From Whence, to what, to where

Page 1

19 =70 4 

 Flute 

23 =74 4

Clarinet in Bb



          

 21 =72  4   Alto Saxophone         p ppp 22 ppp 4 =73 ppp

 Violin  

Viola

Violoncello

 

  

22 4 

  A. Sax.     

               pp ppp 

 

 

Vla.

 

23 4 a.s.p.

    ppp

20 4 a.s.p.

   Vc.   ppp

ppp

   

   

 

s.p. 3:2

 

p

s.p.

  

p

3:2

ppp

norm.

ppp

norm.

    

s.p.

ppppp

 

ppp

 

(mp)

 

(mp)

  

  

    

            ppp ppp 

 

           ppp  ppp

 

 

p

ppp

 

 

 

             ppp  ppp

 

a.s.p.

 

ppp

norm.

  p

3:2

 ppp

a.s.p.

14"

 

a.s.p.

ppp

ppp

p

 

norm. 3:2

  3:2

pp

      ppp

                  ppp ppp    

   

norm.

 

p

 

mp

ppp

norm 3:2

a.s.p.   

 

p

pp

(mp)

ppp

ppp

 

   

       

   

ppp

a.s.p.

a.s.p.

  

 

  

      ppp 

 



 

                 ppp ppp

 

      

ppp

 

ppp

14"

ppp

Vln.

ppp

19 4 

 

A. Vincent Raikhel 2006

a.s.p. 

            ppp                            ppp ppp ppp  ppp

             ppp ppp

ppp

 

(mp)

  

3:2

     

ppp

 ppp                   ppp ppp

 

     

norm.

20 4

a.s.p.     

ppp

a.s.p.

3:2

  

             ppp ppp 

norm.

18 ppp 4 s.p. =69

ppp

20 4 s.p=71

18 2 4    Fl.  Cl.

p

from Whence, to what, to where

3:2

 

(mp)

pp

 

s.p.

ppp

 

norm.

mp

3:2

s.p.



ppp


2

  3

Fl.

Vln.



 

ppp

23   4 



20    4

 

    

ppp

  

Vla.

 

  

22  4  



 



p

               ppp ppp

ppp

norm.

 ppp

a.s.p.

     

    

pp



(mf)

 

 

                  ppp p ppp

   

 

ppp

norm.

 

p

 

p

 

(mf)

  



24 4

    

pp

(mf)

 

pp

 

ppp 3:2

  

  

p

p

a.s.p.

a.s.p.

ppp

               

ppp

s.p.

norm.

p

3:2

p

ppp

norm.

ppp

p

       

18 4

Vc.

 

21  4

Cl.

A. Sax.

19 4  



 

a.s.p.

ppp

   

 

norm.

ppp

  

  

a.s.p.

p

3:2

 

norm.

ppp

p

ppp

 

 

a.s.p.

norm.

p

ppp

14" 24 4  4

Fl.

 

Cl.

 24 4    

22  4  pp

A. Sax.

Vln.



24 4 

(mf) (ppp)

 



ppp

(mf)

 p

 

 

ppp

23 norm. 4     

ppp

25 norm.  4   

ppp



s.p.

 p

  

a.s.p.

ppp s.p.

p



 

a.s.p.

ppp

         

 

         

       p

(ppp)

Vla.

Vc.

   

 

mp

pp

ppp

mp

 

  norm.

ppp 3

mp

  p

  

norm.

ppp 3

ppp

 mp

 mp

(mp)

           ppp 

  

   

(mp)

 

                                      ppp  ppp ppp (mp) ppp (mp)                                 ppp (mf) pp mp ppp ppp (mf) 

  

 

a.s.p.

mp

ppp

  

   

      

(mf)

 

 

          ppp ppp

ppp

 

(mf)

s.p. 

a.s.p.

 

14"

ppp

   norm.

a.s.p.

p3

ppp

s.p.

 

 

norm.

ppp



norm.


24  4 5

Fl.

 

Cl.

