Electronic Environment 2017-03

Page 1

3.2017

EMC & SKÄRMNING EMC från bricka till bricka

DEL 19

EMC Challenges for Wireless Communications in Security & Safety Applications

HOW TO PERFORM

EMC TESTING OF AUTONOMOUS VEHICLES + KALENDARIUM SID 6 + FÖRETAGSREGISTRET SID 36-39 + Ny el-standard SID 8–9 + ÖGAT PÅ SID 10 >>>

Complete EMC solutions from the market leader Contact us regarding your EMC application 08-605 19 00 or info.sweden@rohde-schwarz.com www.electronic.nu – Electronic Environment online

1


Ex ten de dD ea dli ne !

Final Call for Papers 25-26 april 2018, Kistamässan, Kista Science City Elektronikområden: EMC, ESD, energilagring samt miljötålighet för elektronik. Tidningen Electronic Environment står åter som värd för Electronic Environment Conference, ett återkommande evenemang inom elektronikmiljö. EE Conference 2018 arrangeras parallellt med Nordens största mötesplats för den professionella elektronikindustrin, S.E.E, 2018, på Kistamässan, vilket ger en oerhört spännande mötesplats för både konferensdeltagare och utställare – en dynamisk träffpunkt för ny kunskap, nya kontakter och nya affärer. Nu har Du åter chansen att presentera dina rön, forskningsresultat och erfarenheter för en intresserad och specifik publik. Dela med dig av ditt kunnande, sprid kännedom om nya observationer eller bortglömda erfarenheter. Informera om nya krav i regelverk och standarder. Skapa uppmärksamhet eller väck debatt. Utbyt kunskap och erfarenheter, vidga kontaktnätet och ta del av andras expertis. Välkommen att ta plats under EE Conference 2018!

Workshops och muntliga presentationer Föreläsningarna delas in efter olika temakategorier så att konferensdeltagaren kan följa ett specifikt intresse genom Electronic Environment Conference´s olika elektronikområden. Deltagaren kan också välja att bara följa ett specifikt elektronikområde. De muntliga presentationerna planeras till 30 minuter, inklusive inställelsetid och tid för frågor. Föredragshållare erhåller: • Full konferensdokumentation • Fika och luncher • Fritt deltagande under aktuell föreläsningsdag

Call for Papers (Abstracts) Vi söker föredrag och workshops riktade till praktiserande ingenjörer, konstruktörer och tekniker, kvalitetsansvariga, test- och certifieringsfunktioner och företagsledning. Vi ser gärna förslag på föreläsningar inom EMC, ESD, elsäkerhet, miljötålighet för elektronik samt energilagring inom följande temaområden: • Fordon, Flyg & Marin • Industriell miljö • Telekom • Smarta Elnät & Elkvalité • Provning & Simulering • Standarder & Certifiering • Kvalitetssäkring • Extrema miljöer & Explosiv miljö • EMC för Internet of Things Övriga förslag är också välkomna! Vi önskar en rubrik med en kort beskrivning av föredraget till oss (abstract) senast den 30 september. Slutligt manus vill vi sedan ha före den 31 december 2017. Vidare instruktioner meddelas i samband med antagningsbesked under oktober 2017. Föredragen skall hållas på svenska eller engelska. Välkommen med ditt abstract! Kontaktinformation Vi i programkommittén ser fram emot ditt abstract! Har du frågor är du välkommen att kontakta oss på telefon 031-708 66 80, eller på mail info@justevent.se Projektledare: Dan Wallander, dan.wallander@justevent.se

Mer information hittar du på www.electronic.nu

30 Ditt abstract vill vi ha senast den 17 september 2017, till mail: info@justevent.se


Ex ten de dD ea dli ne !

Final Call for Papers 25-26 april 2018, Kistamässan, Kista Science City Electronic Environment Security, Safety & Defence

Call for Papers (Abstracts)

Beroendet av elektroniska system i dagens moderna samhälle ökar, och vi ser en fortsatt accelererande teknikutveckling, såsom IoT, framför oss de närmsta åren. Idag förlitar sig många samhällsviktiga funktioner sig på komplexa elektroniska system och trådlös kommunikation. Dessa system ofta är mycket känsliga för bland annat elektromagnetiska störningar och annan extern påverkan, vilket utgör ett reellt hot och stor utsatthet. Det är viktigare än någonsin att ha kunskap och beredskap.

Vi söker föredrag och workshops riktade till verksamhetansvariga, teknikchefer och säkerhetsansvariga inom civila samhällsfunktioner, myndigheter, företag och försvarsfunktioner.

Därför lanserar vi nu en konferens med fokus på EM-hot, extern påverkan av elektronik samt utsatta elektroniska applikationer, för dig som arbetar inom samhällskritiska funktioner, myndigheter, företag och försvarsfunktioner. Electronic Environment Security, Safety & Defence 2018 arrangeras parallellt med Nordens största mötesplats för den professionella elektronikindustrin, S.E.E, samt Electronic Environment Conference, på Kistamässan, vilket ger en dynamisk träffpunkt för kompetens- och erfarenhetsutbyte mellan civila samhällsfunktioner, myndigheter, företag och försvarsfunktioner.

Workshops och muntliga presentationer De muntliga presentationerna planeras till 30 minuter, inklusive inställelsetid och tid för frågor. Föredragshållare erhåller: • Full konferensdokumentation • Fika och luncher • Fritt deltagande under aktuell föreläsningsdag

Vi ser gärna förslag på föreläsningar med fokus på EM-hot, extern påverkan av elektronik och utsatta elektroniska applikationer samt inom följande ämnesområden: • IEMI • HPM • EMP • HIRF • RÖS • Indikering av påverkan • Övrig extern påverkan av elektronik Övriga förslag är också välkomna! Vi önskar en rubrik med en kort beskrivning av föredraget till oss (abstract) senast den 30 september. Slutligt manus vill vi sedan ha före den 31 december 2017. Vidare instruktioner meddelas i samband med antagningsbesked under oktober 2017. Föredragen skall hållas på svenska eller engelska. Välkommen med ditt abstract! Kontaktinformation Vi i programkommittén ser fram emot ditt abstract! Har du frågor är du välkommen att kontakta oss på telefon 031-708 66 80, eller på mail info@justevent.se Projektledare: Dan Wallander, dan.wallander@justevent.se

Mer information hittar du på www.electronic.nu

30 Ditt abstract vill vi ha senast den 3 september 2017, till mail: info@justevent.se


Electronic Environment #3.2017

Reflektioner

Dan Wallander Chefredaktör och ansvarig utgivare

Väck youtube-generationens intresse KOMPETENSFÖRSÖRJNINGEN ÄR EN avgörande framgångsfaktor för svenska företag. Inte minst när det gäller kvalificerade yrken och specialistområden. En nyckelfaktor är att tidigt få youtube-generationen få upp ögonen och intresserade. Under hösten anordnar utbildningsförvaltningar runt om i Sverige olika evenemang för gymnasieelever, för att underlätta det kommande gymnasievalet. I Storgöteborg samlas drygt 10 000 elever under Gymnasiedagarna för att få mer information om yrken som intresserar dem, och kanske intressera sig för yrken som de inte trodde fanns. Några, men alldeles för få, representanter från olika branscher finns på plats. DET ÄR VÄLKOMMET med initiativ där näringslivet knyter djupare kontakter med verksamheter inom utbildningsväsendet, jämte närliggande aktörer. Som exempel kan jag nämna Saab som nu inleder ett flerårigt samarbete med Universeum i Göteborg, just i syfte att öka ungas intres-

se för innovationer och teknik. På Universeum finns många möjligheter att kommunicera med unga och väcka deras intresse för innovationer och teknik, liksom för tekniska utbildningar och yrken. Samarbetet skall bland annat resultera i en ny högteknologisk kunskapsupplevelse om sensorteknikens grundläggande principer och applikationsområden. Bra initiativ, jag hoppas att fler tar efter. FÖR ATT FORTSÄTTA inom ämnet kompetensutveckling, så hoppas jag att det inte undgått någon om att det nu i dagarna är deadline för abstracts till konferenserna EE Conference 2018 och EE Security, Safety & Defence 2018. Konferenserna kommer att gå parallellt med Nordens största mötesplats för den professionella elektronikindustrin, S.E.E, på Kistamässan under april, och mötesplatsen blir en dynamisk träffpunkt för kompetens- och erfarenhetsutbyte mellan civila samhällsfunktioner, myndigheter,

företag och försvarsfunktioner. Mer information hittar du på föregående sidor i denna tidning, samt på www.electronic.nu. Så, skicka in ditt abstracts, ta plats och dela med dig av ditt kunnande och erfarenheter. I DET HÄR numret av Electronic Environment har vi en rapport från EMC Europe 2017, som i år gick i Angers. Evenemanget arrangerades i Göteborg 2014, och kommer åter till staden år 2022. Miklos Steiner fortsätter sin serie under Ögat På, och är nu framme vid del 19. Du hittar också en intressant artikel om hur man utför EMC-testning av autonoma fordon, och Michel Mardiguian presenterar några enkla tips för att identifiera och fixa EMI problem. Bland mycket annat.

Trevlig läsning!

SHIELDING TECHNOLOGY

Shielded secure meeting rooms

Turn key shielded and anechoic chambers

Shielded rooms for data security

Shielding materials for self-assembly: doors, windows, absorbers, ferrites, filters, gaskets and metalized textiles.

Shielded boxes for GSM, DECT, radio testing etc

EMC testing services in our own lab.

www.scratch.se

www.emp-tronic.se Electronic Environment Ges ut av Break a Story Communication AB Mässans gata 14 412 51 Göteborg Tel: 031-708 66 80 info@breakastory.se www.breakastory.se

4

HELSINGBORG Box 13060, SE-250 13 Helsingborg +46 42-23 50 60, info@emp-tronic.se

Adressändringar: info@justmedia.se Tekniska redaktörer: Peter Stenumgaard Miklos Steiner Michel Mardiguian Våra teknikredaktörer når du på info@justmedia.se

STOCKHOLM Centralvägen 3, SE-171 68 Solna +46 727-23 50 60

Ansvarig utgivare: Dan Wallander dan.wallander@justmedia.se Annonser: Daniel Olofsson daniel.olofsson@justmedia.se Dave Harvett daveharvett@btconnect.com

www.electronic.nu – Electronic Environment online

Omslagsfoto: Istock Photo Tryck: Billes, Mölndal, 2017 Efterpublicering av redaktionellt material medges endast efter godkännande från respektive författare.


Electronic Environment #3.2017

EMC CHALLENGES FOR WIRELESS COMMUNICATIONS IN SECURITY & SAFETY APPLICATIONS

Redaktörerna Peter Stenumgaard

14 Ur innehållet

Miklos Steiner

4 Reflektioner 6 Konferenser, mässor och kurser 8 Ny el-standard 10 Ögat på EMC & skärmning – EMC från bricka till bricka 12 Teknikkrönikan – Peter Stenumgaard 14 EMC challenges for wireless communications in security & safety applications 21 Noterat 23 Troubleshootng EMI (Part I, emission problems) some simple hints for identifying and fixing EMI troubles 32 How to perform EMC testing of autonomous vehicles 35 Författare i Electronic Environment 36 Företagsregister

23

Civilingenjör Teknisk Fysik och Elektroteknik (LiTH 1988) samt Tekn Dr. Radiosystemteknik (KTH 2001). Arbetade fram till 1995 som systemingenjör på SAAB Military Aircraft där han arbetade med elektromagnetiska störningars effekter på flygplanssystem. Detta inkluderade skydd mot exempelvis blixtträff, elektromagnetisk puls (EMP) samt High Power Microwaves (HPM). Han har varit adjungerad professor både på högskolan i Gävle och Linköpings universitet. Peter arbetar idag till vardags på FOI. Han var technical program chair för den internationella konferensen EMC Europe 2014 som då arrangerades av Just Event i Göteborg.

TROUBLESHOOTING EMI (PART I, EMISSION PROBLEMS)

Miklos har elektromekaniker- högskoleutbildning för telekommunikation och elektronik i botten samt bred erfarenhet från bl a service och reparation av konsumentelektronik, konstruktion och projektledning av mikroprocessorstyrda printrar, prismärkningsautomater, industriella styrsystem och installationer. Miklos har sedan 1995 utbildat ett stort antal ingenjörer och andra på sina kurser inom EMC och är också författare till den populära EMC-artikelserien ”ÖGAT PÅ”, i tidningen Electronic Environment. Under många år var Miklos verksam som EMC-konsult, med rådgivning och provning för många återkommande kunder. Mångårig erfarenhet från utveckling av EMC-riktiga lösningar i dessa uppdrag har gett Miklos underlag, som han med trovärdighet kunnat föra vidare i sina råd, kurser och artiklar.

Michel Mardiguian Michel Mardiguian, IEEE Senior Member, graduated electrical engineer BSEE, MSEE, born in Paris, 1941. Started his EMC career in 1974 as the local IBM EMC specialist, having close ties with his US counterparts at IBM/ Kingston, USA. From 1976 to 80, he was also the French delegate to the CISPR. Working Grp on computer RFI, participating to what became CISPR 22, the root document for FCC 15-J and European EN55022. In 1980, he joined Don White Consultants (later re-named ICT) in Gainesville, Virginia, becoming Director of Training, then VP Engineering. He developed the market of EMC seminars, teaching himself more than 160 classes in the US and worldwide. Established since 1990 as a private consultant in France, teaching EMI / RFI / ESD classes and working on consulting tasks from EMC design to firefighting. One top involvment has been the EMC of the Channel Tunnel, with his British colleagues of Interference Technology International. He has authored 8 widely sold handbooks, two of them being translated in Japanese and Chinese, plus 2 books co-authored with Don White.

www.electronic.nu – Electronic Environment online

5


Electronic Environment #1.2017

Konferenser, mässor & kurser

Konferenser & mässor EMC Turkey 2017

24-27 september, Ankara, Turkiet European Microwave Week (EuMW 2017)

8-13 oktober, Nürnberg, Tyskland 39th Annual Meeting and Symposium of the Antenna Measurement Techniques Association (AMTA)

15-20 oktober, Atlanta, USA MILCOM 2017

23-25 oktober, Baltimore, USA Automotive Test Expo 2017

24-26 oktober, michigan, USA EMC Beijing 2017

28-31 oktober, Peking, Kina Embedded Conference Scandinavia 2017 (ECS 2017)

7-8 november, Stockholm

20-21 november, Stockholm www.stf.se

IEEE

EMC Introduktion

www.ieee.se Nordiska ESD-rådet

www.esdnordic.com SER

www.ser.se SNRV

www.radiovetenskap.kva.se SEES

www.sees.se

E-utbildning www.justkompetens.se/elektronik EMC: Störningskällor, störningsoffer och kopplingsvägar

E-utbildning www.justkompetens.se/elektronik Element är Ellära

E-utbildning www.justkompetens.se/elektronik

Kurser European EMC requirements

4 oktober, Mölndal www.emcservices.se Hybrid vehicles and EMC

GEMCCON 2017

8-10 november, Sao Paulo, Brasilien

ATEX direktiv

IEEE COMCAS 2017

6-8 november, Stockholm www.stf.se

Asia Pacific Microwave Conference 2017 (APMC 2017) 13-16 november, Kuala Lumpur, Malaysia

EMC – skärmning och jordning

Se respektive förenings hemsida

17 oktober, Mölndal www.emcservices.se

31-15 November, Tel Aviv, Israel

6

Föreningsmöten

Advanced EMC design of printed circuit boards

7-8 november, Oslo www.emcservices.se

www.electronic.nu – Electronic Environment online

TIPSA OSS! Vi tar tacksamt emot tips på kurser, föreningsmöten och konferenser om elsäkerhet, EMC (i vid bemärkelse), ESD, Ex, mekanisk, termisk och kemisk miljö samt angränsande områden. Publiceringen är kostnadsfri. Sänd upplysningar till: info@justmedia.se. Tipsa oss gärna även om andras evenemang, såsom internationella konferenser!


EMC LIFE SIMPLIFIED SLIPP OMPROVNING SLIPP DYRA FILTERLÖSNINGAR Vill du förenkla ditt utvecklingsarbete? Tillsammans går vi igenom din produkt och du får råd och stöd så att den klarar EMC-kraven.

SLIPP ONÖDIGA KORTRUNDOR I TID FÖR LANSERING

Med våra råd sparar du både tid och pengar - du hamnar rätt direkt. Vi har en bred kompetens inom EMC - allt fordonselektronik till installationer och sateliter i rymden - vi vet vad som krävs för du skall klara kraven. Kontakta Tony Soukka, tel 0734-180 981 eller tony@emcservices.se för att diskutera ditt projekt.

EMC SERVICES

KNOWLEDGE IN REALITY

www.emcservices.se

NYHET

CUSTOMIZED EMC-SOLUTIONS KAMIC EMC have more than 30 years of experience, regarding developing and installation of units and products within the electrical environmental area. We are today helping a number of hundreds individual customers and bigger companies with our knowledge in questions related to EMC and improved electrical environment. Welcome to us - we will guide you to your particular customized solution.

KAMIC Components Tel: + 46 (0)54-57 01 20, www.kamicemc.com


Electronic Environment #3.2017

Ny el-standard Listan upptar standarder fastställda under december 2016 och januari och februari 2017 men bara dem som jag bedömt relevanta för era läsare. Standarderna är sorterade efter fastställelsedatum bakåt i tiden och inom varje datum sorterade efter nummer i beteckningen. För varje standard anges svensk beteckning, internationell motsvarighet (om sådan finns), europeisk motsvarighet (om sådan finns). Om den europeiska standarden innehåller ändringar i förhållande till den internationella anges detta. Dessutom anges svensk titel, engelsk titel, fastställelsedatum och teknisk kommitté inom SEK. För tillägg framgår vilken standard det ska användas tillsammans med men för nyutgåvor och standarder som på annat sätt ersätter en tidigare standard framgår inte vilken denna är eller när den planeras sluta gälla.

SS-EN 55016-1-4, utg 3:2010/A2:2017

SS-EN 60068-2-69, utg 3:2017

CISPR 16-1-4:2010/A2:2017 • EN 55016-1-4:2010/A2:2017 EMC – Utrustning och metoder för mätning av radiostörningar och immunitet – Del 1-4: Utstrålade störningar

EN 60068-2-69:2017 • IEC 60068-2-69:2017 Miljötålighetsprovning – Del 2-69: Provningsmetoder – Te/Tc: Lödbarhetsprovning med vätningsvåg (kraftmätning) av komponenter för ytmontering

Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-4: Radio disturbance and immunity measuring apparatus – Antennas and test sites for radiated disturbance measurements SEK TK EMC

Environmental testing – Part 2-69: Tests – Test Te/Tc: Solderability testing of electronic components and printed boards by the wetting balance (force measurement) method

Fastställelsedatum: 2017-09-06

SEK Elektrotekniska rådet Fastställelsedatum: 2017-09-06

SS-EN 55016-1-5, utg 2:2015/A1:2017 CISPR 16-1-5:2014/A1:2016 • EN 55016-1-5:2015/A1:2017 EMC – Utrustning och metoder för mätning av radiostörningar och immunitet – Del 1-5: Kalibrerings- och referensprovplatser för antenner, 5 MHz till 18 GHz Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-5: Radio disturbance and immunity measuring apparatus – Antenna calibration sites and reference test sites for 5 MHz to 18 GHz

SS-EN 60695-11-5, utg 2:2017 IEC 60695-11-5:2016 • EN 60695-11-5:2017 Provning av brandegenskaper – Del 11-5: Provningslågor – Provning med spetslåga – Provningsapparater och arrangemang för bestämning av överensstämmelse samt riktlinjer Fire hazard testing – Part 11-5: Test flames – Needle-flame test method – Apparatus, confirmatory test arrangement and guidance

SEK TK EMC

SEK TK 89 Brandriskprovning

Fastställelsedatum: 2017-06-14

Fastställelsedatum: 2017-09-06

SS-EN 55016-1-6, utg 1:2015/A1:2017

SS-EN 60695-1-30, utg 3:2017

CISPR 16-1-6:2014/A1:2017 • EN 55016-1-6:2015/A1:2017 EMC – Utrustning och metoder för mätning av radiostörningar och immunitet – Del 1-6: Kalibrering av antenner för EMC-mätning

IEC 60695-1-30:2017 • EN 60695-1-30:2017 Provning av brandegenskaper – Del 1-30: Vägledning vid bestämning av brandegenskaper hos elektrotekniska produkter – Förvalsprovning – Allmänna riktlinjer

Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-6: Radio disturbance and immunity measuring apparatus – EMC antenna calibration

Fire hazard testing – Part 1-30: Guidance for assessing the fire hazard of electrotechnical products – Preselection testing process – General guidelines

SEK TK EMC

SEK TK 89 Brandriskprovning

Fastställelsedatum: 2017-06-14

Fastställelsedatum: 2017-09-06

SS-EN 55016-2-3, utg 4:2017

SS-EN 61326-3-1, utg 2: 2017

CISPR 16-2-3:2016 • EN 55016-2-3:2017 EMC – Utrustning och metoder för mätning av radiostörningar och immunitet – Del 2-3: Mätning av utstrålade störningar

IEC 61326-3-1:2017 • EN 61326-3-1:2017 Elektrisk utrustning för mätning, styrning och laboratorieändamål – EMCfordringar – Del 3-1: Immunitetsfordringar på system av betydelse för säkerheten (säkerhetskritiska system) och på utrustning med säkerhetsfunktion – Allmänna tillämpningar i industri

Specification for radio disturbance and immunity measuring apparatus and methods – Part 2-3: Methods of measurement of disturbances and immunity – Radiated disturbance measurements SEK TK EMC Fastställelsedatum: 2017-06-14

Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 3-1: Immunity requirements for safety-related systems and for equipment intended to perform safety-related functions (functional safety) – General industrial applications

Tillägg bl a om FFT-baserade mätningar och om korrektion av elektriska fältstyrkan vid log-periodiska gruppantenner.

