SCREWS AND CONNECTORS FOR WOOD CARPENTRY, STRUCTURES AND OUTDOOR
CARPENTRY
11
STRUCTURES
131
HTS.................................................. 18
VGZ................................................138
SHS..................................................22
VGZ EVO FRAME........................162
SHS AISI410...................................24
VGZ EVO......................................170
HBS..................................................26
VGZ HARDWOOD...................... 176
HBS EVO........................................46
VGS................................................186
HBS COIL.......................................52
VGU.............................................. 200
HBS SOFTWOOD.........................54
RTR............................................... 206
HBS SOFTWOOD BULK..............58
DGZ...............................................210
HBS HARDWOOD....................... 60
SBD ...............................................218
TBS..................................................66
CTC...............................................224
TBS EVO........................................ 84
SKR | SKS......................................232
XYLOFON WASHER.................... 90
SKR-E | SKS-E............................. 236
HBS PLATE.....................................92 HBS PLATE EVO............................98 LBS.................................................102 LBA................................................106 KOP............................................... 112 DRS................................................ 118 DRT................................................120 MBS...............................................122 DWS...............................................124 DWS COIL....................................125 THERMOWASHER......................126 ISULFIX.......................................... 127
CONTENTS
OUTDOOR
243
TIMBER-TO-METAL
339
KKT COLOR A4 | AISI316......... 256
SBS - SPP.................................... 340
KKT A4 | AISI316........................ 260
SBS A2 | AISI304........................ 342
KKT COLOR................................ 264
SBN - SBN A2 | AISI304........... 344
KKZ A2 | AISI304........................ 268
WBAZ........................................... 346
KWP A2 | AISI305.......................270
TBS EVO...................................... 348
KKA AISI410.................................272
MTS A2 | AISI304....................... 349
KKA COLOR.................................274
MCS A2 | AISI304...................... 350
EWS...............................................276 KKF AISI410................................. 280 SCI A4 | AISI316.......................... 284 SCI A2 | AISI305......................... 286 SCA A2 | AISI304....................... 290
COMPLEMENTARY PRODUCTS
355
HBS PLATE EVO......................... 292 HBS EVO......................................293 TBS EVO...................................... 294 VGZ EVO..................................... 295 FLAT | FLIP.................................. 296 TVM.............................................. 300 GAP.............................................. 304 TERRALOCK............................... 308 GROUND COVER.......................312 NAG...............................................313 GRANULO....................................314 TERRA BAND UV........................316 PROFID......................................... 317 JFA.................................................318 SUPPORT.....................................322 ALU TERRACE............................ 328 STAR............................................. 334 SHIM..............................................335
A 10 M.......................................... 356 A 18 M BL.................................... 356 KMR 3373.....................................357 KMR 3372.....................................357 KMR 3338.................................... 358 KMR 3352.................................... 358 IMPULS.........................................359 B 13 B............................................359 BIT................................................ 360 JIG ALU STA.................................361 JIG ALU SBD................................361 D 38 RLE...................................... 362 DRILL STOP................................ 363 BIT STOP..................................... 363 LEWIS........................................... 364 SNAIL HSS................................... 366 JIG VGZ 45°.................................367 JIG VGU........................................367
QUALITY CONTROL PRODUCTION PHASES CONTROLS Rothoblaas designs, tests, manufactures, certifies and markets its products under its own name and brand. The manufacturing process is systematically checked during each phase (FPC), the whole procedure strictly monitored and controlled to ensure compliance and quality at each stage.
01
RAW MATERIAL
HEAD MOULDING
NOTCHING THE TIP
Steel wire enters the plant after being inspected and the wire coils are carefully washed
Multiple gold presses to engrave name and length of the screw
Precise notch, set back from the self-perforating tip
A
02
03
04
05
B
CUTTING TO LENGTH
ROLLING
The steel wire is inserted in the all-in-one machine
Creation of the cutter and the thread down to the tip
QUALITY OF THE STEEL With the steel annealing and tempering process, Rothoblaas screws obtain the perfect balance between resistance (fyk = 1000 N/mm2) and ductility (excellent possibility of bending), thanks to high-level engineering know-how.
TRACEABILITY During the production process each screw is assigned an identifying code (batch number) which guarantees the traceability of raw materials before the product is placed on the market.
4 | QUALITY CONTROL
CE - ETA - DoP As manufacturer, Rothoblaas is responsible for its products covered by ETA. These products must be provided with CE marking, normally on the label, which ensures legal validity and must show the following information:
1. IDENTIFICATION OF THE PRODUCER 2. ETA number 3. Declaration of performance 1 ------------------------Rotho Blaas 2 ------------------------ETA-11/0030 3 ------------------------DoP: HBS_DoP_ETA110030 (www.rothoblaas.com)
06
CD
07
PACKAGING AND LABELLING
QUALITY CHECK AT ROTHOBLAAS
A mechanized line providing packaging and labelling
The FPC procedure continues with a second stage of geometric and mechanical checks carried out at Rothoblaas
E
HEAT TREATMENT/ GALVANIZING AND WAXING Special furnace hardening process with controlled temperature evolution and zinc plated in an electrolytic tank followed by anti-friction waxing
08
09
10
F
STORAGE Acceptance of the incoming goods and sampling by the Quality Check Laboratory
SELLING AND TRACEABILITY With the batch number and the selling order it is possible to track all the manufacturing phases: the customer can be sure to obtain a certified quality product
CONTROLS A. Verification, check and registration of the incoming raw materials B. Geometric inspection according to regulated tolerances and calibration C. Mechanical check: ultimate resistance to torsion, tension and bending angle D. Check on coating thickness and salt spray sample tests E. Inspection of package and label F. Application test
QUALITY CONTROL | 5
COMPLETE RANGE COUNTERSUNK WITH RIBS HBS, HBS COIL, HBS EVO, HBS S, HBS S BULK, VGS, SCI A2/A4, SBS, SPP
FLANGE TBS , TBS MAX, TBS EVO
THREAD
HEAD
“THE IDEAL COMBINATION”
ASYMMETRIC “UMBRELLA” HBS , HBS COIL , HBS S, HBS S BULK, HBS EVO, HBS P, HBS P EVO, TBS, TBS EVO, SCI A2/A4
COUNTERSUNK SMOOTH
SYMMETRICAL COARSE THREAD
HTS, DRS, DRT, SKS, SCA A2, SBS A2, SBN, SBN A2
VGZ, VGZ EVO, VGS, SCA A2
COUNTERSUNK 50°
SYMMETRICAL FINE THREAD
SHS, SHS AISI410, HBS H
HBS H, HTS, SHS, SHS AISI410, LBS, DWS, DWS COIL, KKF AISI410, MCS A2, VGZ H
ROUND
DOUBLE
LBS
DGZ, CTC, SBD, KKT A4 COLOR, KKT A4, KKT COLOR, KKZ A2, KWP A2, KKA AISI410
HEXAGONAL
TRILOBULAR
KOP, SKR, VGS, MTS A2
KKT A4 COLOR, KKT A4, KKT COLOR
CONE-SHAPED
QUADLOBULAR
KKT A4 COLOR, KKT A4, KKT COLOR
EWS A2, EWS AISI410
PAN HEAD
FINE, FOR METAL
HBS P, HBS P EVO, KKF AISI410
KKA AISI 410, KKA COLOR, SBS, SPP, SBS A2, SBN, SBN A2
CONVEX
STANDARD FOR WOOD
EWS A2, EWS AISI410, MCS A2
KOP, RTR, MTS A2
CYLINDRICAL
SPACER
VGZ, VGZ EVO, VGZ H, DGZ, CTC, MBS, SBD, KKZ A2, KWP A2, KKA AISI410, KKA COLOR
DRS, DRT
BUGLE
HI-LOW (CONCRETE)
DWS, DWS COIL
MBS, SKR, SKS
6 | COMPLETE RANGE
HBS (L ≤ 50 mm), HBS COIL (L ≤ 50 mm), HTS, LBS, DRS, DRT, DWS, DWS COIL, KWP A2, SCA A2, MCS A2
SHARP SAW HBS S, HBS S BULK
SHARP SAW NIBS VGS Ø13
SHARP 1 CUT HBS (L > 50 mm), HBS COIL (L > 50 mm), HBS EVO, HBS P, HBS P EVO, TBS, TBS EVO, VGZ, VGZ EVO, VGS, DGZ, CTC, SHS, SHS AISI410, KKT A4 COLOR , KKT A4, EWS A2, EWS AISI410, KKF AISI410, SCI A2/A4
MATERIALS AND COATINGS
TIP
SHARP
carbon steel + zinc plated HTS, SHS, HBS, HBS COIL, HBS S, HBS S BULK, TBS, HBS H, HBS P, LBS, KOP, DRS, DRT, MBS, VGZ, VGZ H, VGS, RTR, DGZ, SBD, CTC, SKR, SKS, SBS, SPP, SBN
carbon steel + color coating KKT COLOR, KKA COLOR
carbon steel + C4 EVO coating HBS EVO, TBS EVO, HBS P EVO, VGZ EVO, SKR EVO, SKS EVO
SHARP 2 CUT KKT COLOR
AISI410 martensitic stainless steel KKF AISI410, EWS AISI410, KKA AISI410, SHS AISI410
HARD WOOD (DECKING) KKZ A2
A2 stainless steel (AISI304 | AISI305) HARD WOOD (SOLID) HBS H, VGZ H
ALUMINIUM (DECKING) KKA AISI410, KKA COLOR
SCI A2, SCA A2, EWS A2, KKZ A2, KWP A2, SBS A2, SBN A2, MCS A2, MTS A2, WBAZ
A4 stainless steel (AISI316) KKT A4 COLOR, KKT A4, SCI A4
METAL (WITH FINS) SBS, SBS A2, SPP
bi-metal stainless steel + carbon steel SBS A2
METAL (WITHOUT FINS) SBD, SBN, SBN A2
phosphate steel STANDARD FOR WOOD
DWS, DWS COIL
MBS, KOP, MTS A2
CONCRETE
EPDM/PP/PU
SKR, SKS
XYLOFON WASHER, WBAZ, THERMOWASHER, ISULFIX
COMPLETE RANGE | 7
CARPENTRY
CARPENTRY
CARPENTRY
HTS
LBS
FULLY THREADED COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . 18
ROUND HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . 102
SHS
LBA
SMALL HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
HIGH BOND NAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
SHS AISI410
KOP
SMALL HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
COACH SCREW DIN571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
HBS
DRS
COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
TIMBER-TO-TIMBER SPACER SCREW. . . . . . . . . . . . . . . . . . . . . . . 118
HBS EVO
DRT
COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
TIMBER-BRICKWORK SPACER SCREW . . . . . . . . . . . . . . . . . . . . . 120
HBS COIL
MBS
HBS BOUND SCREWS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
SELF-TAPPING SCREW WITH CYLINDRICAL HEAD FOR MASONRY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
HBS SOFTWOOD COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
HBS SOFTWOOD BULK COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
HBS HARDWOOD COUNTERSUNK SCREW FOR HARDWOODS. . . . . . . . . . . . . . . . . 60
TBS
DWS DRYWALL SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
DWS COIL DWS COLLATED PLASTERBOARD SCREW . . . . . . . . . . . . . . . . . . 125
THERMOWASHER WASHER TO FASTEN INSULATION TO TIMBER . . . . . . . . . . . . . . 126
FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
ISULFIX
TBS EVO
ANCHOR FOR FASTENING INSULATION TO BRICKWORK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
XYLOFON WASHER SEPARATING WASHER FOR TIMBER SCREW. . . . . . . . . . . . . . . . . . 90
HBS PLATE PAN HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
HBS PLATE EVO PAN HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
CARPENTRY | 11
GEOMETRY THE DETAIL THAT MAKES THE DIFFERENCE
Every detail of the screw geometry is analysed and developed to increase strength and application performance. TIP
1. SELF-PERFORATING TIP The self-perforating tip, enhanced with exclusive geometries for particular types of wood (LVL, hardwood, etc.), with corkscrew thread running all the way to the tip, guaranteeing a fast, high-performance initial grip.
2. NOTCH
NOTCH
The notch makes it possible to tear the fibres during insertion, thus preventing the risk of splitting or cracking the wood. The setback position of the notch is essential to guarantee excellent grip and perforation of the tip.
3. THREAD With carefully designed geometries, the thread allows fast, secure screwing, in particular the thread pitch is related to screw diameter and length. Coarse-pitch threads are well suited to medium/long screws as they make screwing faster; on the other hand, fine-pitch threads are ideal for small screws which require great care and precision during screwing.
4. CUTTER
THREAD SPACING
CUTTER
The geometry of the cutter is carefully studied to widen the wood grain and move away the shavings created as the screw progresses. The cutter creates the space for the passage of the shank and limits screw overheating.
5. SHANK The shank is covered by special surface waxing which considerably reduces friction and torsional stress during screwing.
WAXING
6. UNDERHEAD The ribs are very sharp and able to cut through the shavings coming out of the hole, following perforation of the wood. RIBS
7. HEAD Head geometry defines screw resistance to penetration.
FLANGE HEAD
1
3 5
7
2 4
6 12 | GEOMETRY | CARPENTRY
RESEARCH & DEVELOPMENT CONSTANT EVOLVING KNOW-HOW
Extensive testing campaigns — conducted in our in-house laboratories on softwood, hardwood and LVL — have resulted in the development of products suitable for every type of wood, keeping the focus on three key parameters: FAST GRIP It is obtained with a sharp tip, initial coarse thread and a regular conical profile in the first section;
EASE OF PROGRESS It is the ability of the screw to penetrate the wood with reduced effort and is obtained with an initial slow thread (double or reverse) and irregular geometry that facilitates the removal of shavings;
FAST INSERTION To allow for fast insertion, the notch must be setback with respect to the end of the tip and is fundamental for screws longer than 50 mm, to avoid splitting during insertion and to maintain an acceptable level of wood damage.
CARPENTRY | RESEARCH & DEVELOPMENT | 13
DUCTILITY FASTENERS SEISMIC PERFORMANCE EXPERIMENTAL TESTS FprEN 14592 (2018) introduces three performance classes for cylindrical shank fasteners used in seismic areas; these take the form of three classes of ductility ("low cycle ductility classes for fasteners used in seismic areas"). The three classes are indicated as S1 (low ductility), S2 (medium ductility) and S3 (high ductility). A fastener is classified in one of the above classes according to the results of specific monotonic and cyclic bending tests conducted on the threaded portion of the fastener. This seismic classification is essential as it helps designers prevent brittle fractures caused by a sudden failure of the metal fastener. The objective of the standard is to verify that, based on the seismic class and choice of fastener, at the end of the third cycle, the residual moment Mres is at least equal to 80% of the average yield moment My determined with monotonic testing.
TEST PROTOCOL USED IN CYCLIC TESTS
αu
Tubular guide
αc
Loading device
Mandrel
Support
Rotation
Fastener
Time
0
2d 16d
Test set-up diagram (static diagram: three-point bending).
-αc 1st cycle
2nd cycle
3rd cycle
determination of the residual bending moment capacity
MOMENT-ROTATION CURVE RESULTING FROM A CYCLIC TEST
Mres
Bending moment
Kel
Mmax M(1st) M(2nd) M(3rd)
-αc
0 Rotation [°]
14 | DUCTILITY | CARPENTRY
αc α + 20°
αu
Test configuration.
EXPERIMENTAL TESTING
TBS Ø8x160 mm 60
Moment [kNmm]
α = 10.50°
α + 20°
40 My
20 Tests of TBS 8x160 Bilinear schematization 0
α
0
15
30
45
Rotation [°]
Deformed screw at the end of a cyclic test.
60
All screws tested showed excellent mechanical properties under monotonic conditions, thus meeting the ductility requirement outlined in EN 14592.
20 0 -20 -40
In addition, all screws succeeded in completing three load cycles, achieving the highest seismic performance class for 8 and 10 mm diameter screws. The full scientific report on the experimental testing is available at Rothoblaas.
α = 10.50° Seismic class: S3
40 Moment [kNmm]
An extensive testing campaign was therefore conducted on more than 500 Rothoblaas fasteners, with diameters ranging from 6 mm to 10 mm and lengths between 100 mm and 300 mm.
Tests of TBS 8x160 Bilinear schematization
-60 -30
-15
0 15 Rotation [°]
30
45
HBS Ø10x300 mm 80
Moment [kNmm]
α = 8.98°
α + 20°
60 My 40
20 Tests of HBS 10x300 Bilinear schematization 0
0
α
15
30
45
Rotation [°] 80
B
H H
B
S
X X
S
X X
HBS
TBS
Moment [kNmm]
60
α = 8.98° Seismic class: S3
40 20 0 -20 -40 Tests of HBS 10x300 Bilinear schematization
-60 -80 -30
-15
0 15 Rotation [°]
30
45
CARPENTRY | DUCTILITY | 15
LVL AND HARDWOOD HIGH DENSITY WOODS
Chestnut, oak, cypress, beech, eucalyptus, bamboo and many other exotic woods are increasingly being used in construction. In addition to these, elements in Microllam® lumber, called LVL (Laminated Veneer Lumber), are also used. These are continuous elements, obtained from thin layers of different species of wood (fir, pine, beech) just a few millimetres thick, overlapped and glued together. Microllam® sheets can be produced with longitudinal grains or crossed grains depending on the structural use of the element.
MICROLLAM® LUMBER
The resulting elements offer absolute dimensional stability and high mechanical performance for a wide range of applications (beams, joists, pillars, walls, floors, curved elements, etc.). Rothoblaas has conducted extensive testing to analyse the performance of cylindrical shank fasteners on LVL elements, considering several parameters:
MICROLLAM® LUMBER WITH CROSS-GRAIN VENEER
1. Different types of wood and their densities 2. Presence/absence of pre-drill holes 3. Fully/partially threaded fasteners 4. LVL panels with one/two-way grain 5. Application of fasteners on the side/narrow surface
thickness surface
thickness between 21-90 cm
widths up to 2.50 m
lengths up to 18,00 m
cover surface front surface
The test results obtained proved useful as they provided detailed verification of minimum applicable distances and analysed the different screwing forces according to installation and geometry of the fastener used.
16 | LVL AND HARDWOOD | CARPENTRY
According to the European Technical Assessment ETA-11/0030, Rothoblaas screws can be used for structural connections when panels or LVL elements are employed. With the aim of categorising the performance of partially threaded screws and fully threaded connectors in applications using LVL elements, Rothoblaas has conducted in-depth research at accredited external laboratories (Eurofins Expert Services Oy, Espoo, Finland). Specifically, tests were conducted on the following aspects: • THREAD WITHDRAWAL RESISTANCE (In edgewise and flatwise connections) • HEAD PULL-THROUGH RESISTANCE • REDUCED MINIMUM DISTANCES • STIFFNESS OF CONNECTIONS The full scientific report on the experimental testing is available at Rothoblaas.
t b
t
l
b l
b
t l
b t l
CARPENTRY | LVL AND HARDWOOD | 17
HTS
BIT INCLUDED
FULLY THREADED COUNTERSUNK SCREW TOTAL THREAD The thread is 80% the length of the screw and the smooth part under head guarantees maximum coupling efficiency with fibre board panels.
FINE THREAD A fine thread is ideal for utmost screwing precision, even on MDF panels. The Torx slot ensures stability and security.
CHROMIUM (VI) FREE Total absence of hexavalent chromium. Compliance with the strictest regulations governing chemical substances (SVHC). REACH information available.
CHARACTERISTICS FOCUS
fibre board screw
HEAD
countersunk without under-head ribs
DIAMETER
from 3,0 to 5,0 mm
LENGTH
from 12 to 80 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE • timber based panels • fibre board and MDF panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL Service classes 1 and 2.
18 | HTS | CARPENTRY
EN 14592
GEOMETRY AND MECHANICAL CHARACTERISTICS dS d2 d1
90°
X X
T
S
H
dK
b
t1 L Nominal diameter Head diameter Tip diameter Shank diameter Head thickness Pre-drilling hole diameter Characteristic yield moment Characteristic withdrawal-resistance parameter Associated density Characteristic head-pull-through parameter
d1 dK d2 dS t1 dV
[mm] [mm] [mm] [mm] [mm] [mm]
3 6,00 2,00 2,20 2,20 2,0
3,5 7,00 2,20 2,45 2,40 2,0
4 8,00 2,50 2,75 2,70 2,5
4,5 8,80 2,80 3,20 2,80 2,5
5 9,70 3,20 3,65 2,80 3,0
My,k
[Nm]
2,2
2,7
3,8
5,8
8,8
fax,k
[N/mm2]
18,5
17,9
17,1
17,0
15,5
ρa
[kg/m3]
350
350
350
350
350
fhead,k
[N/mm2]
26,0
25,1
24,1
23,1
22,5
Associated density
ρa
[kg/m3]
350
350
350
350
350
Characteristic tensile strength
ftens,k
[kN]
4,2
4,5
5,5
7,8
11,0
CODES AND DIMENSIONS d1
CODE
[mm] [in] 3 0.12 TX 10
3,5 0.14 TX 15
4 0.16 TX 20
HTS312 HTS316 HTS320 HTS325 HTS330 HTS3516 HTS3520 HTS3525 HTS3530 HTS3535 HTS3540 HTS3550 HTS420 HTS425 HTS430 HTS435
L
b
[mm]
[in]
[mm]
12 16 20 25 30 16 20 25 30 35 40 50 20 25 30 35
1/2 5/8 13/16 1 1 3/16 5/8 13/16 1 1 3/16 1 3/8 1 9/16 1 15/16 13/16 1 1 3/16 1 3/8
6 10 14 19 24 10 14 19 24 27 32 42 14 19 24 27
pcs
d1
CODE
[mm] [in] 1000 1000 1000 1000 1000 1000 1000 1000 500 500 500 400 1000 1000 500 500
4 0.16 TX 20 4,5 0.18 TX 20
5 0.20 TX 25
HTS440 HTS445 HTS450 HTS4530 HTS4535 HTS4540 HTS4545 HTS4550 HTS530 HTS535 HTS540 HTS545 HTS550 HTS560 HTS570 HTS580
L
b
[mm]
[in]
[mm]
40 45 50 30 35 40 45 50 30 35 40 45 50 60 70 80
1 9/16 1 3/4 1 15/16 1 3/16 1 3/8 1 9/16 1 3/4 1 15/16 1 3/16 1 3/8 1 9/16 1 3/4 1 15/16 2 3/8 2 3/4 3 1/8
32 37 42 24 27 32 37 42 24 27 32 37 42 50 60 70
pcs 500 400 400 500 500 400 400 200 500 400 200 200 200 200 100 100
CHIPBOARD The total thread and countersunk head geometry are ideal for fastening metal hinges when building furniture. Ideal for use with single bit (included in the package), easily exchanged in the driver bit holder. The self-perforating unnotched tip increases the initial grip of the screw.
CARPENTRY | HTS | 19
MINIMUM DISTANCES FOR SHEAR LOADS
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE [mm]
a1
[mm]
a2
[mm]
3∙d
9
11
12
14
a3,t
[mm]
12∙d
36
42
48
54
a3,c
[mm]
7∙d
21
25
28
32
7∙d
35
a4,t
[mm]
3∙d
9
11
12
14
3∙d
15
a4,c
[mm]
3∙d
9
11
12
14
3∙d
15
3∙d
d1
[mm]
a1
[mm]
a2
[mm]
5∙d
3,0
3,5
4
4,5
15
18
20
23
SCREWS INSERTED WITH PRE-DRILLING HOLE
d1
5 5∙d
3,0
3,5
4
4,5
5
14
16
18
4∙d
20
25
4∙d
12
3∙d
15
4∙d
12
14
16
18
4∙d
20
12∙d
60
7∙d
21
25
28
32
7∙d
35
7∙d
21
25
28
32
7∙d
35
5∙d
15
18
20
23
7∙d
35
9
11
12
14
3∙d
15
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 3,0
3,5
4
4,5
10∙d
30
35
40
45
12∙d
60
5∙d
15
18
20
23
5∙d
25
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
5
3,0
3,5
4
4,5
5
5∙d
15
18
20
23
5∙d
25
5∙d
15
18
20
23
5∙d
25
35
40
45
10∙d
50
a3,t
[mm]
15∙d
45
53
60
68
15∙d
75
10∙d
30
a3,c
[mm]
10∙d
30
35
40
45
10∙d
50
10∙d
30
35
40
45
10∙d
50
a4,t
[mm]
5∙d
15
18
20
23
5∙d
25
7∙d
21
25
28
32
10∙d
50
a4,c
[mm]
5∙d
15
18
20
23
5∙d
25
5∙d
15
18
20
23
5∙d
25
d = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: • The minimum distances are in accordance with EN 1995:2014 considering a timber characteristic density of ρk ≤ 420 kg/m3. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
20 | HTS | CARPENTRY
• The minimum spacing for all panel-to-timber connections(a1 , a2) can be multiplied by a coefficient of 0,85.
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
panel-to-timber(1)
timber-to-timber
TENSION
thin steel-timber plate(2)
thick steel-timber plate(3)
thread withdrawal(4)
head pull-through (5)
Splate
A L
b
d1
RV,k
RV,k
RV,k
RV,k
RV,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
[kN]
[kN]
[kN]
12 16 20 25 30 16 20 25 30 35 40 50 20 25 30 35 40 45 50 30 35 40 45 50 30 35 40 45 50 60 70 80
6 10 14 19 24 10 14 19 24 27 32 42 14 19 24 27 32 37 42 24 27 32 37 42 24 27 32 37 42 50 60 70
7 12 9 14 19 29 6 11 16 21 26 3 8 13 18 23 5 10 15 20 30 40 50
0,38 0,60 0,53 0,77 0,82 0,89 0,38 0,71 0,97 1,02 1,08 0,21 0,56 0,90 1,15 1,21 0,38 0,76 1,14 1,39 1,52 1,65 1,65
0,36 0,60 0,84 1,14 1,44 0,68 0,95 1,29 1,62 1,83 2,17 2,84 1,03 1,40 1,77 1,99 2,36 2,73 3,09 1,98 2,22 2,63 3,05 3,46 2,01 2,26 2,68 3,10 3,52 4,19 5,03 5,87
1,01 1,01 1,01 1,01 1,01 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,66 1,66 1,66 1,66 1,66 1,66 1,66 1,93 1,93 1,93 1,93 1,93 2,28 2,28 2,28 2,28 2,28 2,28 2,28 2,28
SPLATE = 3,5 mm SPLATE = 4,0 mm SPLATE = 4,5 mm
0,23 0,32 0,41 0,52 0,62 0,33 0,43 0,55 0,66 0,78 0,90 1,13 0,46 0,59 0,72 0,85 0,97 1,10 1,23 0,77 0,91 1,05 1,19 1,33 0,84 0,99 1,14 1,30 1,45 1,75 2,06
SPLATE = 5,0 mm
SPLATE = 1,75 mm SPLATE = 2,20 mm SPLATE = 2,25 mm
SPAN = 12 mm SPAN = 12 mm SPAN = 15 mm
SPAN = 9 mm
0,72 0,94 0,99 0,99 1,18 1,18 1,18 1,42 1,46 1,51 1,70 1,74 1,74 1,74
SPLATE = 2,5 mm
5
SPAN = 15 mm
4,5
SPAN = 9 mm
4
SPAN = 12 mm
3,5
SPAN = 12 mm
3
0,76 0,83 0,92 0,92 0,92 0,99 0,99 0,99 0,99 1,31 1,40 1,40 1,46 1,46 1,46 1,46 1,46
SPLATE = 3,0 mm
A [mm]
SPLATE = 1,50 mm
b [mm]
SPAN = 12 mm
L [mm]
SPAN = 9 mm
d1 [mm]
0,49 0,66 0,77 0,92 1,08 0,73 0,85 1,01 1,19 1,34 1,45 1,62 0,98 1,15 1,33 1,49 1,69 1,81 1,90 1,53 1,69 1,90 2,12 2,33 1,75 1,90 2,12 2,34 2,57 2,93 3,14 3,35
NOTES:
GENERAL PRINCIPLES:
(1) The characteristic shear strength are calculated considering an OSB panel or particle board with a SPAN thickness and mass density of ρk = 500 kg/m3. (2) The shear resistance characteristics are calculated considering the case of
• Characteristic values according to EN 1995:2014. • Design values can be obtained from characteristic values as follows:
a thin plate (SPLATE ≤ 0,5 d1). (3) The shear resistance characteristics are calculated considering the case of
a thick plate (SPLATE ≥ d1). (4) The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b. (5) The axial resistance to head pull-through was calculated using timber ele-
ments. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. • The values have been calculated considering a minimum tip pull-through depth of 6d1 . • Sizing and verification of the timber elements, panels and steel plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
CARPENTRY | HTS | 21
SHS
BIT INCLUDED
SMALL HEAD SCREW INVISIBLE HEAD Concealed 50° head for easy insertion in small spaces without creating openings in the wood.
FASTENING ON TONGUE AND GROOVE BOARDS Ideal for use in joints to secure beads or small elements.
Ø5 VERSION WITH TX30 The new 5 diameter version is a real carpentry screw: robust, unobtrusive and with all the convenience and precision of the torx 30 impression.
CHARACTERISTICS FOCUS
50° concealed head
HEAD
50° countersunk with under-head ribs
DIAMETER
3,5 | 5,0 mm
LENGTH
from 30 to 120 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE • tapped boards • timber based panels • fibre board and MDF panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL Service classes 1 and 2
22 | SHS | CARPENTRY
ETA-11/0030
GEOMETRY AND MECHANICAL CHARACTERISTICS A dS
A dS d2 d1
50°
dK
dK
d2 d1
50°
b
b
L
L
SHS Ø3,5
SHS Ø5
Nominal diameter
d1
[mm]
3,5
5
Head diameter
dK
Tip diameter
d2
[mm]
5,75
10,00
[mm]
2,30
3,40
dS
[mm]
2,65
3,65
dV
[mm]
2,0
3,0
My,k
[Nm]
-
5,4
fax,k
[N/mm2]
-
11,7
Associated density
ρa
[kg/m3]
-
350
Characteristic head-pull-through parameter(2)
fhead,k
[N/mm2]
-
10,5
Associated density
ρa
[kg/m3]
-
350
Characteristic tensile strength
ftens,k
[kN]
-
7,9
Shank diameter Pre-drilling hole
diameter(1)
Characteristic yield moment Characteristic withdrawal-resistance parameter(2)
(1)
Pre-drilling valid for softwood. Valid for softwood - maximum density 440 kg/m3. For applications with different materials or with high density please see ETA-11/0030. (2)
CODES AND DIMENSIONS d1
CODE
[mm] [in] 3,5 0.14 TX 10
L
b
[mm]
[in]
SHS3530
30
1 3/16
A
[mm] [mm]
pcs [in]
d1
CODE
[mm] [in]
L
b
A
[mm] [mm]
pcs
[mm]
[in]
20
10
3/8
500
SHS550
50
1 15/16
24
26
1 1/32
[in] 200
SHS3540
40
1 9/16
26
14
9/16
500
SHS560
60
2 3/8
30
30
1 3/16
200
SHS3550
50
1 15/16
34
16
5/8
500
SHS570
70
2 3/4
35
35
1 3/8
200
SHS3560
60
2 3/8
40
20
13/16
500
SHS580
80
3 1/8
40
40
1 9/16
200
SHS590
90
3 1/2
45
45
1 3/4
200
SHS5100
100
4
50
50
1 15/16
200
SHS5120
120
4 3/4
60
60
2 3/8
200
Not holding CE marking.
5 0.20 TX 30
CARPENTRY | SHS | 23
SHS AISI410
410 BIT INCLUDED
AISI
SMALL HEAD SCREW INVISIBLE HEAD The smaller head and high performing thread guarantee perfect insertion of the screw in small thicknesses. Ideal for exterior applications.
AISI410 Martensitic stainless steel with an excellent balance between mechanical resistance and corrosion resistance.
GEOMETRY CODES AND DIMENSIONS d1
CODE
[mm] [in] 3,5 0.14 TX 10
dK
A L
b
A
pcs
[mm]
[mm]
[in]
[mm]
[mm]
[in]
SHS3540AS
5,75
40
1 9/16
26
14
9/16
500
SHS3550AS
5,75
50
1 15/16
34
16
5/8
500
SHS3560AS
5,75
60
2 3/8
40
20
13/16
500
dK
d1
50° b L
MATERIAL AISI410 martensitic stainless steel.
FIELDS OF USE Ideal for exterior use, thanks to the stainless steel.
24 | SHS AISI410 | CARPENTRY
BUILDING INFORMATION MODELING
Structural connection elements in digital format Complete with three-dimensional geometric features and additional parametric information, they are available in IFC, REVIT, ALLPLAN, ARCHICAD, SKETCHUP and TEKLA format, and are ready to integrate into your next successful project. Download them now!
www.rothoblaas.com
HBS
AC233 ESR-4645
BIT INCLUDED
COUNTERSUNK SCREW SUPERIOR STRENGTH Steel with superb yield and failure strength (fy,k = 1000 N/mm2). Very high torsional strength ftor,k for safer screwing.
STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°). Asymmetric “umbrella” threading for better timber pull-through.
DUCTILITY The bending angle is 20° greater than standard, certified according to ETA-11/0030. Cyclical SEISMIC-REV tests according to EN 12512. Seismic performance tested according to EN 14592.
CHROMIUM (VI) FREE Total absence of hexavalent chromium. Compliance with the strictest regulations governing chemical substances (SVHC). REACH information available.
CHARACTERISTICS FOCUS
extremely complete range
HEAD
countersunk with under-head ribs
DIAMETER
from 3,5 to 12,0 mm
LENGTH
from 30 to 600 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE • timber based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.
26 | HBS | CARPENTRY
ETA-11/0030
CLT Values also tested, certified and calculated for CLT. Calculation tables and dimensioning software (MyProject) for CLT available in the catalogue and online.
LVL Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL.
CARPENTRY | HBS | 27
Valley jack rafter joint with HBS screws, diameter 8 mm.
Fastening CLT walls with 6 mm diameter HBS screws.
GEOMETRY AND MECHANICAL CHARACTERISTICS
B
S
H
dK
X X
A
d2 d1
90° t1
dS
b L
Nominal diameter
d1
[mm]
3,5
4
4,5
5
6
8
10
12
Head diameter
dK
[mm]
7,00
8,00
9,00
10,00
12,00
14,50
18,25
20,75
Tip diameter
d2
[mm]
2,25
2,55
2,80
3,40
3,95
5,40
6,40
6,80
Shank diameter
dS
[mm]
2,45
2,75
3,15
3,65
4,30
5,80
7,00
8,00
Head thickness
t1
[mm]
2,20
2,80
2,80
3,10
4,50
4,50
5,80
7,20
Pre-drilling hole diameter(1)
dV
[mm]
2,0
2,5
2,5
3,0
4,0
5,0
6,0
7,0
My,k
[Nm]
2,1
3,0
4,1
5,4
9,5
20,1
35,8
48,0
fax,k
[N/mm2]
11,7
11,7
11,7
11,7
11,7
11,7
11,7
11,7
Associated density
ρa
[kg/m3]
350
350
350
350
350
350
350
350
Characteristic withdrawal-resistance parameter(3)
fax,k
[N/mm2]
15,0
15,0
15,0
15,0
15,0
15,0
15,0
15,0
Associated density
ρa
[kg/m3]
500
500
500
500
500
500
500
500
Characteristic head-pull-through parameter(2)
fhead,k
[N/mm2]
10,5
10,5
10,5
10,5
10,5
10,5
10,5
10,5
Characteristic yield moment Characteristic withdrawal-resistance parameter(2)
Associated density
ρa
[kg/m3]
350
350
350
350
350
350
350
350
Characteristic head-pull-through parameter(3)
fhead,k
[N/mm2]
20,0
20,0
20,0
20,0
20,0
20,0
20,0
20,0
Associated density
ρa
[kg/m3]
500
500
500
500
500
500
500
500
Characteristic tensile strength
ftens,k
[kN]
3,8
5,0
6,4
7,9
11,3
20,1
31,4
33,9
(1)
Pre-drilling valid for softwood. Valid for softwood - maximum density 440 kg/m3. (3) Valid for softwood LVL - maximum density 550 kg/m3 . For applications with different materials or with high density please see ETA-11/0030. (2)
28 | HBS | CARPENTRY
CODES AND DIMENSIONS d1
CODE
[mm] [in] 3,5 0.14 TX 15
4 0.16 TX 20
4,5 0.18 TX 20
5 0.20 TX 25
6 0.24 TX 30
HBS3540 HBS3545 HBS3550 HBS430 HBS435 HBS440 HBS445 HBS450 HBS460 HBS470 HBS480 HBS4540 HBS4545 HBS4550 HBS4560 HBS4570 HBS4580 HBS540 HBS545 HBS550 HBS560 HBS570 HBS580 HBS590 HBS5100 HBS5120 HBS640 HBS650 HBS660 HBS670 HBS680 HBS690 HBS6100 HBS6110 HBS6120 HBS6130 HBS6140 HBS6150 HBS6160 HBS6180 HBS6200 HBS6220 HBS6240 HBS6260 HBS6280 HBS6300
L
b
[mm]
[in]
40 45 50 30 35 40 45 50 60 70 80 40 45 50 60 70 80 40 45 50 60 70 80 90 100 120 40 50 60 70 80 90 100 110 120 130 140 150 160 180 200 220 240 260 280 300
1 9/16 1 3/4 1 15/16 1 3/16 1 3/8 1 9/16 1 3/4 1 15/16 2 3/8 2 3/4 3 1/8 1 9/16 1 3/4 1 15/16 2 3/8 2 3/4 3 1/8 1 9/16 1 3/4 1 15/16 2 3/8 2 3/4 3 1/8 3 1/2 4 4 3/4 1 9/16 1 15/16 2 3/8 2 3/4 3 1/8 3 1/2 4 4 3/8 4 3/4 5 1/8 5 1/2 6 6 1/4 7 1/8 8 8 5/8 9 1/2 10 1/4 11 11 3/4
A
[mm] [mm] 18 24 24 18 18 24 30 30 35 40 40 24 30 30 35 40 40 24 24 24 30 35 40 45 50 60 35 35 30 40 40 50 50 60 60 60 75 75 75 75 75 75 75 75 75 75
pcs [in]
d1
CODE
[mm] [in]
22 7/8 21 13/16 26 1 1/32 12 1/2 17 11/16 16 5/8 15 9/16 20 13/16 25 1 30 1 3/16 40 1 9/16 16 5/8 15 9/16 20 13/16 25 1 30 1 3/16 40 1 9/16 16 5/8 21 13/16 26 1 1/32 30 1 3/16 35 1 3/8 40 1 9/16 45 1 3/4 50 1 15/16 60 2 3/8 8 5/16 15 9/16 30 1 3/16 30 1 3/16 40 1 9/16 40 1 9/16 50 1 15/16 50 1 15/16 60 2 3/8 70 2 3/4 65 2 9/16 75 2 15/16 85 3 3/8 105 4 1/8 125 4 15/16 145 5 11/16 165 6 1/2 185 7 1/4 205 8 1/16 225 8 7/8
500 400 400 500 500 500 400 400 200 200 200 400 400 200 200 200 200 200 200 200 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
8 0.32 TX 40
10 0.40 TX 40
12 0.48 TX 50
HBS880 HBS8100 HBS8120 HBS8140 HBS8160 HBS8180 HBS8200 HBS8220 HBS8240 HBS8260 HBS8280 HBS8300 HBS8320 HBS8340 HBS8360 HBS8380 HBS8400 HBS8440 HBS8480 HBS8520 HBS1080 HBS10100 HBS10120 HBS10140 HBS10160 HBS10180 HBS10200 HBS10220 HBS10240 HBS10260 HBS10280 HBS10300 HBS10320 HBS10340 HBS10360 HBS10380 HBS10400 HBS12120 HBS12160 HBS12200 HBS12240 HBS12280 HBS12320 HBS12360 HBS12400 HBS12440 HBS12480 HBS12520 HBS12560 HBS12600
L
b
[mm]
[in]
80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 120 160 200 240 280 320 360 400 440 480 520 560 600
3 1/8 4 4 3/4 5 1/2 6 1/4 7 1/8 8 8 5/8 9 1/2 10 1/4 11 11 3/4 12 5/8 13 3/8 14 1/4 15 15 3/4 17 1/4 19 20 1/2 3 1/8 4 4 3/4 5 1/2 6 1/4 7 1/8 8 8 5/8 9 1/2 10 1/4 11 11 3/4 12 5/8 13 3/8 14 1/4 15 15 3/4 4 3/4 6 1/4 8 9 1/2 11 12 5/8 14 1/4 15 3/4 17 1/4 19 20 1/2 22 23 5/8
A
[mm] [mm] 52 52 60 60 80 80 80 80 80 80 80 100 100 100 100 100 100 100 100 100 52 52 60 60 80 80 80 80 80 80 80 100 100 100 100 100 100 80 80 80 80 80 120 120 120 120 120 120 120 120
pcs [in]
28 1 1/8 48 1 7/8 60 2 3/8 80 3 1/8 80 3 1/8 100 4 120 4 3/4 140 5 1/2 160 6 1/4 180 7 1/8 200 8 200 8 220 8 5/8 240 9 1/2 260 10 1/4 280 11 300 11 3/4 340 13 3/8 380 15 420 16 9/16 28 1 1/8 48 1 7/8 60 2 3/8 80 3 1/8 80 3 1/8 100 4 120 4 3/4 140 5 1/2 160 6 1/4 180 7 1/8 200 8 200 8 220 8 5/8 240 9 1/2 260 10 1/4 280 11 300 11 3/4 40 1 9/16 80 3 1/8 120 4 3/4 160 6 1/4 200 8 200 8 240 9 1/2 280 11 320 12 5/8 360 14 1/4 400 15 3/4 440 17 1/4 480 19
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 25 25 25 25 25 25 25 25 25 25 25 25 25
HUS TURNED WASHER dHBS
CODE
[mm]
D1
D2
h
pcs
[mm]
[mm]
[mm]
6
HUS6
7,5
20,0
4,50
100
8
HUS8
8,5
25,0
5,50
50
10
HUS10
10,8
30,0
6,50
50
12
HUS12
14,0
37,0
8,50
25
D2 D 1
h dHBS
CARPENTRY | HBS | 29
MINIMUM DISTANCES FOR SHEAR LOADS
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE d1
[mm]
3,5
4
4,5
a1
[mm]
5∙d
a2
[mm]
3∙d
18
20
23
11
12
14
3∙d
15
18
24
a3,t
[mm] 12∙d
42
48
54
12∙d
60
72
96
a3,c
[mm]
7∙d
25
28
32
7∙d
35
42
56
70
a4,t
[mm]
3∙d
11
12
14
3∙d
15
18
24
30
a4,c
[mm]
3∙d
11
12
14
3∙d
15
18
24
30
d1
[mm]
a1 a2
[mm]
5∙d
SCREWS INSERTED WITH PRE-DRILLING HOLE
5
6
8
10
12
25
30
40
50
60
4∙d
30
36
4∙d
14
120
144
7∙d
25
84
7∙d
25
28
32
7∙d
35
42
56
70
84
36
5∙d
18
20
23
7∙d
35
42
56
70
84
36
3∙d
11
12
14
3∙d
15
18
24
30
36
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 3,5
4
4,5
5
[mm] 10∙d
35
40
45
12∙d
60
5∙d
18
20
23
5∙d
25
6
3,5
4
4,5
5
6
8
10
12
14
16
18
4∙d
20
24
32
40
48
16 28
18
4∙d
20
24
32
40
48
32
7∙d
35
42
56
70
84
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
8
10
12
72
96
120
144
30
40
50
60
3,5
4
4,5
5∙d
18
20
23
5∙d
18
20
23
35
40
45
5
6
8
10
12
5∙d
25
30
40
50
60
5∙d
25
30
40
50
60
10∙d
50
60
80
100
120
a3,t
[mm] 15∙d
53
60
68
15∙d
75
90
120
150
180 10∙d
a3,c
[mm] 10∙d
35
40
45
10∙d
50
60
80
100
120 10∙d
35
40
45
10∙d
50
60
80
100
120
a4,t
[mm]
5∙d
18
20
23
5∙d
25
30
40
50
60
7∙d
25
28
32
10∙d
50
60
80
100
120
a4,c
[mm]
5∙d
18
20
23
5∙d
25
30
40
50
60
5∙d
18
20
23
5∙d
25
30
40
50
60
d = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: • The minimum distances are compliant with EN 1995:2014, according to ETA-11/0030, considering a timber characteristic density of ρk ≤ 420 kg/m3 and calculation diameter of d = nominal screw diameter. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
30 | HBS | CARPENTRY
• The minimum spacing for all panel-to-timber connections(a1 , a2) can be multiplied by a coefficient of 0,85. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
timber-to-timber
panel-to-timber(1)
TENSION
thin steel-timber plate(2)
thick steel-timber plate(3)
thread withdrawal(4)
head pull-through (5)
Splate
A L b d1
b
A
RV,k
RV,k
RV,k
RV,k
Rax,k
Rhead,k
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
[kN]
[kN]
40
18
22
0,73
45
24
21
0,79
SPAN = 12 mm
0,56
1,06
0,56
1,06
0,56
0,76
0,93
1,28
0,91
0,73
35
18
17
0,79
0,84
1,04
1,38
0,91
0,73
40
24
16
0,83
1,45
1,21
0,73
45
30
15
0,81
1,53
1,52
0,73
50
30
20
0,91
1,53
1,52
0,73
60
35
25
0,99
1,59
1,77
0,73
70
40
30
0,99
0,84
1,65
2,02
0,73
80
40
40
0,99
0,84
1,65
2,02
0,73
1,74
1,36
0,92
1,83
1,70
0,92
0,98
15
0,96
0,84
1,06 1,06 1,06
1,12 1,19 1,19 1,26 1,32 1,32 1,33 1,42
50
30
20
1,06
60
35
25
1,18
70
40
30
1,22
80
40
40
1,22
1,06
40
24
16
1,12
1,16
1,46
45
24
21
1,19
1,20
1,56
2,05
1,52
1,13
50
24
26
1,29
1,20
2,05
1,52
1,13
60
30
30
1,46
2,14
1,89
1,13
1,06 1,06
1,20
70
35
35
1,46
80
40
40
1,46
1,20
90
45
45
1,46
100
50
50
1,46
1,20
120
60
60
1,46
1,20
1,20 1,20
1,42
SPLATE = 4,5 mm
16
30
0,84
S PLATE = 2,25 m
24
45
0,84
SPLATE = 4,0 mm
1,18
0,72
SPLATE = 2,0 mm
0,79
12
SPAN = 12 mm
26
1,49 1,56 1,56
1,56 1,65 1,73
SPLATE = 5,0 mm
5
0,80
18
0,84
0,91
1,12 1,18
24
SPLATE = 2,5 mm
4,5
0,91
50
40
0,72
0,85
30
SPAN = 12 mm
4
0,72 0,72
SPAN = 12 mm
3,5
SPLATE = 3,5 mm
L [mm]
SPLATE = 1,75 mm
d1 [mm]
1,83
1,70
0,92
1,90
1,99
0,92
1,97
2,27
0,92
1,97
2,27
0,92
2,00
1,52
1,13
2,22
2,21
1,13
2,30
2,53
1,13
2,38
2,84
1,13
1,97
2,46
3,16
1,13
2,13
2,62
3,79
1,13
1,81 1,89
NOTES: (1) The characteristic shear resistances are calculated considering an OSB3 or
OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN. (2) The shear resistance characteristics are calculated considering the case of
(5) The axial resistance to head pull-through, with and without a washer, was
calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
a thin plate (SPLATE ≤ 0,5 d1). (3) The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1). (4) The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
CARPENTRY | HBS | 31
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
timber-to-timber
TENSION
timber-to-timber thin steel-timber thick steel-timber with washer plate(2) plate(3) legno-legno con rondella
thread withdrawal(4)
Splate
head head pull-through pull-through (5) with washer (5)
A L b d1
RV,k
RV,k
RV,k
RV,k
Rax,k
Rhead,k
Rhead,k
[kN] 0,89 1,53 1,78 1,88 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,59 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,63 4,22 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81
[kN] 0,89 1,66 1,94 2,23 2,43 2,61 2,61 2,80 2,80 2,80 2,80 2,80 2,80 2,80 2,80 2,80 2,80 2,80 2,80 2,80 3,31 4,00 4,20 4,20 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,33 4,92 5,76 5,76 6,40 6,40 6,40 6,40 6,40 6,40 6,40 6,42 6,42 6,42 6,42 6,42 6,42
[kN] 1,64 2,08 2,24 2,43 2,43 2,61 2,61 2,80 2,80 2,80 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 4,00 4,00 4,20 4,20 4,70 4,70 4,70 4,70 4,70 4,70 4,70 5,21 5,21 5,21 5,21 5,21 5,21 5,21 5,21 5,21 4,75 5,51 5,76 5,76 6,40 6,40 6,40 6,40 6,40 6,40 6,40 7,03 7,03 7,03 7,03 7,03 7,03
[kN] 2,60 2,98 2,93 3,12 3,12 3,31 3,31 3,49 3,49 3,49 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 5,11 5,11 5,31 5,31 5,81 5,81 5,81 5,81 5,81 5,81 5,81 6,32 6,32 6,32 6,32 6,32 6,32 6,32 6,32 6,32 6,94 7,12 7,37 7,37 8,00 8,00 8,00 8,00 8,00 8,00 8,00 8,63 8,63 8,63 8,63 8,63 8,63
[kN] 2,65 2,65 2,27 3,03 3,03 3,79 3,79 4,55 4,55 4,55 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,25 5,25 6,06 6,06 8,08 8,08 8,08 8,08 8,08 8,08 8,08 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 6,57 6,57 7,58 7,58 10,10 10,10 10,10 10,10 10,10 10,10 10,10 12,63 12,63 12,63 12,63 12,63 12,63
[kN] 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77
[kN] 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20
32 | HBS | CARPENTRY
SPLATE = 10 mm
SPLATE = 8 mm
SPLATE = 6 mm
A [mm] 8 15 30 30 40 40 50 50 60 70 65 75 85 105 125 145 165 185 205 225 28 48 60 80 80 100 120 140 160 180 200 200 220 240 260 280 300 340 380 420 28 48 60 80 80 100 120 140 160 180 200 200 220 240 260 280 300
SPLATE = 3 mm
b [mm] 35 35 30 40 40 50 50 60 60 60 75 75 75 75 75 75 75 75 75 75 52 52 60 60 80 80 80 80 80 80 80 100 100 100 100 100 100 100 100 100 52 52 60 60 80 80 80 80 80 80 80 100 100 100 100 100 100
SPLATE = 4 mm
L
SPLATE = 5 mm
d1
[mm] [mm] 40 50 60 70 80 90 100 110 120 130 6 140 150 160 180 200 220 240 260 280 300 80 100 120 140 160 180 200 220 240 260 8 280 300 320 340 360 380 400 440 480 520 80 100 120 140 160 180 200 220 240 10 260 280 300 320 340 360 380 400
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
timber-to-timber
TENSION
timber-to-timber thin steel-timber thick steel-timber with washer plate(2) plate(3) legno-legno con rondella
thread withdrawal(4)
Splate
head head pull-through pull-through (5) with washer (5)
A L b d1
b
A
RV,k
RV,k
RV,k
RV,k
Rax,k
Rhead,k
Rhead,k
[mm] 80 80 80 80 80 120 120 120 120 120 120 120 120
[mm] 40 80 120 160 200 200 240 280 320 360 400 440 480
[kN] 4,87 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00
[kN] 6,68 7,81 7,81 7,81 7,81 8,66 8,66 8,66 8,66 8,66 8,66 8,66 8,66
[kN]
[kN] 9,79 9,79 9,79 9,79 9,79 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,30
[kN] 12,12 12,12 12,12 12,12 12,12 18,18 18,18 18,18 18,18 18,18 18,18 18,18 18,18
[kN] 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88
[kN] 15,51 15,51 15,51 15,51 15,51 15,51 15,51 15,51 15,51 15,51 15,51 15,51 15,51
7,81 7,81 7,81 7,81 7,81 9,32 9,32 9,32 9,32 9,32 9,32 9,32 9,32
SPLATE = 12 mm
L
SPLATE = 6 mm
d1
[mm] [mm] 120 160 200 240 280 320 360 12 400 440 480 520 560 600
NOTES:
GENERAL PRINCIPLES:
(1) The characteristic shear resistances are calculated considering an OSB3 or
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN. (2) The shear resistance characteristics are calculated considering the case of
a thin plate (SPLATE ≤ 0,5 d1). (3) The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1). (4) The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b. (5) The axial resistance to head pull-through, with and without a washer, was
calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Sizing and verification of the timber elements, panels and steel plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
CARPENTRY | HBS | 33
MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
lateral face(1)
narrow face(2)
d1
[mm]
a1
[mm]
4∙d
6
8
10
12
24
32
40
48
a2
[mm]
2.5∙d
15
a3,t
[mm]
6∙d
36
a3,c
[mm]
6∙d
36
a4,t
[mm]
6∙d
36
a4,c
[mm]
2.5∙d
15
6
8
10
12
10∙d
60
80
100
120
20
25
48
60
30
4∙d
24
32
40
48
72
12∙d
72
96
120
144
48
60
48
60
72
7∙d
42
56
70
84
72
6∙d
36
48
60
72
20
25
30
3∙d
18
24
30
36
d = nominal screw diameter
a4,c
a4,t α
F
F
α
α
F α a3,c
a3,t
a2 a2
a2
a1
a1
a3,c a4,c
F
a3,t
F
a4,c
tCLT
a3,c a4,c a4,t
F
tCLT
NOTES: The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.
34 | HBS | CARPENTRY
(1) Minimum CLT thickness t
min = 10∙d (2) Minimum CLT thickness t min = 10∙d and minimum screw pull-through depth tpen = 10∙d
MINIMUM DISTANCES FOR SHEAR LOADS | LVL
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5
6
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1
[mm]
8
10
a1
[mm]
5
72
96
120
5∙d
25
30
40
50
5∙d
25
6
8
10
12∙d
60
a2
[mm]
5∙d
25
30
40
50
30
40
a3,t
[mm]
50
15∙d
75
90
120
150
10∙d
50
60
80
100
a3,c
[mm]
10∙d
50
60
80
100
10∙d
50
60
80
100
a4,t
[mm]
5∙d
25
30
40
50
10∙d
50
60
80
100
a4,c
[mm]
5∙d
25
30
40
50
5∙d
25
30
40
50
d = nominal screw diameter
a4,c
a4,t α
a2
F
F α a1
F
α
a3,t
α
a2 a2 F a1
a3,c
NOTES: • The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the LVL panels.
• The minimum distances are applicable when using both parallel and cross grain softwood LVL. • The minimum distances without pre-drilling hole are valid for minimum thickness of LVL elements tmin:
where: t 1 is the thickness in mm of the LVL element in a connection with 2 wooden elements. For connections with 3 or more elements, t 1 represents the thickness of the most external LVL; t 2 is the thickness in mm of the central element in a connection with 3 or more elements.
t1 ≥ 8,4 d -9 t2 ≥
11,4 d 75
CARPENTRY | HBS | 35
STATIC VALUES | CLT SHEAR(1) CLT - CLT lateral face
geometry
CLT - CLT lateral face - narrow face
panel - CLT(2) lateral face
CLT - panel - CLT(2) lateral face
t
A L b d1
d1
L
b
A
RV,k
RV,k
RV,k
t
RV,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
[mm]
[kN] -
8
0,80
-
1,30
-
35
15
1,44
-
1,53
-
-
60
30
30
1,63
-
1,53
-
-
70
40
30
1,74
-
1,53
30
2,19
80
40
40
1,97
-
1,53
35
2,19
40
1,97
-
1,53
40
2,19
50
50
1,97
-
1,53
45
2,19
110
60
50
1,97
-
1,53
50
2,19
120
60
60
1,97
-
130
60
70
1,97
-
140
75
65
1,97
-
150
75
75
1,97
-
160
75
85
1,97
-
1,53 1,53 1,53
SPAN = 15 mm
50
SPAN = 15 mm
90 100
55
2,19
60
2,19
65
2,19
70
2,19
1,53
75
2,19
1,53
180
75
105
1,97
-
1,53
85
2,19
200
75
125
1,97
-
1,53
95
2,19
220
75
145
1,97
-
1,53
105
2,19
240
75
165
1,97
-
1,53
115
2,19
260
75
185
1,97
-
1,53
125
2,19
1,53
135
2,19
145
2,19
280
75
205
1,97
-
300
75
225
1,97
-
80
52
28
2,42
1,84
2,30
-
-
100
52
48
3,04
2,13
2,30
40
2,92
120
60
60
3,11
2,26
2,30
50
2,92
140
60
80
3,11
2,26
2,30
60
2,92
160
80
80
3,11
2,58
2,30
70
2,92
180
80
100
3,11
2,58
2,30
80
2,92
200
80
120
3,11
2,58
2,30
90
2,92
220
80
140
3,11
2,58
2,30
100
2,92
240
80
160
3,11
2,58
110
2,92
260
80
180
3,11
2,58
120
2,92
280
80
200
3,11
2,58
300
100
200
3,11
2,58
320
100
220
3,11
2,58
340
100
240
3,11
360
100
260
3,11
2,30 2,30 2,30
SPAN = 18 mm
8
35
50
SPAN = 18 mm
6
40
130
2,92
140
2,92
2,30
150
2,92
2,58
2,30
160
2,92
2,58
2,30
170
2,92 2,92
2,30
380
100
280
3,11
2,58
2,30
180
400
100
300
3,11
2,58
2,30
190
2,92
440
100
340
3,11
2,58
2,30
210
2,92
480
100
380
3,11
2,58
2,30
230
2,92
520
100
420
3,11
2,58
250
2,92
36 | HBS | CARPENTRY
CHARACTERISTIC VALUES EN 1995:2014 SHEAR(1) CLT - timber lateral face
TENSION timber - CLT narrow face
thread withdrawal lateral face(3)
thread withdrawal narrow face(4)
head pull-through (5)
head pull-through with washer(5)
RV,k
RV,k
Rax,k
Rax,k
Rhead,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
[kN]
[kN]
0,80
-
2,46
-
1,51
4,20
1,47
-
2,46
-
1,51
4,20
1,69
-
2,11
-
1,51
4,20
1,82
-
2,81
-
1,51
4,20
2,01
-
2,81
-
1,51
4,20
2,01
-
3,51
-
1,51
4,20
2,01
-
3,51
-
1,51
4,20
2,01
-
4,21
-
1,51
4,20
2,01
-
4,21
-
1,51
4,20
2,01
-
4,21
-
1,51
4,20
2,01
-
5,27
-
1,51
4,20
2,01
-
5,27
-
1,51
4,20
2,01
-
5,27
-
1,51
4,20
2,01
-
5,27
-
1,51
4,20
2,01
-
5,27
-
1,51
4,20
2,01
-
5,27
-
1,51
4,20
2,01
-
5,27
-
1,51
4,20
2,01
-
5,27
-
1,51
4,20
2,01
-
5,27
-
1,51
4,20
2,01
-
5,27
-
1,51
4,20
2,51
2,19
4,87
3,70
2,21
6,56
3,17
2,19
4,87
3,70
2,21
6,56
3,17
2,32
5,62
4,21
2,21
6,56
3,17
2,32
5,62
4,21
2,21
6,56
3,17
2,66
7,49
5,45
2,21
6,56
3,17
2,66
7,49
5,45
2,21
6,56
3,17
2,66
7,49
5,45
2,21
6,56
3,17
2,66
7,49
5,45
2,21
6,56
3,17
2,66
7,49
5,45
2,21
6,56
3,17
2,66
7,49
5,45
2,21
6,56
3,17
2,66
7,49
5,45
2,21
6,56
3,17
2,66
9,36
6,66
2,21
6,56
3,17
2,66
9,36
6,66
2,21
6,56
3,17
2,66
9,36
6,66
2,21
6,56
3,17
2,66
9,36
6,66
2,21
6,56
3,17
2,66
9,36
6,66
2,21
6,56
3,17
2,66
9,36
6,66
2,21
6,56
3,17
2,66
9,36
6,66
2,21
6,56
3,17
2,66
9,36
6,66
2,21
6,56
3,17
2,66
9,36
6,66
2,21
6,56
CARPENTRY | HBS | 37
STATIC VALUES | CLT SHEAR(1) CLT - CLT lateral face
geometry
panel - CLT(2) lateral face
CLT - CLT lateral face - narrow face
CLT - panel - CLT(2) lateral face
t
A L b d1
d1
L
b
A
RV,k
RV,k
RV,k
t
RV,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
[mm]
[kN] -
2,34
3,31
-
3,86
2,91
3,31
-
-
120
60
60
4,45
3,03
3,31
50
3,89
140
60
80
4,49
3,03
3,31
60
3,89
160
80
80
4,56
3,37
3,31
70
3,89
180
80
100
4,56
3,37
3,31
80
3,89
200
80
120
4,56
3,37
220
80
140
4,56
3,37
240
80
160
4,56
3,37
260
80
180
4,56
3,37
280
80
200
4,56
3,37
300
100
200
4,56
320
100
220
4,56
340
100
240
4,56
360
100
260
4,56
380
100
280
4,56
400
100
300
120
80
40
160
80
80
200
80
120
240
80
160
280
80
200
3,31 3,31 3,31 3,31
SPAN = 22 mm
3,40
SPAN = 22 mm
28 48
90
3,89
100
3,89
110
3,89
120
3,89
3,31
130
3,89
3,76
3,31
140
3,89
3,76
3,31
150
3,89
3,76
3,31
160
3,89
3,76
3,31
170
3,89
3,76
3,31
180
3,89
4,56
3,76
3,31
190
3,89
4,54
3,56
-
-
-
5,69
4,00
-
-
-
5,69
4,00
-
-
-
5,69
4,00
-
-
-
5,69
4,00
-
-
-
320
120
200
5,69
4,65
-
-
-
360
120
240
5,69
4,65
-
-
-
400
120
280
5,69
4,65
-
-
-
440
120
320
5,69
4,65
-
-
-
480
120
360
5,69
4,65
-
-
-
-
12
52 52
-
10
80 100
520
120
400
5,69
4,65
-
-
-
560
120
440
5,69
4,65
-
-
-
600
120
480
5,69
4,65
-
-
-
NOTES: (1) The characteristic shear strength is independent from the direction of the
grain of the CLT panels outer layer. (2) The characteristic shear resistances are calculated considering an OSB3 or
OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN. (3) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b.
38 | HBS | CARPENTRY
(4) The axial thread withdrawal resistance is valid for minimum thickness of the element of tmin = 10∙d and minimum screw pull-through depth tpen = 10∙d. (5) The axial resistance to head pull-through was calculated using timber ele-
ments.
