2.2018 Using PoE networks to power IoT
What is the electromagnetic environment? The EMC part of the prestudy
smart infrastructure for commercial buildings
EMC från bricka till bricka
• EMC & SKÄRMNING
DEL 22
Diverse metoder för EMC-tätning >> PART 1
ELECTROSTATIC DISCHARGE Understand and Test for Compliance + KALENDARIUM SID 6 + Ny el-standard SID 8 + ÖGAT PÅ SID 10–11 + FÖRETAGSREGISTRET SID 36–39 >>>
Electronic Environment #2.2018
Reflektioner
Dan Wallander Chefredaktör och ansvarig utgivare
Det är mycket kraft med lite vikt som gäller
D
et finns väl inget annat folkslag som är mer intresserade av antalet soltimmar än vi nordbor? Jo, möjligen engelsmännen då. I vilket fall så har vi i år välsignats med en sommar som inte kunde vänta på sin tur, utan har kört på med öppna spjäll trots solklar tjuvstart. Även om många av oss har en månad kvar till semester är det redan full aktivitet på cykellederna, i skogarna, i torpen och på sjön. VI ÄR DUKTIGA på kombinationen teknik och fritid. Massor av produkter fulla av teknik utvecklas ständigt för att göra vår fritid lite enklare, mer intressant och mer uppkopplad. Att det gamla torpet idag har ett internt nätverk dit allehanda prylar är uppkopplade mot är en självklarhet. Och man blir ju dessutom lite irriterad när man inte får det att funka. Vad vi kanske inte funderar över så mycket, är hur mycket kraft vi plockar med oss på våra små
äventyr. Förhållandet ”Så mycket kraft som möjligt, med så liten vikt som möjligt” råder utan att vi gör någon notis om det. Än mindre funderar vi nog över vilka miljöer som denna paketerade kraft möjligen kommer att utsättas för. Vi förutsätter att våra prylar skall stå emot exempelvis fukt, värme, korrosion, kondens, kyla, vibration, stötar och slag utan vidare. DET FINNS IDAG ingen tydlig statistik att tillgå när det gäller exempelvis batteribränder i elektronik, men vi vet att det händer en hel del och ofta är lithium-jonbatterier inblandade, och flera olika myndigheter börjar få upp ögonen för företeelsen. SÅ, ETT STORT tack till alla er som arbetar med att
utveckla, testa och inte minst kvalitetssäkra min fritid, som blir allt mer beroende av dessa små fantastiska elektronikprylar. Att de funkar även när förhållandena kanske inte är de bästa men förmodligen behövs som mest.
I DET HÄR sommarnumret av Electronic Environment har vi nöjet att presentera en helt ny artikelserie; ”EMC in product development”. Del 1 har titeln ”What is the electromagnetic environment? The EMC part of the prestudy”, och författare är Lennart Hasselgren. MICHEL MARDIGUIAN fördjupar sig i fenomenet Electrostatic Disarge (ESD), och del 1 har titeln ”Understand and Test for Compliance”, och Miklos Steiner fortsätter sin serie ”EMC från bricka till bricka”, med del 22 där vi fortsätter att titta på metoder för EMC-tätning. ETT MATIGT SOMMARNUMMER alltså, att ta med sig på vandringen, på sjön eller till hängmattan.
En härlig fortsättning på sommaren önskar jag er alla!
SHIELDING TECHNOLOGY
Shielded secure meeting rooms
•
Turn key shielded and anechoic chambers
•
Shielded rooms for data security
•
Shielding materials for self-assembly: doors, windows, absorbers, ferrites, filters, gaskets and metalized textiles.
•
Shielded boxes for GSM, DECT, radio testing etc
•
EMC testing services in our own lab.
www.scratch.se
•
www.emp-tronic.se
Electronic Environment Ges ut av Break a Story Communication AB Mässans gata 14 412 51 Göteborg Tel: 031-708 66 80 info@breakastory.se www.breakastory.se
2
HELSINGBORG Box 13060, SE-250 13 Helsingborg +46 42-23 50 60, info@emp-tronic.se
Adressändringar: info@justmedia.se Tekniska redaktörer: Peter Stenumgaard Miklos Steiner Michel Mardiguian Våra teknikredaktörer når du på info@justmedia.se
STOCKHOLM Centralvägen 3, SE-171 68 Solna +46 727-23 50 60
Ansvarig utgivare: Dan Wallander dan.wallander@justmedia.se Annonser: Caroline Östling caroline.ostling@justmedia.se Dave Harvett daveharvett@btconnect.com
www.electronic.nu – Electronic Environment online
Omslagsfoto: Istock Tryck: Billes, Mölndal, 2018 Efterpublicering av redaktionellt material medges endast efter godkännande från respektive författare.
Electronic Environment #2.2018
Redaktörerna Peter Stenumgaard
Electrostatic discharge – Understand an Test for Compliance
18
Ur innehållet
Civilingenjör Teknisk Fysik och Elektroteknik (LiTH 1988) samt Tekn Dr. Radiosystemteknik (KTH 2001). Arbetade fram till 1995 som systemingenjör på SAAB Military Aircraft där han arbetade med elektromagnetiska störningars effekter på flygplanssystem. Detta inkluderade skydd mot exempelvis blixtträff, elektromagnetisk puls (EMP) samt High Power Microwaves (HPM). Han har varit adjungerad professor både på högskolan i Gävle och Linköpings universitet. Peter arbetar idag till vardags på FOI. Han var technical program chair för den internationella konferensen EMC Europe 2014 som då arrangerades av Just Event i Göteborg.
Miklos Steiner
2 Reflektioner 3 Redaktörerna 4 Konferenser, mässor och kurser 6 Ny el-standard 8 Ögat på – Diverse metoder för EMC-tätning, del 2 10 Teknikkrönikan – Peter Stenumgaard 11 Rapport från svenska IEEE EMC 12 Produktnytt 13 EMC in product development 16 Forskning 17 Konferenser 18 Electrostatic discharge – Understand and test for compliance 31 Branschnytt 32 Using PoE networks to power IoT – smart infrastructure for commercial buildings 35 Författare i Electronic Environment 36 Företagsregister
Using PoE networks to power IoT
32
Miklos har elektromekaniker- högskoleutbildning för telekommunikation och elektronik i botten samt bred erfarenhet från bl a service och reparation av konsumentelektronik, konstruktion och projektledning av mikroprocessorstyrda printrar, prismärkningsautomater, industriella styrsystem och installationer. Miklos har sedan 1995 utbildat ett stort antal ingenjörer och andra på sina kurser inom EMC och är också författare till den populära EMC-artikelserien ”ÖGAT PÅ”, i tidningen Electronic Environment. Under många år var Miklos verksam som EMC-konsult, med rådgivning och provning för många återkommande kunder. Mångårig erfarenhet från utveckling av EMC-riktiga lösningar i dessa uppdrag har gett Miklos underlag, som han med trovärdighet kunnat föra vidare i sina råd, kurser och artiklar.
Michel Mardiguian Michel Mardiguian, IEEE Senior Member, graduated electrical engineer BSEE, MSEE, born in Paris, 1941. Started his EMC career in 1974 as the local IBM EMC specialist, having close ties with his US counterparts at IBM/ Kingston, USA. From 1976 to 80, he was also the French delegate to the CISPR. Working Grp on computer RFI, participating to what became CISPR 22, the root document for FCC 15-J and European EN55022. In 1980, he joined Don White Consultants (later re-named ICT) in Gainesville, Virginia, becoming Director of Training, then VP Engineering. He developed the market of EMC seminars, teaching himself more than 160 classes in the US and worldwide. Established since 1990 as a private consultant in France, teaching EMI / RFI / ESD classes and working on consulting tasks from EMC design to firefighting. One top involvment has been the EMC of the Channel Tunnel, with his British colleagues of Interference Technology International. He has authored 8 widely sold handbooks, two of them being translated in Japanese and Chinese, plus 2 books co-authored with Don White.
www.electronic.nu – Electronic Environment online
3
Electronic Environment #2.2018
Konferenser, mässor & kurser
Konferenser & mässor IMS 2018 – IEEE MTT-S International Microwave Symposium
10-15 juni, Philadelphia, USA IEEE International Conference on Environment and Electrical Engineering (EEEIC) with IEEE Industrial and Commercial Power Systems Europe (I&CPS Europe)
MILCOM 2018
29-31 oktober, Los Angeles, USA AMTA 2018 – 40th Annual Meeting and Symposium of the Antenna Measurement Techniques Association
4-9 november, Williamsburg, USA Embedded Conference Scandinavia 2018
6-7 november, Kistamässan, Stockholm
12-15 juni, Palermo, Italien AES 2018 – Advanced Electromagnetics Symposium 2018
24 juni-1 juli, Marsielle, Frankrike Sensors Expo & Conference 2018
26-28 juni, San Jose, USA EMC + SIPI 2018
30 juli-3 augusti, Long Beach, USA EMC Europe 2018
27-30 augusti, Amsterdam, Nederländerna IEEE Autotestcon 2018
17-20 september, Maryland, USA European Microwave Week 2018
23-28 september, Madrid, Spanien EMC UK 2018
Föreningsmöten Se respektive förenings hemsida: IEEE
www.ieee.se Nordiska ESD-rådet
www.esdnordic.com
Thermal Design of Electronics
4 oktober, Mölndal www.emcservices.se Hybrid vehicles and EMC
18 oktober, Mölndal www.emcservices.se Cellulär IoT
23-24 oktober, Stockholm www.stf.se Högspänningsinstallationer och jordningssystem
20-21 november, Stockholm www.stf.se
www.ser.se SNRV
www.radiovetenskap.kva.se SEES
www.sees.se
Kurser
TEC Lund 2018
Fundamentals of EMC
27 september, Medicon Village Science Park, Lund
4-6 september, Mölndal www.emcservices.se
EDI CON USA 2018, Electronic Design Innovation
Maskinsäkerhet och CE-märkning, grundkurs
4
18-19 september, Stockholm www.stf.se
SER
25-26 september, Birmingham, England
17-18 oktober, Santa Clara, USA
Neutralpunkter och jordfel i icke direktjordade system
12-13 september, Stockholm www.sis.se www.electronic.nu – Electronic Environment online
TIPSA OSS! Vi tar tacksamt emot tips på kurser, föreningsmöten och konferenser om elsäkerhet, EMC (i vid bemärkelse), ESD, Ex, mekanisk, termisk och kemisk miljö samt angränsande områden. Publiceringen är kostnadsfri. Sänd upplysningar till: info@justmedia.se. Tipsa oss gärna även om andras evenemang, såsom internationella konferenser!
Electronic Environment #2.2018
Hej, det är vi som är Proxitron! Vi kan bli din leverantör av utrustning och service inom EMC, elsäkerhet och miljötålighet.
Rickard Elf 0141-20 96 53 rickard@proxitron.se
Kontakta oss redan idag! Vi diskuterar gärna dina specifika servicebehov, kontakta oss för ett förslag eller ett kostnadsfritt besök.
Jonas Johansson 0141-20 96 55 jonas@proxitron.se
Proxitron AB – 0141-580 00 – info@proxitron.se – www.proxitron.se
Komponenter för kraftelektronik, EMC & RF/Mikrovåg
Batterier & batterihållare • EMC & Termiska material Induktiva komponenter • Kondensatorer • Nätaggregat • RF/Mikrovåg
Flexitron AB • Veddestadvägen 17 • 175 62 Järfälla • 08-732 85 60 • info@flexitron.se • www.flexitron.se
www.electronic.nu – Electronic Environment online
5
Electronic Environment #2.2018
Ny el-standard Listan upptar ett urval av de standarder som fastställts under december 2017 och under januari och februari 2018. För varje standard anges svensk beteckning, internationell motsvarighet (om sådan finns), europeisk motsvarighet (om sådan finns). Om den europeiska standarden innehåller ändringar i förhållande till den internationella anges detta. Dessutom anges svensk titel, engelsk titel, fastställelsedatum och teknisk kommitté inom SEK. För tillägg framgår vilken standard det ska användas tillsammans med men för nyutgåvor och standarder som på annat sätt ersätter en tidigare standard framgår inte vilken denna är eller när den planeras sluta gälla.
SS-EN 50364, utg 3:2018
SS-EN IEC 61340-4-3, utg 2:2018
- • EN 50364:2018 Begränsning av exponering för elektromagnetiska fält i frekvensområdet 0 Hz – 300 GHz från utrustning för artikelövervakning (EAS), identifiering (RFID) och liknande
IEC 61340-4-3:2017 • EN IEC 61340-4-3:2018 Elektrostatiska urladdningar – Del 4-3: Provningsmetoder för särskilda tillämpningar – Fotbeklädnad
SEK TK 106: Elektromagnetiska fält - Gränsvärden och mätmetoder
FASTSTÄLLELSEDATUM: 2018-05-16
FASTSTÄLLELSEDATUM: 2018-05-16
Bland annat har klassningen i konduktiva och dissipativa tagits bort.
SS-EN 50496, utg 2:2018
SS-EN IEC 61340-4-4, utg 3:2018
- • EN 50496:2018 Bestämning av arbetstagares exponering för elektromagnetiska fält i en rundradiostation, jämte riskbedömning SEK TK 106: Elektromagnetiska fält – Gränsvärden och mätmetoder
IEC 61340-4-4:2018 • EN IEC 61340-4-4:2018 Elektrostatiska urladdningar – Del 4-4: Provningsmetoder för särskilda tillämpningar – Klassning av storsäckar (FIBC-behållare) med avseende på elektrostatiska egenskaper
FASTSTÄLLELSEDATUM: 2018-05-16
SEK TK 101: Elektrostatik
SS-EN 55016-1-2, utg 2:2014/A1:2018
Bland annat ändrade gränser för FIBC-behållare typ C.
CISPR 16-1-2:2014/A1:2017 • EN 55016-1-2:2014/A1:2018 EMC - Utrustning och metoder för mätning av radiostörningar och immunitet – Del 1-2: Kopplingsnätverk för mätning av ledningsbundna störningar
SS-EN IEC 61340-4-5, utg 2:2018
SEK TK 101: Elektrostatik
FASTSTÄLLELSEDATUM: 2018-05-16
FASTSTÄLLELSEDATUM: 2018-03-14
IEC 61340-4-5:2018 • EN IEC 61340-4-5:2018 Elektrostatiska urladdningar – Del 4-5: Provningsmetoder för särskilda tillämpningar – Bestämning av elektrostatiska egenskaper hos fotbeklädnad och golv tillsammans med person
Tillägget innehåller ändringar beträffande artificiella nät.
SEK TK 101: Elektrostatik
SEK TK EMC: Elektromagnetisk kompatibilitet
FASTSTÄLLELSEDATUM: 2018-05-16
SS-EN IEC 60068-2-52, utg 2:2018 IEC 60068-2-52:2017 • EN IEC 60068-2-52:2018 Miljötålighetsprovning – Del 2-52: Provningsmetoder – Kb: Saltdimma, cyklisk SEK TK 104: Miljötålighet FASTSTÄLLELSEDATUM: 2018-04-11
SS-EN 62232, utg 1:2018 IEC 62232:2017 • EN 62232:2017 Bestämning av radiofrekvent fältstyrka, effekttäthet och SAR i närheten av radiobasstationer i syfte att bedöma exponering för elektromagnetiska fält SEK TK 106: Elektromagnetiska fält – Gränsvärden och mätmetoder
SS-EN IEC 60749-12, utg 2:2018
FASTSTÄLLELSEDATUM: 2018-05-16
IEC 60749-12:2017 • EN IEC 60749-12:2018 Halvledarkomponenter – Mekaniska och klimatiska provningsmetoder - Del 12: Vibration, varierande frekvens
SS-EN IEC 62822-3, utg 1:2018
Elektrotekniska rådet FASTSTÄLLELSEDATUM: 2018-05-16
IEC 62822-3:2017 • EN IEC 62822-3:2018 Bedömning av utrustning för elsvetsning med avseende på begränsning av exponering för elektromagnetiska fält (0 Hz – 300 GHz) – Del 3: Utrustning för motståndssvetsning SEK TK 26: Elsvetsning
SS-EN IEC 60749-26, utg 3:2018 IEC 60749-26:2018 • EN IEC 60749-26:2018 Halvledarkomponenter – Mekaniska och klimatiska provningsmetoder - Del 26: Känslighet för elektrostatiska urladdningar (ESD) – ”Human body model” (HBM)
FASTSTÄLLELSEDATUM: 2018-05-16
Elektrotekniska rådet FASTSTÄLLELSEDATUM: 2018-05-16 Sammanställningen är ett urval av nya svenska standarder på det elektrotekniska området fastställda av SEK Svensk Elstandard de senaste tre månaderna. För kompletterande information: www.elstandard.se
6
www.electronic.nu – Electronic Environment online
Electronic Environment #2.2018
(14 #.. ;174 X *'4/#. #0& 5'#.+0) 51.76+105
-ROH[ $% 9lVWHUYLNVYlJHQ 9lUPG| 7HOHIRQ )D[ PDLO#MROH[ VH ZZZ MROH[ VH
See emission and immunity sources at components level! Using the EMC-Scanner during the early stages of design enables you to detect potential emission or immunity problems before they become integrated into the product and expensive to correct. See what an EMC scanner can do for you, visit our website www.detectus.com.
See it before you
it!
q +46 (0)280 41122
info@detectus.com www.detectus.com
Moravägen 1 SE-782 31 Malung
www.electronic.nu – Electronic Environment online
7
Electronic Environment #2.2018
Ögat på Vad alla bör känna till om EMC:
EMC från bricka till bricka, del 22
EMC & SKÄRMNING DEL 5: Diverse metoder för EMC-tätning (Fortsättning) EMC måste tas om hand i alla delar, såväl på elektrisk som på mekanisk systemnivå, och på alla nivåer i en utrustning på ett systematisk och planerat sätt. Denna gång tittar på bland annat skärmning medelst vågledardämning. Vågledardämpning Om öppningen har ett djup, dvs. utförd som en rörstump eller som överlappande flänsar, inträder en sk vågledardämpningseffekt, A dB. Öppningens dämpning ökar för frekvenser som är lägre än hålets brytfrekvens fco. Vågledardämpningen är avhängigt förhållandet mellan öppningens bredd (g) och djup (d), se Figur 1. Vid g = d ger vågledardämpningen ca 30 dB extra dämpning för frekvenser lägre än c:a (fco / 3) utöver reflektionsdämpningen enligt tidigare artikel. A ≈ 30 g / d [dB] Totaldämpning för en vågledarformad öppning blir således (reflektionsdämpning plus vågledardämpning räknat i dB): R = R + A [dB] Vid skarvning av t ex plåtar ska man sträva efter överlappning för minskat läckage. Vågledardämpning i praktiken Figur 2 visar en metallåda med överlappande flänsar, där vi räknar med ett visst dämpningsbidrag. Som figuren visar är det avståndet mellan skruvarna (g) (där plåtarna har säker kontakt) och överlappet (d) som är avgörande parametrar; förhållandet d/g enligt figur 2. Metoder att skärma öppningar Figur 3 visar olika metoder att begränsa läckage genom öppningar. Nät, galler, ”bikake”-konstruktioner (honeycombs), kan fungera mer eller mindre bra för skärmning av öppningar. Utförandet är många gånger avgörande för resultatet. Figur 4 visar en del av svårigheterna. Man måste se till att det inte uppstår oavsiktliga glapp eller spalter när man ansluter t ex ett finmaskigt nät för att skärma en stor öppning. Observera viktiga detaljer såsom: − Panelens yta måste vara ren och vara en god elektriskt ledande. − För att kunna åstadkomma en god och kontinuerlig kontakt mellan
8
nätet och panelen behövs oftast någon form av ledande packning. − En styv ram, som pressar nätet mot panelen, för god kontakt i många punkter med hjälp av packningen. − Metallerna bör inte ligga långt från varandra i den galvaniska korrosionsskalan för att säkerställa långvarig kontaktering i anliggningsytorna. Regler för beräkning av läckage från flera hål Figur 5 visar utsläckningseffekten av symetriskt lagda, intilliggande identiska hål: läckaget minskar dramatiskt om hålen är identiska och ligger nära varandra. Till vänster i Figur 5 visar att ett hål med längden g läcker dubbelt så mycket som två närliggande identiska hål med längden g/2. De två hålen läcker motsvarande ett hål med längden g/2, trotts att den sammanlagda arean för de två hålen är densamma som för hålet med längden g. Effekten kan förklaras med ömsesidig utsläckning av fält på grund av geometrin. Till höger i figuren illustreras, att ännu mindre läckage kan uppnås med flera små öppningar istället för en stor. Figur 6 visar 3 olika fall: 1: Skärmningseffektiviteten (läckaget) för ett fyrhåls fält är densamma som skärmningseffektiviteten för ett hål på grund av ovan nämnda ömsesidiga fältutsläckning. 2: Likadana, men ej närliggande och hål: skärmningseffektiviteten försämras för varje hål = läckaget ökar med antalet hål. 3: Olika former av öppningar: skärmningseffektiviteten sämre (läckaget större) än för det största hålet, dvs varje hål läcker som funktion av sin form och placering. Generella konstruktionsregler: • Skärmmaterialet skall ha god ledningsförmåga och en yta eller ytbehandling som tillåter god elektrisk kontakt mellan kontakterande ytor.
www.electronic.nu – Electronic Environment online
Electronic Environment #2.2018
Figur 1: Vågledardämpning: S = infallande fält, R = reflektionsdämpning, A vågle-
Figur 4: Tätning av öppning med metallnät.
dardämpning.
