normalmente es ignorado por los grandes fabricantes excepto Novell. Se describe SLP en el RFC 2608; y todavía no es un estándar, o borrador de estándar, del IETF.

Estandarización

En marzo del 2005 el grupo de trabajo IETF Zeroconf publicó el RFC 3927, un estándar para elegir direcciones para los elementos de red, que incluía a partes como Apple, Sun y Microsoft. El grupo de trabajo IETF DNSEXT está trabajando en la estandarización de LLMNR para descubrir el nombre de cada elemento de red. El estándar SLP, RFC 2608, para adivinar dónde obtener los servicios, fue publicado por el grupo de trabajo IETF SVRLOC.

Implementaciones Bonjour de Apple

La solución Zeroconf más adoptada es Bonjour de Apple Computer, que no sigue SLP, el estándar del IETF para la detección de servicios, sino una combinación de otros estándares del IETF para obtener una aproximación más ligera a la detección de servicios. Bonjour utiliza el direccionamiento de enlace local (link-local), mDNS, y DNS-SD. Apple cambió de SLP a mDNS y DNS-SD entre Mac OS 10.1 y 10.2.

Direcciones IPv4 Link-Local Hay varias implementaciones disponibles: • • • •

Tanto Windows como Mac OS soportan direcciones de enlace local desde 1998. Apple lanzó su implementación open-source en el paquete bootp del sistema operativo Darwin BSD. zcip (Zero-Conf IP) BusyBox [5] proporciona una implementación zeroconf zeroconf, un paquete basado en Simple IPv4LL, una implementación menor de Arthur van Hoff. Todas las anteriores implementaciones son demonios que sólo tratan con direcciones IP de enlace local. Otra aproximación consiste en modificar los cliente DHCP existentes. Elvis Pfützenreuter ha escrito un parche para el cliente/servidor uDHCP. Ninguna de estas implementaciones soluciona comportamientos del núcleo como la difusión de respuestas ARP o el cierre de las conexiones de red existentes.

Multicast DNS (mDNS) y DNS Service Discovery (DNS-SD)


Tema 3. Teoría. Nivel de interred

SMR

Página 48 de 53

Multicast DNS es un modo de utilizar las familiares interfaces de programación de DNS, los formatos de paquetes y el modo de operativo, en una pequeña red en la que no se ha instalado ningún servidor DNS convencional. mDNS y DNS-SD con frecuencia se implementan juntos. La combinación más popular entre los programadores de aplicaciones es mDNSResponder de Apple, que tiene interfaces para C y Java y está disponible en BSD, Mac OS X, Linux, y otros sistemas operativos POSIX además de Windows. [6] [7]


Tema 3. Teoría. Nivel de interred

SMR

Página 49 de 53

Dynamic Host Configuration Protocol Dynamic Host Configuration Protocol (DHCP) Familia Función

Familia de protocolos de Internet Configuración automática de parámetros de red 67/UDP (servidor)

Puertos 68/UDP (cliente) Ubicación en la pila de protocolos Aplicación DHCP Transport UDP e Red IP Estándares RFC 2131 (1997) DHCP (sigla en inglés de Dynamic Host Configuration Protocol, en español «protocolo de configuración dinámica de host») es un protocolo de red que permite a los clientes de una red IP obtener sus parámetros de configuración automáticamente. Se trata de un protocolo de tipo cliente/servidor en el que generalmente un servidor posee una lista de direcciones IP dinámicas y las va asignando a los clientes conforme éstas van estando libres, sabiendo en todo momento quién ha estado en posesión de esa IP, cuánto tiempo la ha tenido y a quién se la ha asignado después. Este protocolo se publicó en octubre de 1993, estando documentado actualmente en laRFC 2131. Para DHCPv6 se publica el RFC 3315.