CHARACTERISTIC VALUES EN 1995:2014 SHEAR(1) CLT - timber lateral face
TENSION timber - CLT narrow face
thread withdrawal lateral face(3)
thread withdrawal narrow face(4)
head pull-through (5)
head pull-through with washer(5)
RV,k
RV,k
Rax,k
Rax,k
Rhead,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
[kN]
[kN] 9,45
3,50
3,01
6,08
4,42
3,50
4,02
3,01
6,08
4,42
3,50
9,45
4,63
3,12
7,02
5,03
3,50
9,45
4,65
3,12
7,02
5,03
3,50
9,45
4,65
3,46
9,36
6,51
3,50
9,45
4,65
3,46
9,36
6,51
3,50
9,45
4,65
3,46
9,36
6,51
3,50
9,45
4,65
3,46
9,36
6,51
3,50
9,45
4,65
3,46
9,36
6,51
3,50
9,45
4,65
3,46
9,36
6,51
3,50
9,45
4,65
3,46
9,36
6,51
3,50
9,45
4,65
3,86
11,70
7,96
3,50
9,45
4,65
3,86
11,70
7,96
3,50
9,45
4,65
3,86
11,70
7,96
3,50
9,45
4,65
3,86
11,70
7,96
3,50
9,45
4,65
3,86
11,70
7,96
3,50
9,45
4,65
3,86
11,70
7,96
3,50
9,45
4,71
4,10
11,23
7,54
4,52
14,37
5,79
4,11
11,23
7,54
4,52
14,37
5,79
4,11
11,23
7,54
4,52
14,37
5,79
4,11
11,23
7,54
4,52
14,37
5,79
4,11
11,23
7,54
4,52
14,37
5,79
4,78
16,85
10,86
4,52
14,37
5,79
4,78
16,85
10,86
4,52
14,37
5,79
4,78
16,85
10,86
4,52
14,37
5,79
4,78
16,85
10,86
4,52
14,37
5,79
4,78
16,85
10,86
4,52
14,37
5,79
4,78
16,85
10,86
4,52
14,37
5,79
4,78
16,85
10,86
4,52
14,37
5,79
4,78
16,85
10,86
4,52
14,37
GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard and national specification ÖNORM EN 1995 - Annex K in accordance with ETA-11/0030.
• Values were calculated considering the threaded part as being completely inserted into the wood.
• Design values can be obtained from characteristic values as follows:
• Sizing and verification of the timber elements and panels must be done separately.
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The shear resistance characteristics are calculated considering a minimum fixing length of 4 d1 . • The screws must be positioned in accordance with the minimum distances.
• For the calculation process, a mass density of ρ k = 350 kg/m3 has been considered for CLT elements and a mass density of ρ k = 385 kg/m3 has been considered for timber elements.
CARPENTRY | HBS | 39
STATIC VALUES | LVL SHEAR geometry
LVL - LVL
LVL - LVL - LVL
LVL - timber
timber - LVL
t2 A L b d1
A
d1
L
b
A
RV,k
A
t2
RV,k
A
RV,k
A
RV,k
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[mm]
[kN]
[mm]
[kN]
[mm]
[kN]
5
6
40
24
-
-
-
-
-
-
-
-
-
45
24
-
-
-
-
-
-
-
-
-
50
24
-
-
-
-
-
-
-
-
-
60
30
-
-
-
-
-
-
-
27
1,35
70
35
33
1,80
-
-
-
33
1,69
35
1,47
80
40
40
1,80
-
-
-
40
1,69
40
1,47
90
45
45
1,80
-
-
-
45
1,69
45
1,47
100
50
50
1,80
-
-
-
50
1,69
50
1,47
120
60
60
1,80
-
-
-
60
1,69
70
1,47
40
35
-
-
-
-
-
-
-
-
-
50
35
-
-
-
-
-
-
-
-
-
60
30
-
-
-
-
-
-
-
-
-
70
40
-
-
-
-
-
-
-
-
-
80
40
-
-
-
-
-
-
-
35
1,96
90
50
45
2,56
-
-
-
45
2,41
40
2,09
100
50
50
2,56
-
-
-
50
2,41
50
2,09
110
60
50
2,56
-
-
-
50
2,41
50
2,09
120
60
60
2,56
-
-
-
60
2,41
60
2,09
130
60
70
2,56
-
-
-
70
2,41
70
2,09
140
75
65
2,56
-
-
-
65
2,41
65
2,09
150
75
75
2,56
-
-
-
75
2,41
75
2,09
160
75
85
2,56
45
70
5,12
85
2,41
85
2,09
180
75
105
2,56
55
75
5,12
105
2,41
105
2,09
200
75
125
2,56
60
85
5,12
125
2,41
125
2,09
220
75
145
2,56
70
85
5,12
145
2,41
145
2,09
240
75
165
2,56
75
95
5,12
165
2,41
165
2,09
260
75
185
2,56
75
115
5,12
185
2,41
185
2,09
280
75
205
2,56
75
135
5,12
205
2,41
205
2,09
300
75
225
2,56
75
155
5,12
225
2,41
225
2,09
NOTES: (1) The axial thread withdrawal resistance was calculated considering a 90°
angle between the grain and the connector and for a fixing length of b.
40 | HBS | CARPENTRY
(2) The axial resistance to head pull-through, with and without a washer, was
calculated using wood elements.
CHARACTERISTIC VALUES EN 1995:2014 TENSION thread withdrawal flat(1)
thread withdrawal edge(1)
head pull-through flat(2)
head pull-through with washer flat(2)
Rax,k
Rax,k
Rhead,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
1,74
1,16
1,94
-
1,74
1,16
1,94
-
1,74
1,16
1,94
-
2,18
1,45
1,94
-
2,54
1,69
1,94
-
2,90
1,94
1,94
-
3,99
2,66
1,94
-
3,63
2,42
1,94
-
4,36
2,90
1,94
-
3,05
2,03
2,79
7,74
3,05
2,03
2,79
7,74
2,61
1,74
2,79
7,74
3,48
2,32
2,79
7,74
3,48
2,32
2,79
7,74
4,36
2,90
2,79
7,74
4,36
2,90
2,79
7,74
5,23
3,48
2,79
7,74
5,23
3,48
2,79
7,74
5,23
3,48
2,79
7,74
6,53
4,36
2,79
7,74
6,53
4,36
2,79
7,74
6,53
4,36
2,79
7,74
6,53
4,36
2,79
7,74
6,53
4,36
2,79
7,74
6,53
4,36
2,79
7,74
6,53
4,36
2,79
7,74
6,53
4,36
2,79
7,74
6,53
4,36
2,79
7,74
6,53
4,36
2,79
7,74
GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:
Rk kmod Rd = γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
• For the calculation process, a mass density of ρ k = 480 kg/m3 has been considered for the softwood LVL elements and a mass density of ρk = 350 kg/m3 has been considered for timber elements. • Values were calculated considering the threaded part as being completely inserted into the wood. • Sizing and verification of the timber elements, panels and steel plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
CARPENTRY | HBS | 41
STATIC VALUES | LVL SHEAR geometry
LVL - LVL
LVL - LVL - LVL
LVL - timber
timber - LVL
t2 A L b d1
A
d1
L
b
A
RV,k
A
t2
RV,k
A
RV,k
A
RV,k
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[mm]
[kN]
[mm]
[kN]
[mm]
[kN]
8
10
80
52
-
-
-
-
-
-
-
-
-
100
52
-
-
-
-
-
-
-
40
2,89
120
60
60
4,01
-
-
-
60
3,77
60
3,30
140
60
80
4,01
-
-
-
80
3,77
80
3,30
160
80
80
4,01
-
-
-
80
3,77
80
3,30
180
80
100
4,01
-
-
-
100
3,77
100
3,30
200
80
120
4,01
65
75
8,03
120
3,77
120
3,30
220
80
140
4,01
75
75
8,03
140
3,77
140
3,30
240
80
160
4,01
80
85
8,03
160
3,77
160
3,30
260
80
180
4,01
80
105
8,03
180
3,77
180
3,30
280
80
200
4,01
80
125
8,03
200
3,77
200
3,30
300
100
200
4,01
100
105
8,03
200
3,77
200
3,30
320
100
220
4,01
100
125
8,03
220
3,77
220
3,30
340
100
240
4,01
100
145
8,03
240
3,77
240
3,30
360
100
260
4,01
100
165
8,03
260
3,77
260
3,30
380
100
280
4,01
100
185
8,03
280
3,77
280
3,30
400
100
300
4,01
120
165
8,03
300
3,77
300
3,30
440
100
340
4,01
120
205
8,03
340
3,77
340
3,30
480
100
380
4,01
120
245
8,03
380
3,77
380
3,30
520
100
420
4,01
120
285
8,03
420
3,77
420
3,30
80
52
-
-
-
-
-
-
-
-
-
100
52
-
-
-
-
-
-
-
-
-
120
60
-
-
-
-
-
-
-
45
4,08
140
60
-
-
-
-
-
-
-
60
4,69
160
80
75
5,93
-
-
-
75
5,58
80
4,84
180
80
100
5,93
-
-
-
100
5,58
100
4,84
200
80
120
5,93
-
-
-
120
5,58
120
4,84
220
80
140
5,93
-
-
-
140
5,58
140
4,84
240
80
160
5,93
80
85
11,87
160
5,58
160
4,84
260
80
180
5,93
80
105
11,87
180
5,58
180
4,84
280
80
200
5,93
80
125
11,87
200
5,58
200
4,84
300
100
200
5,93
100
105
11,87
200
5,58
200
4,84
320
100
220
5,93
100
125
11,87
220
5,58
220
4,84
340
100
240
5,93
100
145
11,87
240
5,58
240
4,84
360
100
260
5,93
100
165
11,87
260
5,58
260
4,84
380
100
280
5,93
120
145
11,87
280
5,58
280
4,84
400
100
300
5,93
120
165
11,87
300
5,58
300
4,84
42 | HBS | CARPENTRY
CHARACTERISTIC VALUES EN 1995:2014 TENSION thread withdrawal flat(1)
thread withdrawal edge(1)
head pull-through flat(2)
head pull-through with washer flat(2)
Rax,k
Rax,k
Rhead,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
6,04
4,03
4,07
12,10
6,04
4,03
4,07
12,10
6,97
4,65
4,07
12,10
6,97
4,65
4,07
12,10
9,29
6,19
4,07
12,10
9,29
6,19
4,07
12,10
9,29
6,19
4,07
12,10
9,29
6,19
4,07
12,10
9,29
6,19
4,07
12,10
9,29
6,19
4,07
12,10
9,29
6,19
4,07
12,10
11,61
7,74
4,07
12,10
11,61
7,74
4,07
12,10
11,61
7,74
4,07
12,10
11,61
7,74
4,07
12,10
11,61
7,74
4,07
12,10
11,61
7,74
4,07
12,10
11,61
7,74
4,07
12,10
11,61
7,74
4,07
12,10
11,61
7,74
4,07
12,10
7,55
5,03
6,45
17,42
7,55
5,03
6,45
17,42
8,71
5,81
6,45
17,42
8,71
5,81
6,45
17,42
11,61
7,74
6,45
17,42
11,61
7,74
6,45
17,42
11,61
7,74
6,45
17,42
11,61
7,74
6,45
17,42
11,61
7,74
6,45
17,42
11,61
7,74
6,45
17,42
11,61
7,74
6,45
17,42
14,52
9,68
6,45
17,42
14,52
9,68
6,45
17,42
14,52
9,68
6,45
17,42
14,52
9,68
6,45
17,42
14,52
9,68
6,45
17,42
14,52
9,68
6,45
17,42
CARPENTRY | HBS | 43
CALCULATION EXAMPLES: VALLEY JACK RAFTER JOINT
CONNECTION TIMBER-TO-TIMBER/SINGLE SHEAR 1
ELEMENT 1
ELEMENT 2
B1 = 120 mm
2
B2 = 160 mm
H1 = 160 mm
1
H2 = 240 mm
2
Slope 30% (16,7°)
Slope 21% (12,0°)
Glulam GL24h
Glulam GL24h
PROJECT DATA
SCREW SELECTION
CONNECTION GEOMETRY
Fv,Rd = 7,17 kN
HBS = 10x180 mm
t 1 = 60 mm
Service class = 1
Pre-drilling hole = no
α 1 = 73,3° (90° - 16,7°)
Washer = no
t2 = 120 mm
Load duration = short
(fixing length in element 2)
α 2 = 78,0° (90° - 12,0°)
SHEAR RESISTANCE CALCULATION (EN 1995:2014 e ETA-11/0030) My,k Rax,Rk Rax,Rk/4
d1 = 10,0 mm fh,1,k = 15,82 N/mm2 fh,2,k = 15,82 N/mm2 β = 1,00
= 35,8 Nm = min {resistance to thread withdrawal; resistance to head pull-through} = min {Rax,Rk ; Rhead,Rk} = 3,77 kN = 0,94 kN (cable effect)
fh,1,k t1 d
(a) = 9,49 kN
fh,2,k t2 d fh,1,k t1 d 1+β
Rv,Rk = min
1,05
β + 2β2 1 +
fh,1,k t1 d 2+β
f t d 1,05 h,1,k 2 1 + 2β 1,15
2β (1 + β)
t2 t1
+
2β (1 + β) + 2β2 (1 + β) +
t2
2
t1
+ β3
t2 ta
2
4β (2 + β) My,RK fh,1,k d t12 4β (1 + 2β ) My,RK
2My,RK fh,1,k d +
fh,1,k d t22
t -β 1+ 2 t1 -β +
+
Rax,Rk 4
Rax,Rk
-β +
(b) = 18,99 kN (c) = 7,39 kN
4 Rax,Rk 4
Rax,Rk
(d) = 4,87 kN (e) = 7,90 kN (f) = 4,81 kN
4
Rv,Rk = 4,81 kN
Rd =
Rk kmod γM
EN 1995:2014 kmod = 0,9 γM = 1,3 Rv,Rd = 3,33 kN
Italy - NTC 2018 kmod = 0,9 γM = 1,5 Rv,Rd = 2,89 kN
Minimum number of screws Fv,Rd/Rv,Rd = 2,15
Minimum number of screws Fv,Rd/Rv,Rd = 2,48
3 screws are hypothesized nef,SHEAR 3 (screws perpendicular to the grain) nef,TENSION max( 30,9;0,9·3)=2,70 Recalculating the shear resistance, for the cable effect, a tensile strength for the individual screws is assumed at: Rax,Rk = 3,77 · 2,70/3 = 3,39 kN (head pull-through) Rax,Rk /4 = 0,85 kN (cable effect) Individual screw shear resistance: Rv,Rk = 4,72 kN
Rv,Rd ≥ Fv,Rd
44 | HBS | CARPENTRY
EN 1995:2014 Rv,Rd = 3,27 kN
Italy - NTC 2018 Rv,Rd = 2,83 kN
Connection shear resistance: Rv,Rd = 3,27 x 3 = 9,80 kN > 7,17 kN OK
Connection shear resistance: Rv,Rd = 2,83 x 3 = 8,49 kN > 7,17 kN OK
CALCULATION EXAMPLES: VALLEY JACK RAFTER JOINT WITH MYPROJECT
CONNECTION TIMBER-TO-TIMBER/SINGLE SHEAR ELEMENT 1
1
B1 = 120 mm H1 = 160 mm
2
ELEMENT 2 B2 = 160 mm 1
2
H2 = 240 mm
Slope 30% (16,7°)
Slope 21% (12,0°)
Glulam GL24h
Glulam GL24h
PROJECT DATA
SCREW SELECTION
CONNECTION GEOMETRY
Fv,Rd = 7,17 kN
HBS = 10x180 mm
t 1 = 60 mm
Service class = 1
Pre-drilling hole = no
α 1 = 73,3° (90° - 16,7°)
Load duration = short
Washer = no
t2 = 120 mm (fixing length in element 2) α 2 = 78,0° (90° - 12,0°)
SHEAR RESISTANCE CALCULATION WITH MYPROJECT SOFTWARE (EN 1995:2014 e ETA-11/0030)
CALCULATION REPORT
CARPENTRY | HBS | 45
HBS EVO
1002
CERTIFIED
AC233 | AC257 ESR-4645
C4 COATING
BIT INCLUDED
COATING
ETA-11/0030
COUNTERSUNK SCREW C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.
AGGRESSIVE WOODS Ideal for applications with woods containing tannin or treated with impregnating agents or other chemical processes.
STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°). Asymmetric “umbrella” threading for better timber pull-through.
SUPERIOR STRENGTH Steel with superb yield and failure strength (fy,k = 1000 N/mm2). Very high torsional strength ftor,k for safer screwing.
CHARACTERISTICS FOCUS
corrosiveness class C4
HEAD
countersunk with under-head ribs
DIAMETER
from 5,0 to 8,0 mm
LENGTH
from 80 to 320 mm
MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.
FIELDS OF USE • timber based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.
46 | HBS EVO | CARPENTRY
SERVICE CLASS 3 Certified for use in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions. Ideal for fastening timber framed panels and lattice beams (Rafter, Truss).
HARDWOOD FRAME Values also tested, certified and calculated for high density woods. Ideal for fastening aggressive woods containing tannin.
CARPENTRY | HBS EVO | 47
Fastening sill beams in frame structures.
Fastening outdoor fencing.
GEOMETRY AND MECHANICAL CHARACTERISTICS
B
S
H
dK
X X
A
d2 d1
90° t1
dS
b L
Nominal diameter
d1
[mm]
5
6
8
Head diameter
dK
[mm]
10,00
12,00
14,50
Tip diameter
d2
[mm]
3,40
3,95
5,40
Shank diameter
dS
[mm]
3,65
4,30
5,80
Head thickness
t1
[mm]
3,10
4,50
4,50
Pre-drilling hole diameter(1)
dV
[mm]
3,0
4,0
5,0
My,k
[Nm]
5,4
9,5
20,1
fax,k
[N/mm2]
11,7
11,7
11,7
Associated density
ρa
[kg/m3]
350
350
350
Characteristic head-pull-through parameter(2)
fhead,k
[N/mm2]
10,5
10,5
10,5
Associated density
ρa
[kg/m3]
350
350
350
Characteristic tensile strength
ftens,k
[kN]
7,9
11,3
20,1
Characteristic yield moment Characteristic withdrawal-resistance parameter(2)
(1)
Pre-drilling valid for softwood. Valid for softwood - maximum density 440 kg/m3. For applications with different materials or with high density please see ETA-11/0030. (2)
48 | HBS EVO | CARPENTRY
CODES AND DIMENSIONS d1
CODE
L
[mm] [in] 5 0.20 TX 25
6 0.24 TX 30
b
A
[mm] [mm]
pcs
d1
[in]
CODE
L
[mm] [in]
b
[mm]
[in]
[mm]
[in]
HBSEVO580
80
3 1/8
40
40
1 9/16 100
HBSEVO8100
100
4
HBSEVO590
90
3 1/2
45
45
1 3/4
100
HBSEVO8120
120 4 3/4
HBSEVO5100
100
4
50
50 1 15/16 100
HBSEVO8140
140
HBSEVO680
80
3 1/8
40
40
HBSEVO8160
HBSEVO6100
100
4
50
50 1 15/16 100
HBSEVO6120
120 4 3/4
60
60
2 3/8
HBSEVO6140
140
5 1/2
75
65
2 9/16 100
HBSEVO8220
HBSEVO6160
160 6 1/4
75
85
3 3/8
100
HBSEVO8240
4 1/8
1 9/16 100 8 0.32 TX 40
100
[mm] [mm]
pcs [in]
52
48
1 7/8
60
60
2 3/8 100
5 1/2
60
80
3 1/8
100
160 6 1/4
80
80
3 1/8
100
100
4
100
HBSEVO8180
180 7 1/8
80
100
HBSEVO8200
200
80
120 4 3/4 100
220 8 5/8
80
140
5 1/2
100
240 9 1/2
80
160 6 1/4
100
80
200
100
8
HBSEVO6180
180 7 1/8
75
105
100
HBSEVO8280
280
HBSEVO6200
200
75
125 4 15/16 100
HBSEVO8320
320 12 5/8 100
8
A
11
8
220 9 1/2
100
MINIMUM DISTANCES FOR SHEAR LOADS
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
5∙d 3∙d 12∙d 7∙d 3∙d 3∙d
5 25 15 60 35 15 15
6 30 18 72 42 18 18
SCREWS INSERTED WITH PRE-DRILLING HOLE
8 40 24 96 56 24 24
4∙d 4∙d 7∙d 7∙d 7∙d 3∙d
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
12∙d 5∙d 15∙d 10∙d 5∙d 5∙d
5 60 25 75 50 25 25
6 72 30 90 60 30 30
5 20 20 35 35 35 15
6 24 24 42 42 42 18
8 32 32 56 56 56 24
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
8 96 40 120 80 40 40
5∙d 5∙d 10∙d 10∙d 10∙d 5∙d
5 25 25 50 50 50 25
6 30 30 60 60 60 30
8 40 40 80 80 80 40
d = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: • The minimum distances are in accordance with the EN 1995:2014 standard, according to ETA-11/0030, considering a timber characteristic density of ρk ≤ 420 kg/m3. • In the case of joints with elements in Douglas fir, the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections(a1 , a2) can be multiplied by a coefficient of 0,85.
CARPENTRY | HBS EVO | 49
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
timber-to-timber
panel-to-timber(1)
TENSION
thin steel-timber plate(2)
thick steel-timber plate(3)
thread withdrawal(4)
head pull-through (5)
Splate
A L b d1
A
RV,k
RV,k
RV,k
RV,k
Rax,k
Rhead,k
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
[kN]
[kN]
80
40
40
1,54
2,42
2,71
1,21
90
45
45
1,54
2,51
3,05
1,21
1,54 2,18
1,22 1,67 1,67
100
50
50
2,18
120
60
60
2,18
140
75
65
2,18
160
75
85
2,18
180
75
105
2,18
200
75
125
2,18
1,67
100
52
48
3,44
2,64
1,67 1,67 1,67 1,67
1,91 2,00 2,08
2,59
3,38
1,21
2,55
3,27
3,25
1,75
2,76
3,48
4,06
1,75
3,68
4,87
1,75
3,99
6,09
1,75
2,96 3,26 3,26
SPLATE = 6,0 mm
50 40
SPLATE = 3,0 mm
50 40
3,99
6,09
1,75
3,99
6,09
1,75
3,26
3,99
6,09
1,75
4,21
5,37
5,63
2,55
3,26
60
60
3,44
2,64
4,43
5,59
6,50
2,55
60
80
3,44
2,64
4,43
5,59
6,50
2,55
160
80
80
3,44
180
80
100
3,44
200
80
120
3,44
220
80
140
3,44
240
80
160
3,44
280
80
200
320
100
220
2,64 2,64 2,64 2,64
4,97 4,97 4,97 4,97
SPLATE = 8,0 mm
120 140
SPLATE = 4,0 mm
8
1,22
80
SPAN = 18 mm
6
1,22
100
SPAN = 22 mm
5
SPLATE = 5,0 mm
b
[mm]
SPLATE = 2,5 mm
L
[mm]
SPAN = 15 mm
d1
6,13
8,66
2,55
6,13
8,66
2,55
6,13
8,66
2,55
6,13
8,66
2,55
6,13
8,66
2,55
2,64
4,97
3,44
2,64
4,97
6,13
8,66
2,55
3,44
2,64
5,51
6,67
10,83
2,55
NOTES:
GENERAL PRINCIPLES:
(1) The characteristic shear resistances are calculated considering an OSB3 or
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN. (2) The shear resistance characteristics are calculated considering the case of
a thin plate (SPLATE ≤ 0,5 d1). (3) The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1). (4) The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b. (5) The axial resistance to head pull-through, with and without a washer, was
calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Sizing and verification of the timber elements, panels and steel plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
50 | HBS EVO | CARPENTRY
HBS COIL
ETA-11/0030
HBS BOUND SCREWS QUICK, IN SERIES USE Quick and precise installation. Fast and safe execution thanks to the special binding.
HBS 6,0 mm Also available in a diameter of 6.0 mm, ideal for quick wall-to-wall fastening in CLT structures.
CHARACTERISTICS FOCUS
HBS bound screw
HEAD
countersunk with under-head ribs
DIAMETER
from 4,0 to 6,0 mm
LENGTH
from 30 to 80 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE • timber based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.
52 | HBS COIL | CARPENTRY
GEOMETRY
B
S
H
dK
X X
A
d2 d1
90° dS
t1
b L
Nominal diameter
d1
[mm]
4
4,5
5
6
Head diameter
dK
[mm]
8,00
9,00
10,00
12,00
Tip diameter
d2
[mm]
2,55
2,80
3,40
3,95
Shank diameter
dS
[mm]
2,75
3,15
3,65
4,30
Head thickness
t1
[mm]
2,80
2,80
3,10
4,50
dV
[mm]
2,5
2,5
3,0
4,0
Pre-drilling hole (1)
diameter(1)
Pre-drilling valid for softwood.
CODES AND DIMENSIONS d1
CODE
L
[mm] [in] 4 0.16 TX 20 4,5 0.18 TX 20
b
A
[mm]
[in]
HZB430
30
1 3/16
16
14
9/16
3000
HZB440
40
1 9/16
24
16
5/8
2000
HZB450
50
1 15/16
24
26
1 1/32
1500
HZB4550
50
[mm] [mm]
pcs
1 15/16
24
26
d1
[in]
CODE
[mm] [in]
1 1/32
5 0.20 TX 25 6 0.24 TX 30
1500
L
b
A
[mm] [mm]
pcs
[mm]
[in]
HZB560
60
2 3/8
30
30
1 3/16
[in] 1250
HZB570
70
2 3/4
35
35
1 3/8
625
HZB580
80
3 1/8
40
40
1 9/16
625
HZB670
70
2 3/4
40
30
1 3/16
625
HZB680
80
3 1/8
40
40
1 9/16
625
ADDITIONAL PRODUCTS CODE
description
d1
lengths
[mm]
[mm]
pcs
HH3373
automatic loader for cordless screwdriver A 18 M BL
4,0
25-50
1
HH3372
automatic loader for cordless screwdriver A 18 M BL
4,5 - 6,0
40-80
1
HH3352
powered screwdriver
4,0
25-50
1
HH3338
powered screwdriver
4,5 - 6,0
40-80
1
HH14411591
extension
-
-
1
HZB6PLATE
adapter plate for HZB Ø6
-
-
1
HH14000621
TX30 M6 bit for HZB Ø6
-
-
1
HH3372
HH3338
Further information on page 356-358.
Ø6 mm HBS COIL APPLICATION The adapter plates for use of 4,0, 4,5 and 5,0 diameter HBS COIL screws are already supplied with the respective screwdriver loaders. To use HBS COIL screws with a diameter of 6.0, the adapter plates supplied must be replaced with the adapter plate HZB6PLATE. For HBS COIL screws diameter 6,0 it is also necessary to use the appropriate TX30 bit (code HH14000621). We recommend using the extension HH14411591 for an easier installation of the screws on horizontal planes.
HH14411591
HZB6PLATE
HH14000621
CARPENTRY | HBS COIL | 53
HBS SOFTWOOD
EN 14592
COUNTERSUNK SCREW HBS S Special self-perforating tip with serrated thread (SAW tip) that cuts the timber fibres, facilitating initial grip and subsequent penetration.
LONGER THREAD Greater thread length (60%) to ensure superb joint closure and great versatility.
CHROMIUM (VI) FREE Total absence of hexavalent chromium. Compliance with the strictest regulations governing chemical substances (SVHC). REACH information available.
CHARACTERISTICS FOCUS
long thread
HEAD
countersunk with under-head ribs
DIAMETER
from 5,0 to 8,0 mm
LENGTH
from 50 to 400 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE • timber based panels • fibre board and MDF panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL Service classes 1 and 2.
54 | HBS SOFTWOOD | CARPENTRY
GEOMETRY AND MECHANICAL CHARACTERISTICS A
H
d2 d1
90°
X
BS
X X
S
dK
b
dS
t1
L Nominal diameter
d1
[mm]
5
6
8
Head diameter
dK
[mm]
10,00
12,00
14,50
Tip diameter
d2
[mm]
3,40
3,95
5,40
Shank diameter
dS
[mm]
3,65
4,30
5,80
Head thickness
t1
[mm]
3,10
4,50
4,50
Pre-drilling hole diameter Characteristic yield moment Characteristic withdrawal-resistance parameter Associated density Characteristic head-pull-through parameter Associated density Characteristic tensile strength
dV
[mm]
3,0
4,0
5,0
My,k
[Nm]
6,0
10,0
20,5
fax,k
[N/mm2]
12,0
12,0
12,0
ρa
[kg/m3]
350
350
350
fhead,k
[kN]
13,0
13,0
13,0
ρa
[kg/m3]
350
350
350
ftens,k
[kN]
8,0
12,0
19,0
CODES AND DIMENSIONS d1
CODE
[mm] [in]
5 0.20 TX 25
6 0.24 TX 30
HBSS550 HBSS560 HBSS570 HBSS580 HBSS5100 HBSS5120 HBSS660 HBSS670 HBSS680 HBSS690 HBSS6100 HBSS6120 HBSS6140 HBSS6160 HBSS6180 HBSS6200 HBSS6220 HBSS6240 HBSS6260
L [mm] 50 60 70 80 100 120 60 70 80 90 100 120 140 160 180 200 220 240 260
[in] 1 15/16 2 3/8 2 3/4 3 1/8 4 4 3/4 2 3/8 2 3/4 3 1/8 3 1/2 4 4 3/4 5 1/2 6 1/4 7 1/8 8 8 5/8 9 1/2 10 1/4
b
A
pcs
[mm] [mm] [in] 30 20 13/16 200 35 25 1 200 40 30 1 3/16 200 50 30 1 3/16 100 60 40 1 9/16 100 60 60 2 3/8 100 35 25 1 100 40 30 1 3/16 100 50 30 1 3/16 100 55 35 1 3/8 100 60 40 1 9/16 100 75 45 1 3/4 100 80 60 2 3/8 100 90 70 2 3/4 100 100 80 3 1/8 100 100 100 4 100 100 120 4 3/4 100 100 140 5 1/2 100 100 160 6 1/4 100
d1
CODE
[mm] [in] 6 HBSS6280 0.24 TX 30 HBSS6300 HBSS880 HBSS8100 HBSS8120 HBSS8140 HBSS8160 HBSS8180 HBSS8200 HBSS8220 8 0.32 HBSS8240 TX 40 HBSS8260 HBSS8280 HBSS8300 HBSS8320 HBSS8340 HBSS8360 HBSS8380 HBSS8400
L
b
[mm]
[in]
280
11
A
[mm] [mm]
pcs [in]
100
180
7 1/8
100
300 11 3/4 100
200
8
100
80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
28 40 40 60 70 90 100 120 140 160 180 200 220 240 260 280 300
1 1/8 1 9/16 1 9/16 2 3/8 2 3/4 3 1/2 4 4 3/4 5 1/2 6 1/4 7 1/8 8 8 5/8 9 1/2 10 1/4 11 11 3/4
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
3 1/8 4 4 3/4 5 1/2 6 1/4 7 1/8 8 8 5/8 9 1/2 10 1/4 11 11 3/4 12 5/8 13 3/8 14 1/4 15 15 3/4
52 60 80 80 90 90 100 100 100 100 100 100 100 100 100 100 100
TIMBER ROOF The screws’ fast initial grip makes it possible to create secure structural connections in all assembly conditions.
CARPENTRY | HBS SOFTWOOD | 55
MINIMUM DISTANCES FOR SHEAR LOADS
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE d1
[mm]
5
6
8
a1
[mm]
5∙d
a2
[mm]
3∙d
25
30
40
15
a3,t
[mm]
12∙d
60
18 72
a3,c
[mm]
7∙d
35
a4,t
[mm]
3∙d
15
42 18
a4,c
[mm]
3∙d
15
18
d1
[mm]
a1
[mm]
12∙d
60
72
96
a2
[mm]
5∙d
25
30
40
a3,t
[mm]
15∙d
75
90
a3,c
[mm]
10∙d
50
a4,t
[mm]
5∙d
25
a4,c
[mm]
5∙d
25
SCREWS INSERTED WITH PRE-DRILLING HOLE 5
6
8
4∙d
20
24
32
24
4∙d
20
24
32
96
7∙d
35
42
56
56
7∙d
35
42
56
24
7∙d
35
42
56
24
3∙d
15
18
24
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5
6
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
8
5
6
8
5∙d
25
30
40
5∙d
25
30
40
120
10∙d
50
60
80
60
80
10∙d
50
60
80
30
40
10∙d
50
60
80
30
40
5∙d
25
30
40
d = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F
unload edge 180° < α < 360°
α
F α
α a3,t
stressed edge 0° < α < 180°
F α
a4,t
a4,c
a3,c
NOTES:
GENERAL PRINCIPLES:
• The minimum distances are compliant with EN 1995:2014, considering a timber characteristic density of ρ k ≤ 420 kg/m3 and a diameter of d = nominal screw diameter.
• Characteristic values according to EN 1995:2014. • Design values can be obtained from characteristic values as follows:
• T he minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections(a1 , a2) can be multiplied by a coefficient of 0,85.
F
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
• F or the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. • Sizing and verification of the timber elements, panels and steel plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
56 | HBS SOFTWOOD | CARPENTRY
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
timber-to-timber
panel-to-timber(1)
TENSION
thin steel-timber plate(2)
thick steel-timber plate(3)
thread withdrawal(4)
head pull-through (5)
Rhead,k
Splate
A L b d1
A
RV,k
RV,k
RV,k
RV,k
Rax,k
[mm]
[kN]
[kN]
[kN]
[kN]
[kN]
[kN]
50 60 70 80 100 120 60 70 80 90 100 120 140 160 180 200 220 240 260 280 300 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
30 35 40 50 60 60 35 40 50 55 60 75 80 90 100 100 100 100 100 100 100 52 60 80 80 90 90 100 100 100 100 100 100 100 100 100 100 100
20 25 30 30 40 60 25 30 30 35 40 45 60 70 80 100 120 140 160 180 200 28 40 40 60 70 90 100 120 140 160 180 200 220 240 260 280 300
1,18 1,27 1,37 1,37 1,46 1,46 1,62 1,75 1,75 1,86 1,98 2,03 2,03 2,03 2,03 2,03 2,03 2,03 2,03 2,03 2,03 2,46 2,75 2,75 3,16 3,16 3,16 3,16 3,16 3,16 3,16 3,16 3,16 3,16 3,16 3,16 3,16 3,16
1,94 2,27 2,59 3,24 3,89 3,89 2,72 3,11 3,89 4,27 4,66 5,83 6,22 6,99 7,77 7,77 7,77 7,77 7,77 7,77 7,77 5,39 6,22 8,29 8,29 9,32 9,32 10,36 10,36 10,36 10,36 10,36 10,36 10,36 10,36 10,36 10,36 10,36
1,40 1,40 1,40 1,40 1,40 1,40 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,95 2,95 2,95 2,95 2,95 2,95 2,95 2,95 2,95 2,95 2,95 2,95 2,95 2,95 2,95 2,95 2,95
SPLATE = 6 mm
1,48 1,68 1,76 1,92 2,08 2,08 2,00 2,30 2,49 2,59 2,69 2,98 3,05 3,05 3,05 3,05 3,05 3,05 3,05 3,05 3,05 3,29 3,97 4,49 4,49 4,75 4,75 4,84 4,84 4,84 4,84 4,84 4,84 4,84 4,84 4,84 4,84 4,84
SPLATE = 8 mm
SPLATE = 3 mm SPLATE = 4 mm
8
SPAN = 18 mm
6
SPAN = 18 mm
5
1,44 1,44 1,44 1,44 1,44 1,44 1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65
SPLATE = 5 mm
b [mm]
SPLATE = 2,5 mm
L [mm]
SPAN = 18 mm
d1 [mm]
2,06 2,14 2,22 2,38 2,55 2,55 2,83 2,93 3,12 3,22 3,32 3,61 3,71 3,90 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,77 4,98 5,50 5,50 5,75 5,75 6,01 6,01 6,01 6,01 6,01 6,01 6,01 6,01 6,01 6,01 6,01
NOTES: (1) The characteristic shear strength are calculated considering an OSB
(4) The axial thread withdrawal resistance was calculated considering a 90° an-
panel or particle board with a SPAN thickness and timber density of ρk = 500 kg/m3.
(5) The axial resistance to head pull-through was calculated using timber ele-
(2) The shear resistance characteristics are calculated considering the case of
a thin plate (SPLATE ≤ 0,5 d1). (3) The shear resistance characteristics are calculated considering the case of
gle between the grain and the connector and for a fixing length of b. ments. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
a thick plate (SPLATE ≥ d1).
CARPENTRY | HBS SOFTWOOD | 57
HBS SOFTWOOD BULK
EN 14592
COUNTERSUNK SCREW HBS S BULK Large package (BULK) for mass and serial use in factory or construction yard. Special self-perforating tip with serrated thread (SAW tip).
LONGER THREAD Greater thread length (60%) to ensure superb joint closure and great versatility.
CHROMIUM (VI) FREE Total absence of hexavalent chromium. Compliance with the strictest regulations governing chemical substances (SVHC). REACH information available.
CHARACTERISTICS FOCUS
maxi package
HEAD
countersunk with under-head ribs
DIAMETER
5,0 and 6,0 mm
LENGTH
from 60 to 160 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE • timber based panels • fibre board and MDF panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL Service classes 1 and 2.
58 | HBS SOFTWOOD BULK | CARPENTRY
GEOMETRY AND MECHANICAL CHARACTERISTICS A
H
BS
X X
S
X
dK
d2 d1
90° dS
t1
b L
Nominal diameter
d1
[mm]
5
6
Head diameter
dK
[mm]
10,00
12,00
Tip diameter
d2
[mm]
3,40
3,95
Shank diameter
dS
[mm]
3,65
4,30
Head thickness
t1
[mm]
3,10
4,50
Pre-drilling hole diameter
dV
[mm]
3,0
4,0
My,k
[Nm]
6,0
10,0
fax,k
[N/mm2]
12,0
12,0
Associated density
ρa
[kg/m3]
350
350
Characteristic head-pull-through parameter
fhead,k
[kN]
13,0
13,0
Associated density
ρa
[kg/m3]
350
350
Characteristic tensile strength
ftens,k
[kN]
8,0
12,0
Characteristic yield moment Characteristic withdrawal-resistance parameter
CODES AND DIMENSIONS d1
CODE
[mm] [in] 5 0.20 TX 25
L [mm]
b
A
[in] [mm] [mm]
pcs [in]
[mm] [in]
HBSSBULK560
60
2 3/8
35
25
HBSSBULK570
70
2 3/4
40
30
1 3/16 2000
HBSSBULK580
80
3 1/8
50
30
1 3/16 1800
4
60
40
1 9/16 1000
HBSSBULK5100 100
1
d1
CODE
L [mm]
HBSSBULK6100 100
2500 6 0.24 TX 30
b
A
[in] [mm] [mm] 4
60
40
pcs [in]
1 9/16 800
HBSSBULK6120 120 4 3/4
75
45
1 3/4
600
HBSSBULK6140 140
5 1/2
80
60
2 3/8
600
HBSSBULK6160 160 6 1/4
90
70
2 3/4
500
TIMBER FRAME Ideal for serial fastening of factory-framed panels. Packaging in large quantities prevents material wastes and speeds up production.
CARPENTRY | HBS SOFTWOOD BULK | 59
HBS HARDWOOD
BIT INCLUDED
ETA-11/0030
COUNTERSUNK SCREW FOR HARDWOODS HARDWOOD CERTIFICATION Special tip with diamond geometry and notched, serrated thread. ETA-11/0030 certification for use with high density timber without any pre-drill. Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°).
LARGER DIAMETER Inner tip diameter increased to ensure tightening in the highest density woods. Excellent twisting moment values. HBS H Ø6 mm, comparable to a diameter of 7 mm; HBS H Ø8 mm, comparable to a diameter of 9 mm.
60° COUNTERSUNK HEAD Concealed head, 60°, for effective, minimally invasive insertion, even in high density woods.
CHARACTERISTICS FOCUS
hardwood screw
HEAD
60° taper with under-head ribs
DIAMETER
7,0 and 9,0 mm
LENGTH
from 80 to 240 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE • • • • •
timber based panels solid timber and glulam CLT, LVL high density woods beech, oak, cypress, ash, eucalyptus, bamboo Service classes 1 and 2.
60 | HBS HARDWOOD | CARPENTRY
HARDWOOD PERFORMANCE Geometry developed for high performance and use without pre-drilling on structural woods such as beech, oak, cypress, ash, eucalyptus, bamboo.
BEECH LVL Values also tested, certified and calculated for high density woods such as beechwood Microllam® LVL. Certified for use without pre-drilling, for densities of up to 800 kg/m3.
CARPENTRY | HBS HARDWOOD | 61
GEOMETRY AND MECHANICAL CHARACTERISTICS
BS
H
H
dK
X X
A
d2 d1
60° dS
t1
b L
Nominal diameter eq.
d1 eq.
[mm]
7
9
Nominal diameter
d1
[mm]
6
8
Head diameter
dK
[mm]
12,00
14,50
Tip diameter
d2
[mm]
4,50
5,90
Shank diameter
dS
[mm]
4,80
6,30
Pre-drilling hole diameter(1)
dV
[mm]
4,0
6,0
My,k
[Nm]
15,8
33,4
fax,k
[N/mm2]
42,0
42,0
ρa
[kg/m3]
730
730
Characteristic head-pull-through parameter(2)
fhead,k
[N/mm2]
50,0
50,0
Associated density
ρa
[kg/m3]
730
730
Characteristic withdrawalresistance parameter(3)
fax,k
[N/mm2]
22,0
22,0
Associated density
ρa
[kg/m3]
530
530
Characteristic head-pull-through parameter(3)
fhead,k
[N/mm2]
28,0
24,0
Associated density
ρa
[kg/m3]
530
530
Characteristic tensile strength
ftens,k
[kN]
18,0
32,0
Characteristic yield moment Characteristic withdrawalresistance parameter(2) Associated density
(1)
Pre-drilling valid for hardwood and beech LVL. Valid for beech or FST LVL - maximum density 750 kg/m3. (3) Valid for hardwood (oak, beech) - maximum density 590 kg/m3 . For applications with different materials please see ETA-11/0030. (2)
CODES AND DIMENSIONS d1 eq.
CODE
[mm] [in]
7 0.28 TX 30
d1
L
b
A
[mm] [in] [mm] [in] [mm][mm]
pcs [in]
d1 eq.
CODE
[mm] [in]
d1
L
b
A
[mm] [in] [mm] [in] [mm][mm]
pcs [in]
HBSH780
6
0.24 80 3 1/8 50
30
1 3/16 100
HBSH9120
8
0.32 120 4 3/4 70
50 1 15/16 100
HBSH7100
6
0.24 100
40
1 9/16 100
HBSH9140
8
0.32 140 5 1/2 80
60
2 3/8
100
HBSH7120
6
0.24 120 4 3/4 70
50 1 15/16 100
HBSH9160
8
0.32 160 6 1/4 90
70
2 3/4
100
HBSH7140
6
0.24 140 5 1/2 80
60
2 3/8 100
HBSH9180
8
0.32 180 7 1/8 100
80
3 1/8
100
HBSH7160
6
0.24 160 6 1/4 90
70
2 3/4 100
HBSH9200
8
0.32 200
4
100
4
60
d1 eq. = nominal diameter equivalent to a screw with the same dS NOTES: upon request, EVO version is available.
62 | HBS HARDWOOD | CARPENTRY
9 0.36 TX 40
8
100 100
HBSH9220
8
0.32 220 8 5/8 100 120
4 3/4
100
HBSH9240
8
0.32 240 9 1/2 100 140
5 1/2
100
MINIMUM DISTANCES FOR SHEAR LOADS
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE
SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 eq.
[mm]
7
9
7
9
d1
[mm]
6
8
6
8
a1
[mm]
5∙d1
30
40
4∙d1
24
32
a2
[mm]
3∙d1
18
24
4∙d1
24
32
a3,t
[mm]
12∙d1
72
96
7∙d1
42
56
a3,c
[mm]
7∙d1
42
56
7∙d1
42
56
a4,t
[mm]
3∙d1
18
24
7∙d1
42
56
a4,c
[mm]
3∙d1
18
24
3∙d1
18
24
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 eq.
[mm]
7
9
7
9
d1
[mm]
6
8
6
8
90
120
42
56
a1
[mm]
a2
[mm]
7∙d1
42
56
7∙d1
42
56
a3,t
[mm]
20∙d1
120
160
15∙d1
90
120
a3,c
[mm]
15∙d1
90
120
15∙d1
90
120
a4,t
[mm]
7∙d1
42
56
12∙d1
72
96
a4,c
[mm]
7∙d1
42
56
7∙d1
42
56
15∙d1
7∙d1
d1 = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: • The minimum distances are compliant with EN 1995:2014, according to ETA-11/0030, considering a timber characteristic density of ρk > 420 kg/m3 and calculation diameter of d = nominal screw diameter.
• The minimum spacing for all panel-to-timber connections(a1 , a2) can be multiplied by a coefficient of 0,85.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
CARPENTRY | HBS HARDWOOD | 63
STATIC VALUES | HARDWOOD
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
timber-to-timber
panel-to-timber(1)
TENSION
thin steel-timber plate(2)
thick steel-timber plate(3)
thread withdrawal(4)
head pull-through (5)
Splate
Splate A L b d1
A
RV,k
RV,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
5,33
6,80
4,15
5,67
8,16
4,15
6,01
9,52
4,15
6,35
10,88
4,15
6
80
50
30
3,21
6
100
60
40
3,61
6
120
70
50
3,61
6
140
80
60
3,61
1,71 1,71 1,71 1,71
4,61 4,95 5,14
6
160
90
70
3,61
6,69
12,24
4,15
8
120
70
50
5,35
2,39
7,31
9,02
12,69
5,20
8
140
80
60
5,43
2,39
7,76
9,47
14,50
5,20
9,92
16,32
5,20
10,38
18,13
5,20
8
160
90
70
5,43
8
180
100
80
5,43
8
200
100
100
5,43
8
220
100
120
5,43
8
240
100
140
5,43
1,71
4,27
2,39 2,39 2,39 2,39
5,14
8,21 8,27 8,27 8,27
2,39
SPLATE = 8 mm
9
RV,k [kN]
SPLATE = 4 mm
7
RV,k [kN]
SPLATE = 6 mm
b
SPLATE = 3 mm
L
SPAN = 12 mm
d1
[mm] [mm] [mm] [mm] [mm]
SPAN = 15 mm
d1 eq.
8,27
10,38
18,13
5,20
10,38
18,13
5,20
10,38
18,13
5,20
NOTES:
GENERAL PRINCIPLES:
(1) The characteristic shear resistances are calculated considering an OSB3 or
• C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN. (2) The shear resistance characteristics are calculated considering the case of
• Design values can be obtained from characteristic values as follows:
a thin plate (SPLATE ≤ 0,5 d1). (3) The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1). (4) The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b. (5) The axial resistance to head pull-through was calculated using timber ele-
ments. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a mass density equal to ρk = 550 kg/m3 has been considered for hardwood (oak) elements. • Values were calculated considering the threaded part as being completely inserted into the wood. • Sizing and verification of the timber elements, panels and steel plates must be done separately. • The connector characteristic strength values are calculated for screws inserted without pre-drilling hole.
64 | HBS HARDWOOD | CARPENTRY
STATIC VALUES | BEECH LVL
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
LVL - LVL
TENSION(3)
thin steel-LVL plate(1)
thick steel-LVL plate(2)
thread withdrawal(4)
steel tension
head pull-through(5)
A L b
d1
b
A
RV,k
Rax,k
Rtens,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
6
80
50
30
5,19
6
100
60
40
5,19
6
120
70
50
5,19
6
140
80
60
5,19
6,54 6,77 6,77 6,77
12,60
7,20
15,12
7,20
9,20
17,64
9,29
20,16
18,00
7,20 7,20
6
160
90
70
5,19
9,29
22,68
7,20
120
70
50
8,19
11,13
13,75
23,52
10,51
8
140
80
60
8,19
11,13
14,59
26,88
10,51
8
160
90
70
8,19
8
180
100
80
8,19
8
200
100
100
8,19
8
220
100
120
8,19
8
240
100
140
8,19
6,77
7,94 8,57
8
SPLATE = 8 mm
9
RV,k [kN]
SPLATE = 4 mm
7
RV,k [kN]
SPLATE = 6 mm
L
[mm] [mm] [mm] [mm] [mm]
SPLATE = 3 mm
d1 eq. d1
11,13 11,13 11,13 11,13 11,13
15,43
30,24
15,74
33,60
10,51 32,00
10,51
15,74
33,60
10,51
15,74
33,60
10,51
15,74
33,60
10,51
NOTES:
GENERAL PRINCIPLES:
(1) The shear resistance characteristics are calculated considering the case of
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
a thin plate (SPLATE ≤ 0,5 d1). (2) The shear resistance characteristics are calculated considering the case of
• Design values can be obtained from characteristic values as follows:
a thick plate (SPLATE ≥ d1). (3) The tensile design strength of the connector is the lower between the tim-
ber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
(4) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b. (5) The axial resistance to head pull-through was calculated using LVL beech
elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a mass density equal to ρk = 730 kg/m3 has been considered for LVL beech elements. • Values were calculated considering the threaded part as being completely inserted into the wood. • Sizing and verification of the timber elements, panels and steel plates must be done separately. • The characteristic shear strength are calculated for screws inserted without pre-drilling hole.
CARPENTRY | HBS HARDWOOD | 65
TBS
AC233 ESR-4645
BIT INCLUDED
FLANGE HEAD SCREW INTEGRATED WASHER The flange head serves as washer and ensures high tensile strength. Ideal in the presence of wind or variations in timber dimensions.
STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°). Asymmetric “umbrella” threading for better timber pull-through.
SUPERIOR STRENGTH Steel with superb yield and failure strength (fy,k = 1000 N/mm2). Very high torsional strength ftor,k for safer screwing.
DUCTILITY Bending angle 20° greater than standard, certified according to ETA-11/0030. Cyclical SEISMIC-REV tests according to EN 12512. Seismic performance tested according to EN 14592.
CHARACTERISTICS FOCUS
screw with built-in washer
HEAD
flange
DIAMETER
from 6,0 to 10,0 mm
LENGTH
from 40 to 520 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE • timber based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.
66 | TBS | CARPENTRY
ETA-11/0030
SECONDARY BEAMS Ideal for fastening joists to sill beams to achieve high wind uplift resistance. The flange head guarantees excellent tensile strength which means the use of additional lateral fastening systems can be avoided.
I-JOIST Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL.
CARPENTRY | TBS | 67
Fastening SIP panels with 8 mm diameter TBS screws.
Fastening CLT walls with 8 mm diameter TBS screws.
GEOMETRY AND MECHANICAL CHARACTERISTICS
A
dK
dK d2 d1
dS
b
dK
dK
Ø6 - Ø8
L
Ø8 MAX
Ø10
Nominal diameter
d1
[mm]
6
8
8 MAX
10
Head diameter
dK
[mm]
15,50
19,00
24,50
25,00
Tip diameter
d2
[mm]
3,95
5,40
5,40
6,40
Shank diameter
dS
[mm]
4,30
5,80
5,80
7,00
Pre-drilling hole diameter(1)
dV
[mm]
4,0
5,0
5,0
6,0
Characteristic yield moment Characteristic withdrawal-resistance parameter(2)
My,k
[Nm]
9,5
20,1
20,1
35,8
fax,k
[N/mm2]
11,7
11,7
11,7
11,7
Associated density
ρa
[kg/m3]
350
350
350
350
Characteristic withdrawal-resistance parameter(3)
fax,k
[N/mm2]
15
15
15
15
Associated density
ρa
[kg/m3]
500
500
500
500
Characteristic head-pull-through parameter(2)
fhead,k
[N/mm2]
10,5
10,5
15,0
10,5
Associated density
ρa
[kg/m3]
350
350
350
350
Characteristic head-pull-through parameter(3)
fhead,k
[N/mm2]
20
20
20
20
Associated density
ρa
[kg/m3]
500
500
500
500
Characteristic tensile strength
ftens,k
[kN]
11,3
20,1
20,1
31,4
(1)
Pre-drilling valid for softwood. Valid for softwood - maximum density 440 kg/m3. (3) Valid for softwood LVL - maximum density 550 kg/m3 . For applications with different materials or with high density please see ETA-11/0030. (2)
68 | TBS | CARPENTRY
CODES AND DIMENSIONS d1
dK
CODE
[mm] [in] [mm]
8 0.32 TX 40
b [in]
60
2 3/8
40
TBS670
70
2 3/4
40
TBS680
80
3 1/8
50
TBS690
90
3 1/2
50
4
TBS660
6 0.24 TX 30
L [mm]
TBS6100
100
TBS6120
120 4 3/4
TBS6140
140
A
[mm] [mm]
pcs [in]
d1
dK
CODE
[mm] [in] [mm]
L
b
[mm]
[in]
100
4
13/16 100
TBS10100
30
1 3/16 100
TBS10120
120 4 3/4
30
1 3/16 100
TBS10140
140
5 1/2
40
1 9/16 100
TBS10160
160 6 1/4
60
40
1 9/16 100
TBS10180
75
45
1 3/4
TBS10200
20
100
A
[mm] [mm] 52
pcs [in]
48
1 7/8
50
60
60
2 3/8
50
60
80
3 1/8
50
80
80
3 1/8
50
180 7 1/8
80
100
4
50
200
100
100
4
50
8
5 1/2
75
65
2 9/16 100
TBS10220
220 8 5/8 100
120 4 3/4
50
15,5 TBS6160
160 6 1/4
75
85
3 3/8
100
TBS10240
240 9 1/2 100
140
5 1/2
50
TBS6180
180 7 1/8
75
105
4 1/8
100
TBS10260
260 10 1/4 100
160 6 1/4
50
TBS6200
200
75
125 4 15/16 100
TBS10280
280
180 7 1/8
50
TBS6220
220 8 5/8 100
120
4 3/4
100
TBS10300
300 11 3/4 100
200
8
50
TBS6240
240 9 1/2 100
140
5 1/2
100
TBS10320
320 12 5/8 120
200
8
50
19
8
10 0.40 TX 50
25
11
100
TBS6260
260 10 1/4 100
160
6 1/4
100
TBS10340
340 13 3/8 120
220 8 5/8
50
TBS6280
280
100
180
7 1/8
100
TBS10360
360 14 1/4 120
240 9 1/2
50
TBS6300
300 11 3/4 100
11
200
8
100
TBS10380
380
260 10 1/4
50
TBS840
40
1 9/16
32
8
5/16
100
TBS10400
400 15 3/4 120
280
50
TBS860
60
2 3/8
52
10
1 1/8
100
TBS10440
440 17 1/4 120
320 12 5/8 50
TBS880
80
3 1/8
52
28
1 1/8
50
TBS10480
480
120
360 14 1/4
50
TBS8100
100
4
52
48
1 7/8
50
TBS10520
520 20 1/2 120
400 15 3/4
50
TBS8120
120 4 3/4
80
40
1 9/16
50
TBS8140
140
80
60
2 3/8
50
TBS8160
160 6 1/4 100
60
2 3/8
50
TBS8180
180 7 1/8
80
3 1/8
50
5 1/2
100
TBS8200
200
100
100
4
50
TBS8220
220 8 5/8 100
120
4 3/4
50
TBS8240
8
240 9 1/2 100
140
5 1/2
50
TBS8260
260 10 1/4 100
160
6 1/4
50
TBS8280
280
100
180
7 1/8
50
TBS8300
300 11 3/4 100
200
8
50
TBS8320
320 12 5/8 100
220
8 5/8
50
TBS8340
340 13 3/8 100
240
9 1/2
50
TBS8360
360 14 1/4 100
260 10 1/4
50
TBS8380
380
280
50
TBS8400
400 15 3/4 100
300 11 3/4
50
TBS8440
440 17 1/4 100
340 13 3/8
50
TBS8480
480
380
50
TBS8520
520 20 1/2 100
11
15
19
100
100
11
15
15
120
19
11
TBS MAX d1
dK
CODE
[mm] [in] [mm] 8 0.32 TX 40
L
b
A
pcs
[mm] [in] [mm] [mm] [in] TBSMAX8200 200
120
80
24,5 TBSMAX8220 220 8 5/8 120
8
100
TBSMAX8240 240 9 1/2 120
3 1/8 50 4
50
120 4 3/4 50
420 16 9/16 50
TBS MAX FOR RIB TIMBER With its increased thread (120 mm) and enlarged head (24,5 mm), the TBS MAX guarantees excellent grip and superb joint closure. Ideal for the production of ribbed floors (Rippendecke), optimising the number of fastenings. The enlarged head guarantees excellent joint tightening, making the use of presses unnecessary when gluing wooden elements together.
CARPENTRY | TBS | 69
MINIMUM DISTANCES FOR SHEAR LOADS
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE d1
[mm]
a1
[mm]
a2
[mm]
3∙d
18
24
a3,t
[mm]
12∙d
72
96
a3,c
[mm]
7∙d
42
56
a4,t
[mm]
3∙d
18
24
a4,c
[mm]
3∙d
18
24
d1
[mm]
a1
[mm]
12∙d
72
a2
[mm]
5∙d
30
5∙d
SCREWS INSERTED WITH PRE-DRILLING HOLE
6
8
8 MAX
10
30
40
40
50
4∙d
24
30
4∙d
24
96
120
7∙d
42
56
70
7∙d
42
24
30
7∙d
42
24
30
3∙d
18
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 6
8
8 MAX
10
96
96
120
40
40
50
6
8
8 MAX
10
24
32
32
40
32
32
40
56
56
70
56
56
70
56
56
70
24
24
30
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 6
8
8 MAX
10
5∙d
30
40
40
50
5∙d
30
40
40
50
a3,t
[mm]
15∙d
90
120
120
150
10∙d
60
80
80
100
a3,c
[mm]
10∙d
60
80
80
100
10∙d
60
80
80
100
a4,t
[mm]
5∙d
30
40
40
50
10∙d
60
80
80
100
a4,c
[mm]
5∙d
30
40
40
50
5∙d
30
40
40
50
d = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: • The minimum distances are compliant with EN 1995:2014, according to ETA-11/0030, considering a timber characteristic density of ρk ≤ 420 kg/m3 and calculation diameter of d = nominal screw diameter. • The minimum spacing for all panel-to-timber connections(a1 , a2) can be multiplied by a coefficient of 0,85.
70 | TBS | CARPENTRY
• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1,5.
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
TENSION
timber-to-timber
panel-to-timber(1)
thread withdrawal(2)
head pull-through
RV,k
RV,k
Rax,k
Rhead,k
[kN]
A L b
L
b
A
[mm]
[mm]
[mm]
[mm]
[kN]
60 70 80 90 100 120 140 160 180 200 220 240 260 280 300 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 200 220 240
40 40 50 50 60 75 75 75 75 75 100 100 100 100 100 32 52 52 52 80 80 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 120 120 120
20 30 30 40 40 45 65 85 105 125 120 140 160 180 200 8 10 28 48 40 60 60 80 100 120 140 160 180 200 220 240 260 280 300 340 380 420 80 100 120
1,89 2,15 2,15 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 1,08 1,35 3,02 3,71 3,41 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 5,11 5,11 5,11
6
8
8 MAX
SPAN = 65 mm
d1
SPAN = 50 mm
d1
2,14 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 3,22 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 5,28 5,28 5,28
[kN]
[kN]
3,03 3,03 3,79 3,79 4,55 5,68 5,68 5,68 5,68 5,68 7,58 7,58 7,58 7,58 7,58 3,23 5,25 5,25 5,25 8,08 8,08 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 12,12 12,12 12,12
2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 9,72 9,72 9,72
NOTES: (1) The characteristic shear strength are calculated considering an OSB panel
or particle board with a SPAN thickness.
(2) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b.
CARPENTRY | TBS | 71
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
TENSION
timber-to-timber
panel-to-timber(1)
thread withdrawal(2)
head pull-through
RV,k
RV,k
Rax,k
Rhead,k
[kN]
A L b
d1
L
b
A
[mm]
[mm]
[mm]
[mm]
[kN]
10
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520
52 60 60 80 80 100 100 100 100 100 100 120 120 120 120 120 120 120 120
48 60 80 80 100 100 120 140 160 180 200 200 220 240 260 280 320 360 400
4,92 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64
SPAN = 80 mm
d1
4,47 5,84 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85
[kN]
[kN]
6,57 7,58 7,58 10,10 10,10 12,63 12,63 12,63 12,63 12,63 12,63 15,15 15,15 15,15 15,15 15,15 15,15 15,15 15,15
7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08
NOTES: (1) The characteristic shear strength are calculated considering an OSB panel
or particle board with a SPAN thickness. (2) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b.
• For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. Characteristic resistances can also be considered as valid for larger densities, for the purposes of safety • Values were calculated considering the threaded part as being completely inserted into the wood.
GENERAL PRINCIPLES:
• Sizing and verification of the timber elements, panels and steel plates must be done separately.
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
72 | TBS | CARPENTRY
• For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
CALCULATION EXAMPLE: RAFTER - PURLIN JOINT WITH MYPROJECT
CONNECTION TIMBER-TO-TIMBER/SINGLE SHEAR
1
ELEMENT 1
2
ELEMENT 2
1
B1 = 120 mm
B2 = 200 mm
H1 = 160 mm
H2 = 240 mm
Slope 30% (16,7°)
Slope 0% (0°)
Glulam GL24h
2
Glulam GL24h
PROJECT DATA
SCREW SELECTION
CONNECTION GEOMETRY
Fv,Rd = 1,89 kN
TBS = 8x260 mm
t 1 = 160 mm
Service class = 1
Pre-drilling hole = no
α 1 = 0° t2 = 100 mm (fixing length in element 2)
Load duration = short
α 2 = 90°
SHEAR RESISTANCE CALCULATION WITH MYPROJECT SOFTWARE (EN 1995:2014 e ETA-11/0030) d1
My,k
= 20,1 Nm
fh,1,k = 16,92 N/mm2
Rax,Rk
= min {resistance to thread withdrawal; resistance to head pull-through} = min {Rax,Rk ; Rhead,Rk}
fh,2,k = 16,92 N/mm2
= 4,09 kN
β
Rax,Rk/4 = 1,02 kN (cable effect)
= 8,0 mm
= 1,00
Rv,Rk = 3,71 kN
k R Rv,Rd = v,Rk mod γM
EN 1995:2014 kmod = 0,9 γM = 1,3 Rv,Rd = 2,56 kN > 1,89 kN OK
Italy - NTC 2018 kmod = 0,9 γM = 1,5 Rv,Rd = 2,22 kN > 1,89 kN OK
CARPENTRY | TBS | 73
MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
lateral face(1)
narrow face(2)
d1
[mm]
a1
[mm]
4∙d
6
8
10
24
32
40
6
8
10
10∙d
60
80
100
a2
[mm]
2.5∙d
15
20
a3,t
[mm]
6∙d
36
48
25
4∙d
24
32
40
60
12∙d
72
96
120
a3,c
[mm]
6∙d
36
48
60
7∙d
42
56
70
a4,t
[mm]
6∙d
36
48
60
6∙d
36
48
60
a4,c
[mm]
2.5∙d
15
20
25
3∙d
18
24
30
d = nominal screw diameter
a4,c
a4,t α
F
F
α
α
F α a3,c
a3,t
a2 a2
a2
a1
a1
a3,c a4,c
F
a3,t
F
a4,c
tCLT
a3,c a4,c a4,t
F
tCLT
NOTES: The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.
