CORROSIÓN
PROFESOR: JULIAN CARNEIRO
REALIZADO POR: ROMI NAVARRO C.I 22.621.301
PORLAMAR FEBRERO DEL 2016
INDICE
La oxidación…………………………………………………………….4 Corrosión………………………………………………………………...4 Características de la corrosión…………………………………………5 Tipos de corrosión………………………………………………………5 Protección contra la corrosión…………………………………..…….6 Corrosión Electroquímica…………………………………………..…7 Tipos de corrosión electroquímicas…………………………………………………………8 MÉTODOS CONTRA LA CORROSIÓN……………………………10 Inhibidores de la corrosión……………………………………………10 Métodos preventivos de protección………………….……………………11 Electroquímica……………………………………………………………11 PILAS…………………………………………………………………………………11 La ley de Ohm……………………………………………………………………………13 LEYES DE FARADAY DE LA ELECTRÓLISIS…………………………………….13 CONCLUSION…………………………………………………………………………..14 BIBLIOGRAFIA…………………………………………………………………………15
La oxidación: es el proceso y el resultado de oxidar. Este verbo refiere a generar óxido a partir de una reacción química. El óxido, por otra parte, es lo que se produce cuando el oxígeno se combina un metal o con los elementos conocidos como metaloides. El elemento que concede los electrones se conoce como agente reductor y es el que se oxida. El agente oxidante, en cambio, se queda con los electrones que el reductor libera. Mientras que el estado de oxidación del primero se incrementa, el estado de oxidación del segundo se reduce. No menos importante es establecer que existen dos tipos de oxidación fundamentalmente: Oxidación lenta, que es la que se produce por causa del agua o del aire y que supone que los metales pierdan su brillo al tiempo que provocan su corrosión. Oxidación rápida, que es la que tiene lugar cuando ha hecho acto de presencia la combustión, desprendiendo importantes niveles de calor. Suele producirse, de modo fundamental, en lo que son elementos que cuentan con hidrógeno o carbono.
Corrosión: Existen muchas definiciones para corrosión. La más comúnmente aceptada es la siguiente: “Corrosión es el ataque destructivo de un metal por reacción química o electroquímica con su medio ambiente” Nótese que hay otras clases de daños, como los causados por medios físicos. Ellos no son considerados plenamente corrosión, sino erosión o desgaste. Existen, además, algunos
casos en los que el ataque químico va acompañado de daños físicos y entonces se presenta una corrosión-erosiva , desgaste corrosivo o corrosión por fricción. Aun así, la corrosión es un proceso natural, en el cual se produce una transformación del elemento metálico a un compuesto más estable, que es un óxido. Observemos que la definición que hemos indicado no incluye a los materiales nometálicos. Otros materiales, como el plástico o la madera no sufren corrosión; pueden agrietarse, degradarse, romperse, pero no corroerse. Es importante distinguir dos clases de corrosión: La Corrosión Seca y la Corrosión Húmeda. La corrosión se llama seca cuando el ataque se produce por reacción química, sin intervención de corriente eléctrica. Se llama húmeda cuando es de naturaleza electroquímica, es decir que se caracteriza por la aparición de una corriente eléctrica dentro del medio corrosivo. A grandes rasgos la corrosión química se produce cuando un material se disuelve en un medio líquido corrosivo hasta que dicho material se consuma o, se sature el líquido. La corrosión electroquímica se produce cuando al poner ciertos metales con alto número de electrones de valencia, con otros metales, estos tienden a captar dichos electrones libres produciendo corrosión. CARACTERISTICA DE LA CORROSION: Se caracteriza como el deterioro de un material a consecuencia de un ataque electroquímico por su entorno. De manera más general, puede entenderse como la tendencia general que tienen los materiales a buscar su forma más estable o de menor energía interna. Siempre que la corrosión esté originada por una reacción electroquímica (oxidación), la velocidad a la que tiene lugar dependerá en alguna medida de la temperatura, de la salinidad del fluido en contacto con el metal y de las propiedades de los metales en cuestión. Otros materiales no metálicos también sufren corrosión mediante otros mecanismos. Tipos de corrosión Corrosión química: En este tipo de corrosión el material se disuelve en un medio corrosivo líquido y este se seguirá disolviendo hasta que se consuma totalmente o se sature el líquido. Por ejemplo: Las aleaciones base cobre forman una barniz verde a causa de la formación de carbonato e hidróxidos de cobre, razón por la cual la Estatua de la Libertad se ve con ese color verde. Ataque por metal líquido: Los metales líquidos atacan a los sólidos en sus puntos más altos de energía como los límites de granos lo cual a la larga generará varias grietas. Lixiviación selectiva: Consiste en separar sólidos de una aleación. La corrosión grafítica del hierro fundido gris ocurre cuando el hierro se diluye selectivamente en agua o la tierra y desprende cascarillas de grafito y un producto de la corrosión, lo cual causa fugas o fallas en la tubería. Disolución y oxidación de los materiales cerámicos: Pueden ser disueltos los materiales cerámicos refractarios que se utilizan para contener el metal fundido durante la fusión y el refinado por las escorias provocadas sobre la superficie del metal.