• • • •

1 2 3 4

Asignación de direcciones IP Parámetros configurables Implementaciones Anatomía del protocolo 4.1 DHCP Discovery 4.2 DHCP Offer 4.3 DHCP Request 4.4 DHCP Acknowledge

Asignación de direcciones IP Cada dirección IP debe configurarse manualmente en cada dispositivo y, si el dispositivo se mueve a otra subred, se debe configurar otra dirección IP diferente. El DHCP le permite al administrador supervisar y distribuir de forma centralizada las direcciones IP necesarias y, automáticamente, asignar y enviar una nueva IP si fuera el caso en el dispositivo es conectado en un lugar diferente de la red. El protocolo DHCP incluye tres métodos de asignación de direcciones IP: •

Asignación manual o estática: Asigna una dirección IP a una máquina determinada. Se suele utilizar cuando se quiere controlar la asignación de dirección IP a cada cliente, y evitar, también, que se conecten clientes no identificados.


Tema 3. Teoría. Nivel de interred

SMR

Página 50 de 53

Asignación automática: Asigna una dirección IP de forma permanente a una máquina cliente la primera vez que hace la solicitud al servidor DHCP y hasta que el cliente la libera. Se suele utilizar cuando el número de clientes no varía demasiado. Asignación dinámica: el único método que permite la reutilización dinámica de las direcciones IP. El administrador de la red determina un rango de direcciones IP y cada dispositivo conectado a la red está configurado para solicitar su dirección IP al servidor cuando la tarjeta de interfaz de red se inicializa. El procedimiento usa un concepto muy simple en un intervalo de tiempo controlable. Esto facilita la instalación de nuevas máquinas clientes a la red. Algunas implementaciones de DHCP pueden actualizar el DNS asociado con los servidores para reflejar las nuevas direcciones IP mediante el protocolo de actualización de DNS establecido en RFC 2136 (Inglés). El DHCP es una alternativa a otros protocolos de gestión de direcciones IP de red, como el BOOTP (Bootstrap Protocol). DHCP es un protocolo más avanzado, pero ambos son los usados normalmente. En Windows 98 o posterior, cuando el DHCP es incapaz de asignar una dirección IP, se utiliza un proceso llamado "Automatic Private Internet Protocol Addressing".

Parámetros configurables Artículo principal:

Parámetros DHCP.

Un servidor DHCP puede proveer de una configuración opcional al dispositivo cliente. Dichas opciones están definidas en RFC 2132 (Inglés) Lista de opciones configurables: • • • • • • • • • • • • •

Dirección del servidor DNS Nombre DNS Puerta de enlace de la dirección IP Dirección de Publicación Masiva (broadcast address) Máscara de subred Tiempo máximo de espera del ARP (Protocolo de Resolución de Direcciones según siglas en inglés) MTU (Unidad de Transferencia Máxima según siglas en inglés) para la interfaz Servidores NIS (Servicio de Información de Red según siglas en inglés) Dominios NIS Servidores NTP (Protocolo de Tiempo de Red según siglas en inglés)) Servidor SMTP Servidor TFTP Nombre del servidor WINS

Implementaciones

Microsoft introdujo el DHCP en sus Servidores NT con la versión 3.5 de Windows NT a finales de 1994. El Consorcio de Software de Internet (ISC: Internet Software Consortium) publicó distribuciones de DHCP para Unix con la versión 1.0.0 del ISC DHCP Server el 6 de diciembre de 1997 y una versión (2.0) que se adaptaba mejor al RFC el día 22 de junio de 1999. Se puede encontrar el software en http://www.isc.org/sw/dhcp/ Otras implementaciones importantes incluyen: • •

Cisco: un servidor DHCP habilitado en Cisco IOS 12.0 en el mes de febrero de 1999 Sun: añadió el soporte para DHCP a su sistema operativo Solaris el 8 de julio de 2001. Además, varios routers incluyen soporte DHCP para redes de hasta 255 dispositivos.

Anatomía del protocolo


Tema 3. Teoría. Nivel de interred

SMR

Página 51 de 53

Esquema de una sesión típica DHCP.

(Autoridad de Números Asignados en Internet según siglas en inglés) en BOOTP: 67/UDP para las computadoras servidor y 68/UDP para los clientes.

DHCP Discovery Artículo principal:

DHCP Discovery.

DHCP Discovery es una solicitud DHCP realizada por un cliente de este protocolo para que el servidor DHCP de dicha red de computadoras le asigne una Dirección IP y otrosParámetros DHCP como la máscara de red o el nombre DNS.1

DHCP Offer Artículo principal:

DHCP Offer.