SEK TK 65 Industriell processtyrning

SS-EN 55035, utg 1:2017

Frekvensområdet utsträckt till 6 GHz och kriterierna ändrade och förtydligade. Bland annat.

CISPR 35:2016 (ändrad) • EN 55035:2017 Multimediautrustning – EMC-fordringar – Immunitet

Fastställelsedatum: 2017-09-06

Electromagnetic compatibility of multimedia equipment – Immunity require SEK TK EMC Fastställelsedatum: 2017-09-06 Omfattar datorer, ljud- och bildutrustning med mera upp till 400 GHz.. Motsvarande standard för emission är SS-EN 55032.

8

www.electronic.nu – Electronic Environment online


Electronic Environment #3.2017

LeverantÜr av det mesta fÜr de flesta inom EMC Sammanställningen är ett urval av nya svenska standarder pü det elektrotekniska omrüdet fastställda av SEK Svensk Elstandard de senaste tre münaderna. FÜr kompletterande information: www.elstandard.se

SS-EN 61587-1, utg 4:2017 IEC 61587-1:2016 • EN 61587-1:2017 Elektronikutrustningar – Mekaniska byggsätt – Provningar fĂśr IEC 60917 och IEC 60297 – Del 1: Fordringar beträffande miljĂśtĂĽlighet och säkerhet under inomhusfĂśrhĂĽllanden och vid transport, jämte provningsuppställningar, fĂśr skĂĽp, stativ, kortramar och chassier Mechanical structures for electronic equipment – Tests for IEC 60917 and IEC 60297 series – Part 1: Environmental requirements, test set-up and safety aspects for cabinets, racks, subracks and chassis under indoor condition use and transportation SEK Elektrotekniska rĂĽdet Fastställelsedatum: 2017-06-14 Fullständig Ăśversyn av de mekaniska fordringarna. SS-EN 61709, utg 3:2017 IEC 61709:2017 • EN 61709:2017 Funktionssäkerhet hos elektronikkomponenter – Referensbetingelser fĂśr felbenägenhet och stressmodeller fĂśr omräkning

RONSHIELD AB Kallforsvägen' 27 % &) * $ '+$ SE-124 32 Bandhagen % Tel. +46 8 722 71 20 - Mob. +46 70 674 93 94 & #% #'!( *('+"# % + E-mail: info@ronshield.se

,,, *('+"# % +

www.ronshield.se

Electronic components – Reliability – Reference conditions for failure rates and stress models for conversion SEK TK 56 TillfĂśrlitlighet Fastställelsedatum: 2017-09-06 Beskriver hur data fĂśr felbenägenhete kan användas fĂśr prediktering av funktionssäkerhet. Den nya utgĂĽvan är bl a kompletterad med modeller fĂśr prediktering hämtade frĂĽn IEC TR 62380. SS-EN 62433-3, utg 1:2017 IEC 62433-3:2017 • EN 62433-3:2017 EMC-modellering fĂśr integrerade kretsar – Del 2: Modeller fĂśr simulering av kretsens uppträdande – Modellering av utstrĂĽlad emission (ICEM-RE) EMC IC modelling – Part 3: Models of integrated circuits for EMI behavioural simulation – Radiated emissions modelling (ICEM-RE) SEK Elektrotekniska rĂĽdet Fastställelsedatum: 2017-09-06

Teknik och kamratskap – Lokalt och globalt Bli medlem i Sveriges ledande amatĂśrradiofĂśrening! Som medlem i SSA fĂĽr du: • Tidningen QTC AmatĂśrradio • FĂśrmĂĽnsrabatter • QSL service • Utbildningspaket • Support AmatĂśrradion, en hobby med mängder av mĂśjligheter och gemenskap. Byggen, experiment, tävlingar, och mycket mer!

Kontakta SSA pü: 08 – 585 702 76 • hq@ssa.se

www.electronic.nu – Electronic Environment online

www.stigab.se E-post: info@stigab.se Tel: +46 8 97 09 90

9


Electronic Environment #3.2017

Ögat på Vad alla bör känna till om EMC:

EMC från bricka till bricka, del 19

EMC & SKÄRMNING Denna gång tittar vi på några aspekter på EMC-skärmning. EMC måste tas om hand i alla delar, såväl på elektrisk som på mekanisk systemnivå, och på alla nivåer i en utrustning på ett systematiskt och planerat sätt. EMC I HELA PROJEKTET EMC-hänsyn måste genomsyra hela produktframtagningsprocessen från idé till avveckling!

Skärmningseffektiviteten SE för en given frekvens f lägre än fco kan beräknas som: SE [dB] = 20 log (fco / f), gäller för f < fco

D

Fenomenet kan förklaras med följande teoretiska resonemang: det infallande fältet inducerar ytström på skärmen (plåten). Om fältet är polariserat så att denna ytström (J) måste avvika kraftigt för att gå runt öppningen uppstår ett magnetfält (H) runt öppningen. Detta fält motsvarar ett läckage genom öppningen. Ju större omväg ytströmmen måste ta, desto större blir läckaget, (se figur 2).

et är relativt enkelt att uppnå god dämpning (> 80 – 100 dB) av elektromagnetisk fält med hjälp av en kompakt metallskärm. I de flesta praktiska fall är skärmen inte hel utan det finns nästan alltid öppningar, fönster och spalter. Det är i huvudsak dessa ofullständigheter i skärmen som bestämmer den totala skärmningseffektiviteten När man skall konstruera ett apparathölje, som skall hysa känslig elektronik och som skall skyddas mot elektromagnetiskt störningsfält, önskar man ofta åstadkomma en så kallad Faradays-bur. Detta innebär ett tätt metallskal där metallen genom sin ledande förmåga direkt skyddar mot elektrisk fält (kortslutning) och indirekt genom virvelströmmar hindrar magnetfält att tränga igenom skalet. Observera att skalet inte behöver vara kopplat till jord för att fungera som en effektiv skärm! I de allra flesta fall är inte valet av metall eller dess tjocklek något problem. De vanligaste materialen för apparatlådor är aluminium, järn, stål, mässing, och koppar. Dessa är material med god ledningsförmåga och dämpar därför elektriskt fält mycket bra. Dämpning av magnetfält är avhängigt av materialtjockleken och är även frekvensberoende. Alla metaller är goda skärmmaterial för elektromagnetiska fält. Vid materialval till apparathöljen måste vi då även tänka på möjliga korrosionsrisker pga olämpliga materialsammansättningar. Det är öppningar av olika slag som medför elektrisk läckage. I praktiken är det svårt att göra ett apparathölje som är fullständigt tätt. Det behövs som regel öppningar för manöverorgan, teckenfönster, luftintag, fläkt, kontakter, mm. Till detta kommer alla skarvar mellan olika metalldelar. Genom dessa öppningar kan fält läcka in eller ut. Det är dessa öppningar som avgör hur bra den totala skärmningen blir.

LITE LÄCKAGETEORI Läckage från en avlång öppning (se figur 1) bestäms av öppningens längd i förhållande till våglängden. En smal och grund öppning vars längd är lika med eller större än halva våglängden har ingen dämpning för dessa frekvenser.

10

Runda hål har liknande effekt på skärmningseffektiviteten. Förenklat kan man räkna med att skärmningseffektiviteten hos ett hål eller slits ökar 10 ggr (20 dB) per tio gånger lägre frekvens (se figur 1 och 2). Ett enkelt räkneexempel enligt figur 1 visar att om vi önskar 40 dB dämpning i en slits vid 300 MHz, skall slitsens gränsfrekvens fco vara 30 GHz (våglängd = 10 mm) eller större. Slitsen får således ej överstiga 5 mm. Om öppningen har ett djup, dvs. utförd som en rörstump eller som överlappande flänsar, inträder en sk vågledardämpningseffekt, A dB. Öppningens dämpning ökar för frekvenser som är lägre än hålets brytfrekvens fco. Vågledardämpningen är avhängigt förhållandet mellan öppningens bredd (g) och djup (d), (se Figur 4). Vid g = d ger vågledardämpningen ca 30 dB extra dämpning för frekvenser lägre än c:a (fco / 3) utöver reflektionsdämpningen enligt ovan. A ≈ 30 g / d [dB] Totaldämpning för en vågledarformad öppning blir således (reflektionsdämpning plus vågledardämpning räknat i dB): R = R + A [dB] Vid skarvning av t ex plåtar ska man sträva efter överlappning för minskat läckage. (se Figur 5.)

GENERELLA KONSTRUKTIONSREGLER: • Skärmen skall ha god ledningsförmåga och en yta eller ytbehandling som tillåter god elektrisk kontakt mellan kontakterande ytor. • Öppningar av olika slag, skarvar och ventilationshål skall göras så små som möjligt. • De bör inte överstiga 1/200 av våglängden för aktuell frekvens, vilket teoretiskt ger 40 dB dämpning.

www.electronic.nu – Electronic Environment online


Electronic Environment #3.2017

Figur 2. Läckageförklaring i en öppning.

Figur 1. Läckage från en avlång, grund öppning.

• Det är inte öppningens yta utan dess största dimension som är avgörande för dämpningen. • Det är bättre med många små öppningar än med en stor (se figur 3). • Läckaget från en ett antal symmetriskt placerade hål nära varandra ökar med kvadratroten av antal öppningar. • Om samma antal öppningar placeras osymmetriskt och på större avstånd från varandra blir läckaget större än i förra fallet. Sammanfogningar där endast punktvisa elektriska kontakter finns längst öppningen kan betraktas som en rad av öppningar. För att uppnå önskad skärmning är det viktigt att ha tillräckligt antal kontaktpunkter, t ex skruvar, kontaktfingrar eller elektriskt ledande packningar (skärmningspackningar). Figur 3. Ömsesidig utsläckning av fält.

TEKNIKER FÖR TÄTNING AV SLITSAR Slitsar som uppstår i en sammanfogning blir många gånger så många och långa att tillräcklig skärmningseffektivitet ej kan uppnås. Särskilda åtgärder behövs. De mest använda är: - öka skruvtätheten - använd fingerlister - använd ledande packningar Att öka skruvtätheten är inte alltid så lätt i praktiken vilket visas i tabell. När tätningskravet är högt eller frekvensinnehållet i störningen ökar då måste man använda fingerlister eller packningar för att uppnå tillräcklig skärmning. Ett enkelt räkneexempel enligt formler i figur 1 visar att om man vill ha 40 dB dämpning i en slits vid 300 MHz, skall slitsens gränsfrekvens fco vara 30 GHz (våglängd = 1 cm), då får slitsen får inte vara längre än 5 mm.

Figur 4. Vågledardämpning.

Miklos Steiner info@justmedia.se

Tabell: Dämpning av slits.

Figur 5. Sammanfogningar med öppning.

www.electronic.nu – Electronic Environment online

11


Electronic Environment #3.2017

Teknikkrönikan Några aktuella trender inom EMC EMC-OMRÅDET HAR alltid utvecklats i takt med den övriga teknikutvecklingen på marknaden. Denna utveckling fortsätter alltjämt och flera utvecklingstrender inom EMC kan ses på de internationella EMC-konferenserna. EMC för Internet of Things (IoT) är en sådan trend och där fokus bland annat ligger på behovet av att utveckla befintliga standarder för EMC-provning så att de dels är applicerbara på de nya frekvensband som IoT-produkter kommer att finnas i, dels har gränsvärden som är anpassade efter de täta samlokaliseringsavstånd som IoT-produkter bedöms få i framtida tillämpningar.

Ett annat växande område är EMC för förarlösa fordon. Förarlösa fordon är beroende av ett stort antal sensorer och trådlösa tekniker av olika slag och där tillförlitlighet och personsäkerhet ställer krav på att ett kvalificerat EMC-arbete är gjort. Ett delområde inom fordonsteknik är utvecklingen mot hopkopplade fordon som via trådlös teknik

12

ska kunna köras i fordonskolonner med korta avstånd. Detta ställer mycket stora krav på EMC. Inom området eldrivna fordon så uppstår EMC-frågor som är relaterade dels till de batterier som används för framdrivningen, dels till hur elsystemet i övrigt är konstruerat. I takt med att nya produkter lanseras för användning nära människokroppen och som implantat så utvecklas EMC-kunskapen vidare. Här gäller det dels hur den elektromagnetiska vågutbredningen påverkas av mänsklig vävnad, dels hur mänsklig vävnad exponeras för elektromagnetiska fält i olika tillämpningar.

kriget men avtog sedan betydligt efter Berlinmurens fall. Nu har det åter börjat komma artiklar inom detta område vilket sannolikt beror på det förändrade säkerhetsläget i världen där flera länder är i färd med att skaffa kärnvapen. Sammanfattningsvis så går det således att se en fortsatt tydlig utveckling av EMC-området i takt med den övriga teknikutvecklingen i världen.

Slutligen kan nämnas ett äldre område som ser ut att göra comeback. Det handlar om att skydda elektroniksystem mot elektromagnetisk puls från kärnvapen som detoneras på hög höjd. Detta var ett intensivt forsknings- och teknikområde under kalla

www.electronic.nu – Electronic Environment online

Peter Stenumgaard info@justmedia.se


Electronic Environment #3.2017

Information från svenska IEEE EMC DET HAR VARIT en intensiv sommar för många av medlemmarna. Det nya radiodirektivet trädde formellt i kraft i juni både tillverkare av produkter och testlabb, har haft fullt upp. Vi hade ambitionen att få ihop ett medlemsmöte med RED som tema kring sommaren men detta hanns inte med i all brådska. EMC Europe har just avslutats i Angers, Frankrike. Jag hade inte själv möjlighet att delta i år, men det svenska deltagandet sägs varit starkt med flera presentationer.

IEEE är på väg att starta upp en ny tidning inom vårt område. IEEE Journal on Electromagnetic Compatibility Practice and Applications kommer den att heta och ska enligt planen komma ut med första numret under nästa år. Jag har inte så mycket mer information än så men namnet låter lovande. Jag tror att många av er medlemmar tycker att

IEEE Transactions on Electromagnetic Compatibility är för vetenskaplig och IEEE Electromagnetic Compatibility Magazine är för fokuserad på interna IEEE-aktiviteter. Den nya tidskriften kan förhoppningsvis fylla en lucka som delvis här i Sverige fylls av Electronic Environment. Nu kommer snart uppmaningarna från IEEE om att förnya medlemskapet. Jag fyller härmed på i den kören och hoppas även att nya medlemmar tillkommer. Den senaste medlemslistan säger att vi har växt något vilket självklart är trevligt att se. Jag välkomnar de nya eller nygamla medlemmarna till IEEE och hoppas se er på årsmötet senare i höst.

Christer Karlsson Ordf. Swedish Chapter IEEE EMC

EMC Europe i Angers 2017

Första veckan i september genomfördes den årliga konferensen EMC Europe. Konferensen anordnades på den tekniska högskolan ESEO i Angers i Frankrike. Med på konferensen fanns omkring 15 deltagare från Sverige, bland annat från Provinn, Huawei, Ericsson, FOI, Volvo, EMP-tronic och RISE. Även i år var HUAWEI Technologies Sweden AB en stor sponsor för konferensen. Som bestämdes förra året kommer Sverige återigen att vara värd för konferensen 2022, som då precis som 2014 kommer arrangeras i Göteborg. Totalt hölls omkring 170 muntliga presentation och i anslutning till lunch och eftermiddagsfikat fanns också postersessioner att besöka. Jan Carlsson från Provinn deltog aktivt som chairman för flera sessioner. Henrik Toss från RISE höll i en välbesökt workshop under måndagseftermiddagen kring ämnet Virtual envionments for system-level automotive EMC testing. Under workshopen diskuterades idéer om hur man kan skapa en virtuell miljö i en EMC-kammare så att man kan lura fordonet att tro att det befinner sig i en verklig trafikmiljö. Sverige bidrog till sessionen med tre föredrag via Björn Bergqvist (Volvo), Jan Carlsson (Provinn) samt Henrik Toss (RISE). Ämnet var uppenbarligen uppskattat då det var många åhörare och många bra frågor och diskussioner.