74 | TBS | CARPENTRY
(1) Minimum CLT thickness t
min = 10∙d (2) Minimum CLT thickness t min = 10∙d and minimum screw pull-through depth tpen = 10∙d
MINIMUM DISTANCES FOR SHEAR LOADS | LVL
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE [mm] [mm] [mm] [mm] [mm] [mm] [mm]
d1 a1 a2 a3,t a3,c a4,t a4,c
12∙d 5∙d 15∙d 10∙d 5∙d 5∙d
6
8
10
72 30 90 60 30 30
96 40 120 80 40 40
120 50 150 100 50 50
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5∙d 5∙d 10∙d 10∙d 10∙d 5∙d
6
8
10
30 30 60 60 60 30
40 40 80 80 80 40
50 50 100 100 100 50
d = nominal screw diameter
a4,c
a4,t α
a2
F
F α a1
F
α
a3,t
α
a2 a2 F a1
a3,c
NOTES: • The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the LVL panels. • The minimum distances are applicable when using both parallel and cross grain LVL. • The minimum distances without pre-drilling hole are valid for minimum thickness of LVL elements tmin:
where: t 1 is the thickness in mm of the LVL element in a connection with 2 wooden elements. For connections with 3 or more elements, t 1 represents the thickness of the most external LVL; t 2 is the thickness in mm of the central element in a connection with 3 or more elements.
t1 ≥ 8,4 d -9 t2 ≥
11,4 d 75
CARPENTRY | TBS | 75
STATIC VALUES | CLT SHEAR(1) CLT - CLT lateral face
geometry
CLT - CLT lateral face - narrow face
panel - CLT(2) lateral face
CLT - panel - CLT(2) lateral face
t
A L b d1
d1
L
b
A
RV,k
RV,k
RV,k
t
RV,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
[mm]
[kN]
1,77
-
1,73
-
-
30
2,00
-
1,73
30
2,19
80
50
30
2,00
-
1,73
35
2,19
40
2,22
-
1,73
40
2,19
40
2,22
-
1,73
45
2,19
1,73
120
75
45
2,22
-
140
75
65
2,22
-
160
75
85
2,22
-
180
75
105
2,22
-
200
75
125
2,22
-
1,73 1,73 1,73 1,73
SPAN = 15 mm
50 60
SPAN = 15 mm
90 100
55
2,19
65
2,19
75
2,19
85
2,19
95
2,19
220
100
120
2,22
-
1,73
105
2,19
240
100
140
2,22
-
1,73
115
2,19
260
100
160
2,22
-
1,73
125
2,19
280
100
180
2,22
-
1,73
135
2,19
300
100
200
2,22
-
1,73
145
2,19
40
32
8
0,98
0,98
1,67
-
-
60
52
8
0,98
0,98
2,61
-
-
80
52
28
2,82
2,21
2,62
-
-
100
52
48
3,43
2,45
2,62
40
2,92
120
80
40
3,16
2,37
2,62
50
2,92
80
60
3,51
2,65
2,62
60
2,92
160
100
60
3,51
2,65
2,62
70
2,92
180
100
80
3,51
2,98
2,62
80
2,92
200
100
100
3,51
2,98
2,62
220
100
120
3,51
2,98
240
100
140
3,51
2,98
260
100
160
3,51
2,98
280
100
180
3,51
2,98
300
100
200
3,51
2,98
320
100
220
3,51
2,98
340
100
240
3,51
2,98
360
100
260
3,51
2,98
380
100
280
3,51
400
100
300
440
100
340
480
100
520
100
200 220 240
2,62
90
2,92
100
2,92
110
2,92
120
2,92
130
2,92
2,62
140
2,92
2,62
150
2,92
2,62
160
2,92
2,62
170
2,92
2,98
2,62
180
2,92
3,51
2,98
2,62
190
2,92
3,51
2,98
2,62
210
2,92
380
3,51
2,98
2,62
230
2,92
420
3,51
2,98
2,62
250
2,92
120
80
4,81
3,99
2,92
120
100
4,81
3,99
120
120
4,81
3,99
76 | TBS | CARPENTRY
2,62
SPAN = 18 mm
140
2,62 2,62
2,92 2,92
SPAN = 18 mm
8 MAX
20
40
SPAN = 18 mm
8
40
70
SPAN = 18 mm
6
60
90
2,92
100
2,92
110
2,92
CHARACTERISTIC VALUES EN 1995:2014 SHEAR(1) CLT - timber lateral face
TENSION timber - CLT narrow face
thread withdrawal narrow face(3)
thread withdrawal narrow face(4)
head pull-through (5)
RV,k
RV,k
Rax,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
[kN]
1,82
1,67
2,81
-
2,52
2,08
1,72
2,81
-
2,52
2,08
1,86
3,51
-
2,52
2,26
1,86
3,51
-
2,52
2,26
1,99
4,21
-
2,52
2,26
1,99
5,27
-
2,52
2,26
1,99
5,27
-
2,52
2,26
1,99
5,27
-
2,52
2,26
1,99
5,27
-
2,52
2,26
1,99
5,27
-
2,52
2,26
1,99
7,02
-
2,52
2,26
1,99
7,02
-
2,52
2,26
1,99
7,02
-
2,52
2,26
1,99
7,02
-
2,52
2,26
1,99
7,02
-
2,52
0,98
1,08
3,00
2,39
3,79
0,98
1,08
4,87
3,70
3,79
2,90
2,52
4,87
3,70
3,79
3,57
2,52
4,87
3,70
3,79
3,29
2,98
7,49
5,45
3,79
3,57
3,08
7,49
5,45
3,79
3,57
3,08
9,36
6,66
3,79
3,57
3,08
9,36
6,66
3,79
3,57
3,08
9,36
6,66
3,79
3,57
3,08
9,36
6,66
3,79
3,57
3,08
9,36
6,66
3,79
3,57
3,08
9,36
6,66
3,79
3,57
3,08
9,36
6,66
3,79
3,57
3,08
9,36
6,66
3,79
3,57
3,08
9,36
6,66
3,79
3,57
3,08
9,36
6,66
3,79
3,57
3,08
9,36
6,66
3,79
3,57
3,08
9,36
6,66
3,79
3,57
3,08
9,36
6,66
3,79
3,57
3,08
9,36
6,66
3,79
3,57
3,08
9,36
6,66
3,79
3,57
3,08
9,36
6,66
3,79
4,87
4,02
11,23
7,85
9,00
4,87
4,02
11,23
7,85
9,00
4,87
4,02
11,23
7,85
9,00
CARPENTRY | TBS | 77
STATIC VALUES | CLT SHEAR(1) CLT - CLT lateral face
geometry
CLT - CLT lateral face - narrow face
panel - CLT(2) lateral face
CLT - panel - CLT(2) lateral face
t
A L b d1
d1
L
b
A
RV,k
RV,k
RV,k
t
RV,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
[mm]
[kN]
52
48
4,50
3,10
3,89
-
-
120
60
60
5,22
3,41
3,89
50
3,89
140
60
80
5,26
3,75
3,89
60
3,89
80
80
5,33
4,12
3,89
70
3,89
80
100
5,33
4,51
3,89
80
3,89
200
100
100
5,33
4,52
3,89
90
3,89
220
100
120
5,33
4,52
3,89
100
3,89
240
100
140
5,33
4,52
3,89
110
3,89
260
100
160
5,33
4,52
280
100
180
5,33
4,52
3,89
300
100
200
5,33
4,52
320
120
200
5,33
4,52
340
120
220
5,33
4,52
3,89
3,89 3,89 3,89
SPAN = 22 mm
160 180
SPAN = 22 mm
10
100
120
3,89
130
3,89
140
3,89
150
3,89
160
3,89
360
120
240
5,33
4,52
3,89
170
3,89
380
120
260
5,33
4,52
3,89
180
3,89
400
120
280
5,33
4,52
3,89
190
3,89
440
120
320
5,33
4,52
3,89
210
3,89
480
120
360
5,33
4,52
3,89
230
3,89
520
120
400
5,33
4,52
3,89
250
3,89
NOTES: (1) The characteristic shear strength is independent from the direction of the
grain of the CLT panels outer layer. (2) The characteristic shear resistances are calculated considering an OSB3 or
OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN. (3) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b.
78 | TBS | CARPENTRY
(4) The axial thread withdrawal resistance is valid for minimum thickness of
the element of tmin = 10∙d1 and minimum screw pull-through depth tpen = 10∙d1 . (5) The axial resistance to head pull-through was calculated using timber ele-
ments.
CHARACTERISTIC VALUES EN 1995:2014 SHEAR(1)
TENSION timber - CLT narrow face
thread withdrawal narrow face(3)
thread withdrawal narrow face(4)
head pull-through (5)
RV,k
RV,k
Rax,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
[kN]
CLT - timber lateral face
4,78
3,17
6,08
4,42
6,56
5,39
3,43
7,02
5,03
6,56
5,42
3,43
7,02
5,03
6,56
5,42
4,15
9,36
6,51
6,56
5,42
4,15
9,36
6,51
6,56
5,42
4,69
11,70
7,96
6,56
5,42
4,69
11,70
7,96
6,56
5,42
4,69
11,70
7,96
6,56
5,42
4,69
11,70
7,96
6,56
5,42
4,69
11,70
7,96
6,56
5,42
4,69
11,70
7,96
6,56
5,42
4,70
14,04
9,38
6,56
5,42
4,70
14,04
9,38
6,56
5,42
4,70
14,04
9,38
6,56
5,42
4,70
14,04
9,38
6,56
5,42
4,70
14,04
9,38
6,56
5,42
4,70
14,04
9,38
6,56
5,42
4,70
14,04
9,38
6,56
5,42
4,70
14,04
9,38
6,56
GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard and national specification ÖNORM EN 1995 - Annex K in accordance with ETA-11/0030.
• Values were calculated considering the threaded part as being completely inserted into the wood.
• • Design values can be obtained from characteristic values as follows:
• Sizing and verification of the timber elements and panels must be done separately.
Rk kmod Rd = γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The shear resistance characteristics are calculated considering a minimum fixing length of 4 d1 . • The screws must be positioned in accordance with the minimum distances.
• For the calculation process, a mass density of ρ k = 350 kg/m3 has been considered for CLT elements and a mass density of ρ k = 385 kg/m3 has been considered for timber elements.
CARPENTRY | TBS | 79
STATIC VALUES | LVL SHEAR geometry
LVL - LVL
LVL - LVL- LVL
LVL - timber
timber - LVL
t2 A L b d1
A
d1
L
b
A
RV,k
A
t2
RV,k
A
RV,k
A
RV,k
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[mm]
[kN]
[mm]
[kN]
[mm]
[kN]
6
8
8 MAX
60
40
-
-
-
-
-
-
-
-
-
70
40
-
-
-
-
-
-
-
-
-
80
50
-
-
-
-
-
-
-
35
2,14
90
50
45
2,84
-
-
-
45
2,50
40
2,30
100
60
45
3,02
-
-
-
45
2,68
40
2,30
120
75
45
3,02
-
-
-
45
2,87
45
2,34
140
75
65
3,02
-
-
-
65
2,87
65
2,34
160
75
85
3,02
45
70
5,68
85
2,87
85
2,34
180
75
105
3,02
55
75
5,90
105
2,87
105
2,34
200
75
125
3,02
60
85
6,05
125
2,87
125
2,34
220
100
120
3,02
70
85
6,05
120
2,87
120
2,34
240
100
140
3,02
75
95
6,05
140
2,87
140
2,34
260
100
160
3,02
75
115
6,05
160
2,87
160
2,34
280
100
180
3,02
75
135
6,05
180
2,87
180
2,34
300
100
200
3,02
75
155
6,05
200
2,87
200
2,34
40
32
-
-
-
-
-
-
-
-
-
60
52
-
-
-
-
-
-
-
-
-
80
52
-
-
-
-
-
-
-
-
-
100
52
-
-
-
-
-
-
-
40
3,15
120
80
60
4,74
-
-
-
60
4,15
40
3,15
140
80
60
4,74
-
-
-
60
4,50
60
3,70
160
100
60
4,74
-
-
-
60
4,50
60
3,70
180
100
80
4,74
-
-
-
80
4,50
80
3,70
200
100
100
4,74
65
75
9,47
100
4,50
100
3,70
220
100
120
4,74
75
75
9,48
120
4,50
120
3,70
240
100
140
4,74
80
85
9,48
140
4,50
140
3,70
260
100
160
4,74
80
105
9,48
160
4,50
160
3,70
280
100
180
4,74
80
125
9,48
180
4,50
180
3,70
300
100
200
4,74
100
105
9,48
200
4,50
200
3,70
320
100
220
4,74
100
125
9,48
220
4,50
220
3,70
340
100
240
4,74
100
145
9,48
240
4,50
240
3,70
360
100
260
4,74
100
165
9,48
260
4,50
260
3,70
380
100
280
4,74
100
185
9,48
280
4,50
280
3,70
400
100
300
4,74
120
165
9,48
300
4,50
300
3,70
440
100
340
4,74
120
205
9,48
340
4,50
340
3,70
480
100
380
4,74
120
245
9,48
380
4,50
380
3,70
520
100
420
4,74
120
285
9,48
420
4,50
420
3,70
80
9,47
5,00
200
120
80
5,90
60
80
5,50
80
220
120
100
5,90
60
100
9,47
100
5,50
100
5,00
240
120
120
5,90
80
80
10,64
120
5,50
120
5,00
80 | TBS | CARPENTRY
CHARACTERISTIC VALUES EN 1995:2014 TENSION thread withdrawal flat(1)
thread withdrawal edge(1)
head pull-through flat(2)
Rax,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
3,48
2,32
4,65
3,48
2,32
4,65
4,36
2,90
4,65
4,36
2,90
4,65
5,23
3,48
4,65
6,53
4,36
4,65
6,53
4,36
4,65
6,53
4,36
4,65
6,53
4,36
4,65
6,53
4,36
4,65
8,71
5,81
4,65
8,71
5,81
4,65
8,71
5,81
4,65
8,71
5,81
4,65
8,71
5,81
4,65
3,72
2,48
6,99
6,04
4,03
6,99
6,04
4,03
6,99
6,04
4,03
6,99
9,29
6,19
6,99
9,29
6,19
6,99
11,61
7,74
6,99
11,61
7,74
6,99
11,61
7,74
6,99
11,61
7,74
6,99
11,61
7,74
6,99
11,61
7,74
6,99
11,61
7,74
6,99
11,61
7,74
6,99
11,61
7,74
6,99
11,61
7,74
6,99
11,61
7,74
6,99
11,61
7,74
6,99
11,61
7,74
6,99
11,61
7,74
6,99
11,61
7,74
6,99
11,61
7,74
6,99
13,94
9,29
11,62
13,94
9,29
11,62
13,94
9,29
11,62
CARPENTRY | TBS | 81
STATIC VALUES | LVL SHEAR geometry
LVL - LVL
LVL - LVL- LVL
LVL - timber
timber - LVL
t2 A L b d1
A
d1
L
b
A
RV,k
A
t2
RV,k
A
RV,k
A
RV,k
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[mm]
[kN]
[mm]
[kN]
[mm]
[kN]
10
100
52
-
-
-
-
-
-
-
-
-
120
60
-
-
-
-
-
-
-
45
4,64
140
60
-
-
-
-
-
-
-
60
5,28
160
80
75
7,23
-
-
-
75
6,31
80
5,61
180
80
100
7,23
-
-
-
100
6,31
100
5,61
200
100
100
7,35
-
-
-
100
6,89
100
5,61
220
100
120
7,35
-
-
-
120
6,89
120
5,61
240
100
140
7,35
80
85
14,09
140
6,89
140
5,61
260
100
160
7,35
80
105
14,09
160
6,89
160
5,61
280
100
180
7,35
80
125
14,09
180
6,89
180
5,61
300
100
200
7,35
100
105
14,69
200
6,89
200
5,61
320
120
200
7,35
100
125
14,69
200
6,99
200
5,61
340
120
220
7,35
100
145
14,69
220
6,99
220
5,61
360
120
240
7,35
100
165
14,69
240
6,99
240
5,61
380
120
260
7,35
120
145
14,69
260
6,99
260
5,61
400
120
280
7,35
120
165
14,69
280
6,99
280
5,61
440
120
320
7,35
140
165
14,69
320
6,99
320
5,61
480
120
360
7,35
140
205
14,69
360
6,99
360
5,61
520
120
400
7,35
160
205
14,69
400
6,99
400
5,61
NOTES: (1) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b.
82 | TBS | CARPENTRY
(2) The axial resistance to head pull-through was calculated using parallel or
cross grain LVL elements with tmin thickness.
CHARACTERISTIC VALUES EN 1995:2014 TENSION thread withdrawal flat(1)
thread withdrawal edge(1)
head pull-through flat(2)
Rax,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
7,55
5,03
12,10
8,71
5,81
12,10
8,71
5,81
12,10
11,61
7,74
12,10
11,61
7,74
12,10
14,52
9,68
12,10
14,52
9,68
12,10
14,52
9,68
12,10
14,52
9,68
12,10
14,52
9,68
12,10
14,52
9,68
12,10
17,42
11,61
12,10
17,42
11,61
12,10
17,42
11,61
12,10
17,42
11,61
12,10
17,42
11,61
12,10
17,42
11,61
12,10
17,42
11,61
12,10
17,42
11,61
12,10
GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• Values were calculated considering the threaded part as being completely inserted into the wood.
• Design values can be obtained from characteristic values as follows:
• Sizing and verification of the timber elements, panels and steel plates must be done separately.
Rk kmod Rd = γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a mass density equal to ρk = 480 kg/m3 was considered for softwood LVL elements and a mass density of 350 kg/m3 has been considered for timber elements.
CARPENTRY | TBS | 83
TBS EVO
1002
CERTIFIED
AC233 | AC257 ESR-4645
C4 COATING
BIT INCLUDED
COATING
ETA-11/0030
FLANGE HEAD SCREW C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.
AGGRESSIVE WOODS Ideal for applications with woods containing tannin or treated with impregnating agents and other chemical processes.
INTEGRATED WASHER The flange head serves as washer and ensures high tensile strength. Ideal in the presence of wind or variations in timber dimensions.
STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°). Asymmetric “umbrella” threading for better timber pull-through.
CHARACTERISTICS FOCUS
corrosiveness class C4
HEAD
flange
DIAMETER
6,0 and 8,0 mm
LENGTH
from 60 to 240 mm
MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.
FIELDS OF USE • timber based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.
84 | TBS EVO | CARPENTRY
OUTDOOR WALKWAYS Ideal for the construction of outdoor structures such as walkways and arcades. Values also certified for screw insertion parallel to the grain. Ideal for fastening aggressive woods containing tannin.
SIP PANELS Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL. Suitable for fastening SIP and sandwich panels.
CARPENTRY | TBS EVO | 85
Fastening Wood Trusses outdoors.
Fastening of 3-layer, multi-ply beams with plasterboard coating.
GEOMETRY AND MECHANICAL CHARACTERISTICS A
dK
d2 d1 dS
b L
Nominal diameter
d1
[mm]
6
8
Head diameter
dK
[mm]
15,50
19,00
Tip diameter
d2
[mm]
3,95
5,40
Shank diameter
dS
[mm]
4,30
5,80
Pre-drilling hole diameter(1)
dV
[mm]
4,0
5,0
Characteristic yield moment Characteristic withdrawal-resistance parameter(2)
My,k
[Nm]
9,5
20,1
fax,k
[N/mm2]
11,7
11,7
Associated density
ρa
[kg/m3]
350
350
Characteristic head-pull-through parameter(2)
fhead,k
[N/mm2]
10,5
10,5
Associated density
ρa
[kg/m3]
350
350
Characteristic tensile strength
ftens,k
[kN]
11,3
20,1
(1)
Pre-drilling valid for softwood. Valid for softwood - maximum density 440 kg/m3. For applications with different materials or with high density please see ETA-11/0030. (2)
86 | TBS EVO | CARPENTRY
CODES AND DIMENSIONS d1
CODE
[mm] [in]
6 0.24 TX 30
L
b
A
[mm] [mm]
pcs
[mm]
[in]
TBSEVO660
60
2 3/8
40
20
13/16 100
TBSEVO680
80
3 1/8
50
30
1 3/16 100
4
d1
[in]
CODE
L
[mm] [in]
b
A
[mm] [mm]
pcs
[mm]
[in]
[in]
TBSEVO8100
100
4
52
48
1 7/8
50
TBSEVO8120
120 4 3/4
80
40
1 9/16
50
TBSEVO8140
140
80
60
2 3/8
50
TBSEVO8160
160 6 1/4 100
60
2 3/8
50
TBSEVO6100
100
60
40
1 9/16 100
TBSEVO6120
120 4 3/4
75
45
1 3/4
TBSEVO6140
140
5 1/2
75
65
2 9/16 100
TBSEVO8180
180 7 1/8
100
80
3 1/8
50
TBSEVO6160
160 6 1/4
75
85
3 3/8
100
TBSEVO8200
200
100
100
4
50
4 1/8
8 0.32 TX 40
100
5 1/2
8
TBSEVO6180
180 7 1/8
75
105
100
TBSEVO8220
220 8 5/8 100
120
4 3/4
50
TBSEVO6200
200
75
125 4 15/16 100
TBSEVO8240
240 9 1/2 100
140
5 1/2
50
8
WBAZ WASHER D1 CODE
screw
D2
H
D1
[mm]
[mm]
[mm]
[mm]
6,0 - 6,5
25
15
6,5
H WBAZ25A2
pcs 100
D2
INSTALLATION
A
TBS EVO + WBAZ ØxL 6 x 60 6 x 80 6 x 100 6 x 120 6 x 140 6 x 160 6 x 180 6 x 200
A
Correct tightening
Excessive tightening
Insufficient tightening
fastening package [mm] min. 0 - max. 40 min. 10 - max. 60 min. 30 - max. 80 min. 50 - max. 100 min. 70 - max. 120 min. 90 - max. 140 min. 110 - max. 160 min. 130 - max. 180
Tightening off axis
NOTES: The thickness of the washer after installation is approximately 8-9 mm.
FASTENING METAL SHEET Can be installed on sheets up to 0.7 mm thick without pre-drilling. TBS EVO Ø6 mm, ideal when used in combination with washer WBAZ. For outdoor use (Service class 3).
CARPENTRY | TBS EVO | 87
MINIMUM DISTANCES FOR SHEAR LOADS
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE d1
[mm]
SCREWS INSERTED WITH PRE-DRILLING HOLE
6
8
30
40
4∙d
6
8
24
32
a1
[mm]
a2
[mm]
3∙d
18
24
4∙d
24
32
a3,t
[mm]
12∙d
72
96
7∙d
42
56
a3,c
[mm]
7∙d
42
56
7∙d
42
56
a4,t
[mm]
3∙d
18
24
7∙d
42
56
a4,c
[mm]
3∙d
18
24
3∙d
18
24
d1
[mm]
5∙d
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 6
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
8
6
8
a1
[mm]
12∙d
72
96
5∙d
30
40
a2
[mm]
5∙d
30
40
5∙d
30
40
a3,t
[mm]
15∙d
90
120
10∙d
60
80
a3,c
[mm]
10∙d
60
80
10∙d
60
80
a4,t
[mm]
5∙d
30
40
10∙d
60
80
a4,c
[mm]
5∙d
30
40
5∙d
30
40
d = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: • The minimum distances are compliant with EN 1995:2014, according to ETA-11/0030, considering a timber characteristic density of ρk ≤ 420 kg/m3 and calculation diameter of d = nominal screw diameter. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
88 | TBS EVO | CARPENTRY
• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1,5.
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
timber-to-timber
TENSION panel-to-timber(1)
thread withdrawal(2)
head pull-through
A L b d1
L
b
A
RV,k
RV,k
Rax,k
Rhead,k
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
60
40
20
2,02
-
3,25
2,92
8
50
30
2,31
60
40
2,47
2,28
4,06
2,92
2,54
4,87
2,92
2,54
6,09
2,92
2,54
6,09
2,92
120
75
45
2,47
140
75
65
2,47
160
75
85
2,47
2,54
6,09
2,92
180
75
105
2,47
2,54
6,09
2,92
200
75
125
2,47
2,54
6,09
2,92
100
52
48
3,90
3,41
5,63
4,39
3,96
8,66
4,39
3,96
8,66
4,39
3,96
10,83
4,39
3,96
10,83
4,39
3,96
10,83
4,39
120
80
40
3,66
140
80
60
3,90
160
100
60
3,90
180
100
80
3,90
200
100
100
3,90
SPAN = 65 mm
6
80 100
SPAN = 50 mm
d1 [mm]
220
100
120
3,90
3,96
10,83
4,39
240
100
140
3,90
3,96
10,83
4,39
NOTES: (1) The characteristic shear strength are calculated considering an OSB panel
or particle board with a SPAN thickness. (2) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b.
GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Sizing and verification of the timber elements, panels and steel plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
CARPENTRY | TBS EVO | 89
XYLOFON WASHER SEPARATING WASHER FOR TIMBER SCREW SOUNDPROOFING The separating washer acts as separator between the metallic and structural elements, reducing the transmission of vibrations.
TESTED VALUES Polyurethane compound tested acoustically and mechanically.
CODES AND DIMENSIONS XYLOFON WASHER CODE XYLW803811
dSCREW Ø8 - Ø10
dext
dint
h
[mm]
[mm]
[mm]
pcs
38
11
6,0
50
pcs
ULS 440 - WASHER CODE ULS11343
dSCREW Ø8 - Ø10
dext
dint
h
[mm]
[mm]
[mm]
34
11
3,0
200
MATERIAL AND DURABILITY Polyurethane compound (80 shore). Product free of VOCs and harmful substances. High chemical stability and deformation free in time.
FIELDS OF USE Mechanical separation of timber-to-timber shear joints made with screws.
90 | XYLOFON WASHER | CARPENTRY
EXPERIMENTAL INVESTIGATION LOAD-BEARING CAPACITY AND STIFFNESS OF CONNECTIONS BETWEEN CLT PANELS MADE WITH HBS PARTIALLY THREAD SCREWS AND XYLOFON WASHERS
TEST [ T-T ] (CLT - CLT)
F
Through experimental testing and analytical approaches, the mechanical and deformation performance of connections between CLT panels — made with 8x280 HBS screws installed with/without XYLOFON WASHER separating washers — was analysed with and without the use of resilient, intermediate XYLOFON35 decoupling profiles.
force application pre-tensioning
8x280/8 0
1000 135
7 x HBS
/3s
CLT 90
plain bearing 80 70
90
60
300
Fmean [kN]
50 40 30
TEST [ T-X ] (CLT - XYLOFON35 - CLT)
20
T-T 0kN T-X 0kN T-X-W 0kN
10
T-T 30kN T-X 30kN T-X-W 30kN
0 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
F XYLOFON35
Displacement [mm]
Graphic representation of the experimental data for the various test configurations.
SERIES
T-T T-X T-X-W (1) (2)
Fmean(1)
FR,k
pre-tens.(2)
Kser
Ku
[kN]
[kN]
[kN]
[N/mm]
[N/mm]
52,9
44,0
0
30252
3524
61,4
52,4
30
42383
4090
54,4
40,1
0
7114
3629
70,9
60,5
30
9540
4726
65,0
48,3
0
6286
4330
76,2
63,4
30
7997
5080
Average value for 3 tests. Preload forces of 30 kN were applied to simulate the operating load.
TEST [ T-X-W ] (CLT - XYLOFON35 + XYLOFON WASHER - CLT)
F XYLOFON35
ER
N WASH
XYLOFO
The experimental test results show that fastener load-bearing capacity is affected by the presence of the resilient XYLOFON35 profile (T-X series), recording a reduction of about 9% in FR,k. However, adding the XYLOFON WASHER (T-X-W series) separating washers recorded a 10% increase in FR,k due to the increase in the axial strength of the connection (cable effect). In terms of deformation, the presence of the decoupling layer implies a reduction in slip modulus Kser. The viscous and damping component of XYLOFON combined with the reduced thickness achieves acoustic benefits, limiting the repercussions on the static performance.
+ +
METAL WASHER XYLOFON WASHER HBS Ø8
=
• The full scientific report on the experimental testing is available at Rothoblaas. • Experimental testing conducted in collaboration with Technische Versuchs und Forschungsanstalt (TVFA), Innsbruck.
CARPENTRY | XYLOFON WASHER | 91
HBS PLATE
BIT INCLUDED
PAN HEAD SCREW FOR PLATES HBS P Designed for steel-to-timber joints: the head has a shoulder and the thickness is increased for completely safe, reliable fastening plates to the timber.
PLATE FASTENING The under-head shoulder achieves an interlocking effect with the circular hole in the plate, thus guaranteeing excellent static performance.
LONGER THREAD Increased thread length for excellent shear strength and tensile strength in steel-to-timber joints. Values higher than normal.
CHARACTERISTICS FOCUS
steel-to-timber joints
HEAD
shoulder for plate
DIAMETER
from 8,0 to 12,0 mm
LENGTH
from 80 to 200 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE • timber based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.
92 | HBS PLATE | CARPENTRY
ETA-11/0030
MULTISTOREY Ideal for steel-to-timber joints with large customized plates, designed for multi-story timber buildings.
TITAN Values also tested, certified and calculated for fastening standard Rothoblaas plates.
CARPENTRY | HBS PLATE | 93
Steel-to-timber shear joint
Mixed steel-to-timber structural joint
GEOMETRY AND MECHANICAL CHARACTERISTICS AP
d2 d1
dUK
X X
BS
P
H
dK
t1
dS
b L
Nominal diameter
d1
[mm]
8
10
12
Head diameter
dK
[mm]
14,50
18,25
20,75
Tip diameter
d2
[mm]
5,40
6,40
6,80
Shank diameter
dS
[mm]
5,80
7,00
8,00
Head thickness
t1
[mm]
3,40
4,35
5,00
Underhead diameter
dUK
[mm]
10,00
12,00
14,00
Pre-drilling hole diameter(1)
dV
[mm]
5,0
6,0
7,0
Recommended hole diameter on steel plate Characteristic yield moment Characteristic withdrawal-resistance parameter(2)
dv,steel
[mm]
11,0
13,0
15,0
My,k
[Nm]
20,1
35,8
48,0
fax,k
[N/mm2]
11,7
11,7
11,7
Associated density
ρa
[kg/m3]
350
350
350
Characteristic head-pull-through parameter(2)
fhead,k
[N/mm2]
10,5
10,5
10,5
Associated density
ρa
[kg/m3]
350
350
350
Characteristic tensile strength
ftens,k
[kN]
20,1
31,4
33,9
(1)
Pre-drilling valid for softwood. Valid for softwood - maximum density 440 kg/m3. For applications with different materials or with high density please see ETA-11/0030. (2)
94 | HBS PLATE | CARPENTRY
CODES AND DIMENSIONS d1
CODE
b
AP
[mm]
L [in]
[mm]
[mm]
HBSP880
80
3 1/8
55
1.0 ÷ 15.0
100
HBSP8100
100
4
75
1.0 ÷ 15.0
100
HBSP8120
120
4 3/4
95
1.0 ÷ 15.0
100
HBSP8140
140
5 1/2
110
1,0 ÷ 20,0
100
HBSP8160
160
6 1/4
130
1,0 ÷ 20,0
100
HBSP10100
100
4
75
1.0 ÷ 15.0
50
HBSP10120
120
4 3/4
95
1.0 ÷ 15.0
50
HBSP10140
140
5 1/2
110
1,0 ÷ 20,0
50
HBSP10160
160
6 1/4
130
1,0 ÷ 20,0
50
HBSP10180
180
7 1/8
150
1,0 ÷ 20,0
50
[mm] [in]
8 0.32 TX 40
10 0.40 TX 40
pcs
d1
CODE
L
[mm] [in]
12 0.48 TX 50
b
AP
[mm]
[mm]
4 3/4
90
1,0 ÷ 20,0
25
5 1/2
110
1,0 ÷ 20,0
25
120
1,0 ÷ 30,0
25
140
1,0 ÷ 30,0
25
1,0 ÷ 30,0
25
[mm]
[in]
HBSP12120
120
HBSP12140
140
HBSP12160
160
6 1/4
HBSP12180
180
7 1/8
HBSP12200
200
8
160
pcs
MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER Splate
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE
SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 a1
[mm] [mm]
5∙d ∙ 0,7
8
10
12
28
35
42
4∙d ∙ 0,7
8
10
12
22
28
34
a2
[mm]
3∙d ∙ 0,7
17
21
25
4∙d ∙ 0,7
22
28
34
a3,t
[mm]
12∙d
96
120
144
7∙d
56
70
84
a3,c
[mm]
7∙d
56
70
84
7∙d
56
70
84
a4,t
[mm]
3∙d
24
30
36
7∙d
56
70
84
a4,c
[mm]
3∙d
24
30
36
3∙d
24
30
36
d1 a1
[mm] [mm]
12∙d ∙ 0,7
a2
[mm]
5∙d ∙ 0,7
28
a3,t
[mm]
15∙d
120
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
8
10
12
67
84
101
5∙d ∙ 0,7
8
10
12
28
35
42
35
42
5∙d ∙ 0,7
28
35
42
150
180
10∙d
80
100
120
a3,c
[mm]
10∙d
80
100
120
10∙d
80
100
120
a4,t
[mm]
5∙d
40
50
60
10∙d
80
100
120
a4,c
[mm]
5∙d
40
50
60
5∙d
40
50
60
d = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
F
a4,t
a4,c
a3,c
NOTES: • The minimum distances are compliant with EN 1995:2014, according to ETA-11/0030, considering a timber characteristic density of ρ k ≤ 420 kg/m3 and calculation diameter of d = nominal screw diameter.
• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
CARPENTRY | HBS PLATE | 95
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR thin steel-to-timber plate (1)
geometry
TENSION thick steel-to-timber plate (2)
Splate
thread withdrawal(3)
steel tension
Splate
L b d1
b
RV,k
RV,k
Rax,k
Rtens,k
[mm]
[kN]
[kN]
[kN]
[kN]
80
55
100
75
160
130
100
75
120
95
140
110
160
130
180
150
120
90
140
110
160
120
180
140
200
160
5,08 5,36 5,36 6,01 6,87 7,34 7,74 7,74 8,19 8,94 9,32 9,55 9,55
SPLATE = 12,0 mm SPLATE = 10,0 mm
12
95 110
SPLATE = 5,0 mm
10
120 140
SPLATE = 6,0 mm
8
4,07 4,58
SPLATE = 8,0 mm
L [mm]
SPLATE = 4,0 mm
d1 [mm]
5,18
5,56
5,69
7,58
6,19
9,60
6,57
11,11
7,08
13,13
7,84
9,47
8,47
12,00
8,95
13,89
9,58
16,42
10,21
18,94
10,17
13,64
10,92
16,67
11,30
18,18
12,06
21,21
12,82
24,24
20,10
31,40
33,90
NOTES: (1) The shear resistance characteristics are calculated considering the case of
a thin plate (SPLATE ≤ 0,5 d1).
• The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).
(2) The shear resistance characteristics are calculated considering the case of
a thick plate (SPLATE ≥ d1).
Rax,d = min
(3) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
96 | HBS PLATE | CARPENTRY
Rax,k kmod γM Rtens,k γM2
• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Sizing and verification of the timber elements, panels and steel plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • For different calculation methods, the MyProject software is available free of charge (www.rothoblaas.com).
HBS PLATE EVO
1002
CERTIFIED
C4 COATING
BIT INCLUDED
COATING
ETA-11/0030
PAN HEAD SCREW HBS P EVO Designed for outdoor steel-to-timber joints: the thickness of the shoulder screw is increased for completely safe, reliable fastening plates to the timber. The small sizes (5,0 and 6,0 mm) are also ideal for timber-to-timber joints.
C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.
AGGRESSIVE WOODS Ideal for applications with woods containing tannin or treated with impregnating agents or other chemical processes.
CHARACTERISTICS FOCUS
corrosiveness class C4
HEAD
shoulder for plate
DIAMETER
from 5,0 to 10,0 mm
LENGTH
from 40 to 180 mm
MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.
FIELDS OF USE • timber based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.
98 | HBS PLATE EVO | CARPENTRY
GEOMETRY AND MECHANICAL CHARACTERISTICS AP
AT tK
H
t1
dUK
dS
dK
P
BS
BS
d2 d1
X X
P
H
dK
d2 d1
X X
tK
t1
b
dUK
dS
b L
L HBS P EVO - 5,0 | 6,0 mm Nominal diameter Head diameter Tip diameter Shank diameter Head thickness Washer thickness Underhead diameter Pre-drilling hole diameter(1) Characteristic yield moment Characteristic withdrawal-resistance parameter(2) Associated density Characteristic head-pull-through parameter(2) Associated density Characteristic tensile strength
HBS P EVO - 8,0 | 10,0 mm d1 dK d2 dS t1 tK dUK dV
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
5 9,65 3,40 3,65 5,50 1,00 6,0 3,0
6 12,00 3,95 4,30 6,50 1,50 8,0 4,0
8 14,50 5,40 5,80 8,00 3,40 10,00 5,0
10 18,25 6,40 7,00 10,00 4,35 12,00 6,0
My,k
[Nm]
5,4
9,5
20,1
35,8
fax,k
[N/mm2]
11,7
11,7
11,7
11,7
ρa
[kg/m3]
350
350
350
350
fhead,k
[N/mm2]
10,5
10,5
10,5
10,5
ρa
[kg/m3]
350
350
350
350
ftens,k
[kN]
7,9
11,3
20,1
31,4
(1)
Pre-drilling valid for softwood. Valid for softwood - maximum density 440 kg/m3. For applications with different materials or with high density please see ETA-11/0030. (2)
CODES AND DIMENSIONS d1
CODE
[mm] [in] 5 0.20 TX 25 6 0.24 TX 30 8 0.32 TX 40
L [mm]
b [in]
AT
[mm] [mm]
AP
pcs
[mm]
50 1 15/16 30 60 2 3/8 35 70 2 3/4 40 80 3 1/8 50
20 25 30 30
HBSPEVO680
80
3 1/8
50
30
1.0 ÷ 10.0 100
HBSPEVO690
90
3 1/2
55
35
1.0 ÷ 10.0 100
HBSPEVO840 HBSPEVO860 HBSPEVO880 HBSPEVO8100
40 1 9/16 60 2 3/8 80 3 1/8 100 4
32 52 55 75
-
1.0 ÷ 15.0 1.0 ÷ 15.0 1.0 ÷ 15.0 1.0 ÷ 15.0
CODE
L
[mm] [in]
HBSPEVO550 HBSPEVO560 HBSPEVO570 HBSPEVO580
1.0 ÷ 10.0 1.0 ÷ 10.0 1.0 ÷ 10.0 1.0 ÷ 10.0
d1
200 200 100 100
100 100 100 100
8 0.32 TX 40
10 0.40 TX 40
b
[mm] [in] [mm] HBSPEVO8120 HBSPEVO8140 HBSPEVO8160 HBSPEVO1060 HBSPEVO1080 HBSPEVO10100 HBSPEVO10120 HBSPEVO10140 HBSPEVO10160 HBSPEVO10180
120 140 160 60 80 100 120 140 160 180
4 3/4 5 1/2 6 1/4 2 3/8 3 1/8 4 4 3/4 5 1/2 6 1/4 7 1/8
95 110 130 52 60 75 95 110 130 150
AP
pcs
[mm] 1.0 ÷ 15.0 100 1,0 ÷ 20,0 100 1,0 ÷ 20,0 100 1.0 ÷ 15.0 50 1.0 ÷ 15.0 50 1.0 ÷ 15.0 50 1.0 ÷ 15.0 50 1,0 ÷ 20,0 50 1,0 ÷ 20,0 50 1,0 ÷ 20,0 50
TYP R Ideal for fastening standard Rothoblaas plates in outdoor environments. The 5 mm diameter version is ideal for fastening patio deck planks.
CARPENTRY | HBS PLATE EVO | 99
MINIMUM DISTANCES FOR SHEAR LOADS
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE d1
[mm]
a1
[mm]
a2
[mm]
3∙d
15
18
a3,t
[mm]
12∙d
60
72
a3,c
[mm]
7∙d
35
42
a4,t
[mm]
3∙d
15
18
a4,c
[mm]
3∙d
15
18
d1
[mm]
a1
[mm]
12∙d
60
a2
[mm]
5∙d
25
5∙d
SCREWS INSERTED WITH PRE-DRILLING HOLE
5
6
8
10
5
6
8
10
25
30
40
50
4∙d
20
24
32
40
24 96
30
4∙d
20
24
32
40
120
7∙d
35
42
56
70
56 24
70
7∙d
35
42
56
70
30
7∙d
35
42
56
70
24
30
3∙d
15
18
24
30
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5
6
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
8
10
5
72
96
120
5∙d
25
30
40
50
5∙d
25
6
8
10
30
40
50
30
40
50
a3,t
[mm]
15∙d
75
90
120
150
10∙d
50
60
80
100
a3,c
[mm]
10∙d
50
60
80
100
10∙d
50
60
80
100
a4,t
[mm]
5∙d
25
30
40
50
10∙d
50
60
80
100
a4,c
[mm]
5∙d
25
30
40
50
5∙d
25
30
40
50
d = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: • Minimum distances are in accordance with EN 1995:2014 as per ETA-11/0030 considering a timber characteristic density of ρ k ≤ 420 kg/m3. • In the case of joints with elements in Douglas fir, the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
100 | HBS PLATE EVO | CARPENTRY
• The minimum spacing for all panel-to-timber connections(a1 , a2) can be multiplied by a coefficient of 0,85.
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
thin steel-timber thick steel-timber plate(2) plate(3)
panel-to-timber(1)
timber-to-timber
TENSION
Splate
A
thread withdrawal(4)
head pull-through (5)
Splate
L b d1
d1
L
b
A
RV,k
RV,k
RV,k
RV,k
RV,k
Rax,k
Rhead,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
[kN]
[kN]
[kN]
2,25
2,03
1,13
2,33
2,37
1,13
1,12
2,42
2,71
1,13
1,51
1,05
1,12
2,08
2,59
3,38
1,13
80
50
30
2,02
1,51
1,58
2,76
3,48
4,06
1,75
90
55
35
2,18
3,58
4,47
1,75
40
32
8
1,18
3,66
3,47
2,55
60
52
8
1,18
5,12
5,63
2,55
80
55
25
2,67
5,45
5,96
2,55
100
75
25
2,67
5,99
8,12
2,55
120
95
25
2,67
6,53
10,29
2,55
140
2,32
2,38
5,37
2,83
6,94
11,91
2,55
130
30
2,83
2,32
2,38
5,60
7,48
14,08
2,55
60
52
8
1,38
-
-
3,80
6,31
7,04
4,05
80
60
20
3,45
2,55
3,12
100
75
25
3,77
120
95
25
3,77
110
30
3,91
160
130
30
3,91
180
150
30
3,91
2,55 2,55 2,55 2,55
3,12 3,12 3,12 3,12 3,12
5,60
5,18 6,56 7,26 7,77 8,09
SPLATE = 10,0 mm
30
SPLATE = 5,0 mm
110
2,55
2,38
4,83
160
140
2,32
2,38
3,31 4,29
SPLATE = 8,0 mm
2,32
2,38
2,86 2,13
SPLATE = 4,0 mm
2,32
SPAN = 18 mm
SPAN = 15 mm
-
1,58
1,91
SPLATE = 6,0 mm
1,51
30
SPLATE = 3,0 mm
30
50
SPAN = 15 mm
40
1,51
1,12
1,74 1,82
70
SPAN = 12 mm
1,05
1,12
SPAN = 18 mm
10
1,05
80
6
8
1,05
SPLATE = 5,0 mm
1,43
SPLATE = 2,5 mm
1,29
25
SPAN = 12 mm
20
35
SPAN = 9 mm
30
SPAN = 15 mm
5
50 60
8,09
7,74
8,12
4,05
8,26
10,15
4,05
8,93
12,86
4,05
9,44
14,89
4,05
10,12
17,60
4,05
10,80
20,31
4,05
NOTES:
GENERAL PRINCIPLES:
(1) The characteristic shear resistances are calculated considering an OSB3 or
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN. (2) The shear resistance characteristics are calculated considering the case of
• Design values can be obtained from characteristic values as follows:
a thin plate (SPLATE ≤ 0,5 d1). (3) The shear resistance characteristics are calculated considering the case of
a thick plate (SPLATE ≥ d1). (4) The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b. (5) The axial resistance to head pull-through was calculated using timber ele-
ments. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
Rd =
Rk kmod γM
• The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Sizing and verification of the timber elements, panels and steel plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
CARPENTRY | HBS PLATE EVO | 101
LBS
AC233 ESR-4645
BIT INCLUDED
ROUND HEAD SCREW FOR PLATES SCREW FOR PERFORATED PLATES Cylindrical shoulder designed for fastening metal elements. Achieves an interlocking effect with the hole in the plate, thus guaranteeing excellent static performance.
STATICS Can be calculated according to Eurocode 5 under thick plate timber-tosteel connections, even with thin metal elements. Excellent shear strength values.
DUCTILITY The bending angle is 20° greater than standard, certified according to ETA-11/0030. Cyclical SEISMIC-REV tests according to EN 12512.
CHARACTERISTICS FOCUS
screw for perforated plates
HEAD
round with cylindrical underhead
DIAMETER
5,0 | 7,0 mm
LENGTH
from 25 to 100 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE • timber based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.
102 | LBS | CARPENTRY
ETA-11/0030
GEOMETRY AND MECHANICAL CHARACTERISTICS dUK d2 d1
dK b L
t1
Nominal diameter
d1
[mm]
5
7
Head diameter
dK
Tip diameter
d2
[mm]
7,80
11,00
[mm]
3,00
4,40
Underhead diameter
dUK
[mm]
4,90
7,00
Head thickness
t1
[mm]
2,40
3,50
Pre-drilling hole diameter(1)
dV
[mm]
3,0
4,0
My,k
[Nm]
5,4
14,2
fax,k
[N/mm2]
11,7
11,7
Associated density
ρa
[kg/m3]
350
350
Characteristic head-pull-through parameter(2)
fhead,k
[N/mm2]
10,5
10,5
Associated density
ρa
[kg/m3]
350
350
Characteristic tensile strength
ftens,k
[kN]
7,9
15,4
Characteristic yield moment Characteristic withdrawal-resistance parameter(2)
(1)
Pre-drilling valid for softwood. Valid for softwood - maximum density 440 kg/m3. For applications with different materials or with high density please see ETA-11/0030. (2)
CODES AND DIMENSIONS d1
CODE
[mm] [in]
5 0.20 TX 20
L [mm]
b [in]
pcs
[mm]
d1
CODE
[mm] [in]
LBS525
25
1
21
500
LBS540
40
1 9/16
36
500
LBS550
50
1 15/16
46
200
LBS560
60
2 3/8
56
200
LBS570
70
2 3/4
66
200
7 0.28 TX 30
L
b
pcs
[mm]
[in]
[mm]
LBS760
60
2 3/8
55
100
LBS780
80
3 1/8
75
100
LBS7100
100
4
95
100
ALUMAXI Values also tested, certified and calculated for fastening standard Rothoblaas plates. The 7 mm diameter version is ideal for joining the ALUMAXI concealed beam hanger.
CARPENTRY | LBS | 103
MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE d1
[mm]
SCREWS INSERTED WITH PRE-DRILLING HOLE
5
7
18
25
4∙d ∙ 0,7
5
7
14
20
a1
[mm]
5∙d ∙ 0,7
a2
[mm]
3∙d ∙ 0,7
11
15
4∙d ∙ 0,7
14
20
a3,t
[mm]
12∙d
60
84
7∙d
35
49
a3,c
[mm]
7∙d
35
49
7∙d
35
49
a4,t
[mm]
3∙d
15
21
7∙d
35
49
a4,c
[mm]
3∙d
15
21
3∙d
15
21
d1
[mm]
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5
7
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5
7
a1
[mm]
12∙d ∙ 0,7
42
59
5∙d ∙ 0,7
18
25
a2
[mm]
5∙d ∙ 0,7
18
25
5∙d ∙ 0,7
18
25
a3,t
[mm]
15∙d
75
105
10∙d
50
70
a3,c
[mm]
10∙d
50
70
10∙d
50
70
a4,t
[mm]
5∙d
25
35
10∙d
50
70
a4,c
[mm]
5∙d
25
35
5∙d
25
35
d = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: • The minimum distances are compliant with EN 1995:2014, according to ETA, considering a timber characteristic density of ρk ≤ 420 kg/m3 and calculation diameter of d = nominal screw diameter.
104 | LBS | CARPENTRY
• In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be multiplied by a coefficient of 1,5.
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR steel-to-timber(1)
geometry
SPLATE L
b
d1
d1
L
b
[mm]
[mm]
[mm]
-
2,71
2,71
2,71
2,71
2,71
2,69
2,68
55
2,86
2,81
2,98
3,37
3,79
4,21
4,18
75 95
3,81 4,25
2,55
3,80 4,25
geometry
2,39 2,55
3,88 4,38
2,39 2,55
4,13 4,63
2,39 2,55
4,38 4,87
2,38 2,54
4,66 5,10
SPLATE = 8,0 mm
66
80
2,39
SPLATE = 7,0 mm
70 60
2,55
SPLATE = 6,0 mm
56
SPLATE = 5,0 mm
46
SPLATE = 4,0 mm
50 60
100
2,39
SPLATE = 6,0 mm
-
SPLATE = 5,0 mm
2,23
SPLATE = 4,0 mm
2,24
SPLATE = 3,0 mm
1,56 2,24
SPLATE = 2,5 mm
1,58 2,24
SPLATE = 2,0 mm
1,59 2,24
SPLATE = 1,5 mm
21 36
SPLATE = 3,0 mm
7
25 40
SPLATE = 2,0 mm
5
RV,k [kN]
2,36 2,52
4,63 5,08
SHEAR
TENSION
timber-to-timber
thread withdrawal(2)
A L
b
d1
d1
L
b
A
RV,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
25 40 50 60 70 60 80 100
21 36 46 56 66 55 75 95
15 20 25 30 25 35 45
1,01 1,11 1,24 1,35 1,91 2,25 2,49
1,33 2,27 2,90 3,54 4,17 4,86 6,63 8,40
5
7
Rax,k
NOTES: (1) The characteristic shear-strength value for LBS Ø5 nails has been evaluated
assuming a plate thickness = SPLATE, always considering the case of thick plate according to ETA-11/0030 (SPLATE ≥ 1,5 mm).
The characteristic shear-strength value for LBS Ø7 screws has been evaluated assuming a plate thickness = SPLATE , and considering the thin (SPLATE ≤ 0,5 d1), intermediate (0,5 d1 < SPLATE < d1) or thick (SPLATE ≥ d1) plate case scenario.
(2) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b.
GENERAL PRINCIPLES:
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. • Dimensioning and verification of timber elements and steel plates must be carried out separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
CARPENTRY | LBS | 105
LBA HIGH BOND NAIL ANKER NAIL Threaded annular ring nail for improved pull-out strength.
CE MARKING Nails with CE marking, in accordance with ETA for fastening metallic plates to timber structures.
STAINLESS STEEL Also available in A4 | AISI316 stainless steel.
CHARACTERISTICS FOCUS
threaded, annular ring nail
HEAD
flat
DIAMETER
4,0 | 6,0 mm
LENGTH
from 40 to 100 mm
MATERIAL Carbon steel with bright zinc plated or stainless steel A4.
FIELDS OF USE • timber based panels • fibre board and MDF panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL Service classes 1 and 2.
106 | LBA | CARPENTRY
GEOMETRY AND MECHANICAL CHARACTERISTICS | LBA d1 dE
dK b
t1
L
Nominal diameter
d1
[mm]
4
6
Head diameter
dK
[mm]
8,00
12,00
External diameter
dE
[mm]
4,40
6,65
Head thickness
t1
[mm]
1,40
2,00
Pre-drilling hole diameter
dV
[mm]
3,0
4,5
My,k
[Nm]
6,5
19,0
fax,k
[N/mm2]
7,5
7,5
ftens,k
[kN]
6,9
11,4
Characteristic yield moment Characteristic withdrawal-resistance parameter Characteristic tensile strength
CODES AND DIMENSIONS LBA d1
CODE
[mm] [in]
4 0.16
6 0.24
A4
LBAI A4 | AISI316 L
b
pcs
[mm]
[in]
[mm]
LBA440
40
1 9/16
30
250
LBA450
50
1 15/16
40
250
LBA460
60
2 3/8
50
250
LBA475
75
2 15/16
60
250
100
4
80
250
LBA660
60
2 3/8
50
250
LBA680
80
3 1/8
70
250
LBA6100
100
4
80
250
L
4 0.16
LBAI450
4-6
[mm]
[in]
[mm]
50
1 15/16
40
pcs
250
ANKER COIL NAIL - K34° d1
CODE
L
[mm] L
4 d
34°
pcs
[mm] HH20006080 HH20006085 HH20006090
trigger
pcs
CODE
[mm] HH3731
b
40 50 60
2000 2000 2000
0116 ANKER RIVETER 34°
3731 PALMAR RIVETER dNAIL
CODE
[mm] [in]
LBA4100
CODE
d1
AISI 316
dNAIL
trigger
pcs
single
1
[mm] single
1
ATEU0116
4
WHT Values also tested, certified and calculated for fastening standard Rothoblaas plates. Using a handheld riveter speeds up installation.
CARPENTRY | LBA | 107
MINIMUM DISTANCES FOR NAILS SUBJECT TO SHEAR | STEEL-TO-TIMBER
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
NAILS INSERTED WITH PRE-DRILLING HOLES d1
[mm]
4
a1
[mm]
5∙d ∙ 0,7
a2
[mm]
a3,t
[mm]
a3,c a4,t
NAILS INSERTED WITH PRE-DRILLING HOLES
6
4
21
4∙d ∙ 0,7
3∙d ∙ 0,7
13
12∙d
72
28
7∙d
42
12
3∙d
18
12
3∙d
18
3∙d
6
14
5∙d ∙ 0,7
3∙d ∙ 0,7
8
12∙d
48
[mm]
7∙d
[mm]
3∙d
a4,c
[mm]
3∙d
d1
[mm]
a1
[mm]
10∙d ∙ 0,7
28
12∙d ∙ 0,7
50
5∙d ∙ 0,7
14
5∙d ∙ 0,7
21
a2
[mm]
5∙d ∙ 0,7
14
5∙d ∙ 0,7
21
5∙d ∙ 0,7
14
5∙d ∙ 0,7
21
a3,t
[mm]
15∙d
60
15∙d
90
10∙d
40
10∙d
60
a3,c
[mm]
10∙d
40
10∙d
60
10∙d
40
10∙d
60
a4,t
[mm]
5∙d
20
5∙d
30
7∙d
28
10∙d
60
a4,c
[mm]
5∙d
20
5∙d
30
5∙d
20
5∙d
30
NAILS INSERTED WITHOUT PRE-DRILLING HOLE 4
11
4∙d ∙ 0,7
4∙d ∙ 0,7
11
4∙d ∙ 0,7
17
7∙d
28
7∙d
42
7∙d
28
7∙d
42
5∙d
20
7∙d
42
12
3∙d
18
17
NAILS INSERTED WITHOUT PRE-DRILLING HOLE
6
4
6
d = nominal nail diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: • The minimum distances are compliant with EN 1995:2014, according to ETA, considering a timber characteristic density of ρ k ≤ 420 kg/m3 and calculation diameter of d = nominal nail diameter.
108 | LBA | CARPENTRY
• In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be multiplied by a coefficient of 1,5.
STATIC VALUES | STEEL-TO-TIMBER
CHARACTERISTIC VALUES EN 1995:2014
geometry
SHEAR
TENSION
steel-to-timber(1)
thread withdrawal(2)
SPLATE L b
d1
[mm]
RV,k
Rax,k
[mm]
[kN]
[kN]
2,00
1,98
1,95
1,92
0,97
2,34
2,34
2,34
2,34
2,34
1,30
2,99
2,99
2,99
2,99
2,59
2,57
3,43
4,29
4,25
80
70 80
3,47 4,30
2,66
3,45 4,30
2,50 2,66
4,23 4,79
geometry
2,50 2,66
5,03 5,28
2,50 2,66
5,03 5,28
2,50
2,50
1,62
2,66
1,94
2,99
2,99
2,59
4,21
4,17
2,43
5,03
3,40
5,28
3,89
2,66
5,03 5,28
SPLATE = 6,0 mm
2,99
50
100
2,50
SPLATE = 5,0 mm
80
60
2,66
SPLATE = 4,0 mm
100 6
2,50
SPLATE = 3,0 mm
60
SPLATE = 2,5 mm
50
75
SPLATE = 2,0 mm
60
SPLATE = 6,0 mm
2,02
2,34
SPLATE = 5,0 mm
2,03
2,34
SPLATE = 4,0 mm
2,05
40
SPLATE = 3,0 mm
30
50
SPLATE = 2,5 mm
40
SPLATE = 2,0 mm
4
b
SPLATE = 1,5 mm
[mm]
L
SPLATE = 1,5 mm
d1
SHEAR
TENSION
steel-to-LVL (1)
thread withdrawal(2)
SPLATE L b
d1
[kN]
40
30
2,47
2,45
2,43
2,41
2,38
2,34
2,31
1,16
50
40
2,66
2,66
2,66
2,66
2,66
2,66
2,66
1,54
60
50
2,86
2,86
2,86
2,86
2,86
2,86
2,86
1,93
75
60
3,05
2,32
100
80
3,43
3,09
60
50
3,23
3,20
4,17
5,17
5,12
5,07
5,02
2,90
80
70
4,33
4,30
5,01
5,75
5,75
5,75
5,75
4,06
100
80
4,95
4,95
5,50
6,04
6,04
6,04
6,04
4,63
6
3,43
3,05 3,43
3,05 3,43
3,05 3,43
3,05 3,43
SPLATE = 6 mm
3,43
3,05
[kN]
SPLATE = 5 mm
3,05
Rax,k
SPLATE = 4 mm
4
SPLATE = 3 mm
RV,k
SPLATE = 2,5 mm
b [mm]
SPLATE = 2 mm
L [mm]
SPLATE = 1,5 mm
d1 [mm]
NOTES:
GENERAL PRINCIPLES:
(1) T he characteristic shear-strength value for LBA Ø4 nails has been evaluated
• C haracteristic values are consistent with EN 1995:2014 and in accordance with ETA.
assuming a plate thickness = SPLATE , always considering the case of thick plate according to ETA (SPLATE ≥ 1,5 mm). The characteristic shear-strength value for LBA Ø6 screws has been evaluated assuming a plate thickness = SPLATE , and considering the thin (SPLATE ≤ 2,0 mm), and thick-plate case scenarios (2,0 < SPLATE < 3,0 mm) according to ETA (SPLATE ≥ 3,0 mm).
(2) The axial thread-withdrawal resistance was calculated considering a 90°
angle between the grain and the connector and for a fixing length of b.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • F or the calculation process, a mass density equal to ρk = 385 kg/m3 has been considered for timber elements and a mass density equal to ρk = 480 kg/m3 has been considered for LVL elements. • Dimensioning and verification of timber elements and steel plates must be carried out separately. • The shear characteristic resistances are calculated for nails inserted without pre-drilling holes. In the case of nails inserted with pre-drilling holes, greater resistance values can be obtained.
CARPENTRY | LBA | 109
MINIMUM DISTANCES FOR NAILS SUBJECT TO SHEAR | CLT(1)
d1
[mm]
a1
[mm]
a2
[mm]
a3,t
[mm]
a3,c
[mm]
a4,t a4,c
Load-to-grain angle (2) α = 0°
Load-to-grain angle (2) α = 90°
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
lateral face(3)
lateral face(3)
4
6
4
6
4∙d
24
36
2.5∙d
12
18
10∙d
12
18
4∙d
12
18
6∙d
40
6∙d
24
60
12∙d
28
42
36
7∙d
24
[mm]
36
6∙d
[mm]
2.5∙d
12
18
6∙d
28
42
12
18
3∙d
12
18
d = nominal screw diameter
a1 a3,t
α F
F α
α a3,c
F
F α tCLT
a2
a4,t
a4,c
NOTES: (1) The minimum distances are compliant with national specification ÖNORM
EN 1995-1-1 - Annex K and are to be considered valid unless otherwise specified in the technical documents for the CLT panels. (2) Angle between force and direction of the grain of the CLT panel outer layer.
110 | LBA | CARPENTRY
(3) CLT panel minimum thickness t
ness ti = 9 mm.
CLT,min = 10·d - single layer minimum thick-
STATIC VALUES | STEEL-TO-CLT
CHARACTERISTIC VALUES EN 1995:2014 SHEAR (1) steel-to-CLT(2)
geometry of the nail
SPLATE
L b
Fv
Fv d1
RV,k
d1
L
b
[mm]
[mm]
[mm]
40
30
2,23
2,23
2,23
2,23
2,23
2,19
2,15
50
40
2,30
2,30
2,30
2,30
2,30
2,30
2,30
60
50
100
80
4,66
4,66
4,55 4,66
4,55 4,66
2,43
SPLATE = 6,0 mm
2,36
2,55
4,18
4,08
3,96
4,55 4,66
4,55 4,66
NOTES :
GENERAL PRINCIPLES: • Design values can be obtained from characteristic values as follows:
(2) The characteristic values for the steel-CLT joint are according to
EN 1995-1-1 according to the national ÖNORM EN 1995 - Annex K specifications, to be considered valid unless otherwise specified in the technical documents of the CLT panels. The table values are valid for CLT panels with minimum thickness tCLT,min = 10·d and with minimum thickness of the single layer ti = 9 mm.
Rd =
2,43
2,55
(1) The characteristic shear-strength value for LBA Ø4 nails has been evaluated
assuming a plate thickness = SPLATE, always considering the case of thick plate according to ETA (SPLATE ≥ 1,5 mm). The characteristic shear-strength value for LBA Ø6 screws has been evaluated assuming a plate thickness = SPLATE , and considering the thin (SPLATE ≤ 2,0 mm), and thick-plate case scenarios (2,0 < SPLATE < 3,0 mm) according to ETA (SPLATE ≥ 3,0 mm).
2,36
2,55
SPLATE = 12,0 mm
4,29
4,55
2,43
SPLATE = 5,0 mm
4,34
4,55
2,36
SPLATE = 10,0 mm
4,35
70
SPLATE = 4,0 mm
4,35
50
2,43
SPLATE = 8,0 mm
SPLATE = 3,0 mm
2,55 SPLATE = 6,0 mm
2,55 SPLATE = 5,0 mm
2,55 SPLATE = 4,0 mm
2,55 SPLATE = 3,0 mm
60 80
60
2,43
2,36
75
80
2,43
2,36
100 6
2,43
2,36
SPLATE = 2,5 mm
2,36
SPLATE = 2,0 mm
SPLATE = 1,5 mm
4
[kN]
4,53 4,66
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical strength values and the geometry of the nails, reference was made to ETA. • For the calculation process a timber characteristic density ρ k = 350 kg/m3 has been considered. • The values in the table are independent of the load-to-grain angle. • Dimensioning and verification of timber elements and steel plates must be carried out separately. • The shear characteristic resistances are calculated for nails inserted without pre-drilling holes. In the case of nails inserted with pre-drilling holes, greater resistance values can be obtained.
CARPENTRY | LBA | 111
KOP
EN 14592
COACH SCREW DIN571 CE MARKING Screws with the CE mark, in accordance with EN 14592.