Figur 2: Flänsar som vågledare. Lådlock med överlapp. Figur 5: Utsläckning av fält.
Figur 3: Metoder som minskar läckage i ventilationsöppningar.
Figur 6: Symmetriska kontra random öppningars effekt.
• Öppningar av olika slag, såsom skarvar och ventilationshål, skall göras så små som möjligt. De bör inte överstiga 1/200 av våglängden för aktuell frekvens, vilket teoretiskt ger minst 40 dB dämpning. • Det är inte öppningens yta utan dess största dimension som är avgörande för dämpningen. • Det är bättre med många små öppningar än med en stor. • Läckaget från ett antal symmetriskt placerade hål nära varandra är betydligt mindre än ett stort hål med samma öppningsyta. • Om samma antal öppningar placeras osymmetriskt och på större av-
stånd från varandra blir läckaget betydligt större än i förra fallet. Sammanfogningar, där endast punktvisa elektriska kontakter existerar längst öppningen, kan betraktas som en rad av öppningar. För att uppnå önskad skärmning är det oftast viktigt att åstadkomma ett stort antal kontaktpunkter med t ex många skruvar, kontaktfingerpackningar eller andra former av elektriskt ledande packningar (skärmningspackningar).
www.electronic.nu – Electronic Environment online
Miklos Steiner info@justmedia.se
9
Electronic Environment #2.2018
Teknikkrönikan Paretoprincipen och EMC PARETOPRINCIPEN ÄR EN empirisk regel enligt vilken 20 procent av orsakerna står för 80 procent av verkan. Principen kallas ibland även 80/20-regeln. Regeln kommer från Vilfredo Pareto (1848-1923) som visade att ca 20 procent av den italienska befolkningen innehade ca 80 procent av egendomen. Denna observation har av andra senare generaliserats och tillämpats inom en rad andra områden och även om de faktiska siffrorna inte alltid råkar bli exakt 80/20 så talar man ändå om principen som sådan för att illustrera att en minoritet av orsaker står för en majoritet av verkan i någon mening. INOM EMC-OMRÅDET så anser somliga EMC-specialister att erfarenhetsmässigt så är i storleksordningen 80% av de EMCutmaningar som typiskt finns inom produktutveckling gemensamma för de flesta industribranscher, medan ca 20% är specifika för en viss bransch. Typiskt är det dock de 20 procenten som kräver mest tid/kostnader att hantera då de tenderar att vara specifika för just den branschen. De 20 procenten kan då ta i storleksordningen 80% av tid/kostnader att hantera.
10
ORSAKEN TILL DETTA är att de 20 procenten de ofta kräver mycket djup kunskap om detaljer i en konstruktion, till skillnad mot de 80 procenten där mer eller mindre kända sätt att hantera EMC-utmaningarna existerar. Som exempel kan man studera EMC-utmaningar inom rymdteknologi. De generella utmaningarna innefattar typiskt de standardmässiga frågorna runt strålad/ledningsbunden störning samt strålad/ledningsbunden emission ombord på plattformen. De mer specifika utmaningarna kan dels gälla de hårda särkraven på vikt och tät samlokalisering, dels den speciella elektromagnetiska miljön som uppstår i en rymdtillämpning. Här kan det både vara fråga om urladdningsfenomen som beror på uppladdning vid färd genom jonosfären och solvinden, men även påverkan från joniserande strålning. Krav på mycket låga nivåer av egengenererade statiska magnetfält är vanligt, både för system som ur forskningssynpunkt ska inhämta mätdata på magnetfält, men även för låghöjdssatelliter som använder det jordmagnetiska fältet som höjdreferens. Kraven på så kallad ”magnetisk renhet” är därför av särskild vikt för rymdtillämpningar.
www.electronic.nu – Electronic Environment online
ALLA BRANSCHER HAR sina egna EMC-utmaningar inom 80/20-principen och en nyckelfråga att hantera är om man ska ha EMC-kompetensen för de 20 procenten inom företaget eller om man ska förlita sig på extern expertis. Just frågan om hur kvalificerad intern EMC-kompetens ett företag väljer att hålla kan skifta beroende på exempelvis företagets storlek, produktens komplexitet, krav på sekretess i enskilda konstruktionsdelar med mera. Trenden på senare år ser dock ut att gå mot att fler och fler väljer att förlita sig på extern EMC-expertis för de mera krävande utmaningarna.
Peter Stenumgaard info@justmedia.se
Electronic Environment #2.2018
Information från svenska IEEE EMC ALLA NI SOM brukar gå på möten med IEEE EMC får utskick då och då, oftast direkt från mig. På grund av GDPR som har trätt i kraft har vi sett över vår sändlista. För att vara på säkra sidan har vi sällat oss till den stora skaran som skickat ut frågor till er om ni även i fortsättningen vill få dessa utskick. Om ni vet med er att ni inte svarat på något sådant utskick från mig men ändå vill vara kvar på sändlistan, så hör av er till någon av oss i styrelsen så ser vi till att ni inte faller bort. Detta gäller oavsett om ni är medlemmar i IEEE eller ej. Vi använder oss bara delvis av grundlistan från IEEE, och även om man är medlem i IEEE så kanske man inte vill ha alla typer av utskick. ELECTRONIC ENVIRONMENT arrangerades liksom för två år sedan parallellt med Scandinavian Electronics Event i slutet av april och som traditionen bjuder så hölls ett kortare medlemsmöte i samband med detta. Den här gången diskuterade vi utbildningar inom EMC och vi hade besök av Professor Rajeev Thottappillil från KTH som beskrev EMC-utbildningarna där. Statusen för EMC i högskoleutbildningen i Sverige verkar variera från de som har specifika EMC kurser, andra som har EMC som ett delmoment t.ex. i kurser i elektronikkonstruktion, till några som inte verkar ta upp EMC alls. Och gemensamt för i stort sett alla är att utbildningarna syftar främst till att ge elektronikkonstruktörer och andra en baskunskap i EMC, inte att utbilda EMC-ingenjörer och specialister. Diskussionen på mötet får förhoppningsvis en fortsättning i ibland annat gästspel från några av er medlemmar på kurserna på KTH. Det är i så fall ett utmärkt sätt att utnyttja den stora samlade kompetens som finns inom medlemsskaran.
Christer Karlsson Ordf. Swedish Chapter IEEE EMC
Till vårt kontor i Danderyd, Stockholm söker vi:
EMC expert Har du ett brinnande intresse för EMC och att bli av med störningar i elektroniken? Gillar du att skapa goda kundrelationer? Har du instrumentvana och tycker det är roligt att jobba i labbet? Då kan du bli kollega med Sveriges främsta specialister inom kraftelektronik. Hos EK Power Solutions finns ett starkt team med mycket erfarna elektronikkonstruktörer. Vårt fokus är strömförsörjning, kraftelektronik, motorstyrning, batteriladdning och mönsterkortslayout. Hos oss hittar du en unik ingenjörsanda där alla hjälps åt för att skapa produkter med hög kvalité. Vi driver även tjänsten www.emc-problem.nu Du kan läsa mera om jobbet på vår hemsida: www.ekpower.se/om-oss/karriar Vi söker även kraft- och mönsterkortskonstruktörer
Rinkebyvägen 19B, 182 36 Danderyd, tel: 08-446 56 00 www.ekpower.se info@ekpower.se
NYHET
CUSTOMIZED EMC-SOLUTIONS KAMIC EMC have more than 30 years of experience, regarding developing and installation of units and products within the electrical environmental area. We are today helping a number of hundreds individual customers and bigger companies with our knowledge in questions related to EMC and improved electrical environment. Welcome to us – we will guide you to your particular customized solution.
KAMIC Components Tel: + 46 (0)54-57 01 20 | www.kamicemc.com
www.electronic.nu – Electronic Environment online
11
Electronic Environment #2.2018
Produktnytt New 720242 module provides support for higher-speed testing YOKOGAWA EUROPE has introduced a new CAN FD monitoring module for its ScopeCorder family of portable data-acquisition and recording instruments. The new 720242 plugin module is compatible with the DL850EV (Vehicle Edition) instrument and the new DL350 ScopeCorder fitted with the /VE option. Using a ScopeCorder together with bus monitor modules to decode data from automotive serial buses such as CAN (Controller Area Network) enables engineers to display information such as engine temperature, vehicle speed and brake pedal position as trend waveforms and compare this with the analogue data coming from the actual sensors. This enables automotive engineers to gain a thorough insight into the dynamic behaviour of the complete electromechanical system.
FD triggering and decoding in its range of DLM mixed signal oscilloscopes for physical layer bus development. SOME AUTOMOTIVE manufacturers in the US, Europe and Asia are planning to implement CAN FD as early as model year 2018 with a wider adoption expected in 2020. This means that automobile engineers are now free to consider CAN FD as the solution to meet the needs for higher data rates in automotive buses especially with regard to electric/hybrid vehicles where new powertrain concepts demand a much higher bit-rate and utilisation.
length of the data field has been increased while still following a protocol common to CAN. It enables data rates higher than 1 Mbit/s to be transmitted on a CAN bus and is thus able to deliver the higher bandwidths now required by the automotive industry for in-vehicle networks. Yokogawa already supports CAN
FIRST ANNOUNCED in 2012, CAN FD (CAN With flexible data rate) is an extension format for CAN in which the transfer rate and data
ESD3000 ESD
from 100 V to 16 kV with easy expansion to 30 kV
[ Industrial (IEC, EN, ITU) [ Atomotive (ISO, SAE, FORD, GM, JASO, PSA) [ Military (MIL-STD, DEF-STAN, NATO) [ Component (IEC, JEDEC) [ Railway (IEC, EN, RIA)
Smallest ESD-generator on the market!
ERDE-Elektronik AB Tel: +46-40-42 46 10 www.emc-partner.com
info@erde.se
YOKOGAWA WAS the first test & measurement manufacturer to provide automotive serial bus analysis on any oscilloscope. The introduction of support for this extension of the CAN bus is an indication of the company’s ongoing commitment to satisfy the needs of the automotive and transportation industries. KÄLLA: Yokogawa
Rosa funktionsjordsledare rekommenderas ATT ROSA REKOMMENDERAS för märkning av funktionsjordsledare är den ena större förändringen, när standarden SS-EN 60445 nu kommit i sin sjätte utgåva – men lugn, det påpekas att den rosa färgen bara behöver användas vid ledarändarna och de punkter där de ansluts. Den andra större skillnaden mot förra utgåvan, som kom 2011, är att det i likströmssystem rekommenderas röd märkning för den positiva fasledaren (ytterledaren) och vit för den negativa. För mittpunktsledare och neutralledare i likströmssystem rekommenderas blå märkning. KÄLLA: SEK Svensk Elstandard
ANNONS116en
electronic environment
janlinders.com
Din produkt – vårt fokus.
Vi vet vad som krävs för att din produkt ska uppfylla regulatoriska krav.
www.janlinders.com | +46 31 744 38 80 | info@janlinders.com
12
www.electronic.nu – Electronic Environment online
Electronic Environment #2.2018
EMC IN PRODUCT DEVELOPMENT
WHAT IS THE ELECTROMAGNETIC ENVIRONMENT? The EMC part of the prestudy INTRODUCTION. This article is a part of a series of texts that will deal with the EMC challenge in terms of project management and the practical EMC activities at different stages in the project flow. Different companies all have their own way of describing their project flow, so to keep it simple we will use the labels as given in Figure 1. We can call it a generic project flow. The picture only describes the basic outline of the work packages. We will not involve ourselves in various management buzz words or state-of-the-art management designations. These articles will describe the actual practical work we want to do in the project to “make EMC work” in a time- and cost-efficient way. Each part of our series will fill in the details for each part piece by piece.
Figure 1 Picture of typical project flow
www.electronic.nu – Electronic Environment online
13
Electronic Environment #2.2018
”I have experienced many development projects, where EMC has been regarded as a ghost that someone else should take care of” WHY BOTHER? I have experienced many development projects, where EMC has been regarded as a ghost that someone else should take care of. The “mission impossible” is held at a distance, and there are many other priorities to cling on to. That type of response in these cases may be based on different attitudes such as – EMC is a testing issue, so we wait with that work until we get to the lab. Basically, we just need a test report from the lab before we start to sell it. – Yes, EMC is important to deal with – but we do not really know what to do about it. But we do have a metallic enclosure, and there are some filters. There are a lot of other things to do, and EMC feels complicated and fuzzy, so we deal with that later on and hope for the best. But there are also many engineers who take EMC very seriously, and they have better progress and a faster pace in their projects. Hopefully, such readers may also find some new hints on how to speed up their work by reading this article series. My mission here, is to say that waiting with the problems will not make them smaller. Planning ahead for EMC will save you time and money! In order to do that, we must handle EMC as an integrated part of the product development process. Do not treat EMC as something that you can handle with a cheap quick-fix in the lab. It will not be quick, and it may not be cheap (at least there will be some re-testing). On the other hand, we do not want to create a parallel unique process for EMC – making it exotic and seemingly costly. In the same way as you check that your power supply will provide the correct voltage, cope with temperature, fit within the enclosure etc – you also check the EMI risks with the design. The important thing is that you have a map to follow, otherwise you might be lost in the wilderness. Keep it simple – but with complete coverage.
scope of the product. They do not need to know details about EMC. Using your imagination and your own product experience, you can have a dialogue about typical – and also special! – user scenarios in terms of cable lengths, adjacent systems, operator actions etc, see Figure 2 . Another way is to join visits to customers and look with your own eyes, this time with your EMC goggles on.
Figure 3 Examples of environments
THE STARTING POINT When a new product is to be developed, the primary question is: who is going to buy it – and why? For the EMC issue, the answer to these questions will result in – There will be a user, who will operate the product in some way which will expose the equipment to an electromagnetic environment. The installation may induce new risks that were not considered before. – Depending on location, there will be different types of disturbances – The user will have other nearby equipment which will set your limits in real life. Are they very sensitive? – If there are multiple user scenarios, you will have to find out your worst case To find the information you need, you will have to look at the end use of the project. One way is to talk to your market department about the
Figure 2 Sub-picture – EM environment assessment
14
Figure 4 Generic picture on what EM environment aspects need to be dealt with
EXAMPLES OF ENVIRONMENTS In a general sense, we can distinguish between some basic types of environments due to the inherent use of equipment that they are linked to. A list is presented in Figure 3. By looking at this list, we can understand that CE-marking is not related to a fix test level. The requirements vary with the environment, just as durability to vibration does. Normally, you can find EMC standards that correspond to these environments but be aware that the requirements may not be complete. In parallel, you need to look at the real world scenarios and group them into phenomena as given in Figure 4 : – How low emission is required due to the neighbor systems, directly from the enclosure and indirectly via the cables – How large field strengths may the product be exposed to, onto the enclosure and via the cables – How large transients may I expect coming in on the cables, and from what – How large is the risk for static charge build up – causing ESD
www.electronic.nu – Electronic Environment online
Electronic Environment #2.2018
Figure 5 Measurement of electromagnetic environment at Chalmers University
Figure 6 Different EMI risks for a headset in an expected installation
(author inside)
DIFFERENT LEVELS OF INVESTIGATIONS The assessment of the EM environment may be performed with different amount of effort, depending on the need. For example, we can carry out a detailed measurement at a specific site. Figure 5 shows such a case, where we made a detailed measurement of the electromagnetic environment in the MC2 nanofabrication laboratory at Chalmers University (CTH). There would be new sensitive instruments installed, and CTH wanted to make sure that there would be no large disturbances that e.g. might cause faulty registrations. Just imagine, that your Ph.D. thesis would be based on irrelevant mobile phone exposure… In fact, the supplier of the new instrumentation actually requires that the lab maintains a sufficiently low magnetic field ambient at low frequencies. Otherwise – no instrument provided! That is indeed a high quality profile for a manufacturer. But Chalmers wanted to go one further step and also check the RF ambient in the laboratory, and that is the situation shown in the picture. When you perform such a measurement, you must make sure that the configuration and operation of all systems in the installation are relevant – also on the other side of the transparent wall! The result of these measurements showed, that there were no field generation that could jeopardize the research – so work could continue. But let us say that MC2 finds some new equipment in the future that will work at RF frequencies at higher sensitivity? Then they will now have a reference material as backup for the new situation. The need for EM environment is constantly evolving. If you need to know more about your product´s EM environment, you can make detailed measurements at dedicated sites that are hand picked to show interesting data. Another way is – as is sometimes performed by the vehicle industry – to attach registration instruments to your product as it moves around. The nice part of such a study is that you get a lot of detailed data on the every day normal exposure for the product, including variations. The drawback may be – unless you specifically know where to look – is that it is hard to find your worst case. As an alternative, you can do a theoretical study. Some years ago, we performed such a study for a vehicle manufacturer where we looked on the market for different types of radio transmitters that could be found both on the inside (portables of different kinds) and the outside (stationary transmitters) of the vehicle. These data were then combined with assumed user scenarios that generated the distance to the antenna etc, and then the risk levels could be calculated. The study was then expanded to cover other aspects as well. Another way is to look for existing published standards - surfing the CENELEC site for instance. But be aware that the standards are often political compromises. They tell you what the committee has agreed on, not necessarily the worst case that you are looking for. USER SCENARIOS
resting reference users. A variant of a complex user situation is shown in Figure 6, with a headset as example. From a product point of view, there is only a power and audio plug with short cables so they are seemingly no big pickups for external disturbances. But, since they are used together with other adjacent equipment, transients and fields may be picked up by the system as a whole and possibly ending up in your component. So, power transients may still be a problem for the headset. One way can be to talk to your maintenance personnel, since they have met several customers and can make a selection – or even just show you what they do. I participated once in such an exercise. Asking his maintenance personnel, the engineer got a bit pale in the face when he realized that by the way things were operated, there would be a generation of large potentials between critical parts in his equipment. The risk of damages was imminent. Was there a link to the high warranty claims? Probably yes… Who are your neighbors? Some years ago, I saw a drastic example in a workshop presentation. Traditionally, electrical power transmission systems are placed on ground having a good clearance to the surroundings. Now, there would also be an offshore installation. Naturally, corrosion and waves (of water) were of high interest. But then it was also discovered that there would be helicopters landing on top of the installation. Whoops, we suddenly got an avionic environment on our hands with critical and sensitive radio transmissions. A new assessment had to be made, presumably some measurements on existing installations and then a plan for handling the situation. HOW TO DOCUMENT After we have completed all this work, having some data, some paper notes, and some interesting personal thoughts – what do we do with the information? There is a high risk of just putting the information somewhere, where it will be forgotten. But one of the main goals with these studies is to convert the information into the selected requirements. So, this is an input to the requirement allocation – next part of the article series. That means that we skip ahead a bit in the series and talk about the requirements-to-be. Where did these requirements come from? What assessments did we do? And, not to forget: what risks did we not include, since they were regarded as too low, too exotic or too costly? The last question is of high interest for the future. The assessments made were relevant at the time, but the EM environment is constantly evolving. Regular updates are essential, which means that traceability will also save you money. If you have ideas and comments on this article, please feel free to mail me at lennart@emcservices.se! Some might also recognize my short examples, and if you want to add something that would be an interesting talk.