FOI hade flera presentationer på konferensen och av dessa var två nominerade till Best Paper. Till bästa papper utsågs Crosstalk Analysis of Printed Circuits with Many Uncertain Parameters Using Sparse Polynomial Chaos Metamodels av M. Larbi, I. Stievano, F. Canavero, P. Besnier. Välkomstmottagningen hölls i den anrika byggnaden Musée Jean Lurcat, där vi kunde beskåda de stora gobelängerna som staden är känd för, och konferensmiddagen genomfördes strax utanför staden på Chateau de Plessis Bourré. Forskare från Japan, K. Ishida, K. Suzuki, E. Hanada, M. Hirose, visade på riskerna med LED-lampor i känsliga miljöer. Deras bidrag hade titeln EMC of Wireless Medical Telemeters and Noise Radiated from Light Emitting Diode Lamps, och behandlade problemet att LED-lampor stör telemetrikommunikationen på sjukhus. I Japan används frekvensbandet 420-450 MHz för att skicka patienters hälsoinformation. Det kan vara signaler för att visa information som EKG, respiratorstatus och blodtryck. Man är orolig för att störningssignaler genererade av LED-lampor på sjukhuset kan störa den kritiska kommunikationen. Deras mätningar visade på en höjning av bakgrundsbruset med 25 dB i telemetribandet (420-450 MHz) orsakat av LED-lamporna. Ett annat intressant bidrag var Robust Extreme Value Estimation for Full Time-Domain EMI measurements av M. Azpúrua, J. Oliva, M. Pous, F. Silva. Bidraget utsågs också till Best Student Paper. Bidraget försöker angripa problemet att mäta störningskällor som emitterar impulser mycket sällan. För den typen av störningskällor kan mättiderna bli mycket långa och för att undvika detta beskrevs en ny metod för hur man kan estimera den maximala störningsnivån. Metoden baseras på tidsdomänmätningar med oscilloskop och med en numerisk och statistisk metod kan ett värsta fall av störningskällans emission uppskattas.

www.electronic.nu – Electronic Environment online

Kia Wiklundh, FOI Jan Carlsson, Provinn 13


Electronic Environment #3.2017

EMC Challenges for Wireless Communications in Security & Safety Applications

14

www.electronic.nu – Electronic Environment online


Electronic Environment #3.2017

The use of wireless technology is increasing rapidly in critical societal functions such as energy production, transport, logistics, banking and financial systems, and industrial and security applications – this despite the fact that civilian consumer wireless technology in general is very sensitive to both unintentional and intentional interference signals. Therefore Electromagnetic Compatibility (EMC) issues are highly important to address. Hitherto only military actors have been able to utilize or take advantage of this sensitivity effectively, but this ability is now spreading to civilian actors, thanks to sophisticated jamming equipment which is now sold openly and inexpensively via the Internet. In this paper, the requirements on and the special threats against wireless solutions for security and safety applications are discussed and described. We show a numerical example of the vulnerability of Global System for Mobile Communications – Railway (GSM-R) to a generic low-power interference source. Finally, we describe important challenges needed to be solved to provide robustness and reliability for critical services in wireless security & safety applications. INTRODUCTION The use of wireless technology has exploded in recent decades and has led to most individuals today using such technology in some form. Today there are almost as many mobile subscriptions as there are people on the earth. However, not only is the use of wireless technologies increasing among individuals; it is also a general trend in other parts of the society, such as security and safety [1-3] and machine-to-machine (M2M) [4]. We can also see rapidly increasing use of wireless technologies in critical societal functions such as energy production, transport, logistics, banking and financial systems, and industrial and security applications. Within industry, wireless technologies are increasingly used for monitoring and real-time control of processes and machines. Wireless technology is also common in various types of alarm systems, such as burglar alarms, shoplifting alarms and alarm systems for cash in transit (CIT). In both aviation and maritime applications, wireless technologies are used for voice communications, identification, navigation and surveillance. For some activities, wireless technology is a necessity. In military operations, reliable wireless technology is a prerequisite for success. Similarly, wireless technology is often a key factor in the work of police, rescue and medical personnel. There are several examples of the very

serious consequences of radio communications being disturbed in such settings. As an example, this issue came to the forefront in April 2008, when two firefighters in Cincinnati died in a blaze on Squirrel’s Nest Lane. A review of the radio calls made during the fire showed that the firefighters repeatedly made mayday calls which were never transmitted. The International Association of Fire Chiefs has released an interim report [10] concerning possible communications problems involving digital two-way portable radios in close proximity to common fire-ground noise. Another example of the importance of robust wireless communications comes from the terrorist attack in Norway on 22 July 2011. Public media report that the new TETRA based digital radio system for first responders did not have sufficient coverage at Utöya, so the district police used the older non-encrypted analog system. The elite Delta unit, dispatched to tackle the gunman, and paramedics had switched to a new, secure digital network. The consequence was that the operation was delayed since police commanders had to contact different units via email and even fax, as the mobile network was down. It was down due to overload because too many people were trying to call from their mobile phones. During the Gothenburg riots in 2001, the demonstrators caused interference in the police radio system. This interference contributed to the chaotic situation that arose, and led to prosecution for gross sabotage. Another important example of vital wireless technology is the Global Positioning System (GPS) which is used for both navigation and positioning of personnel and units, as well as sending an accurate time signal to telecommunications networks. One example is using the GPS signal to ensure that the world’s stock markets have common time so that no operator using automatic electronic trading (robot trading) can take advantage of the time signal differing between two stock markets. GPS receivers, however, are very easy to disturb because the power in the received satellite signal is very low. This, combined with the rapidly increasing dependence on GPS in critical security applications, opens up great vulnerability to intentional interference transmission [11]. Wireless solutions are always vulnerable to electromagnetic interference and is therefore vulnerable both to unintentional and intentional electromagnetic interference. Therefore Electromagnetic Compatibility (EMC) issues are highly important to address for such systems. Unintentional interference is produced from all kinds of electronic devices and is typical a problem in dense areas such as urban- and industrial areas [4][16]. In intentional jamming, the wireless system can be attacked on distance from the receiver. No access to the physical area at the receiver is needed for such electronic attack. The purpose with such attack could be several, e.g. • Jamming with the purpose to disrupt the transmission, • Eavesdropping with the purpose to get critical information from the transmission, • Spoofing with the purpose to manipulate the receiver with false information. Jamming of police radio systems began to happen in the early 2000s in connection with demonstrations and riots. Examples of this being highlighted in the media occurred at the World Bank meeting in Prague in 2000, at the EU summit in 2001 (the Gothenburg riots) and at the riots in Sydney (Cronulla and Brighton le Sands) in 2005. At these events either pure jamming and/or transmission of false calls were used to cause confusion in the police operations. International media regularly reports jamming being used in connection with theft and burglary. A common target is alarm systems that use wireless technology. Examples of alarm systems subjected to jamming are shoplifting alarms and burglar alarms, home alarms and assault alarms for CIT and limousines. Jamming of GPS receivers has been reported for a variety of GPS applications. This includes, for example, GPS receivers used to track valuable cargo or to register routes for various commercial vehicles. Near North Korea’s borders numerous cases of jamming against airborne GPS receivers have been reported. Furthermore, jammers are also used to block wireless locks in cars so that the car is not locked when the owner presses his wireless key. This technique is typically used in large car parks, and means that the owner does not notice that the car is unlocked. When the owner has left the car, it is emptied of valua-

www.electronic.nu – Electronic Environment online

15


Electronic Environment #3.2017

bles. The growing presence of jammers in itself increases the risk of pure accidents if the jammers accidentally knock out vital systems. One example is from Newark Airport in New Jersey in 2009, where several of the airport’s GPS receivers were being knocked out at regular intervals. After a long investigation, it turned out that it was a passing lorry that had disrupted the GPS receivers. The lorry driver had installed a GPS jammer to jam the GPS receiver that the employer used to log drivers’ routes. After that incident, a detection system has been used. In 2013, a truck driver was caught in that area and was fined $31,875 for using such GPS-jammer. The detection system has continued to experience regular interference from GPS jamming approximately five events per day mostly Monday to Friday [13]. The problem seems to be widely spread, which is also supported by the Sentinel study in UK that has recorded more than 60 jamming incidents in six month at one location and the researchers estimate that there might be up to 450 GPS jamming occurrences in UK every day [12]. In military operations, it has always been a well-known fact that effective wireless communication is a prerequisite for command and control. For this reason, radio interference is an established and well-known method of effectively reducing an opponent’s ability to lead his units. Historically, tactical jamming of the radio has been, with few exceptions, a purely military capability.

and where encryption is used. Even in public mobile networks such as GSM and 3G, well encrypted services have been developed, mainly as a requirement for e-commerce and payments directly via the mobile terminal. The AIS (Automatic Identification System) is the automatic tracking system used on ships and by vessel traffic services (VTS) for identifying and locating vessels by electronically exchanging data with other nearby ships, AIS base stations, and satellites. Information, such as unique identification, position, course, and speed, is openly transmitted and is public available. This might be a problem since it is possible even for criminals and terrorists to track e.g. vessels with hazardous substances. Even the DME (Distance Measuring Equipment) which is a transponder-based radio navigation technology in air-traffic control, is a non-encrypted signal that can be used for identifying and tracking aircrafts. Spoofing has been highlighted for e.g. AIS and GPS. Spoofing for GPS receivers has been highlighted due to that lots of critical functions are supported by either the positioning service or the GPS time signal for e.g. synchronization of telecommunication systems. A "proof-of-concept" attack was successfully performed in 2013, when the luxury yacht "White Rose" was misdirected with spoofed GPS signals from Monaco to the island of Rhodes by a group of mechanical engineering students from the Cockrell School of Engineering at the University of Texas in Austin. Even spoofing of the AIS system [7] has been highlighted e.g. with the purpose to hide if a vessel deliberately deviates from the expected route for some time. The paper is organized as follows. In the next section, we present examples of wireless technology used in security & safety applications. That section is followed by a discussion about the contradiction between capacity and robustness and we show examples of the differences of these properties between systems. That section is followed by an overview of different ways of performance degradation due to jamming and interference. The important conclusion is that disruption is not the only observable performance degradation when jamming and interference is present. Examples of consequences of jamming against Global System for Mobile Communications – Railway (GSM-R) (for the European Train Control System) and IEEE 802.11p (for active road safety) are shown. In both cases, non-disruptive communications with low latency is crucial. We show that a portable jammer can cause critical problems even with a moderate output power. The next section shows a comparison between properties on civilian wireless consumer electronics and the specific needs for security & safety applications. Important challenges to address the special needs described are summarized before the paper is finally concluded.

WIRELESS SECURITY & SAFETY APPLICATIONS Wireless technologies in security & safety applications are continuously increasing. In Table 1, some examples of wireless technologies/standards in security & safety applications are listed. As seen, security & safety applications can be found in a large frequency span, from kHz- to GHz region. Figure 1. Low-cost jamming equipment is sold over the Internet. Example of a GPS jammer connected to the cigarette lighter socket in cars. Photo: Peter Johansson, FOI.

Today, this ability has started to spread among illegal actors in society, which means a rapidly growing threat to critical wireless communications, for example, police, rescue services, wireless alarm and surveillance systems. The ability is spreading as jamming equipment is now sold at low cost via the Internet, see Figure 1. The fact that the use and possession of jammers is prohibited in many countries has not stopped the market for these growing rapidly in recent years. A player who wants to use jamming can already for a few hundred dollars buy a jamming device adapted to any existing civilian wireless system. So far, the ability to use these jammers has been limited to single events during riots and theft. However, evidence suggests that the ability is evolving towards continued increased understanding of how this technology can be used, well synchronised with other activities at more advanced operations and more complex targets. Eavesdropping was a problem for analog emergency operations since activists and criminals could follow e.g. the police´s communications. This was prevented when the digital TETRA standard was developed

16

CAPACITY OR ROBUSTNESS? A robust radio system is designed to resist higher levels of electromagnetic interference without the loss of accuracy in the information transferred. However, high robustness against interference has its price since it costs in terms of capacity in the system. With capacity we mean for instance data rate or number of users in a certain system. Robustness against interference always means that redundancy is put in the system. This redundancy steals capacity that could be used to send pure information bits. In civilian consumer wireless communication systems, capacity has in general the highest priority since as many users as possible is the overall purpose of those systems, for commercial reasons. In military & space systems however, robustness in general has the highest priority since it is of vital importance that all information reaches the end user even if hostile jamming is present. In Figure 2, this is illustrated by a comparison between systems with different degree of robustness against interference. All three systems in Figure 2, need one channel for their transmission needs. The military system can typically use up to 2320 channels in the 30–88 MHz band only for increasing the robustness against jamming. The radio system for remote-control of a factory crane typically can

www.electronic.nu – Electronic Environment online


Electronic Environment #3.2017

Table 1. Example of wireless technologies/standards in security & safety applications

GPS-signal comprises a bandwidth of 2 MHz and the military uses 20

Figure 2. Examples of how the tradeoff between capacity and robustness against interference is done in practical applications.

MHz. Thus, jamming a military GPS signal would in general require ten times the power than needed to jam the civilian GPS. Furthermore, robustness against interference does not have anything to do with security against eavesdropping. However, this is not always fully understood by users. Encryption does not provide any robustness against interference but makes it difficult for an eavesdropper to obtain information from the signal. In Figure 3 we show examples of how robustness against interference and security against eavesdropping differs between some standards and applications. In general, military and space systems are designed to have an inherent robustness against interference. Furthermore, public broadcast services, as e.g. public radio stations, are also robust to interference due to its high transmission power and good antenna conditions. Both TETRA and public mobile networks (e.g. GSM, 3G, 4G) are well encrypted but are vulnerable to intentional jamming, see e.g. [15][16]. When the TETRA standard was developed in the 1990´s, encryption was prioritized and not robustness against jamming. At that time, the threat from intentional jamming was not present but has increased the last 10-15 years due to the increased availability of efficient low-cost jammers sold on the Internet.

PERFORMANCE DEGRADATION DUE TO ELECTROMAGNETIC INTERFERENCE EMC problems in wireless systems can result in a variety of symptoms for the user. The most obvious impact of jamming and unintentional interference may be disruption in the wireless system. In that case, the user gets a clear sign that a problem has occurred. However, disruption is not always the most common sign of that interference and/or jamming is present. Depending on the system of interest different more or less diffuse consequences can occur such as

use up to 12 channels for increased robustness. In a TETRA-system, however, four users typically share one single channel. As an example, if a military radio uses all available channels in the 30-88 MHz frequency band, a jammer would have to increase its power with approximately 33 dB in order to ensure the same interference impact as on a TETRA channel. For wireless communications in critical security & safety applications, it is of vital importance to cope not only with unintentional interference from co-located electronics but also from intentional jammers. Thus, in these applications, the requirements on the wireless systems are similar to that for military and space communications. An important conclusion from this is that if we in critical applications use products optimized for capacity and therefore with negligible robustness against interference, we have opened up for a serious vulnerability against jamming. Another example on the difference in robustness between civilian consumer products and military products are GPS. The civilian

• Reduced communication range • Lost calls/messages • Latency of data • Reduced number of users in networks • Position errors (GPS) • Increased sensitivity to electronic attack (increased range for jammers) • Shorter detection range for warning systems Hence, the appearance of jamming and interference is often difficult to recognize. If one user exhibits lots of interference, incoming calls will not be registered. However, outgoing calls from that user will function as usual. In that situation the communication will work in one direction which will probably cause confusion. In some systems, such as wireless local area networks (W-LAN) an increased amount of interference results in time delays and slower data rates. In a GPS receiver, interference can cause either disruption or an increased position error, depending on the specific receiver design.

www.electronic.nu – Electronic Environment online

17


Electronic E Electronic Environment #3.2017 nvironment #1.2017

vulnerable to electromagnetic interference and jamming if this will cause disruption in the GSM-R signal for a certain amount of time. Jamming against GSM-R has been studied e.g. in [8] where an overview of different jamming methods is shown together with results where the bit error rate (BER) is measured for different jammer-signal ratios and different jamming signals. In our example, we also use an analysis based on power ratios to analyze the vulnerability for a specific scenario. In Figure 4, we show an example of the Signal-to-Noise Ratio (SNR, here including the

Figure 3. Examples of how robustness and security against eavesdropping differs between classes of wireless solutions.

First responders report to the authors that the shift from analog to digital radio systems has one major practical drawback with respect to unpredictable communication problems. In older analog systems it was possible to, on an early stage, experience an emerging communication problem since the analog device in general has a rather smooth transition from a state with high communication quality to a stage with low communication quality. The analog device gradually indicates to the user if interference or other reception problems are approaching. If the device is used for voice communication, the indication can typically appear as an increasing noise level. This gives the user the possibility to take actions to prevent disruption such as moving to another position. Additionally, an aggravation property of digital systems is that the transition from high to low communication quality goes very rapidly, with no chance for the user to react with precautions because the used channel code does not give any improvement beyond a specific noise level. Therefore, disrupted communication perceives to arise more sudden for digital radio systems than for analog systems. This means that a user in practice has very limited possibilities to identify and react to communication problems. Radio terminals usually do not support the users by warnings about the upcoming communication problem. Experience has shown that unpredictable disruption of communications during emergency operations can have severe consequences both for personal safety and for the ability to conduct a successful operation. An early-warning service for emerging communication disruption due to both unintentional interference and jamming, would therefore be a significant contribution for increased safety and security in such operations. A possible solution for such an early-warning service both on the terminal and on higher system level is presented in [5].

Figure 4. Examples of the SNR as a function of time when a train passes by a fixed 1mW or 10 mW generic interference source at 30 or 100 meters from the railway track. The train has a velocity of 200 km/h.

Table 2. Comparison between properties and need for wireless services.

RESULTS FOR A GENERIC INTERFERENCE SOURCE AND GSM-R To illustrate the consequence of an EMC-problem on a wireless application, an example involving a generic electromagnetic interference source is shown. GSM-R (Global System for Mobile Communications – Railway) or GSM-Railway is an international wireless communications standard for railway communication and applications. GSM-R is a sub-system of European Rail Traffic Management System (ERTMS), and is used for communication between train and railway regulation control centres. The other part of ERTMS is the European Train Control System (ETCS), which is a signaling, control and train protection system designed to replace the many incompatible safety systems currently used by European railways, especially on high-speed lines. In ETCS, upper limits of latency are specified for Quality-of-Service. The train maintains a circuit switched digital modem connection to the train control center at all times. This modem operates with higher priority than normal users. If the modem connection is lost, the train will automatically stop. This can occur e.g. if the latency exceeds a certain limit or the transmission is disrupted for a certain amount of time. Such feature makes the system

18

www.electronic.nu – Electronic Environment online


Electronic Environment #3.2017

interference power) in a GSM-R receiver on board a train, with a velocity of 200 km/h, will be affected as a function of time when a static generic interference source is passed. The system is assumed to initially have an SNR of 15 dB before the train is interfered by the jammer. The received signal at the GSM-R receiver is assumed to -70 dBm (based on that the received power at the train antenna typically ranges between -20 dBm and -90 dBm [8]. The time value 0 s denotes the moment when the train passes the jammer at the shortest distance d. The interference source is assumed to have an output power I of 1 or 10 mW and has an omnidirectional radiation pattern. In the figure, the SNR requirement of 9 dB is inserted [14]. In [6], a maximum transmission interference time of 1 s is specified. The parameter specifies the maximum time the SNR of the GSM-R receiver may be lower than a certain acceptable level to not violate the GSM-R service. If the SNR is lower than a certain limit, the result will in practice be as if the link is disrupted or lost. In the figure, the blue curve shows the resulting SNR when also considering the influence of ground reflection (two-ray ground model, assuming antenna heights of 2 and 4 m, respectively) as an example. The figure shows that there is a substantial risk for service outage even for low-power interference sources at rather short distances and that the results are not particularly dependent on the assumed channel models. The figure shows that in such scenario, the link could appear as disrupted for up to 20 seconds. Other applications with critical time requirements are active road safety services based on the IEEE 802.11p standard intended for vehicle to vehicle/infrastructure (V2X) communication. Most active road safety applications have a requirement on maximum delay of 100 ms [10] to ensure that the information is still valid in such mobile scenarios. As the system standard is based on carrier sense multiple access (CSMA) and also uses automatic repeat request (ARQ), there is a great risk for delays, especially in harsh environments with many users.

PRODUCT PROPERTIES VERSUS NEEDS We have seen that robustness against interference is in general not prio-

ritized in typical civilian consumer wireless products. There is however other important needs that have to be fulfilled for wireless solutions in security & safety applications. In Table 2, we show other properties and how these can be fulfilled by civilian consumer products. As seen, some needs are fulfilled and some needs are not (indicated by red text color in the table). There are several special needs for security & safety applications that are not met by consumer products so here is the challenge to meet these requirements without increasing the cost tremendously.

CHALLENGES Wireless communications are in general sensitive to both unintentional and intentional electromagnetic interference. Therefore, the EMC challenges are important to consider in an early phase of development or procurement. This is highly important in security and safety applications since malfunctions can have severe consequences for both people and materiel. From the discussions above, we can summarize some important challenges: • address service-critical properties such as latency, robustness against interference, physical robustness, early warning for emerging communication problems, and information assurance regarding resistance to cyber attacks, within reasonable cost of money, and • provide geographic availability of services for consumer products used in security & safety applications. Without fulfilling these properties, the communication services cannot be assured and the consequences can be devastating for security & safety services. Other properties that are important to address are: • security against eavesdropping • establish long-term maintenance for consumer products that are used in security & safety applications, • provide usability in terms of human-machine interface adapted to the special conditions for security- and safety personnel.

(14 #.. ;174 X *'4/#. #0& 5'#.+0) 51.76+105

-ROH[ $% 9lVWHUYLNVYlJHQ 9lUPG| 7HOHIRQ )D[ PDLO#MROH[ VH ZZZ MROH[ VH

www.electronic.nu – Electronic Environment online

19


Electronic Environment #3.2017

CONCLUSIONS A continued increase in the use of interference-sensitive wireless technology in critical societal functions dramatically increases the vulnerability to both accidental (unintentional) and intentional interference. As the ability to use jamming is increasing among civilian actors, this is important to consider over the next few years in all situations where wireless technologies are being considered for critical societal functions. This development calls for several challenges in the research and development of more robust wireless solutions. Standard consumer wireless products can be used for non-critical functions in security and safety applications. However, for critical functions there is a need for more robust solutions not to get a very vulnerable society with respect to electromagnetic interference.

References [1] Baldini, G., Karanasios, S., Allen, D., and Vergari, F.: ‘Survey of Wireless Communication Technologies for Public Safety’, IEEE Communications Surveys & Tutorials, vol.16, no. 2, pp. 619-641, Second Quarter 2014. [2] Ferrus, R., Sallent, O., Baldini, G. and Goratti, L.: ‘LTE: the technology driver for future public safety communications’, IEEE Communications Magazine, vol.51, no.10, pp.154-161, October 2013. [3] Boccardi, F., Heath, R.W., Lozano, A., Marzetta, T.L. and Popovski, P.: ‘Five disruptive technology directions for 5G’, IEEE Communications Magazine, vol.52, no.2, pp.74-80, February 2014. [4] Stenumgaard, P., Chilo, J., Ferrer-Coll, P., and Ängskog, P.: ‘Challenges and conditions for wireless machine-to-machine communications in industrial environments’, IEEE Communications Magazine, vol.51, no.6, pp.187-192, June 2013. [5] Stenumgaard, P., Persson, D., Larsson, E.G., and Wiklundh, K.: ‘An early-warning service for emerging communication problems in security and safety applications’, IEEE Communications Magazine, vol.51, no.5, pp.186-192, May 2013. [6] ETSI TR 10268, Intelligent Transport System (ITS); Vehicular Communications; Basic Set of Applications; Definition, ETSI Std. ETSI ITS Specification TR 102 638 version 1.1.1, June 2009.