 

25  4 

ppp

23 4 

A. Sax.

Vln.

       

24ppp  4  

Vla.

Vc.



ppp

 

ppp

13  4 

    ppp

s.p.

p

mp

ppp

 

 

a.s.p.

 



   



        ppp ppp 

(mp)

 

                ppp  ppp

 

  

(mp)

 

ppp

(mp)

                ppp  ppp

   

 

(mp)

 

  

pp

  

   ppp

p

11  4 

ppp

14 norm.    4     Vln.  II I ppp 12 4     Vla.       p 10  4     Vc.

(mp)

mp



ppp

 

10 4    Fl. 

A. Sax.

  

a.s.p.

22  4

(p)

24 4

6

Cl.

  

  

103 4

 3

a.s.p.

    

ppp

p 3 3

     

7"



ppp a.s.p.

p

 

  

  

(mp)

 

ppp

 



   

 

a.s.p.

 

a.s.p.

p

   

(mf)

 =76 4  4    

ppp

 

3

            ppp 

mf

p

3

pp





(p)

3

p

3 

 ppp

8 

 

         

ppp

a.s.p.

mp

(mp)

ppp

ppp

              pp p             (mp)  ppp 

ppp

p

 

norm.

3     

 

ppp

      mf 

mf

 

mf

3  4 

 

norm.

 

a.s.p.

norm.

ppp

 

ppp

          ppp

a.s.p.

ppp a.s.p.



 

14"

norm.

mp

 



ppp

 

pp

        ppp ppp              ppp ppp p ppp

ppp p

ppp

 

  

(mp)

(p)

  

 

a.s.p.

mf

a.s.p.   mf

   

3 8 

(mp)

(mp)

  

 

(p)

 

  

 

ppp

  norm.

ppp 3

  3 ppp

15 4

(mp)


4

Fl.

11  4 

A. Sax.

Vln.

Cl.

13 4 



(mf)

10  4 

                 mf p ppp mp 

15  11 4  

          

pp

Cl.

A. Sax.

14 4 a.s.p.   

   

    

ppp



 

 

pp

p

pp

p

 

  mp

20   4 22  4 

 

  mp

            

  

 

p

mp

 

 





        

  



 ppp



(mp)

   

norm.

ppp

p

 

 

14"

 

ppp

 

 



(mp)

 

                     ppp mp ppp ppp  ppp  

s.p.

3

  

mp

 

 

ppp



norm.

pp

 

 

a.s.p.

ppp

pp

norm. 3

   

  

(mp)

s.p.

a.s.p.

 

  

norm.

p 3

  ppp

  pp

 

(mp)

mp

          p ppp

ppp

   

p

s.p.



   

 

pp

 (mp)

a.s.p.

 

s.p.

   3 p

       

 

a.s.p.

pp

3 p

              

pp

    pp

  

  

 

s.p.

a.s.p,

pp

ppp

 

12  4 

pp

3

      

mp



p

  

ppp

(mp)

       

 

24 4

 

a.s.p.

  

 pp

 

pp

a.s.p.

 

  

p

ppp

     ppp    

norm.

3

p

ppp

  

(mp)

 3  

ppp 21 a.s.p. 4     



(mp)



 

p

a.s.p.

   mp

19  4   Vc. 

 

  

         ppp (mp) ppp

pp

ppp

23 4  

(mp)

 

ppp

ppp

24 12 4   

7"

(mf)

 

    

 

 

pp

mp

mf

 Vln.  Vla.

Fl.

ppp



 

  

 

a.s.p.

mf

Vc.

ppp

mp

12 4  

Vla.

 

(mf)

 

  

pp



s.p.

pp




  14

Fl.

mp

9 4  

Cl.

A. Sax.

11 4

   



 Vln. 

Vc.

13  4 

Fl.



mp

12 4  

A. Sax.

mp

 

 Vln. 

12 4

12 4  14 4 12 4

12 4 

 



          

pppp



a.s.p.

pppp

(mp)

a.s.p.