The way the users operate your product is often also a large factor that influences the EM exposure for your equipment. It is a good practice to ask the customers what they really do with your products. Most users are happy to tell you what they do, so the challenge is to find the intewww.electronic.nu – Electronic Environment online
Lennart Hasselgren Lic Eng. EMC Services
15
Electronic Environment #2.2018
Forskning
Tolv studenter från fem olika masterutbildningar på Chalmers bygger en självkörande racerbil. I bild syns delar av laget, från vänster: Linus Arnö, Jonas Eriksson, Emil Rylén, Weiming Li, Dan Andersson, Martin Baerveldt och Ziwei Huang. Foto: Johan Bodell/ Chalmers
Studenter rustar självkörande racerbil för tävlingsbanan Som första och enda svenska lag har Chalmers kvalat in till den prestigefyllda tävlingen Formula student driverless i Tyskland. Med en unik mjukvara i bilen hoppas laget kunna sopa banan med konkurrenterna.
planering och styrning, samt mekanisk och elektronisk hårdvara som verkställer styrsignalerna. Två av lagmedlemmarna var med att bygga bilen förra året. – Utan dem hade det inte gått. De kan bilen, och vet hur den ska skötas, säger Emil Rylén. Han beskriver laget som en mycket blandad grupp, både vad gäller nationalitet, utbildning och kompetenser.
Att tillgå: ett helt labb dedikerat för utveckling av självkörande fordon, en egen mjukvaruplattform och en färdig elracerbil från förra årets förarkörda Formula student-tävling. – Därifrån var steget litet till att dra igång ett studentlag för att bygga om bilen till självkörande och ställa upp i tävlingsklassen för förarlösa bilar, säger initiativtagaren och handledaren Ola Benderius som är forskarassistent vid avdelningen för fordonsteknik och autonoma system. Sedan i höstas jobbar tolv studenter från fem olika masterprogram med att göra bilen självkörande som en del av sina examensarbeten. – Det är extremt kul och lärorikt. Det är ett helt nytt projekt och vi har väldigt fria händer att ta det i mål, säger lagledaren Emil Rylén som läser masterprogrammet i fordonsteknik.
FÖR ATT GÖRA bilen självkörande har de utrustat bilen med sensorer som gps, laser-radar, kamera med dubbellins för djupseende, datorer, extra elektronik och mekanik för styrning av broms, hjul, och gas. Totalt handlar det om utrustning för cirka en halv miljon kronor, men mycket kommer att kunna återanvändas kommande år. Intresset bland studenterna är stort, liksom industrins intresse för att rekrytera dem som varit med i laget. Ola Benderius och hans två handledarkollegor – Christian Berger och Björnborg Nguyen – håller redan på att sätta ihop nästa års lag. Även för Chalmerslabbet för självkörande fordon, Revere, finns det många fördelar med att ha ett lag i Formula student driverless. – Vi får visa upp Reveres förmågor och kompetens, och får hit riktigt bra studenter. Några av dem vill förhoppningsvis stanna som doktorander. Dessutom utvecklar laget saker som vi kan lyfta över till forskningen, säger Ola Benderius.
LAGET ÄR INDELAT i tre grupper som jobbar med varsin av de tre huvudingredienserna i självkörning: att uppfatta och tolka omgivningen, kör-
16
www.electronic.nu – Electronic Environment online
FÖRUTOM ATT LAGET får nyttja Reveres lokaler, fordon och kompetens, får de även tid på testbanan Astazero. I nuläget kan de fjärrköra racerbilen med en handkontroll, men det återstår några veckors arbete innan de kan gå över till helt självkörande tester. – Det ska bli väldigt kul att testa och åka på tävlingen. Då får vi skörda frukterna av allt arbete vi lagt ner under året, säger Emil Rylén. Medan de övriga lagen som kvalificerat sig till tävlingen alla valt samma väletablerade men något föråldrade mjukvara, använder chalmerslaget Chalmers egenutvecklade mjukvaruplattform för självkörande fordon, Open DLV. – Det gör oss unika. En stabil mjukvara är jätteviktigt för att lyckas i tävlingen, och med erfarenhet från forskningen vet vi hur en sådan måste designas, säger Ola Benderius.
Ingela Roos/Chalmers Om tävlingen Formula student drivers går av stapeln 6–12 augusti i Hockenheim, Tyskland, och innefattar ett flertal olika moment. Förutom att bilen helt på egen hand, och så snabbt som möjligt, ska köra tio varv på en bana utmärkt med koner, ingår broms-, accelerations och cirkelkörningsmoment. Laget ska även presentera och motivera mjukvaru- och hårdvarudesign, samt en affärsmodell.
Electronic Environment #2.2018
Konferenser
SCAPE 2018 RISE ACREO AND WBG Power Center, in collaboration with Yole Développement and Enterprise Europe Network, are pleased to announce the international workshop in applications of wide bandgap (WBG) power electronics, SCAPE. This year with support from the Swedish Energy Agency, as well as the Interreg Baltic Sea Region project Green Power Electronics. SCAPE 2018 is a three-day event, consisting of two workshop days, June 11-12, preceded by one tutorial day, June 10. The event will cover the latest results and innovations in power electronics applications of wide bandgap materials, such as silicon carbide and gallium nitride. From June 10 to 12, international experts will meet in Stockholm to share their expertise, recent developments and visions of electronics applications based on wide bandgap materials. More than an overview, SCAPE proposes a focus on power electronics applications. The event also includes an exhibition area and networking opportunities with business-to-business (B2B) matchmaking. Källa: RISE
EMC Europe 2018, Amsterdam EMC EUROPE IS the leading EMC Symposium in Europe and the 2018 edition will be held at the Beurs van Berlage in the heart of Amsterdam, The Netherlands, August 27-30, 2018. The Organizers of this International Symposium on Electromagnetic Compatibility in Europe are very pleased to invite and encourage all those working in the area of Electromagnetic compatibility to Amsterdam to participate this prestigious event. Amsterdam is the Netherlands’ capital, known for its artistic heritage, elaborate canal system an narrow houses with gabled facades, legacies of the city’s 17th-century Golden Age. The conference center, the Beurs van Berlage, is a building on the Damrak, in the center of the city. This former commodity exchange is one of the defining monuments of the Dutch Capital. Please visit the conference website for complete information on conference program, special sessions, exhibition, social events and more: www.emceurope2018.org Källa: EMC Europe 2018
GLOBAL MARKET ACCESS (GMA) För att produkter ska få placeras på världsmarknaden behöver de uppfylla respektive länders regler och standarder. Processen för att se till att produkten uppfyller kraven kallas ofta Global Market Access. RISE har ett globalt nätverk som ser till att processen för att uppfylla kraven blir smidig. Det blir både snabbare och billigare att få ut produkten på världsmarknaden. Möt internationella radio- och EMC-krav Många vänder sig till oss för att testa och certifiera då de ska uppfylla EMC- och radiokrav för produkter som ska placeras i Europa, USA och Kanada. Vi är RISE är Sveriges forskningsinstitut och innovationspartner. I internationell samverkan med också ackrediterade för en företag, akademi och offentlig sektor bidrar vi till ett konkurrenskraftigt näringsliv och ett hållbart mängd europeiska standarder samhälle. Våra 2 300 medarbetare driver och stöder alla typer av innovationsproccesser. RISE och anmält organ (Notified Body) är ett oberoende statligt forskningsinstitut som erbjuder unik expertis och ett 100-tal testoch demonstrationsmiljöer för framtidssäkra teknologier, produkter och tjänster. www.ri.se för online bland annat Radiodirektivet. www.electronic.nu – Electronic Environment
17
Electronic Environment #2.2018
>> Part I:
ELECTROSTATIC DISCHARGE Understand and Test for Compliance Preamble: Electrostatic Discharge (ESD) is a very common, yet often overlooked problem that can plague electronic equipments in a mysterious way. ESD is like an invisible, mischievous gremlin that come and go un-noticed, until the related failures or malfunctions become apparent. Yet, ESD by its elusive but superfast characteristics and very high frequency spectrum definitely belong to the EMI family. Once understood, the solutions to it are not very different than those for the more classical interference problems, bearing in mind that we will be dealing with a frequency domain up to the GHz, where some EMI solutions are simply not appropriate.
18
www.electronic.nu – Electronic Environment online
Electronic Environment #2.2018
www.electronic.nu – Electronic Environment online
19
Electronic Environment #2.2018
Below are few typical systems where critical charge acquisition or re0,6place: lease can take 60 50 30 20 15 10 Relative Humidity in % – computers, office/business equipment, cash registers – automatic selling and money telling machines, – audio/video entertainment devices – home appliances – automobile dashboard displays / control – Industrial process controls – Hospital and medical care equipment
15
10
Range for Nylon and Acrylic
3
{
2 1 0,6
8
l
ic ” tat ve) s i t i ”An sipat s (D i
60 50 30 20 15 Relative Humidity in %
Material Code 1. Regular nylon 2. Com’l anti-static nylon 3. Vinyl asbestos tile 4. High pressure laminate 5. Acrylic and polyester 6. Compu-Carpet
6
10
12
Disastrous Possible Physical Damage
Marginal
0
3 2
1
8 6
4
5 6
50% RH
Safe AEquipment Reliability
2
4
5 3 4
6
2 0
20% RH
– Typical static voltages generated by walking on common floor Fig.1 ElectroStatic voltages reached by people walking on different floor types, at different RH%. The center column indicates the possible consequences on ordinary (non-hardened) equipment (source 3M).
The Influencing Parameters Several parameters are contributing to the E.S charging. The nature of the material(s) come first, with some dielectric, or merely insulating material being either on the Positive or Negative charging scale. Some notorious examples are Bakelite, acetate, Plexiglass or wool that rank very high on the (+) side of triboelectric series, while others like PVC, Teflon, Silicon are ranking way down in the (-) side. Next come the Relative Humidity (RH) and the temperature, given that the RH in turn is influenced by ambient temperature. From the above, it is easy to conclude that the worst conditions for E.S charging, hence for potential discharges (ESD) are a combination of: • Insulating materials on floor, furnitures, clothing etc ... • Dry air, eventually with forced flow that tend to dry-up the moisture on surfaces • Low ambient temperature, because there is direct relationship between RH and T° A coarse criteria of the ability of materials to aquire, or bleed-off E.S charges can be based on their surface resistance:
20
4
–
10
Very Poor
4 1
6
0
Poor
2
8
2
12 10
o Wo
Static Voltage in kV
5
Static Voltage in kV
10
{
{
12
20
{
Static Voltage in kV
Examples oF Electrostatic charging scenarios: ESD is causing not only 20 a discharge current, but also an intense electromagnetic fields over a broad frequency 15 range, from (dc) to the low GHz, plus corona effects before and during a discharge. The ”culprit”, or intruder, is often a human, 10 but it may be any object that is moved, such as a chair, an equipment cart, a vacuum cleaner. The victim is usually an electronic equipment or subassembly and although 5 is,Range for not always, at local static ground potential. It may occur that the equipment is ”victim of itself ”, whether or Nylon and 3 ol not it is in conductive contact with a human. a third party Acrylic Wo Alternatively, may be affected by the electromagnetic fieldstafrom tic” a) discharge between s e ti 2 a passive receptor such as metal tiv an intruder and carts, tables and ”An sipachairs, is file cabinets, as well as an other electronic(Dequipment. 1
Fig.1 shows examples of the ES voltages reached by people walking on different floor types, at different RH%. Fig.2 shows some typical situations of charge acquisition and discharge
Static Voltage in kV
Normally, for any material, conductive or not, the number of (-) charges (electrons) in each atom is exactly balanced by an equal number of (+) charges (protons), such as the net electrical charge seen from outside is null. If the material is an insulator, electrons do not move freely when subjected to an electric field, so if the materiel surface is being rubbed, or subject to sufficent friction with another material, with air or a non-conducting fluid, the peripheral orbits of the atoms will either loose, or capture some electrons.....The result is a charge unbalance: the material may have lost a certain number of (-) charges, becoming positively charged, or acquired some extra electrons, becoming negatively charged. The process by which components, tools, objects, people, vehicles, aircrafts, rockets, even clouds or water can become charged is extremely complex and multifacet. It would take at least an entire book for a decent coverage of the subject. Readers who are interested could consider some of the references given at the end. Following are some simple examples of E.S charging process: people shuffling their shoes on carpet or synthetic floor, clothes or underware rubbed against seats fabric, rapid flow of liquid, fuel, thin grains or even distilled water through isolated tubes, friction of rubber belts against ungrounded pulleys etc ... Thousands of such episodes are causing ES charging that may end-up in more or less severe ESD events, if not dissipated properly. An ESD happens when these static charges have built-up up to a point where the potential difference - say the excess of (+) charges, and / or the deficit of (-) charges ) is such as the insulation barrier - most often but not always air, is ruptured causing an abrupt recombination, usually with an arc.
• RΩ /sq < 106: border line of the conductors classification • RΩ /sq 106 -1010: AntiStatic, self-dissipative • RΩ /sq 1010 - 1011: AntiStatic, but not self-dissipative • RΩ /sq > 1012: Highly insulating, prone to E.S charging
Static Voltage in kV
1. THE ORIGINS OF THE PROBLEM, A BRIEF OVERVIEW
Charasteristics of Discharge current for Human or Machine/ Furniture ESD Depending on the nature and size of the intruder/victim combination, culprit voltage and discharge current have different amplitudes and waveforms (Fig.3). Although ESD is referred to the charging voltage, the current is generally the most threatening parameter. Depending on the combination, we may have: – a human body whose finger (with or without a metal object) is touching the victim equipment (Human Body Model). The current is driven by the charging voltage and he body resistance – a metallic, isolated machine touching an other passive device. Since the culprit has a low internal impedance, current can be high, limited only by the discharging loop impedance (MM, or Machine Model) – a discrete component (IC or encapsulated semi-conductor) touching a metallic part (CDM, for Charged device model). The current pulse will be extremely short, because of the limited culprit capacitance, but peak amplitude can reach several Amps.
www.electronic.nu – Electronic Environment online
Electronic Environment #2.2018
Equivalent Voltage for ESD generator, per IEC 1 kV (3,7A)
2 kV (7,5A)
4 kV (15A)
Number of discharges per shift exceeding IESD
100
Target Discharge Point E
(kV)
R.H. 10–15 %
10
8 kV (30A)
R.H. 30–35 %
1
0,5 0,3
R.H. 40–50 %
1
0,90 m
3
10 15 20 30
IESD, peak Imeasured)
Amp
Fig. 4 Number of personnel ESD during worst case season in carpeted or vinyl-floored areas (R.Simonic, Ref. 1).
How serious is the ESD risk? Target Discharge Point
Discharge Point E
0,90 m Fig. 2 A few configurations of Personnel and Furniture Charge and discharges
Personnel, 4kV 15 A
Furniture, 1kV 20 A
8A
B 0
60 ns Amp/MHz
A
2. PRINCIPAL EFFECTS OF AN ESD
C 7 Amp 3 ns
An ESD to an electronic device can result in different effects, depending on the way the discharge takes place, the undesired response (UR) of the electronic circuitry, and the criticality of this equipment operating mode. Two issues are considered regarding the ESD threat: solid damages to electronic components, especially ICs, and Errors/Malfunctions to an active equipment. We will look at the most common situations.
Spectrum Denisties B
Direct Discharge to Microelectronic components (integrated or discrete)
C FMH2 3
Between 1966-68, IBM researchers (Ref.1) recorded about 60.000 ESD events in selected areas choosen as typical of a reasonably high – yet very common- risk of static discharges by humans. The peak currents and RH were carefully logged and sorted by categories (Fig.4).
Charged Module 500 V
100 ns
A 1 ns
50 ns
A crude, but interesting approach can be made by comparing the chance for an electronic equipment to be subjected to an ESD to that of an exposure to a lightning stroke. In Western Europe, the average number of lightning strokes is ≈ 3 per km2 / year, with a strong seasonal dependency and large statistical deviation around mean value. So, assuming an equiprobable distribution, the chances for a given location to have a lightning strike within a 100m radius is 0,1 /year. By contrast, in an office, a shop or a populated working area, the chances of a severe ESD to anything that people can touch are 1/day during cold / dry seasons, that is about 100 discharges / year. This means 1000 times greater risk of making ESD-induced errors than lightning-induced ones, if the victim equipment has not been properly hardened .
10 30 100 300 1GHz
Fig. 3 Waveforms and Frequ. spectrum comparison HBM, MM, CDM. Charged person/object discharging on a metal plate. Notice the 10MHz ringing wave of furniture discharge, due to its large capacitance and low internal resistance.
Because of the minuscule size of their active devices, Integrated Circuits can be damaged by ESD, during their handling, packing/unpacking etc ... (Fig.5). Given that the destruction threshold for µm size junctions is in the µJoule range, modern ICs, with thousands of devices per mm2, can be damaged by voltages glitches as low as 30 Volts on their I/O pins. ESD failures occur by upsetting the breakdown voltage of the SiO2
www.electronic.nu – Electronic Environment online
21
Electronic Environment #2.2018
isolation or overheating of the metallization. In MOS structures with oxyde thicknesses of 1000Aº(10-7m), the rigidity of 5-7 MV/cm breaks if 50-70V are reached between two isolated channels. For a typical ESD duration, failure occurs by Joule effect whith junction or metallized trace melting like a fuse: when the current density exceeds 2kA/mm2, Aluminium particles migrate, reducing the available section in the conductor, which will blow-up above 30kA/mm2 or delaminate. Plastic encased modules are more vulnerable because the field gradient creates arcing, or charge transfer from the case to the chip itself, that sinks to ground via the leads. Metal encapsulated modules have better chances to survive if the arc breaks over the can-to-benchtop air gap. But Fig 5(b) shows a reverse situation, often referred to as the ‘dead bug’: the metallic-canned module is standing leads-up an can be as badly damaged. A variation of this is the ‘Charged Device Model’ (CDM). Since the through-resistance of the device and the discharge path can be very low, one can expect a significant peak current, on some pins, especially I/Os. Furthermore the package ( leaded, unleaded, ball-grid, socketed or not etc ...) also plays a significant role. An approximate corresponding, equivalent CDM circuit test set-up has been defined. Notice that, thanks to the low value of the devices self-capacitance (typically less than 20pF), the discharge pulse duration is only few nanoseconds. A third possibility exist, similar to the furniture discharge when components or PCBs are manipulated by robots, automatic handlers etc... Here, the IC is handled by a massive equipment, some elements of which like rotating arms, jaws, conveyor belts, are poorly grounded or non metallic. This ESD threat for ICs, is known as the (charged) Machine Model, or MM (Ref. 2).
symptom • Antistatic precautions for PCBs handling in the field • Static awareness for employees • Ionizing blowers that inject constantly ions in the ambient air for compensating charges unbalance Anti-static precautions should be applied all across the board (Ref.10). Nobody should handle modules without using a grounded wrist-strap or, at the very least, touching a grounded structure first; workbenches should be conductive, but ‘softly’ grounded via a few hundred kilohms resistor. Direct Discharge to Electronic Equipment enclosure The direct discharge is the most classical case, and the easiest to understand. A charged person or object (the ‘source’) touches a metal enclosure, the ‘load’. Most of the time (Fig. 6) the discharge occurs on a mechanical part which is touched intentionally (knob, key, switch, handle) or fortuitously (frame, covers, connector shell etc...), but there some more severe occurrences may happen: – Finger approaching an unprotected I/O connector – Finger arcing through, or arc creeping around, a LED or Indicator display – Discharge on a PCB mounted switch, in which case a subsequent arc occurs internally between the toggle and the active contacts of the switch) In these cases, the ESD current could reach directly the electronic components by a conducted path. Except for some damping caused by the wire or trace length, the situation is almost as severe as the direct discharge to a module pin, as explained above.
a) Charged person. I.C. resling on a conductived bench. ESD → finger →IC pin → chip → IC casing
b) Charged person. I.C. with pins ”up”. ESD → finger → IC pin →chip → IC casing ESD on a toogle switch
c) Charged module discharging on grounded personnel
Discharge on LED or touch-screen
Discharge enhanced by hend-held pointed object
Fig.6 Examples of severe ESD with direct contact.