[7] ‘Ship trackers ‘vulnerable to hacking', experts warn’, BBC Technology News, 31 October 2013. [8] Mili, S., Sodoyer, D., Deniau, V., Heddebaut, M., and Philippe, H.: ’Recognition Process of Jamming Signals Superimposed on GSM-R Radiocommunications’. Proc. of the 2013 International Symposium on Electromagnetic Compatibility (EMC Europe 2013) Brügge, Belgium, September 2-6, 2013, pp. 45-50. [9] ITU-R M.1371-5, Technical characteristics for an automatic identi fication system using time-division multiple access in the VHF maritime mobile band (02/2014). [10] International Association of Fire Chiefs [2008]. Interim Report and Recommendations: Fireground Noise and Digital Radio Transmissions, http://www.iafc.org/associations/4685/files/digProj_DPWGinterimReport.pdf, Accessed June 3, 2009. [11] ‘Global Navigation Space Systems: reliance and vulnerabilities’, Report issued by the Royal Academy of Engineering, March 2011. [12] ‘Sentinel project research reveals UK GPS jammer use by Chris Vallance’, BBC Technology News, 22 February 2012. [13] ‘FCC Fines Operator of GPS Jammer That Affected Newark Airport GBAS’, Inside GNSS News, August 30, 2013. [14] Giannini, V., Craninckx, J., and Baschirotto, A.: ‘Baseband Analog Circuits for Software Defined Radio’ (Springer, 2008). [15] Lichtman, M., Reed, J.H., Clancy, T.C., and Norton, M.:’Vulnerability of LTE to hostile interference’. Proc. IEEE Global Conference n Signal and Information Processing (GlobalSIP), 2013, pp.285288, 3-5 Dec. 2013. [16] Stenumgaard, P., Fors, K., and Wiklundh, K. ‘Interference Impact on LTE from Radiated Emission Limits’. Proc. IEEE EMC 2015, Dresden, Germany, Aug. 2015.

Peter Stenumgaard and Kia Wiklundh Swedish Defence Research Agency

See emission and immunity sources at components level! Using the EMC-Scanner during the early stages of design enables you to detect potential emission or immunity problems before they become integrated into the product and expensive to correct. See what an EMC scanner can do for you, visit our website www.detectus.com.

See it before you 20

it!

q +46 (0)280 41122 p +46 (0)280 41169

info@detectus.com www.detectus.com

S. Hantverkargatan 38B SE-782 34 Malung

www.electronic.nu – Electronic Environment online


Electronic Environment #3.2017

Noterat Graphene and other carbon nanomaterials can replace scarce metals the Congo where they fund armed conflicts. In addition, they are difficult to recycle profitably since they are often present in small quantities in various components such as electronics.

Scarce metals are found in a wide range of everyday objects around us. They can be found in your computer, in your mobile phone, in almost all other electronic equipment and in many of the plastics around you. Society is highly dependent on scarce metals, and this dependence has many disadvantages. A survey at Chalmers University of Technology now shows that there are potential technology-based solutions that can replace many of the metals with carbon nanomaterials, such as graphene. Scarce metals such as tin, silver, tungsten and indium are both rare and difficult to extract since the workable concentrations are very small. This ensures the metals are highly sought after – and their extraction is a breeding ground for conflicts, such as in the Democratic Republic of

Rickard Arvidsson and Björn Sandén, researchers in environmental systems analysis at Chalmers University of Technology, have now examined an alternative solution: substituting carbon nanomaterials for the scarce metals. These substances – the best known of which is graphene – are strong materials with good conductivity, like scarce metals. “Now technology development has allowed us to make greater use of the common element carbon,” says Sandén. “Today there are many new carbon nanomaterials with similar properties to metals. It’s a welcome new track, and it’s important to invest in both the recycling and substitution of scarce metals from now on.” Carbon nanomaterials consist solely or mainly of carbon, and are strong materials with good conductivity. Several scarce metals have similar properties. The metals are found, for example, in cables, thin screens, flame-retardants, corrosion protection and capacitors. Rickard Arvidsson and Björn Sandén at Chalmers University of Technology have investigated whether the carbon nanomaterials graphene, fullerenes and carbon nanotubes have the potential to replace 14 scarce metals in their main areas of application. They found potential technology-based solutions to replace the metals with carbon nanomaterials for all applications except for gold in jewellery. The metals which we are closest to being able to substitute are indium, gallium, beryllium and silver. Källa: Chalmers

Komponenter för kraftelektronik, EMC & RF/Mikrovåg

Batterier & batterihållare • EMC & Termiska material Induktiva komponenter • Kondensatorer • Nätaggregat • RF/Mikrovåg

Flexitron AB • Veddestadvägen 17 • 175 62 Järfälla • 08-732 85 60 • info@flexitron.se • www.flexitron.se

www.electronic.nu – Electronic Environment online

21


Electronic Environment #3.2017

ANTENNKALIBRERING SÄKRAR MÄTRESULTATEN Genom regelbunden kalibrering av antenner och fältstyrkeprobar säkrar du kvaliteten och kan bestämma osäkerheten på slutmätningar. Många antenntyper kalibreras på RISE Här kalibreras ett flertal antenntyper som monopol-, dipol-, bikon-, logperiodiska-, spiral-, horn- och hybridantenner. Vi kalibrerar också fältstyrkeprobar och strålningsmätare. Antenner som används vid ackrediterad provning vid certifiering, CEoch E-märkning med mera måste vara kalibrerade med spårbarhet till en nationell normal. RISE är riksmätplats för antennvinst (gain) och antennfaktorer (AF). Säkra din mättekniska spårbarhet RISE har hela den spårbarhetskedja som moderna kvalitetssystem kräver vid kalibrering av mätinstrument. Vi utvecklar ny mätteknik från grunden i forskningssamarbeten och deltar i internationella jämförelsemätningar. Detta säkrar spårbarheten från de nationella normalerna eller referenserna till dina mätningar – allt under samma tak. Läs mer på: http://www.sp.se/emc RISE – SVERIGES FORSKNINGSINSTITUT. Innventia, SP och Swedish ICT har gått samman i RISE för att bli en starkare forsknings- och innovationspartner. I internationell samverkan med akademi, näringsliv och offentlig sektor bidrar vi till ett konkurrenskraftigt näringsliv och ett hållbart samhälle. RISE 2 200 medarbetare driver och stöder alla typer av innovationsprocesser. Vi erbjuder ett 100-tal test- och demonstrationsmiljöer för framtidssäkra produkter, tekniker och tjänster. RISE Research Institutes of Sweden ägs av svenska staten. www.ri.se

22

www.electronic.nu – Electronic Environment online


Electronic Environment #3.2017

TROUBLESHOOTING EMI (PART I, Emission Problems) Some Simple hints for identifying and fixing EMI troubles

Preamble. This article covers the essential aspects of a domain which is seldom addressed in current EMC litterature: « What to do when an equipment – or a whole system- is failing the tests or experiencing Interference (EMI) problems ? ». Whatever we are dealing with a prototype at the end of its development phase, failing one or several EMC tests, or an already installed equipment that exhibit on-site problems, we face a situation that must be solved quickly, with an equipment that cannot be deeply modified. Contrasting with a development phase where many EMC solutions are available on a product that is still flexible, the engineer confronted to a failing equipment has to detect, diagnose and fix a problem that could be unpredictable, with elusive symptoms, troublesome and penalizing for the user. RFI, ESD, Transient surges, Crosstalk are complex threats involving many interactive mechanisms. No human brain can see at a glance all the possibilities and limitations of the available solutions, where options are limited anyway. Here we will explain how to identify an EMI problem and its coupling paths in order to correct it with fixes that must be quick, using components that are readily available and applicable in the field, if necessary. All this by using instruments and accessories that are portable, rugged and relatively unexpensive, not requiring the sanitized environment of an anechoic shielded room.

www.electronic.nu – Electronic Environment online

23


Electronic Environment #3.2017

This Part I of the article is focusing on EMI Emission problems. A forthcoming article, Part II will cover Susceptibility problems, including those occuring in the field, where we do not have the commodities and elbow room we enjoy in a development lab. Note: Readers interested by this topic should read – or briefly return to-our articles 1 to 8 (EE magazines #2015.3 /September, to #2017.1 / March), such as they acquire a basic knowledge of EMI/EMC. Unless you are already a seasoned EMC specialist, the present article without such basics would be worthless since it contains no theory. Rather, it gives practical guidelines for most EMI crash situations.

1. VARIOUS ASPECTS OF AN EMI PROBLEM An EMI problem - assuming it was unexpected - in fact many times it WAS expectable, coming out of a design that neglected EMC, of some deliberate cost savings or lack of installation precautions - may show-up with different situations: A) The status of the equipment: - equipment is a well advanced prototype, or early pre-production item, or - equipment is already in production and sold to customers, with little possibilities, if at all, for modifications B) The nature of the problem - equipment is failing on one or several EMC mandatory tests, Emissions or Immunity. - the stand-alone equipment did not fail (or not yet) the EMC tests, but creates functional problems when integrated in a system configuration - the equipment is malfunctioning on-site, in certain installations only.

such cases. Also, with decibels, thanks to the logarithms, multiplications become additions and divisions become substractions. By definition, the ratio of two Power is expressed by: KdB = 10 Log (P1/P2) where P1 : power in Watts (or mW) of measured or computed phenomena P2 : reference power in Watts (or mW) Power is not commonly used in EMC parlance, where amplitudes are more the rule. However, power is mentioned in RF applications where power amplifiers or Radio transmitters are used. The ratio of two amplitudes (Voltages, currents, E field or H field) is expressed by:

Table 1. Broad recap. of the essential Amplitude and Power ratios, and their dB equivalents Amplitude Ratio

C) The occurrence of the problem - problem is continuous or quasi-continuous (occuring frequently, in a repeatable manner) - problem occurs rarely, in a random, unpredictable manner Each one of these A, B, C conditions, and eventually their combination will require a different approach, according to the urgency, cost and possibility of investigations. Note: we intentionally ruled-out the case of an equipment that is disturbing itself (Internal EMI), since such problem is normally discovered soon enough during development phase. Yet, this case can be analyzed using the routines described in this article.

2. BRIEF REMINDER OF BASIC EMI/EMC TERMS & UNITS This short paragraph is for those readers having no access to printed or electronic copies of the EE magazine articles listed above. Traditionnally, voltage, current and fields are expressed in Volts, Amperes, Volt/m (E-field) or Amp/m (H-field). However, in EMC when dealing with sensitive receivers or with Emissions testing, these standard units are much too large and submultiples are used instead, the most common ones being: MicroVolt (µV), MicroAmp (µA), MicroVolt/m (µV/m), MicroAmp/m (µA/m). Example: a good FM receiver tuned on a given station has a typical sensitivity of 0.5 to 1µV on its RF input (antenna socket). Given approximately 0.1V per V/m for its rod antenna factor, the minimum discernable field by this radio set is : 1µV / 0.1 = 10µV/m.

2 3,15 10 100 1000 0,5 0,31 0,1

Power Ratio

4 10 100 104 106 0.25 0.1 0.01

Corresponding dB

+6 +10 +20 +40 +60 -6 -10 -20

In EMC, the decibel is not just used as a dimensionless term expressing gain or attenuation. We associate the dB to a unit, in order to express an amplitude. This way, voltages in µV can also be expressed in dB above 1 µV which writes dBµV, currents expressed in dBµA and so forth. Examples: 1µV = 0dBµV, 100µV = 40dBµV 200µA = 2 x 100 µA = ( 6dB + 40dB) above 1µA, that writes: 46dBµA A 60dBµV RF noise, once passed through a 26dB filter will appear as 60dBµV - 26dB = 34dBµV. Notice that we have substracted dB (dimensionless ratio) to dBµV, therefore the result is dBµV. Speaking in linear terms, we’d have divided a voltage by a number (the filter attenuation), so the result is a voltage. When dealing with power, the Watt is often a too large unit, and the practice in radio, telecom and EMC has been to use the milliWatt, that expresses in dBm: 1mW = 0dBm, 10mW= 10dBm, 1000mW (or 1 Watt) = 30dBm Converting dBm into dBµV is possible if we define the impedance where this power is applied. For instance, into 50Ω (the typical impedance in the EMC instrumentation): 0 dBm (or 1mW) into 50Ω corresponds to 107dBµV ( or 223mV)

Why Decibels? The Decibel is widely used in EMC community for many reasons: - Specifications levels are most often imposed in dB - EMC hardware (filters, shields etc ..) performances are given in dB - Most measuring instruments are scaled in dB But why is it so? Simply because an EMI situation is often facing a huge dynamic range: sensitivity in the µV or mV may be confronted with strong fields, or power transients with amplitudes of kV, that is 6 to 9 orders of magnitude. Logarithmic scale is more convenient than linear in

24

KdB) = 20 Log10 (A1/A 2) where A1 : amplitude of measured or computed phenomena, A 2 : reference amplitude

Why frequency domain? Except for transient pulses like Power line spikes, lightning, ESD etc, EMC problems are most often treated in the frequency domain, because: - Most EMC Specifications levels are shown on frequency scales or curves - EMC hardware (filters, shields etc ..) performances are characterized in frequency domain - Most measuring instruments and sensors are scaled in frequency

www.electronic.nu – Electronic Environment online


Electronic Environment #3.2017 Intentional Digital Signal (30 MHz Clock)

dominant odd harmonics 32ns 115Vrms

Harmonics + spurious contents of a functional signal

90

Volt / MHz

100V

150

100kHz

tr

10MHz

Spectrum Envelope 1/F

1µs

TD

210 F(MHz)

<1V F0 400Hz 50Hz or

50Hz or 400Hz

3ns

30

1/F2 F1: 1

πTd (0,32MHz)

F2 = 1

πtr 106MHz)

Fig. 1. Examples of some simple time-to-frequency conversions. Even a single pulse can be pictured in frequency domain by its «Occupied Bandwidth». This frequency (F2) can be used as the «equivalent» freqency for filtering or coupling approximations.

Common Mode» voltage or current, a key definition which is the crux of many EMI manifestations and solutions. The simple circuit on Fig.3 shows a wire pair carrying two sorts of currents: - a) the intentional current flowing towards the load then back to its source is called Differential Mode (or «balanced») current. The amplitude difference between the upper and lower wire opposite currents is null, since it is the same current. A corresponding Differential Voltage is found across the pair, or the load. - b) Currents coming from an outside source, or resulting from a non-perfect balance vs ground are flowing on the two wires of the pair in the same direction, returning by some ground path ( ground wire, earth plane etc ..). This is called the Common (or «unbalanced») Mode. A corresponding Common Mode voltage is shown, as being the driving source. CM voltages and currents are a major cause of EMI problems, since they often originate from invisble, non-intentional sources and follow invisible or non-intentional paths.

Idiff

Thus, many EMI emission problems or measurements end-up in measuring at some discrete frequencies. Also many calculations (field reflections, skin effect, transfer functions, resonances, Crosstalk etc..) are simpler to perform in frequency domain. Even with a single pulse, quick calculations can be carried using a sinewave at equivalent frequency ( i.e. bandwidth) reciprocal to the pulse risetime (Fig.1) Therefore, in many cases where the signals are known by their time waveform, the EMC specialist will translate them in frequency domain, using Fourier conversion.

The Source / Victim Concept

VCM

Icm

Idiff Icm

Load

Vdiff

Icm

Fig . 3. Conceptual view of Differential and Common Mode currents.

Basic EMC Requirements, imposed by law, or Industry/ Military standards

Given the complexity of the intercations in an EMI situation, a clear and simple way for addressing the « who-does-what » is the «source and victim» concept (Fig 2 ). An EMI problem can be viewed as a theater act staging 3 players. These three actors are needed on the stage for the performance to exist. If only one is missing, there will be no playing.

• Electrical/Electronic Equipment/System must operate satisfactory in its intended environment • System must be self-Compatible (intra-system EMC) • System must not interfere with neighbour systems

• the source of EMI, which can be a natural phenomenon (lightning or ESD), or man-made devices that generates high frequency intentionnaly (authorized RF transmitters) or as a byproduct of their operation (digital circuits and switch mode power supplies). • the victim of EMI, which can be any analog or digital circuit whose low-level input can be activated, and eventually damaged by undesired signals. • the coupling between source and victim, which can be a conducted path, a radiated path or an in-between like cable-to-cable crosstalk.

• System must have a sufficient immunity to potential neighboring interference Table 2. Compared severities of EMC regulations depending on the type of environment. EUT Environment

Emission Regulations Immunity Regulations

RESIDENTIAL

MOST SEVERE

LESS SEVERE

INDUSTRY

LESS SEVERE

MOST SEVERE

3. A FEW FACTS LEADING TO TROUBLESHOOTING OPTIMIZATION AND TIME SAVING For both Emission and Susceptibility specifications, Conducted and Radiated aspects are treated separately, since the former are generally the dominant mode below 10-30 MHz region, while the radiated concerns are generally the driving issues above 30 MHz.

Advantages of early EMC testing during the design phase

Fig. 2. The source-and-victim concept, a basis of the EMI/EMC strategy. In an interference case, your equipment can be the victim, or the source. Each source can disturb any victim through some of the principal coupling paths.

Statistics from EMC test labs reveal that 50% of the products submitted for final compliance fail the first time, at least on one test. Using the simple workbench tests described here, that statistic can be reduced to only 10 or 15% (H. Ott, Ref 2). Although not as accurate as legitimate measurements at a certified lab, workbench EMC measurements are simple, inexpensive and can be performed early in the development phase of a product in order to get a preview of its EMC performance or

www.electronic.nu – Electronic Environment online

25


Electronic Environment #3.2017

weaknesses. They can be run in the designer’s laboratory, with limited, relatively inexpensive equipment.

cy range, with some military, vehicle or aeronautic equipment requiring 10kHz up to 100MHz coverage.

From now-on, the equipment of concern will by designated as EUT (Equipment Under Test).

Radiated Emission Specs generally cover the 30 to 1000 MHz frequency range, for civilian regulations, extending eventually up to 6 GHz. Military, vehicle or aeronautic equipment require 10kHz up to 18 GHz. Yet, as of today, it is very unusual to find an EUT exceeding radiated emissions limits below a few MHz or above a few GHz, except for rare cases of intererence to sensitive UHF receivers. Given the above coverage the following test gear is a minimum:

When planning an EMI problem investigation, one should consider that: a) EMISSION MEASUREMENTS are faster, easier to do than susceptibility ones, - You do not try making the equipment fail, you just let it run - When limit is exceeded, it is rather easy to trace the culprit source - No risk of damaging the EUT or associated equipments by excessive stress - Improvements you will apply are generally beneficial to immunity as well b) CONDUCTED MEASUREMENTS are always faster, easier to do than radiated ones: - Less instrumentation - Set-up is simpler - Less prone to measurements uncertainties / errors c) BEFORE STARTING ANY INVESTIGATION - Make yourself familiair with the EUT features relevant to EMC: main frequencies of the digital signals and switchers, type of I/O interfaces ( balanced or not) etc … - Get a figure of how many dB of improvement are needed, at which frequency (or frequency range)? Having to harden a device by 6dB or 60dB will put you on two different ball parks!

4. TROUBLESHOOTING EMISSION PROBLEMS

- Spectrum Analyzer: the most useful, and expensive piece of equipment. However rugged, portable and easy-to use Sp. Analyzers are available today for less than 3000E( Fig.4). As a minimum you need the following features: • frequency coverage of at least 0,1MHz to 1.500MHz, or 10kHz to 3GHz if you have to check EUTs for military or airborne applications. • 10kHz and 100kHz selectable resolution Bwidths, with 1MHz being also recommended. Choose a model with an internal tracking generator option, that will be useful for quick evaluation of some fixes (ferrites, filters etc ..) whose characteristics are not well known or doubtful. Prefer a model with N or SMA style RF input. BNC inputs tend to become undependable and leaky for repeated use above 30MHz. - EMI current probe: another most useful piece, quite unexpensive. Select a model with well calibrated Transfer Impedance (Zt), preferably flat between 1-100 MHz and characterized up to 300MHz. Eventually one can make his own current probe from a snap-on ferrite ring (Mardiguian, Ref 1), with a shielded core preventing pick-up of external fields.