 

p

11 4

 



 

ppp

9 a.s.p.   4  



22  4  

24  4 mp



24 4



p

   

24 4 

        

pp

      

ppp

21 mp 4

 

           ppp  

 

(mp) ppp

   

(mp)



  

(mp)

    



p 3

ppp

 

 

  mp

  

norm.

  



  

(p)

        norm.

ppp

p

ppp

 

 

  

p

mp 3

 

 

 pp

  

  (mp)

 

 

 

ppp

   s.p. 

norm.

p

3

a.s.p.

ppp

 

(mp)

 

3

  

     

 3   

a.s.p.

p

pp

a.s.p.



 

pp

 

ppp

p

ppp

p

   

p

3

norm.      3 II mp

ppp

 

     

 

a.s.p.

s.p.

    

s.p.

ppp

 norm. 3

ppp

 

14"

a.s.p.

norm.

ppp

 

 

ppp

p

 

7"

(mp)

pp

mp

   norm.    3 p

mp

s.p.

         

  

5

p

  

ppp

a.s.p.

  

  

mp

p

 

p

(pp)

 

(p)

 

mp

mp

ppp

norm.

p

a.s.p.

     

ppp

ppp

                                         ppp mp ppp p (mp) ppp  ppp ppp                    

norm. a.s.p.

 



 

mp

pp

mp

mp

mp

   

 

  

   

13 4 norm.

ppp

ppp

mp

3

 pp



12 4 

(mp)

  

 

10 4

   

p

mp

ppp

 

mp

p

8"

ppp

             ppp  pp

 

ppp

23 4  

  

 14  4           

pp

  

(mp)

7"

       

 

ppp

  

pppp

          

p

norm

ppp

 

Vla.

Vc.

  

mp

  

ppp

s.p.

3

p

pp

14  4 

            ppp

 

(mp)

 

norm.

13  16  4 

Cl.

                 pp ppp  ppp

10 4    

pp

mp

Vla.



a.s.p.

ppp

ppp

14 4


6

14 4  18

Fl.

13    4    

Cl.

  

11   4 

A. Sax.

Vln.



12 mp 4    

10 4 14 4

A. Sax.



 Vln. 

  p

  

a.s.p.

 

a.s.p.

 



  

ppp

mp

 

(mp)

(mp)

  

 

11 4



8

mp

15 8

19  8 

  

mp

(p)

  mp

8 4norm. 

8 4 norm. 7 4



(pp)

mp

norm.

norm.

 

        

p

a.s.p.

norm.

p

   norm.   

mp

ppp

 

   norm.  ppp

3

II

ppp

 norm.

   

(mp)

      

 

a.s.p.

p

   

mp

ppp

p

 

s.p.

3 p

mp pp

 

 

      

p

 

ppp

(p)

  

 

         

5 4

3

p

   mp

7"   

(mf)

 

 

    

mp

ppp

7"

  

(p)

ppp

15 a.s.p.   4  

mp

 

mp

mp



ppp

13

   

pp

4 

norm.

 

  

mp

ppp

 

  14  4       mp p

ppp



(mp)

 12 4 

   

 pp

3

p

ppp

 

ppp

a.s.p.

p

             ppp  pp       

pp

  

 17 

Vla.

Vc.

 

 

norm

ppp

ppp

   mp

p

  p

    

Cl.

s.p.

3

5 4  

 

(mp)



20

Fl.

norm.

mp

                   pp ppp  ppp

pp

pp



Vla.

Vc.

 

mp

            ppp 

12 4

 

           ppp  pp                    ppp    pp

  



a.s.p.

p

 

pp

 

 

 

 mp

p



ppp

(ppp)

 

norm.

   

pp

3

  

  mp

a.s.p.

 3

pp

 

 

a.s.p.

ppp

6"

pp

 

4 4

 

  

   


4 4  22

Fl.

 

Cl.

A. Sax.



  

 

3 4 mf

(p)

    

 mf 7 8

  mf

7 8   Vln.   

Vla.

Vc.