Whatever the scenario, the current returns to ground by all possible routes, with amplitudes pro-rated to the impedances of these respective paths. This means that the bulk of the current will flow by the lowest impedance path, the remainder flowing through all other possible routes. Fig.7 illustrate some of these routes for a single stand-alone machine.
d) Charged IC by sliding in rail, discharging on itself
Fig. 5 ESD damages in microelectronics during handling
Antistatic Precautions in IC factories and Equipment Assembly lines In all working spaces where ICs are manufactured or handled, the approach is simple, but rigorous: ” If we do not want ES Discharges, we must prevent the E.S charging of workers, tools, working surfaces, carts, packaging boxes etc ... ”. This is achieved in practice by creating, and regularly controlling Static-Free work zones, with: • Static-free work areas and manufacturing hardware • Monitoring of % yields and chips infant mortality to detect ESD
22
If we go back to the actual waveform of a hand/metal (the most severe) type of personnel ESD, seen in Fig.6, the sharp peak of initial current caused by the local discharge of the forearm-to-target capacitance does not return by the machine-to-ground path. Instead, it remains confined into the loop formed by the hand and the machine cover. Only the main part of the current pulse, with rise time of 5-10 ns is reclosing by the machine-to-ground impedance. So, it seems that the discharge current should sink via the machine safety-ground wire (Fig.7, left) and/or its neutral wire (grounded at facility level). But the self-inductance of a 2m a wire is 3µH. For a 5 ns current rise, the dynamic impedance will be:
L/dt = 3./10 -6 / 5.10 -9 = 600Ω,
notwithstanding the additional length of building earth wire. The entire ESD current will not choose a 600 ohms path while another, lower impedance one exist in parallel. Any machine has a stray capacitance to ground. With a metallic casing, this capacitance can reach 100 or even 1000 pF. A cabinet with a bottom area of 1m2, located 8-10 cm above
www.electronic.nu – Electronic Environment online
Electronic Environment #2.2018
ground has a parasitic capacitance of 100 pF. For a rise time of 5 ns, this is a dynamic impedance of about 50 ohms. Therefore a large proportion of the ESD current (specially during its rise, the most threatening one) will sink via the chassis-to-ground stray capacitance.
2 – 25 kV
Discharge on an accessory
300 – 3000 Ω
IESD
IESD
Discharge on a metal desk, with a plastic table-top equipment
100 – 300 pF
Fig. 8 Two Scenarios with Indirect ESD coupling
Induced Errors / Malfunctions
Charged person
Charged person
Person NOT charged
Grounded Equipment
Isolated Equipment
Equipment charged
Fig. 7 Personnel ESD coupling routes, showing return current paths.
Fig.7, right, shows a third possibility - the reverse discharge. In this case a machine has been charged by: • successive previous discharges from people and objects • internal static generations • laminar flow of air, specially dry or cold, or rubbing against a dry, isolated material. If the machine is floating vs ground (table top equipment with power cord not connected, battery powered device etc..) the recombination of charges is not occurring, or very slowly. When somebody approaches the machine, or take the power cord to plug it, a discharge will occur. The resulting surge creates locally a power line transient which may affect other machines nearby. Indirect discharges With an indirect discharge, the person does not (or cannot) discharge directly on the equipment. For instance, a machine entirely housed in plastic with no or few accessible metal parts, cannot be discharged on. With the massive arrival of plastic housings for electronic office products and data terminals, it was first expected that they would mark the end of the ESD nightmare. It was quickly found that these products were having even more ESD crashes than those with metal casing ! Fig.8 shows what happens: a person discharges on any nearby metallic part: a door frame, a water pipe, a furniture, maybe the very desk on which the machine is standing. Then, the ESD pulse radiates a strong local electro-magnetic field, which couples into the nearby electronics since a plastic enclosure offers no shielding. With a desktop machine, for instance, if the mother board lies flat on the bottom of the unit, the PCB is within 2 or 3 cm of the ESD current path, with the signal traces acting as receiving antennas.
Putting aside the damages caused by Direct Contact to an accessible, active circuitry, the main concerns are the induced effects caused by a fast-changing ElectroMagnetic field close to the discharge path. At the very instant of the discharge, a strong local field excitation takes place: • The electric (E) field, that established at a high value by the charged body, is collapsing abruptly • A magnetic (H) field caused by the discharge current suddenly raises to a large value Both dE/dt and dH/dt field derivatives are playing a role, but experience have confirmed that the most severe threat is related to the magnitude of the current, hence the H field. Tests have shown that a machine standing 10kV ESD with a generator having 2kΩ of internal resistance will fail at a lower level with a tester having only 150 or 300 Ω of internal resistance. In most cases the victim electronic circuits are not in the path of the ESD current, which flows usually on housings and metallic structures. It is the near field coupling by which the field created by the discharge induces a voltage spike into the exposed circuit. Fig. 9 shows a simplified model of this phenomena, based on the discharge current only. The size of the ESD generating circuit being large compared to its distance to the receiving circuit, simple solutions of Maxwell’s equations for small E,H doublets cannot be straightly applied. A rigourous approach would use the method of moments, breaking down the current path in small segments. The simpler model shown assimilates the current path to a long radiating wire, for which the resulting magnetic field is easy calculated. The ESD drain path being long versus the observation distance, the magnetic field is given by: where
H (Amp/m) = I/ (2πd) (Eq. 1) I = ESD current in amperes d = distance from ESD path to victim circuit
If the area of the circuit illuminated by the ESD field is known, a derivation of the field over the rise time gives an approximation of the open loop voltage induced, sufficient for a quick prediction:
Vi = - dØ / dt = A.dB /dt ( Eq. 2)
Re-arranging Eq. (1) and (2) and and using more convenient units results in:
Vi = 2. (∆I.A / ∆t.d)
where
∆I = Change in ESD current in amperes A = Victim circuit loop area in cm2 ∆t = Rise time of the ESD current in nanoseconds d = Distance from ESD path to victim circuit in cm
www.electronic.nu – Electronic Environment online
(Eq. 3)
23
Electronic Environment #2.2018
D I peak IESD
R
Vi ℓ
S=ℓxD Tr
Vi = 2. IAmp x
Scm2 Rcm x tr(ns)
Conditions = ℓ, D < 15 cm ℓ, D < distance R Fig. 9 Simple model for radiation coupling from the ESD current Example: For a 4kV-15A ESD with tr = 1ns, two printed traces one cm
apart, with a 5cm parallel run, located at 10 cm from the ESD flow will see a peak transient of 2x15x 5 cm2 / (1 x 10) = 15 volts. This is enough to create an erroneous bit in most logic technologies. Although very basic, this prediction of the induced parasitic voltage gives adequate approximation, when compared to actual measurements. Eventhough the current flows more as a spread stream than like in a thin wire, the H field around its path can still be found by equ.(3). This field from the ESD pulse has two effects: – it couples to the inner circuits of the machine: circuit boards, flat cables, discrete wiring, – it illuminates also the outside, all around the ESD source and discharge path where external signal and power cables behave as receiving antennas as well. Another critic could be raised: the discharge current flow is supposed to stay confined on the outer face of the metallic cabinet because of the skin effect and, according to shielding theory no current should be found on the inner side. This would be true if the whole housing was an homogeneous shield, which is not the case: slots, joints, vents, displays, cable entries create leakages especially at these high frequencies. As a result, the ESD current excites the slot antennas formed by the box discontinuities. For the high part of the ESD spectrum that approaches or exceed their λ/2 resonance, they shine inside with practically no attenuation. With a product not especially EMI shielded up to 1GHz, the ESD current will flow on the inside of the cabinet as well as outside. And it is the high frequency contents of the ESD radiated field that induces the largest voltages in the exposed PCB traces and in the cables. Notice that since most ESD-induced malfunctions are related to the current (or field) derivative, a 1kV hand/metal ESD with 0.3 nsec. rise time can be as much threatening as 4kV with 1.2 nsec rise time. The two induced disturbances have the same amplitude, the difference being in their duration. Considering that in a given environment there are statistically much more 1kV discharges than 4kV ones, this would lead to an ESD test plan imposing more error-free discharges at lower levels (see further “Error per pulse criteria”). Yet, knowing just the magnetic field may not be sufficient. In certain cases, a deeper knowledge of the nature of the electromagnetic field near the ESD path may be needed (Ref 2,4) .
3. TESTING CAN GUARANTEE A REASONNABLE ESD IMMUNITY Until the early 1980’s, EMC and ESD seemed to be two different worlds. In many companies, the same people were wearing the two hats .... but these were still two hats. EMI susceptibility studies were checking the behavior of equipment exposed to steady electromagnetic ambient fields and power line disturbances, while ESD tests attempted to reproduce human or furniture discharges and their effect on fragile circuits. Yet, testing for ESD vulnerability is one of the most important, versatile and relatively easy to perform of all the EMC tests. Thanks to its huge bandwidth, greater than 300 MHz, and to the strong field created locally, the test can reveal all at once many weak spots of a design (PCB, wiring, box
24
shielding, I/O ports filtering), that could have taken a much longer time to detect by classical methods, such as radiated susceptibility that requires a shielded/ anechoic room, large antennas and powerful amplifier. However, as simple as it may look, a sound ESD testing requires an accurate, reproductible test set-up. Early tests of the 1970’s were often a ’hit or miss’ game. Product designers had to content themselves with foggy reports like: ”the equipment stands 2kV but fails at 6-8kV”, with results depending on where, when or by who the test was done, the test arrangement bringing also some discrepancies. Those days are gone, but an ESD test giving dependable results requires a careful test plan, the core of the test set being the generator. Personnel ESD test and simulators Human Body ESD is the most commonly practiced test, but it is presomptuous to assume that an assembly of discrete capacitors, resistors and wires will act in the same manner as the capacitance of a human body, that is distributed over a wide surface. No actual ES Discharge is really alike from one event to another. So, an ESD simulator and its set-up has only a vague resemblance with the circuit of an actual discharge, but it is agreed that this artificially-created ESD is an acceptable ”like-if”. A sound personnel ESD test should be able to simulate air as well as contact discharge, and Direct / Indirect ESD. The earliest ESD generators were quite rough, even sometimes home-made devices. Since 1970, many ESD simulators - quickly nicknamed ”guns” or ”zappers” by the EMC community, have been marketed, the most recent ones being thoroughly designed, with better reproducibility of the rise time, accuracy of H.V. setting etc ... These simulators are based on the simplified model of human body with the R,C network packaged in a compact, generally hand-held, unit. A capacitor is charged by a high voltage DC supply, then discharged on the equipment under test (EUT) through a determined resistance. One armature of the HV capacitor is connected to the injection probe, generally shaped like a finger. The other armature is connected to the reference ground or any desired return path. To perform ideally, the simulator should have preferrably the following features: • variable ESD voltage, easy to set with an accurate read-out, selectable positive or negative discharge • the ability to deliver up to 3.7 Amp/kV in shorted output mode, with 0.5 to 1ns risetimes • several (at least two) interchangeables discharging resistors, for inst. 330 to 2000Ω for personnel and 10 -50 ohms for furniture, along with several capacitor options. • the ability to generate a discharge with, or without an arc • shot counter, for a known number of discharges on each point • a time-out device disabling the HV probe when a preselected number of shots isreached. • an option of choosing single shot or a repetitive mode, for inst. slow rate (0.5 to 5 pulses /sec) for formal testing and accelerated rate (50 pulses/sec) for investigations. • an alarm (audible or visible) in case of aborted, or sputtering discharge (restrikes). • a way to bleed-off the charge from the tip in case of discharge to floating parts • a ground return connection hardware which is safe, convenient and idiot-proof • an automatic safety latch that removes the HV from the tip when the gun is at rest. • high quality components in the high-voltage section, for a long life expectancy, since an EMC lab performing routinely ESD testing can make 50.000 to 100.000 discharges /year . Arc or Direct Contact ? One testing dilemma is the following: should the simulator replicate by all means the conditions of an actual discharge, by arcing, eventually to the expense of losing some reproducibility ? Or, should we sacrifice the arc conditions and inject without an air gap a calibrated pulse waveform, that will stress the EUT ”as if” it were the actual event, eventhough the electrical mechanisms are not all there? Both approaches have their pros and cons. However given some constraints implied by the physics of high-voltage switching, the following trade-off was adopted by most ESD standards:
www.electronic.nu – Electronic Environment online
Electronic Environment #2.2018
a) Contact discharge is preferred up to 8kV, because it avoids the randomness of a self-triggered arc. Instead of an airgap discharge, the HV is applied to the tip by a fast, bounceless relay, contacts being in a sealed bulb with vacuum or high-pressurized gas. This guarantees a clean, ”sanitized” waveform. b) Air discharge is used in the following cases: • for testing above 8kV up to 15kV, or more for some standards • for testing at any voltage where a direct contact by the pointed tip is not physically possible.
tests. Because the physical nature of their environment: high static buildup in a confined space, isolated from ground), and the life-threatening consequences of some ESD-induced failures, like airbags, braking/ABS, door-locks etc... test voltages higher than the maximum severity of the IEC or ANSI standards are required.
In both cases, the pointed tip is replaced by a spherical, 8mm diam. finger-like tip. Simulators for equipment test, based on IEC 61000-4-2 Standard Since this standard is enjoying international acceptance, as a baseline for assessing ESD immunity of many products, the corresponding simulator will be briefly described. It is based on the simplified equivalent circuit of human body ESD, but with a discharge resistor of 330Ω, instead of the 1 – 2 kΩ, more typical of human models (Fig.10). The 150pF storage capacitor is charged through a10 to100MΩ limiting resistor, providing a maximum charging time constant RC of 15 msec, such that after ≈ 0.075 sec (5 x RC) the capacitor is fully charged. The 330Ω value for the discharge resistor, replacing the early 150Ω versions, has several advantages a) for a given inductance L of the complete discharge loop, it forces a smaller L/R time constant, hence a faster rise for the main discharge current b) it is close to the statistical low value for human body resistance in the kV/nsec region. However it makes the waveform departing even farther from a furniture high current ringing pulse. c) tighter tolerances for the current and rise time, contrasting with earlier simulators that indulged too much on unacurracy. d) The sharp precursor effect of dry air hand-metal discharge is controlled, instead of being left to chance e) The current calibration with a zero-inductance coaxial target eliminates the influence of the ground return strap on the rise time of the first peak. The pre-discharge being generated at the probe itself, and with a higher value of the discharge resistance, the ground strap has less critical effect, the main current hump being somewhere between 10 to 30ns after the initial peak. Generator schematic
% of peak ESD current 100%
Rch Rd Relay 100 MΩ 330 Ω
90%
H.V Cs source 150 pF
50%
o
Severitv level
1
Charging voltage kV
2
Rise time Direct contact Peak disch. 7,5 current (A)
25% 10% 30 ns
60 ns
t
Current at 30 ns (A)
4
2 4
3 6
4
5
8
Special
0,7 to 1 ns 15 22,5
30
8
15
12
tr = 0,7 to 1 ns
Fig. 10 IEC 61000-4-2 simulator characteristics. Current waveform is measured via a 2 Ω coaxial target, in a shielded enclosure. No tolerances given for the air discharge, assumption being that a generator capable of meeting the current template will deliver a correct air discharge waveform.
Several manufacturers worldwide are offering ESD generators conform to IEC standard, with various hardware options. One of them, the Keytek MiniZap has been the workhorse of many test labs for more than ten years and constantly improved. A certain number of applications like automobile electronics, aircraft and aerospace equipment, electro-explosive devices etc... require different RC networks. Most modern IEC-type simulators have such options, offered as user-replaceable modules (Fig. 11). In this case the current and waveforms can differ from the original IEC definition. Ultra-high voltage ESD generators are required for automobile and airborne equipment
Fig. 11. Example simulator with easily interchangeable discharge modules (Courtesy of EMC Partner)
Furniture vs Personnel ESD simulation Furniture or large objects discharges create waveforms, hence frequency spectra and induced effects, that differ from personnel ESD. While in near field region the higher voltages of personnel ESD creates a strong E-field transient but low H field, furniture ESD by its low source resistance creates stronger H-field. Because of the longer duration of the ringing wave, the induced voltage in exposed electronics can be more disturbing, especially with medium speed circuits. This is not saying that a product passing a furniture-type ESD test would be implicitly immune to personnel ESD, rendering this latter test needless: furniture discharge is not likely to take place on all areas of the EUT, and its lower voltages (always below 5kV) do not permit arcing on many hidden or recessed areas. In addition, the super fast rise time of hand/metal personnel ESD creates intense E-field transients not present in furniture discharge. Given 3 discharges with ≈ similar probability of occurence, the respective frequency spectra of personnel (direct hand/metal and air discharge) and furniture ESD, show that furniture spectrum overrides the others in the 10-30 MHz range. We remark that: • A single test based on personnel ESD alone ( Rd > few hundred ohms) may overestimate the equipment immunity to furniture ESD • A single test based on furniture ESD alone (Rd < 50 ohms) may overestimate the equipment immunity to personnel ESD • Although it simplifies testing, a trade-off discharge network with 330Ω resistance and approximately 2µH of loop inductance does not replicate adequately the large oscillatory current of furniture ESD. Thus, strictly speaking, a fully representative test program should include both personnel and furniture ESD (Ref.2, 5). If the manufacturer’s objective is merely to design a product that passes the tests and comply with the requirements for a CE mark or other approval, the personnel ESD test is a decent shelter, but it carry the risk of a compliant product that will sometimes fail in the field. Testers capable of reproducing both furniture & personnel ESD have been commercially available. IBM Kingston EMC engineers had developed for their own use an ESD tool (also made by Handy Hish Co) that performed efficient and repeatable tests, thanks to a crossed-vanes structure, replicating the distributed capacitance of a human body, or metal cart, standing close to the EUT (Ref. 10). Commercial versions were marketed after 1990 by ElectroMetrics and Keytek, but not widely used. 4.3 ESD simulators for component testing (survival testing) A special category of ESD testers exist for component vulnerability per Mil Std-883 or JEDEC /ESDA for instance, that inflict a given ESD level to every possible pin combination of an integrated circuit (or any ESD-sensitive component). These tools no longer look like a hand-held gun but rather as a work-station with a programmable module socket. The selected IC pin(s) and the test can be automated with complex test sequences that the user can program. Discharges can be configured for HBM, and Machine or Charged Device models. The test results are vi-
www.electronic.nu – Electronic Environment online
25
Electronic Environment #2.2018
sualized on a curve-tracer or screen, displaying the I,V curves of the stressed device, printing an overall test report etc... All these features are no luxury: assume, for instance, a manufacturer who has to monitor regularly the ESD sensitivity of a 56 pins IC. That makes 56 tests, times two polarities, and a statistical distribution of the failure levels is necessary. Therefore, the voltage will be gradually increased from 500 V to 4000V, by 250V steps, with each pulse repeated 5 times. For the sole HBM, the total number of measurements to take, depending on the spread of the devices characteristics, will vary between:
56 x 2 x 5 = 560 for those devices failing after the first voltage step, and, 56 x 2 x 5 x (4000 - 500)/ 250 = 7840 for those devices who resist up to 4000V
It is of course out of question to have these tests done manually.