Ataque químico a los polímeros: Los plásticos son considerados resistentes a la corrosión, por ejemplo el teflón y el vitón son algunos de los materiales más resistentes, estos resisten muchos ácidos, bases y líquidos orgánicos pero existen algunos solventes agresivos a los termoplásticos, es decir las moléculas del solvente más pequeñas separan las cadenas de los plásticos provocando hinchazón que ocasiona grietas. Protección contra la corrosión: Diseño El diseño de las estructuras puede parecer de poca importancia, pero puede ser implementado para aislar las superficies del medio ambiente. Los recubrimientos Estos son usados para aislar las regiones anódicas y catódicas e impiden la difusión del oxígeno o del vapor de agua, los cuales son una gran fuente que inicia la corrosión o la oxidación. La oxidación se da en lugares húmedos pero hay métodos para que el metal no se oxide, por ejemplo: la capa de pintura. Elección del material La primera idea es escoger todo un material que no se corroa en el ambiente considerado. Se pueden utilizar aceros inoxidables, aluminios, cerámicas, polímeros (plásticos), FRP, etc. La elección también debe tomar en cuenta las restricciones de la aplicación (masa de la pieza, resistencia a la deformación, al calor, capacidad de conducir la electricidad, etc.). Cabe recordar que no existen materiales absolutamente inoxidables; hasta el aluminio se puede corroer. En la concepción, hay que evitar las zonas de confinamiento, los contactos entre materiales diferentes y las heterogeneidades en general. Dominio del ambiente Cuando se trabaja en ambiente cerrado (por ejemplo, un circuito cerrado de agua), se pueden dominar los parámetros que influyen en la corrosión; composición química (particularmente la acidez), temperatura, presión... Se puede agregar productos llamados "inhibidores de corrosión". Un inhibidor de corrosión es una sustancia que, añadida a un determinado medio, reduce de manera significativa la velocidad de corrosión. Las sustancias utilizadas dependen tanto del metal a proteger como del medio, y un inhibidor que funciona bien en un determinado sistema puede incluso acelerar la corrosión en otro sistema. Corrosión Electroquímica: La definición más aceptada entiende por corrosión electroquímica “el paso de electrones e iones de una fase a otra limítrofe constituyendo un fenómeno electródico, es decir, transformaciones materiales con la cooperación fundamental, activa o pasiva, de un campo eléctrico macroscópico, entendiéndose por macroscópico aquel campo eléctrico que tiene dimensiones superiores a las atómicas en dos direcciones del espacio”. En los procesos de corrosión electroquímica de los metales se tiene simultáneamente un paso de electrones libres entre los espacios anódicos y catódicos vecinos, separados entre sí, según el esquema siguiente: Fenómeno anódico: Ed1
Ec1 + n e-
Fenómeno catódico: Ec2 + n eEd2 Lo que entraña una corriente electrónica a través de la superficie límite de las fases. En el proceso anódico, el dador de electrones, Ed1, los cede a un potencial galvánico más negativo, y dichos electrones son captados en el proceso catódico por un aceptor de electrones, Ec2, con potencial más positivo. Como vemos la corrosión electroquímica involucra dos reacciones de media celda, una reacción de oxidación en el ánodo y una reacción de reducción en el cátodo. Por ejemplo para la corrosión del hierro en el agua con un pH cercano a neutralidad, estas semireacciones pueden representarse de la siguiente manera: Reacción anódica: 2Fe
2Fe 2+ + 4e-
Reacción catódica: O2 + 2H2O + 4e4OHPor supuesto que existen diferentes reacciones anódicas y catódicas para los diferentes tipos de aleaciones expuestas en distintos medios. Tipos de corrosión electroquímica: Celdas de composición: Se presentan cuando dos metales o aleaciones, tal es caso de cobre y hierro forma una celda electrolítica. Con efecto de polarización de los elementos aleados y las concentraciones del electrolito las series fem quizá no nos digan qué región se corroerá y cual quedara protegida. Celdas de esfuerzo: La corrosión por esfuerzo se presenta por acción galvaniza pero puede suceder por la filtración de impurezas en el extremo de una grieta existente. La falla se presenta como resultado de la corrosión y de un esfuerzo aplicado, a mayores esfuerzos el tiempo necesario para la falla se reduce. Corrosión por oxígeno: Este tipo de corrosión ocurre generalmente en superficies expuestas al oxígeno diatómico disuelto en agua o al aire, se ve favorecido por altas temperaturas y presión elevada ( ejemplo: calderas de vapor). La corrosión en las máquinas térmicas (calderas de vapor) representa una constante pérdida de rendimiento y vida útil de la instalación.