   

p

 

  

  

p

mf

3 8

  

mf

7

3 8 

mf

 

mf

3 3

   

mf

  

mf

a.s.p.

  

pp

   mf

 

pp

norm.

  

a.s.p.

 

norm.

 

ppp

         pp    

a.s.p.

pp

norm.



(p)

a.s.p.

s.p.

4   4       

  mf



a.s.p.

mp

         

mf

s.p.

 

 

  

pp

s.p.

norm.

mp

mf

norm.

norm.

    

pp

=76 3  4  

          ppp

p

4 4 a.s.p. 

5 mf 8

  

 

a.s.p.

mp

pp

3" 3   8   26

Fl.

ppp

    

Cl.

      

A. Sax.



 Vln.  

Vla.

pp

 

norm.

pp

 

norm.

pp

Vc.

 

norm.

ppp

 

mf

   

   

pp

3  4

   mf

a.s.p.

   

a.s.p.

3

      

    3

  

mp

  

mp

3  8 

pp

        mf     

pp

pp

mf

norm.

    p mp 3

mf

a.s.p.

norm.

mf

f

mp

 

  

3  4  

ppp

 

norm.

pp

3

 

f

    f

s.p.

mp

  f

       

       



 



           5 p              p

3  8

5

     





pp

  pp

s.p,.

mp

3

   mp



3 8 

     

1 4          f        

f

a.s.p.

f

 

a.s.p.

f

   

 3

  



mp



pp

  

pp

3

norm.

       

pp

 

3 4          f

pp

3

f

s.p.

  

  

3  8  

2  4 



a.s.p.

   3

3 4


3X

8

3 4 

Fl.

  

Cl.

Vla.

Vc.

Cl.

A. Sax.



 Vln.  

Vla.

Vc.

mf





        





mf

14  4  pp

 pp 10  4 



a.s.p.

  

  

(mf)

 

11 pp  4  pp

(mf)

 

mf

pp

mf

p

mf

 

 

(mp)

pp

mf





mf



 

mf

a.s.p.

mf



a.s.p.

ppp

  

 

 

pp

  



3

mp





 

 

 

 

 

norm.

norm.



 

p

3

pp



 

mf

a.s.p.

mf

 

a.s.p.

mf

(mp)

f norm.

 

f

 

 

 

norm.

f

 

mf

mf

 



mf



 mf

 

ppp

 



         

(mp)

ppp

   

 

  p

 

pp

  

mf



 

   

 

norm.

   

mf



 

f

2 4





ppp

f

 





  

3 8 

f



norm.

1 4 

a.s.p.

norm.

 

mf

 



f

a.s.p.

9"

mf





f

 

p

a.s.p.

f

 

           ppp  ppp 

mf

f



a.s.p.

f

 

mf

3 8



1 4  

f norm.



  

p

3 8 

a.s.p.

    

ppp

 

  



1 4 



mf





3 8



 

 

 

 

norm.

norm.

pp

 

 

 

  

13 ppnorm. 4 15 pp 4 

 

norm.

1 4 





 











a.s.p.

3 8 

f

a.s.p.

 

1 4 



       



 

mf

12   4  

51

Fl.

3 8

mf

 A. Sax.    Vln. 

1 4 

 

36

 p

 

ppp


15    4 52

Fl.

    

13 4 mf

Cl.

A. Sax.





11 4 

 

 

 

 

norm.

14 4 a.s.p. 

10 norm.  4  

Fl.

13   8 

Cl.

15  8 

11 8

Vla.

Vc.

 (mf)

 

pp

mf

  

mf

ppp

p

ppp

mp

pp

ppp

mf

norm.

 

        pp

  

f

 

f



  f 

5"

 5 4  

pp

  a.s.p.

mf

 pp

mf

4   4 

norm.

pp

17 norm. 8   15 8

 

f

  ppp



      

pp

13a.s.p.  8 

pp

3"

 

f norm.

  f

  

pp

 

 pp

4

f

 

  

norm.