4. ESD TEST SET-UP, DIRECT & INDIRECT ESD The basic set-up for ESD testing is shown on Fig.12. The EUT is normally installed above a ground reference plane (GRP), at a height dictated by its wheels, feet, casters etc...By default, 5 to 10cm insulated spacers can be used. The GRP is the common reference for all the elements of the test: the generator return wire, the EUT and the various accessories. Several variations of this basic installation will be described, especially when the EUT housing is not entirely metallic. The metallic, copper or aluminium GRP must be present every time to stabilize the EUT-to-ground capacitance, thereby allowing repeatable testing. Without it, the return path of the discharges would be uncontrolled, shared between some undefined earth plane and the room/ building earthing wires. Thus the rise time and the spread of the return currents would differ, making the test not reproducible from one set-up to another. For preventing the GRP from rising to an undefined potential after repeated discharges, creating test unacurracy or shock hazard, the plane is connected to the local earth terminal. This safety earth connection has no importance for the high frequency response of the test.
10 Ω to 2 KΩ depending on specifications
100 to 300 pF
EUT
Adjustable up to 25 kV
R=10–100 KΩ for safe bleed-off
Ground Reference Plate
Insulating foil ESD generator
470 KΩ
470 KΩ
Ground Reference Plate Fig.12 Basic set-up of an ESD Test and HCP / VCP arrangement for Indirect ESD
26
Direct vs Indirect ESD Test The EUT-to-ground configuration can be more complex than the simple sketch of Fig.12 . The EUT can be an upright, floor-standing machine, a table top equipment or eventually a wall-mounted device. It may have a metallic housing or a non-conductive one. Roles of the HCP and VCP: with IESD that aim at reproducing the scenario of a charged person touching a metallic structure close to a non-metallic product (“Indirect ESD”), HCP and/or VCP are specified (Fig.13). The HCP simulates the case where the EUT is resting on a metallic desktop, the gun being discharged on the edge of this metal plate. All the same, to simulate the case of an EUT close to a large vertical object, the gun is discharged on the edge of a 0.50 X 0.50m vertical coupling plate (VCP). The following recommendations are addressing these different options. A) For equipment with metallic housing ( Direct ESD) A.1 If the EUT is floor standing, it should stand over the GRP, as shown in the basic configuration of Fig. 4.17. As default value a 10cm height above ground is generally adopted, except when an other height above a conductive floor is defined by application constraints. A.2. If the EUT is a table-top equipment, most standards ask that it should rest on a non-conductive table, an HCP being added to simulate the coupling with a metallic table. A legitimate question arise: why select a wooden table, then simulate a metallic desk by adding a sheet of metal, instead of using always a metallic table ? The coupling of the EUT to the floor-level reference will be different wether it is resting on a metallic top, or not. Deciding which one is the ESD worst case is very speculative, as it depends on the internal design of each EUT and its I/O cables arrangement. So the standard set-up of IEC is a fair trade-off, since it is easier to turn a wooden table into a metallic desk-top than doing the reverse. B) For equipment with plastic housing ( Indirect ESD) B.1. If floor standing, the EUT is installed on a GRP, as for case A.1.However, since there are no or very few accessible metal parts for direct discharge, the test procedure will apply: • Direct ESD on all eventually accessible metal parts • Indirect ESD by discharging the probe on the VCP, grounded via high value resistances to the GRP. Discharges will be made at 10 cm from each side of the EUT (10 cm is deemed to represent a reasonable worst case where people will actually discharge on nearby metallic objects). Yet, for some specific products, other distances can be selected. B.2. For table top equipment, the EUT is installed on a non-conductive table, covered with the HCP as in A.2. The height of the EUT above this plane is simply dictated by its feet or stand-offs. No incidental contact to the HCP should occur by protruding metallic parts on the bottom of the EUT. This is usually achieved by putting an insulating foil on top of the HCP. A VCP will be installed on the HCP, via an insulating stand. The test procedure will apply: • Direct ESD on any accessible metal part (switches, keys, screws, conductive elements of an otherwise plastic cover, etc...). This imply contact or arc, whichever comes first. • Indirect ESD by discharging the probe on a VCP (like with B.1), and on the table top HCP, following a perimeter about 10 cm from the EUT sides. Much discussion and controversy exist about some test variances, which are not fully resolved in the IEC and major testing standards: • the connection of the HCP (or VCP) to the ground reference plane (GRP) • How should the VCP be located with respect to the actual EUT target zone? • are the VCP and HCP required regardless of non-metallic or metallic type of EUT. • Rationale for using a VCP for EUTs with a very low height-to-perimeter form factor, • Variation of the E and H fields generated by the gun’s head with its tilt angle on the HCP/VCP. Grounding of the simulator and of the EUT The EUT is grounded normally to the safety earth terminal of the power outlet. For EUT with no earth conductor (class II equipment)
www.electronic.nu – Electronic Environment online
Electronic Environment #2.2018
or battery operated, it will then be un-earthed. In no circumstances should the EUT be directly grounded to the GRP, unless this is the way it would be normally installed, as for instance airborne or automobile equipment. The return path for ESD pulse to the generator must be a 2m strap, screwed or bonded to the GRP via a clamp. The simulator should not be grounded to the EUT frame or the table-top HCP, except for some exploratory diagnostics. When the EUT is not grounded, its floating metal parts must be discharged after each ESD by touching them with a grounded wire through a few 100kΩ resistor or some bleeder network. External cables and Influence of System configuration Quite often, the test has to replicate the actual conditions of a system. For instance, the EUT may be one unit of a multiboxes set, where the vulnerability must be evaluated by testing one box after the other. Alternatively, the EUT may be designed as stand-alone, ”attachable” to several types of peripherals or ancillary products which must be connected to the EUT, even if they are not themselves being tested. The non-tested units must have an immunity level consistent with the ESD test objective. The whole system being installed over a GRP, all the external cables which are connectable to the EUT should be in place as in a typical installation. To avoid too much variance in results, they should be laid at a constant, repeatable height above the ground plane, like 10cm. Propagation of ESD impulse currents in a multiple-units system is dictated by the Common-Mode (CM) impedances of the system cabinets and cables with respect to local ground planes (i.e. floor, but also walls, ceilling, concrete rebars etc...). Depending on the actual configuration: number of extensions connected, I/O ports used etc... and on the installation variations: non-conductive or metal desk, non-conductive floor, raised metal floor etc.... an infinite number of CM impedance combinations exist for the ESD current to spread from the victim unit to the companion units. As a result, the whole system ESD susceptibility can deviate significantly from that of its individual units. Eventhough it is recommended that each one be tested with its I/O cables installed and terminated “in a representative manner”, one can predict that its behavior will be different in a complex network (Ref.2, 8). If the unit is tested with all cables laying 10 cm over a metal plane, this is regarded as a worst case since the low CM impedance of the cables will invite a larger share of the current to flow, for a same ESD initial voltage (remember: ESD, especially the personnel type, is a current source). The share of the total ESD current will be greater for the cables. If this same unit is used in a small system configuration (i.e. not all I/O cables are present) and the cables are mounted high above ground, the box will take a bigger share of the ESD current and some failures related to apertures leakage and coupling to PCB may become predominant. All these aspects result in frustrations observed in the system ESD performance, compared to its units individual performances. Futhermore, higher ESD amplitudes do not necessarily mean the worst threat for unit / system performance since current waveforms neither exhibit a constant rise time (hence, bandwidth) or a constant Amp/ns slope that would result in a constant Amp/MHz spectral density in the high frequency portion. Thus, when a unit is designed (or hardened) for a given ESD severity criteria, it must be checked, during design and test that: • The level which has been achieved fo the maximum system configuration (all possible cables, features and peripherals installed) is still met for the minimum size, or eventually a stand-alone configuration. • This immunity does not rely exclusively on a drastic treatment of the I/O cables and interfaces. A good ESD performance built upon an intensive use of well-shielded cables and capacitive decoupling of I/O ports may deteriorate when the unit is not equipped with all these cables. With complex systems, it is sound to develop for all the transient immunity tests - not just ESD- a software which exercises every special purpose routine that operate specific hardware areas. This will give a better efficiency for approaching a 100% probability of shooting in the worst sensitivity window, without running an excessively long test.
5. ESD TEST ROUTINE AND DISCHARGE PROCEDURES 1) Preparation: Determine a clear, indisputable malfunction status such
as hard-error, wrong read-out, inadvertent reset, alarm, power-down etc …that can be detected without the need of an external oscilloscope or data-logger. This point is important: No external ancillary equipment should be used to diagnose a fault condition, because the very presence of additional cables, or the monitoring device itself, can cause the EUT to fail at lower levels, hence wrong test results. The only exception would be a fiber optic link to dectect a change-of-state of some signals. If the EUT is a programmable device, it may be useful to develop a test routine which: – exercises continuously all EUT operations, in closed-loops without requiring an operator – indicates clearly by a print-out, visual message, alarm, buzzer, dead display, locked keyboard etc..., that a fault has occured. Make a zoning by dividing each side of the equipment into approximately 0.1m2 (30 cm x 30 cm) areas. Mark/Code each ESD target area. Include signal cables and power cord entry areas. Determine if the discharges will be entirely direct (D.ESD), indirect (I.ESD) or hybrid (Fig.13).
Type of equipement
Metal covers on six sides?
YES
D ESD only
NO
I ESD
D ESD
(For instance: 4 to 16 kV for Personnel ESD)
• Om all metallic touchable parts • On all arc-reachable parts
Fig. 13 Decision chart for discharges mode. Notice that a D-ESD is practically always to be attempted on plastic coverd products, because of the possibility of few metallic targets.
2) Application of the discharges Set the ESD level at about 3kV (for a personnel discharge) or other determined value, depending on wether it is an investigation or a QC test, and discharge on each coded area. If this area includes switches, keys, indicators, connectors, screws, rivets, etc., apply the discharge on them. Apply also the discharge on the seams, slots, display edges and any protruding shape or surface discontinuity. Otherwise, simply apply the discharge in the middle of the coded zone. If the EUT housing is plastic, perform indirect ESD on the HCP and VCP, at 10cm from the target face. A direct discharge should still be tried on screws, rivets, decorative trims, etc …Do not forget EUT areas which are accessible only under specific circumstances, like: – parts touched by end-user during service (batteries, cassettes, ink cartridges.. etc). – I/O connectors not equipped with their cables Such zones should be tested with a minimum requirement of No Damage or No Permanent Change of Conditions (loss of data, alarm... etc). Apply air discharge (spherical probe tip) on those targets which cannot be touched by direct contact 3) Repeat the discharges until the prescribed number have been applied without unacceptable EUT response. If no minimum number of pulses is
www.electronic.nu – Electronic Environment online
27
Electronic Environment #2.2018
prescribed, use 50 as a default, in each polarity, but the minimum number of pulses to guarantee the test depends on the complexity of the EUT operations. Repeat step 3) for all coded areas and record which ones failed. If none failed, increase the level by 1kV and re-run the test. Above 8kV, most specs recommend changing from contact discharge (pointed tip) to air discharge (ball tip). 4) For each failed area, decrease the ESD level to find the Go/No-Go threshold, and record it. 5) Starting with weakest spot, apply EMI hardening methods, until meeting the test objective. Determine a ”sure-to-fail” ESD voltage: many simulators have a selectable repetition rate, since manually applying 50 discharges times ”n” points in a single-shot mode would be tedious. Also, for a first look-out at a low ESD voltage, a quick sweep of all the target zones with accelerated pulse rate like 20-50 pulses/sec can give a coarse estimate of the immunity, saving a lot of time. This first scan, intuitively thought as way to detect the weak spots, is in fact a way to eliminate the non-weak spots, thanks to an accelerated pulse rate. Within 1 minute at 50 pulses/sec, 3000 discharges are been injected, giving a confidence that the selected area is fairly immune. Then, and only then, the areas which did not pass this first exam. are candidates for a deeper search. These we will re-test to the number of specified discharges, but with a slower repetition rate, allowing EUT self-recoveries (if any such feature); Otherwise, it could lock-up in a repetitive error mode, misrepresentative of real ESD situations (there are never several ESD events per second). Another phenomenon may occur if a too fast discharge rate is used. After many repetitive pulses, circuits with high input resistance, or their 0-Volt reference floating, will accumulate charges because of their large RC time constant reaching tens of millisec. The ”stacked” voltages may accumulate, causing an upset that did not manifest at the first discharge Therefore, because of these possible EUT responses mentioned above, it is safer to slow down the pulse rate, checking wether the “fail” level is correlated with the pulse rate. What matters is the minimum number of pulses to apply, not their repetition rate. Test results must be arranged in an orderly manner, allowing one to keep an accurate track of the failing zones, record the fixes that worked and those that did not; Too often, this is neglected and people have to ”re-invent the wheel” at every test. A dual indication ”Run/Fail” is also recommended.
6. NO ERROR / NO DAMAGE CONCEPT: THE SEVERAL LAYERS OF SEVERITY A hierarchy must be decided regarding the pass/fail criteria: Fugitive, self-restoring errors, Non-recoverable hang-up, or unexpected upset ? Hard failure ? Like any surge-type test, testing for ESD involves threshold criteria. Before testing, the designers of the EUT as well as the test people must clearly define what is to be considered a failure. Some refinements can be introduced, like: a) malfunctions were only soft, self-recovered errors ? b) malfunctions were hard errors, requiring user’s intervention ( reset, repower) c) malfunctions were hard errors plus loss of data requiring user’s intervention c) there was solid damage, requiring repairs. The ”Fail” criteria may also depend on the type of product and the type of market. For instance, in selecting the actual ESD test voltages one should consider: • Likelyhood of high human activity around this product • Type of environment (controlled or uncontrolled R.H., anti-static floor carpeting etc...) • Sensitivity of the user to a temporary malfunction or error, i.e. how often a week or a month can a malfunction occur is considered ”tolerable” by the user ? The following stepped scale is a frequently used Pass/ Fail ESD criteria: Up to V1 , the lower level, no malfunction at all (recoverable or not) is tolerated. Consider for instance an airline reservation terminal which exhibits recoverable errors for 3kV personal ESD. The number of ESD events > 3kV in a counter type of environment is very high. Even if errors
28
are automatically detected and the transaction is cancelled, then retried, this terminal will spend too large a percentage of time recovering from errors, especially during the winter/spring season. From V1 to V2 , errors are permitted if ”transparent” to the user, i.e. they are self-corrected, not requiring a user intervention to restore normal operation. Above V2 and up to V3 , ”hard” errors are permitted, such high level having a low probability of occurence, not upsetting the user if an operator intervention can resume normal. It may be required that the error be visible to the user, since it is not automatically corrected. No damage is accepted, or unsafe condition leading to safety hazard, or high financial prejudice. The ESD test levels per IEC 61.000-4-2 are only indicative: each industry or government agency decides the ESD immunity level for their respective products and applications. Examples of such categories are: Household Appliances & Entertaiment Devices: High human activity, uncontrolled environment with aggravating factors but useage is rather fault-tolerant as long as there is no solid damage. Office Products, Small Business and Point-of-Sales Equipment: High human activity, uncontrolled RH (can be as low as 15%), with any type of floor/carpet . Irritability factor quite high, partial alteration of data not catastrophic because generally detectable by operator/user. Large Business Computers, Scientific or Medical Facilities, Systems handling Critical data ( Banks, Government etc ...): Require a high reliabi-
lity, hence a low Error Rate (ER), but RH, floor treatment and general environmental factors are well controlled. Coherent ESD test criteria, adapted from ANSI.C63-16 are given in Table 1 They correspond to discharges applied with a 330Ω/150pF IEC
or similar ESD simulator. Test levels are for data processing equipment (officially designated ‘Information Technology Equipment’ or ITE). Two environment classes are considered: • Controlled environnement: RH always > 20% and anti-static floor material • Standard ( yet severe) environment: RH as low as 10% for some periods, and synthetic carpet No test levels are indicated for furniture discharge, since this test is not widely practiced.
Test Voltage
Criteria
Environment CONTROLLED STANDARD
(Worst allowed EUT Response at the indicated ESD voltage)
2kV Contact 4kV Contact 4kV Air 8kV Air 4kV Contact 8kV Contact 8kV Air 15kV Air
Temporary loss of function or performance, self-corrected Loss of function or performance, requiring operator action to be corrected. No permanent damage or loss of data
Table 1. Suggested personnel ESD Test values for Data Processing Equipment
7. THE ERROR PER DISCHARGE CONCEPT, OR MULTIPLE TRIALS APPROACH Not exclusive of, but rather complementary to the severity layers, another concept, the error-per-discharge probability has been recommended, although not widely used. Rationale for this is explained in Ref.2,6,7. The basis is that the Unwanted Response (UR) of a machine is a probabilistic encounter between a randomly occuring event (the discharge), and the “window” of the most vulnerable configurations of certain critical logic inputs (Fig.14). The collision of these two random events cannot be predicted by a deterministic approach, therefore any ESD standard, requiring simply a minimum of 10 discharges without errors is ill-feated. The unwritten, implicit statement that “if the EUT did not fail in 10 discharges, it will never fail” is as stupid as throwing a pair of dices 10 times and deciding that if you do not get 2 aces, you will never get 2 aces. Instead, the fail/ no-fail decision must be based on a large number of independent trials, that the theory of probabilities
www.electronic.nu – Electronic Environment online
Electronic Environment #2.2018
Number of errors / discharge = 1 / (Number of pulses to cause an error) This number is recorded versus the ESD voltage applied by the simulator. Such error/pulse concept allows the replacement of the GO/NO-GO criteria by a better approach, assuming that: • the result of each trial is independent from the previous one: chances of hit-or-miss are the same for each trial ; the EUT has no “memory” of the former events • the stimulus of each event is received exactly the same way by the EUT: this assumption is not totally true, since an ESD test carries some uncertainties, but we will accept it. • the ocurrence of an UR to an ESD stimuli is of random nature for logic errors only. Component damage is not much related to a “High”/“Low” status of a logic input, but to the coupled energy exceeding the safe limits of the component. Therefore, only logic errors are addressed here. Digital sequences
?
1
Nber of
Errors/Discharge
1 discharges
10 -1
101
10 -2
102
ESD glitch 10 -3
103
10 -4
2
4
6
8
10 12
for causing one error
104 14 16 VESD (kV)
a probability of 3 events / shift exceeding 11A. Therefore, the present product vulnerability is unacceptable. Per Fig.15, reducing to 1 error / 2 shifts, assuming 1 day ≈ one 8 hrs-shift requires the product be hardened up to a 30Amp, corresponding to 8kV test voltage. Then, how much 8kV discharges should be required in the ESD test plan ? Crude answer would be: 1/0,03 or 30 discharges. This is ignoring the probability laws (think of throwing dices ..). On Fig 15, a 3% probability of success with a typical 95% confidence, requires at least 100 trials. Considering that a100% confidence is not achievable, the only residual risk is two-fold: a) accepting a machine that should have been rejected ( number of trials was too low), or, b) rejecting a machine which made one error, but could have been accepted. An ”escalation strategy” (given as informative annex in recent IEC or ANSI standards) can give some more leeway, allowing for one error if an additional number of zero-error trials is performed. 10 4
3.103 V: 99% Number of discharges
help us to define. The rationale is that the error sensitivity of a machine to ESD is never a step function. An ideal behavior (Fig.14, curve A), is a machine showing no error at all (regardless of how many pulses) below a given ESD level, then making one error /pulse, that is P(error/discharge) = 100%, above that level. By comparison, the behavior of an actual machine (curve B) is plotted as the number of errors per ESD event, which is less than, or equal to unity. Actually:
10
3
V: 95% 300
V: 90%
100
30
Fig.14 Error per pulse: due to the random occurrence of ESD pulses vs.logic operations (left), the behavior of a machine during an ESD test is not a step function (A), but a steep slope (B). A minimum number of discharges is necessasry to explore the worst case coincidences of the ESD transient with certain patterns of logic transitions.