HEXAGONAL HEAD Appropriate for use on plates in steel-to-timber applications, thanks to its hexagonal head.
OUTDOOR VERSION Also available in stainless steel A2 | AISI304 for outdoor use (service class 3).
CHARACTERISTICS FOCUS
coach screw with CE marking
HEAD
hexagonal
DIAMETER
from 8,0 to 16,0 mm
LENGTH
from 50 to 400 mm
MATERIAL Available in carbon steel with bright zinc plated and in stainless steel A2.
FIELDS OF USE • timber based panels • fibre board and MDF panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL Service classes 1 and 2.
112 | KOP | CARPENTRY
GEOMETRY AND MECHANICAL CHARACTERISTICS A
d2 d1 SW
k
dS
b L
Nominal diameter Wrench size Head thickness Tip diameter Shank diameter Diameter pre-drilling hole - smooth part Diameter pre-drilling hole - threaded part Thread length Characteristic yield moment Characteristic withdrawal-resistance parameter Associated density Characteristic head-pull-through parameter Associated density Characteristic tensile strength
d1 SW k d2 dS dV1 dV2 b My,k
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [Nm]
8 13 5,50 5,60 8,00 8,0 5,5
10 17 7,00 7,00 10,00 10,0 7,0
12 19 8,00 9,00 12,00 12,0 8,5
16 24 10,00 12,00 16,00 16,0 11,0
16,9
32,2
fax,k
[N/mm2]
65,7
138,0
ρa
[kg/m3]
12,9
10,6
10,2
10,0
400
400
440
360
fhead,k
[N/mm2]
22,8
19,8
16,4
16,5
ρa
[kg/m3]
440
420
430
430
ftens,k
[kN]
15,7
23,6
37,3
75,3
≥ 0,6 L
CODES AND DIMENSIONS d1
CODE
[mm] [in]
8 0.32 SW 13
10 0.40 SW 17
12 0.48 SW 19
KOP850( * ) KOP860 KOP870 KOP880 KOP8100 KOP8120 KOP8140 KOP8160 KOP8180 KOP8200 KOP1050( * ) KOP1060( * ) KOP1080 KOP10100 KOP10120 KOP10140 KOP10150 KOP10160 KOP10180 KOP10200 KOP10220 KOP10240 KOP10260 KOP10280 KOP10300 KOP1250( * ) KOP1260( * ) KOP1270( * ) KOP1280 KOP1290 KOP12100 KOP12120 KOP12140
L
pcs
[mm]
[in]
50 60 70 80 100 120 140 160 180 200 50 60 80 100 120 140 150 160 180 200 220 240 260 280 300 50 60 70 80 90 100 120 140
1 15/16 2 3/8 2 3/4 3 1/8 4 4 3/4 5 1/2 6 1/4 7 1/8 8 1 15/16 2 3/8 3 1/8 4 4 3/4 5 1/2 6 6 1/4 7 1/8 8 8 5/8 9 1/2 10 1/4 11 11 3/4 1 15/16 2 3/8 2 3/4 3 1/8 3 1/2 4 4 3/4 5 1/2
d1
CODE
[mm] [in] 100 100 100 100 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 25 25 25 25
KOP12150 KOP12160 KOP12180 KOP12200 KOP12220 KOP12240 12 KOP12260 0.48 SW 19 KOP12280 KOP12300 KOP12320 KOP12340 KOP12360 KOP12380 KOP12400 KOP1680( * ) KOP16100( * ) KOP16120 KOP16140 KOP16150 KOP16160 KOP16180 KOP16200 16 KOP16220 0.63 SW 24 KOP16240 KOP16260 KOP16280 KOP16300 KOP16320 KOP16340 KOP16360 KOP16380 KOP16400 (*)
L
pcs
[mm]
[in]
150 160 180 200 220 240 260 280 300 320 340 360 380 400 80 100 120 140 150 160 180 200 220 240 260 280 300 320 340 360 380 400
6 6 1/4 7 1/8 8 8 5/8 9 1/2 10 1/4 11 11 3/4 12 5/8 13 3/8 14 1/4 15 15 3/4 3 1/8 4 4 3/4 5 1/2 6 6 1/4 7 1/8 8 8 5/8 9 1/2 10 1/4 11 11 3/4 12 5/8 13 3/8 14 1/4 15 15 3/4
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
Not holding CE marking.
CARPENTRY | KOP | 113
A2 | AISI304 VERSION CODES AND DIMENSIONS
A2
AISI 304
d1
CODE
L
[mm] [in]
[mm]
[in]
50
1 15/16
100
AI571860
60
2 3/8
100
AI571880
80
3 1/8
100
AI571850 8 0.32 SW 13
10 0.40 SW 17
pcs
d1
CODE
L
[mm] [in]
AI5718100
100
4
50
AI5718120
120
4 3/4
50
AI5711050
50
1 15/16
50
AI5711060
60
2 3/8
50
AI5711080
80
3 1/8
50
AI57110100
100
4
50
AI57110120
120
4 3/4
50
AI57110140
140
5 1/2
50
AI57110160
160
6 1/4
50
AI57110180
180
7 1/8
50
AI57110200
200
8
50
[mm]
[in]
100
4
25
AI57112120
120
4 3/4
25
AI57112140
140
5 1/2
25
AI57112160
160
6 1/4
25
AI57112180
180
7 1/8
25
AI57112100 12 0.48 SW 19
pcs
The stainless steel screws have not been granted the CE mark.
MINIMUM DISTANCES FOR SHEAR LOADS
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE d1
[mm]
8
10
12
16
SCREWS INSERTED WITH PRE-DRILLING HOLE 8
10
12
16
a1
[mm]
5∙d
40
50
60
80
4∙d
32
40
48
64
a2
[mm]
4∙d
32
40
48
64
4∙d
32
40
48
64
a3,t
[mm]
7∙d (min. 80 mm)
80
80
84
112
7∙d (min. 80 mm)
80
80
84
112
a3,c
[mm]
4∙d
32
40
48
64
7∙d
56
70
84
112
a4,t
[mm]
3∙d
24
30
36
48
4∙d
32
40
48
64
a4,c
[mm]
3∙d
24
30
36
48
3∙d
24
30
36
48
d = nominal nail diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: • Minimum distances in accordance with EN 1995:2014. • For KOP screws with a diameter of d > 6 mm, a pre-drill is required as per EN 1995:2014: - pre-drill hole for smooth part of the shank, dimensions matching that of the shank itself, depth equal to the length of the shank.
114 | KOP | CARPENTRY
- pre-drill hole for the threaded portion, equal to approximately 70% of the shank diameter.
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR timber-to-timber α = 0°(1)
geometry
timber-to-timber α = 90°(2)
TENSION
thin steel-timber plate(3)
thick steel-timber plate(4)
Splate
A
thread withdrawal(5)
head pull-through(6)
Splate
L b d1
b(7)
A
RV,k
RV,k
RV,k
RV,k
Rax,k
Rhead,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
[kN]
[kN]
50
30
20
2,96
2,23
2,64
3,75
2,78
3,54
60
36
24
3,28
2,68
3,22
4,38
3,34
3,54
3,51
4,56
3,90
3,54
4,70
4,45
3,54
4,98
5,56
3,54
5,25
6,68
3,54
5,53
7,79
3,54
28
3,55
2,87
32
3,78
3,01
100
60
40
3,96
3,32
120
72
48
3,96
3,42
140
84
56
3,96
3,42
3,65 3,93 4,20 4,48
160
96
64
3,96
3,42
4,76
5,81
8,90
3,54
180
108
72
3,96
3,42
5,04
6,09
10,02
3,54
200
120
80
3,96
3,42
5,07
6,37
11,13
3,54
50
30
20
3,48
2,56
3,10
4,65
2,86
5,45
60
36
24
4,18
3,07
3,79
5,30
3,43
5,45
80
48
32
5,01
4,01
4,97
6,56
4,57
5,45
100
60
40
5,78
4,56
5,26
6,84
5,72
5,45
120
72
48
6,05
4,92
5,54
7,13
6,86
5,45
5,83
140
84
56
6,05
5,19
150
90
60
6,05
5,19
160
96
64
6,05
5,19
180
108
72
6,05
5,19
200
120
80
6,05
5,19
220
132
88
6,05
5,19
240
144
96
6,05
5,19
5,97 6,12 6,40
SPLATE = 10 mm
10
42 48
SPLATE = 5 mm
8
70 80
SPLATE = 8 mm
L
SPLATE = 4 mm
d1
7,42
8,00
5,45
7,56
8,57
5,45
7,70
9,14
5,45
7,99
10,29
5,45
8,27
11,43
5,45
6,97
8,56
12,57
5,45
7,26
8,85
13,72
5,45
6,69
260
156
104
6,05
5,19
7,54
9,13
14,86
5,45
280
168
112
6,05
5,19
7,66
9,42
16,00
5,45
300
180
120
6,05
5,19
7,66
9,70
17,15
5,45
NOTES: (1) The characteristic shear resistance values are calculated using an angle α be-
tween the strength and the grain of 0°.
(2) The characteristic shear resistance values are calculated using an angle α be-
tween the strength and the grain of 90°.
(3) The shear resistance characteristics are calculated considering the case of
(6) The axial resistance to head pull-through was calculated using timber ele-
ments. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through. (7) During calculation, a thread length of b = 0,6 L is used, with the exception
of the measures (*).
a thin plate (SPLATE ≤ 0,5 d1). (4) The shear resistance characteristics are calculated considering the case of
a thick plate (SPLATE ≥ d1). (5) The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
CARPENTRY | KOP | 115
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR timber-to-timber α = 0° (1)
geometry
timber-to-timber α = 90° (2)
TENSION
thin steel-timber plate(3)
thick steel-timber plate(4)
Splate
A
thread withdrawal(5)
head pull-through(6)
Splate
L b d1
d1
L
b(7)
A
RV,k
RV,k
RV,k
RV,k
Rax,k
Rhead,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
[kN]
[kN]
50
30
20
4,01
2,89
3,49
6,10
3,06
5,54
60
36
24
4,81
3,46
4,28
6,67
3,67
5,54
70
42
28
5,61
4,04
5,07
7,36
4,28
5,54
80
48
32
6,42
4,62
5,86
8,12
4,89
5,54
54
36
6,92
5,19
6,66
8,94
5,50
5,54
60
40
7,20
5,63
7,40
9,78
6,12
5,54
120
72
48
7,82
6,02
7,70
10,13
7,34
5,54
84
56
8,50
6,41
8,01
10,44
8,56
5,54
150
90
60
8,64
6,62
8,16
10,59
9,17
5,54
160
96
64
8,64
6,84
180
108
72
8,64
7,25
8,31
200
120
80
8,64
7,25
220
132
88
8,64
7,25
240
144
96
8,64
7,25
9,54
260
156
104
8,64
7,25
9,84
8,62 8,92 9,23
SPLATE = 12 mm
140
SPLATE = 6 mm
12
90 100
10,74
9,78
5,54
11,05
11,01
5,54
11,36
12,23
5,54
11,66
13,45
5,54
11,97
14,68
5,54
12,27
15,90
5,54
280
168
112
8,64
7,25
10,15
12,58
17,12
5,54
300
180
120
8,64
7,25
10,45
12,88
18,35
5,54
320
192
128
8,64
7,25
10,76
13,19
19,57
5,54
340
195 *
145
8,64
7,25
10,84
13,27
19,88
5,54
360
195 *
165
8,64
7,25
10,84
13,27
19,88
5,54
380
195 *
185
8,64
7,25
10,84
13,27
19,88
5,54
400
195 *
205
8,64
7,25
10,84
13,27
19,88
5,54
NOTES: (1) The characteristic shear resistance values are calculated using an angle α be-
(5) The axial thread withdrawal resistance was calculated considering a 90° an-
(2) The characteristic shear resistance values are calculated using an angle α be-
(6) The axial resistance to head pull-through was calculated using timber ele-
tween the strength and the grain of 0°.
tween the strength and the grain of 90°.
(3) The shear resistance characteristics are calculated considering the case of
a thin plate (SPLATE ≤ 0,5 d1). (4) The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1).
116 | KOP | CARPENTRY
gle between the grain and the connector and for a fixing length of b. ments. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through. (7) During calculation, a thread length of b = 0,6 L is used, with the exception
of the measures (*).
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR timber-to-timber α = 0° (1)
geometry
timber-to-timber α = 90° (2)
TENSION
thin steel-timber plate(3)
thick steel-timber plate(4)
Splate
A
thread withdrawal(5)
head pull-through(6)
Splate
L b d1
d1
L
b(7)
A
RV,k
RV,k
RV,k
RV,k
Rax,k
Rhead,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
[kN]
[kN]
48
32
8,49
6,03
6,99
11,17
7,51
8,89
60
40
10,48
7,42
8,93
13,02
9,39
8,89
72
48
11,43
8,46
10,87
15,10
11,26
8,89
84
56
12,18
9,28
12,70
16,59
13,14
8,89
150
90
60
12,58
9,50
12,93
16,83
14,08
8,89
160
96
64
12,99
9,72
13,16
17,06
15,02
8,89
180
108
72
13,86
10,20
13,63
17,53
16,89
8,89
200
120
80
14,09
10,72
220
132
88
14,09
11,26
240
144
96
14,09
11,63
260
156
104
14,09
11,63
14,10 14,57 15,04 15,51
SPLATE = 16 mm
120 140
SPLATE = 8 mm
16
80 100
18,00
18,77
8,89
18,47
20,65
8,89
18,94
22,53
8,89
19,41
24,40
8,89
280
168
112
14,09
11,63
15,98
19,88
26,28
8,89
300
180
120
14,09
11,63
16,45
20,35
28,16
8,89
320
192
128
14,09
11,63
16,92
20,82
30,04
8,89
340
204
136
14,09
11,63
17,39
21,29
31,91
8,89
360
205 *
155
14,09
11,63
17,43
21,33
32,07
8,89
380
205 *
175
14,09
11,63
17,43
21,33
32,07
8,89
400
205 *
195
14,09
11,63
17,43
21,33
32,07
8,89
NOTES:
GENERAL PRINCIPLES:
(1) The characteristic shear resistance values are calculated using an angle α
• Characteristic values according to EN 1995:2014.
between the strength and the grain of 0°.
(2) T he characteristic shear resistance values are calculated using an angle α
• Design values can be obtained from characteristic values as follows:
between the strength and the grain of 90°.
(3) The shear resistance characteristics are calculated considering the case of
a thin plate (SPLATE ≤ 0,5 d1). (4) The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1). (5) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b. (6) The axial resistance to head pull-through was calculated using timber ele-
ments. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through. (7) During calculation, a thread length of b = 0,6 L is used, with the exception
of the measures (*).
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
• F or the calculation process a timber characteristic density ρ k = 350 kg/m3 has been considered. • V alues were calculated considering the minimum threaded part as being completely inserted into the wood. • D imensioning and verification of timber elements and steel plates must be carried out separately. • The characteristic shear resistance values are calculated for screws inserted with pre-drilling hole.
CARPENTRY | KOP | 117
DRS TIMBER-TO-TIMBER SPACER SCREW DOUBLE THREAD, DIFFERENTIATED Underhead thread with specially designed geometry to create and regulate a space between the fastenable thicknesses.
VENTILATED FACADES The differentiated double thread is ideal for regulating the position of the battens on the facade and to create proper verticality. Ideal for levelling panelling, battens, ceilings and paving.
CODES AND DIMENSIONS d1
CODE
L
b
[mm]
[mm]
DRS680S
80
44
100
DRS6100S
100
56
100
DRS6120S
120
66
100
DRS6145S
145
66
100
[mm]
6 TX 30
pcs
MATERIAL Galvanized carbon steel.
FIELDS OF USE Thanks to the possibility to create a distance between pieces of wood, it is possible to create versatile fastenings quickly and safely, without the need for any interposed element.
118 | DRS | CARPENTRY
GEOMETRY d3
dS d2 d1
dK b
b1 L Nominal diameter
d1
[mm]
6
Head diameter
dK
[mm]
12,00
Tip diameter
d2
[mm]
3,90
Shank diameter
dS
[mm]
4,35
Underhead thread diameter
d3
[mm]
6,80
Length head + rings
b1
[mm]
21,0
INSTALLATION Select the screw length so that the thread is completely inserted in the timber support.
01
Position the DRS screw.
02
Attach the batten, screwing in the screw so that the head is flush with the timber.
03
Loosen the screw based on the desired distance.
04
Adjust the other screws in a similar manner to level the structure.
CARPENTRY | DRS | 119
DRT TIMBER-BRICKWORK SPACER SCREW DOUBLE THREAD, DIFFERENTIATED Underhead thread with specially designed geometry to create and regulate a space between the fastenable thicknesses.
FASTENING TO BRICKWORK Underhead thread with a greater diameter to allow fastening to brickwork through the addition of a plastic screw anchor.
CODES AND DIMENSIONS NDK GL NYLON SCREW ANCHOR d1
CODE
[mm] 6 TX 30
L
b
[mm]
[mm]
pcs
DRT680
80
50
100
DRT6100
100
60
100
DRT6120
120
70
100
CODE
d0
L
[mm]
[mm]
8
40
NDKG840
pcs 100
For fastening on concrete or brickwork, use of the NDK GL nylon screw anchor is recommended.
MATERIAL Galvanized carbon steel.
FIELDS OF USE The differentiated double thread is ideal for adjusting the position of timber elements on brickwork supports (using the plastic screw anchor) and to create the proper verticality. Ideal for levelling panels on walls, paving and ceilings.
120 | DRT | CARPENTRY
GEOMETRY d3
dS d2 d1
dK b
b1 L Nominal diameter
d1
[mm]
6
Head diameter
dK
[mm]
12,50
Tip diameter
d2
[mm]
3,90
Shank diameter
dS
[mm]
4,35
Underhead thread diameter
d3
[mm]
9,90
Diameter of concrete/brickwork opening
dV
[mm]
8,0
Length head + rings
b1
[mm]
22,0
INSTALLATION Select the screw length so that the thread is completely inserted in the concrete/brickwork support.
01
Drill the elements with a dV= 8,0 mm diameter.
05
Loosen the screw based on the desired distance.
02
Place the NDK GL nylon screw anchor inside the support.
03
Position the DRT screw.
04
Attach the batten, screwing in the screw so that the head is flush with the timber.
06
Adjust the other screws in a similar manner to level the structure.
CARPENTRY | DRT | 121
MBS SELF-TAPPING SCREW WITH CYLINDRICAL HEAD FOR MASONRY HI-LOW THREADING Appropriate for direct fastening on compact and semi-solid materials: natural stone, concrete, solid bricks and hollow bricks.
WOOD FRAMES Thanks to the cylindrical head, it is ideal for fastening wood frames directly to brickwork supports.
CODES AND DIMENSIONS d1
CODE
[mm]
7,5 TX 30
L
pcs
[mm] MBS7572
72
100
MBS7592
92
100
MBS75112
112
100
MBS75132
132
100
MBS75152
152
100
MBS75182
182
100
GEOMETRY
d1 L
Available also with countersunk flat head: suitable for of PVC and aluminum profile fastening.
MATERIAL Galvanized carbon steel.
FIELDS OF USE The HI-LOW thread allows for safe fastening even near the edges of the support, thanks to the reduced tension induced on the material, ideal for frames.
122 | MBS | CARPENTRY
INSTALLATION PARAMETERS Nominal diameter
d1
[mm]
7,5
Head diameter
dk
[mm]
8,0
d0
[mm]
6,0
df
[mm]
6,2
Diameter of pre-drilling hole concrete/brickwork Hole diameter in the element to be fastened
dK dF
hnom
d 1 dK d0 d F hnom
screw diameter head diameter diameter of pre-drilling hole concrete/brickwork hole diameter in the element to be fastened nominal anchoring depth
d1 dO
STATIC VALUES WITHDRAWAL RESISTANCE Type of support
hnom,min
Concrete Solid brick Hollow brick Light concrete
Nrec
[mm]
[kN]
30
0,76
40
0,29
80
1,79
40
0,05
60
0,21
80
0,12
INSTALLATION 01
02
03
04
CARPENTRY | MBS | 123
DWS DRYWALL SCREW OPTIMISED GEOMETRY Bugle head and phosphate-coated steel; ideal for fastening sheets of drywall.
FULLY FINE THREADED Fully fine threaded screw, ideal for fastening on sheet metal supports.
CODES AND DIMENSIONS d1
CODE
[mm]
L
4,2 PH 2
pcs
GEOMETRY
[mm] FE620001
3,5 PH 2
description
25
FE620005
35
FE620010
45
FE620015
55
FE620020
65
1000 sheet metal substructure
1000 d1
500 500
sheet metal substructure
L
200
MATERIAL Phosphate-coated carbon steel.
FIELDS OF USE Ideal for quickly and safely creating thermal and noise insulation.
124 | DWS | CARPENTRY
DWS COIL DWS COLLATED PLASTERBOARD SCREW OPTIMISED GEOMETRY Fully threaded screw with bugle head and phosphate-coated steel; ideal for fastening sheets of drywall and plaster fibre.
COLLATED VERSION Bound in plastic for quick, precise mass use.
CODES AND DIMENSIONS d1
CODE
[mm]
3,9 PH 2 3,9 PH 2
description
pcs
[mm] HH10600404
3,9 PH 2
L 30
HH10600405
35
HH10600406
45
HH10600401
30
HH10600402
35
HH10600403
45
HH10600397
30
HH10600398
35
10000 timber substructure
GEOMETRY
10000 10000 10000
sheet-metal substructure max 0,75 mm
10000
d1
10000 fermacell
L
10000 10000
MATERIAL Phosphate-coated carbon steel.
FIELDS OF USE Ideal for fastening sheets of drywall or plaster fibre to sheet metal substructures (maximum 0,75 mm).
CARPENTRY | DWS COIL | 125
THERMOWASHER WASHER TO FASTEN INSULATION TO TIMBER CE FASTENING WITH HBS SCREWS The THERMOWASHER is intended for use with screws with the CE marking in accordance with ETA. Ideal for Ø6 or Ø8 HBS screws, with lengths based on the thickness of the insulation to be fastened.
ANTI-THERMAL BRIDGE Incorporated hole cover to avoid thermal bridges. Large cable spaces for proper plaster adhesion. Has a system that prevents the screw from pulling out.
CODES AND DIMENSIONS CODE THERMO65
dSCREW
axbxc
[mm]
[mm]
6/8
65 x 4 x 20
pcs 700
MATERIAL Propylene (PP) system.
FIELDS OF USE The Ø65 propylene washer is compatible with Ø6 and Ø8 screws; it is suitable for any type of insulation and any type of fixture thickness.
126 | THERMOWASHER | CARPENTRY
ISULFIX
ETA
ANCHOR FOR FASTENING INSULATION TO BRICKWORK CERTIFICATE Anchor with the CE mark in accordance with ETA, with certified resistance values. Double expansion with preassembled steel nails allows for fast versatile fastening on concrete and brickwork.
DOUBLE EXPANSION Ø8 PVC double expansion anchor with preassembled steel nails, for fastening to concrete and brickwork. Can be used, with an additional washer, on particularly soft insulating materials.
CODES AND DIMENSIONS CODE
L
dHOLE
dHEAD
A
[mm]
[mm]
[mm]
[mm] 80
250
8
60
120
150
160
100
ISULFIX8110
110
ISULFIX8150
150
ISULFIX8190
190
CODE
dHEAD
pcs
description
pcs
additional washer for soft insulation
250
[mm] ISULFIX90
90
A= maximum fastening thickness
MATERIAL PVC system with carbon steel nail.
FIELDS OF USE Anchor available in various measurements for different insulation thicknesses; can be used with an additional washer for use with soft insulation; method of use and certified laying possibilities indicated in the relative ETA document.
CARPENTRY | ISULFIX | 127
STRUCTURES
STRUCTURES
STRUCTURES
VGZ FULL THREADED SCREW WITH CYLINDRICAL HEAD. . . . . . . . . 138
VGZ EVO FRAME MINI FULL THREADED SCREW WITH CYLINDRICAL HEAD. . . . 162
VGZ EVO FULL THREADED SCREW WITH CYLINDRICAL HEAD. . . . . . . . . 170
VGZ HARDWOOD FULLY THREADED SCREW FOR HARDWOODS . . . . . . . . . . . . . . . 176
VGS FULLY THREADED SCREW WITH COUNTERSUNK OR HEXAGONAL HEAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
VGU 45° WASHER FOR VGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
RTR STRUCTURAL REINFORCEMENT SYSTEM . . . . . . . . . . . . . . . . . . 206
DGZ DOUBLE THREADED SCREW FOR INSULATION . . . . . . . . . . . . . 210
SBD SELF-DRILLING DOWEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
CTC CONNECTOR FOR TIMBER-TO-CONCRETE FLOORS. . . . . . . . 224
SKR | SKS CONCRETE SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
SKR-E | SKS-E SCREW ANCHOR FOR CONCRETE CE1. . . . . . . . . . . . . . . . . . . . . 236
STRUCTURES | 131
STRUCTURAL CONNECTORS STRENGTH AND STIFFNESS
STRENGTH Partially thread screw Concentration of stresses in the localised area in the direction of the load. Resistance connected to the bearing stress of the walls of the hole in the timber and the bending of the screw.
SCREWS FOR SHEAR LOADS
H
B
S
X X
RESISTANCE PROPORTIONAL TO THE DIAMETER
Total thread connectors Stress distributed along the entire threaded surface. High resistance connected to the timber cylinder affected by tangential stresses.
CONNECTORS STRESSED AXIALLY
RESISTANCE PROPORTIONAL TO THE THREADED LENGTH
APPLICATION EXAMPLE CONNECTION WITH HBS PARTIALLY THREAD SCREWS
more screws and more deformation
132 | STRUCTURAL CONNECTORS | STRUCTURES
CONNECTION WITH VGZ TOTAL THREAD CONNECTORS
fewer connectors and less deformation
A new approach for modern screws, conceived as connectors able to guarantee excellent static performance, taking advantage of the axial capacity.
RIGIDITY Partially thread screw RIGIDITY
F F
DUCTILITY • screws for shear loads
s
• high slip • low rigidity • high ductility
Total thread connectors
F RIGIDITY
F
DUCTILITY • connectors stressed axially
s
• limited slip • high rigidity
EXPERIMENTAL BEHAVIOUR The rigidity of the connection is conventionally identified by the slope of the elastic portions of the monotonic load-slip curve. The graph refers to shear tests to control displacement for HBS screws under lateral stress (shear) and crossed VGZ screws stressed axially.
F - load [kN]
• reduced ductility
kSER VGZ kSER HBS
A
A
B
B
s - slip [mm]
STRUCTURES | STRUCTURAL CONNECTORS | 133
SCREWS STRESSED AXIALLY TENSILE AND COMPRESSION STRENGTH The strength is proportional to the length of the thread and thus high performance can be achieved with smaller diameters.
DETERMINING RESISTANCE To verify the resistance of screws stressed axially, the determining value is the lower between:
STEEL tension / head separation, instability
THREAD withdrawal
HEAD pull-through
resistance 100%
strength 30-100% function of thread L
resistance 10%
For total thread connectors, the resistance to head pull-through (binding in the case of partial thread screws) is considered unimportant and, instead, the high resistance to thread withdrawal is considered, which is expressed both for tensile and compression stress.
APPLICATION EXAMPLE TIMBER-TO-TIMBER SHEAR CONNECTION
Connection with VGZ total thread connectors
Fc
Ft
Ft
Fc
134 | SCREWS STRESSED AXIALLY | STRUCTURES
Connection with HBS partially thread screws
Fc =0
Ft
Ft
JOINTS WITH DIFFERENT TYPES OF CONNECTORS "When a connection includes different types of connectors or connector types with different rigidities, it is recommended that the compatibility of these types be verified [EN 1995:2014]." In practice, this means that it is not allowed to use different fastening systems to transfer a single stress (e.g. F shear). The global resistance is not the sum of the individual resistances.
APPLICATION EXAMPLE Transfer of shear force F through connectors stressed axially
SOLUTION A 2 crossed connectors
BREAKDOWN OF THE FORCES
RESULT R = F
F
F 1 screw under tension
R
+
1 compressed screw
SOLUTION B 2 parallel connectors
BREAKDOWN OF THE FORCES
RESULT R = F
F
F 2 screws under tension
+
R/2 + R/2 = R*
* to be added to any contribution from friction
direct contact: wood compressed
STRUCTURES | SCREWS STRESSED AXIALLY | 135
STRUCTURAL REINFORCEMENT RESPONSE TO STRESS
Wood is an anisotropic material. Therefore, it has different mechanical characteristics depending on the direction of the grain and the stress.
The anisotropy of the material derives from its cellular organisation: wood consists of layers of fibres welded to each other by lignin and can be compared to extremely thin straws, known as tracheids. The physical structure determines the mechanical characteristics of the wood: • great resistance and rigidity for stresses in the direction of the axis of the fibres; • reduced efficiency for stresses perpendicular to the direction of the fibres, in particular for tensile stresses.
01 | 02
In the context of reinforcements, the main mono-axial stresses to which wood may be subjected are:
01 | 02 TENSION PERPENDICULAR TO THE FIBRES 03 COMPRESSION PERPENDICULAR TO THE FIBRES
03
04 LONGITUDINAL SHEAR
04
136 | STRUCTURAL REINFORCEMENT | STRUCTURES
01
FAILURE
REINFORCEMENT
REINFORCEMENT FOR TENSION PERPENDICULAR TO THE FIBRES NOTCH
Resistance influenced above all by cracks, knots, resin channels. Markedly fragile behaviour.
02
FAILURE
REINFORCEMENT
REINFORCEMENT FOR TENSION PERPENDICULAR TO THE FIBRES HANGING LOAD
Failure can occur in the case in which the load applied affects a height limited by the main beam (a/h ≤ 0,7). Markedly fragile behaviour.
03
FAILURE
REINFORCEMENT
REINFORCEMENT FOR COMPRESSION PERPENDICULAR TO THE FIBRES - RESTING
Crushing and severing of the fibres in the area where the forces are introduced (e.g. supports). Sufficiently ductile behaviour.
04
FAILURE
REINFORCEMENT
REINFORCEMENT FOR LONGITUDINAL SHEAR
Collapse near the neutral axis, mutual sliding of the two parts of the section. Beam subject to flexion: tense area or support area. Markedly fragile behaviour.
STRUCTURES | STRUCTURAL REINFORCEMENT | 137
VGZ
AC233 ESR-4645
BIT INCLUDED
FULL THREADED SCREW WITH CYLINDRICAL HEAD TENSION Deep thread and high resistance steel (fy,k = 1000 N/mm2) for excellent tensile performance. Very broad range of measurements.
STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°). Reduced minimum distances.
CYLINDRICAL HEAD Ideal for concealed joints, timber couplings and structural reinforcements. Guarantees fire protection and earthquake suitability. Cyclical SEISMIC-REV tests according to EN 12512.
CHROMIUM (VI) FREE Total absence of hexavalent chromium. Compliance with the strictest regulations governing chemical substances (SVHC). REACH information available.
CHARACTERISTICS FOCUS
45° connections, reinforcements and couplings
HEAD
cylindrical, countersunk
DIAMETER
5,3 | 5,6 | 7,0 | 9,0 | 11,0 mm
LENGTH
from 80 to 600 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE • timber based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.
138 | VGZ | STRUCTURES
ETA-11/0030
STRUCTURAL RESTORATION Ideal for coupling beams in structural renovations and new works. Can also be used parallel to the grain thanks to the special approval.
CLT, LVL Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL.
STRUCTURES | VGZ | 139
Very high stiffness in side-by-side joining of CLT floors. Application with double inclination at 45°, perfect for building using the JIG VGZ template.
Reinforcement orthogonal to grain for hanging load due to joining of main-secondary beams.
GEOMETRY AND MECHANICAL CHARACTERISTICS
Z V
d2 d1
X
G
X
X
dK
b L
Nominal diameter
d1
[mm]
5,3
5,6
7
9
11
Head diameter
dK
[mm]
8,00
Tip diameter
d2
[mm]
3,60
8,00
9,50
11,50
13,50
3,80
4,60
5,90
6,60
dV
[mm]
3,5
3,5
4,0
5,0
6,0
My,k
[Nm]
9,2
10,6
14,2
27,2
45,9
fax,k
[N/mm2]
11,7
11,7
11,7
11,7
11,7
Associated density
ρa
[kg/m3]
350
350
350
350
350
Characteristic withdrawal-resistance parameter(3)
fax,k
[N/mm2]
15,0
15,0
15,0
15,0
15,0
Associated density
ρa
[kg/m3]
500
500
500
500
500
Characteristic tensile strength
ftens,k
[kN]
11,0
12,3
15,4
25,4
38,0
Characteristic yield strength
fy,k
[N/mm2]
1000
1000
1000
1000
1000
Pre-drilling hole
diameter(1)
Characteristic yield moment Characteristic withdrawal-resistance parameter(2)
(1)
Pre-drilling valid for softwood. Valid for softwood - maximum density 440 kg/m3. (3) Valid for softwood LVL - maximum density 550 kg/m3 . For applications with different materials or with high density please see ETA-11/0030. (2)
140 | VGZ | STRUCTURES
CODES AND DIMENSIONS d1
CODE
[mm] [in] 5,3 0.21 TX 25 5,6 0.23 TX 25
7 0.28 TX 30
L
b
pcs
d1
CODE
[mm]
[in]
[mm]
VGZ580
80
3 1/8
70
50
[mm] [in] VGZ9160
VGZ5100
100
4
90
50
VGZ5120
120
4 3/4
110
50
VGZ5140
140
5 1/2
130
L
b
pcs
[mm]
[in]
[mm]
160
6 1/4
150
25
VGZ9180
180
7 1/8
170
25
VGZ9200
200
8
190
25
50
VGZ9220
220
8 5/8
210
25
VGZ5160
160
6 1/4
150
50
VGZ9240
240
9 1/2
230
25
VGZ780
80
3 1/8
70
25
VGZ9260
260
10 1/4
250
25
VGZ7100
100
4
90
25
VGZ7120
120
4 3/4
110
25
VGZ7140
140
5 1/2
130
25
VGZ7160
160
6 1/4
150
25
VGZ7180
180
7 1/8
170
25
VGZ7200
200
8
190
25
VGZ7220
220
8 5/8
210
VGZ7240
240
9 1/2
230
VGZ7260
260
10 1/4
VGZ9280
280
11
270
25
VGZ9300
300
11 3/4
290
25
VGZ9320
320
12 5/8
310
25
VGZ9340
340
13 3/8
330
25
VGZ9360
360
14 1/4
350
25
VGZ9380
380
15
370
25
25
VGZ9400
400
15 3/4
390
25
25
VGZ9440
440
17 1/4
430
25
250
25
VGZ9480
480
19
470
25
9 0.36 TX 40
VGZ7280
280
11
270
25
VGZ9520
520
20 1/2
510
25
VGZ7300
300
11 3/4
290
25
VGZ11250
250
10
240
25
VGZ7340
340
13 3/8
330
25
VGZ11300
300
11 3/4
290
25
VGZ7380
380
15
370
25
VGZ11350
350
13 3/4
340
25
VGZ11400
400
15 3/4
390
25
VGZ11450
450
17 3/4
440
25
VGZ11500
500
19 3/4
490
25
VGZ11550
550
21 5/8
540
25
VGZ11600
600
23 5/8
590
25
11 0.44 TX 50
JIG VGZ 45° TEMPLATE
CODE JIGVGZ45
description
pcs
steel template for VGZ screws at 45°
1
Further information on page 367.
JIG VGZ 45° TEMPLATE Installation at 45° using the JIG VGZ steel template.
STRUCTURES | VGZ | 141
EFFECTIVE THREAD USED IN CALCULATION 10
Sg
Tol.
Sg
b = L - 10 mm
10
represents the entire length of the threaded part
S g = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm
b L
The timber to timber withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.
MINIMUM DISTANCES FOR SHEAR LOADS (1)
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE d1
[mm]
a1
[mm]
a2
[mm]
SCREWS INSERTED WITH PRE-DRILLING HOLE
5,3
5,6
7
9
11
5∙d
27
28
35
45
55
3∙d
16
17
21
27
33
5,3
5,6
7
9
11
4∙d
21
22
28
36
44
4∙d
21
22
28
36
44
a3,t
[mm]
12∙d
64
67
84
108
132
7∙d
37
39
49
63
77
a3,c
[mm]
7∙d
37
39
49
63
77
7∙d
37
39
49
63
77
a4,t
[mm]
3∙d
16
17
21
27
33
7∙d
37
39
49
63
77
a4,c
[mm]
3∙d
16
17
21
27
33
3∙d
16
17
21
27
33
d1
[mm]
a1
[mm]
12∙d
a2
[mm]
5∙d
a3,t
[mm]
a3,c
[mm]
a4,t
[mm]
a4,c
[mm]
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5,3
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
5,6
7
9
11
5,3
5,6
7
9
11
64
67
84
108
132
5∙d
27
28
35
45
55
27
28
35
45
55
5∙d
27
28
35
45
55
15∙d
80
84
105
135
165
10∙d
53
56
70
90
110
10∙d
53
56
70
90
110
10∙d
53
56
70
90
110
5∙d
27
28
35
45
55
10∙d
53
56
70
90
110
5∙d
27
28
35
45
55
5∙d
27
28
35
45
55
d = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: (1) The minimum distances are in accordance with EN 1995:2014 considering a timber characteristic density of ρk ≤ 420 kg/m3.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
142 | VGZ | STRUCTURES
• The minimum spacing for all panel-to-timber connections(a1 , a2) can be multiplied by a coefficient of 0,85.
MINIMUM DISTANCES FOR AXIAL STRESSES (2)
SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE d1
[mm]
a1
[mm]
a2
5,3
5,6
7
9
11
5∙d
27
28
35
45
55
[mm]
5∙d
27
28
35
45
55
(3)
[mm]
2.5∙d
13
14
18
23
28
a1,CG (4)
[mm]
10∙d
53
56
70
90
110
(5)
[mm]
4∙d
21
22
28
36
44
[mm]
1.5∙d
8
8
11
14
17
a2,LIM a2,CG
aCROSS
SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN
a2,CG a2,CG
a2,CG a2 a2,CG
a2
a2,CG
a2,CG a1,CG
1
a1
a
a2,CG a1,CG
a1,CG
a2,CG a1,CG
plan
front
SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN
plan
front
CROSSED SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN
a2,CG
45°
a2 a2,CG
a2,CG a1,CG
aCROSS a2,CG
a1 a1,CG
plan
a1
front
plan
front
NOTES: (2) The minimum distances for connectors stressed axially are independent of
(5) For main beam-secondary beam joints with VGZ screws d = 7 mm inclined
the insertion angle of the connector and the angle of the force with respect to the grain, in accordance with ETA-11/0030.
or crossed, inserted at an angle of 45° to the secondary beam head, with a minimum secondary beam height of 18 d, the minimum distance a2 CG can be taken equal to 3∙d 1 .
(3) The axial distance a can be reduced down to 2,5 d if for each connector a 2 1 “joint surface” a1∙a2 = 25∙d1 2 is maintained. (4) For main beam-secondary beam joints with VGZ screws d = 7 mm inclined
or crossed, inserted at an angle of 45° to the secondary beam head, with a minimum secondary beam height of 18 d, the minimum distance at 1,CG can be taken equal to 8∙d1 .
STRUCTURES | VGZ | 143
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 TENSION(1) total thread withdrawal(2)
geometry
partial thread withdrawal(2)
steel tension
estrazione estrazione filetto filetto parziale parziale
L
Sg
A
Sg
A
A
d1
timber d1
L
b
A min
[mm]
[mm]
[mm]
80
70
5,3
5,6
7
9
timber
steel
Rax,k
Rtens,k
[mm]
[kN]
[kN]
45
1,67
Rax,k
Sg
A min
[mm]
[kN]
[mm]
90
4,68
25
100
90
110
6,02
35
55
2,34
120
110
130
7,36
45
65
3,01
140
130
150
9,19
55
75
3,89
160
150
170
10,61
65
85
4,60
80
70
90
6,19
25
45
2,21
100
90
110
7,96
35
55
3,09
120
110
130
9,72
45
65
3,98
140
130
150
11,49
55
75
4,86
160
150
170
13,26
65
85
5,75
180
170
190
15,03
75
95
6,63
200
190
210
16,79
85
105
7,51
220
210
230
18,56
95
115
8,40
240
230
250
20,33
105
125
9,28
260
250
270
22,10
115
135
10,16
280
270
290
23,87
125
145
11,05
300
290
310
25,63
135
155
11,93
340
330
350
29,17
155
175
13,70
380
370
390
32,70
175
195
15,47
160
150
170
17,05
65
85
7,39
180
170
190
19,32
75
95
8,52
200
190
210
21,59
85
105
9,66
220
210
230
23,87
95
115
10,80
240
230
250
26,14
105
125
11,93
260
250
270
28,41
115
135
13,07
280
270
290
30,68
125
145
14,21
300
290
310
32,96
135
155
15,34
320
310
330
35,23
145
165
16,48
340
330
350
37,50
155
175
17,61
360
350
370
39,78
165
185
18,75
380
370
390
42,05
175
195
19,89
400
390
410
44,32
185
205
21,02
440
430
450
48,87
205
225
23,30
480
470
490
53,41
225
245
25,57
520
510
530
57,96
245
265
27,84
144 | VGZ | STRUCTURES
11,00
12,30
15,40
25,40
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 TENSION(1) total thread withdrawal(2)
geometry
partial thread withdrawal(2)
steel tension
estrazione estrazione filetto filetto parziale parziale
L
Sg
A
Sg
A
A
d1
timber d1
L
b
A min
[mm]
[mm]
[mm]
250
240
11
timber
steel
Rax,k
Rtens,k
[mm]
[kN]
[kN]
130
15,28
Rax,k
Sg
A min
[mm]
[kN]
[mm]
260
33,34
110
300
290
310
40,28
135
155
18,75
350
340
360
47,22
160
180
22,22
400
390
410
54,17
185
205
25,70
450
440
460
61,11
210
230
29,17
500
490
510
68,06
235
255
32,64
550
540
560
75,00
260
280
36,11
600
590
610
81,95
285
305
39,59
38,00
NOTES: (1) The connector design resistance is the lowest between the timber side de-
(2) The axial resistance of the thread to withdrawal was calculated consider-
sign resistance (Rax,d) and the steel side resistance (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
ing a 90° angle between the fibres and the connector and for a effective thread length of b or Sg. For intermediate values of Sg it is possible to linearly interpolate.
STRUCTURES | VGZ | 145
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014
geometry
SHEAR
SLIDING
timber-to-timber
timber-to-timber(3)
S
g
A
Sg
45°
A
S
g
L B
Sg d1
d1
L
Sg
A min
RV,k
A min
Bmin
RV,k
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[mm]
[kN]
80
25
40
1,66
30
50
1,18
5,3
100
35
50
2,09
40
55
1,66
5,6
7
9
120
45
60
2,32
45
60
2,13
140
55
70
2,69
50
70
2,75
160
65
80
2,87
60
75
3,25
80
25
40
2,16
30
50
1,56
100
35
50
2,68
40
55
2,19
120
45
60
3,15
45
60
2,81
140
55
70
3,37
55
70
3,44
160
65
80
3,59
60
75
4,06
180
75
90
3,81
65
85
4,69
200
85
100
4,03
75
90
5,31
220
95
110
4,25
80
100
5,94
240
105
120
4,30
90
105
6,56
260
115
130
4,30
95
110
7,19
280
125
140
4,30
100
120
7,81
300
135
150
4,30
110
125
8,44
340
155
170
4,30
125
140
9,69
380
175
190
4,30
140
155
10,89
160
65
80
5,10
60
75
5,22
180
75
90
5,38
70
85
6,03
200
85
100
5,67
75
90
6,83
220
95
110
5,95
80
100
7,63
240
105
120
6,23
90
105
8,44
260
115
130
6,50
95
110
9,24
280
125
140
6,50
105
120
10,04
300
135
150
6,50
110
125
10,85
320
145
160
6,50
115
135
11,65
340
155
170
6,50
125
140
12,46
360
165
180
6,50
130
145
13,26
380
175
190
6,50
140
155
14,06
400
185
200
6,50
145
160
14,87
440
205
220
6,50
160
175
16,47
480
225
240
6,50
175
190
17,96
520
245
260
6,50
190
205
17,96
146 | VGZ | STRUCTURES
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014
geometry
SHEAR
SLIDING
timber-to-timber
timber-to-timber(3)
S
g
A
Sg
45°
A
S
g
L B
Sg d1
d1
L
Sg
A min
RV,k
A min
Bmin
RV,k
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[mm]
[kN]
11
250
110
125
8,35
95
110
10,80
300
135
150
9,06
115
125
13,26
350
160
175
9,06
130
145
15,71
400
185
200
9,06
150
160
18,17
450
210
225
9,06
165
180
20,63
500
235
250
9,06
185
195
23,08
550
260
275
9,06
200
215
25,54
600
285
300
9,06
220
230
26,87
NOTES:
GENERAL PRINCIPLES:
(3) The axial resistance of the thread withdrawal was calculated considering a
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
45° angle between the fibres and the connector and for an effective thread length of Sg.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. • Dimensioning and verification of the timber elements must be carried out separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.
STRUCTURES | VGZ | 147
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014
SHEAR CONNECTION WITH CROSSED CONNECTORS RIGHT-ANGLE JOINT - MAIN BEAM/SECONDARY BEAM d1
L
S g HT(1)
S g NT (1)
BHT,min
HHT,min = hNT,min
bNT,min
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
5,3
120
140
30
45
60
65
60
65
120
130
5,6 160
160
180
200
220
240
65
45
65
85
95
105
65
85
85
85
95
105
75
75
80
90
95
100
130
160
160
160
170
185
7 260
280
300
340
380
115
125
135
155
175
148 | VGZ | STRUCTURES
115
125
135
155
175
110
115
125
140
150
200
215
230
255
285
no. pairs
R1V,k (2)
R2V,k(2)
m(3) [mm]
[kN]
[kN]
withdrawal(4)
instability 8,2
50
1
2,8
77
2
5,3
15,3
103
3
7,7
22,0
53
1
4,5
9,2
81
2
8,4
17,1
109
3
12,2
24,6
53
1
6,5
9,2
81
2
12,1
17,1
109
3
17,6
24,6
53
1
5,6
13,6
88
2
10,5
25,4
123
3
15,2
36,6
53
1
8,1
13,6
88
2
15,2
25,4
123
3
21,9
36,6
53
1
10,6
13,6
88
2
19,8
25,4
123
3
28,7
36,6
53
1
11,9
13,6
88
2
22,2
25,4
123
3
32,1
36,6
53
1
13,1
13,6
88
2
24,5
25,4
123
3
35,4
36,6
53
1
14,4
13,6
88
2
26,8
25,4
123
3
38,8
36,6
53
1
15,6
13,6
88
2
29,2
25,4
123
3
42,2
36,6
53
1
16,9
13,6
88
2
31,5
25,4
123
3
45,6
36,6
53
1
19,4
13,6
88
2
36,2
25,4
123
3
52,3
36,6
53
1
21,8
13,6
88
2
40,6
25,4
123
3
58,8
36,6
56
59
59
74
74
74
81
88
95
102
109
124
138
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014
SHEAR CONNECTION WITH CROSSED CONNECTORS RIGHT-ANGLE JOINT - MAIN BEAM/SECONDARY BEAM d1
L
S g HT(1)
S g NT (1)
BHT,min
HHT,min = hNT,min
bNT,min
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
ì200
220
240
260
280
300
320
55
75
95
115
125
135
145
115
115
115
115
125
135
145
90
95
100
110
115
125
130
200
200
200
200
215
230
245
9 340
360
380
400
440
480
520
155
165
175
185
205
225
245
155
165
175
185
205
225
245
140
145
150
160
175
185
200
260
270
285
300
330
355
385
no. pairs
R1V,k (2)
R2V,k(2)
m(3) [mm]
[kN]
[kN]
withdrawal(4)
instability
8,8
22,9
86
1
131
2
16,5
42,7
176
3
23,9
61,5
86
1
12,1
22,9
131
2
22,5
42,7
176
3
32,5
61,5
86
1
15,3
22,9
131
2
28,5
42,7
176
3
41,2
61,5
86
1
18,5
22,9
131
2
34,5
42,7
176
3
49,9
61,5
86
1
20,1
22,9
131
2
37,5
42,7
176
3
54,2
61,5
86
1
21,7
22,9
131
2
40,5
42,7
176
3
58,6
61,5
86
1
23,3
22,9
131
2
43,5
42,7
176
3
62,9
61,5
86
1
24,9
22,9
131
2
46,5
42,7
176
3
67,3
61,5
86
1
26,5
22,9
131
2
49,5
42,7
176
3
71,6
61,5
86
1
28,1
22,9
131
2
52,5
42,7
176
3
75,9
61,5
86
1
29,7
22,9
131
2
55,5
42,7
176
3
80,3
61,5
86
1
32,9
22,9
131
2
61,5
42,7
176
3
89,0
61,5
86
1
35,9
22,9
131
2
67,0
42,7
176
3
97,0
61,5
86
1
35,9
22,9
131
2
67,0
42,7
176
3
97,0
61,5
96
96
96
96
103
110
117
124
131
138
145
160
174
188
NOTES: (1) The values given are calculated considering a distance a 1CG ≥ 5d. In some cases the asymmetrical laying of connectors is needed (Sg HT ≠ Sg NT ). (2) The compression design strength of the connector is the lower between the withdrawal-side design strength (R 1V,d) and the instability design strength (R 2V,d).
kmod RV,d = min
R1V,k kmod γM R2V,k γM1
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
(3) The assembly height (m) applies in the event of symmetrical installation of the flush connectors (Sg HT = Sg NT ) above the elements. In the case of asymmetric installation, it is necessary to provide for installation of the connectors on the main beam side with the head buried so as to guarantee the effective lengths (Sg HT, Sg NT ) indicated in the table. (4) The thread axial resistance to withdrawal has been evaluated considering an effective thread length equal to Sg. The connectors must be inserted at 45° with respect to the shear plane.
STRUCTURES | VGZ | 149
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014
SHEAR CONNECTION WITH CROSSED CONNECTORS RIGHT-ANGLE JOINT - MAIN BEAM/SECONDARY BEAM d1
L
S g HT(1)
S g NT (1)
BHT,min
HHT,min = hNT,min
bNT,min
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
225( * )
250
50
75
275( * )
300
100
125
325( * )
350
148
160
145
145
145
145
148
160
95
105
115
125
130
140
245
245
245
245
250
265
11 375( * )
400
450
500
550
600 ( * ) VGS
173
185
210
235
260
285
173
185
210
235
260
285
150
160
175
195
210
230
285
300
335
370
405
445
no. pairs
R1V,k (2)
R2V,k(2)
m(3) [mm]
[kN]
[kN]
withdrawal(4)
instability
9,8
29,2
105
1
160
2
18,3
54,4
215
3
26,5
78,4
105
1
14,7
29,2
160
2
27,5
54,4
215
3
39,8
78,4
105
1
19,6
29,2
160
2
36,7
54,4
215
3
53,0
78,4
105
1
24,6
29,2
160
2
45,8
54,4
215
3
66,3
78,4
105
1
29,0
29,2
160
2
54,1
54,4
215
3
78,2
78,4
105
1
31,4
29,2
160
2
58,6
54,4
215
3
84,9
78,4
105
1
33,9
29,2
160
2
63,2
54,4
215
3
91,5
78,4
105
1
36,3
29,2
160
2
67,8
54,4
215
3
98,1
78,4
105
1
41,3
29,2
160
2
77,0
54,4
215
3
111,4
78,4
105
1
46,2
29,2
160
2
86,1
54,4
215
3
124,6
78,4
105
1
51,1
29,2
160
2
95,3
54,4
215
3
137,9
78,4
105
1
53,7
29,2
160
2
100,3
54,4
215
3
145,1
78,4
118
118
118
118
120
129
137
146
164
182
199
217
connectors, see page 186.
NOTES: (1) The values given are calculated considering a distance a 1CG ≥ 5d. In some cases the asymmetrical laying of connectors is needed (Sg HT ≠ Sg NT ). (2) The compression design strength of the connector is the lower between the with-
(4) The thread axial resistance to withdrawal has been evaluated considering an effective thread length equal to Sg. The connectors must be inserted at 45° with respect to the shear plane.
drawal-side design strength (R 1V,d) and the instability design strength (R 2V,d).
kmod RV,d = min
R1V,k kmod γM R2V,k γM1
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
(3) The assembly height (m) applies in the event of symmetrical installation of the flush connectors (Sg HT = Sg NT ) above the elements. In the case of asymmetric installation, it is necessary to provide for installation of the connectors on the main beam side with the head buried so as to guarantee the effective lengths (Sg HT, Sg NT ) indicated in the table.
150 | VGZ | STRUCTURES
GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. • Dimensioning and verification of the timber elements must be carried out separately. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
MINIMUM DISTANCES FOR CROSS SCREWS SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE d1
[mm]
5,3
5,6
7
9
11
a2,CG
[mm]
4∙d
21
23
21( * )
36
44
aCROSS
[mm]
1.5∙d
8
8
11
14
17
e
[mm]
3,5∙d
19
20
25
32
39
( * ) For
main beam-secondary beam joints with VGZ screws d = 7 mm inclined or crossed, inserted at an angle of 45° to the secondary beam head, with a minimum secondary beam height of 18 d, the minimum distance a2,CG can be taken equal to 3∙d1 . PRE-DRILLING HOLE DIAMETER d1
[mm]
5,3
5,6
7
9
11
dV (pre-drill)
[mm]
3,5
3,5
4,0
5,0
6,0
Valid for softwood - maximum density 440 kg/m3.
SHEAR CONNECTION WITH CROSSED CONNECTORS - 1 PAIR m 90°
N
T
m
S
g
45°
HT
a2,CG
S
g
hNT
HHT
aCROSS
bNT
a2,CG
90° BHT
BHT section
plan
SHEAR CONNECTION WITH CROSSED CONNECTORS - 2 OR MORE PAIRS m
m N
T
90° a2,CG
HT
S
g
45°
aCROSS
S
g
hNT
HHT
e
bNT
aCROSS a2,CG
90° BHT
BHT section
plan
STRUCTURES | VGZ | 151
CALCULATION EXAMPLE: MAIN/SECONDARY BEAM CONNECTION WITH VGZ CROSS SCREWS
For different calculation configurations, the MyProject software is available (www.rothoblaas.com)
CALCULATION REPORT
152 | VGZ | STRUCTURES
MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT
d1
[mm]
a1
[mm]
a2
[mm]
a3,t
[mm]
a3,c
[mm]
a4,t a4,c
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
lateral face(1)
narrow face(2)
7
9
11
7
9
11
4∙d
28
36
44
2.5∙d
18
23
28
10∙d
70
90
110
4∙d
28
36
44
6∙d
42
54
6∙d
42
54
66
12∙d
84
108
132
66
7∙d
49
63
[mm]
77
6∙d
42
[mm]
2.5∙d
18
54
66
6∙d
42
54
66
23
28
3∙d
21
27
33
d = nominal screw diameter
a4,c
a4,t α
F
F
α
α
F α a3,c
a3,t
a2 a2
a2
a1
a1
a3,c a4,c
F
a3,t
F
a4,c
tCLT
a3,c a4,c a4,t
F
tCLT
NOTES: The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.
(1) Minimum CLT thickness t
min = 10∙d (2) Minimum CLT thickness t min = 10∙d and minimum screw pull-through depth tpen = 10∙d
STRUCTURES | VGZ | 153
MINIMUM DISTANCES FOR SHEAR LOADS | LVL
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE [mm]
a1
[mm]
a2
[mm]
7∙d
37
39
49
63
77
7∙d
37
39
49
63
77
a3,t
[mm]
20∙d
106
112
140
180
220
15∙d
80
84
105
135
165
a3,c
[mm]
15∙d
80
84
105
135
165
15∙d
80
84
105
135
165
a4,t
[mm]
7∙d
37
39
49
63
77
12∙d
64
67
84
108
132
a4,c
[mm]
7∙d
37
39
49
63
77
7∙d
37
39
49
63
77
15∙d
5,3
5,6
7
9
11
80
84
105
135
165
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1
7∙d
5,3
5,6
7
9
11
37
39
49
63
77
d = nominal screw diameter
a4,c
a4,t α
a2
F
F α a1
F
α
a3,t
α
a3,c
NOTES: Minimum distances are obtained from experimental tests carried out at Eurofins Expert Services Oy, Espoo, Finland (Report EUFI29-19000819-T1/T2).
154 | VGZ | STRUCTURES
a2 a2 F a1
MINIMUM DISTANCES FOR AXIAL STRESSES | LVL
d1
[mm]
a1
[mm]
a2
[mm]
a1,CG a2,CG
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
wide face
edge face(1)
7
9
7
9
5∙d
35
45
5∙d
35
45
10∙d
70
90
5∙d
35
[mm]
10∙d
70
45
90
12∙d
84
108
[mm]
4∙d
28
36
3∙d
21
27
d = nominal screw diameter
SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN (wide face)
a2,CG
a1,CG
a2,CG
t
a2 a2,CG
SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN (edge face)
a1,CG
a1
a1
a1,CG
plan a1,CG
a1
a1
a1,CG
plan
a1
a1
a1,CG
front
h
SCREWS INSERTED WITH α ANGLE WITH RESPECT TO THE GRAIN (wide face) l a2,CG
front
a2,CG
1
a
a2 a1,CG
a1,CG
plan
front
NOTES: The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the LVL panels.
(1) Minimum LVL thickness t min = 45 mm (d = 7 mm) or tmin = 57 mm (d = 9 mm). Minumum LVL height hmin = 100 mm (d = 7 mm) or tmin = 120 mm (d = 9 mm).
STRUCTURES | VGZ | 155
STATIC VALUES | CLT TENSION(1) total thread withdrawal(2) lateral face
geometry
L
total thread withdrawal(3) narrow face
Sg
b
partial thread withdrawal(2) lateral face
Sg
A
Sg
A
steel tension
A d1
d1 [mm]
7
9
11
L [mm]
b [mm]
A min [mm]
timber Rax,k [kN]
Sg [mm]
timber Rax,k [kN]
Sg [mm]
A min [mm]
timber Rax,k [kN] 2,05
80
70
90
5,73
70
4,34
25
45
100
90
110
7,37
90
5,44
35
55
2,87
120
110
130
9,01
110
6,52
45
65
3,69
140
130
150
10,65
130
7,58
55
75
4,50
160
150
170
12,29
150
8,62
65
85
5,32
180
170
190
13,92
170
9,65
75
95
6,14
200
190
210
15,56
190
10,67
85
105
6,96
220
210
230
17,20
210
11,67
95
115
7,78 8,60
240
230
250
18,84
230
12,67
105
125
260
250
270
20,48
250
13,65
115
135
9,42
280
270
290
22,11
270
14,63
125
145
10,24
300
290
310
23,75
290
15,61
135
155
11,06
340
330
350
27,03
330
17,53
155
175
12,69
380
370
390
30,30
370
19,43
175
195
14,33
160
150
170
15,80
150
10,54
65
85
6,84
180
170
190
17,90
170
11,80
75
95
7,90
200
190
210
20,01
190
13,04
85
105
8,95
220
210
230
22,11
210
14,27
95
115
10,00
240
230
250
24,22
230
15,49
105
125
11,06
260
250
270
26,33
250
16,69
115
135
12,11
280
270
290
28,43
270
17,89
125
145
13,16
300
290
310
30,54
290
19,08
135
155
14,22
320
310
330
32,64
310
20,26
145
165
15,27
340
330
350
34,75
330
21,43
155
175
16,32
360
350
370
36,86
350
22,60
165
185
17,37
380
370
390
38,96
370
23,76
175
195
18,43
400
390
410
41,07
390
24,91
185
205
19,48
440
430
450
45,28
430
27,20
205
225
21,59
480
470
490
49,49
470
29,47
225
245
23,69
520
510
530
53,70
510
31,71
245
265
25,80
250
240
260
30,89
240
18,89
110
130
14,16
300
290
310
37,32
290
22,40
135
155
17,37
350
340
360
43,76
340
25,85
160
180
20,59
400
390
410
50,19
390
29,25
185
205
23,81
450
440
460
56,63
440
32,60
210
230
27,03
500
490
510
63,06
490
35,92
235
255
30,24
550
540
560
69,50
540
39,20
260
280
33,46
600
590
610
75,93
590
42,45
285
305
36,68
steel Rtens,k [kN]
15,40
25,40
38,00
NOTES: (1) The connector design resistance is the lowest between the timber side de-
sign resistance and the steel side resistance.
Rax,d = min
Rax,k kkmod mod γM Rtens,k γM2
RV,d = min
R1V,k kmod γM R2V,k γM1
(2) The axial resistance of the thread to withdrawal was calculated considering
a 90° angle between the fibres and the connector and for a effective thread length of b or Sg.
For intermediate values of Sg it is possible to linearly interpolate.
156 | VGZ | STRUCTURES
(3) The axial thread withdrawal resistance is valid for minimum thickness of the
element of tmin = 10∙d and minimum screw pull-through depth tpen = 10∙d. (4) The characteristic shear strength is independent from the direction of the grain of the CLT panels outer layer. (5) The axial resistance of the thread withdrawal in the lateral face of the CLT
panel was calculated considering always a 45° angle between the fibres and the connector and for an effective thread length of Sg as it is impossible to define in advance the thickness and orientation of each layer.