  

pp

norm.

pp

mp

 

f

 4 

        pp f       

pp

pp

f

a.s.p,

  

f

 

mp

pp 4

 pp

norm.

  a.s.p.

f

   

f

 

pp

pp

3 4

      

    

pp

 

 

pp

s.p.  3

      

s.p.

  

norm.

 

f

5

pp

norm.

f

mf

 

 

a.s.p.

f norm.

ppp

f

 

a.s.p.

a.s.p.

2

pp

f

2  4 

2  4 

pp

f

pp

 

=90

  

norm.

mf

      s.p.

pp

9

mf

mf

a.s.p.

 

pp

   

norm.

ppp

5  8 

       

 

 a.s.p.

  

mf



mf

   

norm.

 

s.p.  



f

pp

s.p.

4  4 norm.

       

 norm.

 3  4       

pp

f

(mf)

mf

pp

a.s.p.

mp

 

 

mp

         pp    

 

norm.

 

ppp



s.p.

  

mf

    



  

f

6f 4 a.s.p.  

  f

6  4  

  

norm.

norm.

mf

accel.

  

pp

norm.

pp



 

mf

   

   

(p)

6"

 

      

   

 

mf

19a.s.p. 8

 

ppp

pp

7 4

 a.s.p.

8 4

ppp

norm.

mf

s.p.

 

9 4   

norm.

7 a.s.p.  4 

  

a.s.p.





 

pp

 

 

(mf)

9" 

   

pp



(mf)

norm.

f

5 4 

  

   

a.s.p.

6    4 a.s.p. Vln. 

(ppp)

    

f

      



f



(mp)

norm.

mf

f

  

a.s.p.

a.s.p.

   

54

A. Sax.

mf

mf

Vc.

(pp)

 

12

Vla.

ppp

mf

 4 Vln.   



  

5

 


10

3  4 

3 8

   

60

Fl.

 

Cl.

A. Sax.



 Vln.  

Vla.

   f

   f

a.s.p.

   

Vc.

pp

f

Fl.

 

Cl.

A. Sax.



 Vln.  

Vla.

 

 f a.s.p.  

 

pp



  f

 pp

f

Vc.

 

   

f

pp

a.s.p.

a.s.p.

 

 

f

 

 

 

f

  

f norm.

4  4  f

pp

 

  pp

 pp

   f

norm.

  

norm.

f norm.

   f

 

f

pp

f

pp

norm.

3

  

   f

  

3 8  

3  4   68

 

pp

 3

   

 

5

  5  





pp



  

       

      

       

pp

        

pp

pp

s.p.



   



   f

 

f



f

  f

   

  

  

 

 ff

  

a.s.p.

        

norm.

ff

 

a.s.p.

ff

 

3

 

a.s.p.

ff



3

 

mf

  

mp

       

       

pp

mp

mf

pp

mf

mp



a.s.p.

 



pp

mf

mp

a.s.p.

3

  

pp

 pp

 

mf

   mf

3 4

  

a.s.p.

 

3  8  

pp

        

pp

     pp

2  4 

ff

  5

f

3  8

ff

f norm.



 

norm.

3

pp

5

pp

f

    

f



3

   pp

norm.

pp

s.p.

        pp             

  f norm.   

pp

a.s.p.

pp

norm.

       

f

pp 3

   

 

   

f

3

  

pp



norm.

3 4

pp

f

pp

a.s.p.

3  8  

f

 f

f

   

 

pp

a.s.p.

3   4 

f

f

3 8 

s.p.

3  4  

f

pp

f

3

pp

 

  

   

a.s.p.

pp

norm.

pp

   

a.s.p.

       

3  8





    f

 

2  4 

pp

f

pp

pp

f

f

   

         

   

   

        

2 4

f

pp

f

3  4  

        

3

 mp

mp


3  4 

  

76

Fl.

 

Cl.

 f

  

  



 Vln.  

Vla.

Vc.

f

 f

 

 

Cl.

A. Sax.



 Vln.  

Vla.