el el
Corrosión microbiológica: Es uno de los tipos de corrosión electroquímica. Algunos microorganismos son capaces de causar corrosión en las superficies metálicas sumergidas. La biodiversidad que está presente en éste tipo de corrosión será: Bacterias, Algas, Hongos. Corrosión por presiones parciales de oxígeno: El oxígeno presente en una tubería por ejemplo, está expuesto a diferentes presiones parciales del mismo. Es decir una superficie es más aireada que otra próxima a ella y se forma una pila. El área sujeta a menor aireación (menor presión parcial) actúa como ánodo y la que tiene mayor presencia de oxígeno (mayor presión) actúa como un cátodo y se establece la migración de electrones, formándose óxido en una y reduciéndose en la otra parte de la pila. Corrosión galvánica: Es la más común de todas y se establece cuando dos metales distintos entre sí actúan como ánodo uno de ellos y el otro como cátodo. Aquel que tenga el potencial de reducción más negativo procederá como una oxidación y viceversa aquel metal o especie química que exhiba un potencial de reducción más positivo procederá como una reducción. Este par de metales constituye la llamada pila galvánica. En donde la especie que se oxida (ánodo) cede sus electrones y la especie que se reduce (cátodo) acepta los electrones.
Corrosión por heterogeneidad del material: Se produce en aleaciones metálicas, por imperfecciones en la aleación. Corrosión por aireación superficial:
Se produce en superficies planas, en sitios húmedos y con suciedad. El depósito de suciedad provoca en presencia de humedad la existencia de un entorno más electronegativamente cargado. Por ejemplo un metal muestra una tendencia inherente a reaccionar con el medio ambiente (atmósfera, agua, suelo, etc.) retornando a la forma combinada. El proceso de corrosión es natural y espontáneo. MÉTODOS CONTRA LA CORROSIÓN: *Las medidas más importantes para el control de la corrosión, se toman desde el diseño mismo del equipo, en la selección de los materiales de construcción más apropiados y en las características más convenientes del propio diseño. *De manera adicional con enfoques particularmente a la operación de planta los métodos generales que se aplican son: * Métodos electroquímicos.- Se basan en el uso de corrientes naturales galvánicas o extremadamente aplicadas, que polarizan el metal a proteger, llevando a condiciones de impunidad o de pasividad. Estos son la protección catódica y anódica Inhibidores de la corrosión: Los inhibidores de corrosión, son productos que actúan ya sea formando películas sobre la superficie metálica, tales como los molibdatos, fosfatos o etanolaminas, o bien entregando sus electrones al medio. Por lo general los inhibidores de este tipo son azoles modificados que actúan sinérgicamente con otros inhibidores tales como nitritos, fosfatos y silicatos. La química de los inhibidores no está del todo desarrollada aún. Su uso es en el campo de los sistemas de enfriamiento o disipadores de calor tales como los radiadores, torres de enfriamiento, calderas y "chillers". El uso de las etanolaminas es típico en los algunos combustibles para proteger los sistemas de contención (como tuberías y tanques). Se han realizado muchos trabajos acerca de inhibidores de corrosión como alternativas viables para reducir la velocidad de la corrosión en la industria. Extensos estudios sobre IC y sobre factores que gobiernan su eficiencia se han realizado durante los últimos 20 años. Los cuales van desde los más simples que fueron a prueba y error y hasta los más modernos los cuales proponen la selección del inhibidor por medio de cálculos teóricos. Métodos preventivos de protección: Antes de dar una protección hay que preparar la superficie del metal, limpiándola de materiales ajenos (limpieza y desengrasado). También el agregado de sustancias que eviten el paso del oxígeno, agua, etc.; por ejemplo la pintura impide el paso de la corrosión.