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
SLIDING(5)
CLT - CLT(4) lateral face
Sg
CLT - CLT(4) lateral face - narrow face
A
A
CLT - CLT(4) lateral face - narrow face
A
A
Sg
CLT - CLT(4) lateral face - narrow face
A
Sg
Sg
Sg
Sg
Sg
Sg
R1V,k(1) [kN]
R2V,k(1) [kN]
withdrawal
instability
2,4
13,3
40
3,3
13,3
45
45
4,1
13,3
2,5
55
55
4,9
13,3
60
2,9
65
60
5,7
13,3
65
3,3
75
65
6,5
13,3
85
75
3,7
85
75
7,3
13,3 13,3
Sg [mm]
A min [mm]
RV,k [kN]
Sg [mm]
A min [mm]
RV,k [kN]
Sg [mm]
A min [mm]
RV,k [kN]
Sg [mm]
A min [mm]
25
40
2,02
25
40
1,32
25
30
1,2
25
30
35
50
2,49
35
50
1,74
35
40
1,6
35
45
60
2,97
45
60
2,01
45
45
2,1
55
70
3,18
55
70
2,30
55
55
65
80
3,38
65
80
2,60
65
75
90
3,59
75
90
2,80
75
85
100
3,79
85
100
2,94
95
110
4,00
95
110
3,07
95
80
4,0
95
80
8,1
105
120
4,10
105
120
3,21
105
90
4,4
105
90
8,8
13,3
115
130
4,10
115
130
3,29
115
95
4,8
115
95
9,6
13,3
125
140
4,10
125
140
3,29
125
100
5,2
125
100
10,3
13,3
135
150
4,10
135
150
3,29
135
110
5,5
135
110
11,1
13,3
155
170
4,10
155
170
3,29
155
125
6,3
155
125
12,6
13,3
175
190
4,10
175
190
3,29
175
140
7,0
175
140
14,0
13,3
65
80
4,81
65
80
3,24
65
60
3,5
65
60
7,0
22,4 22,4
75
90
5,07
75
90
3,59
75
70
4,0
75
70
8,0
85
100
5,34
85
100
3,94
85
75
4,5
85
75
8,9
22,4
95
110
5,60
95
110
4,19
95
80
4,9
95
80
9,9
22,4
105
120
5,86
105
120
4,35
105
90
5,4
105
90
10,8
22,4
115
130
6,13
115
130
4,52
115
95
5,9
115
95
11,7
22,4
125
140
6,20
125
140
4,68
125
105
6,3
125
105
12,7
22,4
135
150
6,20
135
150
4,84
135
110
6,8
135
110
13,6
22,4
145
160
6,20
145
160
4,88
145
115
7,2
145
115
14,5
22,4
155
170
6,20
155
170
4,88
155
125
7,7
155
125
15,4
22,4
165
180
6,20
165
180
4,88
165
130
8,1
165
130
16,2
22,4
175
190
6,20
175
190
4,88
175
140
8,6
175
140
17,1
22,4
185
200
6,20
185
200
4,88
185
145
9,0
185
145
18,0
22,4
205
220
6,20
205
220
4,88
205
160
9,9
205
160
19,7
22,4
225
240
6,20
225
240
4,88
225
175
10,7
225
175
21,5
22,4
245
260
6,20
245
260
4,88
245
190
11,6
245
190
23,2
22,4
110
125
7,86
110
125
5,69
110
95
6,6
110
95
13,2
28,5 28,5
135
150
8,64
135
150
6,17
135
115
8,0
135
115
15,9
160
175
8,64
160
175
6,63
160
130
9,3
160
130
18,6
28,5
185
200
8,64
185
200
6,71
185
150
10,6
185
150
21,1
28,5
210
225
8,64
210
225
6,71
210
165
11,8
210
165
23,7
28,5
235
250
8,64
235
250
6,71
235
185
13,1
235
185
26,2
28,5
260
275
8,64
260
275
6,71
260
200
14,4
260
200
28,7
28,5
285
300
8,64
285
300
6,71
285
220
15,6
285
220
31,2
28,5
GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard and national specification ÖNORM EN 1995 - Annex K in accordance with ETA-11/0030.
• For the calculation process a mass density ρk = 350 kg/m3 has been considered for CLT elements.
• Design values can be obtained from characteristic values as follows:
• Dimensioning and verification of the timber elements must be carried out separately.
Rk kmod Rd = γM The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane. • The screws must be positioned in accordance with the minimum distances.
STRUCTURES | VGZ | 157
STATIC VALUES | LVL SLIDING(1) LVL - LVL flat
geometry
A L
45°
Sg
b
Sg
B d1
d1 [mm]
7
9
L [mm] 80 100 120 140 160 180 200 220 240 260 280 300 340 380 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520
Sg [mm] 25 35 45 55 65 75 85 95 105 115 125 135 155 175 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245
A min [mm] 30 40 45 55 60 65 75 80 90 95 100 110 125 140 60 70 75 80 90 95 105 110 115 125 130 140 145 160 175 190
Bmin [mm] 50 55 60 70 75 85 90 100 105 110 120 125 140 155 75 85 90 100 105 110 120 125 135 140 145 155 160 175 190 205
LVL RV,k [kN] 1,44 2,01 2,59 3,16 3,74 4,31 4,89 5,46 6,04 6,61 7,19 7,76 8,91 10,06 4,80 5,54 6,28 7,02 7,76 8,50 9,24 9,98 10,72 11,46 12,20 12,93 13,67 15,15 16,63 17,96
steel Rtens,k 45°(5)
[kN]
10,89
17,96
NOTES: (1) The design sliding strength of the joint is either the timber-side design
strength (RV,d) and the steel design strength (Rtens,d 45°), whichever is lower.
RV,d = min
RV,k kmod γM Rtens,k 45° γM2
(2) The connector design resistance is the lowest between the timber side de-
sign resistance (Rax,d) and the steel side resistance (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
158 | VGZ | STRUCTURES
(3) The axial thread withdrawal resistance R ax,90,flat,k was calculated con-
sidering a 90° angle between the grain and the connector and for a fixing length of b in applications with both parallel and cross grain LVL.
(4) The axial thread withdrawal resistance R ax,90,edge,k was calculated con-
sidering a 90° angle between the grain and the connector and for a fixing length of b in applications with parallel grain LVL. Minimum height LVL hMIN= 100 mm for VGZ connectors Ø7 and hMIN = 120 mm for VGZ connectors Ø9.
(5) The connector tensile strength was calculated considering a 45° angle be-
tween the fibres and the connector
CHARACTERISTIC VALUES EN 1995:2014 TENSION(2) total thread withdrawal(3) flat
partial thread withdrawal(3) flat
thread withdrawal(4) edge
steel tension
t Sg
A
Sg
A
Sg
A
b [mm] 70 90 110 130 150 170 190 210 230 250 270 290 330 370 150 170 190 210 230 250 270 290 310 330 350 370 390 430 470 510
A min [mm] 90 110 130 150 170 190 210 230 250 270 290 310 350 390 170 190 210 230 250 270 290 310 330 350 370 390 410 450 490 530
LVL Rax,k [kN] 7,11 9,15 11,18 13,21 15,24 17,28 19,31 21,34 23,37 25,41 27,44 29,47 33,54 37,60 19,60 22,21 24,83 27,44 30,05 32,67 35,28 37,89 40,51 43,12 45,73 48,35 50,96 56,18 61,41 66,64
Sg [mm] 25 35 45 55 65 75 85 95 105 115 125 135 155 175 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245
A min [mm] 45 55 65 75 85 95 105 115 125 135 145 155 175 195 85 95 105 115 125 135 145 155 165 175 185 195 205 225 245 265
LVL Rax,k [kN] 2,54 3,56 4,57 5,59 6,61 7,62 8,64 9,65 10,67 11,69 12,70 13,72 15,75 17,78 8,49 9,80 11,11 12,41 13,72 15,03 16,33 17,64 18,95 20,25 21,56 22,87 24,17 26,79 29,40 32,01
Sg [mm] 70 90 110 130 150 170 190 210 230 250 270 290 330 370 150 170 190 210 230 250 270 290 310 330 350 370 390 430 470 510
tmin
[mm] 45 45 45 45 45 45 45 45 45 45 45 45 45 45 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
LVL Rax,k [kN] 4,74 6,10 7,45 8,81 10,16 11,52 12,87 14,23 15,58 16,94 18,29 19,65 22,36 25,07 13,07 14,81 16,55 18,29 20,03 21,78 23,52 25,26 27,00 28,75 30,49 32,23 33,97 37,46 40,94 44,43
steel Rtens,k [kN]
15,40
25,4
GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• For the calculation process a mass density equal to ρk = 480 kg/m3 has been considered for softwood LVL elements.
• Design values can be obtained from characteristic values as follows:
• Dimensioning and verification of the timber elements must be carried out separately.
Rk kmod Rd = γM
• The withdrawal and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
STRUCTURES | VGZ | 159
CALCULATION EXAMPLES: REINFORCEMENT OF NOTCHED BEAM WITH TRACTION PERPENDICULAR B-B
PROJECT DATA B = 200 mm
GL24h Glulam (ρk = 385 kg/m3)
H = 400 mm
Fv,Rd = 29,5 kN
Hef = 200 mm
Service class = 1
Hi = H - Hef = 200
Load duration = medium
ia = 0 (notch slope)
L a = 150 mm
A-A a2,c a2
B
a2,c B-B Hef
A-A
X
Sg sup
H Sg inf
H-Hef Fv,Rd La
a1,c
SHEAR STRESS VERIFICATION - BEAM WITHOUT REINFORCEMENT - Section A-A (EN 1995:2014) : τd ≤ kv ∙ fv,d
τd =
1,5 Fv,Rd B Hef
α=
La 2
x=
α=
Hef H
x = τd
1 kV = min
kn
1,1 iα1,5 1+ H
α (1-α) + 0,8 x H
h
= 1,65 N/mm2
x
= 75 mm
α
= 0,5
kn
= 6,50 (GL24h)
kv
= 0,47
fv,k = 3,50 N/mm2
1 -α2 α
EN 1995:2014
Italy - NTC 2018
kmod = 0,9
kmod = 0,9
γM = 1,25
γM = 1,45
fv,d = 2,52 N/mm2 kv ∙ fv,d = 1,18 N/mm2
fv,d = 2,17 N/mm2 kv ∙ fv,d = 1,02 N/mm2
τd ≤ kv ∙ fv,d
1,65 > 1,18 N/mm2
τd ≤ kv ∙ fv,d
1,65 > 1,02 N/mm2
verification not passed
verification not passed
REQUIRES REINFORCEMENT
REQUIRES REINFORCEMENT
SHEAR STRESS VERIFICATION - Section B-B (EN 1995:2014) : τd ≤ fv,d
τd =
1,5 Fv,Rd B Hef
α=
EN 1995:2014
τd
= 1,65 N/mm2
Italy - NTC 2018
τd ≤ fv,d
1,65 < 2,52 N/mm2
τd ≤ fv,d
1,65 < 2,17 N/mm2
verification passed
verification passed
REINFORCEMENT Section A-A - CALCULATION OF TRACTION STRESS PERPENDICULAR TO THE FIBRES (DIN 1052:2008)
Ft,90,d = 1,3 Fv,Rd [ 3 (1-α)2 - 2 (1-α)3]
Ft,90,d = 19,18 kN
REINFORCEMENT CONNECTOR SELECTION VGZ 9 x 360 mm
To optimise the resistance, the connector is placed with the centre of gravity in correspondence
S g sup = 165 mm
with the possible crack line.
S g inf = 165 mm
160 | VGZ | STRUCTURES
CONNECTOR TENSILE STRENGTH CALCULATION (EN 1995:2014 and ETA-11/0030)
Rax,α,Rk kmod γm Rtens,k γm2
Rax,Rd = min
Rax,α,Rx = nef 11,7 d1 Sg kax
ρk
0,8
Rax,90°,Rk = 18,75 kN Rtens,k = 25,40 kN
350
The tensile strength of the connectors calculated here is shown in the table on p.144. The minimum distances for placement of the connectors are found in the table on p.143. Italy - NTC 2018
EN 1995:2014 kmod = 0,9
kmod = 0,9
γM = 1,3
γM = 1,5
γM2 = 1,25
γM2 = 1,25
Rax,90°Rd = 12,98 kN
Rax,90°Rd = 11,25 kN
Rtens,d = 20,32 kN
Rki,d = 20,32 kN
Rax,Rd = 12,98 kN
Rax,Rd = 11,25 kN
MINIMUM NUMBER OF CONNECTORS Ft,90,d/Rax,Rd = 1,48 2 connectors are hypothesized
Ft,90,d/Rax,Rd = 1,70 nef,ax
= max (20,9;0,9∙2)= 1,87
FASTENER RESISTANCE TO PERPENDICULAR TENSION Rax,Rd = 1,87 ∙ 12,98 = 24,27 kN
>
19,18 kN OK
Rax,Rd = 1,87 ∙ 11,25 = 21,04 kN
>
19,18 kN OK
For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
EXAMPLE OF JOINTS THAT REQUIRE VERIFICATION OF PERPENDICULAR TENSION AND POSSIBLE REINFORCEMENT
ia=0
ia>0
STRUCTURES | VGZ | 161
VGZ EVO FRAME
1002
CERTIFIED
C4 COATING
BIT INCLUDED
COATING
ETA-11/0030
MINI FULL THREADED SCREW WITH CYLINDRICAL HEAD TIMBER FRAME Ideal for joining small timber elements such as the crossbeams and uprights of light frame structures. Reduced minimum distances.
STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°). Safety certified by numerous tests carried out for any direction of insertion.
LUMBER The cylindrical head is ideal for concealed joints. Deep thread and high resistance steel (fy,k = 1000 N/mm2) for excellent tensile performance.
C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.
CHARACTERISTICS FOCUS
fastener for narrow sections
HEAD
cylindrical, countersunk
DIAMETER
5,3 | 5,6 mm
LENGTH
from 80 to 160 mm
MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.
FIELDS OF USE • timber based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.
162 | VGZ EVO FRAME | STRUCTURES
TRUSS, RAFTER Ideal for fastening elements with small cross-sections. Certified for application parallel to the grain and with reduced minimum distances. Certified for outdoor use (Service class 3).
TIMBER STUD Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL. Ideal for fastening I-Joist beams.
STRUCTURES | VGZ EVO FRAME | 163
Fastening the crossbeams of light frame structures.
Fastening the uprights of light frame structures.
GEOMETRY AND MECHANICAL CHARACTERISTICS
Z V
d2 d1
X
G
X
X
dK
b L
Nominal diameter
d1
[mm]
5,3
5,6
Head diameter
dK
[mm]
8,00
8,00
Tip diameter
d2
[mm]
3,60
3,80
dV
[mm]
3,5
3,5
My,k
[Nm]
9,2
10,6
fax,k
[N/mm2]
11,7
11,7
Associated density
ρa
[kg/m3]
350
350
Characteristic tensile strength
ftens,k
[kN]
11,0
12,3
Characteristic yield strength
fy,k
[N/mm2]
1000
1000
Pre-drilling hole
diameter(1)
Characteristic yield moment Characteristic withdrawal-resistance parameter(2)
(1)
Pre-drilling valid for softwood. Valid for softwood - maximum density 440 kg/m3. For applications with different materials or with high density please see ETA-11/0030. (2)
164 | VGZ EVO FRAME | STRUCTURES
CODES AND DIMENSIONS d1
CODE
L
[mm] [in] 5,3 0.21 TX 25 5,6 0.23 TX 25
b
pcs
[mm]
[in]
[mm]
VGZEVO580
80
3 1/8
70
50
VGZEVO5100
100
4
90
50
VGZEVO5120
120
4 3/4
110
50
VGZEVO5140
140
5 1/2
130
50
VGZEVO5160
160
6 1/4
150
50
MINIMUM DISTANCES FOR SHEAR LOADS (1)
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE d1
[mm]
a1
[mm]
a2
[mm]
3∙d
a3,t
[mm]
12∙d
a3,c
[mm]
7∙d
a4,t
[mm]
3∙d
a4,c
[mm]
3∙d
d1
[mm]
5∙d
SCREWS INSERTED WITH PRE-DRILLING HOLE
5,3
5,6
27
28
4∙d
16
17
4∙d
21
22
64
67
7∙d
37
39
37
39
7∙d
37
39
16
17
7∙d
37
39
16
17
3∙d
16
17
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5,3
5,6
64
67
5,3
5,6
21
22
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5,3
5,6
27
28
a1
[mm]
a2
[mm]
5∙d
27
28
5∙d
27
28
a3,t
[mm]
15∙d
80
84
10∙d
53
56
a3,c
[mm]
10∙d
53
56
10∙d
53
56
a4,t
[mm]
5∙d
27
28
10∙d
53
56
a4,c
[mm]
5∙d
27
28
5∙d
27
28
12∙d
5∙d
d = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: (1) The minimum distances are in accordance with EN 1995:2014 considering a timber characteristic density of ρk ≤ 420 kg/m3.
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
STRUCTURES | VGZ EVO FRAME | 165
EFFECTIVE THREAD USED IN CALCULATION 10
Sg
Tol.
Sg
10
b = L - 10 mm
represents the entire length of the threaded part
S g = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm
b L
The timber to timber withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.
MINIMUM DISTANCES FOR AXIAL STRESSES (2)
SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE d1
[mm]
a1
[mm]
a2
[mm]
5,3
5,6
5∙d
27
28
5∙d
27
28
a2,LIM(3) [mm]
2.5∙d
13
14
a1,CG
[mm]
10∙d
53
56
a2,CG
[mm]
4∙d
21
22
aCROSS
[mm]
1.5∙d
8
8
d = nominal screw diameter SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN
a2,CG a2,CG
a2,CG a2 a2,CG
a2
a2,CG
a2,CG a1,CG
1
a1
a
a2,CG a1,CG
a1,CG
a2,CG a1,CG
plan
front
plan
front
SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN a2,CG a2 a2,CG a1,CG
a1 a1,CG
plan
a1
front
NOTES: (2) The minimum distances for connectors stressed axially are independent of
the insertion angle of the connector and the angle of the force with respect to the grain, in accordance with ETA-11/0030.
166 | VGZ EVO FRAME | STRUCTURES
(3) The axial distance a can be reduced down to 2,5 d if for each connector a 2 1 “joint surface” a1∙a2 = 25∙d1 2 is maintained.
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 TENSION(1) total thread withdrawal(2)
geometry
partial thread withdrawal(2)
steel tension
estrazione estrazione filetto filetto parziale parziale
L
Sg
A
Sg
A
A
d1
timber d1
L
b
A min
[mm]
[mm]
[mm]
80 100 120 140 160
70 90 110 130 150
5,3 5,6
timber
steel
Rax,k
Rtens,k
[mm]
[kN]
[kN]
45 55 65 75 85
1,79 2,51 3,23 4,17 4,93
Rax,k
Sg
A min
[mm]
[kN]
[mm]
90 110 130 150 170
5,02 6,46 7,89 9,86 11,37
25 35 45 55 65
geometry
12,3
SHEAR
SLIDING
timber-to-timber
timber-to-timber(3)
S
g
A
Sg
11,0
45°
A
S
g
L B
Sg d1
d1
L
Sg
A min
RV,k
A min
Bmin
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[mm]
[kN]
80 100 120 140 160
25 35 45 55 65
40 50 60 70 80
1,77 2,25 2,45 2,84 3,03
30 40 45 50 60
50 55 60 70 75
1,27 1,78 2,28 2,95 3,48
5,3 5,6
RV,k
NOTES:
GENERAL PRINCIPLES:
(1) The connector design resistance is the lowest between the timber side de-
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
sign resistance (Rax,d) and the steel side resistance (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
(2) The axial resistance of the thread to withdrawal was calculated considering
a 90° angle between the fibres and the connector and for a effective thread length of b or Sg.
For intermediate values of Sg it is possible to linearly interpolate.
(3) The axial resistance of the thread withdrawal was calculated considering a
45° angle between the fibres and the connector and for an effective thread length of Sg.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered. • Dimensioning and verification of the timber elements must be carried out separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.
STRUCTURES | VGZ EVO FRAME | 167
CEILING-TO-WALL JOINTS: STRESSES ALONG THE AXIS
Roofing beams
04
05
06
Framed wall crossbeam
Framed panel platform beam
Framed wall upright
01
03
02
04 01
01
Foundation plate
04
04 Joining of crossbeam-main rafter with inclined connector
Joining of upright platform beam with single inclined connector
02
02
05 Joining of upright platform beam with double inclined connector
2x
Joining of crossbeam-main rafter with double inclined connector inserted from side
03
03
06
2x
Joining of upright platform beam with double crossed connectors
168 | VGZ EVO FRAME | STRUCTURES
Joining of crossbeam-principle rafter with double inclined connector inserted from front
CEILING-TO-WALL JOINTS: OFF AXIS STRESSES
Roofing beams
Framed wall crossbeam
07
10
Framed panel platform beam
11
Framed wall upright
08
Floor with I-Joist beams
Framed wall crossbeam 09
07
07
10 Joining of upright-crossbeam with single inclined connector
Joining of upright-crossbeam with single inclined connector
08
08
11 Joining of crossbeam-sill plate with single inclined connector
Joining of crossbeam-main rafter with double vertical connector
09 Joining of upright-crossbeam with single inclined connector
STRUCTURES | VGZ EVO FRAME | 169
VGZ EVO
1002
CERTIFIED
AC233 | AC257 ESR-4645
C4 COATING
BIT INCLUDED
COATING
ETA-11/0030
FULL THREADED SCREW WITH CYLINDRICAL HEAD C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.
AGGRESSIVE WOODS Ideal for applications with woods containing tannin or treated with impregnating agents or other chemical processes.
TENSION Deep thread and high resistance steel (fy,k = 1000 N/mm2) for excellent tensile performance.
STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°). Reduced minimum distances.
CHARACTERISTICS FOCUS
corrosiveness class C4
HEAD
cylindrical, countersunk
DIAMETER
5,3 | 5,6 | 7,0 | 9,0 mm
LENGTH
from 80 to 360 mm
MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.
FIELDS OF USE • timber based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.
170 | VGZ EVO | STRUCTURES
HARDWOOD FRAME Ideal for the construction of outdoor structures and for fastening aggressive woods containing tannin. Values also certified for screw insertion parallel to the grain.
TIMBER FRAME Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL.
STRUCTURES | VGZ EVO | 171
Fastening Wood Trusses outdoors.
Restoration of existing timber floor using glulam beams and VGZ connectors.
GEOMETRY AND MECHANICAL CHARACTERISTICS
Z V
d2 d1
X
G
X
X
dK
b L
Nominal diameter
d1
[mm]
5,3
5,6
Head diameter
dK
[mm]
8,00
Tip diameter
d2
[mm]
3,60
dV
[mm]
Pre-drilling hole
diameter(1)
7
9
8,00
9,50
11,50
3,80
4,60
5,90
3,5
3,5
4,0
5,0
Characteristic yield moment Characteristic withdrawal-resistance parameter(2)
My,k
[Nm]
9,2
10,6
14,2
27,2
fax,k
[N/mm2]
11,7
11,7
11,7
11,7
Associated density
ρa
[kg/m3]
350
350
350
350
Characteristic tensile strength
ftens,k
[kN]
11,0
12,3
15,4
25,4
Characteristic yield strength
fy,k
[N/mm2]
1000
1000
1000
1000
(1)
Pre-drilling valid for softwood. Valid for softwood - maximum density 440 kg/m3. For applications with different materials or with high density please see ETA-11/0030. (2)
172 | VGZ EVO | STRUCTURES
CODES AND DIMENSIONS d1
CODE
L
[mm] [in]
b
pcs
[mm]
[in]
[mm]
VGZEVO580
80
3 1/8
70
50
5,3 0.21 TX 25
VGZEVO5100
100
4
90
50
VGZEVO5120
120
4 3/4
110
50
5,6 0.23 TX 25
VGZEVO5140
140
5 1/2
130
50
VGZEVO5160
160
6 1/4
150
50
VGZEVO7140
140
5 1/2
130
25
7 0.28 TX 30
d1
CODE
L
[mm] [in]
VGZEVO7180
180
7 1/8
170
25
VGZEVO7220
220
8 5/8
210
25
VGZEVO7260
260
10 1/4
250
25
VGZEVO7300
300
11 3/4
290
25
pcs
[in]
[mm]
200
8
190
VGZEVO9240
240
9 1/2
230
25
VGZEVO9280
280
11
270
25
VGZEVO9320
320
12 5/8
310
25
VGZEVO9360
360
14 1/4
350
25
VGZEVO9200 9 0.36 TX 40
b
[mm]
MINIMUM DISTANCES FOR SHEAR LOADS (1)
25
For the table Minimum distances for axial stresses, see page 143
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
SCREWS INSERTED WITH PRE-DRILLING HOLE 5,3 5,6 7 9 5∙d 27 28 35 45 3∙d 16 17 21 27 12∙d 64 67 84 108 7∙d 37 39 49 63 3∙d 16 17 21 27 3∙d 16 17 21 27
SCREWS INSERTED WITH PRE-DRILLING HOLE 5,3 5,6 7 9 4∙d 21 22 28 36 4∙d 21 22 28 36 7∙d 37 39 49 63 7∙d 37 39 49 63 7∙d 37 39 49 63 3∙d 16 17 21 27
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5,3 5,6 7 9 12∙d 64 67 84 108 5∙d 27 28 35 45 15∙d 80 84 105 135 10∙d 53 56 70 90 5∙d 27 28 35 45 5∙d 27 28 35 45
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5,3 5,6 7 9 5∙d 27 28 35 45 5∙d 27 28 35 45 10∙d 53 56 70 90 10∙d 53 56 70 90 10∙d 53 56 70 90 5∙d 27 28 35 45
d = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: (1) The minimum distances are in accordance with EN 1995:2014 considering a timber characteristic density of ρk ≤ 420 kg/m3.
• The minimum spacing for all panel-to-timber connections(a1 , a2) can be multiplied by a coefficient of 0,85.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
STRUCTURES | VGZ EVO | 173
EFFECTIVE THREAD USED IN CALCULATION 10
Sg
Tol.
Sg
b = L - 10 mm
10
represents the entire length of the threaded part
S g = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm
b L
The timber to timber withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 TENSION(1) total thread withdrawal(2)
geometry
partial thread withdrawal(2)
steel tension
estrazione estrazione filetto filetto parziale parziale
L
Sg
A
Sg
A
A
d1
timber
steel
d1
L
b
A min
timber Rax,k
Sg
A min
Rax,k
Rtens,k
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[mm]
[kN]
[kN]
80
70
90
5,02
25
45
1,79
5,3
100
90
110
6,46
35
55
2,51
5,6
7
9
120
110
130
7,89
45
65
3,23
140
130
150
9,86
55
75
4,17
160
150
170
11,37
65
85
4,93
140
130
150
12,32
55
75
5,21
180
170
190
16,11
75
95
7,11
220
210
230
19,90
95
115
9,00
260
250
270
23,69
115
135
10,90
300
290
310
27,48
135
155
12,79
200
190
210
23,15
85
105
10,36
240
230
250
28,02
105
125
12,79
280
270
290
32,90
125
145
15,23
320
310
330
37,77
145
165
17,67
360
350
370
42,64
165
185
20,10
11,0
12,3
15,4
25,4
NOTES: (1) The connector design resistance is the lowest between the timber side de-
(2) The axial resistance of the thread to withdrawal was calculated considering
sign resistance (Rax,d) and the steel side resistance (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
174 | VGZ EVO | STRUCTURES
a 90° angle between the fibres and the connector and for a effective thread length of b or Sg.
For intermediate values of Sg it is possible to linearly interpolate. (3) The axial resistance of the thread withdrawal was calculated considering a 45° angle between the fibres and the connector and for an effective thread length of Sg.
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014
geometry
SHEAR
SLIDING
timber-to-timber
timber-to-timber(3)
S
g
A
Sg
45°
A
S
g
L B
Sg d1
d1
L
Sg
A min
RV,k
A min
Bmin
RV,k
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[mm]
[kN]
80
25
40
1,77
30
50
1,27
5,3
100
35
50
2,25
40
55
1,78
5,6
7
9
120
45
60
2,45
45
60
2,28
140
55
70
2,84
50
70
2,95
160
65
80
3,03
60
75
3,48
140
55
70
3,55
55
70
3,69
180
75
90
4,02
65
85
5,03
220
95
110
4,49
80
100
6,37
260
115
130
4,49
95
110
7,71
300
135
150
4,49
110
125
9,05
200
85
100
5,99
75
90
7,32
240
105
120
6,60
90
105
9,05
280
125
140
6,80
105
120
10,77
320
145
160
6,80
115
135
12,49
360
165
180
6,80
130
145
14,21
GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered.
• Design values can be obtained from characteristic values as follows:
• Dimensioning and verification of the timber elements must be carried out separately.
Rk kmod Rd = γM The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.
STRUCTURES | VGZ EVO | 175
VGZ HARDWOOD
BIT INCLUDED
ETA-11/0030
FULLY THREADED SCREW FOR HARDWOODS HARDWOOD CERTIFICATION Special tip with diamond geometry and notched, serrated thread. ETA-11/0030 certification for use with high density timber without any pre-drill. Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°).
TENSION Deep thread and high resistance steel (fy,k = 1000 N/mm2) for excellent tensile performance. Inner tip diameter increased to ensure tightening in the highest density woods. Excellent twisting moment values.
CYLINDRICAL HEAD Ideal for concealed joints, timber couplings and structural reinforcements. Guarantees fire protection and earthquake suitability.
CHARACTERISTICS FOCUS
fastener for hardwood
HEAD
cylindrical, countersunk
DIAMETER
7,0 | 9,0 mm
LENGTH
from 140 to 320 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE • • • • •
timber based panels Solid timber and glulam CLT, LVL high density woods beech, oak, cypress, ash, eucalyptus, bamboo Service classes 1 and 2.
176 | VGZ HARDWOOD | STRUCTURES
HARDWOOD PERFORMANCE Geometry developed for high performance and use without pre-drilling on structural woods such as beech, oak, cypress, ash, eucalyptus, bamboo.
BEECH LVL Values also tested, certified and calculated for high density woods such as beechwood Microllam® LVL. Certified for use for densities of up to 800 kg/m3.
STRUCTURES | VGZ HARDWOOD | 177
GEOMETRY AND MECHANICAL CHARACTERISTICS
dS d2 d1
H
X
V
G
X
Z
dK
X
b L
Nominal diameter eq.
d1 eq.
[mm]
7
9
Nominal diameter
d1
[mm]
6
8
Head diameter
dK
[mm]
9,50
11,50
Tip diameter
d2
[mm]
4,50
5,90
dV
[mm]
4,0
6,0
Pre-drilling hole
diameter(1)
Characteristic yield moment Characteristic withdrawal-resistance parameter(2)
My,k
[Nm]
15,8
33,4
fax,k
[N/mm2]
42,0
42,0
Associated density
ρa
[kg/m3]
730
730
Characteristic withdrawal-resistance parameter(3)
fax,k
[N/mm2]
22,0
22,0
Associated density
ρa
[kg/m3]
530
530
Characteristic tensile strength
ftens,k
[kN]
18,0
32,0
(1)
Pre-drilling valid for hardwood and beech LVL. A suitable pilot hole must be drilled for the insertion of some connectors in beech LVL. For further details please see ETA-11/0030. (2) Valid for beech or FST LVL - maximum density 750 kg/m3 . (3) Valid for hardwood (oak, beech) - maximum density 590 kg/m3 . For applications with different materials please see ETA-11/0030.
CODES AND DIMENSIONS d1 eq.
CODE
[mm] [in] VGZH7140 7 0.28 TX 30
d1
L
b
[mm]
[in]
[mm]
[in]
[mm]
6
0.24
140
5 1/2
130
pcs 25
VGZH7180
6
0.24
180
7 1/8
170
25
VGZH7220
6
0.24
220
8 5/8
210
25
VGZH7260
6
0.24
260
10 1/4
250
25
d1 eq. = nominal diameter equivalent to a screw with the same dS NOTES: upon request, EVO version is available.
178 | VGZ HARDWOOD | STRUCTURES
d1 eq.
CODE
[mm] [in] 9 0.36 TX 40
d1
L
b
pcs
[mm]
[in]
[mm]
[in]
[mm]
VGZH9200
8
0.32
200
8
190
25
VGZH9240
8
0.32
240
9 1/2
230
25
VGZH9280
8
0.32
280
11
270
25
VGZH9320
8
0.32
320
12 5/8
310
25
EFFECTIVE THREAD USED IN CALCULATION 10
Sg
Tol.
Sg
10
b = L - 10 mm
represents the entire length of the threaded part
S g = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm
b L
The timber to timber withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.
MINIMUM DISTANCES FOR AXIAL STRESSES (1)
SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE d1 eq.
[mm]
d1 a1
[mm] [mm]
a2 a2,LIM(2)
7
9
6
8
5∙d1
30
40
[mm]
5∙d1
30
40
[mm]
2.5∙d1
15
20
a1,CG
[mm]
10∙d1
60
80
a2,CG
[mm]
4∙d1
24
32
aCROSS
[mm]
1.5∙d1
9
12
d1 = nominal screw diameter SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN a2,CG a2,CG
a2,CG a2 a2,CG
a2
a2,CG
a2,CG a1,CG
1
a1
a
a2,CG a1,CG
a1,CG
a2,CG a1,CG
plan
front
SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN
plan
front
CROSS SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN
a2,CG
45°
a2 a2,CG
a2,CG a1,CG
aCROSS a2,CG
a1 a1,CG
plan
a1
front
plan
front
NOTES: (1)
The minimum distances for connectors stressed axially are independent of the insertion angle of the connector and the angle of the force with respect to the grain, in accordance with ETA-11/0030.
(2)
The axial distance a2 can be reduced down to 2,5 d1 if for each connector a “joint surface” a1 a2 = 25 d12 is maintained.
STRUCTURES | VGZ HARDWOOD | 179
MINIMUM DISTANCES FOR SHEAR LOADS (1)
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE
SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 eq.
[mm]
7
9
7
9
d1 a1
[mm]
6
8
6
8
[mm]
5∙d1
30
40
4∙d1
24
32
a2
[mm]
3∙d1
18
24
4∙d1
24
32
a3,t
[mm]
12∙d1
72
96
7∙d1
42
56
a3,c
[mm]
7∙d1
42
56
7∙d1
42
56
a4,t
[mm]
3∙d1
18
24
7∙d1
42
56
a4,c
[mm]
3∙d1
18
24
3∙d1
18
24
7
9
7
6
8
6
8
90
120
42
56
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 eq.
[mm]
d1 a1
[mm] [mm]
a2
[mm]
7∙d1
42
56
7∙d1
42
56
a3,t
[mm]
20∙d1
120
160
15∙d1
90
120
a3,c
[mm]
15∙d1
90
120
15∙d1
90
120
a4,t
[mm]
7∙d1
42
56
12∙d1
72
96
a4,c
[mm]
7∙d1
42
56
7∙d1
42
56
15∙d1
7∙d1
9
d1 = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: (1) The minimum distances are compliant with EN 1995:2014, accord-
ing to ETA-11/0030, considering a timber characteristic density of ρk > 420 kg/m3 and calculation diameter of d = nominal screw diameter. • The minimum spacing for all steel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,7.
180 | VGZ HARDWOOD | STRUCTURES
• The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85.
STATIC VALUES | HARDWOOD
CHARACTERISTIC VALUES EN 1995:2014 TENSION(1)
geometry
total thread withdrawal (2)
partial thread withdrawal (2)
steel tension
estrazione estrazione filetto filetto parziale parziale A
Sg L
A Sg d1
d1 eq. [mm]
d1 [mm] 6 6 6 6 8 8 8 8
7
9
L [mm] 140 180 220 260 200 240 280 320
b [mm] 130 170 210 250 190 230 270 310
timber Rax,k [kN] 17,68 23,11 28,55 33,99 34,45 41,70 48,95 56,20
A min [mm] 150 190 230 270 210 250 290 330
geometry
Sg [mm] 55 75 95 115 85 105 125 145
timber Rax,k [kN] 7,48 10,20 12,92 15,64 15,41 19,04 22,66 26,29
A min [mm] 75 95 115 135 105 125 145 165
SHEAR
SLIDING
timber-to-timber
timber-to-timber (3)
steel Rtens,k [kN] 18,00
32,00
estrazione filetto parziale
S
g
A
Sg
45°
A
S
g
L B
Sg d1
d1 eq. [mm] 7
9
d1 [mm] 6 6 6 6 8 8 8 8
L [mm] 140 180 220 260 200 240 280 320
Sg [mm] 55 75 95 115 85 105 125 145
A min [mm] 70 90 110 130 100 120 140 160
RV,k [kN] 4,44 5,12 5,14 5,14 7,99 8,27 8,27 8,27
A min [mm] 55 70 80 95 75 90 105 120
Bmin [mm] 70 85 100 110 90 105 120 135
RV,k [kN] 5,29 7,21 9,13 11,06 10,90 13,46 16,02 18,59
steel Rtens,k 45° [kN] 12,73
22,63
NOTES:
GENERAL PRINCIPLES:
(1) The connector design resistance is the lowest between the timber side design resistance (Rax,d) and the steel side resistance (Rtens,d).
• C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
Rax,d = min
Rax,k kmod γM Rtens,k γM2
(2) The axial resistance of the thread to withdrawal was calculated considering a 90° angle between the fibres and the connector and for an effective thread length of b or Sg. For intermediate values of Sg it is possible to linearly interpolate. (3) The design sliding strength of the joint is either the timber-side design strength (RV,d) or the steel design strength (Rtens,d 45°), whichever is lower.
RV,d = min
RV,k kmod γM Rtens,k 45° γM2
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
T he coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a mass density equal to ρk = 550 kg/m3 has been considered for hardwood (oak) elements. • Dimensioning and verification of the timber elements must be carried out separately. • The connector characteristic strength values are calculated for screws inserted without pre-drilling hole. • The withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.
(4) The connector tensile strength was calculated considering a 45° angle between the fibres and the connector.
STRUCTURES | VGZ HARDWOOD | 181
MINIMUM DISTANCES FOR CROSS SCREWS SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE d1 eq.
[mm]
7
9
d1
[mm]
6
8
a2,CG
[mm]
4∙d1
24
32
aCROSS
[mm]
1.5∙d1
9
12
e
[mm]
3.5∙d1
21
28
d1 = nominal screw diameter PRE-DRILLING HOLE DIAMETER d1 eq.
[mm]
7
9
d1
[mm]
6
8
dv (pre-drill)
[mm]
4,0
6,0
Valid for hardwood and beech LVL.
SHEAR CONNECTION WITH CROSSED CONNECTORS - 1 PAIR m 90°
N
T
m
S
g
45°
HT
a2,CG
S
g
hNT
HHT
aCROSS
bNT
a2,CG
90° BHT
BHT section
plan
SHEAR CONNECTION WITH CROSSED CONNECTORS - 2 OR MORE PAIRS m
m
N
T
90° a2,CG
HT
S
g
45°
aCROSS
S
g
hNT
HHT
e aCROSS a2,CG
90° BHT
BHT section
182 | VGZ HARDWOOD | STRUCTURES
plan
bNT
STATIC VALUES | HARDWOOD
CHARACTERISTIC VALUES EN 1995:2014
SHEAR CONNECTION WITH CROSSED CONNECTORS RIGHT-ANGLE JOINT - MAIN BEAM/SECONDARY BEAM d1 eq.
d1
L
[mm] [mm] [mm]
6
6
140
180
S g HT(1)
S g NT (1)
[mm]
[mm]
40
75
70
75
BHT min HHT min = hNT min bNT min [kN]
65
80
[mm]
110
140
7 6
6
8
8
220
260
200
240
95
115
75
105
95
115
95
105
95
110
90
100
170
195
155
185
9 8
8
280
320
125
145
125
145
115
130
210
240
R1 V,k(1)
no. pairs
[mm]
R2 V,k(2)
R3 V,k(2)
m(3) [mm]
[kN]
[kN]
[kN]
withdrawal (4)
instability
tension
57
1
7,7
14,0
25,5
87
2
14,4
26,1
47,5
117
3
20,8
37,8
68,7
57
1
14,4
14,0
25,5
87
2
26,9
26,1
47,5
117
3
38,9
37,8
68,4
57
1
18,3
14,0
25,5
87
2
34,1
26,1
47,5
117
3
49,3
37,8
68,4
57
1
22,1
14,0
25,5
87
2
41,3
26,1
47,5
117
3
59,7
37,8
68,4
76
1
19,2
45,5
45,3
116
2
35,9
85,0
84,4
156
3
51,9
122,9
121,6
76
1
26,9
45,5
45,3
116
2
50,2
85,0
84,4
156
3
72,7
122,9
121,6
76
1
32,0
45,5
45,3
116
2
59,8
85,0
84,4
156
3
86,5
122,9
121,6
76
1
37,2
45,5
45,3
116
2
69,4
85,0
84,4
156
3
100,4
122,9
121,6
62
65
79
94
80
87
101
115
NOTES:
GENERAL PRINCIPLES:
(1) The values given are calculated considering a distance a 1,CG ≥ 5d. In some cases the asymmetrical laying of connectors is needed (Sg HT ≠ Sg NT ). (2) T he compression design strength of the connector is the lower between
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
the withdrawal-side design strength (R 1 V,d), the instability design strength (R 2 V,d) and the tensile design strength (R3 V,d).
RV,d = min
R1V,k kmod γM R2V,k γM1 R3V,k γM2
• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a mass density equal to ρk = 550 kg/m3 has been considered for hardwood (oak) elements. • Dimensioning and verification of the timber elements must be carried out separately.
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. (3) The assembly height (m) applies in the event of symmetrical installation of
the flush connectors (Sg HT = Sg NT ) above the elements. (4) The thread axial resistance to withdrawal has been evaluated considering an effective thread length equal to Sg. The connectors must be inserted at 45° with respect to the shear plane.
STRUCTURES | VGZ HARDWOOD | 183
STATIC VALUES | BEECH LVL
CHARACTERISTIC VALUES EN 1995:2014 TENSION(1)
geometry
steel tension
total thread withdrawal(2)
L b A d1
LVL
steel
without pre-drilling hole
with pre-drilling hole
d1 eq.
d1
L
b
A min
Rax,k
Rax,k
Rtens,k
[mm]
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
6
140
130
150
32,76
22,62
6
180
170
190
42,84
29,58
6
220
210
230
52,92
36,54
6
260
250
270
63,00
43,50
8
200
190
210
63,84
44,08
8
240
230
250
77,28
53,36
8
280
270
290
90,72
62,64
8
320
310
330
104,16
71,92
7
9
18,00
32,00
TENSION(1) geometry
steel tension
partial thread withdrawal (2)
L b
Sg
A
Sg
A
d1
LVL
steel
without pre-drilling hole
with pre-drilling hole
d1 eq.
d1
L
b
Sg
A min
Rax,k
Rax,k
Rtens,k
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
6
140
130
55
75
13,86
9,57
6
180
170
75
95
18,90
13,05
6
220
210
95
115
23,94
16,53 20,01
7
9
6
260
250
115
135
28,98
8
200
190
85
105
28,56
19,72
8
240
230
105
125
35,28
24,36
8
280
270
125
145
42,00
29,00
8
320
310
145
165
48,72
33,64
18,00
32,00
NOTES: (1) The connector design resistance is the lowest between the timber side design resistance (Rax,d) and the steel side resistance (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
(2) The axial thread withdrawal resistance Rax,90,k was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
184 | VGZ HARDWOOD | STRUCTURES
(3) The design sliding strength of the joint is either the timber-side design strength (RV,d) or the steel design strength (Rtens,d 45°), whichever is lower.
RV,d = min
RV,k kmod γM Rtens,k 45° γM2
(4) The connector tensile strength was calculated considering a 45° angle between the fibres and the connector.
STATIC VALUES | BEECH LVL
CHARACTERISTIC VALUES EN 1995:2014 SLIDING(3)
geometry
LVL - LVL
A
45°
Sg
L b
Sg
B d1
d1 eq.
d1
L
Sg
A min
Bmin
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
7
9
LVL without pre-drilling with pre-drilling hole hole RV,k RV,k [kN]
[kN]
6
140
55
55
70
7,84
5,41
6
180
75
70
85
10,69
7,38
6
220
95
80
100
13,54
9,35
6
260
115
95
110
16,39
11,32
8
200
85
75
90
16,16
11,16
8
240
105
90
105
19,96
13,78
8
280
125
105
120
23,76
16,40
8
320
145
120
135
27,56
19,03
steel
Rtens,k 45° (4) [kN]
12,73
22,63
SHEAR geometry
LVL - LVL
Sg
A L b
Sg d1
LVL without pre-drilling hole
with pre-drilling hole
d1 eq.
d1
L
Sg
A min
RV,k
RV,k
[mm]
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
6
140
55
70
6,77
5,78
6
180
75
90
6,77
6,65
7
9
6
220
95
110
6,77
6,77
6
260
115
130
6,77
6,77
8
200
85
100
11,13
10,50
8
240
105
120
11,13
11,13
8
280
125
140
11,13
11,13
8
320
145
160
11,13
11,13
GENERAL PRINCIPLES: • C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• For the calculation process a mass density equal to ρk = 730 kg/m3 has been considered for LVL beach elements.
• Design values can be obtained from characteristic values as follows:
• Dimensioning and verification of the timber elements must be carried out separately.
Rk kmod Rd = γM T he coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
• The characteristic shear resistance values of connectors are calculated for screws inserted with and without pre-drilling hole. • A suitable pilot hole must be drilled for the insertion of some connectors. For further details please see ETA-11/0030. • The withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.
STRUCTURES | VGZ HARDWOOD | 185
VGS
AC233 ESR-4645
BIT INCLUDED
FULLY THREADED SCREW WITH COUNTERSUNK OR HEXAGONAL HEAD TENSION Deep thread and high resistance steel (fy,k = 1000 N/mm2) for excellent tensile performance. Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°).
COUNTERSUNK OR HEXAGONAL HEAD Countersunk head up to L = 600 mm, ideal for use on plates or for concealed reinforcements. Hexagonal head L > 600 mm to facilitate gripping with screwdriver.
CHROMIUM (VI) FREE Total absence of hexavalent chromium. Compliance with the strictest regulations governing chemical substances (SVHC). REACH information available.
9,0 | 11,0 | 13,0 mm L ≤ 600 mm
11,0 | 13,0 mm L > 600 mm
CHARACTERISTICS FOCUS
45° connections, lifting and reinforcements
HEAD
countersunk with ribs for L ≤ 600 mm hexagonal for L > 600 mm
DIAMETER
9,0 | 11,0 | 13,0 mm
LENGTH
from 100 to 1200 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE • timber based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.
186 | VGS | STRUCTURES
ETA-11/0030
TENSILE STRENGTH Ideal for joints requiring high tensile or sliding strength. Can be used on steel plates in combination with the VGU washer.
TITAN V Values also tested, certified and calculated for fastening standard Rothoblaas plates.
STRUCTURES | VGS | 187
Reinforcement perpendicular to the grain of a large glulam beam.
System for lifting and transport using WASP hook and VGS screw.
GEOMETRY AND MECHANICAL CHARACTERISTICS VGS Ø9 - Ø11
VGS Ø11 | L > 600 mm t1 X X
V
G
V
d2 d1
X
S
G
X
X
SW
b L
45°
VGS Ø13 | L ≤ 600 mm
VGS Ø13 | L > 600 mm
V X
S
X
G
d2 d1
X
V
G
X
X
X
dK
S
t1
t1 90°
X
dK
90°
S
t1
SW
b L
45°
9
11 [L ≤ 600 mm]
11 [L > 600 mm]
13 [L ≤ 600 mm]
13 [L > 600 mm]
[mm]
16,00
19,30
-
22,00
-
-
-
SW17
-
SW19
t1
[mm]
6,50
8,20
6,40
9,40
7,50
d2
[mm]
5,90
6,60
8,00
dV
[mm]
5,0
6,0
8,0
My,k
[Nm]
27,2
45,9
70,9
fax,k
[N/mm2]
11,7
11,7
11,7
Associated density
ρa
[kg/m3]
350
350
350,0
Characteristic tensile strength
ftens,k
[kN]
25,4
38,0
53,0
Characteristic yield strength
fy,k
[N/mm2]
1000
1000
1000
Nominal diameter
d1
[mm]
Head diameter
dK
Wrench size
SW
Head thickness Tip diameter Pre-drilling hole
diameter(1)
Characteristic yield moment Characteristic withdrawal-resistance parameter(2)
(1)
Pre-drilling valid for softwood. (2) Valid for softwood - maximum density 440 kg/m3 . For applications with different materials or with high density please see ETA-11/0030. For VGS Ø13 screw a Ø8x80 predrill is recommended.
188 | VGS | STRUCTURES
CODES AND DIMENSIONS d1
CODE
[mm] [in]
9 0.36 TX 40
11 0.44 TX 50
11 0.44 SW17 TX 50
L
b
pcs
d1
CODE
L
[mm] [in]
b
[mm]
[in]
[mm]
VGS9100
100
4
90
25
VGS13100
VGS9120
120
4 3/4
110
25
VGS13150
150
6
140
25
VGS9140
140
5 1/2
130
25
VGS13200
200
8
190
25
VGS9160
160
6 1/4
150
25
VGS9180
180
7 1/8
170
25
VGS9200
200
8
190
25
VGS9220
220
8 5/8
210
25
13 0.52 TX 50
[mm]
[in]
[mm]
100
4
90
pcs 25
VGS13300
300
11 3/4
280
25
VGS13400
400
15 3/4
380
25
VGS13500
500
19 3/4
480
25
600
23 5/8
580
25
VGS9240
240
9 1/2
230
25
VGS13600
VGS9260
260
10 1/4
250
25
VGS13700
700
27 1/2
680
25
VGS9280
280
11
270
25
VGS13800
800
31 1/2
780
25
VGS9300
300
11 3/4
290
25
VGS9320
320
12 5/8
310
25
VGS9340
340
13 3/8
330
25
VGS9360
360
14 1/4
350
25
VGS9380
380
15
370
25
VGS9400
400
15 3/4
390
25
VGS9440
440
17 1/4
430
25
VGS9480
480
19
470
25
VGS9520
520
20 1/2
510
25
VGS11100
100
4
90
25
VGS11125
125
4 15/16
115
25
VGS11150
150
6
140
25
VGS11175
175
6 7/8
165
25
VGS11200
200
8
190
25
VGS11225
225
8 7/8
215
25
VGS11250
250
10
240
25
VGS11275
275
10 7/8
265
25
VGS11300
300
11 3/4
290
25
VGS11325
325
12 3/4
315
25
VGS11350
350
13 3/4
340
25
VGS11375
375
14 3/4
365
25
VGS11400
400
15 3/4
390
25
VGS11450
450
17 3/4
440
25
VGS11500
500
19 3/4
490
25
VGS11550
550
21 5/8
540
25
VGS11600
600
23 5/8
590
25
VGS11700
700
27 1/2
680
25
VGS11800
800
31 1/2
780
25
13 0.52 SW 19 TX 50
VGS13900
900
35 1/2
880
25
VGS131000
1000
39 3/8
980
25
VGS131100
1100
43 5/16
1080
25
VGS131200
1200
47 1/4
1180
25
VGU WASHER
CODE
screw
pcs
[mm] VGU945
VGS Ø9
25
VGU1145
VGS Ø11
25
VGU1345
VGS Ø13
25
WASP HOOK
CODE
screw
max. capacity
[mm]
[kg]
pcs
WASP
VGS Ø11
1300
2
WASPL
VGS Ø13
5000
2
WASP Various installation options with more types of screws for load conditions and different material.
STRUCTURES | VGS | 189
EFFECTIVE THREAD USED IN CALCULATION 10
Sg
Tol.
Sg
b = L - 10 mm
10
represents the entire length of the threaded part
S g = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm
b L
The timber to timber withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.
MINIMUM DISTANCES FOR SHEAR LOADS (1)
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE d1
[mm]
a1
[mm]
5∙d
a2
[mm]
3∙d
9
11
13
45
55
65
27
33
39
SCREWS INSERTED WITH PRE-DRILLING HOLE 9
11
13
4∙d
36
44
52
4∙d
36
44
52
a3,t
[mm]
12∙d
108
132
156
7∙d
63
77
91
a3,c
[mm]
7∙d
63
77
91
7∙d
63
77
91
a4,t
[mm]
3∙d
27
33
39
7∙d
63
77
91
a4,c
[mm]
3∙d
27
33
39
3∙d
27
33
39
d1
[mm]
a1
[mm]
a2
[mm]
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 9
11
13
12∙d
108
132
156
5∙d
45
55
65
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 9
11
13
5∙d
45
55
65
5∙d
45
55
65
a3,t
[mm]
15∙d
135
165
195
10∙d
90
110
130
a3,c
[mm]
10∙d
90
110
130
10∙d
90
110
130
a4,t
[mm]
5∙d
45
55
65
10∙d
90
110
130
a4,c
[mm]
5∙d
45
55
65
5∙d
45
55
65
d = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: (1) Minimum distances are in accordance with EN 1995:2014 as per ETA-11/0030 considering a timber characteristic density ofρk ≤ 420 kg/m3.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
190 | VGS | STRUCTURES
• The minimum spacing for all panel-to-timber connections(a1 , a2) can be multiplied by a coefficient of 0,85.
MINIMUM DISTANCES FOR AXIAL STRESSES (2)
SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE d1
[mm]
a1
[mm]
9
11
13
5∙d
45
55
65
[mm]
5∙d
45
55
65
[mm]
2.5∙d
23
28
33
a1,CG
[mm]
10∙d
90
110
130
a2,CG
[mm]
4∙d
36
44
52
aCROSS
[mm]
1.5∙d
14
17
20
a2 a2,LIM
(3)
d = nominal screw diameter
SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN
a2,CG a2,CG
a2,CG a2 a2,CG
a2
a2,CG
a2,CG a1,CG
1
a1
a
a2,CG a1,CG
a1,CG
a2,CG a1,CG
plan
front
SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN
plan
front
CROSS SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN
a2,CG 45°
a2 a2,CG
a2,CG a1,CG
aCROSS a2,CG
a1 a1,CG
plan
a1
front
plan
front
NOTES: (2) The minimum distances for connectors stressed axially are independent of
the insertion angle of the connector and the angle of the force with respect to the grain, in accordance with ETA-11/0030.
(3) The axial distance a can be reduced down to 2,5 d if for each connector a 2 1 “joint surface” a1∙a2 = 25∙d1 2 is maintained.
STRUCTURES | VGS | 191
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 TENSION(1)/COMPRESSION(2) total thread withdrawal(3)
geometry
steel tension
partial thread withdrawal(3)
instability
estrazione estrazionefiletto filettoparziale parziale
L
Sg
A
Sg
A
A
d1
timber d1
L
b
A min
[mm]
[mm]
[mm]
100
90
9
11
timber
steel
steel
Rax,k
Rtens,k
Rki,k
[mm]
[kN]
[kN]
[kN]
55
3,98
25,40
17,25
38,00
21,93
Rax,k
Sg
A min
[mm]
[kN]
[mm]
110
10,23
35
120
110
130
12,50
45
65
5,11
140
130
150
14,77
55
75
6,25
160
150
170
17,05
65
85
7,39
180
170
190
19,32
75
95
8,52
200
190
210
21,59
85
105
9,66
220
210
230
23,87
95
115
10,80
240
230
250
26,14
105
125
11,93
260
250
270
28,41
115
135
13,07
280
270
290
30,68
125
145
14,21
300
290
310
32,96
135
155
15,34
320
310
330
35,23
145
165
16,48
340
330
350
37,50
155
175
17,61
360
350
370
39,78
165
185
18,75
380
370
390
42,05
175
195
19,89
400
390
410
44,32
185
205
21,02
440
430
450
48,87
205
225
23,30
480
470
490
53,41
225
245
25,57
520
510
530
57,96
245
265
27,84
100
90
110
12,50
35
55
4,86
125
115
135
15,97
48
68
6,60
150
140
160
19,45
60
80
8,33
175
165
185
22,92
73
93
10,07
200
190
210
26,39
85
105
11,81
225
215
235
29,86
98
118
13,54
250
240
260
33,34
110
130
15,28
275
265
285
36,81
123
143
17,01
300
290
310
40,28
135
155
18,75
325
315
335
43,75
148
168
20,49
350
340
360
47,22
160
180
22,22
375
365
385
50,70
173
193
23,96
400
390
410
54,17
185
205
25,70
450
440
460
61,11
210
230
29,17
500
490
510
68,06
235
255
32,64
550
540
560
75,00
260
280
36,11
600
590
610
81,95
285
305
39,59
700
680
710
94,45
335
355
46,53
800
780
810
108,34
385
405
53,48
192 | VGS | STRUCTURES
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 TENSION(1)/COMPRESSION(2) total thread withdrawal(3)
geometry
steel tension
partial thread withdrawal(3)
instability
estrazione estrazionefiletto filettoparziale parziale
L
Sg
A
Sg
A
A
d1
timber d1
L
b
A min
[mm]
[mm]
[mm]
100
90
150 200
13
timber
steel
steel
Rax,k
Rtens,k
Rki,k
[mm]
[kN]
[kN]
[kN]
55
5,75
53,00
32,69
Rax,k
Sg
A min
[mm]
[kN]
[mm]
110
14,77
35
140
160
22,98
60
80
9,85
190
210
31,19
85
105
13,95
300
280
310
45,96
135
155
22,16
400
380
410
62,38
185
205
30,37
500
480
510
78,79
235
255
38,58
600
580
610
95,21
285
305
46,78
700
680
710
111,62
335
355
54,99
800
780
810
128,04
385
405
63,20
900
880
910
144,45
435
455
71,41
1000
980
1010
160,87
485
505
79,61
1100
1080
1110
177,28
535
555
87,82
1200
1180
1210
193,70
585
605
96,03
NOTES: (1) The tensile design strength of the connector is the lower between the
(3) The axial resistance of the thread to withdrawal was calculated considering
timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).
a 90° angle between the fibres and the connector and for a effective thread length of b or Sg.
Rax,d = min
Rax,k kmod γM Rtens,k γM2
For intermediate values of Sg it is possible to linearly interpolate.
(2) The compression design strength of the connector is the lower between
the timber-side design strength (Rax,d) and the instability design strength (Rki,k).
Rax,d = min
Rax,k kmod γM Rki,k γM1
STRUCTURES | VGS | 193
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
SLIDING(4) timber-to-timber(5)
timber-to-timber
S
g
A
Sg
45°
steel-to-timber(5)
A
45°
S
g
S
g
L
Amin
B
Sg d1
timber d1
L
Sg
A min
[mm]
[mm]
[mm]
100
35
9
11
RV,k
A min
Bmin
[mm]
[kN]
[mm]
50
3,53
40
timber
steel
RV,k
Rtens,k 45°(6)
[mm]
[kN]
[kN]
75
6,43
RV,k
Sg
A min
[mm]
[kN]
[mm]
55
2,81
80
120
45
60
4,19
50
60
3,62
100
90
8,04
140
55
70
4,81
55
70
4,42
120
105
9,64
160
65
80
5,10
60
75
5,22
140
120
11,25
180
75
90
5,38
70
85
6,03
160
135
12,86
200
85
100
5,67
75
90
6,83
180
145
14,46
220
95
110
5,95
85
100
7,63
200
160
16,07
240
105
120
6,23
90
105
8,44
220
175
17,68
260
115
130
6,50
100
110
9,24
240
190
19,29
280
125
140
6,50
105
120
10,04
260
205
20,89
300
135
150
6,50
110
125
10,85
280
220
22,50
320
145
160
6,50
120
135
11,65
300
230
24,11
340
155
170
6,50
125
140
12,46
320
245
25,71
360
165
180
6,50
135
145
13,26
340
260
27,32
380
175
190
6,50
140
155
14,06
360
275
28,93
400
185
200
6,50
145
160
14,87
380
290
30,54
440
205
220
6,50
160
175
16,47
420
315
33,75
480
225
240
6,50
175
190
18,08
460
345
36,96
520
245
260
6,50
190
205
19,69
500
375
40,18
100
35
50
4,27
40
55
3,44
80
75
7,86
125
48
63
5,40
50
65
4,67
105
95
10,31
150
60
75
6,40
60
75
5,89
130
110
12,77
175
73
88
7,05
70
80
7,12
155
130
15,22
200
85
100
7,48
80
90
8,35
180
145
17,68
225
98
113
7,92
85
100
9,58
205
165
20,13
250
110
125
8,35
95
110
10,80
230
185
22,59
275
123
138
8,79
105
115
12,03
255
200
25,04
300
135
150
9,06
115
125
13,26
280
220
27,50
325
148
163
9,06
120
135
14,49
305
235
29,96
350
160
175
9,06
130
145
15,71
330
255
32,41
375
173
188
9,06
140
155
16,94
355
270
34,87
400
185
200
9,06
150
160
18,17
380
290
37,32
450
210
225
9,06
165
180
20,63
430
325
42,23
500
235
250
9,06
185
195
23,08
480
360
47,14
550
260
275
9,06
200
215
25,54
530
395
52,05
600
285
300
9,06
220
230
27,99
580
430
56,96
700
335
350
9,06
255
265
32,90
-
-
-
800
385
400
9,06
290
305
37,81
-
-
-
194 | VGS | STRUCTURES
17,96
26,87
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
SLIDING(4) timber-to-timber(5)
timber-to-timber
S
g
A
Sg
45°
steel-to-timber(5)
A
45°
S
g
S
g
L
Amin
B
Sg d1
timber d1
L
Sg
A min
[mm]
[mm]
[mm]
100
35
150
60
75
7,61
200
85
100
9,46
13
RV,k
A min
Bmin
[mm]
[kN]
[mm]
50
4,87
45
timber
steel
RV,k
Rtens,k 45°(6)
[mm]
[kN]
[kN]
75
9,29
RV,k
Sg
A min
[mm]
[kN]
[mm]
55
4,06
80
60
75
6,96
130
110
15,09
80
90
9,87
180
145
20,89
300
135
150
11,51
115
125
15,67
280
220
32,50
400
185
200
11,94
150
160
21,47
380
290
44,11
500
235
250
11,94
185
195
27,28
480
360
55,71
600
285
300
11,94
220
230
33,08
580
430
67,32
700
335
350
11,94
255
265
38,88
-
-
-
800
385
400
11,94
290
305
44,69
-
-
-
900
435
450
11,94
325
340
50,49
-
-
-
1000
485
500
11,94
360
375
56,30
-
-
-
1100
535
550
11,94
395
410
62,10
-
-
-
1200
585
600
11,94
430
445
67,90
-
-
-
37,48
NOTES:
GENERAL PRINCIPLES:
(4) The axial thread withdrawal resistance was calculated considering a 45° angle
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
between the fibres and the connector and for an effective thread length of Sg.
(5) The design sliding resistance of the connector is either the timber-side de-
sign resistance (RV,d) and the steel design resistance (Rtens,d 45°), whichever is lower.
RV,d = min
RV,k kmod γM Rtens,k 45° γM2
To properly create the joint, the head of the connector must be completely inserted in the steel plate.
(6) The connector tensile strength was calculated considering a 45° angle be-
tween the fibres and the connector.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. • Dimensioning and verification of timber elements and steel plates must be carried out separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The timber to timber withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.
STRUCTURES | VGS | 195
TIMBER-TO-TIMBER APPLICATION RECOMMENDED INSERTION MOMENT: Mins VGS Ø9 Mins = 20 Nm Mins = 30 Nm
VGS Ø11 L ≥ 400 mm
Mins = 40 Nm
VGS Ø13 Mins = 50 Nm
V
G
Mins S
VGS Ø11 L < 400 mm
X
X
X
X
X
X
G
G
X
S
X
S
V
X
X
X
V
X
X
STEEL-TO-TIMBER APPLICATION
G
G
X
S
X
S
V X
X
X
V X
G
G
X
S
X
S
V
X
X
X
V
X
G
G
X
S
X
S
V X
X
X
V X
G
G
X
S
X
S
V
X
X
X
V
X
G
G
X
S
X
S
V
V X
X
X
X
X
X
G
V
X
X
X
X
X
S
S
V
G
V
X
X
X
X
X
X
G
V
X
X
X
X
X
S
S
V
G
V
X
X
X
X
X
X
G
V
X
X
X
X
X
G
V
Avoid accidental stress during installation.
A. SHAPED PLATE WITH COUNTERSUNK HOLES
B. VGU WASHER
X
X
V
S
S
45°
G
G
X
V X
X
V
X S
S
G
X
X
X
G
V
G
V X
X
G
X
V
G
X
V
X
G
V X
X
X
V
X
G V
G
V
V X
V
V
X
X
G
V
X
G V
G
V
V
G
G X
V
G
G
G
X
S
S
X
X
G X
X
G
G
X
G
V
V
G V
S
S
X
S
X
S
V
X
X
V X
G
G
S
S
X
X
S
X
X
X
S
X
X
X
X
S
S
S
X
X
S
S
X
S
45°
G
X
V
X X
X
G
X
X
X
X
X
X
X
X
X
G
X
X
X
X
S
X
S
X
X
X
X
S
X
S
α
α
X
S
X
S
X
X
S
S
X
X X
X
X
X
X
V
G
S
S
Avoid dimensional changes to the metal.