Vc.

  

 



   

p

 



f

p

 

 

 

p

 

p



f

p

 

  p

mp

mp

 

mp

 

pp

mf

pp

  

mp

 mp

a.s.p.

 

pp a.s.p.

 

a.s.p.   pp

mp

mp

mp

mf

mp

  

mp

ff

ff

a.s.p.

f

  

s.p.

3

ff

f

f

f

s.p.

mp

    

mf

norm.

f



        3

  

pp



a.s.p.

 

norm.

f

pp



a.s.p.

5

3   8

  

 

mf

a.s.p.



mp

f

3

  

 II

pp

4X

f

s.p.  

     5

       

pp

 

mp

pp

f

mf

  

    

 

f

mp

s.p.

pp

   

s.p.

3

mf

 

norm.    

f

mf

 

3

        

   

 

pp

mp

mf

pp

s.p.

mp

mf

norm.

p

  

  

311 4

pp

   

mp

mf

pp

3

mf



3  8 

f

       

pp



mp

mf

3  4 

 

 

norm.

       

  

mp

 

   pp

3   4 

mf

  

 

2 4

 

  

p



 

 

III p

3  8 

pp

 



mf

s.p.

a.s.p.

pp

       

p

f

mp

 

norm.

f

2  4 

p

f

norm.

a.s.p.

5

3 8



 

 



pp

 

 

 

3  4 

mp

f

      

s.p.

f

norm.

        p

s.p.

f

f

pp

3 8

a.s.p.

    pp

  

f

f

s.p.

5

 

 

pp

s.p.

f

pp

 

norm.

3 4 

  

         

 

norm.

f

 

f

 

norm.

84

Fl.

 

        

4    4  

pp

f

A. Sax.

2 4

ff a.s.p.

ff

ff

            ff 

  ff

  

a.s.p.

ff a.s.p.





        

norm.

ff

3    

ff

a.s.p.

ff

3 8

pp

pp

  pp

  pp



a.s.p.

pp

a.s.p.

   

2 4 

3

 

 

a.s.p.

        

pp

        

pp

s.p.

pp s.p.

 

a.s.p.

s.p.

  f

ff

  f

s.p.    

s.p.

3

f

  

s.p.

3

   pp

ff

f

  

pp

a.s.p.

f

  

pp

pp

f

pp



3  4 

ff a.s.p.

ff a.s.p.

ff

  

14 4


 =76

12

14 4  93

Fl.

Cl.

A. Sax.

Vln.

  



  

 

ppp

 

 



(mp)

 

  



ppp

(p)



14 4  94

A. Sax.



12 4

Vc.



  

14   4  

     

ppp

12 4

11 4

12  4  Vln.  12 4 Vla.

 

  (ppp)

 



ppp

(p)

Vc.

 

p

Cl.

ppp



Vla.

Fl.

14 4

  

             ppp (mp) ppp 

  

 

  

 (mp)         mp

pp

  

a.s.p.

 15   4   

 

13  4 

pp



 

 

 

12 4 

    

(mp)

mp

norm.      

 p



 



pp

10 4

mp 3

 

 

 



ppp

ppp





 

7"

mp

 

(mp)

mp

 

   

norm.

3

pp

 

mp

    

pp



mf

mf

pp a.s.p.

 

4 4

     

mp

3

 

 

a.s.p.

 

ppp

pp

s.p.

mp

 

a.s.p.

          ppp ppp                     

14 4 

7"

 



norm.

s.p.

 

 

s.p.

mp

     3

mp

s.p.


    96

Fl.

Cl.

A. Sax.

4 4

    

  Vln.   Vla.

 

  Vc. 

2X 

 



pp



pp

pp

 



 

mf

   

2 4

   

mf



mf

 

 

norm.

pp

 

mf

 

 

norm.

pp



5 4 

pp



 

2 4

 

pp

pp

 

 

pp

3 8

s.p.

 

s.p.

 

s.p.