According to our previous list, this (a) choice is the faster to perform if you have such a chance. Yet, several situations may occur:

4.1 Prototype or a Pre-Qualification item, prerequisites Here, the EUT is designed, but some aspects are not completely frozzen, thus room exist for minor changes. You are probably not (or no longer) on an EMC test site, and in any case, an EMC test chamber is not the place for cut-and-try investigations. Yet, you will need a location with the following minimum characteristics: - A quiet RF ambient, not in close proximity ( at least > 3m) to powerful noise sources like fluorescent tubes, air-conditioning compressors, elevators, power converters etc … Ground level or basement rooms, away from the building façade are preferrable to upper floor locations. - Noise-free power mains, with the EUT, associated peripherals and instruments being fed from a same ac branch that does not supply other noisy equipment. Since this is sometimes difficult to ascertain,a good precaution is to install an Isolation Transformer (IT) plus an EMI filter near the distribution panel. In addition to a good isolation from the rest of the ac distribution noise, the IT is generally needed to avoid triggering the Ground Fault Detector when you will connect the LISN (artificial network) for some tests. - A test ground plane, extending at least up to and beyond the EUT footprint, associated cables and measuring instrumentation. This ground plane will be the artificial RF reference for the entire set (LISNs, Spectrum analyzer). It can be any solid metal sheet, not necessarily copper (aluminium or galvanized steel); thickness is not important. By default, heavy-duty kitchen or barbecue-type alum. foil can do, fold in double layer for tear-off resistance. It will also allow for a well defined height-to-ground distance of the EUT cables, improving the test repeatability. For safety reasons, this plane should be connected to the nearest accessible earth reference (earth bus of the room power panel for inst.) All the instruments /accessories will be grounded to this test plane using wide, short straps. The EUT is simply grounded via its power cord safety conductor, if any. Unless it is a normal practice for its use (f. inst.: military equipment), do not ground the EUT chassis directly to the test plane.

4.2 Minimum Instrumentation for checking Conducted and Radiated Emissions Conducted Emission Specs generally cover the 0,15 to 30 MHz frequen-

26

Fig. 4. Modern spectrum Analyzer, with N-style connectors for RF input and Tracking Gen., and handy, «intuitive» manual controls. Frequency scale can be linear or log. ( courtesy RIGOL Corp)

- Low noise pre-amplifier, with ≥ 20dB gain and noise figure < 4dB. Although not necessary for powerline conducted emissions, it can be useful for detecting very low EMI signatures < 10µV, especially against stringent Radiated Emission limits - LISN (Line Impedance Stabilization Network). This artificial network is an important device that simulates a standard, typical impedance of the power mains, for both CM (L1, L 2 vs ground) and DM (L1 vs L 2) current paths. This prevents that a same EUT, tested in different places or labs could show different results because of different impedances of sites power mains distribution - Small proximity Magnetic field probes. Traditional field measurement are made with calibrated EMC antennas which are large (a 30-300MHz wideband biconical antenna is 1,30m long), and sensitive to reflections from surrounding metal objects as well as pre-existing site RF ambient. Our temporary test site has many fortuitous reflective surfaces (shelves, metal desks, chairs, lab benches) that may cause field peaks and nulls: it is impossible to perform a dependable RE test in such environment. Instead, we will measure some parameter that is proportional to the ra-

www.electronic.nu – Electronic Environment online


Electronic Environment #3.2017

10

3,2

0

-10

ments. Brand-new RG58 and BNC set can do a fair job, but coaxial cables of dubious origin with worn-out BNC can ruin a series of test records. For dependable, accurate results, especially with emission tests, prefer double braid coax with N or SMA connectors (male AND female), because they have threaded instead of bayonet fittings. In addition, double-braid coaxial cable exhibit lower losses above 100 MHz.

ohms

10

dBΩ

Zt dBΩ 20

1

0,3

-20 0,1 10 kHz

100 kHz

1 MHz

10 MHz

100 MHz

4.3 Conducted Emissions (CE) on power cord

The majority of CE specifications are addressing only the HF noise present on the main power cable. We will see Imd later that for RE investigation, substantial time savings 2x Imd and progress can be done by measuring also the noise present on I/O cables. Measuring differential mode current You should prepare in advance a coarse list of the poImd tential HF sources and their basic frequencies. An intelligent test program will anticipate what type of repetitive (or eventually random, non-coherent) noise could be preFig. 5. Example of clamp-on probe, mounted for segregating CM from DM currents, and its sent on EUT cables (Ref 4). This will facilitate the idenZt calibration curve (Right). This one is useable from 10kHz to 300MHz tification of BB versus NB nature of the emissions (see further discussion, Peak/Quasi-Peak). With the help of its diated emission, not the radiated emission itself (Ott,Ref 2). Small mag- designer, list the EUT operating modes that will exercise the maximum netic loops, much smaller than a wavelength, can be brought very close of its internal or I/O functions, and retain the ones that are likely to ( < 10cm) to the EUT for «sniffing». Such shielded loops are available cause the highest activity. off-the-shelf at very affordable prices. As an alternative to a commercial one, a simple homemade probe can be constructed from a 50-ohm coax- Since you are not in a Faraday cage, check the ambient HF noise that could corrupt your measurements. EUT cables and your own instruial cable ( Fig. 9). ments can pick-up emissions from radio stations and other ambients. - Good quality coaxial cables. Although trivial as a detail, experience All the same, if the EUT is associated with ancillary equipments, make tells that a significant amount of time and effort is often spent chasing sure these items, if supplied by their individual power cables, either do odd and non-reproducible results caused by low quality or worn-out comply withg the very CE spec limit we are looking for, or are equipped coaxial cables and especially coaxial connectors; The integrity of the with an efficient line filter, even as an add-on. The dressing of all cables braid and perfect, circumferential contact of connector backshell and at 5cm above the ground plane (see Fig. 6) will also restrain their ability mating parts with the receptacle are important for dependable measure- to pick-up RF ambients.

Hej, det är vi som är Proxitron! Vi kan bli din leverantör av utrustning och service inom EMC, elsäkerhet och miljötålighet.

Rickard Elf 0141-20 96 53 rickard@proxitron.se

Kontakta oss redan idag! Vi diskuterar gärna dina specifika servicebehov, kontakta oss för ett förslag eller ett kostnadsfritt besök.

Jonas Johansson 0141-20 96 55 jonas@proxitron.se

Proxitron AB – 0141-580 00 – info@proxitron.se – www.proxitron.se

www.electronic.nu – Electronic Environment online

27


Electronic Environment #3.2017

LISN

L1(Ph) L2(N)

EUT

EUT is grounded: - For civilian Tests, via its power cords safety wire (if any)

Metal sheet or Aluminium foil Gnd Plane

50Ω load

H = 5cm

- For MiL., Aerospace and automobile, directly to work bench ground plane, using short straps

Fig. 6. Work bench set-up for emissions measurements

Check for ambient background noise by running several sweeps of the spectr. analyzer, with the LISN, and/or current probe in place and the EUT turned off. The read-out of voltage (dBµV) or current (dBµA) should be at least 6dB below the CE limit. If this condition is not met, a CE evaluation is not feasible. However some tricks are worth trying, if there are only a few frequencies where the background noise is too high: - Record those frequencies where the background noise exceeds our limit - Change the scan width of your analyzer down to 50kHz or 100kHz per div. Since your receiver bandwidth for a CE below 30MHz is 9 or 10kHz, chances are that when you will turn the EUT «On», its signature will show out of the background spectral lines, or in-between. This procedure is safer than turning the EUT «ON» then «Off» , watching for the differences.

Test-and-Fix routine With the EUT «On», sweep the prescribed frequency range using the peak, max-hold function if available, overlaying 5 to 10 sweeps. Record the noise voltage (dBµV) at each LISN port, and retain the worst value ( Phase vs Neutral, or L1 vs L 2). If the limit is in current, do the same with the current probe successively on L1 then L 2 line. Make sure that the non-tested port at the LISN set is fitted with its 50Ω load (many commercial LISNs do this automatically). It is safe to keep at least 10dB attenuation at the Sp. Analyzer input, since dynamic range is seldom a problem with CE measurements. Where a limit violation appears (∆dB), return and zoom to these specific frequencies and try catching the culprit element by turning off, or disconnecting temporarily one of the following: - each one of the switch-mode regulators that could genrate harmonics corresponding to the limit violation - same for the processor card, if it can be unplugged or set on standby with EUT still «On» - some loads that are notoriously noisy: motors, discharge lamps etc … Caution: unless there is a surge limiter on the RF input, NEVER turnoff the EUT while the spectrum analyzer input is connected to the LISN port.

Receiver detection mode: Peak, Quasi-Peak or Average? Normally, CE limits on power line are defined in a 9kHz Bwidth and

28

EMI Receiver or Spectrum Analyser

Power leads (AC or DC)

Voltage measurement

Connect to local earthing network

⁕ If possible, add a vertical metal plane/foil connected to workbench plane

average detection. However there is a second, more liberal limit for BroadBand emissions, using the Q-Peak detector. Since it allows for faster sweeps, start with Peak detection : a) If the Pk detection display is compliant with Average limit, the EUT is compliant b) If the Pk measuremen exceeds the Average limit at some frequencies, you get a second chance, c) Repeat the measurement with the QPk detector at the sole frequencies of concern, because it obliges to slower sweeps). Compare with the QP limit, which is 10dB more permissive : • if the QP limit is exceeded, EUT is non-compliant • if the QP limit is met, repeat the mesurement in AVERAGE mode: • if the Aver. Limit is met with the Aver. Detector, the EUT is compliant otherwise it is not. Common Mode (CM) or Differential Mode (DM) ? This is important to know for selecting the optimal fixes. DM emissions ( L1-to-L 2 ) are generally strong below few hundred kHz, since they correspond to the first harmonics of the switch-mode power supplies. DM emissions are also stronger when the power input setting is lowest ( for inst 115V instead of 230V), or more generally when the EUT draws the maximum line current; in that respect, DM signature increases if the EUT is most active, and decrease with EUT in stand-by mode. In contrast, CM signature does not change with the EUT activity, but decreases if the power input setting is lowest. Segregating CM from DM contributors on a power line can easily be done with the current probe (Fig.5). Monitoring your progress with the spectrum analyzer, try reducing the excessive levels by at least (∆dB) + 6dB margin, doing the following: - if the violation is by DM noise, try a larger value for DM filtering capacitor, they are generally less bulky than magnetics. Install it between the filter choke and the power input, keeping ultra short leads. - if the violation is from CM noise, look at the way the CM filtering capacitors (line to chassis) have been mounted. They are often connected with long traces or leads: a 5nF «Y» class capacitor mounted with 30mm total lead length (2 x 15mm) becomes progressively worthless above 12 MHz. - Check-out the line filter schematic. Is there enough inductance for CM and / or DM reduction? Improve the filter efficiency ( DM or CM, depending on your finding). If room permit in the equipment, try a filter with more efficient DM or CM choke. - look at the filter mounting: often, filters are mounted too far inside the equipment instead of right at the power input. Watch for a possible

www.electronic.nu – Electronic Environment online


Electronic Environment #3.2017

coupling between input and output wires (or traces). Correct if needed. Validate your progress by a formal re-test.

4.4 Radiated Emissions (RE) check by substitute methods Complying with RE limits is one major EMC challenges during product development and testing. Often, a product has been developed using the best home-grown experience plus simualtion sofware to «make-itwork», free of internal noise problems. Radiated emissions is one of these secondary concerns that are pushed away to the day of tests to see if it passes. Needless to say, generally it does not, unless a serious EMC analysis has been carried along design phase. The methods recommended here are time-savers for identifying and reducing quickly out-of spec radiations, without bringing first the EUT to an anechoic EMC test chamber for a true radiated emission test at 1 or 3m distance with calibrated antennas, turntable etc… While the majority of CE specifications limits are addressing only power line emissions, below 30 or 50MHz, the rationale of our investigation method is that ANY external cable, by the Common Mode (CM) current it carries, can easily radiate more than the box itself up to 200300MHz. This is because the mere geometric dimension of the I/O cables, usually exceeding 1m, makes them effficient antennas, while the internal EUT’s PCB traces represent dipoles or loops with sizes one or two order of magnitude smaller. Ideally, with intentional signals (differential-mode signals), the current flows down one wire of the cable and returns via a close, adjacent wire, hence the net current should be almost zero and the CM radiation be almost non-existent. Since an actual I/O interface is never ideal, the CM current is the unbalanced current (current not returning on the cable). If this current is not returned on the cable, where does it flows? Via the cable stray capacitance, which means radiation. Thus, measuring the undesired CM current on each I/O cable is one of the most useful things that you can do ( Ott, Ref 2). Above ≈ 300MHz, were wavelength λ becomes less than one meter (i.e. l /4 < 0,25m), the cable resembles an antenna that progressively «shrinks», while the internal EUT wiring and PCB traces eventually override cable radiation (Ref 4).

4.5 Measuring CM Currents on Cables. The CM current can easily be measured with a calibrated high-frequency clamp-on probe and a spectrum analyzer as shown in figure. 5. The set-up remains the same as for the true CE test on power line, but this time ALL cables will be measured. Current probe must be moved along the 1.50 m cable section that is closer to the EUT box to make sure you do not miss a maximum of current standing wave. Based on simple antennas formulas (Ref.4) Table 3 shows the maximum CM current that can be tolerated, from 30 to 400MHz, on I/O cables for civilian residential (Class B), industrial (class A) and Military (RE 102) compliance. The following assumptions are made for these Pass / Fail criteria: - For FCC/CISPR, • frequencies > 30 MHz • cable length greater than 1.50 m • cable height : h ≥ 0.75m A 5 dB margin has been accounted for ground reflection. - For Mil 461F-RE102, additional factors are coming into play: • Cables are laid at 5 cm above the ground plane. • The limit relaxes progressively above 100MHz (Mil 461E, F). • Actual field measurements are made at 1m distance

Notice that, up to 400 MHz and regarding cable radiation only, the criteria for the most severe Mil.Std 461 limit are quite close to what would be required for FCC-15 or CISPR22 class B. If on each I/O cables, we satisfy the Icm table limits on every spectral line, we know that, at least, the contribution of the cables will keep us below the spec limit. If we fail this CM current test, we will surely fail the Radiated Emission test. A word of caution: you are not in a RF-clean environment and your cables may pick-up from external sources such as local FM and TV broadcast stations. All measurements must, therefore, be validated to assure that you are measuring what you think you are measuring. A simple validation test in this instance is to turn the product Off and see if the reading goes away. If it stays, it is due to external pickup. For instance, signals in the 88 to 108 MHz (FM) frequency range should be suspect, and double-checked by turning the EUT «Off». Numerical example: Using the current probe of Fig.5, the following maximum voltage values have been recorded on the Spectr. Analyzer (50Ω input). Once translated into cable current, do we meet the criteria for class B radiated emissions? Freq:

50 MHz

80MHz

250MHz

1) Probe read-out V(dBuV)

38

46

34

2) Probe factor (dBΩ)

20

20

16

3) Actual current I(dBµA) = (1) - (2)

18

26

18

Class B criteria for Icm:

10

10

16

∆dB off spec:

+8

+16

+2

The Icm limit is exceeded by 8 and 16 dB at 50 and 80 MHz, leaving no chance for passing a real RE test. There is a sleek chance that the 250MHz emission be OK, but the margin will be thin . WARNING: the Icm limits are peak reading, as displayed by the Sp. Analyzer. Make sure that they have been measured with a 100 or 120kHz BWidth, with a video BWidth set at 0,3 or 1MHz. For instance, if some of the above-limit lines are harmonics of a 30 or 50kHz swicher, there will be 3 or 2 harmonics adding-up in a 100120kHz bandwidth, compared to what has been seen in the conducted emission(CE). This technique works on shielded cables, too. It can be a good way to pin-point possible weaknesses of your cable shield, including its terminations. A question often arises: If our current probe sees a current on the cable shield is it really the shield current that we see ? (typical answer will be «yes»…). NO ! It is the CM current that escapes the shield and returns by the outer, invisible path, that is radiation. This gives a measure of the quality of the shield, whatever it is.

4.5 Interpreting and reducing CM emissions from I/O Cables. Once the contribution of the I/O cables has been measured, if they violate our Table 3 criteria - as they often do on a prototype or pre-production item, we will work at bringing them below the corresponding limit. While trying improvements, measure one cable at a time with the current probe. If the product is still amenable to limited changes in the I/O ports areas of the PCB, and /or Power input filter area, use surfa-

Table 3. Maximum allowable CM current on external cables for RE compliance. 50 to 230 MHz • for CISPR Class A : Icm 10 µA (20dBµA) • for CISPR Class B : Icm 3 µA (10dBµA) F(MHz) • for Mil. 461-RE102 ELimit (dBµV/m) most severe limit (Air Force) Icm (dBµA):

230 to 400 MHz 20 µA (26dBµA) 6 µA (16dBµA) 50 24 10

75 24 7

100 24 4

200 30 4

www.electronic.nu – Electronic Environment online

300 34 4

29


Electronic Environment #3.2017

ces are, especially with fast logic running at clock speeds > 30 MHz, that the EUT box itself radiates above the permitted limit.

Has a formal RE test been done? Yes

Pass?

No Yes

END

Before moving to EMC Lab concentrate on external cables

No Take note of all the ∆dB above spec. and their thei frequancies frequencies While in EMC room, Re-test the EUT:

•stripped of all signal cables •power cord pressed on test and gnd plane by by a wide copper tape

Pass?

Yes

- Measure CM currents on all cables - Compare to Icm design limit - If needed, work on reducing Icm: • ferrites • filtering • shield cables until Icm < design objective

This is were a miniature near-field probe could be used. Without trying to convert the readout into E-field, crude measurements made with such H-field probe allow making A/B comparisons of the Sp. Analyzer scans, when improvements are attempted. But this implies that we have at least one actual RE measurement reference for the EUT box-only radiation on a qualified test site, as we will see next.

4.6 Measuring Radiated Emissions from EUT box alone (I/O cables excluded) Once the contribution of the I/O cables has been checked and reduced, an actual RE test in an EMC test lab can be made, with fair chances of success, except for the risk of radiation emanating from the EUT box itself. If the EUT with its EMI -hardened I/O cables still fail the test, we will re-test without the I/O cables ( see chart Fig. 7)

Bring EUT to EMC tab for RE test with all cables

Pass?

No

Yes

END

No

EUT box radiation is the problem

Investigate at box level with small H-field loop, insisting on Frequencies where Limit is exceded.

• PCBs hot spots • Leakages if box is entirely or partially metallic Fix until probe readings are reduced by ∆dB+6dB

Return to EMC Lab for validation with all cables

Fig. 7. Decision chart for troubleshooting problems after a first RE test, by probing CM current and near field H loops.

ce-mount CM ferrite, surface-mount signal filters or filtered connector sockets, depending on the function of the faulty cable. - If the faulty cable (or one of them) is the power cable, do not take for granted that the filter is not guilty just because you passed the formal CE test. Power line filters are often optimized up to 30-50MHz, because this is as far as the CE spec goes, and their attenuation could very well drop beyond this frequency range. Try to install an additional bifilar-wound ferrite, or small ceramic CM capacitors, line-to-chassis, close to the power entry port. - Check that there is a good, metal-to-metal bonding of the PCB Zero Volt (signal Gnd) to chassis, close to every I/O port. - Inspect the internal EUT wiring, checking for possible crosstallk between I/O wires and internal wire/traces that do not come out. - Replace unshielded cables /pairs by shielded ones, or if already shielded, check that the shields are making a perfect (360°) contact with their housing/receptacle, straight to the EUT chassis.

Fig. 8. RE test results and investigations. Red dots represent the contribution of I/O cables to the limit violations, that disappear when cables were removed. Blue dots are the off-spec (or close to) radiations due to EUT box alone, that will be investigated and fixed separately.