X
V
G
S
S
X
V
G
V
G
S
S
X
X
G
V
G
S
S
X
X
X
V
Avoid bending.
V
Respect the 45° insertion angle.
A. SHAPED PLATE
Avoid bending.
B. WASHERS V
G
S
Respect the insertion angle (e.g. adopting a template).
X
V
X
G
S
X
X
X
S
G
X
X
V
X
G
S
X
V
X
X
Countersunk hole.
196 | VGS | STRUCTURES
Cylindrical hole.
Flared washer.
VGU washer.
X
APPLICATION EXAMPLES
TAPERED BEAMS apex tension reinforcement perpendicular to grain
HANGING LOAD tension reinforcement perpendicular to grain
front
section
NOTCH tension reinforcement perpendicular to grain
front
section
SUPPORT compression reinforcement perpendicular to grain
plan
plan
section
section
STRUCTURES | VGS | 197
CALCULATION EXAMPLES: REINFORCEMENT OF BEAM WITH COMPRESSION PERPENDICULAR TO THE FIBRES PROJECT DATA a2,c
B = 220 mm
Fv,Rd = 158 kN
H = 560 mm
Fc,90,Rd = 158 kN
a = 25 mm
Service class = 1
L a = 200 mm
Load duration = medium
a2
B
a2,c a1,c
GL24h Glulam (ρ k = 385 kg/m3)
a1
Fv,Rd
H
Fc,90,Rd a
La
SHEAR VERIFICATION OF SUPPORT (EN 1995:2014) : τd ≤ fv,d
τd =
1,5 Fv,Rd B H
τd
= 1,92 N/mm2
fv,k = 3,50 N/mm2
EN 1995:2014 kmod = 0,8 γM = 1,25 fv,d = 2,24 N/mm2
Italy - NTC 2018 kmod = 0,8 γM = 1,45 fv,d = 1,93 N/mm2
τd ≤ fv,d
1,92 < 2,24 N/mm2
τd ≤ fv,d
1,92 < 1,93 N/mm2
verification passed
verification passed
PERPENDICULAR COMPRESSION VERIFICATION OF SUPPORT-BEAM WITHOUT REINFORCEMENT (EN 1995:2014) : σc,90,d ≤ kc,90∙ fc,90,d
B H lef,1 = La + a + 30 σc,90,d =
Fv,Rd B lef,1
lef,1 = 255 mm σc,90,d= 2,82 N/mm2 kc,90 = 1,75 fc,90,k = 2,50 N/mm2
EN 1995:2014 kmod = 0,8 γM = 1,25 fc,90,d = 1,60 N/mm2
Italy - NTC 2018 kmod = 0,8 γM = 1,45 fc,90,d = 1,38 N/mm2
σc,90,d ≤ kc,90 ∙ fc,90,d
2,82 < 2,80 N/mm2
σc,90,d ≤ kc,90 ∙ fc,90,d
2,82 < 2,41 N/mm2
verification not passed
verification not passed
REQUIRES REINFORCEMENT
REQUIRES REINFORCEMENT
198 | VGS | STRUCTURES
PERPENDICULAR COMPRESSION VERIFICATION OF SUPPORT - BEAM WITH REINFORCEMENT (EN 1995:2014 and ETA-11/0030) : Fc,90,Rd ≤ Rc,90,Rd
Rc,90,Rd = min
kc,90 B lef,1 fc,90d + n Rax,Rd B lef,2 fc,90d
REINFORCEMENT CONNECTOR SELECTION VGS 9 x 360 mm
n0 = 2
L = 360 mm
n90 = 2
b = 350 mm
n = n0 ∙ n90 = 4
lef,2 = L + (n₀ -1) a₁ + min (a1,CG ;L)
lef,2 = 555 mm
The minimum distances for placement of the connectors are found in the table on p.191. In this example it is assumed a1 = 50 mm and a1,CG = 145 mm.
Rax,α,Rk kmod γM Rax,Rd = min Rki,k Rki,d = γM1 Rax,d =
Rax,90°,Rk = 39,78 kN Rki,k = 17,25 kN
The compression resistance of the connectors calculated here is shown in the table on p.192. EN 1995:2014
Italy - NTC 2018
kmod = 0,8
kmod = 0,8
γM = 1,3
γM = 1,5
γM1 = 1,00
γM1 = 1,05
Rax,90°,Rd = 24,48 kN
Rax,90°,Rd = 21,22 kN
Rki,d = 17,25 kN
Rki,d = 16,43 kN
Rax,Rd = 17,25 kN
Rax,Rd = 16,43 kN
Rc,90,Rd = min
kc,90 B lef,1 fc,90d + n Rax,Rd B lef,2 fc,90d
Rc,90,Rd= 195,36 kN
Rc,90,Rd= 168,41 kN
Fc,90,Rd ≤ Rc,90,Rd
158 < 195,36 kN
Fc,90,Rd ≤ Rc,90,Rd
158 < 168,41 kN
verification passed
verification passed
For different calculation configurations, the MyProject software is available (www.rothoblaas.com)
STRUCTURES | VGS | 199
VGU
AC233 ESR-4645
45° WASHER FOR VGS SAFETY The VGU washer makes possible to install VGS screws at a 45° angle on steel plates. Washer marked CE as per ETA-11/0030.
STRENGTH Using the VGU washer with VGS screws inclined at a 45° angle on steel plates restores the sliding strength.
PRACTICALITY The ergonomic shape ensures a firm, precise grip during installation. Three versions of washer, compatible with VGS Ø9, Ø11 and Ø13 mm, for plates of variable thickness.
CHARACTERISTICS FOCUS
45°steel-to-timber joints
PLATE THICKNESS
from 3,0 to 20,0 mm
PLATE HOLES
slotted
WASHER HOLE
9,0 | 11,0 | 13,0 mm
VIDEO Scan the QR Code and watch the video on our YouTube channel
MATERIAL Galvanized carbon steel.
FIELDS OF USE • timber based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.
200 | VGU | STRUCTURES
ETA-11/0030
GEOMETRY LF
D2 D1
H
BF
h L
SPLATE
VGU945
VGU1145
VGU1345
VGS screw diameter
Washer d1
[mm]
9,0
11,0
13,0
VGS screw pre-drilling hole diameter(1)
dV
[mm]
5,0
6,0
8,0
Internal diameter
D1
[mm]
9,7
11,8
14,0
External diameter
D2
[mm]
19,0
23,0
27,4
Base length
L
[mm]
31,8
38,8
45,8
Base heigth
h
[mm]
3,0
3,6
4,3
Global heigth
H
[mm]
23,0
28,0
33,0
Slotted-hole length
LF
[mm]
Slotted-hole width
BF
[mm]
Steel plate thickness
SPLATE
[mm]
min. 33.0 max. 34.0 min. 14.0 max. 15.0 min. 3.0 max. 12,0*
min. 41.0 max. 42.0 min. 17.0 max. 18.0 min. 4.0 max. 15,0*
min. 49.0 max. 50.0 min. 20.0 max. 21.0 min. 5.0 max. 15,0*
(1)
Pre-drilling valid for softwood. thicker plates it is necessary to realize a countersink in the lower part of the steel plate. For VGS screw-lengths L > 300 mm a Ø5 pre-drill is recommended. The assembly must be performed so as to guarantee that the stress is evenly distributed among all the installed VGU washers.
(*) For
CODES AND DIMENSIONS VGU WASHER CODE
JIG VGU TEMPLATE screw
dV
[mm]
[mm]
pcs
CODE
washer
dh
[mm]
dV
pcs
VGU945
VGS Ø9
5
25
JIGVGU945
VGU945
5,5
5
1
VGU1145
VGS Ø11
6
25
JIGVGU1145
VGU1145
6,5
6
1
VGU1345
VGS Ø13
8
25
JIGVGU1345
VGU1345
8,5
8
1
HSS WOOD DRILL BIT CODE
dh
[mm] [mm]
LOCKING RING FOR HSS BITS
dV
TL
SL
[mm]
[mm]
[mm]
pcs
F1599105
5
150
100
1
F1599106
6
150
100
1
F1599108
8
150
100
1
CODE LE LT
dV
dint
dext
[mm]
[mm]
[mm]
pcs
F2108005
5
5
10
10
F2108006
6
6
12
10
F2108008
8
8
16
10
dint dext
HELPS WITH INSTALLATION The JIG VGU template makes it easy to prepare a 45° angle pre-drill, thus facilitating subsequent tightening of the VGS screws inside the washer. A pre-drill length of at least 20 mm is recommended.
STRUCTURES | VGU | 201
STATIC VALUES | STEEL-TO-TIMBER JOINT SLIDING RESISTANCE RV
SPLATE
45°
S
g
L
Amin
d1
VGU
timber
steel
Sg
A min
RV,k(1)
timber Sg
A min
RV,k(1)
Sg
A min
RV,k(1)
Rtens,k 45°(2)
[mm]
[mm]
[kN]
[mm]
[mm]
[kN]
[mm]
[mm]
[kN]
[kN]
VGS d1
L
[mm] [mm]
3 mm
SPLATE
VGU945
9
11
7 mm
12 mm
100
80
75
6,43
75
75
6,03
65
65
5,22
120
100
90
8,04
95
85
7,63
85
80
6,83
140
120
105
9,64
115
100
9,24
105
95
8,44
160
140
120
11,25
135
115
10,85
125
110
10,04
180
160
135
12,86
155
130
12,46
145
125
11,65
200
180
145
14,46
175
145
14,06
165
135
13,26
220
200
160
16,07
195
160
15,67
185
150
14,87
240
220
175
17,68
215
170
17,28
205
165
16,47
260
240
190
19,29
235
185
18,88
225
180
18,08
280
260
205
20,89
255
200
20,49
245
195
19,69
300
280
220
22,50
275
215
22,10
265
205
21,29
320
300
230
24,11
295
230
23,71
285
220
22,90
340
320
245
25,71
315
245
25,31
305
235
24,51
360
340
260
27,32
335
255
26,92
325
250
26,12
380
360
275
28,93
355
270
28,53
345
265
27,72
400
380
290
30,54
375
285
30,13
365
280
29,33
440
420
315
33,75
415
315
33,35
405
305
32,54
480
460
345
36,96
455
340
36,56
445
335
35,76
520
500
375
40,18
495
370
39,78
485
365
38,97
4 mm
SPLATE
VGU1145
timber
100
75
75
10 mm 7,37
70
70
15 mm 6,88
60
60
5,89
125
100
90
9,82
95
85
9,33
85
80
8,35
150
125
110
12,28
120
105
11,79
110
100
10,80
175
150
125
14,73
145
125
14,24
135
115
13,26
200
175
145
17,19
170
140
16,70
160
135
15,71
225
200
160
19,64
195
160
19,15
185
150
18,17
250
225
180
22,10
220
175
21,61
210
170
20,63
275
250
195
24,55
245
195
24,06
235
185
23,08
300
275
215
27,01
270
210
26,52
260
205
25,54
325
300
230
29,46
295
230
28,97
285
220
27,99
350
325
250
31,92
320
245
31,43
310
240
30,45
375
350
265
34,38
345
265
33,88
335
255
32,90
400
375
285
36,83
370
280
36,34
360
275
35,36
450
425
320
41,74
420
315
41,25
410
310
40,27
500
475
355
46,65
470
350
46,16
460
345
45,18
550
525
390
51,56
520
390
51,07
510
380
50,09
600
575
425
56,47
570
425
55,98
560
415
55,00
202 | VGU | STRUCTURES
17,96
26,87
STATIC VALUES | STEEL-TO-TIMBER JOINT SLIDING RESISTANCE RV
SPLATE
45°
S
g
L
Amin
d1
VGU
timber
steel
Sg
A min
RV,k(1)
timber Sg
A min
RV,k(1)
Sg
A min
RV,k(1)
Rtens,k 45°(2)
[mm]
[mm]
[kN]
[mm]
[mm]
[kN]
[mm]
[mm]
[kN]
[kN]
VGS d1
L
[mm] [mm]
5 mm
SPLATE
VGU1345
13
timber
10 mm
15 mm
100
65
65
7,54
60
60
6,96
50
55
5,80
150
115
100
13,35
110
100
12,77
100
90
11,61
200
165
135
19,15
160
135
18,57
150
125
17,41
300
265
205
30,76
260
205
30,18
250
195
29,02
400
365
280
42,37
360
275
41,79
350
265
40,63
500
465
350
53,97
460
345
53,39
450
340
52,23
600
565
420
65,58
560
415
65,00
550
410
63,84
37,48
NOTES: (1) The connector pull-out strength has been evaluated by considering a 45°
angle to the grain and an effective length of the threaded part equal to Sg. (2) The connector tensile strength was calculated considering a 45° angle be-
tween the fibres and the connector.
• For intermediate values of SPLATE linear interpolation is allowed. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. • Dimensioning and verification of timber elements and steel plates must be carried out separately.
GENERAL PRINCIPLES:
• For a row of n connectors parallel to the Fv stress, it is recommended that the effective load-bearing capacity is evaluated as :
• Characteristic values are consistent with EN 1995-1-1 and in accordance with ETA-11/0030.
Rv,d,tot = nef · Rv,d with nef = max { 0,9 n ; n0,9 }
• The design sliding strength of the joint is either the timber-side design strength (RV,d) or the steel design strength (Rtens,d 45°), whichever is lower:
RV,d = min
RV,k kmod γM Rtens,k 45° γM2
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • F or the correct realization of the joint, the fastener head should be fully embedded into the VGU washer.
STRUCTURES | VGU | 203
INSTALLATION WITH THE AID OF A PRE-DRILL TEMPLATE
The pre-drill template makes it possible to prepare a 45° angle pre-drill to facilitate screwing.
1
2
Using the template, prepare a pre-drill using a special bit (at least 20 mm).
NO IMPACT
V
S
G
Place the VGU washer in the slot provided and use the JIG-VGU template of the correct diameter.
X
X
X
V
S
G
45° X
X
X
3
4
Position the screw and respect the 45° angle of insertion.
Screw down with a NON-PULSED screw gun, stopping at about 1 cm from the washer.
Mins S X
S X
V
G
S
X
X
S X
G
V
S
V
G
X
X
S
V
S
G
X
X
V
G
X
X
S
X
X
Perform the operation for all washers.
G
X
6
G
510
X
X
X
X
204 | VGU | STRUCTURES
X
V
X
Complete screwing using a torque wrench, applying the correct maximum insertion moment.
X
V
G
X
5
G
X
mm
X
S
X
X
V
X
V
INSTALLATION WITHOUT PRE-DRILL L
LF
NO IMPACT
V
S
G
Place the steel plate on the wood and set the VGU washers in the slots provided.
X
X
X
V
S
G
45° X
X
X
1
2
Position the screw and respect the 45° angle of insertion.
Screw down with a NON-PULSED screw gun, stopping at about 1 cm from the washer.
Mins S X
S X
V
X
X
G
S
G
X
X
V
G
X
X
X
S
X
V
S
G
V
G
510
G
X
mm
X
S
X
X
V
X
V
X
V
G
X
X
S X
V
S
G
X
X X
V
G
X
X
S X
X
X
3
Complete screwing using a torque wrench, applying the correct maximum insertion moment.
4
Perform the operation for all washers.
TIMBER-TO-STEEL APPLICATION RECOMMENDED INSERTION MOMENT: Mins
NO IMPACT
VGS Ø9 Mins = 20 Nm
Mins V
G
m
X
S
V
510 m
X
X
X
S X
VGS Ø13 Mins = 50 Nm
X
VGS Ø11 L ≥ 400 mm Mins = 40 Nm
G
VGS Ø11 L < 400 mm Mins = 30 Nm
STRUCTURES | VGU | 205
RTR
ETA-11/0030
STRUCTURAL REINFORCEMENT SYSTEM CERTIFICATION Structural reinforcement bar with wood thread, CE certified according to ETA-11/0030.
RAPID DRY SYSTEM Large reinforcement bar (diameter: 16 mm and 20 mm) with wood thread that does not require resin or adhesives.
STRUCTURAL REINFORCEMENT High tensile strength steel (fy,k = 640 N/mm2), ideal for structural reinforcements.
CHARACTERISTICS FOCUS
perpendicular stress reinforcement
ADAPTOR
attachment bushing
DIAMETER
16,0 | 20,0 mm
LENGTH
2200 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE • timber based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.
206 | RTR | STRUCTURES
GEOMETRY AND MECHANICAL CHARACTERISTICS d2 d1
L 16
20
Nominal diameter
d1
[mm]
Tip diameter
d2
[mm]
12,0
15,0
Pre-drilling hole diameter(1)
dV
[mm]
13,0
16,0
My,k
[Nm]
200
350
fax,k
[N/mm2]
9,0
9,0
Associated density
ρa
[kg/m3]
350
350
Characteristic tensile strength
ftens,k
[kN]
100,0
145,0
Characteristic yield moment Characteristic withdrawal-resistance parameter(2)
(1) (2)
Pre-drilling valid for softwood. Valid for softwood - maximum density 440 kg/m3.
CODES AND DIMENSIONS d1
CODE
[mm] [in] 16 0.63 20 0.79
L
pcs
[mm]
[in]
RTR162200
2200
86 5/8
10
RTR202200
2200
86 5/8
5
TOOLS CODE
description
1
DUD38RLE drill
1
2
DUVSKU
safety clutch
1
3
DUD38SH
screw handle
1
4
ATCS2010
sleeve adaptor Ø16-20
1
5
ATCS007
sleeve Ø16
1
6
ATCS008
sleeve Ø20
1
Further information on page 362.
2
pcs
3 4 5 1
6
USE AS WB SCREWDRIVER For 16 and 20 mm structural reinforcement bars.
LARGE SPANS The length of the bars allows for fast and secure reinforcements on any size beam. Ideal for factory installations.
STRUCTURES | RTR | 207
MINIMUM DISTANCES FOR AXIAL STRESSES(1)
a2,CG a2 a2,CG a1,CG
a1
a1,CG
a1
RODS INSERTED WITH PRE-DRILLING HOLE d1
[mm]
a1
[mm]
a2
[mm]
a1,CG a2,CG
16
20
5∙d
80
100
5∙d
80
100
[mm]
10∙d
160
200
[mm]
4∙d
64
80
d = nominal rod diameter
MINIMUM DISTANCES FOR SHEAR LOADS (1)
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
RODS INSERTED WITH PRE-DRILLING HOLE d1
[mm]
a1
[mm]
a2
[mm]
3∙d
a3,t
[mm]
12∙d
a3,c
[mm]
7∙d
a4,t
[mm]
3∙d
a4,c
[mm]
3∙d
5∙d
RODS INSERTED WITH PRE-DRILLING HOLE
16
20
80
100
4∙d
16
20
64
80
48
60
4∙d
64
80
192
240
7∙d
112
140
112
140
7∙d
112
140
48
60
7∙d
112
140
48
60
3∙d
48
60
d = nominal rod diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F a3,t
NOTES: (1) Minimum distances are in accordance with EN 1995:2014 as per ETA-11/0030 considering a timber characteristic density of ρ k ≤ 420 kg/m3.
208 | RTR | STRUCTURES
F α
α a3,c
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 TENSION(1) thread withdrawal(2)
geometry
SHEAR steel tension
timber-to-timber
≥ Sg
Sg
Sg
Sg
d1
timber
steel
Rax,k
Rtens,k
[mm]
[kN]
[kN]
100
15,54
d1
Sg
[mm]
16
20
RV,k [kN] 18,87
200
31,08
22,75
300
46,62
26,64
400
62,16
500
77,70
29,96
600
93,25
29,96
100,0
29,96
100
19,43
25,78
200
38,85
31,34
300
58,28
36,19
400
77,70
41,05
500
97,13
600
116,56
700
135,98
43,25
800
155,41
43,25
145,0
43,25 43,25
NOTES:
GENERAL PRINCIPLES:
(1) The connector design resistance is the lowest between the timber side de-
• C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
sign resistance (Rax,d) and the steel side resistance (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
(2) The axial resistance of the thread to withdrawal was calculated considering
a 90° angle between the fibres and the connector and for a effective thread length of Sg.
For intermediate values of Sg it is possible to linearly interpolate.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the rods, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. • Dimensioning and verification of the timber elements must be carried out separately.
STRUCTURES | RTR | 209
DGZ
AC233 ESR-4645
BIT INCLUDED
DOUBLE THREADED SCREW FOR INSULATION CONTINUOUS INSULATION Allows continuous, uninterrupted fastening of roof insulation package. Prevents thermal bridges in compliance with energy saving regulations.
CERTIFICATION Connector for hard, soft and façade insulation, CE certified according to ETA-11/0030. Available in two diameters (7 and 9 mm) to optimize the number of fasteners.
MYPROJECT Free MyProject software for customized fastening calculation, accompanied by a calculation report.
CYLINDRICAL HEAD Cylindrical head countersunk in the joist. Also certified in versions with flange head (DGT) and countersunk head (DGS).
CHARACTERISTICS FOCUS
insulation package fasteners
HEAD
cylindrical, countersunk
DIAMETER
7,0 | 9,0 mm
LENGTH
from 220 to 520 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE • timber based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.
210 | DGZ | STRUCTURES
ETA-11/0030
THERMAL BRIDGES Thanks to the double thread, the roof insulation package can be fixed to the supporting structure without any interruptions, thus preventing thermal bridges. Certification specific for fastening on both hard and soft insulation.
VENTILATED FAÇADES Also tested, certified and calculated on façade joists and with high density woods such as Microllam® LVL.
STRUCTURES | DGZ | 211
Fastening of hard insulation on a flat roof.
Ideal for fastening hard insulation, even of great thickness.
GEOMETRY AND MECHANICAL CHARACTERISTICS
Z
D
d2 d1
X
G
X
X
dK
dS
60
100 L
7
9
Nominal diameter
d1
[mm]
Head diameter
dK
[mm]
9,5
11,5
Tip diameter
d2
[mm]
4,60
5,90
Shank diameter
dS
[mm]
5,00
6,50
Characteristic yield moment Characteristic withdrawal-resistance parameter(1)
My,k
[Nm]
14,2
27,2
fax,k
[N/mm2]
11,7
11,7
Associated density
ρa
[kg/m3]
350
350
Characteristic tensile strength
ftens,k
[kN]
15,4
25,4
(1)
Valid for softwood - maximum density 440 kg/m3.
212 | DGZ | STRUCTURES
CODES AND DIMENSIONS d1
CODE
L
[mm] [in]
7 0.28 TX 30
pcs
d1
CODE
L
[mm] [in]
pcs
[mm]
[in]
[mm]
[in]
DGZ7220
220
8 5/8
50
DGZ9240
240
9 1/2
50
DGZ7260
260
10 1/4
50
DGZ9280
280
11
50
DGZ7300
300
11 3/4
50
DGZ9320
320
12 5/8
50
DGZ7340
340
13 3/8
50
DGZ9360
360
14 1/4
50
DGZ7380
380
15
50
DGZ9400
400
15 3/4
50
DGZ9440
440
17 1/4
50
DGZ9480
480
19
50
DGZ9520
520
20 1/2
50
9 0.36 TX 40
NOTES: upon request, EVO version is available.
SCREW SELECTION MINIMUM SCREW LENGTH DGZ Ø7
s = 30 A B DGZ at 60° DGZ at 90°
s = 40 A B DGZ at 60° DGZ at 90°
batten thickness(*) [mm] s = 50 A B DGZ at 60° DGZ at 90°
[mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
60
220
220
220
220
220
220
220
220
260
220
insulation + wooden planking thickness
s = 60 A B DGZ at 60° DGZ at 90°
s = 80 A B DGZ at 60° DGZ at 90°
80
220
220
220
220
220
220
260
220
260
220
100
220
220
260
220
260
220
260
220
300
260
120
260
220
260
220
260
260
300
260
300
260
140
260
260
300
260
300
260
300
260
340
300
160
300
260
300
260
340
300
340
300
340
300
180
340
300
340
300
340
300
340
300
380
340
200
340
300
340
300
380
340
380
340
-
340
220
380
340
380
340
380
340
380
340
-
380
240
380
340
380
340
-
380
-
380
-
380
260
-
380
-
380
-
380
-
380
-
-
280
-
380
-
380
-
-
-
-
-
-
(*) Minimum
batten thicknesses: DGZ Ø7 mm: base/height = 50/30 mm.
MINIMUM SCREW LENGTH DGZ Ø9
s = 30 A B DGZ at 60° DGZ at 90°
s = 40 A B DGZ at 60° DGZ at 90°
batten thickness(*) [mm] s = 50 A B DGZ at 60° DGZ at 90°
[mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
60
-
-
240
240
240
240
240
240
240
240
80
-
-
240
240
240
240
240
240
280
240
insulation + wooden planking thickness
s = 60 A B DGZ at 60° DGZ at 90°
s = 80 A B DGZ at 60° DGZ at 90° Lmin [mm]
100
-
-
240
240
240
240
280
240
280
240
120
-
-
280
240
280
240
280
240
320
280
140
-
-
280
240
320
280
320
280
320
280
160
-
-
320
280
320
280
320
280
360
320
180
-
-
320
280
360
320
360
320
400
320
200
-
-
360
320
360
320
400
320
400
360
220
-
-
400
320
400
360
400
360
440
360
240
-
-
400
360
400
360
440
360
440
400
260
-
-
440
360
440
400
440
400
480
400
280
-
-
440
400
480
400
480
400
480
440
300
-
-
480
400
480
400
480
440
520
440
320
-
-
520
440
520
440
520
480
520
480
340
-
-
520
480
520
480
-
-
-
-
(*) Minimum
batten thicknesses: DGZ Ø9 mm: base/height = 60/40 mm.
NOTE: check that the screw tip does not stick out from the rafter.
STRUCTURES | DGZ | 213
FASTENINGS FOR CONTINUOUS INSULATION
Installation of a continuous layer of insulation guarantees excellent energy performance, eliminating thermal bridges. Efficacy is limited by the proper use of appropriate fastening systems, calculated correctly.
CRUSHING OF THE INSULATION
Crushing of the insulation (for very heavy loads) leads to a reduction in the ventilation chamber. As a result, aeration in the hollow space, and thus its efficacy, is reduced. Additionally, it is possible that the insulating power of the package is diminished, with the thickness being reduced after the crushing. To prevent this problem, it is necessary to verify that the compression resistance of the insulation σ (10%) is sufficient to resist the stresses in question. Alternatively, it is possible to place screws tilted in the two directions so that the load is entirely transferred by the connectors and does not deform the layer of insulation in any way.
SLIP OF THE INSULATION AND THE COATING
F F
The load applied to the structure has a component parallel to the layer/façade which leads, if not restrained (for example through “type A” screws), to a possible shift in the external layers, causing probable damage to the cover surface and the insulating power. Clear thermal, aesthetic and waterproofing problems then result.
THERMAL BRIDGES
it is important that the insulation be continuous, without breaks or cracks, to optimise performance and minimise thermal bridges. Thermal bridges due to over frequent anchoring or those placed erroneously are also to be avoided.
214 | DGZ | STRUCTURES
COVER SOFT INSULATION Low compression resistance (σ (10%) < 50 kPa - EN 826)
N
• the insulation does not support the load component perpendicular to the layer (N);
F A
• screws are subject to tensile (A) and compression (B) stresses; • for very high negative wind pressure loads, additional screws are inserted (C);
B A
• adequate batten thickness makes it possible to optimise the number of fastenings.
B C
HARD INSULATION High compression resistance (σ(10%) ≥ 50 kPa - EN 826)
N F
A A
• the insulation supports the load component perpendicular to the layer (N); • the screws are subject only to tensile stress (A); • for very high negative wind pressure loads, additional screws are inserted (C); • adequate batten thickness makes it possible to optimise the number of fastenings.
A C
FAÇADE
F A C ±N A
• the screws must support both positive and negative wind pressure loads (±N) and vertical forces (F); • installation: one screw in tension(A) and one perpendicular to the façade (C), tense or compressed as a function of N, or screws inclined in the 2 directions; • the screws (C) must support both the positive and negative wind pressure loads (±N) and are alternatively subjected to compression and tensile stresses.
C
STRUCTURES | DGZ | 215
POSSIBLE CONFIGURATIONS
A A
60° A
90°
60° 90°
B
A
60° A
90°
A
A
A
90° B A 60°
A B
B
RIGID ROOF INSULATION σ(10%) ≥ 50 kPa (EN826)
SOFT ROOF INSULATION σ(10%) < 50 kPa (EN826)
B
FACADE INSULATION
NOTE: The number and placement of the fastenings depends on the geometry of the surfaces, the type of insulation and the loads acting on them.
MINIMUM DISTANCES FOR AXIAL STRESSES (1)
a2,CG 1
a
a2 a2,CG a1,CG
a1,CG
SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE d1
[mm]
7
9
a1
[mm]
5∙d
35
45
a2
[mm]
5∙d
35
45
a1,CG
[mm]
10∙d
70
90
a2,CG
[mm]
4∙d
28
36
d = nominal screw diameter
NOTES: (1) T he minimum distances for connectors stressed axially are independent of
the insertion angle of the connector and the angle of the force with respect to the grain, in accordance with ETA-11/0030.
216 | DGZ | STRUCTURES
CALCULATION EXAMPLE: FASTENING OF CONTINUOUS INSULATION WITH DGZ
PROJECT DATA Roof loads Permanent load
gk
0,45 kN/m2
Snow load
s
1,70 kN/m2
Positive wind pressure
we
0,30 kN/m2
Negative wind pressure
we
-0,30 kN/m2
z
8,00 m
Building length
L
11,50 m
Building width
B
8,00 m
Layer slope
α
30% = 16,7°
Ridge piece position
L1
5,00 m
Ridge piece height Building dimensions
Roof geometry
INSULATION PACKAGE FIGURES Rafters
bt x ht
120 x 160 mm
Wooden planking
S1
20.00 mm
Tile support battens
eb
0,33 m
Insulation layer
S2
160.00 mm
Wood grain (soft)
bL x hL
60 x 40 mm
C24 Commercial length
Battens
CONNECTOR SELECTION - OPTION 1 - DGZ Ø7
GL24h spacing
i
0,70 m
σ(10%)
0,03 N/mm2
LL
4,00 m
CONNECTOR SELECTION - OPTION 2 - DGZ Ø9
Screw under tension
7 x 300 mm
60° angle: 126 piece
Screw under tension
9 x 320 mm
60° angle: 108 piece
Compressed screw
7 x 300 mm
60° angle: 126 piece
Compressed screw
9 x 320 mm
60° angle: 108 piece
Perpendicular screw
7 x 260 mm
90° angle: 72 piece
Perpendicular screw
9 x 280 mm
90° angle: 36 piece
Connector placement diagram.
Roof batten calculation.
STRUCTURES | DGZ | 217
SBD
BIT INCLUDED
EN 14592
SELF-DRILLING DOWEL STEEL AND ALUMINUM Special self-perforating timber-to-metal tip geometry that reduces the possibility of breakage. The cylindrical countersunk head ensures an optimal appearance and meets fire-resistance requisites.
INCREASED DIAMETER The diameter of 7,5 mm ensures a shear resistance of over 15 % and enables optimisation of the number of fasteners.
DOUBLE THREAD The thread up against the tip (b1) facilitates screwing. The increased length of the under head thread (b2) makes for fast, accurate closure.
CHARACTERISTICS FOCUS
self-drilling, timber-to-metal-to-timber
HEAD
cylindrical, countersunk
DIAMETER
7,5 mm
LENGTH
from 55 to 235 mm
VIDEO Scan the QR Code and watch the video on our YouTube channel
MATERIAL Galvanized carbon steel.
FIELDS OF USE Self-drilling system for concealed timber-to. steel joints. Can be used with screw guns running at 600-1500 rpm with: • steel S235 ≤ 10,0 mm • steel S275 ≤ 8,0 mm • steel S355 ≤ 6,0 mm • ALUMINI, ALUMIDI and ALUMAXI brackets Service classes 1 and 2.
218 | SBD | STRUCTURES
KNEE BEAM Ideal for joining head beams and making continuous beams, restoring shear forces and momentum. The small dowel diameter guarantees joints that offer high stiffness.
MOMENT RESISTING JOINT Also certified, tested and calculated for fastening standard Rothoblaas plates such as the TYP X pillar-holder.
STRUCTURES | SBD | 219
Fastening of Rothoblaas pillar-holder with internal knife plate F70.
Rigid ”knee“ joint with double internal plate (LVL).
GEOMETRY AND MECHANICAL CHARACTERISTICS
S d1
dK b2
b1
Lp
L
Nominal diameter
d1
[mm]
7,5
Head diameter
dK
[mm]
11,0
Tip length
Lp
[mm]
19,0
Effective length
Leff
[mm]
L - 8,0
Characteristic yield moment
My,k
[Nm]
42,0
INSTALLATION s single plate
s double plate
[mm]
[mm]
S235 steel
10,0
8,0
S275 steel
8,0
6,0
S355 steel
6,0
5,0
ALUMINI
6,0
-
ALUMIDI
6,0
-
s
ALUMAXI
10,0
-
single plate ta ta
tdouble ti plate ta a
B
B
plate
Timber-to-metal plate - timber shear joint Recommended pressure: ≈ 40 kg Recommended screwing: ≈ 1000 - 1500 rpm (steel plate) ≈ 600 - 1000 rpm (aluminium plate)
220 | SBD | STRUCTURES
s
s
CODES AND DIMENSIONS d1
CODE
L
[mm] [in]
b1
pcs
[mm]
[in]
[mm]
[mm]
55
2 3/16
10
-
50
SBD7575
75
2 15/16
10
8
50
SBD7595
95
3 3/4
10
15
50
SBD7555
7,5 0.30 TX 40
b2
SBD75115
115
4 1/2
10
15
50
SBD75135
135
5 5/16
10
15
50
SBD75155
155
6 1/8
20
15
50
SBD75175
175
6 7/8
40
15
50
SBD75195
195
7 11/16
40
15
50
SBD75215
215
8 7/16
40
15
50
SBD75235
235
9 1/4
40
15
50
MINIMUM DISTANCES FOR CONNECTORS SUBJECTED TO SHEAR STRESS(1)
Load-to-grain angle α = 0° d1
[mm]
a1
[mm]
Load-to-grain angle α = 90°
7,5 5∙d
7,5 3∙d
38
23
a2
[mm]
3∙d
23
3∙d
23
a3,t
[mm]
max (7∙d; 80)
80
max (7∙d; 80)
80
a3,c
[mm]
max (3.5∙d; 40)
40
max (3.5∙d; 40)
40
a4,t
[mm]
3∙d
23
4∙d
30
a4,c
[mm]
3∙d
23
3∙d
23
d = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: (1) Minimum distances in accordance with EN 1995:2014.
STRUCTURES | SBD | 221
TIMBER-TO-STEEL AND ALUMINIUM STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014
SHEAR Rv,k - 1 INTERNAL PLATE DOWEL HEAD INSERTION DEPTH 0 mm FASTENING
SBD
[mm] 7,5x55
ta B
7,5x95 7,5x115 7,5x135 7,5x155 7,5x175 7,5x195 7,5x215 7,5x235
Beam width
B
[mm]
60
80
100
120
140
160
180
200
220
240
Head insertion depth
p
[mm]
0
0
0
0
0
0
0
0
0
0
Exterior wood
ta
[mm]
27
37
47
57
67
77
87
97
107
117
0°
7,48
9,20
10,18
11,46
12,91
13,69
13,95
13,95
13,95
13,95
30°
6,89
8,59
9,40
10,51
11,77
12,71
13,21
13,21
13,21
13,21
s ta
7,5x75
Rv,k [kN]
load-to-grain angle
45°
6,41
8,09
8,77
9,72
10,84
11,90
12,53
12,57
12,57
12,57
60°
6,00
7,67
8,24
9,08
10,07
11,15
11,78
12,02
12,02
12,02
90°
5,66
7,31
7,79
8,53
9,42
10,40
11,14
11,54
11,54
11,54
DOWEL HEAD INSERTION DEPTH 15 mm FASTENING
p
s ta
ta
SBD
[mm] 7,5x55
7,5x75
7,5x95 7,5x115 7,5x135 7,5x155 7,5x175 7,5x195 7,5x215 7,5x235
Beam width
B
[mm]
80
100
120
140
160
180
200
220
240
-
Head insertion depth
p
[mm]
15
15
15
15
15
15
15
15
15
-
Exterior wood
ta
[mm]
37
47
57
67
77
87
97
107
117
-
0°
8,47
9,10
10,13
11,43
12,89
13,95
13,95
13,95
13,95
-
30°
7,79
8,49
9,35
10,48
11,75
13,06
13,21
13,21
13,21
-
Rv,k [kN]
load-to-grain angle
B
45°
7,25
8,00
8,72
9,70
10,82
12,04
12,57
12,57
12,57
-
60°
6,67
7,58
8,19
9,05
10,05
11,14
12,02
12,02
12,02
-
90°
6,14
7,23
7,74
8,50
9,40
10,39
11,40
11,54
11,54
-
CORRECTIVE COEFFICIENT kF FOR DIFFERENT DENSITIES ρk Strength class ρk
C24
[kg/m3]
kF
GL22h
C30
GL24h
C40/GL32c
GL28h
D24
D30
350
370
380
385
400
425
485
530
0,91
0,96
0,99
1,00
1,02
1,05
1,12
1,17
For different densities ρ k the timber-side design strength is calculated as: R ' V,d = R V,d · kF.
EFFECTIVE NUMBER OF DOWELS nef FOR α = 0° a1 [mm]
nef
SBD no.
40
50
60
70
80
90
100
120
140
2
1,49
1,58
1,65
1,72
3
2,15
2,27
2,38
2,47
1,78
1,83
2,56
2,63
1,88
1,97
2,00
2,70
2,83
2,94
4
2,79
2,95
3,08
3,21
3,31
3,41
3,50
3,67
3,81
5
3,41
3,60
3,77
3,92
4,05
4,17
4,28
4,48
4,66
6
4,01
4,24
4,44
4,62
4,77
4,92
5,05
5,28
5,49
7
4,61
4,88
5,10
5,30
5,48
5,65
5,80
6,07
6,31
In the case of multiple dowels placed parallel to the fibres, the effective number must be taken into account: R ' V,d = R V,d · nef.
222 | SBD | STRUCTURES
TIMBER-TO-STEEL AND ALUMINIUM STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014
SHEAR Rv,k - 2 INTERNAL PLATES DOWEL HEAD INSERTION DEPTH 0 mm FASTENING
s ta
SBD
ta
B
7,5x75
7,5x95 7,5x115 7,5x135 7,5x155 7,5x175 7,5x195 7,5x215 7,5x235
Beam width
B
[mm]
-
-
-
-
140
160
180
200
220
240
Head insertion depth
p
[mm]
-
-
-
-
0
0
0
0
0
0
Exterior wood
ta
[mm]
-
-
-
-
37
42
48
56
66
74
Interior wood
ti
[mm]
-
-
-
-
54
64
72
76
76
80
0°
-
-
-
-
21,03
26,71
27,41 25,72
s ti
[mm] 7,5x55
Rv,k [kN]
load-to-grain angle
23,07 24,25 25,28
30°
-
-
-
-
19,19
21,17
22,71
23,60 24,85
45°
-
-
-
-
17,69
19,62
21,08
22,19 23,30 24,25
60°
-
-
-
-
16,45
18,32
19,62
20,75
90°
-
-
-
-
15,40
17,09
18,40 19,40 20,28 21,48
21,73
22,84
DOWEL HEAD INSERTION DEPTH 10 mm FASTENING
p
s ta
SBD
ta
B
7,5x75
7,5x95 7,5x115 7,5x135 7,5x155 7,5x175 7,5x195 7,5x215 7,5x235
Beam width
B
[mm]
-
-
-
140
160
180
200
220
240
-
Head insertion depth
p
[mm]
-
-
-
10
10
10
10
10
10
-
Exterior wood
ta
[mm]
-
-
-
37
42
48
56
66
74
-
Interior wood
ti
[mm]
-
-
-
54
64
72
76
76
80
-
0°
-
-
-
19,31
22,20 23,23 24,02 25,28 26,42
30°
-
-
-
17,49
20,25 21,86 22,52 23,60 24,59
-
45°
-
-
-
16,01
18,65 20,36 21,26
22,19
23,07
-
20,75
s ti
[mm] 7,5x55
Rv,k [kN]
load-to-grain angle
-
60°
-
-
-
14,78
17,32
19,02
19,94
21,78
-
90°
-
-
-
13,75
16,07
17,88
18,68 19,40 20,52
-
ALUMINI, ALUMIDI AND ALUMAXI For applications with ALUMINI, ALUMIDI and ALUMAXI brackets see the catalogue "PLATES AND CONNECTORS FOR TIMBER" and the MyProject software on www.rothoblaas.com.
GENERAL PRINCIPLES: • Characteristic values according to EN 1995-1-1. • Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
• The values provided are calculated using 5 mm thick plates, a 6 mm thick milled cut in the timber and a single SBD dowel. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. • Sizing and verification of the timber elements and metal plates must be done separately.
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
STRUCTURES | SBD | 223
CTC
BIT INCLUDED
ETA-19/0244
CONNECTOR FOR TIMBER-TO-CONCRETE FLOORS CERTIFICATION Timber-to-concrete fastener with specific CE certification according to ETA-19/0244. Tested and calculated with parallel and crossed arrangement of 45° and 30° connectors, with and without wooden planking.
RAPID DRY SYSTEM Approved system, self-drilling, reversible, fast and minimally invasive. Optimum static and noise performances, both for new projects and structural restoration.
COMPLETE RANGE Self-perforating tip with notch and countersunk cylindrical head. Available in two diameters (7 and 9 mm) and two lengths (160 and 240 mm) to optimize the number of fasteners.
INSTALLATION INDICATOR During installation, the under head counter-thread serves as “correct installation” indicator and increases the fastener tightness inside the concrete.
CHARACTERISTICS FOCUS
CE marking, timber-to-concrete
HEAD
cylindrical, countersunk
DIAMETER
7,0 | 9,0 mm
LENGTH
160 | 240 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE Screw connection system for timber-to-concrete floors, approved for: • timber based panels • solid timber and glulam • CLT, LVL • high density woods Service classes 1 and 2.
224 | CTC | STRUCTURES
TIMBER-TO-CONCRETE Ideal for composite floors and for renovation of existing floors. Stiffness values also calculated in the presence of vapour barrier sheet or soundproofing layer.
STRUCTURAL RESTORATION Values also tested, certified and calculated for high density woods. Certification specific for application in timber-concrete structures.
STRUCTURES | CTC | 225
Composite timber-concrete floors on CLT panel with 45° connectors arranged in a single row.
Composite timber-concrete floors with 30° connectors arranged in a double row.
GEOMETRY AND MECHANICAL CHARACTERISTICS C
d2 d1
X
T
C
dS
X
X
dK
C
b1
b2 L
Nominal diameter
d1
[mm]
7
9 11,50
Head diameter
dK
[mm]
9,50
Tip diameter
d2
[mm]
4,60
5,90
Shank diameter
dS
[mm]
5,00
6,50 5,0
Pre-drilling hole diameter
dV
[mm]
4,0
Characteristic yield moment
My,k
[Nm]
20
38
Characteristic withdrawal-resistance parameter
fax,k
[N/mm2]
11,3
11,3
Associated density
ρa
[kg/m3]
350
350
Characteristic tensile strength
f tens,k
[kN]
20,0
30,0
Fax,concrete, Rk
[kN]
10,0
10,0
crossed connectors at a 45° Withdrawal-resistance characteristic - concrete
parallel connectors at a 30° parallel connectors at a 45° angle, with soundproofing layer(1) parallel connectors at a 45° angle, without soundproofing layer
Coefficient of friction(2)
Fax,concrete, Rk
[kN]
15,0
15,0
µ
[-]
0,25
0,25
(1)
Resilient underscreed foil, in bitumen and polyester felt, like SILENT FLOOR. The friction component µ can be considered only in arrangement with inclined screws (30° and 45°) and without the soundproofing layer. (2)
GENERAL PRINCIPLES: • The design shear strength of each crossed connector is the minimum between the timber design shear strength (Rax,d), the concrete design shear strength (Rax,concrete,d) and the steel design shear strength (Rtens,d):
Rv,Rd =(cos α + µ sin α) min
226 | CTC | STRUCTURES
Fax,α,Rd ftens,d Fax,concrete,Rd
• For the mechanical strength values and the geometry of the screws, reference was made to ETA-19/0244.
CODES AND DIMENSIONS d1
CODE
L
[mm] [in] 7 CTC7160 0.28 CTC7240 TX 30
[mm]
[in]
b1
b2
[mm]
[mm]
pcs
160
6 1/4
40
110
100
240
9 1/2
40
190
100
d1
CODE
L
[mm] [in] 9 CTC9160 0.36 TX 40 CTC9240
b1
b2
[in]
[mm]
[mm]
160
6 1/4
40
110
100
240
9 1/2
40
190
100
[mm]
pcs
SLIP MODULUS Kser connector arrangement with soundproofing layer(1)
Kser [N/mm] CTC Ø7
connector arrangement without soundproofing layer(1)
Kser [N/mm]
CTC Ø9
45°
CTC Ø7
CTC Ø9
48 lef
60 lef
80 lef
80 lef
70 lef
100 lef
45°
16 lef
lef
22 lef
lef
45° parallels
45° parallels 30°
30°
48 lef
lef
48 lef
lef
parallel at a 30° 45°
parallel at a 30° 45°
45°
70 lef
lef
100 lef
45°
lef
45° crossed
45° crossed
(1)
Resilient underscreed foil, in bitumen and polyester felt, like SILENT FLOOR. The Kser slip modulus is to be considered as relating to a single inclined connector or a pair of crossed connectors subject to a parallel force at the slip surface. Ief = depth of CTC connector pull-through into timber element, in millimetres.
MINIMUM DISTANCES FOR AXIAL STRESSES (1) parallel arrangement
crossed arrangement
45°/30°
45°
a1,CG
a1
dc
dc
db
db
a2,CG
a2
a2,CG
a1,CG
a2,CG
≥ a1
7
9
a1
[mm]
130∙sin(α)
130∙sin(α)
a2
[mm]
35
45
a1,CG
[mm]
85
85
a2,CG
[mm]
32
37
aCROSS
[mm]
11
14
aCROSS
a2,CG
dc = thickness of concrete slab (50 mm ≤ dc ≤ 0.7 db) db = height of timber beam (db ≥ 100 mm) NOTES: (1) The minimum distances for connectors stressed axially are compliant with
ETA-19/0244.
STRUCTURES | CTC | 227
STATIC VALUES
CALCULATION STANDARD NTC 2018 - UNI EN 1995:2014
PRELIMINARY SIZING OF VB CONNECTORS FOR TIMBER-TO-CONCRETE FLOORS 660
LOADS
CALCULATION EXAMPLE distance between joists
= 660 mm
own weight (gk1) = timber beam + wooden planking + concrete slab
concrete slab thickness C20/25 = 50 mm
permanent non-structural load (gk2) = 2 kN/m2
strain limit wist = ℓ/400
variable overload (qk) = 2 kN/m2
wnet,fin = ℓ/250
variable load duration = medium
50 ts H
B
CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm
3
3,5
4
span [m] 4,5
10
18
26
38
beam section BxH [mm]
120 x 160
45° 120 x 200
140 x 200
Installation at a 45° angle, without soundproofing layer. 140 x 240
no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2
5
5,5
6
-
-
-
-
-
7x160
7x240
7x240
7x240
300/500
150/300
150/150
100/150
5,1
7,8
9,8
12,8
12
18
30
42
7x160
7x240
7x240
7x240
250/400
200/300
150/150
100/150
5,2
6,8
10,1
12,7
16
26
30
54
7x240
7x240
7x240
7x240
200/350
150/200
120/250
100/100
6,1
8,8
9,1
14,9
-
-
-
-
-
-
-
14
26
38
60
7x240
7x240
7x240
7x240
250/500
150/300
100/250
100/100
4,7
7,9
10,5
15,2
5
5,5
6
-
-
-
-
-
CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013)
Plank thickness t s = 21 mm
3
3,5
4
span [m] 4,5
10
14
40
-
beam section BxH [mm]
120 x 160
45° 120 x 200
140 x 200
Installation at a 45° angle, with soundproofing layer. 140 x 240
no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2
7x160
7x240
7x240
300/500
180/500
100/100
5,1
6,1
15,2
-
-
-
8
12
28
68
7x160
7x160
7x240
7x240
500/500
250/500
120/240
150/150(1)
3,5
4,5
9,4
20,6
12
22
60
96
7x240
7x240
7x240
7x240
300/500
200/200
4,5
7,4
-
-
-
150/200(1) 150/200(2) 18,2
-
26,4
10
20
40
72
7x240
7x240
7x240
7x240
500/500
200/400
100/200
150/200(1)
3,4
6,1
11,0
18,2
5
5,5
6
-
-
-
CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm beam section BxH [mm]
120 x 160
45°
45° 120 x 200
140 x 200
Crossed installation at a 45° angle, with or without soundproofing layer. 140 x 240
228 | CTC | STRUCTURES
no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2
3
3,5
4
span [m] 4,5
14
36
48
66
7x160
7x240
7x240
7x240
500/500
150/300
120/250
100/200
7,1
15,6
18,2
22,2
14
32
52
66
90
7x160
7x240
7x240
7x240
7x240
500/500
200/350
120/300
150/150
120/120
6,1
12,1
17,5
20,0
24,8
24
42
68
90
118
7x160
7x240
7x240
7x240
7x240
250/500
150/350
100/250
100/150
100/100
9,1
14,1
20,6
24,8
29,8
36
50
68
88
7x160
7x240
7x240
7x240
250/250
150/300
120/240
100/200
12,1
15,2
18,7
22,2
-
-
-
-
-
-
-
STATIC VALUES
CALCULATION STANDARD NTC 2018 - UNI EN 1995:2014 CONNECTOR CTC Ø9- Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm
3
3,5
4
span [m] 4,5
8
18
24
38
beam section BxH [mm]
120 x 160
45° 120 x 200
140 x 200
Installation at a 45° angle, without soundproofing layer.
140 x 240
no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2
9x160
9x240
9x240
9x240
500/500
150/300
120/250
100/150
4,0
7,8
9,1
12,8
-
-
-
5
5,5
6
-
-
-
8
18
28
38
54
9x240
9x240
9x240
9x240
9x240
450/500
200/300
120/250
100/200
100/100
3,5
6,8
9,4
11,5
14,9
16
24
34
46
60
9x240
9x240
9x240
9x240
9x240
250/250
150/250
100/250
100/150
100/100
6,1
8,1
10,3
12,7
15,2
16
26
34
44
9x240
9x240
9x240
9x240
300/300
200/200
120/250
100/200
5,4
7,9
9,4
11,1
span [m] 4,5
5
5,5
6
-
-
-
-
-
-
-
-
-
-
CONNECTOR CTC Ø9- Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm
beam section BxH [mm]
120 x 160
45° 120 x 200
140 x 200
Installation at a 45° angle, with soundproofing layer. 140 x 240
no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2
3
3,5
4
8
14
32
9x160
9x240
9x240
500/500
200/350
100/150
4,0
6,1
12,1
-
-
-
8
20
38
60
9x240
9x240
9x240
9x240
400/500
150/300
100/150
150/200(1)
3,5
7,6
12,8
18,2
16
30
52
92
9x240
9x240
9x240
9x240
250/250
150/150
6,1
10,1
-
-
-
150/250(1) 100/150(1) 15,8
-
25,3
16
34
54
80
9x160
9x160
9x240
9x240
300/300
150/150
100/100
150/150(1)
5,4
10,3
14,9
20,2
span [m] 4,5
5
5,5
6
-
-
-
-
-
-
CONNECTOR CTC Ø9- Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm
beam section BxH [mm]
120 x 160
45°
45° 120 x 200
140 x 200
Crossed installation at a 45° angle, with or without soundproofing layer.
NOTES:
140 x 240
no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2
min pitch
3
3,5
4
14
28
54
9x160
9x160
9x160
500/500
200/300
100/250
7,1
12,1
20,5
-
-
-
14
30
50
74
9x160
9x160
9x160
9x240
500/500
200/400
130/260
100/200
6,1
11,4
16,8
22,4
24
44
74
90
9x160
9x160
9x240
9x240
250/500
150/300
100/200
100/150
9,1
14,8
22,4
24,8
30
50
74
98
9x160
9x160
9x240
9x240
300/300
150/300
100/250
100/150
10,1
15,2
20,4
24,7
-
-
-
max pitch
-
min pitch
For notes see page 231.
L/4
L/2
L/4
STRUCTURES | CTC | 229
STATIC VALUES
CALCULATION STANDARD EN 1995:2014
PRELIMINARY SIZING OF VB CONNECTORS FOR TIMBER-TO-CONCRETE FLOORS 660
LOADS
CALCULATION EXAMPLE distance between joists
= 660 mm
own weight (gk1) = timber beam + wooden planking + concrete slab
concrete slab thickness C20/25 = 50 mm
permanent non-structural load (gk2) = 2 kN/m2
strain limit wist = ℓ/400
variable overload (qk) = 2 kN/m2
wnet,fin = ℓ/250
variable load duration = medium
50 ts H
B
CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm
3
3,5
4
span [m] 4,5
8
12
20
32
beam section BxH [mm]
120 x 160
45° 120 x 200
140 x 200
Installation at a 45° angle, without soundproofing layer. 140 x 240
no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2
5
5,5
6
-
-
-
-
-
7x160
7x240
7x240
7x240
500/500
250/500
150/300
100/250
4,0
5,2
7,6
10,8
8
12
22
34
7x160
7x240
7x240
7x240
500/500
250/500
150/350
100/300
3,5
4,5
7,4
10,3
10
18
28
40
7x240
7x240
7x240
7x240
400/500
200/350
130/260
100/200
3,8
6,1
8,5
11,0
-
-
-
-
-
-
-
10
20
28
44
7x240
7x240
7x240
7x240
400/500
200/400
150/300
100/200
3,4
6,1
7,7
11,1
span [m] 4,5
5
5,5
6
-
-
-
-
-
-
CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm
beam section BxH [mm]
120 x 160
45° 120 x 200
140 x 200
Installation at a 45° angle, with soundproofing layer. 140 x 240
no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2
3
3,5
4
8
14
40
7x160
7x240
7x240
500/500
200/400
100/100
4,0
6,1
15,2
-
-
-
10
12
28
68
7x160
7x240
7x240
7x240
400/400
300/500
120/240
150/150(1)
4,3
4,5
9,4
20,6
8
22
52
108
7x240
7x240
7x240
7x240
500/500
150/300
3,0
7,4
-
-
-
150/300(1) 100/100(1) 15,8
-
29,8
10
12
34
64
7x240
7x240
7x240
7x240
500/500
400/500
140/200
150/250(1)
3,4
3,6
9,4
16,2
5
5,5
6
-
-
-
CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm
3
3,5
4
span [m] 4,5
14
26
38
62
beam section BxH [mm]
120 x 160
45°
45° 120 x 200
140 x 200
Crossed installation at a 45° angle, with or without soundproofing layer. 140 x 240
230 | CTC | STRUCTURES
no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2
7x160
7x240
7x240
7x240
500/500
200/400
150/300
100/250
7,1
11,3
14,4
20,9
14
28
44
58
80
7x240
7x240
7x240
7x240
7x240
500/500
200/500
150/300
150/200
100/200
6,1
10,6
14,8
17,6
22,0
24
36
66
74
88
7x240
7x240
7x240
7x240
7x240
280/500
180/360
100/300
100/250
100/200
9,1
12,1
20,0
20,4
22,2
26
38
58
78
7x240
7x240
7x240
7x240
350/350
200/350
150/250
150/150
8,8
11,5
16,0
19,7
-
-
-
-
-
-
-
STATIC VALUES
CALCULATION STANDARD EN 1995:2014 CONNECTOR CTC Ø9- Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm
3
3,5
4
span [m] 4,5
8
18
20
32
beam section BxH [mm]
120 x 160
45° 120 x 200
140 x 200
Installation at a 45° angle, without soundproofing layer.
140 x 240
no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2
9x160
9x240
9x240
9x240
500/500
150/300
150/300
100/250
4,0
7,8
7,6
10,8
-
-
-
5
5,5
6
-
-
-
8
14
22
28
40
9x240
9x240
9x240
9x240
9x240
500/500
250/400
150/300
130/250
100/200
3,5
5,3
7,4
8,5
11,0
12
20
28
40
60
9x240
9x240
9x240
9x240
9x240
350/350
200/300
130/250
100/200
100/100
4,5
6,7
8,5
2,0
15,2
12
20
30
44
9x240
9x240
9x240
9x240
350/500
200/400
150/250
100/200
4,0
6,1
8,3
11,1
span [m] 4,5
5
5,5
6
-
-
-
-
-
-
-
-
-
-
CONNECTOR CTC Ø9- Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm beam section BxH [mm]
120 x 160
45° 120 x 200
140 x 200
Installation at a 45° angle, with soundproofing layer. 140 x 240
no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2
3
3,5
4
8
12
30
9x160
9x240
9x240
500/500
300/300
100/200
4,0
5,2
11,4
-
-
-
8
12
34
50
9x240
9x240
9x240
9x240
500/500
300/400
100/200
100/100
3,5
4,5
11,4
15,2
12
22
50
72
9x240
9x240
9x240
9x240
350/350
150/300
100/100
150/150(1)
4,5
7,4
15,2
19,8
-
-
-
-
10
26
46
60
9x240
9x240
9x240
9x240
500/500
200/200
100/150
100/100
3,4
7,9
12,7
15,2
span [m] 4,5
5
5,5
6
-
-
-
-
-
-
CONNECTOR CTC Ø9- Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm
beam section BxH [mm]
120 x 160
45°
45° 120 x 200
140 x 200
Crossed installation at a 45° angle, with or without soundproofing layer.
140 x 240
no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2 no. connectors per beam CTC distance[mm] no. connectors/m2
3
3,5
4
14
24
42
9x160
9x160
9x160
500/500
250/400
150/250
7,1
10,4
15,9
-
-
-
14
26
44
66
9x160
9x160
9x160
9x160
500/500
250/400
150/300
150/150
6,1
9,8
14,8
20,0
22
40
66
80
9x160
9x240
9x240
9x240
300/500
200/250
150/150
100/200
8,3
13,5
20,0
22,0
34
50
72
88
9x240
9x240
9x240
9x240
200/400
150/300
100/300
100/200
11,4
15,2
19,8
22,2
-
-
-
-
NOTES:
GENERAL PRINCIPLES:
(1) Connectors placed in two rows.
Pitch means the minimum and maximum spacing values at which the connectors are positioned, respectively at the sides (L/4 - minimum spacing) and in the central part of the beam (L/2 - maximum spacing).
(2) Connectors placed in three rows.
For different calculation configurations, the software is available (www.rothoblaas.com).
STRUCTURES | CTC | 231
SKR | SKS CONCRETE SCREW RAPID DRY SYSTEM Fast and easy operation. The special threading requires a small predrill and guarantees fastening on concrete without creating expansion stresses in the concrete. Reduced minimum distances.
SKR - SKS EVO For some sizes, a version is available with special surface treatment to improve corrosion resistance of the externally exposed head.
LARGER HEAD Robust and easy to install, thanks to the increased geometry of the SKR hexagonal head.
CHARACTERISTICS FOCUS
screw for concrete
HEAD
hexagonal and countersunk
DIAMETER
from 7,5 to 12,0 mm
LENGTH
from 60 to 400 mm
MATERIAL Galvanized carbon steel. Versions in carbon steel with C4 EVO coating.
FIELDS OF USE Fastening of timber or steel elements to concrete supports. Service classes 1 and 2. Versions with C4 EVO coating allow the application in service class 3
232 | SKR | SKS | STRUCTURES
SKR - SKS GEOMETRY SKR
Tinst
SKS SW
tfix
d1 L t fix h 1 hnom d 0 df SW dk T inst
dk
df
L
hnom
d1
h1
d0
external diameter of anchor anchor length maximum fastening thickness minimum hole depth nominal anchoring depth hole diameter in the concrete support maximum hole diameter in the element to be fastened wrench size SKR SKS head diameter tightening torque
Tinst
CODES AND DIMENSIONS SKR - SKS SKR hexagonal head CODE SKR7560 SKR7580 SKR75100 SKR1080 SKR10100 SKR10120 SKR10140 SKR10160 SKR12100 SKR12120 SKR12140 SKR12160 SKR12200 SKR12240 SKR12280 SKR12320 SKR12400
d1
L
tfix
h1,min
hnom
d0
df timber
df steel
SW
Tinst
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[Nm]
60 80 100 80 100 120 140 160 100 120 140 160 200 240 280 320 400
10 30 20 30 20 40 60 80 20 40 60 80 120 160 200 240 320
60 60 90 65 95 95 95 95 100 100 100 100 100 100 100 100 100
50 50 80 50 80 80 80 80 80 80 80 80 80 80 80 80 80
6 6 6 8 8 8 8 8 10 10 10 10 10 10 10 10 10
8 8 8 10 10 10 10 10 12 12 12 12 12 12 12 12 12
8-10 8-10 8-10 10-12 10-12 10-12 10-12 10-12 12-14 12-14 12-14 12-14 12-14 12-14 12-14 12-14 12-14
13 13 13 16 16 16 16 16 18 18 18 18 18 18 18 18 18
15 15 15 25 25 25 25 25 50 50 50 50 50 50 50 50 50
50 50 50 50 25 25 25 25 25 25 25 25 25 25 25 25 25
d1
L
tfix
h1,min
hnom
d0
df timber
dk
TX
Tinst
pcs
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
7,5
60 80 100 120 140 160
10 30 20 40 60 80
60 60 90 90 90 90
50 50 80 80 80 80
6 6 6 6 6 6
8 8 8 8 8 8
13 13 13 13 13 13
7,5
10
12
pcs
SKS countersunk head CODE SKS7560 SKS7580 SKS75100 SKS75120 SKS75140 SKS75160
[Nm] TX40 TX40 TX40 TX40 TX40 TX40
CODES AND DIMENSIONS SKR - SKS | EVO VERSION
-
1002
CERTIFIED
C4 COATING
SKR EVO hexagonal head CODE SKREVO7560 SKREVO1080 SKREVO12100
50 50 50 50 50 50
COATING
d1
L
tfix
h1,min
hnom
d0
df timber
df steel
SW
Tinst
pcs
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[Nm]
7,5 10 12
60 80 100
10 30 20
60 65 100
50 50 80
6 8 10
8 10 12
8-10 10-12 12-14
13 16 18
15 25 50
50 50 25
d1
L
tfix
h1,min
hnom
d0
df timber
dk
TX
Tinst
pcs
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
7,5
80 100 120
30 20 40
60 90 90
50 80 80
6 6 6
8 8 8
13 13 13
SKS EVO countersunk head CODE SKSEVO7580 SKSEVO75100 SKSEVO75120
[Nm] TX40 TX40 TX40
-
50 50 50
STRUCTURES | SKR | SKS | 233
TECHNICAL FEATURES • • • •
• Electrogalvanized carbon steel • Through fastening • No fastener expansion
Suitable for uncracked concrete Hexagonal head of increased size Thread is suitable for dry fastening Double version: zinc plated and C4 EVO coating
ASSEMBLY
1
2
Drill a hole in rotary percussion mode
3
Clean the hole
3
SKR
SKS
Position the object to be fixed and install the screw with a pulse screw gun
Tinst
4
SKR
4
SKS
Ensure the anchor head is in complete contact with the object to be fixed
5
Tinst
5
SKR
SKS
Check the tightening torque Tinst
INSTALLATION c
s
s c hmin
SKR
SKS
Ø7,5
Ø10
Ø12
Ø7,5
[mm]
50
60
65
50
cmin,N
[mm]
50
60
65
50
Minimum thickness of concrete support
hmin
[mm]
100
110
130
100
Critical spacing
scr,N
[mm]
100
150
180
100
Critical edge distance
ccr,N
[mm]
50
70
80
50
Ø7,5
Ø10
Ø12
Ø7,5
50
60
70
50
Spacing and distances for tensile loads Minimum spacing
smin,N
Minimum edge distance
Spacing and distances for shear loads Minimum spacing
smin,V
[mm]
Minimum edge distance
cmin,V
[mm]
50
60
70
50
Minimum thickness of concrete support
hmin
[mm]
100
110
130
100
Critical spacing
scr,V
[mm]
140
200
240
140
Critical edge distance
ccr,V
[mm]
70
110
130
70
For spacing and distances smaller than the critical ones, strength values have to be reduced depending on the installation parameters.