Given that a 100% confidence that no error will occur for a given ESD level would require an infinite number of trials, probabilities calculations for large sample sizes can help us: – it is generally sufficient, for ESD-related errors, to guarantee that the machine will not suffer more than Nr errors per day (or shift), or per week; This is application-dependent and can be established, as being what the users can tolerate. – this number Nr will be confronted with the number of ESD events/ shift exceeding a given voltage, such as in field conditions: Nber of errors/Shift = [ P(Error,V) x N( Event ”V”) per shift ] (4) with: P((Error,V) = Probability that the machine will make an error, given a discharge voltage V N (Event ”V”) = Number of ESD events/shift which will equal or exceed V One can derive such criteria that, for an ESD test,: Error rate at given level Vesd = (Tolerable Nber of Errors/Shift) / Nber of Events/Shift ≥ V (5) Example: Assume a product intended for professional applications. A
maximum of one non self-corrected error per 2 days is regarded as acceptable, for the worst periods of the year, provided it does not cause hard damage or loss of stored data (”type B” error). Early prototype ESD test ((using IEC simulator) has shown type B errors appearing above 3kV, for an average number of 30 trials, that is a hit / miss rate of 3%. This correspond to a 11Amp peak current. How often such discharge current occur ? For a severe, uncontrolled environment, Event Statistics (Fig.3) show
10 -3 10
3.10 -3
0,01
0,03
0,1
0,3
1
Allowed error rate (Error/discharge) Fig. 15 Required number of discharges to apply with zero failure, for a given % confidence
8. ESD TEST DURING DESIGN & DEVELOPMENT Given that ESD testing is efficient and relatively easy to conduct, it can be applied to the machine as soon as an early prototype exists and, furthermore, as soon as functional sub-assemblies exist. For instance, an early ESD test is easy to perform on a breadboard prototype using an indirect discharge set-up. A most rewarding approach is to start an ESD immunity evalulation at the PCB level. Later on, when functional hardware has been designed and a prototype is available, the following is suggested: – Identify the principal boards in the machine; i.e., those which perform essential functions and constitute block-diagrams in the machine architecture. – Prepare each of those boards for testing as a stand-alone items. Equip few lines considered as ”witnesses” of the card’s good condition (for ex. Watchdog, Reset with a LED soldered directly on the board, so that when everything is normal, the LED is OFF. Preferably, provide a stand-alone DC power source (a simple battery pack). – Perform an IESD test of the PCB , as shown in Fig.16. The discharge is applied on a metal plane, the card being placed at a distance which is representative of the actual card-to-housing distance of the future machine. The test voltage depends on the criteria for the final product. If the product is planned with a plastic, non-conductive cabinet, the ESD voltage should be set as for the final product. This test is some of the best invested time in the entire ESD strategy, revealing PCB layout weaknesses at a time when they are relatively easy to correct.
www.electronic.nu – Electronic Environment online
29
Electronic Environment #2.2018 – Harden the I/O zones; this remains to be done when the board alone has been brought-up to the desired level. An hardened card can still make errors if ESD-induced glitches enter by the connector pins; (the test done so far involved only the direct radiation pick-up by the board). To this end, a typical length of flat cable, multipair cable or any conductor which replicates the reality is plugged on the card connector(s). The far-end must be terminated to passive resistors, or to an exerciser that simulates the normal I/O transactions with the product.
LED (Fault indicators Batteries
Gun ground strap Ground plane
Insulating spacers
Fig. 16 Work-bench mounting for early ESD testing of a PCB. The height ”h” can be equaled to the average distance of the PCB from the EUT bottom plate or the closest wall of the housing. By default, use 5 cm.
9. ESD FOR EMC FIELD DIAGNOSTICS, AND FORCED CRASH METHOD Any system can be viewed as a black box with input/output ports. To the degree a system can be viewed as a two-port network, its transfer function can determined by measuring its response to a step impulse. A handy, easy carried ESD generator can be used as a quick first check of the susceptibility of an equipment to almost any kind of EMI. A properly simulated ESD event can tell more of the weaknesses of a product than its mere vulnerability to static discharges. Although it cannot replace traditional, mandatory EMC tests, the wideband field of an ESD flashes the equipment all at once, revealing some weak spots that a true EMI test will explore. Furthermore, an ESD test is simple to run, hence ideally suited to on-site testing. Forced crash is a technique by which one decides that instead of waiting for a random, hard-to-catch problem to show-up, he intentionally injects into the equipment a fast transient pulse that broadly covers the frequency spectrum of any possible intermittent event, ESD or else. Forcing an EMI failure with an ESD test applied on site is a powerful diagnostic tool, and a very localized stimulus. It will be merciless in pinpointing hardware EMC deficiencies. The pulse is calibrated, progress can be quantified, and a susceptibility map be drawn. Such on-site procedure is rather similar to the ESD test in the lab, but there are differences: you are not testing a development or pre-manufacturing unit with diagnostic tools, but a machine actually in service. Make sure that the test does not lead to a risk of material damage, or even safety hazard. Try to inhibit temporarily any peripheral that could create such risk.
Once quick field-fixes have been applied (Ref.9), re-run a test to see if the ESD critera are now met, including on all zones that were previously okay: a local improvement may have caused a degradation in another place. Never remove a fix that seems to bring no improvement: add them up to the final success. The philosophy behind this is that if a unit at its site, with all external cables and peripherals in place, is fixed to 8kV ESD, it will probably be” vaccinated” against any type of short, fast-rising transients, even if the actual reason for the field problem is never to be found. Home-made Investigation Tools, and Diagnostic Hints Investigating ESD suceptibility after a failed test, or an actual field problem, can be very frustrating for someone with no experience or knowledge of the ESD coupling mechanisms. On the contrary, with some background and a minimum set of appropriate diagnostic hardware, it will turn into a rewarding experience. Besides the ESD simulator, a few basic tools are needed (more on this subject can be found in Ref 9): – a fast digital memory oscilloscope, with an equivalent analog bandwidth of at least 500MHz, corresponding to the 3dB bandwidth for a 0.7 ns rise time. – an E-field injection adapter (discoidal electrode fitted to the gun tip for E-field enhancement) – an H-field injection adapter ( Moebius loop), to mount on the gun tip – a shielded, EMI passive current probe, with useable 500MHz bandwidth and preferrably a flat response (transfer impedance) for the 3 – 300MHz range. Because of the localized area that they cover, the two field-enhancement adapters can help finger-pointing equipment weaknesses like shielding deficiencies, breeches in a PCB ground plane, unfiltered (or poorly filtered) input ports.
Michel Mardiguian EMC Consultant, France m.mardiguian@orange.fr REFERENCES 1. Simonic,R. Personnel ESD Statistics . IEEE-EMC Symposium, 1981 2. Mardiguian,M. ESD, Wiley, 3rd edition 2009 3. IEC 61000-4-2 ElectroStatic Discharge Immunity Test (2008 ) 4. ANSI C63-16 Standard for ESD Test Methodology and criteria (2005) 4. Pommerenke,D., Frei,S. Analysis of fields on H.C. Plane in ESD test. Journal of ElectroStatics, N°44 (1998) 5. Calcavecchio,R. A standard test to determine ESD susceptibility. IEEE/ EMC sympos. 1986 6. Pratt,D., Davis,J. ESD failure rate prediction IEEE/EMC sympos. 1984 7. Boxleitner,W. ESD and Electronic equipment, IEEE Press, 1989 8. King,M. “Mastering ESD System response”. EMC Technology Magazine, March & May 1988 9. Mardiguian,M. EMI Troubleshooting techniques. Mc Graw Hill, 2000 10. IEC 61340-5.1 and 5.2 Anti-Static Control Procedures
Med rätt åskskydd blir dina kunder tryggare! Gå vår åskskyddskurs och utbilda dig i de digitala verktygen för riskbedömning. www.elstandard.se/kurs
30
Fastställer all svensk standard inom elområdet Svensk medlem i IEC och CENELEC
www.electronic.nu – Electronic Environment online
Electronic Environment #2.2018
Branschnytt KAMIC Group förvärvar STAC AB
Leverantör av det mesta för de flesta inom EMC
KAMIC GROUP HAR tecknat en överenskommelse om att förvärva samtliga aktier i STAC AB, en specialistleverantör av utrustning för kablageproduktion. Säljare är bolagets grundare Stefan Andersson. STAC AB säljer marknadsledande utrustning för kabel- och kablageproduktion samt även märksystem för kabel, slang och kontaktdon. STAC företräder en rad världsledande tillverkare som Schleuniger, KBA Metronic, Cirris Systems, LaserWire Solutions, Kabelmat med flera, och kan därmed erbjuda lösningar för mätning, märkning, klippning, skalning, krympning, buntning och verifiering av all tänkbar kabel. STAC har sitt huvudkontor i Bålsta, strax norr om Stockholm, varifrån bolagets kunder i Sverige, Norge och Danmark erbjuds högklassig service och support. Under 2017 uppgick försäljningen till cirka 18 miljoner kronor. – STAC erbjuder sina kunder världsledande teknik och specialistkunskap inom en tydlig produktnisch. STAC är därmed ett bolag som passar väl in i vår företagsgrupp, där vi kan erbjuda organisatoriskt stöd, kontakter och kunskap för fortsatt expansion och utveckling, säger Fredrik Celsing, VD och koncernchef för KAMIC Group. – För att utveckla STAC vidare i ett långsiktigt perspektiv har jag sökt en stabil köpare med en större internationell struktur som samtidigt värdesätter och uppmuntrar den entreprenöriella drivkraften. I KAMIC Group finner jag alla dessa egenskaper och jag ser fram mot ett långsiktigt partnerskap då jag framöver kommer att representera en av de största leverantörerna till STAC, säger Stefan Andersson, tidigare ägare av STAC. STAC kommer organisatoriskt att ingå i KAMIC Groups affärsområde Production Technology. Källa: KAMIC Group
RONSHIELD AB Rangstagatan 18 SE-124 54 Bandhagen Tel. +46 8 722 71 20 Mob. +46 70 674 93 94 E-mail: info@ronshield.se www.ronshield.se
EMC LIFE SIMPLIFIED SLIPP OMPROVNING SLIPP DYRA FILTERLÖSNINGAR Vill du förenkla ditt utvecklingsarbete? Tillsammans går vi igenom din produkt och du får råd och stöd så att den klarar EMC-kraven.
SLIPP ONÖDIGA KORTRUNDOR I TID FÖR LANSERING
Med våra råd sparar du både tid och pengar - du hamnar rätt direkt. Vi har en bred kompetens inom EMC - allt fordonselektronik till installationer och sateliter i rymden - vi vet vad som krävs för du skall klara kraven. Kontakta Tony Soukka, tel 0734-180 981 eller tony@emcservices.se för att diskutera ditt projekt.
EMC SERVICES
KNOWLEDGE IN REALITY
www.electronic.nu – Electronic Environment online
www.emcservices.se
31
Electronic Environment #2.2018
Using PoE networks to power IoT smart infrastructure for commercial buildings Communications networks using Power over Ethernet (PoE) technology can now deliver electrical power, as well as transmit communications signals, over standard low-voltage Ethernet cabling to various endpoints, including LED lighting, HVAC controls, cameras and other networked devices, in new or existing commercial buildings. Giovanni Frezza, Group Product Manager for Network Connected Solutions at Molex, reviews PoE technology and standards, discussing how it can power smart lighting and building automation systems, and the benefits these can deliver for building operators and occupants.
32
www.electronic.nu â&#x20AC;&#x201C; Electronic Environment online
Electronic Environment #2.2018 POE LIGHTING AND BUILDING automation systems, designed to promote energy efficiency and boost productivity, are beginning to drive highly innovative smart building concepts. As operational technology (OT) rapidly adopts PoE infrastructure in commercial buildings, including offices, factories and warehouses, architects, developers, builders and engineering firms become crucial collaborators, alongside information technology (IT), who have traditionally owned the infrastructure PoE utilises. Together, these proponents are leading the charge to bring powerful PoE networks into commercial spaces, with significant new build, retrofit and pilot installations underway — and many more in the works. FORWARD-THINKING ADOPTERS have recognised PoE infrastructure as a key asset for enabling IoT (Internet of Things) and smart building initiatives — one that can add significant value for building developers, operators and occupants. Advanced technologies are driving network-connected lighting use cases and more efficient standards in building automation. Unlike traditional networks that require dual-layer infrastructure (via separate power and communications networks), PoE platforms enable power and data to share the same low-voltage Ethernet cable infrastructure. Although many installed control systems today are based on proprietary solutions, leading technology suppliers and the commercial building industry are trending toward the use of open standards to simplify the commissioning, design, installation, configuration and maintenance of new networks. THE TECHNOLOGIES USED in PoE networks are well defined by various IEEE 802.3 standards, which specify the physical and data link layers for wired Ethernet networks, power sourcing equipment and devices using two-pair or four-pair connections to transmit power. The original PoE standard (IEEE 802.3af-2003), based on 15.4W per switch port of power, was increased to 25.5W in PoE+ (IEEE 802.3at-2009), using a two-pair power transfer format. The upcoming IEEE 802.3bt standard will utilise a four-pair power transfer format (4PPoE: 4 Pair Power over Ethernet), designed to introduce and support two additional power types: up to 60W (Type 3 or UPoE: Universal Power over Ethernet) and up to 90-100W (Type 4 or PoH: Power over HDBaseT) per switch port. UTILISING ALL FOUR twisted pairs, UPoE technology can deliver more power than PoE+, with improved efficiency and reduced channel losses. Using UPoE, for instance, a PoE node can receive up to 51W of power. This allows the option to optimise the low-voltage cable infrastructure by daisy-chaining multiple devices on a single UPoE port, reducing the number of ports and amount of cabling required in a system. The new IEEE standards also improve efficiency and allow a wider range of device functions and support — and can be delivered on standard low-voltage Class D (Cat5e) cables using the same infrastructure that the IT industry has deployed for over a decade. A distributed network allows building or enterprise-wide precision control, integration with other building automation systems, and better data to inform workforce and building usage decisions. STANDARDS AND SPECIFICATIONS establish protocols for both power delivery and communications links for data exchange. However, this doesn’t tell the entire story about the value PoE networks can bring to building control systems. The proliferation of smart technologies is setting the stage, with architects, electricians and installers on the frontline using PoE LED fixtures to transform buildings. Legacy lighting fixtures can readi-
33
Electronic Environment #2.2018
Technology integrated within PoE lighting systems such as Transcend allows for full customization. End users can adjust lighting needs based on defined zones.
ly be retrofitted with LEDs and sensors capable of local smart control. These lighting systems in older buildings have utilised AC power that has been converted to low-voltage power. Retrofitting existing lighting fixtures with LEDs to replace fluorescent and compact fluorescent lighting was the first step for many building operators. Penetration in commercial building markets has made LEDs surprisingly cost competitive versus other lighting technologies. Outstanding lighting output per watt of power has been the primary driver of initial LED adoption in commercial buildings, greatly improving on traditional lighting technologies. are becoming increasingly versatile, efficient, secure and capable of supporting available wattages in PoE lighting systems. Meanwhile, the ability to migrate lighting controls to IP-based infrastructure is transforming lighting into a service and IoT building asset that can be controlled synergistically along with other building functions. Increased integration is driving not only better control, leading to drastic energy saving, increased occupant comfort and improved productivity, but also more meaningful and usable data collection by distributed sensor systems, as part of the lighting network infrastructure. ADVANCED LED TECHNOLOGIES
OPTIMISED TO DELIVER low-voltage power and reliable communications, PoE gateways distribute power and connect luminaires, sensor nodes, wall dimmers, and other local devices and controls to the IP network and control manager. Each gateway is connected to a switch port with a Cat5e cable. The IP nodes are responsible for power and data distribution to local devices. Lights, sensors, motorised blinds and other devices become digital objects that can be configured, grouped together and controlled via software. Good cable design is important to optimise the low-voltage power distribution for efficient and cost-effective implementation. WELL-IMPLEMENTED POE control systems also deliver high availability of uninterrupted power
34
service, greater network resiliency and reduced operating expenses. New networks and devices become faster to deploy since PoE networks do not require power outlets at each device endpoint. Commercial buildings are prime candidates for PoE lighting and automation systems, which can be either designed in as part of a buildingâ&#x20AC;&#x2122;s infrastructure or retrofitted into its existing infrastructure. Ideally, designs need to optimise power and data distribution in order to minimise the number of PoE ports required. If the power requirement for a group of devices is below 50W, for example, a single PoE gateway can power and control multiple drivers in a daisy-chain configuration. System software tools can provide support during the complete lifecycle of a networked control system, from design and installation to live operation, monitoring and building maintenance. POE NETWORKS CA n deliver a range of advantages for building operators, starting with the supply of both power and data over a single-layer infrastructure, using proven, scalable and future-proof standard Ethernet cable. The DC power supplied is ideal for LED and sensor applications, using low-voltage and safe-to-install standard RJ-45 connectors, without the need for a certified electrician. These PoE networks enable advanced control of highly tunable LED luminaries and dynamic/bio-adaptive controls, creating new paradigms and value in commercial building connectivity and data analytics. Easy convergence and integration with existing building automation systems and infrastructure allow digital zoning and re-zoning, increasing flexibility to optimise building zones for specific use cases, with easy repurposing to meet future needs. Granular sensor arrays allow superior automation and data reporting, as well as simple implementation of new use cases to increase productivity and operational efficiency. POE TECHNOLOGY TAKES LED lighting in commercial spaces to the next level by further reducing energy consumption and improving quality of light, with smoother intensity and dimming
www.electronic.nu â&#x20AC;&#x201C; Electronic Environment online
Giovanni received the M.S. degree in Physics from the University La Sapienza of Rome, Italy, in 1998. He researched and specialised on Neural Networks and Complex Systems. After his studies he spent more than 15 years in the microelectronics and semiconductor industry with different roles and functions for a large variety of products, applications and market segments. In 2014 he joined Molex Network Connected Solution BU with Smart Lighting and Industrial IoT responsibility.
functions, and dynamically adjustable colour output to create more comfortable and productive work environments. Building operators have ready access to light status, real-time energy consumption data, sensor-based occupancy reporting, air quality, temperature and other environmental monitoring. This aggregate data translates into tangible business insights in terms of flow patterns and space utilisation, conditions within those spaces, and how different spaces, floors, or buildings rank or compare in terms of occupancy, utilisation, energy usage and productivity. THE ELIMINATION OF a dual-layer infrastructure to distribute power (via AC mains) and communication, data and control (via Ethernet on low-voltage cables or wirelessly) makes new construction simpler and faster than traditional hard-wired AC/DC distributed lighting and automation systems. Powered via low-voltage Ethernet cables and standard RJ-45 connectors, each LED light or element in the building also receives an IP address. Changes in space utilisation also benefit from reduced installation time and cost, by eliminating much rework of wiring. A network-connected system allows rapid changes in device parameter settings and zone programming simply by re-assigning sensors depending on space utilisation needs. ONE OF THE MOST promising technologies allowing IP convergence for lighting and other building automation networks, the optimisation of PoE networks and low-voltage cable infrastructure requires hybrid deployment of technologies, including PoE and distributed power conversion. Experienced technology partners with domain knowledge are best suited to efficiently scale PoE technology in existing, new building or enterprise deployments.