After each fix or set of fixes, repeat the Spectrum scans with the current probe to check if - and by how many dB - you have reduced the CM current, until NOT ONE spectral line exceeds our CM current limit. When you have been through all cables one by one, run an overall check of the CM currents: some may have increased on a previously fixed cable (the classic «balloon effect»). At this point you can feel confident that the cables will no longer cause a violation of the radiated emission test at a qualified EMC facility. However you are left with a last possibility: chan-

30

Near Field Measurements on PCBs. What we can do first is to identify the strong magnetic fields close to the printed circuit board using a small magnetic field loop probe and the spectrum analyzer. Scan the probe over the printed circuit board looking for “hot spots” (locations of strong magnetic fields). When some are found, check the PCB in that vicinity for violations of good EMC design practices. One frequently found is an interrupted signal current return path caused by a split or slot in the ground/power plane (Ref.2). If a quick, temporary change can be made to the board, retest to confirm that the H-field has decreased in amplitude. In some cases you may find that it is an IC module that is causing most of the emission. In this case, consider using a small board-level shield over the component(s), or a small ferrite «tile» on top ( Mardiguian, Ref 4). The magnetic field probe can be held in the 3 axis (X,Y,Z) when performing the tests, such as to capture the maximum field strength. Because such small loops are insensitive to remote external fields, you can assume that what you get is coming from the nearby PCB. This can be va-

www.electronic.nu – Electronic Environment online


Electronic Environment #3.2017

lidated by moving the probe 2 or 3 times further away from the board: the reading should drop abruptly by 4 to 9 times (in near-field, there is a very strong H field dependency with distance. Because of this, make sure to keep a constant distance from the center of the loop to the PCB zone you are suspecting. A simple way is to stick an insulating spacer used as a distance gage.

Near Field Measurements around the EUT box If the EUT is housed in a - supposedly - shielded enclosure, with little hope that the PCB could be modified, try to identify electromagnetic field leakages through the apertures, using the H-field probe (Ref 3). Place the probe close to the enclosure with the plane of the loop parallel with the shield. Keeping a constant distance, move the probe along the seams, apertures or connectors areas and search for a strong magnetic field. After making changes to the enclosure (e.g. reduce the aperture size or length of the seam, add more screws or spring contacts, temporarily cover the leakage with large conductive adhesive copper tape etc.), retest to confirm that the magnetic field has decreased in amplitude. For both PCB and Box leakages treatments, make sure that your H-field probe read-out after the fix has been reduced by at least (∆dB + 6dB), if ∆ was the amount of your limit violation.

Fig. 9. Examples of small, home-made H-field probes. The photo shows a 4,5cm diam. probe made of a miniature semi-rigid coax. The shield gap has been shifted midway on the loop, which moves the self-resonance of the loop up to a higher freqency. The calibrated probe factor for this 4,5cm loop is: K (in 50Ω load) = 1 µA/m per µV (that is 0dB), flat from 70 to 700MHz.

Note: In theory more could be done if the H-field probe is properly calibrated. Unfortunately, calibration curves provided by the manufacturers are a nightmare to the user, given in exotic units like «dBm per microTesla», requiring some legwork for a quick translation in dBuV per dBuA/m ! Then with complex calculations or a proper software, an H-field reading at Xcm distance can be transposed into an equivalent E-field at 1 or 3m. This includes near field -to- far field conversion factors which are depending on distance, wavelength and nature of the radiated elements (loops or dipole), a computation that we do not recommend to other than seasonned, full-time EMC experts.

References 1. M.Mardiguian, «EMI Troubleshooting Techniques» (Mc Graw Hill, 2000) 2. H.Ott «Workbench EMC measurements» (www.hottconsultants.com) 3. K.Wyatt «Troubleshoot Radiated Emissions» Interference Technology ITEM (2010) 4. M.Mardiguian Controlling Radiated Emissions, 3rd edition (SpringerNY, 2014)

Michel Mardiguian EMC Consultant, France m.mardiguian@orange.fr

Fig. 10. Identifying Radiated «hot spots» on a Switch-mode power supply PC board (courtesy of RIGOL)

STANDARDISERINGEN – ditt strategiska verktyg Var med och påverka framtidens lösningar!

Svårt att hitta rätt standard? Bidra till ditt företags Bli medlem i SEK ”Preview” underlättar dittElstandard affärsutveckling SEKiSvensk Utveckla ditt internationella nätverk – Öka ditt företags Kontakta oss så arbete elstandard.se/shop konkurrenskraft berättar vi mer! Öka din kompetens

SEK Svensk Elstandard

I

Box 1284, 164 29 Kista

I

Telefon: 08-444 14 00

I

E-post: sek@elstandard.se

Fastställer all svensk standard inom elområdet

SVENSK MEDLEM I IEC OCH CENELEC

I

www.elstandard.se

www.elstandard.se/shop

SEK Svensk Elstandard | Box 1284, 164 29 Kista | Tel: 08-444 14 00 | E-post: sek@elstandard.se | www.elstandard.se | www.elstandard.se/shop

www.electronic.nu – Electronic Environment online

31


Electronic Environment #3.2017

How to Perform EMC Testing of Autonomous Vehicles EMC testing of autonomous vehicles is challenging because the involved systems are designed to identify unrealistic driving conditions, which is exactly what we have in a typical anechoic EMC chamber. When the system detects unrealistic conditions, autonomous driving functions are disabled or set to predefined states, which means that EMC testing of autonomous functions is not possible. To fully test autonomous driving systems, we therefore need to emulate a realistic environment in many aspects, i.e., we need to stimulate involved sensors in a realistic way. To address this, Volvo Car Corporation, Rise and Provinn, initiated a project partly financed by Vinnova within the FFI-program. In the project, it was demonstrated that it is possible to stimulate radars and cameras used for active safety systems, and to simulate the vehicle position by transmitting a synthetic GNSS (Global Navigation Satellite System) signal in the chamber, so that realistic EMC testing of a complete vehicle can be done for systems using these sensors.

Introduction As autonomous driving applications are emerging it is of vital importance that the underlying functions perform as intended in all possible situations. The involved systems are multi-sensor dependent and safety critical. Thorough tests are needed before such systems are put on the market. This includes EMC testing. In the automotive industry, EMC tests are today carried out on com-

ponent, subsystem and complete vehicle levels. However, when testing on complete vehicle level it is often difficult to fully activate a multi-sensor function in a laboratory environment. This is because many functions are intelligent in the sense that the algorithms are designed to identify unrealistic sensor input and if detected the function is disabled or set to a predefined state. To fully test such complex functions, we need therefore to emulate a realistic environment in all necessary aspects, i.e., we need to stimulate all sensors including radars, cameras, lidar and GNSS. If the sensor environment can be successfully emulated in the EMC chamber, any function based on the sensors data can be verified. As a first step in finding methods for stimulating the various sensors, the two-year project eVAMS (EMC VAlidation of Multiple Sensor Systems, Vinnova ref. 2015-06892) was initiated. The scope of the project was to develop methods for stimulating radars, cameras and GNSS. To evaluate how successfully the environment was emulated, the behaviour of three driver assistance functions was monitored. These functions were Adaptive Cruise Control (ACC), Lane Keeping Aid (LKA) and Pilot Assist (PA), as implemented by Volvo Car Corporation in the 2016 XC90. These functions, together with GNSS, play an important role for automation and therefore form a firm foundation to build future test procedures on, and to establish a road map for developing EMC testing of autonomous vehicles.

Strategy for vehicle EMC testing The ultimate goal for any vehicle manufacturer is to guarantee the safety and satisfaction of their customers. One part of this is to fulfill governmental and legal requirements and recommendations. For instance, the US Department of Transportation (DOT) and the National Highway Traffic Safety Administration (NHTSA) propose manufacturers to develop well defined and documented processes that demonstrate the performance and safety of automated functions [1]. Every function and hardware component should be tested in the most appropriate way. It is however up to the vehicle manufacturer to decide on which level to perform the testing. The different test levels are depicted in Fig. 1, ranging from component level testing to testing on public roads. The complexity of the test often decreases for lower test levels. The exact details of the test strategy is up to each vehicle manufacturer to define and is something that is normally not shared in public. Refer-

Figure 1. Testing on different levels from component to complete vehicle in real traffic environment.

32

www.electronic.nu – Electronic Environment online


Electronic Environment #3.2017

emulation is successful, the ACC function would operate as anticipated, i.e., decrease the speed when the target moves into the same lane, and to increase the speed again when the target disappears. This behavior was also successfully produced when using the Fig. 3 setup in our anechoic chamber. More complex scenarios, e.g., several target vehicles at different distances and with different relative speeds, can be simulated by using an active radar target simulator. Such simulators basically take the received radar signal, add delay and Doppler shifts and re-transmit it. In the eVAMS project, we tested two different active radar target simulators provided by Rhode & Schwarz and Anritsu.

Camera

Figure 2. Sensor fusion.

ring to Fig. 1, the eVAMS project was focused on future complete vehicle EMC testing in the new semi-anechoic chamber AWITAR at RISE [2]. For component level or simple function testing it is often sufficient to simulate input to only one sensor, while for complete vehicle and complex function testing several sensor inputs need to be simulated. In the latter case, the sensor stimuli also need to be synchronized to each other. This is perhaps the most difficult to achieve. While synchronizing radar and camera stimuli is a challenge in itself, including inertial and GNSS sensors is a much more complex task. In the latter case one option is to instead simulate the output from one or several sensors, i.e., shifting from interface A to B in Fig. 2. This is something that is often done in HIL-rig testing but can also be applied when doing complete vehicle testing. It should however be noted that in this case the whole system is actually not tested. This may however be perfectly alright if the not included sensor or component has been tested on a lower level. System validation is often accomplished by using a chain of tests.

The camera is in principle equivalent to the driver’s eyes, therefore our vision and perception is a natural benchmark of the system performance. What we can see and interpret, we expect the car to see and interpret in the same way. The expectations on a camera based system are therefore very high. On the other hand, it also means that we have the experience how to stimulate the sensor (camera). If the sensor stimulus looks good to our eyes, it would probably also be good enough for the sensor. It should however be pointed out that a camera might have the capability to detect other wavelengths than the human eye. It might, e.g., detect animals or pedestrians in the dark that we cannot see.

Radar Modern vehicles normally have several radars. This project considered only the forward-looking radar and the adaptive cruise control (ACC) function which is based on this radar. The radar frequency is 76-77 GHz and the principle of operation is FM-CW, i.e., a frequency ramp is transmitted. This technique provides both the distance to the target as well as the relative speed, i.e., both distance and speed need to be emulated. The function of the ACC system is to adapt the speed to keep a safe distance to a slower vehicle in front. Our approach to emulate a radar environment was to move a radar reflector from side to side in front of the vehicle. The test setup is shown in Fig. 3. This would simulate a vehicle moving in and out of the lane in front of the test vehicle. If the

Figure 4. Camera test setup.

The LKA system studied in the eVAMS project uses the camera as the only sensor to detect lane markings. When the vehicle departs the current lane without an activated turn indicator, LKA applies a torque to the steering wheel that helps the driver to steer back into the lane. If the steering intervention is not enough to keep the vehicle in the lane, the driver will be alerted by vibrations in the steering wheel. To stimulate the camera during EMC testing, a roof mounted projector projecting a video on a screen placed over the engine hood was used, see Fig. 4. The video showed a scenario where the vehicle slowly approached and crossed the lane markings, which would under normal conditions result in a steering action from the LKA system. The video was created in a special computer program that is also used for creating videos for HIL-rig testing, thus making it possible in the future to compare the two different test approaches and to re-use and share resources and equipment. With the setup described above, the XC90 produced lane departure warnings and steering aid as expected in real-world driving, while subjected to electromagnetic fields.

Figure 3. Radar and GNSS test setups.

While LKA helps prevent lane departure, the function Pilot Assist (PA) provides steering torque which helps keeping the vehicle in the center of the lane. PA uses both radar and camera and can thus be tested by combining the two setups for radar and camera. By using a radar transparent screen for the video projection, the radar (located in the wind screen) could be stimulated independently of the camera. As with LKA, the PA function provided the expected steering aid with the setups in Fig. 3-4.

www.electronic.nu – Electronic Environment online

33


Electronic Environment #3.2017

Summary and outline for future work

Table 1. Sensors involved in different functions, today and in the future.

GNSS Some future driver support systems, and for that matter existing ones such as some adaptive cruise control implementations, use positioning data from GNSS (Global Navigation Satellite System) to support the vehicle in understanding the terrain and traffic ahead. One application that exist already today is to select gear and adjust the speed of the vehicle to achieve optimum economy whilst driving in a hilly terrain [3]. If the up and downward gradients along the route can be anticipated by the help of GNSS, this gives especially for heavy vehicles a considerable fuel saving for the benefit of the truck owner as well as the environment. Any future functions involving autonomous navigation will likely use GNSS to a large extent. To test the GNSS functionality during an EMC test in a shielded chamber we need to inject satellite RF-signals in the chamber. The easiest way would be to simply place an antenna outside of the chamber, amplify this signal and re-transmit it in the chamber. This would only give a static position and would for a dynamic system test not be good enough. For a realistic system testing, a signal that mimics a dynamic satellite constellation simulating the vehicle moving along a pre-defined route need to be created. This can be done in two ways, either by recording satellite signals when driving on the road and then re-play this signal in the EMC chamber, or using a GNSS simulator to generate the signal based on a route defined in, e.g., Google MapsTM. In the eVAMS project both methods have been tested by using different equipment provided by Spirent. As depicted in Fig. 3, the satellite RF-signal is transmitted in the chamber by using a single antenna. The car’s navigation system showed the correct location on the map and could track the position as it changed. The simulated GNSS signals were not synchronized with the dynamometers, i.e., the movement of the wheels. The navigation system in the vehicle does not only use GNSS for positioning, but also other sensors such as wheel sensors for dead reckoning and a smoother position tracking. When starting a test, the vehicle has a certain simulated position, and as the wheels are spinning on the dynamometer the satellite constellation should be altered so that the simulated position is following the defined route, tracking the distance travelled. To achieve this the dynamometer must control the GNSS simulator.

In the eVAMS project it was demonstrated that it is possible to emulate a realistic environment for radars, cameras and GNSS sensors, so that realistic EMC testing of a complete vehicle can be done in an anechoic chamber. The successful emulation of sensor environment was confirmed by observing normal behaviour of the functions adaptive cruise control (ACC), lane keeping aid (LKA) and pilot assist (PA). Remaining tasks for the future include to find methods for synchronizing stimuli for the various sensors and to find methods also for other sensors, such as lidar, ultrasonic etc. Table 1 shows a sketch of which sensors are involved in different automated functions, and thereby also the need for synchronization of sensor stimuli. The next step for the future is to develop the missing methods on all levels of testing illustrated in Fig. 1, and the process of demonstrating the performance and safety of autonomous vehicles.

Acknowledgement This work has been partly supported by the Swedish Governmental Agency for Innovation Systems (Vinnova) within the FFI program Electronics, Software and Communications. Partners have been Volvo Car Corporation, RISE (former SP Technical Research Institute of Sweden), and Provinn AB.

References 1. US Department of Transportation, National Highway Traffic Safety Administration, “Federal Automated Vehicle Policy – Accelerating the Next Revolution in Roadway Safety”, Sept. 2016. 2. AWITAR – Automotive Wireless Test and Research Facility, http:// awitar.se/en/home/ 3. http://www.volvotrucks.se/sv-se/trucks/volvo-fh-series/features/i-see.html 4. NHTSA – National Highway Traffic Safety Administration, https://www.nhtsa.gov/ 5. Euro NCAP, https://www.euroncap.com/sv

1Björn Bergqvist, 2Jan Carlsson, 3Henrik Toss, 2Torbjörn Persson, 1Andreas Westlund 1Volvo Car Corporation, SE-405 31, Gothenburg, Sweden, {bjorn.bergqvist, andreas.westlund}@volvocars.com 2 Provinn AB, SE-411 05, Gothenburg, Sweden, {jan.carlsson, torbjorn.persson}@provinn.se 3RISE Safety and Transport/Electronics, SE-501 15, Borås, Sweden, henrik.toss@ri.se

Din leverantör av utrustning och service inom Elsäkerhet, EMC, Temperatur/Fukt/Vibration och Givare 0141-580 00 Elsäkerhet/Högspänning

34

EMC

-

info@proxitron.se

-

Temperatur/Fukt/Vibration

www.electronic.nu – Electronic Environment online

www.proxitron.se Givare


Författare

Electronic Environment #3.2017

Författare – Electronic Environment Electronic Environment överbygger kunskap inom specifika elektronikområden – mellan myndigheter, högskola och universitet samt näringslivets aktörer. Det kan vi göra tack vare ett stort intresse och engagemang från många duktiga skribenter och deras organisationer. Sedan tidningens första utgåva 1994 har ett stort antal skribenter bidragit med sin kunskap, till mångas glädje och nytta. Här presenterar vi våra skribenter de tre senaste åren, och i vilka nummer du kan läsa deras bidrag. Ett stort tack till er alla som bidragit genom åren till tidningens utveckling! Dan Wallander / ansvarig utgivare

TEKNIKREDAKTÖRER Michel Mardiguian Teknikredaktör EMC Consultant 2/2015, 3/2015, 4/2015, 1/2016, 2/2016, 3/2016, 4/2016, 1/2017, 2/2017, 3/2017

Björn Gabrielsson FOI – Swedish Defence Reasearch Agency

Jan Carlsson Provinn AB

Marcus Eklund El/Tele Västfastigheter

Pär Weilow Swedavia

4/2014, 1/2016, 3/2017

2/2016

1/2014

Jan Welinder RISE Elektronik

Mats Bäckström Saab Aeronautics, Saab AB

3/2014

3/2016

Sara Linder FOI – Swedish Defence Reasearch Agency

Jenny Skansen ABB Power Systems

Mats Lindgren RISE Elektronik

1/2015, 1/2016

3/2014, 4/2014, 1/2015

Joeri Koepp Rohde&Schwarz

Mattias Elfsberg FOI – Swedish Defence Reasearch Agency

1/2014

Christer Karlsson Ordf. Swedish Chapter IEEE EMC RISE

Miklos Steiner Teknikredaktör Electronic Environment

4/2014, 1/2015, 2/2015, 3/2015, 4/2015, 1/2016, 2/2016, 3/2016, 4/2016, 1/2017, 2/2017, 3/2017

4/2014, 1/2015, 2/2015, 3/2015, 4/2015, 1/2016, 2/2016, 3/2016, 4/2016, 1/2017, 2/2017, 3/2017

Carl Samuelsson Saab Aeronautics, Saab AB

3/2015

3/2016

3/2016

Peter Stenumgaard Teknikredaktör FOI – Swedish Defence Reasearch Agency

1/2015

Dag Stranneby Campus Alfred Nobel, Örebro universitet

K G Lövstrand FMV T&E 3/2015

Mikael Alexandersson FOI – Swedish Defence Reasearch Agency

4/2014, 1/2015, 2/2015, 3/2015, 4/2015, 1/2016, 2/2016, 3/2016, 4/2016, 1/2017, 2/2017, 3/2017

3/2014, 4/2014, 1/2015

Karin Davidsson RISE Elektronik

1/2014

Erling Pettersson STRI AB

3/2014, 4/2014, 1/2015

FÖRFATTARE

1/2016

Anders Larsson FOI – Swedish Defence Reasearch Agency

Gunnar Englund GKE Elektronik AB

Karin Fors FOI – Swedish Defence Reasearch Agency

Mose Akyuz FOI – Swedish Defence Reasearch Agency

Anders Thulin ATC AB

Göran Jansson Saab Bofors Testcenter 3/2014

Andreas Westlund Volvo Car Corporation 3/2017

Hartmut Berndt B.E.STAT European ESD competence centre, Germany

1/2014

3/2014

Kia Wiklundh FOI – Swedish Defence Reasearch Agency

3/2016

Tomas Hurtig FOI – Swedish Defence Reasearch Agency

Kristian Karlsson RISE Elektronik 1/2016

2/2015

Bengt Vallhagen Saab Aeronautics, Saab AB

Henrik Toss RISE Safety and Transport 3/2017

3/2016

Ingvar Karlsson Ericsson AB

Björn Bergqvist Volvo Cars

1/2017

4/2016, 3/2017

1/2015

2/2014

3/2014, 4/2015

Anneli Waara Uppsala universitet

Susanne Otto Reliability DELTA Test & Consultancy

Niklas Karpe Scania CV AB

Lars Falk Stigab AB

Henrik Olsson Elsäkerhetsverket

1/2015, 2/2015, 3/2015

3/2015

2/2014

Ann-Kristin Larsson Swedavia

Sten E Nyholm FOI – Swedish Defence Reasearch Agency

Tomas Bodeklint RISE Elektronik

3/2014, 4/2014, 3/2015, 3/2016, 4/2016, 1/2017, 3/2017

1/2014

2/2017

1/2015

2/2017

1/2015, 2/2015, 3/2015

Simon Loe Spirent Communications

Lars-Erik Juhlin ABB Power Systems 1/2016 Leif Adelöw FOI – Swedish Defence Reasearch Agency 1/2015

Lennart Hasselgren EMC Services

Patrik Eliardsson FOI – Swedish Defence Reasearch Agency

1/2015, 2/2015, 3/2015

2/2016

Torbjörn Persson Provinn AB

Per Ängskog Högskolan Gävle/KTH

4/2016, 3/2017

3/2016

Ulf Carlberg RISE Elektronik

Peter Ankarson RISE Elektronik

4/2014

4/2014

Ulf Nilsson Electronic Environment 2/2015

Peter Larsson KTH 1/2016

Åsa Larsbo Intertek Semko

Peter Stenumgaard FOI – Swedish Defence Reasearch Agency

1/2014

3/2014, 4/2014, 3/2015, 4/2015, 1/2016, 4/2016, 1/2017, 3/2017

2/2015

www.electronic.nu – Electronic Environment online

35


Företagsregister Acal AB Solna Strandväg 21 171 54 Solna Tel: 08-546 565 00 Fax: 08-546 565 65 info@acal.se www.acal.se Adopticum Gymnasievägen 34 Leveransadress: Anbudsgatan 5 931 57 Skellefteå Tel: 0910-288 260 info@adopticum.se www.adopticum.se

Alpharay Teknik AB Runnabyvägen 11 705 92 Örebro Tel: 019-26 26 20 mail@alpharay.se www.alpharay.se Produkter och Tjänster: Antistatutrustningar för industrin: elektronikproduktion, precisionsvägning, plasttillverkning, lackering. Lämpliga för Ex-miljö. Egen import, försälj-ning och service.