234 | SKR | SKS | STRUCTURES
STATIC VALUES Valid for a single anchor in thickened C20/25 grade concrete with a thin reinforcing layer when spacing and edge-distance are not limiting parameters. ADMISSIBLE VALUES UNCRACKED CONCRETE
SKR
SKS
tension
shear(1)
head pull-through
N1,rec
Vrec
N2,rec
[kN]
[kN]
[kN]
7,5
2,13
2,50
1,19 (2)
10
6,64
6,65
1,86 (2)
12
8,40
8,18
2,83 (2)
7,5
2,13
2,50
0,72
NOTES:
GENERAL PRINCIPLES:
(1) When evaluating the anchor global-strength, the shear strength on the el-
• Recommended admissible shear and tensile values are compliant with Certificate Nr. 2006/5205/1 released from Politecnico di Milano and obtained by considering a safety factor of 4 for the failure load.
ement to be fastened (e.g. timber, concrete, ...) must be considered separately based on the material adopted. (2) All values refer to SKR installed with DIN 9021 (ISO 9073) washer.
STRUCTURES | SKR | SKS | 235
SKR-E | SKS-E
R120
SEISMIC C2
ETA-19/0100
SCREW ANCHOR FOR CONCRETE CE1 SEISMIC PERFORMANCE Certified for applications on cracked and non-cracked concrete and in performance class for seismic actions C1 (M10-M16) and C2 (M12-M16).
IMMEDIATE STRENGTH Its operating principle allows the load to be applied after zero waiting times.
FIRE RESISTANCE Certified for fire exposure class R120 according to Technical Report TR 020.
CHARACTERISTICS FOCUS
screw for concrete
HEAD
hexagonal and countersunk
DIAMETER
from 7,5 to 16,0 mm
LENGTH
from 60 to 400 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE Fastening of timber or steel elements to concrete supports. Service classes 1 and 2.
236 | SKR-E | SKS-E | STRUCTURES
SKR-E | SKS-E GEOMETRY SKR-E
Tinst
SKS-E SW
tfix
d1 L t fix h 1 hnom hef d 0 df SW dk T inst
dk
df
L d1
hef
hnom
h1
d0
external diameter of anchor anchor length maximum fastening thickness minimum hole depth nominal anchoring depth effective anchor depth hole diameter in the concrete support maximum hole diameter in the element to be fastened wrench size SKR-E SKS-E head diameter tightening torque
CODES AND DIMENSIONS SKR-E hexagonal head with mock washer CODE SKR8100CE
d1
L
tfix
h1,min
hnom
hef
d0
df
SW
Tinst
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[Nm]
8
100
40
75
60
48
6
9
10
20
50
80
10
85
70
56
8
12
13
50
50
10
100
30
85
70
56
8
12
13
50
25
SKR1080CE SKR10100CE
pcs
SKR10120CE
120
50
85
70
56
8
12
13
50
25
SKR1290CE
90
10
100
80
64
10
14
15
80
25
SKR12110CE
110
30
100
80
64
10
14
15
80
25
SKR12150CE SKR12210CE
12
150
70
100
80
64
10
14
15
80
25
210
130
100
80
64
10
14
15
80
20
SKR12250CE
250
170
100
80
64
10
14
15
80
15
SKR12290CE
290
210
100
80
64
10
14
15
80
15
130
20
140
110
85
14
18
21
160
10
SKR16130CE
16
SKS-E countersunk head CODE
d1
L
tfix
h1,min
hnom
hef
d0
df
dk
TX
Tinst
pcs
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
SKS75100CE
8
100
40
75
60
48
6
9
16
TX30
[Nm] 20
50
SKS10100CE
10
100
30
85
70
56
8
12
20
TX40
50
50
STRUCTURES | SKR-E | SKS-E | 237
TECHNICAL FEATURES • Fire resistance R120 • Through fastening • No fastener expansion
• CE option 1 for cracked and uncracked concrete • Seismic performance category C1 (M10-M16) and C2 (M12-M16) • Electrogalvanized carbon steel • Flanged head with self-locking knurling (SKR-E)
ASSEMBLY
1
2
Drill a hole in rotary percussion mode
3
Clean the hole
3
SKR-E
SKS-E
Position the object to be fixed and install the screw with a pulse screw gun
Tinst
Tinst
4
SKR-E
4
SKS-E
Make certain that the screw head is in complete contact with the object to be fixed
INSTALLATION
5
SKR-E
5
SKS-E
Check the tightening torque Tinst
c
s
s c hmin
SKR-E/SKS-E Spacing and minimum distances
Ø8
Ø10
Ø12
Ø16
Minimum spacing
smin
[mm]
45
50
60
80
Minimum edge distance
cmin
[mm]
45
50
60
80
Minimum thickness of concrete support
hmin
[mm]
100
110
130
170
Ø8
Ø10
Ø12
Ø16
Spacing and critical distances Critical spacing
Critical edge distance
(1)
[mm]
144
168
192
255
scr,sp(2)
[mm]
160
175
195
255
ccr,N(1)
[mm]
72
84
96
128
ccr,sp(2)
[mm]
80
85
95
130
scr,N
For spacing and distances smaller than the critical ones, strength values have to be reduced depending on the installation parameters.
238 | SKR-E | SKS-E | STRUCTURES
STATIC VALUES Valid for a single anchor in thickened C20/25 grade concrete with a thin reinforcing layer when spacing and edge-distance are not limiting parameters.
CHARACTERISTIC VALUES UNCRACKED CONCRETE tension(3) NRk,p
shear(4) γ Mp
VRk,s
[kN]
SKR-E
SKS-E
CRACKED CONCRETE tension(3) γ Ms
[kN]
NRk,p
shear γ Mp
VRk,s/Rk,cp
[kN]
γ Ms,Mc
[kN]
8
16
2,1
9,4
1,5
4
2,1
9,4(4)
1,5
10
20
1,8
20,1
1,5
7,5
1,8
15,1(5)
1,5
12
25
2,1
32,4
1,5
9
2,1
32,4(4)
1,5
16
40
2,1
56,9
1,5
16
2,1
56,4(5)
1,5
8
16
2,1
9,4
1,5
4
2,1
9,4(4)
1,5
1,8
20,1(4)
1,5
10
20
1,8
20,1
1,5
7,5
incremental factor for NRk,p(6) C30/37 Ψc
1,22
C40/50
1,41
C50/60
1,58
NOTES:
GENERAL PRINCIPLES:
(1) Concrete cone failure mode.
• Characteristic values according to ETA-19/0100.
(2) Splitting failure mode.
• Design values can be obtained from characteristic values as follows: Rd = Rk /γM.
(3) Pull-out failure mode. (4) Steel failure mode (V
Rk,s). (5) Pry-out failure mode (V Rk,cp). (6) Tensile-strength increment factor (excluding steel failure).
Coefficients γM are listed in the table in accordance with the failure characteristics and product certificates. • For the calculation of anchors with reduced spacing, or too close to the edge, please refer to ETA. Similarly, in case of fastening on concrete-supports with a better-grade, limited thickness or a thick reinforcing layer please see ETA. • When designing anchors under seismic load please refer to the ETA referral document and information in the EOTA Technical Report 045. • For the calculation of anchors subjected to fire refer to the ETA and the Technical Report 020.
STRUCTURES | SKR-E | SKS-E | 239
OUTDOOR
OUTDOOR
OUTDOOR
KKT COLOR A4 | AISI316
FLAT | FLIP
CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 256
CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
KKT A4 | AISI316
TVM
CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 260
CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
KKT COLOR
GAP
CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 264
CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
KKZ A2 | AISI304
TERRALOCK
COUNTERSUNK CYLINDRICAL HEAD SCREW. . . . . . . . . . . . . . . 268
CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
KWP A2 | AISI305
GROUND COVER
CYLINDRICAL HEAD SCREW FOR WPC BOARDS . . . . . . . . . . . . 270
ANTI-VEGETATION TARP FOR SUBSTRATES. . . . . . . . . . . . . . . . . 312
KKA AISI410
NAG
SELF-DRILLING SCREW TIMBER-TO-TIMBER | TIMBER-TO-ALUMINIUM . . . . . . . . . . . . . 272
LEVELING PAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
KKA COLOR
GRANULAR RUBBER SUBSTRATE. . . . . . . . . . . . . . . . . . . . . . . . . . 314
SELF-DRILLING SCREW FOR ALUMINIUM. . . . . . . . . . . . . . . . . . . 274
EWS CONVEX HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
KKF AISI410 PAN HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
SCI A4 | AISI316 COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
SCI A2 | AISI305 COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
SCA A2 | AISI304 COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
HBS PLATE EVO PAN HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . . . . 292
HBS EVO COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
TBS EVO OUTDOOR SCREW, FLANGE HEAD. . . . . . . . . . . . . . . . . . . . . . . . 294
VGZ EVO
GRANULO TERRA BAND UV BUTYL ADHESIVE TAPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
PROFID SPACER PROFILE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
JFA ADJUSTABLE SUPPORT FOR TERRACES. . . . . . . . . . . . . . . . . . . . 318
SUPPORT ADJUSTABLE SUPPORT FOR TERRACES. . . . . . . . . . . . . . . . . . . . 322
ALU TERRACE ALUMINIUM PROFILE FOR PATIOS. . . . . . . . . . . . . . . . . . . . . . . . . 328
STAR STAR FOR DISTANCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
CRAB MINI PATIO CLAMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
SHIM LEVELLING WEDGES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
BROAD COUNTERBORE CUTTER FOR KKT, KKZ, KKA . . . . . . . . . . . . . . . 335
FULL THREAD SCREW WITH CYLINDRICAL HEAD . . . . . . . . . . . 295
OUTDOOR | 243
WOOD SPECIES ORIGIN AND DENSITY
nu
500
ss
L ar
Fagu s
ue
ne P i tr is es y lv
Q
550
rc us
650 750
pe
O tr a a k ea
850 950 1050
ix d L a r e c ch idu a
1150
APPROXIMATE DENSITY [Kg/m3]
Pi
ED EAT TR ATe HE ru c S p b ies a ea Pi c
450
Bee s y lv a c h ti c a
1
Ash Fraxinus excelsior
4
6
5
2 3
7
THE
RM
ATED EGN Pi n e is e s tr s y lv s u Pi n
PR A L IM
D
Wo o
dP
l as
ti c
Co W mp P C o si te
ET AC
E AT L Y
244 | WOOD SPECIES | OUTDOOR
Pin Pi n e us syl
ve
s tr
is
There is an appropriate timber cladding for each environment: the variety of wood species makes it possible to perfectly meet the design and aesthetic requirements.
4
APPROXIMATE DENSITY 300-550 [kg/m3]
4
350
5
400
r da s Ce e d r u C 6
450 500
4
550
h L a rc x L ari
1
4
6
co O te co a r te ub a ra M il 2 i ci a Iro exc ko els a 5
Okoumé Aucoumea klaineana
5
ch l ar a a n iric e ri si b S i b r ix La ne pi a y i at re d te s ra on u M Pi n
O
ce S p ru a b ie s a e c Pi
Do u P se g l a s udo fir t su ga
600
2
650 700
3
750 800
me
APPROXIMATE DENSITY 550-800 [kg/m3]
nzi
e si i
Enta n
drop Sapele hr c y li n a g m a dricu m 4
A sh ea tr e sp a Quercu p
eto Tc
n
4
ak Te is d n ra ag
a
5
ga i l i n ch i i B rri de di
3 4
1
3
APPROXIMATE DENSITY 800-1000 [kg/m3]
850 900 950 1000
6
7 3 7
s p tu a ly ptu s c Eu a ly c Eu
i n ia
Di
co r
yn
ia
N
l uc
ea
6
It a M e ub a zila uru s it M au I n e rb ba ts a ia u bi ju ga
us erc
k Oa a e a e tr
Ba g u s r a lo ia n cu en s si s
Qu
4
Bla p se c k l o c u do u aca st ci a
Beech Quercus petraea
5
Ro b
3
Po xy to
5
pt er
ai ng i g a n ga ela a M e lag nm
lo
Di
y x Cu m o d ar or u at a
1
Ip Tabeb e uia
6 3 2
a n d ub a Massar ntata ra bide Manilka
1050
2
Wengé Millettia laur en
tii
B an S h o gkira i re a gla uca 6 Ba m Ba b m oo bu se ae 6
6 3
a Garap leiocarpa ia Apule
1100 1150 1200 1250
APPROXIMATE DENSITY > 1000 [kg/m3]
1300 1350
3 2
This list is not intended to be exhaustive, but merely to provide some indications regarding the most common types of wood.
OUTDOOR | WOOD SPECIES | 245
SELECTION OF THE FASTENING ENVIRONMENT
austenitic stainless steel A4
APPLICATION
KKT A4 KKT A4 color COLOR
KKT A4
KKT A4
SCI A4
SCI A4
austenitic stainless steel A2
KKZ A2
KKZ A2
KWP A2
EWS A2
KWP A2 EWS A2
SCI A2
SCI A2
martensitic stainless steel AISI 410
SCA A2
SCA A2
horizontal cladding (e.g. patio) vertical cladding (e.g. façade)
CORROSION CLASS ENVIRONMENTAL (EN 12944) C1 indoor environments C2 rural areas C3 urban and industrial environments C4 industrial and coastal areas C5 areas with aggressive atmospheres
ENVIRONMENT SERVICE CLASS Service class 1 Service class 2 Service class 3 NOTES: * Coating equivalent to Fe/Zn 25c
WOOD USE CLASS Use class 1 Use class 2 Use class 3 Use class 4 Use class 5
LEGEND:
use allowed use not allowed but possible with specific precautions use not recommended
246 | SELECTION OF THE FASTENING | OUTDOOR
SBS A2
SBS A2
KKA AISI KKF AISI EWS AISI SHS AISI KKA KKF EWS SHS 410 410 410 410 AISI 410 AISI 410 AISI 410 AISI 410
The work is inserted in a context which cannot be ignored and with which it interacts: understanding the location and use of the timber cladding is fundamental for selecting appropriate fastenings that guarantee performance over time.
carbon steel with C4 EVO coating
carbon steel with organic coating
EN 1995-1-1 ENVIRONMENT SERVICE CLASSES CLASS 1: temperature 20°C/65% humidity u ≈ 12% all internal rooms CLASS 2: temperature 20°C/85% humidity u ≈ 18% elements protected from direct exposure to weather CLASS 3: climate more humid than class 2 humidity u > 20% “wet” elements
HBS P HBS P EVO EVO
HBS HBS EVO EVO
TBS TBS EVO EVO
VGZ VGZ EVO EVO
KKT COLOR
KKT color
KKA KKA color COLOR
EN 335 WOOD USE CLASSES CLASS 1 Where the wood is inside a building, not exposed to weather.
CLASS 2 Where the wood is protected and not exposed to weather, but where high ambient humidity may occur.
CLASS 3 Where the wood-based material is not in direct contact with the ground and is exposed to weather.
*
*
CLASS 4 Where the wood is in direct contact with the ground and fresh water.
CLASS 5 Where the wood is permanently or regularly immersed in salt water.
OUTDOOR | SELECTION OF THE FASTENING | 247
SELECTION OF THE FASTENING SCREWING WOODS 400
500
600
700
800
A4 | AISI 316
kg/m3
KKT SCI
A2 | AISI304 - AISI305
KKZ KWP EWS SCI
EWS KKF
KKT
LEGEND:
without pre-drilling hole with pre-drilling hole
ITAUBA
TEAK
PRE-DRILLING HOLES DIAMETER: ØSCREW
[mm]
ØPRE-DRILLING HOLE [mm]
248 | SELECTION OF THE FASTENING | OUTDOOR
OAK IROKO
SIBERIAN LARCH
ASH, HEAT-TREATED
LARCH
HBS P EVO
PINE, HEAT-TREATED
CARBON STEEL
AISI410
SCA
3,5
4,0
4,5
5,0
6,0
8,0
2
2
3
3
4
5
TESTING CAMPAIGN ON WOODS OF DIFFERENT SPECIES AND DENSITIES
WPC
WPC 1000
1000
BAMBOO, HEAT-TREATED
1200
MASSARANDUBA
1100
IPE
1000
MELAGANGAI
BANGKIRAI
900
1100
1200
WPC 1200
WOODS 800
NOTES: • Screw connections made with 5 x 50 mm screws on substructures of different densities.
• The bars on the graph indicate the limit for correct screw operation in terms of tightening integrity and effectiveness; using a higher density substructure or choosing a longer thread may have a positive effect on fastener performance.
OUTDOOR | SELECTION OF THE FASTENING | 249
SELECTION OF THE FASTENING DECORATIVE HEAD FINISH
WOODS 400
500
600
700
800
A4 | AISI 316
kg/m3
KKT SCI
A2 | AISI304 - AISI305
KKZ KWP EWS SCI
EWS KKF
KKT
LEGEND:
excellent finish good finish counterbore cutter recommended
250 | SELECTION OF THE FASTENING | OUTDOOR
ITAUBA
TEAK
IROKO
OAK
SIBERIAN LARCH (1)
ASH, HEAT-TREATED (2)
LARCH
HBS P EVO
PINE, HEAT-TREATED
CARBON STEEL
AISI410
SCA
TESTING CAMPAIGN ON WOODS OF DIFFERENT SPECIES AND DENSITIES
WPC 1100
WPC 1000
1000
BAMBOO, HEAT-TREATED
1200
MASSARANDUBA (1)
1100
IPE (1)
MELAGANGAI
BANGKIRAI (1)
1000
1200
WPC 1200
WOODS 900
NOTES: Screwing operations performed without a counterbore cutter and with predrill, as outlined in the previous graph.
(1) Knurled planking surface. (2) Possible brittle fractures due to material heat treatment.
OUTDOOR | SELECTION OF THE FASTENING | 251
CORROSION TYPES AND TRIGGERING FACTORS The corrosion phenomenon involves an electrochemical interaction between a metal and its environment and can lead to degradation of the material and its properties. Although associated with material degradation, corrosion is not in itself negative. In some cases, for example, it enables metals to form a patina to protect them from further corrosion. This is the case with stainless steel or COR-TEN steel.
GENERALISED CORROSION This is the corrosion that affects most metal surfaces exposed to an aggressive environment. A distinction must be made between uniform and uneven generalised corrosion: in the first case, penetration is the same over the entire surface while, in the second, the profile may be more or less regular.
LOCALISED CORROSION - PITTING Pitting corrosion occurs with extremely localised attacks, called pits; from the surface, such pitting penetrates the thickness of the metal very quickly. Pit sizes range from a few tens of microns to a few millimetres; they are triggered and propagate at individual points, leaving most of the metal surface exposed to the environment unaltered.
LOCALISED - CREVICE CORROSION In general, the presence of crevices or surface parts not openly exposed to the environment is always an aggravating factor for corrosion; the expression "crevice corrosion" highlights the contribution the geometric component — in the form of crevices or, more generally, of shielded areas — makes to corrosion. Corrosion is caused in cracks — those interstices that allow the aggressive environment to enter and yet are so narrow as to render negligible any diffusive, convective motion between the inside and outside. Openings ranging from a few hundredths to a few tenths of a millimetre prove critical.
252 | CORROSION | OUTDOOR
In the analysis of corrosion, as for any chemical reaction, the speed of the reaction must also be taken into account. In fact, it is not only important to understand whether or not there may be corrosion, but also how long it takes for it to produce significant degradation of the material.
ADDITIONAL POSSIBLE CORROSION FACTORS
GALVANIC COUPLING
Nickel-Chrome_Mo Alloys Titanium, Silver, Graphite Graphite, Gold, Platinum
Nickel copper alloys
Bronzes, cupro-nickels
Copper
Brasses, nickel silvers
Nickel
Lead, tin and alloys
Stainless steels
Cast iron
Steel-carbon
Cadmium
Alluminium & alloys
Zinc & alloys
Metal Corroding
Magnesium & alloys
Contact Metal
This occurs when metals of different nobility are placed into contact with one another and are both immersed in an electrolyte.
HUMIDITY IN THE WOOD
Magnesium & alloys Zinc & alloys Alluminium & alloys Cadmium Steel-carbon Cast iron Stainless steels
PH OF THE WOOD
Lead, tin and alloys Nickel Brasses, nickel silvers Copper Bronzes, cupro-nickels Nickel copper alloys Nickel-Chrome_Mo Alloys Titanium, Silver, Graphite Graphite, Gold, Platinum
PROTECTIVE TREATMENTS
FIREPROOFING OR FLAME-RETARDANT TREATMENTS
To achieve effective corrosion protection, careful design of connection and construction details is essential. Careful consideration must be given to environmental conditions such as humidity, temperature, exposure of the wood, marine air pollution, the presence of chemicals and the type of wood. It is generally impossible to determine — in advance and beyond a shadow of a doubt — where the corrosion will take place and (in some cases) by what mechanism, as it is a statistical phenomenon.
USE OF FERTILIZERS, DETERGENTS, THAWING SALTS OR FUNGICIDES
In order to find the best solution to protect the connectors from corrosion, the ideal approach involves the following steps: 1. Analysis of the working environment and environmental conditions; 2. Analysis of the most likely or predominant phenomenon; 3. Selection of the best material taking into account the two previous points; 4. Periodic monitoring.
INSTALLATION GEOMETRY
OUTDOOR | CORROSION | 253
C4 EVO COATING Is a multilayer coating composed of: • An external functional layer of epoxy matrix with aluminium flakes of around 15-20 μm, which gives the coating optimum resistance to mechanical and thermal stresses. The aluminium flakes also serve, when required, as sacrificial cathodes for the metal base of the screw. • A central binding layer for the external functional layer. • A internal layer of around 4 μm zinc microns which acts as an additional layer of corrosion resistance.
EXPERIMENTAL TESTING OF SCREWS CORROSION PERFORMANCE Rothoblaas has conducted numerous experimental tests to evaluate the performance of its connectors under a wide range of exposure conditions and to estimate their resistance to corrosion. Since there is no single test capable of determining the medium-to-long term corrosion resistance of a metal fastener installed in timber elements, reference was made to the following test protocols so as to characterise corrosion performance using different approaches and test methods.
TEST PROTOCOLS: SALT SPRAY
UNI EN ISO 9227:2012 Corrosion tests in artificial atmospheres Salt spray tests HBS EVO
HBS P EVO
TBS EVO
VGZ EVO
SULPHURIC OXIDE EXPOSURE
UNI EN ISO 6988:1998 Metallic and other non-organic coatings Sulfur dioxide test with general condensation of moisture.
CONTINUOUS CONDENSATION
Aluminium Organic matrix
C4 EVO COATING
COATING
Cohesion layer
PROHESION
SALT SPRAY
SCREW BODY
Zn - Zinc Fe - Carbon Steel
UNI EN ISO 6270-2:2005 Paints and varnishes - Determination of resistance to humidity. Part 2: Procedure for exposing test specimens in condensation-water atmospheres.
ASTM G85-A5:2011 Standard Practice for Modified Salt Spray (Fog) Testing Annex A5, dilute electrolyte cyclic fog dry test
CYCLING TESTING
UNI EN ISO 9227:2012
UNI EN ISO 11997-1:2006 Paints and varnishes - Determination of resistance to cyclic corrosion conditions Part 1: Wet (salt fog)/dry/ humidity + ASTM B571:2013 Standard Practice for Qualitative Adhesion Testing of Metallic Coatings
t = 0h
254 | C4 EVO COATING | OUTDOOR
t = 1440h
MATERIALS AND COATINGS
KKT A4 AISI 316 (A4)
KKT A4 color
SCI A4
CORROSION RESISTANCE
THE RIGHT FASTENER FOR EVERY APPLICATION
KWP AISI 305 (A2) SCI A2
AUSTENITIC
EWS A2 SCA A2 AISI 304 (A2) KKZ A2 KKZ BRONZE A2
STAINLESS STEEL
AISI 304 (A2) and carbon steel (tip)
SBS
KKF AISI 410 EWS AISI 410
MARTENSITIC
AISI 410 KKA AISI 410 SHS AISI 410
HBS EVO
C4 EVO ANTI-CORROSION COATING
HBS P EVO TBS EVO
CARBON STEEL
ORGANIC ANTI-CORROSION COATING
KKT
KKAN
ZINC PLATED
HBS
MECHANICAL STRENGTH
VGZ EVO
OUTDOOR | MATERIALS AND COATINGS | 255
KKT COLOR A4 | AISI316
A4
BIT INCLUDED
AISI 316
EN 14592
CONE-SHAPED CONCEALED HEAD SCREW COLOURED HEAD Version in A4 | AISI316 stainless steel with brown, grey or black coloured head. Excellent camouflaging with wood. Ideal for very aggressive environments and for chemically treated woods (acetylation).
COUNTER THREAD The inverse (left-hand) under-head thread guarantees excellent grip. Small conical head to ensure it is hidden in the timber.
TRIANGULAR BODY The three-lobed thread makes it possible to cut the wood grain during screwing. Exceptional timber pull-through.
CHARACTERISTICS FOCUS
excellent grip
HEAD
conical, coloured countersunk
DIAMETER
5,0 mm
LENGTH
from 40 to 70 mm
MATERIAL A4 | AISI316 austenitic stainless steel with coloured organic coating.
FIELDS OF USE Outdoor use in highly aggressive environments. Wooden boards with density of < 550 kg/m3 (without pre-drill) and < 880 kg/m3 (with predrill). WPC boards (with pre-drill). Suitable for service classes 1-2-3.
256 | KKT COLOR A4 | AISI316 | OUTDOOR
GEOMETRY AND MECHANICAL CHARACTERISTICS A
d2 d1
dk ds
b L
Nominal diameter
d1
[mm]
5,10
Head diameter
dK
[mm]
6,75
Tip diameter
d2
[mm]
3,40
Shank diameter
dS
[mm]
4,05
Pre-drilling hole diameter(1)
dV
[mm]
3,0 - 4,0
Characteristic yield moment
My,k
[Nm]
5,84
Characteristic withdrawal-resistance parameter
fax,k
[N/mm2]
13,7 350
Notched tip
single
Associated density
ρa
[kg/m3]
Characteristic head-pull-through parameter
fhead,k
[N/mm2]
23,8
Associated density
ρa
[kg/m3]
350
Characteristic tensile strength
ftens,k
[kN]
7,8
(1) For
high density materials, pre-bored holes are recommended based on the wood species.
CODES AND DIMENSIONS d1
CODE
[mm] KKT540A4M 5 TX 20
d1
b
A
[mm]
[mm]
pcs
43
25
16
200
d1
CODE
L
b
A
[mm]
[mm]
[mm]
KKT550A4N
53
35
18
200
KKT560A4N
60
40
22
200
[mm]
KKT550A4M
53
35
18
200
KKT560A4M
60
40
22
200
KKT570A4M
70
50
27
100
CODE
L
b
A
pcs
[mm] 5 TX 20
L [mm]
[mm]
[mm]
[mm]
KKT550A4G
53
35
18
200
KKT560A4G
60
40
22
200
5 TX 20
pcs
CARBONIZED WOOD Ideal for fastening wooden planks with a burnt effect. Can also be used with acetylate-treated woods.
OUTDOOR | KKT COLOR A4 | AISI316 | 257
MINIMUM DISTANCES FOR SHEAR LOADS
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE
SCREWS INSERTED WITH PRE-DRILLING HOLE
d1
[mm]
5
a1
[mm]
a2
[mm]
a3,t
[mm]
a3,c
[mm]
a4,t
[mm]
a4,c
[mm]
3∙d
d1
[mm]
a1
[mm]
12∙d
60
5∙d
25
a2
[mm]
5∙d
25
5∙d
25
a3,t
[mm]
15∙d
75
10∙d
50
a3,c
[mm]
10∙d
50
10∙d
50
a4,t
[mm]
5∙d
25
10∙d
50
a4,c
[mm]
5∙d
25
5∙d
25
5∙d
5
25
4∙d
20
3∙d
15
4∙d
20
12∙d
60
7∙d
35
7∙d
35
7∙d
35
3∙d
15
7∙d
35
15
3∙d
15
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
5
5
d = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: • The minimum distances are compliant with EN 1995:2014 considering a timber characteristic density of ρk ≤ 420 kg/m3 and calculation diameter of d = nominal screw diameter. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
258 | KKT COLOR A4 | AISI316 | OUTDOOR
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR timber-to-timber without pre-drilling hole
geometry
TENSION timber-to-timber with pre-drilling hole
thread withdrawal(1)
head pull-through including upper thread withdrawal (2)
legno-legno con preforo A L b
d1
d1
L
b
A
[mm] [mm] [mm] [mm]
5
RV,k
RV,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
43
25
16
1,08
1,35
1,98
1,25
53
35
18
1,16
1,40
2,77
1,25
60
40
22
1,24
1,53
3,17
1,25
70
50
27
1,35
1,70
3,96
1,25
NOTES:
GENERAL PRINCIPLES:
(1) T he axial thread withdrawal resistance was calculated considering a 90° an-
• Characteristic values according to EN 1995:2014.
gle between the grain and the connector and for a fixing length of b. (2) The axial resistance to head pull-through was calculated using timber ele-
ments also considering the underhead thread.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γm
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and screw geometry according to CE marking according to EN 14592. • For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Dimensioning and verification of the timber elements must be carried out separately.
OUTDOOR | KKT COLOR A4 | AISI316 | 259
KKT A4 | AISI316
A4
BIT INCLUDED
AISI 316
EN 14592
CONE-SHAPED CONCEALED HEAD SCREW AGGRESSIVE ENVIRONMENTS Version in A4 | AISI316 stainless steel, ideal for very aggressive environments and for chemically treated woods (acetylation). KKT X version with short length and long bit for use with clips.
COUNTER THREAD The inverse (left-hand) under-head thread guarantees excellent grip. Small conical head to ensure it is hidden in the timber.
TRIANGULAR BODY The three-lobed thread makes it possible to cut the wood grain during screwing. Exceptional timber pull-through.
CHARACTERISTICS FOCUS
excellent grip
HEAD
conical, countersunk
DIAMETER
5,0 mm
LENGTH
from 20 to 80 mm
MATERIAL A4 | AISI316 austenitic stainless steel.
FIELDS OF USE Outdoor use in highly aggressive environments. Wooden boards with density of < 550 kg/m3 (without pre-drill) and < 880 kg/m3 (with predrill). WPC boards (with pre-drill). Suitable for service classes 1-2-3.
260 | KKT A4 | AISI316 | OUTDOOR
GEOMETRY AND MECHANICAL CHARACTERISTICS A
ds d2 d1
d2 d1 dk
dk ds
b L
b L
KKT A4 | AISI316
KKT X A4 | AISI316
Nominal diameter
d1
[mm]
5,1
Head diameter
dK
[mm]
6,75
Tip diameter
d2
[mm]
3,40
Shank diameter
dS
[mm]
4,05
dV
[mm]
3,0 - 4,0
-
-
single(2)
Pre-drilling hole
diameter(1)
Notched tip Characteristic yield moment Characteristic withdrawal-resistance parameter
My,k
[Nm]
5,84
fax,k
[N/mm2]
13,7
Associated density
ρa
[kg/m3]
350
Characteristic head-pull-through parameter
fhead,k
[N/mm2]
23,8
Associated density
ρa
[kg/m3]
350
Characteristic tensile strength
ftens,k
[kN]
7,8
(1) For (2)
high density materials, pre-bored holes are recommended based on the wood species. Notch present only for screws with L > 25 mm.
CODES AND DIMENSIONS KKT A4 | AISI316 d1
CODE
[mm] KKT540A4 5 TX 20
KKT X A4 | AISI316 L
b
A
[mm]
[mm]
[mm]
43
25
16
pcs
d1
CODE
[mm]
L
b
A
[mm]
[mm]
[mm]
20
16
4
pcs
200
KKTX520A4( * ) KKTX525A4( * )
25
21
4
200
KKTX530A4( * )
30
26
4
200
KKTX540A4
40
36
4
200
KKT550A4
53
35
18
200
KKT560A4
60
40
22
200
KKT570A4
70
50
27
100
KKT580A4
80
53
35
100
5 TX 20
200
(*)
Not holding CE marking. Full threaded screw.
LONG BIT INCLUDED code TX2050
KKT X Ideal for fastening standard Rothoblaas clips (TVM, TERRALOCK) in outdoor environments. Long bit included in each package.
OUTDOOR | KKT A4 | AISI316 | 261
MINIMUM DISTANCES FOR SHEAR LOADS
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE
SCREWS INSERTED WITH PRE-DRILLING HOLE
d1
[mm]
5
a1
[mm]
5
5∙d
25
4∙d
20
a2
[mm]
3∙d
15
4∙d
20
a3,t
[mm]
12∙d
60
7∙d
35
a3,c
[mm]
7∙d
35
7∙d
35
a4,t
[mm]
3∙d
15
7∙d
35
a4,c
[mm]
3∙d
15
3∙d
15
d1
[mm]
a1
[mm]
12∙d
60
5∙d
25
a2
[mm]
5∙d
25
5∙d
25
a3,t
[mm]
15∙d
75
10∙d
50
a3,c
[mm]
10∙d
50
10∙d
50
a4,t
[mm]
5∙d
25
10∙d
50
a4,c
[mm]
5∙d
25
5∙d
25
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
5
5
d = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: • The minimum distances are compliant with EN 1995:2014 considering a timber characteristic density of ρk ≤ 420 kg/m3 and calculation diameter of d = nominal screw diameter. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
262 | KKT A4 | AISI316 | OUTDOOR
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014
KKT A4 | AISI316
SHEAR timber-to-timber without pre-drilling hole
geometry
TENSION timber-to-timber with pre-drilling hole
thread withdrawal(1)
head pull-through including upper thread withdrawal (2)
legno-legno con preforo A L b
d1
d1
L
b
A
[mm] [mm] [mm] [mm]
RV,k
RV,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
43
25
16
1,08
1,35
1,98
1,25
53
35
18
1,16
1,40
2,77
1,25
60
40
22
1,24
1,53
3,17
1,25
70
50
27
1,35
1,70
3,96
1,25
80
53
35
1,65
1,91
4,20
1,25
KKT X A4 | AISI316
SHEAR
SHEAR
geometry
intermediate steel-to-timber plate (3)
thread withdrawal(1)
5
Splate
L b
d1
L
b
RV,k
Rax,k
[mm]
[mm]
[kN]
[kN]
20
16
25
21
30
26
40
36
5
SPLATE = 3,0 mm
d1 [mm]
0,71
1,27
0,87
1,66
1,05
2,06
1,40
2,85
NOTES:
GENERAL PRINCIPLES:
(1) T he axial thread withdrawal resistance was calculated considering a 90° an-
• Characteristic values according to EN 1995:2014.
gle between the grain and the connector and for a fixing length of b. (2) The axial resistance to head pull-through was calculated using timber ele-
ments also considering the underhead thread. (3) The shear resistance characteristics are calculated considering the case of an intermediate plate (0,5 d1 ≤ SPLATE ≤ d1).
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γm
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and screw geometry according to CE marking according to EN 14592. • For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Dimensioning and verification of timber elements and steel plates must be carried out separately. • The KKT A4 screws with double thread are mainly used for timber-to-timber joints. • The KKT X total thread screws are mainly used for steel plates (e.g. TERRALOCK patio system).
OUTDOOR | KKT A4 | AISI316 | 263
KKT COLOR
BIT INCLUDED
EN 14592
CONE-SHAPED CONCEALED HEAD SCREW COLOURED COATING Carbon steel version with coloured anti-rust coating (brown, grey, green, sand and black) for outdoor use in service class 3.
COUNTER THREAD The inverse (left-hand) under-head thread guarantees excellent grip. Small conical head to ensure it is hidden in the timber.
TRIANGULAR BODY The three-lobed thread makes it possible to cut the wood grain during screwing. Exceptional timber pull-through.
CHARACTERISTICS FOCUS
complete range of colours
HEAD
conical, countersunk
DIAMETER
5,0 | 6,0 mm
LENGTH
from 40 to 120 mm
MATERIAL Carbon steel with coloured organic anti-rust coating.
FIELDS OF USE Outdoor use. Wooden boards with density of < 780 kg/m3 (without pre-drill) and < 880 kg/m3 (with pre-drill). WPC boards (with pre-drill). Suitable for service classes 1-2-3.
264 | KKT COLOR | OUTDOOR
GEOMETRY AND MECHANICAL CHARACTERISTICS A
d2 d1
dk ds
b L
Nominal diameter Head diameter Tip diameter Shank diameter Pre-drilling hole diameter(1) Notched tip Characteristic yield moment Characteristic withdrawal-resistance parameter Associated density Characteristic head-pull-through parameter Associated density Characteristic tensile strength (1)
d1 dK d2 dS dV
[mm] [mm] [mm] [mm] [mm]
5,10 6,75 3,40 4,05 3,0 - 4,0 double
6,00 7,75 3,90 4,40 4,0 - 5,0 double
My,k
[Nm]
8,42
9,97
fax,k
[N/mm2]
14,7
14,7
ρa
[kg/m3]
400
400
fhead,k
[N/mm2]
68,8
20,1
ρa ftens,k
[kg/m3]
730 9,6
350 14,5
[kN]
For high density materials, pre-bored holes are recommended based on the wood species.
CODES AND DIMENSIONS d1 [mm]
5 TX 20
6 TX 25
d1 [mm]
5 TX 20
CODE KKTM540 KKTM550 KKTM560 KKTM570 KKTM580 KKTM660 KKTM680 KKTM6100 KKTM6120 CODE KKTG540 KKTG550 KKTG560 KKTG570 KKTG580
L [mm] 43 53 60 70 80 60 80 100 120
b [mm] 25 35 40 50 53 40 50 50 60
A [mm] 16 18 22 27 35 20 30 50 60
L [mm] 43 53 60 70 80
b [mm] 25 35 40 50 53
A [mm] 16 18 22 27 35
pcs 200 200 200 100 100 100 100 100 100
d1 [mm] 5 TX 20 d1 [mm] 5 TX 20 d1 [mm]
pcs 200 200 200 100 100
5 TX 20 (*)
CODE KKTV550 KKTV560 KKTV570 CODE KKTS550 KKTS560 KKTS570 CODE KKTN540( * ) KKTN550 KKTN560
L [mm] 53 60 70
b [mm] 35 40 50
A [mm] 18 22 27
L [mm] 53 60 70
b [mm] 35 40 50
A [mm] 18 22 27
L [mm] 40 53 60
b [mm] 36 35 40
A [mm] 16 18 22
pcs 200 200 100 pcs 200 200 100 pcs 200 200 200
Full threaded screw.
KKT N Ideal for fastening standard Rothoblaas clips (TVM, TERRALOCK) in outdoor environments. Bit included in each package.
OUTDOOR | KKT COLOR | 265
MINIMUM DISTANCES FOR SHEAR LOADS
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE d1
[mm]
5
6
25
30
SCREWS INSERTED WITH PRE-DRILLING HOLE 5
6
4∙d
20
24
a1
[mm]
a2
[mm]
3∙d
15
18
4∙d
20
24
a3,t
[mm]
12∙d
60
72
7∙d
35
42
a3,c
[mm]
7∙d
35
42
7∙d
35
42
a4,t
[mm]
3∙d
15
18
7∙d
35
42
a4,c
[mm]
3∙d
15
18
3∙d
15
18
d1
[mm]
5∙d
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
6
5
6
a1
[mm]
12∙d
60
72
5∙d
25
30
a2
[mm]
5∙d
25
30
5∙d
25
30
a3,t
[mm]
15∙d
75
90
10∙d
50
60
a3,c
[mm]
10∙d
50
60
10∙d
50
60
a4,t
[mm]
5∙d
25
30
10∙d
50
60
a4,c
[mm]
5∙d
25
30
5∙d
25
30
d = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: • The minimum distances are compliant with EN 1995:2014 considering a timber characteristic density of ρk ≤ 420 kg/m3 and calculation diameter of d = nominal screw diameter. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
266 | KKT COLOR | OUTDOOR
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014
KKT
SHEAR timber-to-timber without pre-drilling hole
geometry
TENSION timber-to-timber with pre-drilling hole
thread withdrawal(1)
head pull-through including upper thread withdrawal (2)
legno-legno con preforo
A L b
d1
d1
L
b
A
[mm] [mm] [mm] [mm]
5
6
RV,k
RV,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
43
25
16
1,03
1,35
1,91
1,05
53
35
18
1,13
1,47
2,67
1,05
60
40
22
1,20
1,57
3,06
1,05
70
50
27
1,31
1,73
3,82
1,05
80
53
35
1,51
1,91
4,05
1,05
60
40
20
1,35
1,79
3,67
1,40
80
50
30
1,59
2,14
4,59
1,40
100
50
50
1,94
2,26
4,59
1,40
120
60
60
1,94
2,26
5,50
1,40
KKTN540
SHEAR
TENSION
geometry
intermediate steel-to-timber plate (3)
thread withdrawal(1)
RV,k
Rax,k
Splate
L b
d1
d1
L
b
[mm]
[mm]
[mm]
5
40
36
[kN] SPLATE = 3,0 mm
[kN] 1,49
2,75
NOTES: (1) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b. (2) The axial resistance to head pull-through was calculated using timber elements also considering the underhead thread. A characteristic headpull-through parameter equal to 20 N/mm2 with associated density ρa = 350 kg/m3 is considered in the calculation phase for the Ø5 diameter. (3)The shear resistance characteristics are calculated considering the case of
an intermediate plate (0,5 d1 ≤ SPLATE ≤ d1).
GENERAL PRINCIPLES:
• For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Dimensioning and verification of timber elements and steel plates must be carried out separately. • The KKT screws with double thread are mainly used for timber to timber joints. • The KKT total thread screws are mainly used for steel plates (e.g. FLAT patio system).
• Characteristic values according to EN 1995:2014. • Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γm
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and screw geometry according to CE marking according to EN 14592.
OUTDOOR | KKT COLOR | 267
KKZ A2 | AISI304
A2
BIT INCLUDED
AISI 304
EN 14592
COUNTERSUNK CYLINDRICAL HEAD SCREW HARD WOODS Special tip with sword-shaped geometry specially designed to efficiently drill very high density woods without pre-drill (with pre-drill, over 1000 kg/m 3).
DOUBLE THREAD The larger diameter right-hand under-head thread ensures an effective grip, guaranteeing good coupling of the wooden elements. Concealed head.
BURNISHED VERSION Available in a version in antique-burnished stainless steel, ideal to guarantee superb camouflaging in the wood.
CHARACTERISTICS FOCUS
exceptional hardwood perforation
HEAD
cylindrical, countersunk
DIAMETER
5,0 mm
LENGTH
from 50 to 70 mm
MATERIAL A2 | AISI304 austenitic stainless steel.
FIELDS OF USE Outdoor use in highly aggressive environments. Wooden boards with density of < 780 kg/m3 (without pre-drill) and < 1240 kg/m3 (with predrill). WPC boards (with pre-drill). Suitable for service classes 1-2-3.
268 | KKZ A2 | AISI304 | OUTDOOR
GEOMETRY A ds d2 d1
dk t1
b1
b2 L
Nominal diameter
d1
[mm]
5
Head diameter
dK
[mm]
6,80
Tip diameter
d2
[mm]
3,50
Shank diameter
dS
[mm]
4,35
Head thickness
t1
[mm]
3,10
Pre-drilling hole diameter(1)
dV
[mm]
3,5 5,3
Characteristic yield moment Characteristic withdrawal-resistance parameter
My,k
[Nm]
fax,k
[N/mm2]
Associated density
ρa
[kg/m3]
Characteristic head-pull-through parameter
fhead,k
[N/mm2]
Associated density
ρa
[kg/m3]
350
Characteristic tensile strength
ftens,k
[kN]
5,71
(1) For
17,05 350 36,79
high density materials, pre-bored holes are recommended based on the wood species.
CODES AND DIMENSIONS KKZ A2 | AISI304 d1
CODE
[mm] 5 TX 25
KKZ BRONZE A2 | AISI304 L
b1
b2
A
pcs
[mm] [mm] [mm] [mm]
d1
CODE
L
[mm]
KKZ550
50
22
11
28
200
KKZ560
60
27
11
33
200
KKZ570
70
32
11
38
100
5 TX 25
b1
b2
A
pcs
[mm] [mm] [mm] [mm] KKZB550
50
22
11
28
200
KKZB560
60
27
11
33
200
HARD WOOD Also tested on very high density woods, such as IPE, massaranduba or bamboo Microllam® (over 1000 kg/m3).
OUTDOOR | KKZ A2 | AISI304 | 269
KWP A2 | AISI305
A2
BIT INCLUDED
AISI 305
CYLINDRICAL HEAD SCREW FOR WPC BOARDS WPC BOARDS Special geometry specifically designed for fastening WPC (Wood Plastic Composite) boards to a wood or WPC substructure, even without pre-drilling.
TRIPLE THREAD The combination of the two under-head threads causes removal of the WPC fibres. Exceptional penetration into the WPC, even without pre-drilling.
VOLCANO EFFECT Removal of plastic fibres from the WPC guarantees an excellent board finish. Small conical head ensures that it will be concealed in the WPC.
CHARACTERISTICS FOCUS
removal of shavings from WPC boards
HEAD
cylindrical, countersunk
DIAMETER
5,0 mm
LENGTH
from 60 to 70 mm
MATERIAL A2 | AISI305 austenitic stainless steel.
FIELDS OF USE Outdoor use in highly aggressive environments. WPC boards (without pre-drill). Wooden boards with density of < 780 kg/m3 (without pre-drill) and < 880 kg/m3 (with pre-drill). Suitable for service classes 1-2-3.
270 | KWP A2 | AISI305 | OUTDOOR
GEOMETRY A
d2 d1
dk t1
b3
b2
b1 L
Nominal diameter
d1
[mm]
5
Head diameter
dK
[mm]
6,75
Tip diameter
d2
[mm]
3,30
Head thickness
t1
[mm]
2,30
Pre-drilling hole diameter
dV
[mm]
3,00
CODES AND DIMENSIONS d1
CODE
[mm] 5 TX 20
L
b1
[mm] [mm]
b2 [mm]
b3
A
pcs
[mm] [mm]
KWP560
60
36
15
6,5
25
200
KWP570
70
46
15
6,5
25
100
WOOD PLASTIC COMPOSITE (WPC) Ideal for fastening WPC boards, both solid and perforated, even without pre-drilling.
OUTDOOR | KWP A2 | AISI305 | 271
KKA AISI410
410 BIT INCLUDED
AISI
SELF-DRILLING SCREW TIMBER-TO-TIMBER | TIMBER-TO-ALUMINIUM TIMBER-TO-ALUMINIUM Self-perforating timber-to-metal tip with special bleeder geometry. Ideal for fastening timber or WPC boards to aluminium substructures.
TIMBER-TO-TIMBER Also ideal for fastening timber or WPC boards to thin wooden substructures, they, too, made with wooden boards. AISI410 stainless steel.
METAL-TO-ALUMINIUM Short version ideal for fastening clips, plates and angle brackets to aluminium substructures. Can be used to fix aluminium-aluminium overlaps.
CHARACTERISTICS FOCUS
self-drilling, timber-aluminium
HEAD
cylindrical, countersunk
DIAMETER
4,0 | 5,0 mm
LENGTH
from 20 to 50 mm
MATERIAL AISI410 martensitic stainless steel.
FIELDS OF USE Outdoor use. Wooden boards with density of < 880 kg/m3 on aluminium with a thickness of < 3.2 mm (without pre-drill). Suitable for service classes 1-2-3.
272 | KKA AISI410 | OUTDOOR
GEOMETRY s
A s
t1
s
t1 d2 d1
dk
d2 d1
dk
Lp
b L
ds
b2
b1
Lp
L
KKA Ø4
KKA Ø5
Nominal diameter
d1
[mm]
4
5
Head diameter
dK
[mm]
6,30
6,80
Tip diameter
d2
[mm]
2,80
3,50
Shank diameter
dS
[mm]
-
4,35
Head thickness
t1
[mm]
3,10
3,35
Tip length
Lp
[mm]
5,50
6,50
CODES AND DIMENSIONS d1
CODE
[mm] 4 KKA420 TX 20
L
b1
b2
A
s
pcs
d1
[mm] [mm] [mm] [mm] [mm] 20
11,4
-
-
1÷2.5
CODE
[mm] 200
b1
b2
A
s
pcs
[mm] [mm] [mm] [mm] [mm] KKA540
5 TX 25 KKA550 s
L 40
15,5
11
29
2÷3
100
50
20,5
11
39
2÷3
100
thickness, steel plate S235/St37 thickness, aluminium plate
ALU TERRACE Ideal for fastening timber or WPC boards, clips or angle brackets to aluminium substructures.
OUTDOOR | KKA AISI410 | 273
KKA COLOR
BIT INCLUDED
SELF-DRILLING SCREW FOR ALUMINIUM ALUMINIUM Self-perforating tip with special bleeder geometry. Ideal for fastening clips to aluminium substructures.
COLOURED COATING Black anti-rust coating for outdoor use in service class 3. Concealed effect on dark substructures and clips.
METAL-TO-ALUMINIUM Short version ideal for fastening clips, plates and angle brackets to steel or aluminium substructures. Can be used to fix metal-metal overlaps.
CHARACTERISTICS FOCUS
self-drilling aluminium
HEAD
cylindrical, countersunk
DIAMETER
4,0 and 5,0 mm
LENGTH
from 20 to 40 mm
MATERIAL Carbon steel with coloured organic anti-rust coating.
FIELDS OF USE Outdoor use. Aluminium thickness < 3,2 mm (without pre-drill). Suitable for service classes 1-2-3.
274 | KKA COLOR | OUTDOOR
GEOMETRY s
A s
t1
t1 d2 d1
dk
s d2 d1
dk
Lp
b L
b
Lp
L
KKAN Ø4x20
KKAN Ø4x30 - KKAN Ø4x40 - KKAN Ø5x40
Nominal diameter
d1
[mm]
4
5
Head diameter
dK
[mm]
6,30
6,80
Tip diameter
d2
[mm]
2,80
3,50
Head thickness
t1
[mm]
3,10
3,35
Tip length
Lp
[mm]
5,50
6,50
CODES AND DIMENSIONS d1
CODE
[mm]
b
A
s
pcs
[mm]
[mm]
[mm]
[mm]
KKAN420
20
10
-
2÷3
4 KKAN430 TX 20 KKAN440
30
20
22
2÷3
200
40
30
32
2÷3
200
40
29
29
2÷3
200
5 KKAN540 TX 25 s
L
200
thickness, steel plate S235/St37 thickness, aluminium plate
TVM COLOR Ideal for fastening standard Rothoblaas clips (TVMN) on aluminium. Long bit included in each package.
OUTDOOR | KKA COLOR | 275
EWS
BIT INCLUDED
EN 14592
CONVEX HEAD SCREW CONVEX HEAD Countersunk teardrop shaped head with curved surface for a pleasant look and firm grip with the bit.
ROBUST BODY The increased shank diameter with high torsional strength for a strong, safe screwing even in high density woods.
STAINLESS STEEL AISI410 E A2 | AISI305 EWS AISI410 can be used, without pre-drill, in woods having a maximum density of 880 kg/m3. EWS A2 | AISI305 can be used, without pre-drill, in woods having a maximum density of 550 kg/m3.
CHARACTERISTICS FOCUS
increased diameter for hardwoods
HEAD
convex with ribs
DIAMETER
5,0 mm
LENGTH
from 50 to 80 mm
MATERIAL Austenitic stainless steel A2 | AISI305 and martensitic stainless steel AISI410.
FIELDS OF USE Outdoor use. WPC boards (with pre-drill). EWS A2 | AISI305: wooden boards with density of < 550 kg/m3 (without pre-drill) and < 880 kg/m3 (with pre-drill). EWS AISI410: wooden boards with density of < 880 kg/m3 (without pre-drill). Suitable for service classes 1-2-3.
276 | EWS | OUTDOOR
GEOMETRY AND MECHANICAL CHARACTERISTICS A
d2 d1
dk ds
t1
b L
EWS AISI410
EWS A2 | AISI305
Nominal diameter
d1
[mm]
5,3
5,3
Head diameter
dK
[mm]
8,00
8,00
Tip diameter
d2
[mm]
3,90
3,90
Shank diameter
dS
[mm]
4,10
4,10
Head thickness
t1
[mm]
3,65
3,65
Pre-drilling hole diameter
dV
[mm]
3,50
3,50
Characteristic yield moment
My,k
[Nm]
14,3
9,7
Characteristic withdrawal-resistance parameter
fax,k
[N/mm2]
16,46
16,62
Associated density
ρa
[kg/m3]
350
350
21,05
21,44
350
350
13,74
7,35
Characteristic head-pull-through parameter Associated density
fhead,k
[N/mm2]
ρa
[kg/m3]
Characteristic tensile strength
ftens,k
[kN]
CODES AND DIMENSIONS 410
EWS AISI410 d1
CODE
[mm] EWS550 5 TX 25
AISI
L
b
A
[mm]
[mm]
[mm]
50
30
20
pcs
d1
CODE
[mm] 200
EWS560
60
36
24
200
EWS570
70
42
28
100
EWS580
80
48
32
100
A2
EWS A2 | AISI305
5 TX 25
AISI 305
L
b
A
pcs
[mm]
[mm]
[mm]
EWSA2550
50
30
20
200
EWSA2560
60
36
24
200
EWSA2570
70
42
28
100
TECHNICAL DOCUMENTATION Values available for compliance with national unified technical documents for outdoor wooden decking.
OUTDOOR | EWS | 277
MINIMUM DISTANCES FOR SHEAR LOADS
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE
SCREWS INSERTED WITH PRE-DRILLING HOLE
d1
[mm]
5
a1
[mm]
a2
[mm]
a3,t
[mm]
a3,c
[mm]
a4,t
[mm]
a4,c
[mm]
3∙d
5∙d
5
25
4∙d
20
3∙d
15
4∙d
20
12∙d
60
7∙d
35
7∙d
35
7∙d
35
3∙d
15
7∙d
35
15
3∙d
15
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1
[mm]
5
5
a1
[mm]
12∙d
60
5∙d
25
a2
[mm]
5∙d
25
5∙d
25
a3,t
[mm]
15∙d
75
10∙d
50
a3,c
[mm]
10∙d
50
10∙d
50
a4,t
[mm]
5∙d
25
10∙d
50
a4,c
[mm]
5∙d
25
5∙d
25
d = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F a3,t
NOTES: • The minimum distances are in accordance with EN 1995:2014 considering a timber characteristic density of ρk ≤ 420 kg/m3.
278 | EWS | OUTDOOR
F α
α a3,c
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014
EWS AISI410
SHEAR
TENSION
geometry
timber-to-timber
thread withdrawal(1)
head pull-through(2)
A L b
d1
L
d1
b
A
[mm] [mm] [mm] [mm]
5
without pre-drilling hole RV,k
with pre-drilling hole RV,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
50
30
20
1,38
1,84
2,86
1,56
60
36
30
1,54
2,07
3,43
1,56
70
42
40
1,75
2,27
4,00
1,56
80
48
50
1,81
2,27
4,57
1,56
EWS A2 | AISI305
SHEAR
TENSION
geometry
timber-to-timber
thread withdrawal(1)
head pull-through(2)
Rax,k
Rhead,k
A L b
d1
d1
L
b
A
[mm] [mm] [mm] [mm] 5
without pre-drilling hole RV,k
with pre-drilling hole RV,k
[kN]
[kN]
[kN]
[kN]
50
30
20
1,39
1,80
2,88
1,59
60
36
30
1,55
2,08
3,46
1,59
70
42
40
1,68
2,14
4,04
1,59
NOTES:
GENERAL PRINCIPLES:
(1) T he axial thread withdrawal resistance was calculated considering a 90° an-
• Characteristic values according to EN 1995:2014.
gle between the grain and the connector and for a fixing length of b. (2) The axial resistance to head pull-through was calculated using timber ele-
ments.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γm
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and screw geometry according to CE marking according to EN 14592. • For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Dimensioning and verification of the timber elements must be carried out separately.
OUTDOOR | EWS | 279
KKF AISI410
410 BIT INCLUDED
AISI
ETA-11/0030
PAN HEAD SCREW PAN HEAD The flat under-head accompanies absorption of the shavings, preventing the wood from cracking and thus ensuring excellent surface finish.
LONGER THREAD Special asymmetric “umbrella” thread with increased length (60%) for higher grip. Fine thread for the utmost precision when tightening is complete.
AISI410 Martensitic stainless steel with an excellent balance between mechanical resistance and corrosion resistance. Can be inserted without requiring a pre-drill.
CHARACTERISTICS FOCUS
excellent versatility of use
HEAD
pan head
DIAMETER
from 4,0 to 6,0 mm
LENGTH
from 20 to 120 mm
MATERIAL AISI410 martensitic stainless steel.
FIELDS OF USE Outdoor use. Wooden boards with density < 780 kg/m3 (without pre-drill). WPC boards (with pre-drill). Suitable for service classes 1-2-3.
280 | KKF AISI410 | OUTDOOR
GEOMETRY AND MECHANICAL CHARACTERISTICS
dk
d2 d1
X X
KK F
A
ds
t1
b L
Nominal diameter
d1
[mm]
4
4,5
5
6
Head diameter
dK
[mm]
7,70
8,70
9,65
11,65
Tip diameter
d2
[mm]
2,60
3,05
3,25
4,05
Shank diameter
dS
[mm]
2,90
3,35
3,60
4,30
Head thickness
t1
[mm]
5,0
5,0
6,0
7,0
Pre-drilling hole diameter(1)
dV
[mm]
2,5
2,5
3,0
4,0
Characteristic yield moment Characteristic withdrawal-resistance parameter(2)
My,k
[Nm]
2,0
2,8
4,5
8,2
fax,k
[N/mm2]
11,7
11,7
11,7
11,7
Associated density
ρa
[kg/m3]
350
350
350
350
Characteristic head-pull-through parameter(2)
fhead,k
[N/mm2]
16,5
16,5
16,5
16,5
Associated density
ρa
[kg/m3]
350
350
350
350
Characteristic tensile strength
ftens,k
[kN]
5,0
6,4
7,9
11,3
(1)
Pre-drilling valid for softwood. Valid for softwood - maximum density 440 kg/m3. For applications with different materials or with high density please see ETA-11/0030. (2)
CODES AND DIMENSIONS d1
CODE
[mm]
4 TX 20
4,5 TX 20
L
b
A
pcs
d1
CODE
[mm]
L
b
A [mm]
pcs
[mm]
[mm]
[mm]
[mm]
[mm]
KKF430
30
18
12
500
KKF540
40
24
16
200
KKF435
35
20
15
500
KKF550
50
30
20
200
KKF560
60
35
25
200
KKF570
70
40
30
100
KKF580
80
50
30
100
200
KKF590
90
55
35
100
200
KKF5100
100
60
40
100
KKF440
40
24
16
500
KKF445
45
30
15
200
KKF450
50
30
20
200
KKF4520( * )
20
15
5
KKF4540
40
24
16
KKF4545
45
30
15
200
KKF4550
50
30
20
200
KKF4560
60
35
25
200
KKF4570
70
40
30
200
5 TX 25
6 TX 30 (*)
KKF680
80
50
30
100
KKF6100
100
60
40
100
KKF6120
120
75
45
100
Not holding CE marking.
TERRALOCK PP Ideal for fastening standard Rothoblaas clips in outdoor environments. Long bit included in each package.
OUTDOOR | KKF AISI410 | 281
MINIMUM DISTANCES FOR SHEAR LOADS
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE (1)
SCREWS INSERTED WITH PRE-DRILLING HOLE (1)
d1
[mm]
a1
[mm]
a2
[mm]
3∙d
12
14
3∙d
a3,t
[mm]
12∙d
48
54
12∙d
a3,c
[mm]
7∙d
28
32
7∙d
35
42
7∙d
28
32
7∙d
35
42
a4,t
[mm]
3∙d
12
14
3∙d
15
18
5∙d
20
23
7∙d
35
42
a4,c
[mm]
3∙d
12
14
3∙d
15
18
3∙d
12
14
3∙d
15
18
5∙d
4
4,5
20
23
5∙d
5
6
25
30
4∙d
15
18
4∙d
60
72
7∙d
4
4,5
5
6
16
18
4∙d
20
24
16
18
4∙d
20
24
28
32
7∙d
35
42
characteristic density: ρ k ≤ 420 kg/m3 SCREWS INSERTED WITHOUT PRE-DRILLING HOLE (2) d1
[mm]
a1
[mm]
a2
[mm]
5∙d
20
a3,t
[mm]
15∙d
60
a3,c
[mm]
10∙d
40
a4,t
[mm]
5∙d
20
a4,c
[mm]
5∙d
20
10∙d
4
4,5
40
45
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE (2)
5
6
12∙d
60
72
23
5∙d
25
30
5∙d
20
23
5∙d
25
30
68
15∙d
75
90
10∙d
40
45
10∙d
50
60
45
10∙d
50
60
10∙d
40
45
10∙d
50
60
23
5∙d
25
30
7∙d
28
32
10∙d
50
60
23
5∙d
25
30
5∙d
20
23
5∙d
25
30
5∙d
4
4,5
20
23
5∙d
5
6
25
30
characteristic density: 420 ≤ ρ k ≤ 500 kg/m3 SCREWS INSERTED WITHOUT PRE-DRILLING HOLE(3) d1
[mm]
4
4,5
5
6
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE(3) 4
4,5
5
6
a1
[mm]
15∙d
60
68
15∙d
75
90
7∙d
28
32
7∙d
35
42
a2
[mm]
7∙d
28
32
7∙d
35
42
7∙d
28
32
7∙d
35
42
a3,t
[mm]
20∙d
80
90
20∙d
100
120
15∙d
60
68
15∙d
75
90
a3,c
[mm]
15∙d
60
68
15∙d
75
90
15∙d
60
68
15∙d
75
90
a4,t
[mm]
7∙d
28
32
7∙d
35
42
9∙d
36
41
12∙d
60
72
a4,c
[mm]
7∙d
28
32
7∙d
35
42
7∙d
28
32
7∙d
35
42
d = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: (1) The minimum distances comply with the EN 1995:2014 standard in accord-
ance with ETA-11/0030. (2) The minimum distances are in accordance with EN 1995:2014, according to ETA-11/0030, considering a timber element mass density of ρ ≤ 420 kg/m3.
k (3) The minimum distances comply with EN 1995:2014, according to ETA11/0030, considering a timber element mass density of 420 ≤ ρk ≤ 500 kg/m3.