Giovanni Frezza Group Product Manager Molex
Författare
Electronic Environment #2.2018
Författare – Electronic Environment Electronic Environment överbygger kunskap inom specifika elektronikområden – mellan myndigheter, högskola och universitet samt näringslivets aktörer. Det kan vi göra tack vare ett stort intresse och engagemang från många duktiga skribenter och deras organisationer. Sedan tidningens första utgåva 1994 har ett stort antal skribenter bidragit med sin kunskap, till mångas glädje och nytta. Här presenterar vi våra skribenter de senaste åren, och i vilka nummer du kan läsa deras bidrag. Ett stort tack till er alla som bidragit genom åren till tidningens utveckling! Dan Wallander / ansvarig utgivare
TEKNIKREDAKTÖRER Michel Mardiguian Teknikredaktör EMC Consultant 2/2015, 3/2015, 4/2015, 1/2016, 2/2016, 3/2016, 4/2016, 1/2017, 2/2017, 3/2017, 4/2017, 2/2018
Christer Karlsson Ordf. Swedish Chapter IEEE EMC RISE 4/2014, 1/2015, 2/2015, 3/2015, 4/2015, 1/2016, 2/2016, 3/2016, 4/2016, 1/2017, 2/2017, 3/2017, 4/2017
Henrik Toss RISE Safety and Transport Ingvar Karlsson Ericsson AB 1/2017, 4/2017
Carl Samuelsson Saab Aeronautics, Saab AB
Jan Carlsson Provinn AB
3/2016
4/2014, 1/2016, 3/2017
4/2014, 1/2015, 2/2015, 3/2015, 4/2015, 1/2016, 2/2016, 3/2016, 4/2016, 1/2017, 2/2017, 3/2017, 4/2017, 1/2018, 2/2018
Dag Stranneby Campus Alfred Nobel, Örebro universitet
Jan Welinder RISE Elektronik
4/2014, 1/2015, 2/2015, 3/2015, 4/2015, 1/2016, 2/2016, 3/2016, 4/2016, 1/2017, 2/2017, 3/2017, 4/2017, 1/2018, 2/2018
3/2014, 4/2014, 1/2015
Daniel Eidenskog FOI – Swedish Defence Reasearch Agency 1/2018
Erik Axell FOI – Swedish Defence Reasearch Agency 1/2018
FÖRFATTARE Anders Larsson FOI – Swedish Defence Reasearch Agency 1/2015, 2/2015, 3/2015
Anders Thulin ATC AB
1/2016
3/2017
Ann-Kristin Larsson Swedavia 1/2014
Anneli Waara Uppsala universitet 3/2014
Bengt Vallhagen Saab Aeronautics, Saab AB 3/2016
Björn Bergqvist Volvo Cars
Farzad Kamrani FOI – Swedish Defence Reasearch Agency 1/2018
4/2016, 3/2017
Björn Gabrielsson FOI – Swedish Defence Reasearch Agency 1/2014
3/2016
K G Lövstrand FMV T&E Karin Davidsson RISE Elektronik Karin Fors FOI – Swedish Defence Reasearch Agency
3/2014, 4/2014, 3/2015, 3/2016, 4/2016, 1/2017, 3/2017
Gunnar Englund GKE Elektronik AB 2/2017
Göran Jansson Saab Bofors Testcenter 3/2014
Hartmut Berndt B.E.STAT European ESD competence centre, Germany
3/2014, 4/2015
Joeri Koepp Rohde&Schwarz
Kia Wiklundh FOI – Swedish Defence Reasearch Agency
2/18
Henrik Olsson Elsäkerhetsverket
1/2015, 1/2016
3/2015
Giovanni Frezza Molex
2/2014
Jenny Skansen ABB Power Systems
3/2014, 4/2014, 1/2015
1/2014
Andreas Westlund Volvo Car Corporation
3/2014
3/2015
Erling Pettersson STRI AB
Pär Weilow Swedavia
2/2015, 2/2018
1/2014
Marcus Eklund El/Tele Västfastigheter
Sara Linder FOI – Swedish Defence Reasearch Agency
3/2017
Miklos Steiner Teknikredaktör Electronic Environment
Peter Stenumgaard Teknikredaktör FOI – Swedish Defence Reasearch Agency
Lennart Hasselgren EMC Services
Kristian Karlsson RISE Elektronik 1/2016
Lars Falk Stigab AB 2/2015
Lars-Erik Juhlin ABB Power Systems 1/2016 Leif Adelöw FOI – Swedish Defence Reasearch Agency 1/2015
2/2016
Mats Bäckström Saab Aeronautics, Saab AB 3/2016, 4/2017, 1/2018
Mats Lindgren RISE Elektronik 3/2014, 4/2014, 1/2015
Mattias Elfsberg FOI – Swedish Defence Reasearch Agency 1/2015
Michael Pattinson NSL 1/2018
Mikael Alexandersson FOI – Swedish Defence Reasearch Agency 1/2014, 1/2018
Mose Akyuz FOI – Swedish Defence Reasearch Agency 1/2015
Niklas Karpe Scania CV AB 3/2016
Patrik Eliardsson FOI – Swedish Defence Reasearch Agency 2/2016, 1/2018
Per Ängskog Högskolan Gävle/KTH 3/2016
Peter Ankarson RISE Elektronik 4/2014
Peter Larsson KTH
3/2015
Simon Loe Spirent Communications 2/2017
Sten E Nyholm FOI – Swedish Defence Reasearch Agency 1/2015, 2/2015, 3/2015
Susanne Otto Reliability DELTA Test & Consultancy 1/2015
Thomas Borglin SEK – Svensk Elstandard 1/2018
Tomas Bodeklint RISE Elektronik 2/2014
Tomas Hurtig FOI – Swedish Defence Reasearch Agency 1/2015, 2/2015, 3/2015
Torbjörn Persson Provinn AB 4/2016, 3/2017
Ulf Carlberg RISE Elektronik 4/2014
Ulf Nilsson Electronic Environment 2/2015 Åsa Larsbo Intertek Semko 1/2014
1/2016
Peter Stenumgaard FOI – Swedish Defence Reasearch Agency 3/2014, 4/2014, 3/2015, 4/2015, 1/2016, 4/2016, 1/2017, 3/2017
www.electronic.nu – Electronic Environment online
35
Företagsregister Acal AB Solna Strandväg 21 171 54 Solna Tel: 08-546 565 00 Fax: 08-546 565 65 info@acal.se www.acal.se Adopticum Gymnasievägen 34 Leveransadress: Anbudsgatan 5 931 57 Skellefteå Tel: 0910-288 260 info@adopticum.se www.adopticum.se
Alpharay Teknik AB Runnabyvägen 11 705 92 Örebro Tel: 019-26 26 20 mail@alpharay.se www.alpharay.se Aleba AB Västberga allé 1 126 30 Hägersten Tel: 08-19 03 20 Fax: 08-19 35 42 www.aleba.se Alelion Batteries Flöjelbergsgatan 14c 431 37 Mölndal Tel: 031-86 62 00 info@alelion.com www.alelion.com/sv
AMB Industri AB 361 93 Broakulla Tel: 0471-485 18 Fax: 0471-485 99 Amska Amerikanska Teleprodukter AB Box 88 155 21 Nykvarn Tel: 08-554 909 50 Kontaktperson: Kees van Doorn www.amska.se Amtele AB Jägerhorns väg 10 141 75 Kungens Kurva Tel 08-556 466 04 Stora Åvägen 21 436 34 Askim Tel: 08-556 466 10 amtele@amtele.se www.amtele.se Anritsu AB Borgarfjordsgatan 13 A 164 26 Kista Tel: 08-534 707 00 Fax: 08-534 707 30 www.eu.anritsu.com ANSYS Sweden Färögatan 33 164 51 Kista Tel: 08-588 370 60 Vestagatan 2 B 416 64 Göteborg Tel: 031-771 87 80 info-se@ansys.com www.ansys.com Armeka AB Box 32053 126 11 Stockholm Tel: 08-645 10 75 Fax: 08-19 72 34 www.armeka.se Axiom EduTech Gjuterivägen 6 311 32 Falkenberg Tel: 0346-71 30 30 Fax: 0346-71 33 33 www.axiom-edutech.com
36
Electronic Environment #2.2018 Berako AB Regulatorv 21 14149 Huddinge Tel: 08-774 27 00 Fax: 08-779 85 00 www.berako.se
CE-BIT Elektronik AB Box 7055 187 11 Täby Tel: 08-735 75 50 Fax: 08-735 61 65 info@cebit.se www.cebit.se
BK Services Westmansgatan 47 A 582 16 Linköping Tel: 013–21 26 50 Fax: 013–99 13 025 johan@bk-services.se www.bk-services.se
CLC SYSTEMS AB Nygård Torstuna 740 83 Fjärdhundra Tel: 0171-41 10 30 Fax: 0171-41 10 90 info@clcsystems.se www.clcsystems.se
Kontaktperson: Johan Bergstrand
Bodycote Ytbehandling AB Box 58 334 21 Anderstorp Tel: 0371-161 50 Fax: 0371-151 30 www.bodycote.se Bofors Test Center AB Box 418 691 27 Karlskoga Tel: 0586-84000 www.testcenter.se Bomberg EMC Products Aps Gydevang 2 F DK 3450 Alleröd Danmark Tel: 0045-48 14 01 55 Bonab Elektronik AB Box 8727 402 75 Göteborg Tel: 031-724 24 24 Fax: 031-724 24 31 www.bonab.se BRADY AB Vallgatan 5 170 69 Solna Tel: 08-590 057 30 Fax: 08-590 818 68 cssweden@bradyeurope.com www.brady.se www.bradyeurope.com Bromanco Björkgren AB Rallarvägen 37 184 40 Åkersberga Tel: 08-540 853 00 Fax: 08-540 870 06 info@bromancob.se www.bromancob.se Båstad Industri AB Box 1094 269 21 Båstad Tel: 0431-732 00 Fax: 0431-730 95 www.bastadindustri.se CA Mätsystem Sjöflygsvägen 35 183 62 Täby Tel: 08-505 268 00 Fax: 08-505 268 10 www.camatsystem.se Cadputer AB Kanalvägen 12 194 61 Upplands Väsby Tel: 08-590 752 30 Fax: 08-590 752 40 www.cadputer.se
Combinova Marketing AB Box 200 50 161 02 Bromma Tel: 08-627 93 10 Fax: 08-29 59 85 sales@combinova.se www.combinova.se Combitech AB Gelbgjutaregatan 2 581 88 Linköping Tel: 013-18 00 00 Fax: 013-18 51 11 emc@combitech.se www.combitech.se Compomill AB Box 4 194 21 Upplands Väsby Tel: 08-594 111 50 Fax: 08-590 211 60 www.compomill.se DELTA Development Technology AB Finnslätten, Elektronikgatan 47 721 36 Västerås Tel: 021-31 44 80 Fax. 021-31 44 81 info@delta-dt.se www.delta-dt.se DeltaElectric AB Kraftvägen 32 Box 63 196 22 Kungsängen Tel: 08-581 610 10 www.deltanordicgroup.se/ deltaeltech
CCC Solutions AB/Carpatec Sågvägen 40 184 40 Åkersberga Tel: 08-540 888 45 hl@cccsolutions.eu http://www.cccsolutions.eu
ELKUL Kärrskiftesvägen 10 291 94 Kristianstad Tel: 044-22 70 38 Fax: 044-22 73 38 www.elkul.se
Elastocon AB Göteborgsvägen 99 504 60 Borås Tel: 033-22 56 30 Fax: 033-13 88 71 www.elastocon.se
Elrond Komponent AB Box 1220 141 25 Huddinge Tel: 08-449 80 80 Fax: 08-449 80 89 www.elrond.se
ELDON AB Transformatorgatan 1 721 37 Västerås Tel: 010-555 95 50 eldonindustrial.se@eldon.com www.eldon.com/sv-SE
EMC Väst AB Bror Nilssons Gata 4 417 55 Göteborg Tel: 031-51 58 50 Fax: 031-51 58 50 info@emcvaest.se www.emcväst.se
Electronix NG AB Enhagsvägen 7 187 40 Täby Tel: 010-205 16 50 Elis Elektro AS Jerikoveien 16 N-1067 Oslo Tel: +47 22 90 56 70 Fax: + 47 22 90 56 71 www.eliselektro.no
Emka Scandinavia Box 3095 550 03 Jönköping Tel: 036-18 65 70
EMC Services Box 30 431 21 Mölndal Besöksadress: Bergfotsgatan 4 Tel: 031-337 59 00 www.emcservices.se
ERDE-Elektronik AB Spikgatan 8 235 32 Vellinge Tel: 040-42 46 10 Fax: 040-42 62 18 info@erde.se web: www.erde.se
Kontaktperson: Tony Soukka tony@emcservices.se
Kontaktperson: Ralf Danielsson
Emicon AB Head office: Briggatan 21 234 42 Lomma Branch office: Luntmakargatan 95 113 51 Stockholm Tel: 040-41 02 25 or 073-530 71 02 sven@emicon.se www.emicon.se
Produkter och Tjänster: Skandinavisk representant för schweiziska EMC-Partner AG. Vi har provutrustning för IEC, EN, ISO, MIL mfl standarder samt för harmonics, flicker, emission och immunitet. Transientgeneratorer för bla immunitets- och komponentprovning samt blixtprovning av flygplans-, telekom- och militärutrustning.
Contact: Sven Garmland
ESD-Center AB Ringugnsgatan 8 216 16 Malmö Tel: 040-36 32 40 Fax: 040-15 16 83 www.esd-center.se
Detectus AB Hantverkargatan 38 B 782 34 Malung Tel: 0280-411 22 Fax: 0280-411 69 jan.eriksson@detectus.se www.detectus.se
EMP-Tronic AB Box 130 60 250 13 Helsingborg Tel: 042-23 50 60 Fax: 042-23 51 82 www.emp-tronic.se
Kontaktperson: Jan Eriksson
Kontakt person: Lars Günther
Produkter och Tjänster: Instrument, provning. Detectus AB utvecklar, producerar och säljer EMC-testsystem på världsmarknaden. Företaget erbjuder också hyra och leasing av mätsystemet. Detectus har möjlighet att utföra konsultmätningar (emission) på konsultbasis i egna lokaler.
Caltech AB Fågelviksvägen 7 145 53 Norsborg Tel: 08-534 703 40 Fax: 08-531 721 00 www.caltech.se
EG Electronics AB Grimstagatan 160 162 58 Vällingby Tel: 08-759 35 70 Fax: 08-739 35 90 www.egelectronics.com
DeltaEltech AB Box 4024 891 04 Örnsköldsvik Tel: 0660-29 98 50 www.deltanordicgroup.se/ deltaeltech/
Emp-tronic AB är specialiserat på Elmiljö- och EMCteknik.
Produkter och Tjänster: Vi har levererat skärmade anläggningar i över 25 år till bl.a. försvaret och myndigheter som skydd för EMP, RÖS, HPM med kontorsmiljö. Vi levererar även utrustning och skärmrum för EMC-mätning, elektronikkalibrering eller antennmätning, även med modväxelteknik. I vårt fullutrustade EMC-lab kan vi erbjuda verifierad provning för CE-märkning.
www.electronic.nu – Electronic Environment online
Eurodis Electronics 194 93 Stockholm Tel: 08-505 549 00 Exapoint Svenska AB Box 195 24 104 32 Stockholm Tel: 08-501 64 680 www.exapoint.se ExCal AB Bröksmyravägen 43 826 40 Söderhamn Tel: 0270-28 87 60 Fax: 0270-28 87 70 info@excal.se www.excal.se Farnell Skeppsgatan 19 211 19 Malmö Tel: 08-730 50 00 www.farnell.se Ferner Elektronik AB Box 600 175 26 Järfälla Tel: 08-760 83 60 www.ferner.se
Företagsregister
Electronic Environment #2.2018
Flexitron AB Veddestavägen 17 175 62 Järfälla Tel: 08-732 85 60 sales@flexitron.se www.flexitron.se Produkter och Tjänster: Vi erbjuder ett brett och djupt sortiment av produkter för EMC samt termiska material från tillverkare som är marknadsledande inom sina respektive områden. Exempel på produkter är skärmningslister, skärmburkar, ledande plast, färg, fett och lim, skärmburkar, genomföringsfilter, mikrovågsabsorbenter, etc. Vi har stor möjlighet att kundanpassa produkterna, aningen direkt från tillverkaren eller i vår egen verkstad.
FMV 115 88 Stockholm Tel: 08-782 40 00 Fax: 08-667 57 99 www.fmv.se Frendus AB Strandgatan 2 582 26 Linköping Tel: 013-12 50 20 info@frendus.com www.frendus.com Kontaktperson: Stefan Stenmark
Industrikomponenter AB Gårdsvägen 4 169 70 Solna Tel: 08-514 844 00 Fax: 08-514 844 01 www.inkom.se Infineon Technologies Sweden AB Isafjordsgatan 16 164 81 Kista Tel: 08-757 50 00 www.infineon.com Ing. Firman Göran Gustafsson Asphagsvägen 9 732 48 Arboga Tel: 0589-141 15 Fax: 0589-141 85 www.igg.se Ingenjörsfirman Gunnar Petterson AB Ekebyborna 254 591 95 Motala Tel: 08-93 02 80 Fax: 0141-711 51 hans.petterson@igpab.se www.igpab.se Instrumentcenter Folkkungavägen 4 Box 233 611 25 Nyköping Tel: 0155-26 70 31 Fax: 0155-26 78 30 info@instrumentcenter.se www.instrumentcenter.se
Intertechna AB Kvarnvägen 15 663 40 Hammarö Tel: 054-52 10 00 Fax: 054-52 22 97 www.intertechna.se
Garam Elektronik AB Box 5093 141 05 Huddinge Tel: 08-710 03 40 Fax: 08-710 42 27
Intertek Torshamnsgatan 43 Box 1103 164 22 Kista Tel: 08-750 00 00 Fax: 08-750 60 30 Info-sweden@intertek.com www.intertek.se
Glenair Nordic AB Box 726 169 27 Solna Tel: 08-505 500 00 Fax: 08- 505 500 00 www.glenair.com
INNVENTIA AB Torshamnsgatan 24 B 164 40 Kista Tel: 08-67 67 000 Fax: 08-751 38 89 www.innventia.com
Gore & Associates Scand AB Box 268 431 23 Mölndal Tel: 031-706 78 00 www.gore.com Helukabel AB Spjutvägen 1 175 61 Järfälla Tel: 08-557 742 80 Fax: 08-621 00 59 www.helukabel.se High Voltage AB Änggärdsgatan 12 721 30 Västerås Tel: 021-12 04 05 Fax: 021-12 04 09 www.highvoltage.se HP Etch AB 175 26 Järfälla Tel: 08-588 823 00 www.hpetch.se
Jan Linders EMC-provning Bror Nilssons gata 4 417 55 Göteborg Tel: 031-744 38 80 Fax: 031-744 38 81 info@janlinders.com www.janlinders.com Kontaktperson: Jan Linders Produkter och tjänster: EMC-provning, elektronik och EMC, utbildning, EMIanalys, allmän behörighet. Jan Linders Ingenjörsfirma har mångårig erfarenhet inom EMC-området och har allmän behörighet upp till 1 000 V. Bland vårt utbud märks ce-märkning, prototypprovning samt mätning och provning hos kund. Vi utför EMC-styling dvs förbättrar produkters EMC-egenskaper, ger råd och hjälp om standarder m m. Med vår nya EMC-tjänst tar vi totalansvar för er EMC-certifiering.
Jolex AB Västerviksvägen 4 139 36 Värmdö Tel: 08-570 229 85 Fax: 08 570 229 81 mail@jolex.se www.jolex.se Kontaktperson: Mikael Klasson Produkter och Tjänster: EMC, termiska material och kylare Jolex AB har mångårig erfarenhet inom EMC och termiskt. Skärmningslister/kåpor, mikrovågsabsorbenter, icke ledande packningar, skärmande fönster/glas/rum/ dörrar, genomföringskondensatorer, kraftfilter, data-, telekom-, utrustnings- och luftfilter, ferriter, jordflätor, termiska material och kylare etc. Vi kundanpassar produkter och volymer. Jontronic AB Centralgatan 44 795 30 Rättvik Tel: 0248-133 34 info@jontronic.se www.jontronic.se
KAMIC Components Körkarlsvägen 4 653 46 Karlstad Tel: 054-57 01 20 info@kamic.se www.kamicemc.se Produkter och Tjänster: Med närmare 30 års erfarenhet och ett brett program av elmiljöprodukter erbjuder KAMIC Components allt från komponenter till färdiga system. Lösningarna för skalskydd omfattar lådor, skåp och rum för EMI-, EMP- och RÖS-skydd. Systemlösningar som uppfyller MIL-STD 285 och är godkända enligt skalskyddsklasserna SS1 och SS2. Komponenter, ledande packningar och lister. KAMIC Components är en del av KAMIC Installation AB. Kontaktperson: Jörgen Persson. KEMET Electronics AB Thörnbladsväg 6, 386 90 Färjestaden Tel: 0485-56 39 00 TobiasHarlen@kemet.com www.kemet.com/dectron
Kvalitest Sweden AB Flottiljgatan 61 721 31 Västerås Tel:076-525 50 00 sales@kvalitetstest.com www.kvalitetstest.com
LaboTest AB Datavägen 57 B 436 32 Askim Tel: 031-748 33 20 Fax: 031-748 33 21 info@labotest.se www.labotest.se Produkter och Tjänster: LaboTest AB marknadsför och underhåller utrustningar i Sverige till lab och produktionsavdelningar inom miljötålighet och test. Vårt huvudkontor finns i Askim och vårt filialkontor i Sollentuna. Våra huvudleverantörer är Vötsch och Heraeus. Båda har en världsomspännande organisation och är marknadsledande inom sina respektive produktområde. Vår verksamhet fokuseras främst kring följande produktområden: Värmeskåp, Torkugnar, Vakuumtorkskåp, Temperatur-, Klimattestkammare, Chocktest- kammare, Sol/Vädertestkammare, Vibrationstestkammare, Klimatiserade rum, Saltspraytestkammare, HALT/ HASS-kammare.