3 8

mf

  



mf



pp

mf

a.s.p.

 pp

a.s.p.

pp

 

mf

s.p.

mf



         

mp



    mp

  

 

mp



s.p.

         

mp



  

3 4

mp





mf

2 4 



s.p.

mf





a.s.p.

 

 

mf

norm.

=90

accel.



5

f

f

 

f

2  4         f

      





mp

  

 f

f

f



norm.



      



 





f

pp

s.p.

3

s.p.         

pp

3 4

pp

s.p.          

pp

norm.

mp 3

   

pp

 f

  

f

mp

mp

a.s.p.





  



pp

norm. 3

13

2 4

mp

mp

a.s.p.



5

3 8

a.s.p.



             mp

f



3

       

f

3X



5

5



4X Fl.

Cl.

A. Sax.

3 4

    107

    

  Vln.   Vla.

 

  Vc. 

 

3 8

       

f

pp

  f

  f



  f

a.s.p.

a.s.p.

 

f

 

a.s.p.

f

         pp

3  4  

2 4

f

 

 

pp

pp

     pp    pp 3

 

pp

  

norm.

f

pp

 

        

f

 

pp

norm.

f



norm. 3



       

f

  f

pp



       pp

3



5

          pp 5





3 4

  f

3 8

 

  f

  f  

       

pp

  f

    

  f

       

  f

pp

 

 

pp

3

   

a.s.p.

     pp 3



  f

pp

f

  f

 

            

norm.

 f

pp

 

norm.

pp

5

 

f

 

         pp 5

       

pp

        

pp

s.p.

pp

f

pp

 

f

s.p.    3

f



    f

f

f 

3

  

pp

2 4

f

s.p.

a.s.p.

pp

a.s.p.

 

pp

norm.

f

  f

a.s.p.

3 4  

3 8 

       

f

 

3 4

pp

pp

a.s.p.

3 8 

f

pp

  f

a.s.p.

3 4  



 f


3X

14

2 4  

3 4

118

Fl.

 

Cl.

A. Sax.



 Vln.  

Vla.

Vc.



f

     



    



 

p

A. Sax.

Vln.

   

Vla.

Vc.

 

a.s.p.

3

f

 

        p

    

      

     

      



f

     

   

3 4  

1 4 



 

  

 

     





   













a.s.p.



3

      

     

      

     

      

     

      

     

      

     

      

     

f



a.s.p.

f

   

a.s.p.



5 1 3 8    4  4

1 4



  

 



3

3 4

mp

a.s.p.

5

f

     



a.s.p.

 

5

4 4  

Cl.

f



     p     

135

Fl.

f

3 8

      

     

 

  f

f





     

    

      







f











f







     

      

 

5 1 3 8    4  4 f

f





  f

f



  ff

   

ff  ff 

 

 

ff

7  4 

           pp

                 

     

(mp)

  pp

ff

 

ff

 

ff

 



 

ff

4 4 

 



ff

f

 ff

ff

 

 

5 8

 

ff 

f



 

  fff 

fff



fff



fff



fff

 

fff

     

      

 

     

3  4 

5 8 

 



 

fff



 

fff



 



 

fff

    fff

   

  fff



fff

      

     

      

 

     

4 4




    152

Fl.

A. Sax.

Vln.







  



 

A. Sax.

Vln.

Vc.



     

Vla.



























     









 

 







4 4   



 

   



 

    



























7 8



 





 

 

3

  







  

7 8

 



 

 



 

 

 



 

 

3   

 

 

    



    

     

    3

   

             

 3

       3

  

4 4       











   











 

 



     

3     

      3

 

3

      

    3

   

 

 

 

  



 

    



 3

   

 



      

    3

7 8

 

 

 



 

 

 

  

 

   

  

7 8 



   

    



f

3

       3

  

6 4

  

3

              

   

3    

3

              

3



6  8   







  

                     

      

 













3

  





3

      

 

   

3

7 8 

Cl.































163

Fl.





   

Vla.

Vc.



  

Cl.





15

 

ppp

  


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.