Electroquímica: es el estudio de las reacciones químicas que producen efectos eléctricos y de los fenómenos químicos causados por la acción de las corrientes o voltajes. Una de las aplicaciones más importantes de la electroquímica es el aprovechamiento de la energía producida en las reacciones químicas mediante su utilización como energía eléctrica, proceso que se lleva a cabo en las baterías. Dentro de éstas se encuentran las pilas primarias y los acumuladores o pilas secundarias. PILAS: Dispositivo, generalmente pequeño, en el que la energía química se transforma en eléctrica. Tiene múltiples aplicaciones como fuente de energía en pequeños aparatos, clasificándose en primarias y secundarias. Dentro de las pilas primarias tenemos: - Pilas Galvánicas o de Volta - Pila de Daniell - Pila seca o de Leclanché - Pilas solares - Pilas de combustible - Pilas electrolíticas
Pilas Galvánicas o de Volta: Primer generador de corriente eléctrica continúa fabricado hacia 1800 por el físico italiano Alessandro Volta. Consiste en un cilindro o pila formado por varios discos de metales diferentes, colocados alternativamente y separados por otros discos de cartón empapados en una disolución de agua salada. Pila de Daniell: Está constituida por un electrodo de zinc sumergido en una disolución de sulfato de zinc y por un electrodo de cobre introducido en una disolución de sulfato de cobre (II). Ambas se hayan separadas por un vaso poroso donde se coloca el cobre y la disolución de sulfato de cobre (II), quedando el zinc y la disolución de sulfato de zinc en el interior del vaso, es así como el electrodo donde se produce la oxidación se llama ánodo y el que corresponde a la reducción cátodo, en el electrodo de zinc se produce espontáneamente la oxidación y en el electrodo de cobre la reducción.
Pilas solares: Las pilas solares producen electricidad por un proceso de conversión fotoeléctrica. La fuente de electricidad es una sustancia semiconductora fotosensible, como un cristal de silicio al que se le han añadido impurezas. Cuando la luz incide contra el cristal, los electrones se liberan de la superficie de éste y se dirigen a la superficie opuesta. Allí se recogen como corriente eléctrica.. Pilas de combustible: Mecanismo electroquímico en el cual la energía de una reacción química se convierte directamente en electricidad. A diferencia de la pila eléctrica o batería, una pila de combustible no se acaba ni necesita ser recargada; funciona mientras el combustible y el oxidante le sean suministrados desde fuera de la pila. Pilas electrolíticas: En las pilas electrolíticas se requiere de una fuente externa de electricidad para producir una reacción química que no ocurre espontáneamente como en las pilas galvánicas. Si la reacción que ocurre espontáneamente en una pila galvánica es reversible, ésta se puede convertir en una pila electrolítica. ACUMULADORES: Llamadas también pilas secundarias, ya que el proceso de transformación de energía química en energía eléctrica es reversible. Una pila secundaria puede recargarse y utilizarse de nuevo. El acumulador más empleado es el de plomo. Éste consta de los siguientes elementos: a) Un ánodo formado por una serie de placas de plomo. b) Un cátodo constituido por una serie de placas de plomo recubiertas de PbO2. c) Un líquido electrolítico que es una disolución de ácido sulfúrico donde se hayan sumergidos lo electrodos. La ley de Ohm: El ohmio (también ohm) es la unidad de medida de la resistencia que oponen los materiales al paso de la corriente eléctrica y se representa con el símbolo o letra griega Ω (omega). El ohmio se define como la resistencia que ofrece al paso de la corriente eléctrica una columna de mercurio (Hg) de 106,3 cm de alto, con una sección transversal de 1 mm2, a una temperatura de 0º Celsius.
LEYES DE FARADAY DE LA ELECTRÓLISIS: Leyes de Faraday de la Electrólisis: Michael Faraday, formuló las leyes de la electrólisis en 1833: Primera Ley de Faraday: “La masa de un producto obtenido o de reactivo consumido durante la reacción en un electrodo, es proporcional a la cantidad de carga (corriente x tiempo) que ha pasado a través del circuito”. Esta primera ley, permite calcular, la cantidad de electricidad (en coulambios o faraday) para depositar un equivalente gramo de una sustancia. La unidad eléctrica que se emplea en física es el coulomb (C). Un coulomb se define como la cantidad de carga que atraviesa un punto determinado cuando se hace pasar un ampere (A) de corriente durante un segundo. Segunda Ley de Faraday: “Las masas de diferentes sustancias producidas por el paso de la misma cantidad de electricidad, son directamente proporcionales a sus equivalentes gramos”. Esta ley permite calcular la masa de diferentes sustancias depositadas por la misma cantidad de electricidad.La cantidad de elemento depositado por un Faraday (96.500 c) se conoce como equivalente electroquímico.