DHCP Offer es el paquete de respuesta del Servidor DHCP a un cliente DHCP ante su petición de la asignación de los Parámetros DHCP. Para ello involucra su dirección MAC (Media Access Control).

DHCP Request Artículo principal:

DHCP Request.

El cliente selecciona la configuración de los paquetes recibidos de DHCP Offer. Una vez más, el cliente solicita una dirección IP específica que indicó el servidor DHCPREQUEST UDP Src=0.0.0.0 sPort=68 Dest=255.255.255.255 dPort=67 OP HTYPE HLEN HOPS 0x01 0x01 0x06 0x00 XID 0x3903F326 SECS FLAGS 0x0000 0x0000 CIADDR 0x00000000 YIADDR 0x00000000 SIADDR


Tema 3. Teoría. Nivel de interred

SMR

Página 52 de 53

0x00000000 GIADDR 0x00000000 CHADDR 0x00053C04 0x8D590000 0x00000000 0x00000000 192 octets of 0's. BOOTP legacy Magic Cookie 0x63825363 DHCP Options DHCP option 53: DHCP Request DHCP option 50: 192.168.1.100 requested DHCP option 54: 192.168.1.1 DHCP server.

DHCP Acknowledge Artículo principal:

DHCP Acknowledge.

Cuando el servidor DHCP recibe el mensaje DHCPREQUEST del cliente, se inicia la fase final del proceso de configuración. Esta fase implica el reconocimiento DHCPACK el envío de un paquete al cliente. Este paquete incluye el arrendamiento de duración y cualquier otra información de configuración que el cliente pueda tener solicitada. En este punto, la configuración TCP / IP proceso se ha completado. El servidor reconoce la solicitud y la envía acuse de recibo al cliente. El sistema en su conjunto espera que el cliente para configurar su interfaz de red con las opciones suministradas. El servidor DHCP responde a la DHCPREQUEST con un DHCPACK, completando así el ciclo de iniciación. La dirección origen es la dirección IP del servidor de DHCP y la dirección de destino es todavía 255.255.255.255. El campo YIADDR contiene la dirección del cliente, y los campos CHADDR y DHCP: Client Identifier campos son la dirección física de la tarjeta de red en el cliente. La sección de opciones del DHCP identifica el paquete como un ACK. DHCPACK UDP Src=192.168.1.1 sPort=67 Dest=255.255.255.255 dPort=68 OP HTYPE HLEN HOPS 0x02 0x01 0x06 0x00 XID 0x3903F326 SECS FLAGS 0x0000 0x0000 CIADDR (Client IP Address) 0x00000000 YIADDR (Your IP Address) 0xC0A80164 SIADDR (Server IP Address) 0x00000000 GIADDR (Gateway IP Address switched by relay) 0x00000000 CHADDR (Client Hardware Address) 0x00053C04


Tema 3. TeorĂ­a. Nivel de interred

SMR

PĂĄgina 53 de 53

0x8D590000 0x00000000 0x00000000 192 octets of 0's. BOOTP legacy Magic Cookie 0x63825363 DHCP Options DHCP option 53: DHCP ACK DHCP option 1: 255.255.255.0 subnet mask DHCP option 3: 192.168.1.1 router DHCP option 51: 1 day IP lease time DHCP option 54: 192.168.1.1 DHCP server

DHCP relaying In small networks, where only one IP subnet is being managed, DHCP clients communicate directly with DHCP servers. However, DHCP servers can also provide IP addresses for multiple subnets. In this case, a DHCP client that has not yet acquired an IP address cannot communicate directly with the DHCP server using IP routing, because it doesn't have a routable IP address, nor does it know the IP address of a router. In order to allow DHCP clients on subnets not directly served by DHCP servers to communicate with DHCP servers, DHCP relay agents can be installed on these subnets. The DHCP client broadcasts on the local link; the relay agent receives the broadcast and transmits it to one or more DHCP servers usingunicast. The relay agent stores its own IP address in the GIADDR field of the DHCP packet. The DHCP server uses the GIADDR to determine the subnet on which the relay agent received the broadcast, and allocates an IP address on that subnet. When the DHCP server replies to the client, it sends the reply to the GIADDR address, again using unicast. The relay agent then retransmits the response on the local network.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.