Agilent Techologies Sweden AB Kronborgsgränd 23 164 94 Kista Tel: 0200-88 22 55 Aleba AB Västberga allé 1 126 30 Hägersten Tel: 08-19 03 20 Fax: 08-19 35 42 www.aleba.se Alelion Batteries Flöjelbergsgatan 14c 431 37 Mölndal Tel: 031-86 62 00 info@alelion.com www.alelion.com/sv

AMB Industri AB 361 93 Broakulla Tel: 0471-485 18 Fax: 0471-485 99 Amska Amerikanska Teleprodukter AB Box 88 155 21 Nykvarn Tel: 08-554 909 50 Kontaktperson: Kees van Doorn www.amska.se Amtele AB Jägerhorns väg 10 141 75 Kungens Kurva Tel 08-556 46604 Stora Åvägen 21 436 34 Askim Tel 08-556 466 10 amtele@amtele.se www.amtele.se Anritsu AB Borgarfjordsgatan 13 A 164 26 Kista Tel: 08-534 707 00 Fax: 08-534 707 30 www.eu.anritsu.com

36

Electronic Environment #3.2017 ANSYS Sweden Färögatan 33 164 51 Kista Tel: 08-588 370 60 Vestagatan 2 B 416 64 Göteborg Tel: 031-771 87 80 info-se@ansys.com www.ansys.com

BRADY AB Vallgatan 5 170 69 Solna Tel: 08-590 057 30 Fax: 08-590 818 68 cssweden@bradyeurope.com www.brady.se www.bradyeurope.com

Armeka AB Box 32053 126 11 Stockholm Tel: 08-645 10 75 Fax: 08-19 72 34 www.armeka.se

Bromanco Björkgren AB Rallarvägen 37 184 40 Åkersberga Tel: 08-540 853 00 Fax: 08-540 870 06 info@bromancob.se www.bromancob.se

Axiom EduTech Gjuterivägen 6 311 32 Falkenberg Tel: 0346-71 30 30 Fax: 0346-71 33 33 www.axiom-edutech.com

Båstad Industri AB Box 1094 269 21 Båstad Tel: 0431-732 00 Fax: 0431-730 95 www.bastadindustri.se

Berako AB Regulatorv 21 14149 Huddinge Tel: 08-774 27 00 Fax: 08-779 85 00 www.berako.se

CA Mätsystem Sjöflygsvägen 35 183 62 Täby Tel: 08-505 268 00 Fax: 08-505 268 10 www.camatsystem.se Cadputer AB Kanalvägen 12 194 61 Upplands Väsby Tel: 08-590 752 30 Fax: 08-590 752 40 www.cadputer.se

BK Services Westmansgatan 47 A 582 16 Linköping Tel: 013–21 26 50 Fax: 013–99 13 025 johan@bk-services.se www.bk-services.se Kontaktperson: Johan Bergstrand Produkter och Tjänster: BK Services erbjuder EMCprovning, elsäkerhetsgranskningar (LVD), radioprovning enligt bl.a. ETSI standarder, maskinsäkerhetsgranskningar, hjälp med CE märkning och klimattester. Vi erbjuder högkvalitativa och priseffektiva tjänster, problemlösningshjälp samt vänligt och proffesionellt bemötande.

Bodycote Ytbehandling AB Box 58 334 21 Anderstorp Tel: 0371-161 50 Fax: 0371-151 30 www.bodycote.se Bofors Test Center AB Box 418 691 27 Karlskoga Tel: 0586-84000 www.testcenter.se Bomberg EMC Products Aps Gydevang 2 F DK 3450 Alleröd Danmark Tel: 0045-48 14 01 55 Bonab Elektronik AB Box 8727 402 75 Göteborg Tel: 031-724 24 24 Fax: 031-724 24 31 www.bonab.se

Caltech AB Fågelviksvägen 7 145 53 Norsborg Tel: 08-534 703 40 Fax: 08-531 721 00 www.caltech.se CCC Solutions AB/Carpatec Rallarvägen 23 184 40 Åkersberga Tel: 08-54088845 hl@cccsolutions.eu http://www.cccsolutions.eu

CE-BIT Elektronik AB Box 7055 187 11 Täby Tel: 08-735 75 50 Fax: 08-735 61 65 info@cebit.se www.cebit.se CLC SYSTEMS AB Nygård Torstuna 740 83 Fjärdhundra Tel: 0171-411030 Fax: 0171-411090 info@clcsystems.se www.clcsystems.se Combinova Marketing AB Box 200 50 161 02 Bromma Tel: 08-627 93 10 Fax: 08-29 59 85 sales@combinova.se www.combinova.se Combitech AB Gelbgjutaregatan 2 581 88 Linköping Tel: 013-18 00 00 Fax: 013-18 51 11 emc@combitech.se www.combitech.se Compomill AB Box 4 194 21 Upplands Väsby Tel: 08-594 111 50 Fax: 08-590 211 60 www.compomill.se

DELTA Development Technology AB Finnslätten, Elektronikgatan 47 721 36 Västerås Tel: 021-31 44 80 Fax. 021-31 44 81 info@delta-dt.se www.delta-dt.se DeltaElectric AB Kraftvägen 32 Box 63 196 22 Kungsängen Tel: 08-581 610 10 www.deltanordicgroup.se/ deltaeltech

Detectus AB Hantverkargatan 38 B 782 34 Malung Tel: 0280-411 22 Fax: 0280-411 69 jan.eriksson@detectus.se www.detectus.se

EMC Services Box 30 431 21 Mölndal Besöksadress: Bergfotsgatan 4 Tel: 031-337 59 00 www.emcservices.se Kontaktperson: Tony Soukka tony@emcservices.se Produkter och Tjänster: EMC Services erbjuder provning, rådgivning, problemlösning och utbildning inom EMC-området. I vårt EMC-laboratorium i Mölndal utför vi EMC-mätningar på alla möjliga produkter och kan även ta in större objekt som t.ex. bilar. Vi har utrustning för att utföra mätningar på plats hos kund och kan även erbjuda miljö- och vibrationsprovning. EMC Services ingår i försvarskoncernen Saab.

Kontaktperson: Jan Eriksson Produkter och Tjänster: Instrument, provning. Detectus AB utvecklar, producerar och säljer EMC-testsystem på världsmarknaden. Företaget erbjuder också hyra och leasing av mätsystemet. Detectus har möjlighet att utföra konsultmätningar (emission) på konsultbasis i egna lokaler.

DeltaEltech AB Box 4024 891 04 Örnsköldsvik Tel: 0660-29 98 50 www.deltanordicgroup.se/ deltaeltech/

Emicon AB Head office: Briggatan 21 234 42 Lomma Branch office: Luntmakargatan 95 113 51 Stockholm Tel: 040-41 02 25 or 073-530 71 02 sven@emicon.se www.emicon.se Contact: Sven Garmland Need Help With Your Electromagnetic Environment?

EG Electronics AB Grimstagatan 160 162 58 Vällingby Tel: 08-759 35 70 Fax: 08-739 35 90 www.egelectronics.com

Products and Services: We have more than 30 years of experience from research and development in the field of electromagnetic interference.

Elastocon AB Göteborgsvägen 99 504 60 Borås Tel: 033-22 56 30 Fax: 033-13 88 71 www.elastocon.se

We can help you with: • Interference control • Advice • Specifications • Testing for EMC, EMP, HPEM and lightning • Field tests, current injection and coupling measurements • Electromagnetic simulations • Analysis and measurements on small and large-scale systems, anything from circuit boards to complex facilities. • Measurement and test system integration • Software for EM simulations, measurements and instrument control • Shielding and Ground ing

ELDON AB Transformatorgatan 1 721 37 Västerås Tel: 010-555 95 50 eldonindustrial.se@eldon.com www.eldon.com/sv-SE Electronix NG AB Enhagsvägen 7 187 40 Täby Tel: 010-2051650 Elis Elektro AS Jerikoveien 16 N-1067 Oslo Tel: +47 22 90 56 70 Fax: + 47 22 90 56 71 www.eliselektro.no

www.electronic.nu – Electronic Environment online

Visit www.emicon.se for further information.


Företagsregister

Electronic Environment #3.2017

EMP-Tronic AB Box 130 60 250 13 Helsingborg Tel: 042-23 50 60 Fax: 042-23 51 82 www.emp-tronic.se Kontakt person: Lars Günther Emp-tronic AB är specialiserat på Elmiljö- och EMCteknik.

Produkter och Tjänster: Vi har levererat skärmade anläggningar i över 25 år till bl.a. försvaret och myndigheter som skydd för EMP, RÖS, HPM med kontorsmiljö. Vi levererar även utrustning och skärmrum för EMC-mätning, elektronikkalibrering eller antennmätning, även med modväxelteknik. I vårt fullutrustade EMC-lab kan vi erbjuda verifierad provning för CE-märkning.

ELKUL Kärrskiftesvägen 10 291 94 Kristianstad Tel: 044-22 70 38 Fax: 044-22 73 38 www.elkul.se Elrond Komponent AB Box 1220 141 25 Huddinge Tel: 08-449 80 80 Fax: 08-449 80 89 www.elrond.se EMC Väst AB Bror Nilssons Gata 4 417 55 Göteborg Tel: 031-51 58 50 Fax: 031-51 58 50 info@emcvaest.se www.emcväst.se Emka Scandinavia Box 3095 550 03 Jönköping Tel: 036-18 65 70 ERDE-Elektronik AB Spikgatan 8 235 32 Vellinge Tel: 040-42 46 10 Fax: 040-42 62 18 info@erde.se web: www.erde.se ESD-Center AB Ringugnsgatan 8 216 16 Malmö Tel: 040-36 32 40 Fax: 040-15 16 83 www.esd-center.se Eurodis Electronics 194 93 Stockholm Tel: 08-505 549 00 Exapoint Svenska AB Box 195 24 104 32 Stockholm Tel: 08-501 64 680 www.exapoint.se

Helukabel AB Spjutvägen 1 175 61 Järfälla Tel: 08-557 742 80 Fax: 08-621 00 59 www.helukabel.se

Flexitron AB Sidensvansvägen 8 192 55 Sollentuna Tel: 08-732 85 60 sales@flexitron.se www.flexitron.se Produkter och Tjänster: Vi erbjuder ett brett och djupt sortiment av produkter för EMC samt termiska material från tillverkare som är marknadsledande inom sina respektive områden. Exempel på produkter är skärmningslister, skärmburkar, ledande plast, färg, fett och lim, skärmburkar, genomföringsfilter, mikrovågsabsorbenter, etc. Vi har stor möjlighet att kundanpassa produkterna, aningen direkt från tillverkaren eller i vår egen verkstad.

ExCal AB Bröksmyravägen 43 826 40 Söderhamn Tel: 0270-28 87 60 Fax: 0270-28 87 70 info@excal.se www.excal.se Farnell Skeppsgatan 19 211 19 Malmö Tel: 08-730 50 00 www.farnell.se Ferner Elektronik AB Box 600 175 26 Järfälla Tel: 08-760 83 60 www.ferner.se FMV 115 88 Stockholm Tel: 08-782 40 00 Fax: 08-667 57 99 www.fmv.se Frendus AB Strandgatan 2 582 26 Linköping Tel: 013-12 50 20 info@frendus.com www.frendus.com Kontaktperson: Stefan Stenmark Garam Elektronik AB Box 5093 141 05 Huddinge Tel: 08-710 03 40 Fax: 08-710 42 27 Glenair Nordic AB Box 726 169 27 Solna Tel: 08-505 500 00 Fax: 08- 505 500 00 www.glenair.com Gore & Associates Scand AB Box 268 431 23 Mölndal Tel: 031-706 78 00 www.gore.com HCM Elektronik Sockenvägen 428 122 63 Enskede Tel: 08-659 99 15 Fax: 08-556 103 78 www.hcm.se

High Voltage AB Änggärdsgatan 12 721 30 Västerås Tel: 021-12 04 05 Fax: 021-12 04 09 www.highvoltage.se HP Etch AB 175 26 Järfälla Tel: 08-588 823 00 www.hpetch.se

Industrikomponenter AB Gårdsvägen 4 169 70 Solna Tel: 08-514 844 00 Fax: 08-514 844 01 www.inkom.se Infineon Technologies Sweden AB Isafjordsgatan 16 164 81 Kista Tel: 08-757 50 00 www.infineon.com Ing. Firman Göran Gustafsson Asphagsvägen 9 732 48 Arboga Tel: 0589-141 15 Fax: 0589-141 85 www.igg.se Ingenjörsfirman Gunnar Petterson AB Ekebyborna 254 591 95 Motala Tel: 08-93 02 80 Fax: 0141-711 51 hans.petterson@igpab.se www.igpab.se Instrumentcenter Folkkungavägen 4 Box 233 611 25 Nyköping Tel: 0155-26 70 31 Fax: 0155-26 78 30 info@instrumentcenter.se www.instrumentcenter.se

Jan Linders EMC-provning Bror Nilssons gata 4 417 55 Göteborg Tel: 031-744 38 80 Fax: 031-744 38 81 info@janlinders.com www.janlinders.com Kontaktperson: Jan Linders Produkter och tjänster: EMC-provning, elektronik och EMC, utbildning, EMIanalys, allmän behörighet. Jan Linders Ingenjörsfirma har mångårig erfarenhet inom EMC-området och har allmän behörighet upp till 1 000 V. Bland vårt utbud märks ce-märkning, prototypprovning samt mätning och provning hos kund. Vi utför EMC-styling dvs förbättrar produkters EMC-egenskaper, ger råd och hjälp om standarder m m. Med vår nya EMC-tjänst tar vi totalansvar för er EMC-certifiering.

Jolex AB Västerviksvägen 4 139 36 Värmdö Tel: 08-570 229 85 Fax: 08 570 229 81 mail@jolex.se www.jolex.se Kontaktperson: Mikael Klasson Produkter och Tjänster: EMC, termiska material och kylare Jolex AB har mångårig erfarenhet inom EMC och termiskt. Skärmningslister/kåpor, mikrovågsabsorbenter, icke ledande packningar, skärmande fönster/glas/rum/ dörrar, genomföringskondensatorer, kraftfilter, data-, telekom-, utrustnings- och luftfilter, ferriter, jordflätor, termiska material och kylare etc. Vi kundanpassar produkter och volymer.

Intertechna AB Kvarnvägen 15 663 40 Hammarö Tel: 054-52 10 00 Fax: 054-52 22 97 www.intertechna.se Intertek Torshamnsgatan 43 Box 1103 164 22 Kista Tel: 08-750 00 00 Fax: 08-750 60 30 Info-sweden@intertek.com www.intertek.se INNVENTIA AB Torshamnsgatan 24 B 164 40 Kista Tel: 08-67 67 000 Fax: 08-751 38 89 www.innventia.com Jontronic AB Centralgatan 44 795 30 Rättvik Tel: 0248-133 34 info@jontronic.se www.jontronic.se

Kitron AB 691 80 Karlskoga Tel: 0586-75 04 00 Fax: 0586-75 05 90 www.kitron.com Kvalitest Sweden AB Flottiljgatan 61 721 31 Västerås Tel: 076-525 5000 sales@kvalitest.com www.kvalitest.com

LAI Sense Electronics Rördromsvägen 12 590 31 Borensberg Tel: 0703-45 55 89 Fax: 0141-406 42 www.laisense.com LeanNova Engineering AB Flygfältsvägen 7 461 38 Trollhättan Tel: 072-370 07 58 info@leannova.se www.leannova.se

www.electronic.nu – Electronic Environment online

justkompetens.se Mässans gata 14 412 51 Göteborg Tel: 031-708 66 80 info@justevent.se www.justkompetens.se/ elektronik Produkter och tjänster: Då en produkts egenskaper inom elmiljö är en stor del av produktens kvalitet, krävs att de funktioner som kommer i beröring med utveckling, konstruktion, installation och underhåll har en grundläggande kunskap i elmiljöns olika förutsättningar, delmoment och grundkrav. Därtill kunskap om hur man uppnår tillräckliga egenskaper inom exempelvis EMC, ESD, elsäkerhet och miljötålighet. Vi vill ge dig en möjlighet att på ett effektivt och kvalitativt sätt komplettera och säkerställa din kompetens för att ge dig så bra förutsättningar som möjligt i ditt yrke – Ibland behöver man uppdatera sin kunskap och ibland behöver man helt enkelt skaffa ny. Då är e-learning ett optimalt verktyg att använda sig utav.

LINDH Teknik Granhammar 144 744 97 Järlåsa Tel: 018-444 33 41 Mobil: 070-664 99 93 kenneth@lindhteknik.se www.lindhteknik.se Lintron AB Box 1255 581 12 Linköping Tel: 013-24 29 90 Fax: 013-10 32 20 www.lintron.se LTG Keifor AB (KAMIC) Box 8064 163 08 Spånga Tel: 08-564 708 60 Fax: 08-760 60 01 kamic.karlstad@kamic.se www.kamic.se

KAMIC Components Körkarlsvägen 4 653 46 Karlstad Tel: 054-570120 info@kamic.se www.kamicemc.se Produkter och Tjänster: Med närmare 30 års erfarenhet och ett brett program av elmiljöprodukter erbjuder KAMIC Components allt från komponenter till färdiga system. Lösningarna för skalskydd omfattar lådor, skåp och rum för EMI-, EMPoch RÖS-skydd. Systemlösningar som uppfyller MILSTD 285 och är godkända enligt skalskyddsklasserna SS1 och SS2. Komponenter, ledande packningar och lister. KAMIC Components är en del av KAMIC Installation AB. Kontaktperson: Jörgen Persson.