LAI Sense Electronics Rördromsvägen 12 590 31 Borensberg Tel: 0703-45 55 89 Fax: 0141-406 42 www.laisense.com LeanNova Engineering AB Flygfältsvägen 7 461 38 Trollhättan Tel: 072-370 07 58 info@leannova.se www.leannova.se
LINDH Teknik Granhammar 144 744 97 Järlåsa Tel: 018-444 33 41 Mobil: 070-664 99 93 kenneth@lindhteknik.se www.lindhteknik.se Lintron AB Box 1255 581 12 Linköping Tel: 013-24 29 90 Fax: 013-10 32 20 www.lintron.se
Keysight Technologies Sweden AB Färögatan 33 164 51 Kista Tel: 0200-88 22 55 kundcenter@keysight.com www.keysight.com
LTG Keifor AB (KAMIC) Box 8064 163 08 Spånga Tel: 08-564 708 60 Fax: 08-760 60 01 kamic.karlstad@kamic.se www.kamic.se Lundinova AB Dalbyvägen 1 224 60 Lund Tel: 046-37 97 40 Fax: 046-15 14 40 www.lundinova.se
Kitron AB 691 80 Karlskoga Tel: 0586-75 04 00 Fax: 0586-75 05 90 www.kitron.com
Magnab Eurostat AB Pontongatan 11 611 62 Nyköping Tel: 0155-20 26 80 www.magnab.se
www.electronic.nu – Electronic Environment online
Megacon AB Box 63 196 22 Kungsängen Tel: 08-581 610 10 Fax: 08-581 653 00 www.megacon.se MTT Design and Verification Propellervägen 6 B 183 62 Täby Tel: 08-446 77 30 sales@mttab.se www.mttab.se
Mentor Graphics Färögatan 33 164 51 Kista Tel: 08-632 95 00 www.mentor.com Metric Teknik Box 1494 171 29 Solna Tel: 08-629 03 00 Fax: 08-594 772 01 Mikroponent AB Postgatan 5 331 30 Värnamo Tel: 0370-69 39 70 Fax: 0370-69 39 80 www.mikroponent.se Miltronic AB Box 1022 611 29 Nyköping Tel: 0155-777 00 MJS Electronics AB Box 11008 800 11 Gävle Tel: 026-18 12 00 Fax: 026-18 06 04 www.mjs-electronics.se MPI Teknik AB Box 96 360 50 Lessebo Tel: 0478-481 00 Fax: 0478-481 10 www.mpi.se NanoCal AB Lundbygatan 3 621 41 Visby Tel: 0498-21 20 05 www.nanocal.se Nefab Packaging AB 822 81 Alfta Tel: 0771-59 00 00 Fax: 0271-590 10 www.nefab.se Nelco Contact AB Box 7104 192 07 Sollentuna Tel: 08-754 70 40 Nemko Sweden Enhagsslingan 23 187 40 Täby Tel: 08-47 300 30 www.nemko.no Nohau Solutions AB Derbyvägen 4 212 35 Malmö Tel: 040-59 22 00 Fax: 040-59 22 29 www.nohau.se Nolato Silikonteknik AB Bergmansvägen 4 694 91 Hallsberg Tel: 0582-889 00 Nortelco AS Ryensvingen 3 N-0680 Oslo Tel: +47 22576100 Fax: +47 22576130 elektronikk@nortelco.no www.nortelco.no
37
Företagsregister Nortronicom AS Ryensvingen 5 Postboks 33 Manglerud N-0612 Oslo Tel: +47 23 24 29 70 Fax: +47 23 24 29 79 www.nortronicom.no Nässjö Plåtprodukter AB Box 395 571 24 Nässjö Tel: 031-380 740 60 www.npp.se OBO Bettermann AB Florettgatan 20 254 67 Helsingborg Tel: 042-38 82 00 Fax: 042-38 82 01 www.obobettermann.se
OEM Electronics AB Box 1025 573 29 Tranås Tel: 075-242 45 00 www.oemelectronics.se ONE Nordic AB Box 50529 202 50 Malmö Besöksadress: Arenagatan 35 215 32 Malmö Tel: 0771-33 00 33 Fax: 0771-33 00 34 info@one-nordic.se
Prevas AB Hammarby Kaj 18 120 30 Stockholm Tel: 08-644 14 00 maria.mansson@prevas.se www.prevas.se Kontaktperson: Maria Månsson Produkter: Utveckling
PROXITRON AB Box 324 591 24 Motala Tel: 0141-580 00 Fax: 0141-584 95 info@proxitron.se www.proxitron.se Kontaktperson: Rickard Elf Produkter och Tjänster: INSTRUMENT. Proxitron AB arbetar med försäljning och service inom elektronikbranschen. Vi samarbetar med en rad ledande internationella tillverkare inom områdena; Klimat/Vibration, EMC, Givare, Komponenter, Högspänning och Elsäkerhet. Våra kunder finns över hela Skandinavien och representerar forskning/utveckling, produktion, universitet och högskolor.
Electronic Environment #2.2018 RF Partner AB Flöjelbergsgatan 1 C 431 35 Mölndal Tel: 031-47 51 00 Fax: 031-47 51 21 info@rfpartner.se www.rfpartner.se-
Provinn AB Kvarnbergsgatan 2 411 05 Göteborg Tel: 031 – 10 89 00 info@provinn.se www.provinn.se Products and Services: Provinn offer EMC expertise covering all aspects from specification through consultant services, education, numerical analyses all the way to final verification. We are several dedicated EMC experts with documented expertise and experience. Provinn is proud representative for Oxford Technical Solutions (OxTS) navigational equipment, Moshon Data ADAS test equipment and Spirent GPS/GNSS instruments for the Scandinavian market.
Ornatus AB Stockholmsvägen 26 194 54 Upplands Väsby Tel: 08-444 39 70 Fax: 08-444 39 79 www.ornatus.se Para Tech Coating Scandinavia AB Box 567 175 26 Järfälla Besök: Elektronikhöjden 6 Tel: 08-588 823 50 info@paratech.nu www.paratech.nu Phoenix Contact AB Linvägen 2 141 44 Huddinge Tel: 08-608 64 00 order@phoenixcontact.se www.phoenixcontact.se Polystar Testsystems AB Mårbackagatan 19 123 43 Farsta Tel: 08-506 006 00 Fax: 08-506 006 01 www.polystartest.com Processbefuktning AB Örkroken 11 138 40 Älta Tel: 08-659 01 55 Fax: 08-659 01 58 www.processbefuktning.se Procurator AB Box 9504 200 39 Malmö Tel: 040-690 30 00 Fax: 040-21 12 09 www.procurator.se Profcon Electronics AB Hjärpholn 18 780 53 Nås Tel: 0281-306 00 Fax: 0281-306 66 www.profcon.se
RISE Elektronik Box 857 501 15 Borås Tel: 010-516 50 00 info@ri.se www.ri.se Kontaktperson: Christer Karlsson Produkter och tjänster: RISE Elektronik (fd SP Sveriges Tekniska Forskningsinstitut) hjälper dig med oberoende kunskap och provning inom elsäkerhet, EMC, radioutrustning, maskinsäkerhet, IP-klassning, funktionssäkerhet samt mekanisk och klimatisk miljötålighet. I laboratorierna sker allt från utvecklingsprovning till ackrediterade prov. Vi ger både öppna och kundspecifika kurser inom flera områden. En omfattande forskning bedrivs för att säkra spetskompetensen i samverkan med industri, akademi och andra forskningsinstitut. Kontaktperson: Christer Karlsson
Rittal Scandinavian AB Månskärsgatan 7 141 71 Huddinge Tel: 08-680 74 08 Fax: 08-680 74 06 www.rittal.se Rohde & Schwarz Sverige AB Flygfältsgatan 15 128 30 Skarpnäck Tel: 08-605 19 00 Fax: 08-605 19 80 info.sweden@rohdeschwarz. com www.rohde-schwarz.se
Ronshield AB Kallforsvägen 27 124 32 Bandhagen Tel: 08-722 71 20 Fax: 08 556 720 56 info@ronshield.se www.ronshield.se Kontaktpersoner: Ronald Brander Produkter och Tjänster: Produkter: Kompletta EMC-mätplatser/hallar, absorbenter, ferriter, vridbord, antenner, antennmaster, TEM-Cell, Striplines, EMC-Mätinstrument och system, Audio-video system, fiberoptiska styrningar, EMC- Filter, RÖS-Rum, EMP-Skydd/ Filter, Utbildning.
Roxtec International AB Box 540 371 23 Karlskrona Tel: 0455-36 67 23 www.roxtec.se RS Components AB Box 21058 200 21 Malmö Tel: 08-445 89 00 Fax:08-687 11 52 www.rsonline.se RTK AB Box 7391 187 15 Täby Tel: 08-510 255 10 Fax: 08-510 255 11 info@rtk.se www.rtk.se RUTRONIK Nordic AB Kista Science Tower Färögatan 33 164 51 Kista Tel: 08-505 549 00 Fax: 08-505 549 50 www.rutronik.se Saab AB, Aeronautics, EMC-labbet Gelbgjutaregatan 2 581 88 Linköping Tel: 013-18 00 00 andreas.naslund@saabgroup.com Saab AB, Surveillance A15 – Compact Antenna Test Range Bergfotsgatan 4 431 35 Mölndal Tel: 031-794 81 78 christian.augustsson@saabgroup.com www.saabgroup.com
Proxy Electronics AB Box 855 391 28 Kalmar Tel: 0480-49 80 00 Fax: 0480 49 80 10 www.proxyelectronics.com
38
www.electronic.nu – Electronic Environment online
Saab AB, Support and Services, EMC-labbet P.O Box 360 S-831 25 Östersund Tel: +46 63 1 560 00 Fax: 063-15 61 99 www.emcinfo.se www.saabgroup.com Contact: Henrik Risemark Products & Services: We offer accredited EMC testing in accordance with most commercial and military standards and methods, including airborne equipment. We can also provide pre-compliance testing and qualified reviews and guidance regarding EMC during product design.
Saab EDS Nettovägen 6 175 88 Järfälla Tel: 08-580 850 00 www.saabgroup.com Scanditest Sverige AB Box 182 184 22 Åkersberga Tel: 08-544 019 56 Fax: 08-540 212 65 www.scanditest.se info@scanditest.se Scandos AB Varlabergsvägen 24 B 434 91 Kungsbacka Tel: 0300-56 45 30 Fax: 0300-56 45 31 www.scandos.se Schaffner EMC AB Turebergstorg 1 191 86 Sollentuna Tel: 08-579 211 22 Fax: 08-92 96 90 Schroff Skandinavia AB Box 2003 128 21 Skarpnäck Tel: 08-683 61 00 Schurter Nordic AB Sandborgsvägen 50 122 33 Enskede Tel: 08-447 35 60 Fax: 08-605 47 17 www.schurter.se SEBAB AB Sporregatan 12 213 77 Malmö Tel: 040-601 05 00 Fax: 040-601 05 10 www.sebab.se
Företagsregister
Electronic Environment #2.2018
SEK Svensk Elstandard Box 1284 164 29 KISTA Tel: 08-444 14 00 sek@elstandard.se www.elstandard.se Shop.elstandard.se Produkter och Tjänster: Du kan genom deltagande i SEK Svensk Elstandard och den nationella och internationella standardiseringen vara med och påverka framtidens standarder samtidigt som ditt företag får en ökad affärsnytta och ökad konkurrenskraft. På SEK Shop, www.elstandard.se/shop, hittar du förutom svensk standard även europeisk och internationell standard inom elområdet. SEK ger även ut SEK Handböcker som förklarar och fördjupar, vägleder och underlättar ditt användande av standarder. Läs mer på www.elstandard.se. SGS Fimko AB Mörtnäsvägen 3 (PB 30) 00210 Helsingfors Finland www.sgs.fi
Shortlink AB Stortorget 2 661 42 Säffle Tel: 0533-468 30 Fax: 0533-468 49 info@shortlink.se www.shortlink.se
Swerea KIMAB AB Box 7047 Isafjordsgatan 28 164 40 Kista Tel: 08-440 48 00 elektronik@swerea.se www.swereakimab.se
Sims Recycling Solutions AB Karosserigatan 6 641 51 Katrineholm Tel: 0150-36 80 30 www.simsrecycling.se
TEBAB, Teknikföretagens Branschgrupper AB Storgatan 5, Box 5510, 114 85 Stockholm Tel +46 8 782 08 08 Tel vx +46 8 782 08 50 www.sees.se
Skandinavia AB Box 2003 128 21 Skarpnäck Tel: 08-683 61 00 Turebergstorg 1 191 86 Sollentuna Tel: 08-579 211 22 Fax: 08-92 96 90 STF Ingenjörsutbildning AB Malmskillnadsgatan 48 Box 1419 111 84 Stockholm Tel: 08-613 82 00 Fax: 08-21 49 60 www.stf.se
Stigab Fågelviksvägen 18 145 53 Norsborg Tel: 08-97 09 90 info@stigab.se www.stigab.se Swentech Utbildning AB Box 180 161 26 Bromma Tel: 08-704 99 88 www.swentech.se
Technology Marketing Möllersvärdsgatan 5 754 50 Uppsala Tel: 018-18 28 90 Fax: 018-10 70 55 www.technologymarketing.se Tesch System AB Märstavägen 20 193 40 Sigtuna Tel: 08-594 80 900 order@tufvassons.se www.tesch.se Testhouse Nordic AB Österögatan 1 164 40 Kista Landskronavägen 25 A 252 32 Helsingborg Tel: 08-501 260 50 Fax: 08-501 260 54 info@testhouse.se www.testhouse.se Tormatic AS Skreppestad Naringspark N-3261 Larvik Tel: +47 33 16 50 20 Fax: +47 33 16 50 45 www.tormatic.no
Trafomo AB Box 412 561 25 Huskvarna Tel: 036-38 95 70 Fax: 036-38 95 79 www.trafomo.se
Weidmüller AB Box 31025 200 49 Malmö Tel: 0771-43 00 44 Fax: 040-37 48 60 www.weidmuller.se
Treotham AB Box 11024 100 61 Stockholm Tel: 08-555 960 00 Fax: 08- 644 22 65 www.treotham.se
Wretom Consilium AB Olof Dalins Väg 16 112 52 Stockholm Tel: 08-559 265 34 info@wretom.se www.wretom.se
TRESTON GROUP AB Tumstocksvägen 9 A 187 66 Täby Tel: 08-511 791 60 Fax: 08-511 797 60 Bultgatan 40 B 442 40 Kungälv Tel: 031-23 33 05 Fax: 031-23 33 65 info.se@trestoncom www.treston.com
Würth Elektronik Sweden AB Annelundsgatan 17 C 749 40 Enköping Tel: 0171-41 00 81 eiSos-sweden@we-online.com www.we-online.se Kontaktperson: Martin Danielsson
Trinergi AB Halltorpsvägen 1 702 29 Örebro Tel: 019-18 86 60 Fax: 019-24 00 60 UL International (Sweden) AB An affiliate of Underwriters Laboratories Inc. Stormbyvägen 2-4 163 29 Spånga Tel: 08-795 43 70 Fax: 08-760 03 17 www.ul-europe.com
Yokogawa Measurement Technologies AB Finlandsgatan 52 164 74 Kista Tel: 08-477 19 00 Fax: 08-477 19 99 www.yokogawa.se Österlinds El-Agentur AB Box 96 183 21 Täby Tel: 08-587 088 00 Fax: 08-587 088 02 www.osterlinds.se
Vanpee AB Karlsbodavägen 39 168 67 Bromma Telefon: 08-445 28 00 www.vanpee.se order@vanpee.se
WE’LL BE BACK Gothenburg 2022
www.electronic.nu – Electronic Environment online
39
POSTTIDNING B Returer till: Break a Story Mässans gata 14 412 51 Göteborg
v
EMC-TESTUTRUSTNING
EMF-mätare (EMF=ElektroMagnetiskaFält) från Microrad, NHT 3D och NHT 310 Microrads EMF-mätare finns i två utföranden. Modell NHT 3D för analys av komplexa signaler i tid-och frekvensdomän samt mätningar enligt standard/direktiv, Modell NHT 310 för mätning enligt standard/direktiv. Båda modellerna är batteridrivna (laddningsbara), har inbyggd temperatursensor och GPS mottagare samt interface för fiberkommunikation. Tillämpliga direktiv och standarder är 2013/35EU, CEI EN 50500, CEI EN 62233 och CEI EN 62311. Displayen visar gränsen för tillåtna värden enligt nämnda standard och direktiv. Frekvensområdet för båda modellerna är 0-40GHz med probar inom området. Dessutom finns kombinationsprober för E-, H- och B-fält
Modell NHT 3D
Modell NHT 310
Fr.omr. bredband: 100k-40GHz smalband: DC-400kHz Sampling: max 2Msps Mätenheter: V/m, A/m, W/m2 mW/cm2, µT, mT Display omr. 0,00001-999,999. Tid-domän analys oscilloskopfunktion med manuell eller automatisk trigger. Frekvens-domän och FFT spektrumanalys i realtid med 65 536 samples. Programvaran Waves medföljer.
Probar Programmet omfattar probar för E-fält från 1Hz till 40GHz samt H-fält och B-fält från 0 -400kHz. Här följer specifikationer på 2 av de vanligast förekommande probarna.
Fr.omr. DC-40GHz Mätenheter: V/m, A/m, W/m2, mW/cm2, uT, mT. Display omr. 0,00001-999,999. Batteridrift: >72 timmar. Inspelningstid: > 24 timmar i steg om 5s. Programvaran MicroLink medföljer. Instrumenten levereras i transportväska med tillbehör och plats för 2 st probar samt kalibreringscertifikat och programvara.
Modell 33P
Elektrisk fältstyrka, E-fält : 1Hz-400kHz Dynamiskt område : >60dB Mätområde: 20V/m-20kV/m Magnetisk fältstyrka, H-fält: DC Dynamiskt område: >60dB Mätområde: 5µT-5mT Magnetisk flödestäthet, B: 1Hz-400kHz Dynamiskt område: >94dB Mätområde: 300nT-16mT
Modell 01E
Elektrisk fältstyrka, E-fält: 100kHz6,5GHz Dynamiskt område: 65dB Mätområde: 0,2V/m- 360V/m
Mättjänster Vi utför mätningar av EMF-fält och kommer till Er med utrustning. Efter utförda analyser och mätningar levereras protokoll och i förekommande fall förslag till åtgärder. Skicka ett e-mail till info@cebit.se och vi kontaktar Er.
Programvara för EMC-provning
Ferriter för störundertryckning
Med RadiMation® från DARE Instruments kan Du automatisera dina EMCtester, både när det gäller immunitet och emission, ledningsbundet och med antenn. Drivrutiner för över 3000 på marknaden förekommande instrument. Kontakta oss för mer information.
Fair-Rite material 75 är speciellt framtaget för att dämpa i det lägre frekvensområdet mellan 200kHz till 5MHz. Beställ en provtavla – du betalar bara för frakten.
CE-BIT – Box 7055, 187 11 Täby, Sweden – Tel: +46 8-735 75 50 - Fax. +46 8-735 61 65 – E-Mail: info@cebit.se – www.cebit.se