37


Företagsregister

Electronic Environment #3.2017

Lundinova AB Dalbyvägen 1 224 60 Lund Tel: 046-37 97 40 Fax: 046-15 14 40 www.lundinova.se

Megacon AB Box 63 196 22 Kungsängen Tel: 08-581 610 10 Fax: 08-581 653 00 www.megacon.se

KEMET Electronics AB Thörnbladsväg 6, 386 90 Färjestaden 0485-563900 TobiasHarlen@kemet.com www.kemet.com/dectron

Mentor Graphics Färögatan 33 164 51 Kista Tel: 08-632 95 00 www.mentor.com

Magnab Eurostat AB Pontongatan 11 611 62 Nyköping Tel: 0155-20 26 80 www.magnab.se

LaboTest AB Datavägen 57 B 436 32 Askim Tel: 031-748 33 20 Fax: 031-748 33 21 info@labotest.se www.labotest.se Produkter och Tjänster: LaboTest AB marknadsför och underhåller utrustningar i Sverige till lab och produktionsavdelningar inom miljötålighet och test. Vårt huvudkontor finns i Askim och vårt filialkontor i Sollentuna. Våra huvudleverantörer är Vötsch och Heraeus. Båda har en världsomspännande organisation och är marknadsledande inom sina respektive produktområde. Vår verksamhet fokuseras främst kring följande produktområden: Värmeskåp, Torkugnar, Vakuumtorkskåp, Temperatur-, Klimattestkammare, Chocktest- kammare, Sol/Vädertestkammare, Vibrationstestkammare, Klimatiserade rum, Saltspraytestkammare, HALT/ HASS-kammare.

MTT Design and Verification Propellervägen 6 B 183 62 Täby Tel: 08-4467730 sales@mttab.se www.mttab.se Produkter och Tjänster: Sveriges mest omfattande utbud av instrument, tillbehör, mjukvara och skärmade lösningar för alla typer av EMC-test och analys från mark-nadsledande tillverkare som bl. a. PMM, Teseq, CST, EMSCAN, SIEPEL, och Milmega. MTT samlar över 60 års erfarenhet inom teknisk försäljning och support av testsystem, mjukvara och komponenter för elektronik, RF EMC och mikrovågsteknik samt elektromagnetisk och termisk simulering.

38

Nortronicom AS Ryensvingen 5 Postboks 33 Manglerud N-0612 Oslo Tel: +47 23 24 29 70 Fax: +47 23 24 29 79 www.nortronicom.no Nässjö Plåtprodukter AB Box 395 571 24 Nässjö Tel: 031-380 740 60 www.npp.se

Metric Teknik Box 1494 171 29 Solna Tel: 08-629 03 00 Fax: 08-594 772 01

OBO Bettermann AB Florettgatan 20 254 67 Helsingborg Tel: 042-38 82 00 Fax: 042-38 82 01 www.obobettermann.se

Mikroponent AB Postgatan 5 331 30 Värnamo Tel: 0370-69 39 70 Fax: 0370-69 39 80 www.mikroponent.se

OEM Electronics AB Box 1025 573 29 Tranås Tel: 075-242 45 00 www.oemelectronics.se

Miltronic AB Box 1022 611 29 Nyköping Tel: 0155-777 00 MJS Electronics AB Box 11008 800 11 Gävle Tel: 026-18 12 00 Fax: 026-18 06 04 www.mjs-electronics.se MPI Teknik AB Box 96 360 50 Lessebo Tel: 0478-481 00 Fax: 0478-481 10 www.mpi.se

Prevas AB Hammarby Fabriksväg 21 A, 6 trp 120 30 Stockholm Tel: 08-644 14 00 maria.mansson@prevas.se www.prevas.se Kontaktperson: Maria Månsson Produkter: Utveckling Produkter och Tjänster: Spetskompetens inom elektronikutveckling: Analog och digital elektronik, EMCteknik (rådgivning och eget pre-compliance EMC-lab), inbyggda system, samt programmering. Regulativa krav som EMC-, MD- RoHSoch WEEE- EUP-direktiven. “Lean Design” med fokus på kvalitet, effektivitet, tillförlitlighet, producerbarhet och säljbarhet.

NanoCal AB Lundbygatan 3 6 21 41 Visby Tel: 0498-21 20 05 www.nanocal.se NanoCal AB Lundbygatan 3 621 41 Visby Tel: 0498-21 20 05 www.nanocal.se Nefab Packaging AB 822 81 Alfta Tel: 0771-59 00 00 Fax: 0271-590 10 www.nefab.se Nelco Contact AB Box 7104 192 07 Sollentuna Tel: 08-754 70 40

PROXITRON AB Box 324 591 24 Motala Tel: 0141-580 00 Fax: 0141-584 95 info@proxitron.se www.proxitron.se

Nemko Sweden Enhagsslingan 23 187 40 Täby Tel: 08-47 300 30 www.nemko.no Nohau Solutions AB Derbyvägen 4 212 35 Malmö Tel: 040-59 22 00 Fax: 040-59 22 29 www.nohau.se

Kontaktperson: Rickard Elf

Nolato Silikonteknik AB Bergmansvägen 4 694 91 Hallsberg Tel: 0582-889 00 Nortelco AS Ryensvingen 3 N-0680 Oslo Tel: +47 22576100 Fax: +47 22576130 elektronikk@nortelco.no www.nortelco.no

Produkter och Tjänster: INSTRUMENT. Proxitron AB arbetar med försäljning och service inom elektronikbranschen. Vi samarbetar med en rad ledande internationella tillverkare inom områdena; Klimat/Vibration, EMC, Givare, Komponenter, Högspänning och Elsäkerhet. Våra kunder finns över hela Skandinavien och representerar forskning/utveckling, produktion, universitet och högskolor.

Provinn AB Kvarnbergsgatan 2 411 05 Göteborg Tel: 031 – 10 89 00 info@provinn.se www.provinn.se Products and Services: Provinn offer EMC expertise covering all aspects from specification through consultant services, education, numerical analyses all the way to final verification. We are several dedicated EMC experts with documented expertise and experience. Provinn is proud representative for Oxford Technical Solutions (OxTS) navigational equipment, Moshon Data ADAS test equipment and Spirent GPS/GNSS instruments for the Scandinavian market.

ONE Nordic AB Box 50529 202 50 Malmö Besöksadress: Arenagatan 35 215 32 Malmö Tel: 0771-33 00 33 Fax: 0771-33 00 34 info@one-nordic.se

Ornatus AB Stockholmsvägen 26 194 54 Upplands Väsby Tel: 08-444 39 70 Fax: 08-444 39 79 www.ornatus.se Para Tech Coating Scandinavia AB Box 567 175 26 Järfälla Besök: Elektronikhöjden 6 Tel: 08-588 823 50 info@paratech.nu www.paratech.nu

Ronshield AB Kallforsvägen 27 124 32 Bandhagen Tel: 08-722 71 20 Fax: 08 556 720 56 info@ronshield.se www.ronshield.se Kontaktpersoner: Ronald Brander Produkter och Tjänster: Produkter: Kompletta EMC-mätplatser/hallar, absorbenter, ferriter, vridbord, antenner, antennmaster, TEM-Cell, Strip­lines, EMC-Mätinstrument och system, Audio-video system, fiberoptiska styrningar, EMC-­ Filter, RÖS-Rum, EMP-Skydd/ Filter, Utbildning.

www.electronic.nu – Electronic Environment online

Phoenix Contact AB Linvägen 2 141 44 Huddinge Tel: 08-774 06 30 Fax: 08-774 15 93 www.phoenixcontact.se Polystar Testsystems AB Mårbackagatan 19 123 43 Farsta Tel: 08-506 006 00 Fax: 08-506 006 01 www.polystartest.com Processbefuktning AB Pilotgatan 17 128 32 Skarpnäck Tel: 08-659 01 55 Fax: 08-659 01 58 www.processbefuktning.se Procurator AB Box 9504 200 39 Malmö Tel: 040-690 30 00 Fax: 040-21 12 09 www.procurator.se Profcon Electronics AB Hjärpholn 18 780 53 Nås Tel: 0281-306 00 Fax: 0281-306 66 www.profcon.se Proxy Electronics AB Box 855 391 28 Kalmar Tel: 0480-49 80 00 Fax: 0480 49 80 10 www.proxyelectronics.com RF Partner AB Flöjelbergsgatan 1 C 431 35 Mölndal Tel: 031-47 51 00 Fax: 031-47 51 21 info@rfpartner.se www.rfpartner.se

Rohde & Schwarz Sverige AB Flygfältsgatan 15 128 30 Skarpnäck Tel: 08-605 19 00 Fax: 08-605 19 80 info.sweden@rohdeschwarz. com www.rohde-schwarz.se Produkter och Tjänster: Rohde & Schwarz-koncernen med huvudkontor i München utvecklar, tillverkar och marknadsför kommunikations-, IT och test & mätutrustningar samt system med fokus på mobil radiokommunikation, broadcasting, EMC, HF-test, generella instrument, signalspaning och frekvensövervakning. Rohde & Schwarz är Europas största tillverkare av elektronisk test och mätutrustning. Rohde & Schwarz etablerades för över 80 år sedan och har dotterbolag och representanter i över 70 länder. Koncernen har ca 9800 anställda och omsätter årligen ca 1.75 miljarder euro. Ungefär 80 % av omsättningen genereras utanför Tyskland. Rohde & Schwarz Sverige AB är ett helägt dotterbolag i koncernen och ansvarar för hela produktlinjen på den svenska marknaden.


Företagsregister

Electronic Environment #3.2017 Rittal Scandinavian AB Månskärsgatan 7 141 71 Huddinge Tel: 08-680 74 08 Fax: 08-680 74 06 www.rittal.se Roxtec International AB Box 540 371 23 Karlskrona Tel: 0455-36 67 23 www.roxtec.se RS Components AB Box 21058 200 21 Malmö Tel: 08-445 89 00 Fax:08-687 11 52 www.rsonline.se RTK AB Box 7391 187 15 Täby Tel: 08-510 255 10 Fax: 08-510 255 11 info@rtk.se www.rtk.se RUTRONIK Nordic AB Kista Science Tower Färögatan 33 164 51 Kista Tel: 08-505 549 00 Fax: 08-505 549 50 www.rutronik.se Saab AB, Aeronautics, EMC-labbet Gelbgjutaregatan 2 581 88 Linköping Tel: 013-18 00 00 andreas.naslund@saabgroup.com Saab AB, Surveillance A15 – Compact Antenna Test Range Bergfotsgatan 4 431 35 Mölndal Tel: 031-794 81 78 christian.augustsson@saabgroup.com www.saabgroup.com

Saab AB, Support and Services, EMC-labbet P.O Box 360 S-831 25 Östersund Tel: +46 63 156000 Fax: 063-15 61 99 www.emcinfo.se www.saabgroup.com Contact: Henrik Risemark Products & Services: We offer accredited EMC testing in accordance with most commercial and military standards and methods, including airborne equipment. We can also provide pre-compliance testing and qualified reviews and guidance regarding EMC during product design.

Saab EDS Nettovägen 6 175 88 Järfälla Tel: 08-580 850 00 www.saabgroup.com

Scanditest Sverige AB Box 182 184 22 Åkersberga Tel: 08-544 019 56 Fax: 08-540 212 65 www.scanditest.se info@scanditest.se Scandos AB Varlabergsvägen 24 B 434 91 Kungsbacka Tel: 0300-56 45 30 Fax: 0300-56 45 31 www.scandos.se

SEK Svensk Elstandard Box 1284 164 29 KISTA Tel: 08-444 14 00 sek@elstandard.se www.elstandard.se Shop.elstandard.se

Schaffner EMC AB Turebergstorg 1 191 86 Sollentuna Tel: 08-579 211 22 Fax: 08-92 96 90 Schroff Skandinavia AB Box 2003 128 21 Skarpnäck Tel: 08-683 61 00

TEBAB, Teknikföretagens Branschgrupper AB Storgatan 5, Box 5510, 114 85 Stockholm Tel +46 8 782 08 08 Tel vx +46 8 782 08 50 www.sees.se SEES är den svenska branschföreningen för miljötålighetsteknik.

På SEK Shop, www.elstandard.se/shop, hittar du förutom svensk standard även europeisk och internationell standard inom elområdet. SEK ger även ut SEK Handböcker som förklarar och fördjupar, vägleder och underlättar ditt användande av standarder. Läs mer på www.elstandard.se.

Sims Recycling Solutions AB Karosserigatan 6 641 51 Katrineholm Tel: 0150-36 80 30 www.simsrecycling.se

Swentech Utbildning AB Box 180 161 26 Bromma Tel: 08-704 99 88 www.swentech.se

Schurter Nordic AB Sandborgsvägen 50 122 33 Enskede Tel: 08-447 35 60 Fax: 08-605 47 17 www.schurter.se SEBAB AB Sporregatan 12 213 77 Malmö Tel: 040-601 05 00 Fax: 040-601 05 10 www.sebab.se SGS Fimko AB Mörtnäsvägen 3 (PB 30) 00210 Helsingfors Finland www.sgs.fi

Shortlink AB Stortorget 2 661 42 Säffle Tel: 0533-468 30 Fax: 0533-468 49 info@shortlink.se www.shortlink.se

Produkter och Tjänster: Du kan genom deltagande i SEK Svensk Elstandard och den nationella och internationella standardiseringen vara med och påverka framtidens standarder samtidigt som ditt företag får en ökad affärsnytta och ökad konkurrenskraft.

Stigab Fågelviksvägen 18 145 53 Norsborg Tel: 08-97 09 90 info@stigab.se www.stigab.se

Skandinavia AB Box 2003 128 21 Skarpnäck Tel: 08-683 61 00 Turebergstorg 1 191 86 Sollentuna Tel: 08-579 211 22 Fax: 08-92 96 90

Shortlink AB Stortorget 2 661 42 Säffle Tel: 0533-468 30 Fax: 0533-468 49 info@shortlink.se www.shortlink.se

Trinergi AB Halltorpsvägen 1 702 29 Örebro Tel: 019-18 86 60 Fax: 019-24 00 60

RISE Elektronik Box 857 501 15 Borås Tel: 010-516 50 00 info@ri.se www.ri.se Kontaktperson: Christer Karlsson Produkter och tjänster: RISE Elektronik (fd SP Sveriges Tekniska Forskningsinstitut) hjälper dig med oberoende kunskap och provning inom elsäkerhet, EMC, radioutrustning, maskinsäkerhet, IP-klassning, funktionssäkerhet samt mekanisk och klimatisk miljötålighet. I laboratorierna sker allt från utvecklingsprovning till ackrediterade prov. Vi ger både öppna och kundspecifika kurser inom flera områden. En omfattande forskning bedrivs för att säkra spetskompetensen i samverkan med industri, akademi och andra forskningsinstitut. Kontaktperson: Christer Karlsson

Swerea KIMAB AB Box 7047 Isafjordsgatan 28 164 40 Kista Tel: 08-440 48 00 elektronik@swerea.se www.swereakimab.se Tormatic AS Skreppestad Naringspark N-3261 Larvik Tel: +47 33 16 50 20 Fax: +47 33 16 50 45 www.tormatic.no

Technology Marketing Möllersvärdsgatan 5 754 50 Uppsala Tel: 018-18 28 90 Fax: 018-10 70 55 www.technologymarketing.se

STF Ingenjörsutbildning AB Malmskillnadsgatan 48 Box 1419 111 84 Stockholm Tel: 08-613 82 00 Fax: 08-21 49 60 www.stf.se

Tesch System AB Märstavägen 20 193 40 Sigtuna Tel: 08-594 80 900 order@tufvassons.se www.tesch.se

Trafomo AB Box 412 561 25 Huskvarna Tel: 036-38 95 70 Fax: 036-38 95 79 www.trafomo.se

Testhouse Nordic AB Österögatan 1 164 40 Kista Landskronavägen 25 A 252 32 Helsingborg Tel: 08-501 260 50 Fax: 08-501 260 54 info@testhouse.se www.testhouse.se

Treotham AB Box 11024 100 61 Stockholm Tel: 08-555 960 00 Fax: 08- 644 22 65 www.treotham.se

UL International (Sweden) AB An affiliate of Underwriters Laboratories Inc. Stormbyvägen 2-4 163 29 Spånga Tel: 08-795 43 70 Fax: 08-760 03 17 www.ul-europe.com Vanpee AB Karlsbodavägen 39 168 67 Bromma Telefon: 08-445 28 00 www.vanpee.se order@vanpee.se

Weidmüller AB Box 31025 200 49 Malmö Tel: 0771-43 00 44 Fax: 040-37 48 60 www.weidmuller.se Wretom Consilium AB Olof Dalins Väg 16 112 52 Stockholm Tel: 08-559 265 34 info@wretom.se www.wretom.se Würth Elektronik Sweden AB Annelundsgatan 17 C 749 40 Enköping Tel: 0171-41 00 81 eiSos-sweden@we-online.com www.we-online.se Kontaktperson: Martin Danielsson

Yokogawa Measurement Technologies AB Finlandsgatan 52 164 74 Kista Tel: 08-477 19 00 Fax: 08-477 19 99 www.yokogawa.se Österlinds El-Agentur AB Box 96 183 21 Täby Tel: 08-587 088 00 Fax: 08-587 088 02 www.osterlinds.se

TRESTON GROUP AB Tumstocksvägen 9 A 187 66 Täby Tel: 08-511 791 60 Fax: 08-511 797 60 Bultgatan 40 B 442 40 Kungälv Tel: 031-23 33 05 Fax: 031-23 33 65 info.se@trestoncom www.treston.com

www.electronic.nu – Electronic Environment online

39


POSTTIDNING B  Returer till: Break a Story Mässans gata 14 412 51 Göteborg

v

EMC-TESTUTRUSTNING RadiPower –Effektmetrar för EMC mätningar, 9kHz-18GHz Radipower är en serie RF-effekthuvuden för mätning inom 9kHz-18GHz. Två modeller täcker området 9(4)kHz-18GHz. Modell RPR2006C, 9kHz-6GHz med option10 mäter från 4kHz som krävs enligt Mil.Std 461, CS-114. Levereras med USB-kabel och programvara för avläsning i en PC. Med interface USB1004A till centralenheten RadiCenter kan 4 st effekthuvuden anslutas och man mäter ut- och reflekterad effekt från 2 st förstärkare.

Modell RPR2006C m.opt.10 RPR2006P RPR3006W RPR2018C

Frekv.område 9kHz-6GHz 4kHz-6GHz 9kHz-6GHz 9kHz-6GHz 80MHz-18GHz

Läshastighet 20-100kSps eller 1MSps 20-100kSps eller 1MSps Burst & Puls WLAN enl. ETSI300328 20-100kSps eller 1MSps

Pris ex. moms 19 640:3 480:25 000:36 000:38 000:-

RadiSense–Laserdrivna probar 4GHz, 6GHz, 10GHz och 18GHz Robusta-tillförlitliga-små och batterifria är egenskaper som krävs för att mäta E-fält i en EMC-hall. De sfäriska modellerna för 6 och 10GHz har en diameter mindre än en halv tändsticka. Den senaste modellen har dessutom 6 sensorer med kalibreringdata lagrade inne i sfären. Levereras med laserkälla, 10 meter fiberkabel och programvara. Modell RSS1004A Opt.10 RSS1006A RSS2010A RSS1006A

Frekv.omr. 9kHz-4GHz 4kHz-4GHz 9kHz-6GHz 9kHz-10GHz 30MHz-18GHz

Mätomr. 1-1000V/m 1-1000V/m 0,5-600V/m 1-600V/m 1-600V/m

Läshastighet Pris 5 gånger/s 5 gånger/s 60 gånger/s 1000 gånger/s 104 000:60 gånger/s 101 000:NYHET: 10GHz – prob Model RSS2010A

Ackrediterad kalibrering enl. ISO17025 som option

EMI-filter för undertryckning av störningar på nätet Dessa filter skyddar Er utrustning och tar bort störningar som ofta förekommer på nätet och skyddsjord. Levereras i utförande för 3A, 10A, 20A och 30A. Enkelt att installera på kontoret, laboratoriet eller i utrustningar. Modell AF = 20-30A Pris från 5 500:Modell AL = 10A Pris 4 380:Modell AP = 3A Pris 2 700:-

Filtermodell GLE04-01 för störningar på skyddsjord. Blockerar högfrekventa signaler och ESD. Monteras i utrustningen. Pris 930:-

Filter för servomotorer

EMI-adapter

Störningar på nätet orsakar fel på servomotorer och frekvensriktare. Framför allt skadar de kullager och motorlindningar. Modell VFD dämpar störningar och förlänger livslängden på utrustningen. Pris 3 600:-

Adaptern isolerar från nätspänningen men släpper igenom högfrekventa signaler för anslutning till oscilloskop eller spektrmanalysator. Ett enkelt och säkert sätt att mäta “common mode” och “differential mode”. Pris 3 900:-

CE-BIT – Box 7055, 187 11 Täby, Sweden – Tel: +46 8-735 75 50 - Fax. +46 8-735 61 65 – E-Mail: info@cebit.se – www.cebit.se


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.