282 | KKF AISI410 | OUTDOOR
• In the case of OSB-timber joints, the minimum spacings (a1 , a2) can be multiplied by a coefficient of 0,85. • In the case of Douglas fir elements (Pseudotsuga menziesii), the minimum distances parallel to the grain (a1 , a3,t, a3,c) must be multiplied by a coefficient of 1,5.
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
TENSION panel-to-timber(1)
thread withdrawal(2)
head pull-through (3)
RV,k
RV,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
timber-to-timber
A L b
b
A
4,5
5
6
18
12
0,78
35
20
15
0,88
40
24
16
0,92
45
30
15
0,89
50
30
20
0,98
20
15
5
0,49
40
24
16
1,08
45
30
15
1,06
50
30
20
1,19
60
35
25
1,22
70
40
30
1,22
0,77
0,97
1,13
0,88
1,08
1,13
0,88
1,30
1,13
0,88
1,62
1,13
0,88
1,62
1,13
0,49
0,91
1,44
1,00
1,46
1,44
1,00
1,83
1,44
1,00
1,83
1,44
1,00
2,13
1,44
1,00
2,44
1,44
40
24
16
1,27
1,16
1,62
1,78
50
30
20
1,41
1,16
2,03
1,78
1,16
2,37
1,78
1,16
2,71
1,78
60
35
25
1,55
70
40
30
1,57
80
50
30
1,57
90
55
35
1,57
100
60
40
80
50
30
100
60
40
2,27
120
75
45
2,27
SPAN = 15 mm
4
30
SPAN = 15 mm
L
1,16
3,38
1,78
1,16
3,72
1,78
1,57
1,16
4,06
1,78
2,19
1,50
4,06
2,59
1,50
4,87
2,59
1,50
6,09
2,59
SPAN = 15 mm
d1
[mm] [mm] [mm] [mm]
SPAN = 15 mm
d1
NOTES: (1) The characteristic shear strength are calculated considering an OSB panel
or particle board with a SPAN thickness. (2) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b. (3) The axial resistance to head pull-through was calculated using timber ele-
ments.
GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Sizing and verification of the timber elements and panels must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γm
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
OUTDOOR | KKF AISI410 | 283
SCI A4 | AISI316
A4
BIT INCLUDED
AISI 316
COUNTERSUNK SCREW SPECIAL GEOMETRY Self-perforating tip with setback notch, asymmetric “umbrella” thread, elongated cutter and sharp under-head ribs.
SUPERIOR STRENGTH Geometric details provide the screw with greater torsional strength for more secure screwing.
A4 | AISI316 A4 | AISI316 austenitic stainless steel for high corrosion resistance. Ideal for seaside environments.
CHARACTERISTICS FOCUS
details designed for high performance
HEAD
countersunk with ribs
DIAMETER
5,0 mm
LENGTH
from 50 to 100 mm
MATERIAL A4 | AISI316 austenitic stainless steel.
FIELDS OF USE Outdoor use in highly aggressive environments. Wooden boards with density of < 470 kg/m3 (without pre-drill) and < 620 kg/m3 (with predrill). Suitable for service classes 1-2-3.
284 | SCI A4 | AISI316 | OUTDOOR
GEOMETRY AND MECHANICAL CHARACTERISTICS
SC I
dk
X X
A
d2 d1
90° ds
t1
b L
Nominal diameter
d1
[mm]
5
Head diameter
dK
[mm]
10,00 3,40
Tip diameter
d2
[mm]
Shank diameter
dS
[mm]
3,65
Head thickness
t1
[mm]
4,65
Pre-drilling hole diameter
dV
[mm]
3,0
Characteristic yield moment
My,k
[Nm]
3,9 17,9 440
Characteristic withdrawal-resistance parameter
fax,k
[N/mm2]
Associated density
ρa
[kg/m3]
Characteristic head-pull-through parameter
fhead,k
[N/mm2]
17,6
Associated density
ρa
[kg/m3]
440
Characteristic tensile strength
ftens,k
[kN]
4,3
Mechanical parameters from experimental tests.
CODES AND DIMENSIONS d1
CODE
[mm]
5 TX 25
L
b
A
[mm]
[mm]
[mm]
pcs
SCI5050A4
50
24
26
200
SCI5060A4
60
30
30
200
SCI5070A4
70
35
35
100
SCI5080A4
80
40
40
100
SCI5090A4
90
45
45
100
SCI50100A4
100
50
50
100
TURNED WASHER SCB A4 | AISI316 dSCI
CODE
[mm] 6
SCB6
D1
D2
h
[mm]
[mm]
[mm]
7,5
20,0
4,0
pcs 100
D2 D1
h dSCI
MARINE ENVIRONMENTS Can be used in aggressive environments and in areas near the sea thanks to the A4 | AISI316 stainless steel.
OUTDOOR | SCI A4 | AISI316 | 285
SCI A2 | AISI305
A2
BIT INCLUDED
AISI 305
EN 14592
COUNTERSUNK SCREW SPECIAL GEOMETRY Self-perforating tip with setback notch, asymmetric “umbrella” thread, elongated cutter and sharp under-head ribs.
SUPERIOR STRENGTH Geometric details provide the screw with greater torsional strength for more secure screwing. Very broad range of measurements.
A2 | AISI305 Austenitic stainless steel A2 | AISI305 for high corrosion resistance. Ideal for aggressive environments.
CHARACTERISTICS FOCUS
details designed for high performance
HEAD
countersunk with ribs
DIAMETER
from 3,5 to 8,0 mm
LENGTH
from 25 to 320 mm
MATERIAL A2 | AISI305 austenitic stainless steel.
FIELDS OF USE Use in aggressive outdoor environments. Wooden boards with density of < 470 kg/m3 (without pre-drill) and < 620 kg/m3 (with predrill). Suitable for service classes 1-2-3.
286 | SCI A2 | AISI305 | OUTDOOR
GEOMETRY AND MECHANICAL CHARACTERISTICS
SC I
dk
X X
A
d2 d1
90° ds
t1
b L
Nominal diameter
d1
[mm]
3,5
4
4,5
5
6
8
Head diameter
dK
Tip diameter
d2
[mm]
7,00
8,00
9,00
10,00
12,00
14,50
[mm]
2,25
2,55
2,80
3,40
3,95
5,40
Shank diameter
dS
[mm]
2,45
2,75
3,15
3,65
4,30
5,80
Head thickness
t1
[mm]
3,50
3,80
4,25
4,65
5,30
6,00
Pre-drilling hole diameter
dV
[mm]
2,0
2,5
3,0
3,0
4,0
5,0
Characteristic yield moment
My,k
[Nm]
1,26
1,96
2,77
4,37
8,22
17,60
Characteristic withdrawal-resistance parameter
fax,k
[N/mm2]
19,1
17,1
17,2
17,9
11,6
14,8
440
410
410
440
420
410
16,0
13,4
18,0
17,6
12,0
12,5
Associated density
ρa
[kg/m3]
Characteristic head-pull-through parameter
fhead,k
[N/mm2]
Associated density
ρa
[kg/m3]
380
390
440
440
440
440
Characteristic tensile strength
ftens,k
[kN]
2,21
3,23
4,40
5,01
6,81
14,10
pcs
CODES AND DIMENSIONS d1
CODE
L
b
A
[mm]
[mm]
[mm]
SCI3525( * )
25
18
7
500
SCI3530( * )
30
18
12
500
[mm] 3,5 TX 15
4 TX 20
4,5 TX 20
(*)
pcs
d1
CODE
L
b
A
[mm]
[mm]
[mm]
SCI5040
40
20
20
200
SCI5045
45
24
21
200
[mm]
SCI3535( * )
35
18
17
500
SCI3540( * )
40
18
22
500
SCI4030
30
18
12
500
SCI4035
35
18
17
SCI4040
40
24
16
SCI5050
50
24
26
200
SCI5060
60
30
30
200
SCI5070
70
35
35
100
500
SCI5080
80
40
40
100
500
SCI5090
90
45
45
100
5 TX 25
SCI4045
45
30
15
400
SCI50100
100
50
50
100
SCI4050
50
30
20
400
SCI6060
60
30
30
100
SCI4060
60
35
25
200
SCI6080
80
40
40
100
SCI4535
35
24
11
400
SCI60100
100
50
50
100
SCI4540
40
24
16
400
SCI60120
120
60
60
100
6 TX 30
SCI4545
45
30
15
400
SCI60140
140
75
65
100
SCI4550
50
30
20
200
SCI60160
160
75
85
100
SCI4560
60
35
25
200
SCI80120
120
60
60
100
SCI4570
70
40
30
200
SCI80160
160
80
80
100
SCI4580
80
40
40
200
SCI80200
200
80
120
100
Not holding CE marking.
8 TX 40
SCI80240
240
80
160
100
SCI80280
280
80
200
100
SCI80320
320
80
240
100
TURNED WASHER SCB A4 | AISI316 dSCI
CODE
[mm]
D1
D2
h
pcs
[mm]
[mm]
[mm]
6
SCB6
7,5
20,0
4,0
100
8
SCB8
8,5
25,0
5,0
100
D2 D1
h dSCI
OUTDOOR | SCI A2 | AISI305 | 287
MINIMUM DISTANCES FOR SHEAR LOADS
Load-to-grain angle α = 0°
Load-to-grain angle α = 90°
SCREWS INSERTED WITH PRE-DRILLING HOLE d1
[mm]
a1
[mm]
a2
[mm]
3∙d
11
12
14
3∙d
15
a3,t
[mm]
12∙d
42
48
54
12∙d
60
a3,c
[mm]
7∙d
25
28
32
7∙d
35
42
a4,t
[mm]
3∙d
11
12
14
3∙d
15
18
a4,c
[mm]
3∙d
11
12
14
3∙d
15
18
d1
[mm]
5∙d
3,5
4
4,5
18
20
23
5∙d
SCREWS INSERTED WITH PRE-DRILLING HOLE
5
6
8
25
30
40
4∙d
18
24
4∙d
14
72
96
7∙d
25
56
7∙d
25
28
32
7∙d
35
42
56
24
5∙d
18
20
23
7∙d
35
42
56
24
3∙d
11
12
14
3∙d
15
18
24
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 3,5
4
4,5
5
6
3,5
4
4,5
5
6
8
14
16
18
4∙d
20
24
32
16 28
18
4∙d
20
24
32
32
7∙d
35
42
56
SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
8
3,5
4
4,5
5
6
8
a1
[mm]
10∙d
35
40
45
12∙d
60
72
96
5∙d
18
20
23
5∙d
25
30
40
a2
[mm]
5∙d
18
20
23
5∙d
25
30
40
5∙d
18
20
23
5∙d
25
30
40
a3,t
[mm]
15∙d
53
60
68
15∙d
75
90
120
10∙d
35
40
45
10∙d
50
60
80
a3,c
[mm]
10∙d
35
40
45
10∙d
50
60
80
10∙d
35
40
45
10∙d
50
60
80
a4,t
[mm]
5∙d
18
20
23
5∙d
25
30
40
7∙d
25
28
32
10∙d
50
60
80
a4,c
[mm]
5∙d
18
20
23
5∙d
25
30
40
5∙d
18
20
23
5∙d
25
30
40
d = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES: • The minimum distances are compliant with EN 1995:2014 considering a timber characteristic density of ρk ≤ 420 kg/m3 and calculation diameter of d = nominal screw diameter. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
288 | SCI A2 | AISI305 | OUTDOOR
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
STATIC VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
TENSION timber-to-timber legno-legno with washer
thread withdrawal(1)
head pull-through(2)
head pull-through with washer(2)
RV,k [kN]
RV,k [kN]
Rax,k [kN]
Rhead,k [kN]
Rhead,k [kN]
timber-to-timber
con rondella
A L b d1
d1 L b A [mm] [mm] [mm] [mm] 3,5
25 30 35 40
18 18 18 18
7 12 17 22
0,41 0,55 0,62 0,64
-
1,08 1,08 1,08 1,08
0,79 0,79 0,79 0,79
-
4
30 35 40 45 50 60
18 18 24 30 30 35
12 17 16 15 20 25
0,62 0,68 0,69 0,67 0,76 0,79
-
1,17 1,17 1,56 1,95 1,95 2,28
0,85 0,85 0,85 0,85 0,85 0,85
-
4,5
35 40 45 50 60 70 80
24 24 30 30 35 40 40
11 16 15 20 25 30 40
0,76 0,88 0,87 0,95 1,04 1,04 1,04
-
1,77 1,77 2,21 2,21 2,58 2,94 2,94
1,31 1,31 1,31 1,31 1,31 1,31 1,31
-
5
40 45 50 60 70 80 90 100
20 24 24 30 35 40 45 50
20 21 26 30 35 40 45 50
1,04 1,13 1,21 1,35 1,35 1,35 1,35 1,35
-
1,61 1,93 1,93 2,41 2,82 3,22 3,62 4,02
1,58 1,58 1,58 1,58 1,58 1,58 1,58 1,58
-
6
60 80 100 120 140 160
30 40 50 60 75 75
30 40 50 60 65 85
1,48 1,77 1,77 1,77 1,77 1,77
1,58 2,03 2,19 2,35 2,46 2,46
1,95 2,60 3,25 3,90 4,87 4,87
1,55 1,55 1,55 1,55 1,55 1,55
4,31 4,31 4,31 4,31 4,31 4,31
8
120 160 200 240 280 320
60 80 80 80 80 80
60 80 120 160 200 240
2,84 2,84 2,84 2,84 2,84 3,19
3,93 4,00 4,00 4,00 4,00 4,35
6,76 9,01 9,01 9,01 9,01 9,01
2,38 2,38 2,38 2,38 2,38 2,38
7,02 7,02 7,02 7,02 7,02 7,02
NOTES: (1) T he axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b. (2) The axial resistance to head pull-through, with and without a washer, was
calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
GENERAL PRINCIPLES: • Characteristic values according to EN 1995:2014. • Design values can be obtained from characteristic values as follows:
Rd =
• Mechanical strength values and screw geometry according to CE marking according to EN 14592. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Dimensioning and verification of the timber elements must be carried out separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
Rk kmod γm
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
OUTDOOR | SCI A2 | AISI305 | 289
SCA A2 | AISI304
A2
AISI 304
COUNTERSUNK SCREW COST/PERFORMANCE Simple geometry, optimised to provide good performance at a low cost.
SMOOTH UNDER-HEAD Ideal for fastening stainless steel clips and hinges thanks to the smooth, countersunk head.
SIMPLE BOX Packaging optimised to reduce material wastes in the building site. Increased number of pieces for package.
CHARACTERISTICS FOCUS
use with stainless steel clips
HEAD
countersunk without ribs
DIAMETER
from 3,5 to 5,0 mm
LENGTH
from 25 to 70 mm
MATERIAL A2 | AISI304 austenitic stainless steel.
FIELDS OF USE Use in aggressive outdoor environments. Wooden boards with density of < 470 kg/m3 (without pre-drill) and < 570 kg/m3 (with predrill). Suitable for service classes 1-2-3.
290 | SCA A2 | AISI304 | OUTDOOR
GEOMETRY A
dk
d1 d1 ds
t1
b L
Nominal diameter
d1
[mm]
3,5
4
4,5
5
Head diameter
dK
[mm]
6,80
8,00
9,00
10,00
Tip diameter
d2
[mm]
2,25
2,55
2,80
3,40
Shank diameter
dS
[mm]
2,50
2,75
3,15
3,65
Head thickness
t1
[mm]
3,50
3,80
4,25
4,65
Pre-drilling hole diameter
dV
[mm]
2,0
2,5
3,0
3,0
CODES AND DIMENSIONS d1
CODE
[mm]
L
b
A
[mm]
[mm]
[mm]
pcs
d1
CODE
L
b
A
[mm]
[mm]
[mm]
SCA4550
50
30
20
200
SCA4560
60
36
24
200
[mm]
3,5 TX 10
SCA3525
25
18
7
500
SCA3535
35
24
11
500
4 TX 20
SCA440
40
24
16
200
SCA450
50
30
20
200
4,5 TX 20 5 TX 25
pcs
SCA550
50
30
20
200
SCA560
60
36
24
200
SCA570
70
42
28
200
GAP Ideal for fastening standard Rothoblaas clips in outdoor environments.
OUTDOOR | SCA A2 | AISI304 | 291
HBS PLATE EVO
1002
CERTIFIED
C4 COATING
BIT INCLUDED
COATING
ETA-11/0030
PAN HEAD SCREW FOR PLATES C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227.
OUTDOOR ENVIRONMENT Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.
NOTE: codes, techniques and further information on page 98.
GEOMETRY
HEAD
shoulder for plate
DIAMETER
from 5,0 to 10,0 mm
LENGTH
from 40 to 180 mm
P
BS
corrosiveness class C4
H
FOCUS
X X
CHARACTERISTICS
MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.
FIELDS OF USE • timber based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.
292 | HBS PLATE EVO | OUTDOOR
HBS EVO
1002
CERTIFIED
C4 COATING
BIT INCLUDED
COATING
ETA-11/0030
COUNTERSUNK SCREW C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227.
OUTDOOR ENVIRONMENT Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.
NOTE: codes, techniques and further information on page 46.
GEOMETRY
HEAD
countersunk with under-head ribs
DIAMETER
from 5,0 to 8,0 mm
LENGTH
from 80 to 320 mm
S
B
corrosiveness class C4
H
FOCUS
X X
CHARACTERISTICS
MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.
FIELDS OF USE • timber based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.
OUTDOOR | HBS EVO | 293
TBS EVO
1002
CERTIFIED
C4 COATING
BIT INCLUDED
COATING
ETA-11/0030
OUTDOOR SCREW, FLANGE HEAD C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227.
OUTDOOR ENVIRONMENT Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.
NOTE: codes, techniques and further information on page 84.
GEOMETRY
CHARACTERISTICS FOCUS
corrosiveness class C4
HEAD
flange
DIAMETER
6,0 and 8,0 mm
LENGTH
from 60 to 240 mm
MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.
FIELDS OF USE • timber based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.
294 | TBS EVO | OUTDOOR
VGZ EVO
1002
CERTIFIED
C4 COATING
BIT INCLUDED
COATING
ETA-11/0030
FULL THREAD SCREW WITH CYLINDRICAL HEAD C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227.
OUTDOOR ENVIRONMENT Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.
NOTE: codes, techniques and further information on page 170.
GEOMETRY
CHARACTERISTICS
LENGTH
from 80 to 360 mm
X
from 5,3 to 9,0 mm
X
G
cylindrical, countersunk
DIAMETER
V
HEAD
Z
corrosiveness class C4
X
FOCUS
MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.
FIELDS OF USE • timber based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.
OUTDOOR | VGZ EVO | 295
FLAT | FLIP CONNECTOR FOR DECKING INVISIBLE Completely hidden. The version in aluminium with black coating guarantees an attractive result; the galvanized steel version offers good performance at low cost.
FAST INSTALLATION Fast, easy installation thanks to the single-screw fastening and the integrated spacer-tab for precise spacing. Ideal for application with the PROFID spacer.
SYMMETRICAL GROOVING Makes it possible to install deck planks regardless of the position of the grooving (symmetrical). Ribbed surface provides high mechanical strength.
CHARACTERISTICS FOCUS
extremely precise joints
CLADDING
black anti-rust coating | zinc plated
BOARDS
symmetrical grooving
JOINTS
7.0 mm
FASTENERS
KKTN540 , KKAN440
MATERIAL Aluminium with coloured organic coating and carbon steel with zinc plated.
FIELDS OF USE Outdoor use. Fastening timber or WPC boards on substructures in wood, WPC or aluminium. Suitable for service classes 1-2-3.
296 | FLAT | FLIP | OUTDOOR
GEOMETRY FLAT COLOR
FLIP 2
4
2
8,5
27
8
45°
8,5
5
54
5
27
42°
8
Ø5,3
7
4
27
6
54 Ø5,3
7
27
27
B
6
27
B
s
s
P
P
CODES AND DIMENSIONS FLAT COLOR
FLIP
CODE
material
PxBxs
pcs
CODE
material
[mm] FLAT
black alluminum
54 x 27 x 4
200
KKTN540
FLIP
zinc-plated steel
54 x 27 x 4
200
KKA COLOR
fastening on wood and WPC for FLAT and FLIP CODE
pcs
[mm]
KKT COLOR
d1 [mm] 5 TX 20
PxBxs
fastening on aluminium for FLAT and FLIP
L [mm]
pcs
40
200
d1
CODE
L
[mm] 4 TX 20 5 TX 25
pcs
[mm] KKAN420
20
200
KKAN430
30
200
KKAN440
40
200
KKAN540
40
200
WOOD PLASTIC COMPOSITE (WPC) Ideal for fastening WPC boards. Can also be used for fastening on aluminium using KKA COLOR screws (KKAN440).
OUTDOOR | FLAT | FLIP | 297
GROOVING GEOMETRY 7
7 SYMMETRICAL GROOVING
F
PROFID
H KKTN
F
PROFID
H
Min. thickness
F
4 mm
Min. recommended height H
H
free
KKTN
INSTALLATION 01
Position the PROFID spacer at the joist centerline. First board: fix it with suitable screws, left visible or hidden thanks to specific accessories.
03
Position the next board by inserting it into the FLAT/FLIP fastener.
05
Fix the fastener to the joist underneath by using the KKTN screw.
298 | FLAT | FLIP | OUTDOOR
02
Insert the FLAT/FLIP fastener into the groove cut so that the spacer tab adheres to the board.
04
Using the CRAB MINI clamp, tighten the two boards until the gap between them is 7 mm (see product page 334).
06
Repeat the operations for the remaining boards. Last board: repeat step 01.
CALCULATION EXAMPLE INCIDENCE ESTIMATE FORMULA PER m2 f L
1m2/i/(L + f) = pcs of FLAT/FLIP at m2
= joists spacing L = board width f = gap width
i i
PRACTICAL EXAMPLE NUMBER OF BOARDS AND JOISTS A=6m A=6m
PATIO SURFACE S = A ∙ B = 6 m ∙ 4 m = 24 m2 WOODEN PLANKING L = 140 mm
140 mm 18 mm
s = 18 mm
=4 BB =4 mm
f = 7 mm JOISTS 60 mm
b = 60 mm h = 30 mm
30 mm
i= 0,6 m
0,6 m 0,6 m
0,6 m 0,6 m
0,54 m 0,54 m
no. boards
= [B/(L+f)]
= [4/(0,14+0,007)]= 27 boards
no. 4 m boards = 27 boards no. 2 m boards = 27 boards
27 boards 4 m
no. battens = [A/i] + 1 = (6/0,6) +1 = 11 battens
27 boards 2 m
SCREW SELECTION Head thickness
Sscrew head
Grooving thickness Grooving dimension
F H
PROFID thickness
SPROFID
Pull-through length
L pen
f BOARD JOIST
F FLAT/FLIP
PROFID
PROFID
2,8 mm (s-F)/2
4 mm 7 mm 8 mm
4∙d
20 mm
MINIMUM SCREW LENGTH H KKTN
= Sscrew head + F + H + SPROFID + Lpen = 2,8 + 4 + 7 + 8 + 20 = 41,8 mm CHOICE OF SCREW
KKTN550
FLAT / FLIP NUMBER CALCULATION QUANTITY FOR INCIDENCE FORMULA
QUANTITY FOR THE NUMBER OF INTERSECTIONS
I = S/i/(L + f) = pcs of FLAT/FLIP
I = No. boards with FLAT/FLIP no. battens = pcs. of FLAT/FLIP
I = 24 m2/0,6 m/(0,14 m + 0,007 m) = 272 pcs FLAT/FLIP
no. boards with FLAT/FLIP
= (number of boards - 1)
= (27 - 1) = 26 boards
waste coefficient = 1,05
no. of joists = (A/i) + 1 = (6/0.6) + 1 = 11 joists
I = 272 ∙ 1,05 = 286 pcs FLAT/FLIP
no. intersections = I = 26 ∙ 11 = 286 pcs FLAT/FLIP
I = 286 pcs FLAT/FLIP
I = 286 pcs FLAT/FLIP
FLAT/FLIP NUMBER = 286 pcs
SCREWS NUMBER = No. FLAT/FLIP = 286 pcs KKTN550 OUTDOOR | FLAT | FLIP | 299
A2
TVM
AISI 304
CONNECTOR FOR DECKING FOUR VERSIONS Different sizes for applications on boards with different thickness and gaps of varying width. Black version for complete concealment.
DURABILITY The stainless steel ensures high corrosion-resistance. The micro-ventilation between the boards helps the durability of the wooden elements.
ASYMMETRIC GROOVING Ideal for boards with asymmetrical “female-female” groove cuts. Ribbing on the surface of the connector ensures excellent stability.
CHARACTERISTICS FOCUS
excellent grooving versatility
BOARDS
symmetrical grooving
JOINTS
from 7,0 to 9,0 mm
FASTENERS
KKTX520A4, KKA420, KKAN420
MATERIAL A2 | AISI304 austenitic stainless steel and stainless steel with coloured organic coating.
FIELDS OF USE Use in aggressive outdoor environments. Fastening timber or WPC boards on substructures in wood, WPC or aluminium. Suitable for service classes 1-2-3.
300 | TVM | OUTDOOR
GEOMETRY TVM1
TVM2 10
10
1,5
2,4 6,5 8
1,5
TVM3
12
12
1
2,4 8,1 9,6
31
15
29,4
TVM3
B
14,4
17 30
9,6
27,8
P
B
12
14
22,5 8
2,4
1
2,4 8,6 11
14
22,5
P
TVMN4
23 9,6
P
36
13
P
B
B
CODES AND DIMENSIONS TVM A2 | AISI304 CODE
TVM COLOR material
PxBxs
pcs
CODE
material
PxBxs
[mm]
[mm]
TVM1
A2 | AISI304
22,5 x 31 x 2,5
500
TVM2
A2 | AISI304
22,5 x 28 x 2,5
500
TVM3
A2 | AISI304
30 x 29,4 x 2,5
500
KKT X
d1
CODE
5 TX 20
L
pcs
KKTX520A4
20
200
KKTX525A4
25
200
KKTX530A4
30
200
KKTX540A4
40
200
[mm]
500
L
5 TX 20
pcs
[mm] KKTN540
40
200
L
pcs
KKA COLOR
fastening on aluminium for TVM COLOR L
pcs
[mm] KKA420
CODE
[mm]
fastening on aluminium for TVM A2 | AISI304
4 TX 20
d1
[mm]
CODE
23 x 36 x 2.5
fastening on timber and WPC for TVM COLOR
KKA AISI410
d1
TVMN4
A2 | AISI304 with black coating
KKT COLOR
fastening on timber and WPC for TVM A2 | AISI304
[mm]
pcs
20
d1
CODE
[mm] 200
4 TX 20
[mm] KKAN420
20
200
KKA Can also be used for fastening on aluminium profiles using KKA AISI410 or KKA COLOR screws.
OUTDOOR | TVM | 301
GROOVING GEOMETRY 7
7 ASYMMETRICAL GROOVING
F
PROFID
H KKT
F H PROFID
KKT
Min. thickness
F
3 mm
Min recommended height TVM1
H
8 mm
Min recommended height TVM2
H
10 mm
Min recommended height TVM3
H
10 mm
Min recommended height TVMN
H
13 mm
INSTALLATION 01
Position the PROFID spacer at the joist centerline. First board: fix with suitable screws which are left visible.
03
Position the next board by inserting it into the TVM fastener.
05
Fix the fastener to the joist underneath by using the KKTX screw.
302 | TVM | OUTDOOR
02
Insert the TVM fastener into the groove cut so that the side fin adheres to the groove in the board.
04
Using the CRAB MINI clamp, tighten the two boards until the gap between them is 7 mm (see product page 334).
06
Repeat the operations for the remaining boards. Last board: repeat step 01.
CALCULATION EXAMPLE INCIDENCE ESTIMATE FORMULA PER m2 f L
1m2/i/(L + f) = pcs of TVM at m2
= joists spacing L = board width f = gap width
i i
PRACTICAL EXAMPLE NUMBER OF BOARDS AND JOISTS A=6m A=6m
PATIO SURFACE S = A ∙ B = 6 m ∙ 4 m = 24 m2 WOODEN PLANKING L = 140 mm
140 mm =4 BB =4 mm
21 mm
s = 21 mm f = 7 mm
JOISTS 60 mm
b = 60 mm h = 30 mm
30 mm
i= 0,6 m
0,6 m 0,6 m
0,6 m 0,6 m
0,54 m 0,54 m
no. boards
= [B/(L+f)]
= [4/(0,14+0,007)]= 27 boards
no. 4 m boards = 27 boards no. 2 m boards = 27 boards
27 boards 4 m
no. battens = [A/i] + 1 = (6/0,6) +1 = 11 battens
27 boards 2 m
SCREW SELECTION Head thickness
Sscrew head
Grooving thickness Grooving dimension
F H
PROFID thickness
SPROFID
Pull-through length
L pen
f BOARD JOIST
F TVM
PROFID
PROFID
2,8 mm 4 mm 8 mm
(s-F)/2
8 mm 4∙d
20 mm
MINIMUM SCREW LENGTH H KKTX
= Sscrew head + H + SPROFID + Lpen = 2.8 + 8 + 8 + 20 = 38.8 mm CHOICE OF SCREW
KKTX540A4
TVM NUMBER CALCULATION QUANTITY FOR INCIDENCE FORMULA
QUANTITY FOR THE NUMBER OF INTERSECTIONS
I = S/i/(L + f) = pcs of TVM
I = no. boards with TVM no. battens = pcs. of TVM
I = 24 m2/0,6 m/(0,14 m + 0,007 m) = 272 pcs TVM
no. boards with TVM
= (number of boards - 1)
= (27 - 1) = 26 boards
waste coefficient = 1,05
no. of joists = (A/i) + 1 = (6/0.6) + 1 = 11 joists
I = 272 ∙ 1,05 = 286 pcs TVM
no. intersections = I = 26 ∙ 11 = 286 pcs TVM
I = 286 pcs TVM
I = 286 pcs TVM
TVM NUMBER = 286 pcs
SCREWS NUMBER = No. TVM = 286 pcs KKTX540A4 OUTDOOR | TVM | 303
GAP CONNECTOR FOR DECKING TWO VERSIONS Available in A2 | AISI304 stainless steel for excellent corrosion strength (GAP3) or in galvanized carbon steel (GAP4) for good performance at a low cost.
NARROW JOINTS Ideal for making floors with narrow joints between boards (from 3.0 mm). Fastening is performed before the board is positioned.
WPC AND HARDWOODS Ideal for symmetrically grooved boards such as those in WPC or high-density wood.
CHARACTERISTICS FOCUS
narrow joints
BOARDS
symmetrical grooving
JOINTS
from 3,0 to 5,0 mm
FASTENERS
SCA3525, SBA3932
MATERIAL Austenitic stainless steel A2 | AISI304 and carbon steel with zinc plated.
FIELDS OF USE Outdoor use. Fastening timber or WPC boards on substructures in wood, WPC or aluminium. Suitable for service classes 1-2-3.
304 | GAP | OUTDOOR
GEOMETRY GAP 3 A2 | AISI304
GAP 4 11
15 4
1 9 1
9,8 11
6,5
12
16
12 16
16
19
40
16
6,5
11
30
41,5
19
12
4
1,5 8,8 11,8 1,5
42,5
11,3
s s P
P
B
B
CODES AND DIMENSIONS A2
GAP 3 A2 | AISI304 CODE
AISI 304
material
PxBxs
pcs
GAP 4 CODE
material
PxBxs
[mm] GAP3
A2 | AISI304
40 x 30 x 11
500
SCA A2 | AISI304
d1
CODE
3,5 TX 10
L
pcs
SCA3525
25
500
SCA3535
35
500
[mm]
41,5 x 42,5 x 12
500
3,5 TX 15
L
pcs
[mm] HTS3525
25
1000
HTS3535
35
500
L
pcs
SBN
fastening on aluminium for GAP 4 L
pcs
25
d1
CODE
[mm]
[mm] SBNA23525
CODE
[mm]
fastening on aluminium for GAP 3
3,5 TX 15
d1
[mm]
CODE
zinc-plated steel
fastening on timber and WPC for GAP 4
SBN A2 | AISI304
d1
GAP4
HTS
fastening on timber and WPC for GAP 3
[mm]
pcs
[mm]
1000
3,5 TX 15
[mm] SBN3525
25
500
WOOD PLASTIC COMPOSITE (WPC) Ideal for fastening WPC boards. Can also be used for fastening on aluminium using SBN A2 | AISI304 screws.
OUTDOOR | GAP | 305
GAP 3 GROOVE GEOMETRY SYMMETRICAL GROOVING F
H
Min. thickness
F
2 mm
Min recommended height GAP 3
H
8 mm
SCA
GAP 3 INSTALLATION 01
First board: fix it with suitable screws, left visible or hidden thanks to specific accessories.
03
Fix the screw in the central hole.
05
Using the CRAB MINI clamp, tighten the two boards until the gap between them is 3 or 4 mm depending on aesthetic requirements (see product page 334).
306 | GAP | OUTDOOR
02
Insert the GAP3 fastener into the groove cut so that the clip’s central tab adheres to the groove in the board.
04
Position the next board by inserting it into the GAP3 fastener so that the two tabs adhere to the groove in the board.
06
Repeat the operations for the remaining boards. Last board: repeat step 01.
GAP 4 GROOVE GEOMETRY SYMMETRICAL GROOVING F
H
Min. thickness
F
2 mm
Min recommended height GAP 4
H
7 mm
HTS
GAP 4 INSTALLATION 01
First board: fix it with suitable screws, left visible or hidden thanks to specific accessories.
03
Secure the screws in the two available holes.
05
Using the CRAB MINI clamp, tighten the two boards until the gap between them is 3 or 4 mm depending on aesthetic requirements (see product page 334).
02
Insert the GAP4 fastener into the groove cut so that the clip’s central tabs adhere to the groove in the board.
04
Position the next board by inserting it into the GAP4 fastener so that the two tabs adhere to the groove in the board.
06
Repeat the operations for the remaining boards. Last board: repeat step 01.
OUTDOOR | GAP | 307
TERRALOCK CONNECTOR FOR DECKING INVISIBLE Completely concealed, guarantees a highly attractive result. Ideal for both terraces and façades. Available in metal and plastic.
VENTILATION The micro-ventilation under the boards prevents water stagnation, ensuring excellent durability. The larger bearing surface ensures that the substructure is not crushed.
INGENIOUS Assembly stop for an accurate and simple installation of the fastener. Slotted holes to follow movements of the wood. Allows replacement of individual boards.
CHARACTERISTICS FOCUS
extremely versatile joints and grooves
CLADDING
aluminium coating, grey, black
BOARDS
without grooving
JOINTS
from 2,0 to 10,0 mm
FASTENERS
KKTX520A4, KKAN430, KKF4520
VIDEO Scan the QR Code and watch the video on our YouTube channel
MATERIAL Carbon steel, with coloured anti-rust coating, and brown polypropylene.
FIELDS OF USE Outdoor use. Fastening timber or WPC boards on substructures in wood, WPC or aluminium. Suitable for service classes 1-2-3.
308 | TERRALOCK | OUTDOOR
GEOMETRY TERRALOCK
TERRALOCK PP 5 8
5 8 60 45 15
180 165
20 5 20 20 15
3
5
15
5 10 5
5 20 15
85
5 8
5 8 60 45 15
85
5 10 5
180 165 20
10
5 20 20 15
5 10 5
5
85
20 15 20
board L min = 145 mm
s
s
P
B
5 10 5
board L min = 100 mm
board L min = 145 mm
P
5
85
board L min = 100 mm
s
15
P
B
s
P B
B
CODES AND DIMENSIONS TERRALOCK
TERRALOCK PP
CODE TER60ALU TER180ALU TER60ALUN TER180ALUN
material
PxBxs
zinc-plated steel zinc-plated steel zinc-plated steel, black zinc-plated steel, black
[mm] 60 x 20 x 8 180 x 20 x 8 60 x 20 x 8 180 x 20 x 8
pcs 100 50 100 50
KKT A4 | AISI316/KKT COLOR
5 TX 20
CODE KKTX520A4 KKTX525A4 KKTX530A4 KKTX540A4 KKTN540
L [mm] 20 25 30 40 40
4 TX 20
KKAN430
pcs
brown nylon brown nylon
[mm] 60 x 20 x 8 180 x 20 x 8
100 50
Upon request also available in A2 | AISI304 stainless steel for quantities over 20.000 pcs. (code TER60A2 e TER180A2).
pcs
d1 [mm]
200 200 200 200 200
4,5 TX 20
CODE
L [mm]
pcs
KKF4520
20
200
KKF4540
40
200
L [mm]
pcs
25
1000
SBN A2 | AISI304
fastening on aluminium for TERRALOCK CODE
PxBxs
fastening on wood and WPC for TERRALOCK PP
KKA COLOR
d1 [mm]
TER60PPM TER180PPM
material
KKF AISI410
fastening on wood and WPC for TERRALOCK d1 [mm]
CODE
fastening on aluminium for TERRALOCK PP L [mm]
pcs
30
200
d1 [mm] 3,5 TX 15
CODE SBN3525
TERRALOCK PP Version in plastic, ideal for creating patios near aquatic environments. Durability in time guaranteed by microventilation under the boards. Totally concealed fastening.
OUTDOOR | TERRALOCK | 309
CONNECTOR SELECTION TERRALOCK 60
TERRALOCK PP 60
A. TERRALOCK fastener 60: 2 pcs B. top screws: 4 pcs C. bottom screws: 1 pc
A. fastener TERRALOCK PP 60: 2 pcs B. top screws: 4 pcs C. bottom screws: 1 pc
B
C
L
L
B
B C
A
B
S
A
B
H
S B
H
L
top screw type
C C
L
minimum board thickness
B
bottom screw type
minimum joist height
C
top screw type
minimum board thickness
bottom screw type
B
KKTX 5 x 20
S > 21 mm
KKT 5 x 40
H > 40 mm
KKTX 5 x 25
S > 26 mm
KKT 5 x 50
H > 50 mm
KKTX 5 x 30
S > 31 mm
KKT 5 x 60
H > 60 mm
C
KKF 4,5 x 20
S > 19 mm
KKF 4,5 x 40
TERRALOCK 180
TERRALOCK PP 180
A. TERRALOCK fastener 180: 1 pc B. top screws: 2 pcs C. bottom screws: 1 pc
A. fastener TERRALOCK PP 180: 1 pc B. top screws: 2 pcs C. bottom screws: 1 pc
L
C
B C
A
C
B
C
S
A
S H
H
L
top screw type
H > 38 mm
L
B B
minimum joist height
L
minimum board thickness
bottom screw type
minimum joist height
top screw type
KKTX 5 x 20
S > 21 mm
KKT 5 x 40
H > 40 mm
KKF 4,5 x 20
KKTX 5 x 25
S > 26 mm
KKT 5 x 50
H > 50 mm
KKTX 5 x 30
S > 31 mm
KKT 5 x 60
H > 60 mm
B
C
310 | TERRALOCK | OUTDOOR
minimum board thickness
bottom screw type
S > 19 mm
KKF 4,5 x 40
B
minimum joist height
C H > 38 mm
TERRALOCK 60 INSTALLATION 01
02
Position two connectors per each fixing node.
03
04
Fix each fastener to the sub-structure by inserting a KKTX screw in one of the two slotted holes.
Turn the board over and slide it under the previously fastened board fixed to the sub-structure.
It is recommended to use STAR spacers inserted between the boards.
TERRALOCK 180 INSTALLATION 01
02
For each board arrange one fastener and fix it by means of two KKTX screws.
03
Turn the board over and slide it under the previously fastened board fixed to the sub-structure.
04
Fix each fastener to the sub-structure by inserting a KKTX screw in one of the two slotted holes.
It is recommended to use STAR spacers inserted between the boards.
CALCULATION EXAMPLE i = i = joist spacing|
L = board width
|
f = joint width
f
TERRALOCK 180
TERRALOCK 60
L
i = 0,60 m
i
|
L = 140 mm
|
f = 7 mm
i = 0,60 m
|
L = 140 mm
|
f = 7 mm
1m2 / i / (L + f) ∙ 2 = pcs at m2
1m2/i/(L + f) =pcs at m2
1m2/ 0,6 m / (0,14 m + 0,007 m) ∙ 2 = 23 pcs /m2 + 46 pcs. top screws type B/m2
1m2/ 0,6 m/(0,14 m + 0,007 m) = 12 pcs /m2 + 24 pcs. top screws type B/m2
+ 12 pcs. bottom screws type C/m2
+ 12 pcs. bottom screws type C/m2
DECKS WITH COMPLEX GEOMETRIES Thanks to its special geometric configuration, the TERRALOCK fastener allows to create decks with complex geometric layouts that will meet any aesthetic requirement. The two slotted holes and optimal positioning of the end stop allow for assembly on inclined substructures.
OUTDOOR | TERRALOCK | 311
GROUND COVER ANTI-VEGETATION TARP FOR SUBSTRATES PERMEABLE The anti-vegetation tarp prevents the growth of grasses and roots, protecting the patio substructure from the ground. Permeable to water, allowing it to flow off.
STRONG The polypropylene non-woven fabric (50 g/m2) effectively separates the patio substructure from the ground. Dimensions optimised for patios (1.6 m x 10 m).
CODES AND DIMENSIONS CODE COVER50
material
g/m2
NWF
50
HxL
A
[m]
[m2]
1.6 x 10
10
Tensile strength
MD/CD
95/55 N
Elongation
MD/CD
35/80 %
pcs 1
MATERIAL Non-woven fabric (NWF) in polypropylene (PP).
FIELDS OF USE Separates substructure from ground.
312 | GROUND COVER | OUTDOOR
NAG LEVELING PAD OVERLAPPABLE Available in 3 thicknesses (2,0, 3,0 and 5,0 mm), can also be overlapped to obtain different thicknesses and thus effectively level the patio substructure.
DURABILITY The EPDM material guarantees excellent durability, is not subject to sagging in time and does not suffer from exposure to sunlight.
GEOMETRY
CODES AND DIMENSIONS CODE
BxLxs
density
shore
pcs
[mm]
[kg/m3]
NAG60602
60 x 60 x 2
1220
65
50
NAG60603
60 x 60 x 3
1220
65
30
NAG60605
60 x 60 x 5
1220
65
20
s L
B
Operating temperature -35°C | +90°C.
MATERIAL EPDM, black.
FIELDS OF USE Substructure levelling.
OUTDOOR | NAG | 313
GRANULO GRANULAR RUBBER SUBSTRATE THREE FORMATS Available in sheet (GRANULOMAT 1,25 x 10 m), roll (GRANULOROLL and GRANULO100) or pad (GRANULOPAD 8 x 8 cm). Extremely versatile thanks to the variety of formats.
GRAINY RUBBER Made of granules of recycled rubber thermal-bonded with polyurethane. Resistant to chemical interactions, maintains its characteristics in time and is 100% recyclable.
ANTI-VIBRATION The thermal-bonded rubber granules dampen vibrations, thus insulating the noise produced by footsteps. Also ideal as a wall barrier and resilient strip for acoustic separation.
CHARACTERISTICS FOCUS
water-permeability and vibration-dampening
THICKNESS
from 4,0 to 10,0 mm
DIMENSIONS
mat, roll, PAD
USE
substrate for substructures in wood, aluminium, WPC and PVC
MATERIAL Rubber granules thermo-bound with PU.
FIELDS OF USE Substrate for substructures in wood, aluminium, WPC and PVC. Outdoor use. Suitable for service classes 1-2-3.
314 | GRANULO | OUTDOOR
GEOMETRY
B
s L
s
B
s
B
B
GRANULO PAD
GRANULO ROLL - GRANULO 100
GRANULO MAT
TECHNICAL DATA Properties
standard
value
Hardness
-
50 shore A
Density
-
750 kg/m3
ISO 29052-1
66 MN/m3
ISO 12354-2
22,6 dB
ISO 12354-2
116.3 Hz
10% deformation
-
21 kPa
25% deformation
-
145 kPa
Elongation at failure
-
27 %
Thermal conductivity (λ)
UNI EN 12667
0,033 W/mK
Apparent dynamic stiffness s’t Theoretical estimate of the degree of impact sound attenuation ∆Lw System resonance frequency f0(1)
(1)
Compression deformation stress
(1)
The load considered is m’=125 kg/m2.
CODES AND DIMENSIONS CODE
s
B
L
[mm]
[mm]
[m]
GRANULOPAD
10
80
0,08
pcs 20
GRANULOROLL
8
80
6
1
GRANULO100
4
100
15
1
GRANULOMAT
6
1250
10
1
SOUNDPROOFING Ideal as a substrate for patio substructures. Permeable to water, ideal for outdoor use.
OUTDOOR | GRANULO | 315
TERRA BAND UV BUTYL ADHESIVE TAPE DECKS AND FACADES Ideal for protecting joists from water and UV rays. Can be used for both patios and façades, protecting and extending the life of the wooden joists.
PERMANENT UV STABILITY The black aluminized butyl-based compound guarantees unlimited resistance to UV radiation that can penetrate between the joints between patio and façade boards.
CODES AND DIMENSIONS CODE
s
B
L
[mm]
[mm]
[m]
pcs
TERRAUV75
0,8
75
10
1
TERRAUV100
0,8
100
10
1
TERRAUV200
0,8
200
10
1
s: thickness | B: base| L: length
MATERIAL Butyl-based compound coated with a black aluminium separating film.
FIELDS OF USE Protection against water and UV radiation.
316 | TERRA BAND UV | OUTDOOR
PROFID SPACER PROFILE VENTILATION The square EPDM profile must be applied over the joists. Creates micro-ventilation under the boards and thus prevents water stagnation and ensures excellent patio durability.
STRENGTH The EPDM guarantees excellent durability. With a density of over 1200 kg/m 3 , it guarantees high crushing resistance and is also ideal for high loads.
GEOMETRY CODES AND DIMENSIONS CODE PROFID
s
B
L
density
[mm]
[mm]
[m]
kg/m3
8
8
40
1220
shore
pcs
65
8
L
s B
s: thickness | B: base| L: length
MATERIAL EPDM.
FIELDS OF USE Microventilation under the board.
OUTDOOR | PROFID | 317
JFA ADJUSTABLE SUPPORT FOR TERRACES LEVELLING The height-adjustable support can easily adapt to variations in substrate level. The rise also allows for ventilation under the joists.
DOUBLE REGULATION Can be adjusted both from below, with a SW 10 wrench, or from above, using a flat-tip screwdriver. Fast, convenient, versatile system.
SUPPORT The TPE plastic support base reduces the noise produced by footsteps. The ball-joint can adapt to uneven surfaces.
CHARACTERISTICS FOCUS
can be adjusted from above and below
HEIGHT
4,0 | 6,0 | 8,0 mm
DIMENSIONS
Ø8 mm
USE
raising and levelling of the structure
MATERIAL Carbon steel with zinc plated and austenitic stainless steel A2 | AISI304.
FIELDS OF USE Raising and levelling of the substructure. Outdoor use. Suitable for service classes 1-2-3.
318 | JFA | OUTDOOR
GEOMETRY
16 L
H SW 10
40 404040
14
20
25 50
Ø8
252525 25
5757 5757
7777 7777
5757 5757
252525 25
252525 25
252525 25
JFA840
JFA860
JFA880
JFA860A2
TECHNICAL DATA CODE
JFA840
JFA860
JFA880
JFA860A2
carbon steel
carbon steel
carbon steel
A2 | AISI304
[mm]
8 x 40
8 x 60
8 x 80
8 x 40
[mm]
25 ≤ R ≤ 40
25 ≤ R ≤ 57
25 ≤ R ≤ 77
25 ≤ R ≤ 57
+/- 5°
+/- 5°
+/- 5°
+/- 5°
Material Screw Ø x L Assembly height
R
Angle Pre-drill for bush
[mm]
Adjustment nut
Ø10
Ø10
Ø10
Ø10
SW 10
SW 10
SW 10
SW 10
Total height
H
[mm]
51
71
91
71
Admissible capacity
Fadm
kN
0,8
0,8
0,8
0,8
CODES AND DIMENSIONS JFA CODE
A2
JFA A2 | AISI304 material
screw Ø x L
pcs
CODE
AISI 304
material
screw Ø x L
[mm]
pcs
[mm]
JFA840
carbon steel
8 x 40
100
JFA860
carbon steel
8 x 60
100
JFA880
carbon steel
8 x 80
100
JFA860A2
stainless steel
8 x 60
100
STAINLESS STEEL Available also in A2 | AISI304 stainless steel to for particularly aggressive environments.
OUTDOOR | JFA | 319
JFA INSTALLATION WITH ADJUSTMENT FROM BELOW
01
Trace the joist midline, indicating the position of the holes and then pre-drill a 10 mm diameter hole.
02
03
The depth of the pre-drill depends on the assembly height R and must be at least 16 mm (bushing size).
04
Use a hammer to insert the bushing.
Screw the support into the bushing and turn the joist.
Detail of adjustment from below.
Follow the course of the ground by acting independently on the individual supports.
H 05
Place the joist on the substrate, parallel to the one previously laid.
06
Adjust the height of the support from the bottom using a 10 mm SW wrench.
JFA INSTALLATION WITH ADJUSTMENT FROM ABOVE
01
Trace the joist midline, indicating the position of the holes and then pre-drill a 10 mm diameter through hole.
02
03
We recommend a maximum of 60 cm between supports, to be checked according to depending on the load.
04
Use a hammer to insert the bushing.
Screw the support into the bushing and turn the joist.
Detail of adjustment from above.
Follow the course of the ground by acting independently on the individual supports.
H 05
Place the joist on the substrate, parallel to the one previously laid.
320 | JFA | OUTDOOR
06
Adjust the height of the support from above using a flat screwdriver.
CALCULATION EXAMPLE The number of supports per m2 is to be assessed according to the load magnitude and the joist spacing.
INCIDENCE OF SUPPORTS ON SURFACE (I): q = load [kN/m2]
I = q/Fadm = pcs of JFA at m2
Fadm = admissible JFA capacity [kN]
MAXIMUM DISTANCE BETWEEN SUPPORTS (a): a
amax, JFA
a=
min
with:
amax, JFA = 1/pcs/m2/i
i
amax, batten
3
i
E ∙ J ∙384
amax, batten =
=
between battens spacing
flim = instantaneous strain limit between supports E = material elastic modulus
flim ∙ 5 ∙ q ∙ i
J = joist section inertia modulus
PRACTICAL EXAMPLE PROJECT DATA A=6m
PATIO SURFACE S = A x B = 6 m x 4 m = 24 m2 JOISTS 50 mm
b = 50 mm h = 30 mm
B=4m
30 mm
i= 0,50 m
LOADS
0,50 m
Overload Category of use: category A (balconies) (EN 1991-1-1)
q
Admissible JFA support capacity
Fadm
Joist material
4,00 kN/m2
0.80 kN
C20 (EN 338:2016)
Limit for instantaneous deflection between supports
flim
Material elastic moment
E0,mean
Moment of joist section inertia
J
Maximum joist deflection
fmax
a/400
9,5 kN/mm2
(b ∙
h3)/12
112500 mm4
(5/384) ∙ (q ∙ i ∙ a4)/(E ∙ J)
-
JFA NUMBER CALCULATION INCIDENCE
NUMBER OF JFA SUPPORTS
I = q/Fadm = pcs of JFA at m2
n = I ∙ S ∙ waste coeff. = pcs. of JFA
I = 4,0 kN/m2/0,8 kN = 5,00 pcs/m2
n = 5,00 pcs/m2 ∙ 24 m2 ∙ 1,05 = 126 pcs of JFA waste coefficient = 1,05
CALCULATION OF MAXIMUM DISTANCE BETWEEN SUPPORTS SUPPORT STRENGTH LIMIT
JOIST FLEXURAL LIMIT 3
flim = fmax
therefore: amax, batten =
3
amax, JFA = 1/5,00/0,5 = 0,40 m
400 ∙ 5 ∙ q ∙ i
9,5 ∙ 112500 ∙ 384
amax, batten =
amax, JFA = 1/n/i
E ∙ J ∙384
∙ 10-3 = 0,47 m
400 ∙ 5 ∙ (4,0 ∙ 10-6) ∙ 500
a = min
amax, JFA
= min amax, batten
0,40 m 0,47 m
= 0.40 m
maximum distance between JFA supports
OUTDOOR | JFA | 321
SUPPORT ADJUSTABLE SUPPORT FOR TERRACES THREE VERSIONS The Small version (SUP-S) can be raised by up to 37 mm, the Medium version (SUP-M) by up to 220 mm and the Large version (SUP-L) by up to 1020 mm. All versions are height adjustable.
STRENGTH Sturdy system suitable for heavy loads. The Small (SUP-S) and Medium (SUP-M) versions can handle up to 400 kg. The Large version (SUP-L) can handle up to 800 kg.
COMBINABLE All versions can be combined with a special head to facilitate lateral fastening to the joist, which may be made of either wood or aluminium. A tile adapter is also available on request.
CHARACTERISTICS FOCUS
extreme versatility in levelling
HEIGHT
from 22 to 1020 mm
LOWER BASE
SUP-S Ø150 mm SUP-M and SUP-L Ø200 mm
STRENGTH
from 400 to 800 kg
MATERIAL Polypropylene (PP).
FIELDS OF USE Raising and levelling of the substructure. Outdoor use. Suitable for service classes 1-2-3.
322 | SUPPORT | OUTDOOR
DURABILITY UV-resistant and suitable also for aggressive environment conditions. Ideal for use in combination with ALU TERRACE.
ALU TERRACE Ideal for use in combination with ALU TERRACE, fixed laterally with KKA screws. System with excellent durability.
OUTDOOR | SUPPORT | 323
Fastening wooden joists on SUP-M support with head.
Patio made with ceramic tiles on SUP-M with special adapter (code SUPMHEAD4 available upon request).
ACCESSORY CODES AND DIMENSIONS HEAD FOR SUP-S CODE SUPSLHEAD1
EXTENSION FOR SUP-M Ø
Ø1
[mm]
[mm]
pcs
70
3 x 14
CODE
Ø
Ø1
SUPMEXT30
20
HEAD FOR SUP-M Ø
pcs
CODE
25
SUPLEXT100
[mm] SUPMHEAD1
Ø1
BxP [mm]
SUPMHEAD2 120 x 90
H
Ø1
SUPSLHEAD1
30
25
H
pcs H
B
P
3 x 14 25
SLOPE ADAPTER FOR SUP-M AND SUP-L
CODE Ø
Ø1
[mm]
[mm]
70
3 x 14
324 | SUPPORT | OUTDOOR
20
h
[mm] [mm] 30
100
pcs
HEAD FOR SUP-L CODE
H
[mm]
120
HEAD FOR SUP-M CODE
pcs
EXTENSION FOR SUP-L
Ø
CODE
H [mm]
pcs 20
Ø
pcs
[mm] Ø1
Ø
SUPCORRECT1 SUPCORRECT2
200 200
1% 2%
20 20
SUPCORRECT3
200
3%
20
Ø
CODES AND DIMENSIONS - SUP-S Ø H
CODE
Ø
H
pcs
[mm]
[mm]
SUPS2230
150
22 - 30
20
SUPS2840
150
28 - 40
20
Ø
H
pcs
[mm]
[mm]
CODES AND DIMENSIONS - SUP-M Ø
H
CODE SUPM3550
200
35 -50
25
SUPM5070
200
50 - 70
25
SUPM65100
200
65 - 100
25
SUPM95130
200
95 - 130
25
SUPM125160
200
125 - 160
25
SUPM155190
200
155 - 190
25
SUPM185220
200
185 - 220
25
CODES AND DIMENSIONS - SUP-L
+H
Ø
H
CODE
pcs
CODE
Ø
H
[mm]
[mm]
pcs
Ø
H
[mm]
[mm]
SUPL3550
200
35 - 50
20
SUPL415520
200
415 - 520
20
SUPL5075
200
50 - 75
20
SUPL515620
200
515 - 620
20
SUPL75120
200
75 - 120
20
SUPL615720
200
615 - 720
20
SUPL115220
200
115 - 220
20
SUPL715820
200
715 - 820
20
SUPL215320
200
215 - 320
20
SUPL815920
200
815 - 920
20
SUPL315420
200
315 - 420
20
SUPL9151020
200
915 - 1020
20
OUTDOOR | SUPPORT | 325
SUP-S INSTALLATION 01
02
03
Simply set the joist on the SUP-S or screw it to the SUP-S with 4,5 mm diameter KKF screws.
INSTALLATION OF SUP-S WITH SUPSLHEAD1 01
02
03
04
KF
K
KF
X
K
X
F
KK
X
F
KK
X
Place the head SUPSLHEAD1 on the SUP-S and fix the joist with 4,5 mm diameter KKF screws.
INSTALLATION OF SUP-M WITH SUPMHEAD2 01
02
03
04
KF
K
X
F
KK
X
F
KK
X
Place the head SUPMHEAD2 on the SUP-M and fix the joist laterally with 4,5 mm diameter KKF screws.
INSTALLATION OF SUP-M WITH SUPMHEAD1 03
04
K
Place the head SUPMHEAD1 on the SUP-M and fix the joist with KKF 4,5 mm diameter screws.
326 | SUPPORT | OUTDOOR
X
KF
K
X
02
KF
01
INSTALLATION OF SUP-L WITH SUPSLHEAD1 01
02
03
04
360°
H
F
KK
X
F
KK
X
Place the head SUPSLHEAD1 on the SUP-L, adjust the height of the base as needed and fix the joist laterally with 4,5 mm diameter KKF screws.
INSTALLATION OF SUP-L WITH SUPSLHEAD1 01
02
03
04
360°
F
KK
X
F
KK
X
H
Add the SUPLEXT100 extension to the SUP-L support and then position the SUPSLHEAD1 head. Adjust the height of the base as needed and fix the joist laterally with 4,5 mm diameter KKF screws.
CODES AND DIMENSIONS - FASTENING KKF AISI410 d1 [mm] KF
K
X F
KK
X
4,5 TX 20
CODE
L [mm]
pcs
KKF4520
20
200
KKF4540
40
200
KKF4545
45
200
KKF4550
50
200
KKF4560
60
200
KKF4570
70
200
OUTDOOR | SUPPORT | 327
ALU TERRACE ALUMINIUM PROFILE FOR PATIOS TWO VERSIONS ALUTERRA30 version for standard loads. ALUTERRA50 version, in black, for very high loads; can be used on both sides.
SUPPORT EVERY 1.10 m ALUTERRA50 designed with a very high inertia so that the SUPPORTS can be positioned every 1,10 m (along the profile midline), even with high loads (4,0 kN/m2).
DURABILITY The substructure made of aluminium profiles guarantees excellent patio durability. The drainage channel allows water to run off and generates effective micro-ventilation.
CHARACTERISTICS FOCUS
excellent durability and strength
SECTIONS
53 x 30 mm and 63 x 50 mm
THICKNESS
1,8 mm | 2,2 mm
MATERIAL Versions in aluminium and in anodized aluminium (class 15) in graphite black.
FIELDS OF USE Patio substructure. Outdoor use. Suitable for service classes 1-2-3.
328 | ALU TERRACE | OUTDOOR
DISTANCE 1.10 m With an inter-profile distance of 80 cm (load: 4.0 kN/m2), the SUPPORTS can be spaced 1,10 m apart and placed along the ALUTERRACE50 midline.
COMPLETE SYSTEM Ideal for use in combination with SUPPORT, fixed laterally with KKA screws. System with excellent durability.
OUTDOOR | ALU TERRACE | 329
Stabilization of ALUTERRA50 with stainless steel plates and KKA screws.
Aluminium substructure made with ALUTERRA30 and resting on GRANULO PAD
ACCESSORY CODES AND DIMENSIONS s s P
H
s M M
M P
s
P
H M
LBVI15100 CODE LBVI15100
P WHOI1540
material
s
M
P
H
[mm]
[mm]
[mm]
[mm]
FLIP pcs
CODE
FLAT material
pcs
A2 | AISI304
1,75
15
100
--
200
FLAT
black alluminum
200
WHOI1540 A2 | AISI304
1,75
15
40
40
200
FLIP
zinc-plated steel
200
KKA AISI410
KKA COLOR d1
CODE
[mm] 4 TX 20 5 TX 25
L
pcs
[mm] KKA420
20
200
KKA540
40
100
KKA550
50
100
330 | ALU TERRACE | OUTDOOR
d1
CODE
[mm] 4 TX 20 5 TX 25
L
pcs
[mm] KKAN420
20
200
KKAN430
30
200
KKAN440
40
200
KKAN540
40
200
GEOMETRY
12 5
43
36 5
5 18,5 11,5
30
12
12 43
19 5
36
12
s
19
15,5 5018,5 H 30 15,5 11,5
P
53
60
s
15,5 50
53 B
MH
P
15,5 60
ALU TERRACE 30
B
ALU TERRACE 50
CODES AND DIMENSIONS CODE ALUTERRA30
s
B
P
H
[mm]
[mm]
[mm]
[mm]
1,8
53
2200
30
pcs 1
CODE ALUTERRA50
s
B
P
H
[mm]
[mm]
[mm]
[mm]
2,5
63
2200
50
pcs 1
NOTES: upon request, P= 3000 mm version is available.
EXAMPLE OF FASTENING WITH SCREWS AND ALUTERRA30 01
Place the ALU TERRACE on the SUP-S fit with head SUPSLHEAD1.
02
Fix the ALU TERRACE with 4,0 mm diameter KKAN.
03
Fix the wooden or WPC boards directly on the ALU TERRACE with 5,0 mm diameter KKA screws.
04
Repeat the operations for the remaining boards.
EXAMPLE OF FASTENING WITH CLIP AND ALUTERRA50 01
Place the ALU TERRACE on the SUP-S fit with head SUPSLHEAD1.
02
Fix the ALU TERRACE with 4,0 mm diameter KKAN.
03
Fix the boards using FLAT concealed clips and 4,0 mm diameter KKAN screws.
04
Repeat the operations for the remaining boards.
OUTDOOR | ALU TERRACE | 331
EXAMPLE PLACEMENT ON GRANULO PAD 01
02
Several ALUTERRA30 units can be connected lengthwise using stainless steel plates. Connection is optional.
03
Line up the ends of 2 aluminium profiles.
04
Place the LBVI15100 stainless steel plate on the aluminium profiles and fix with 4,0 x 20 KKA screws.
Do this on both sides to maximize stability.
EXAMPLE PLACEMENT ON SUPPORT 01
02
KF
K
KF
X
K
X
Several ALUTERRA50 units can be connected lengthwise using stainless steel plates. Connection is optional if the joint coincides with placement on the SUPPORT.
03
Place the LBVI15100 stainless steel plate on the lateral holes in the aluminium profiles and fix with 4,0 x 20 KKA screws or KKAN 4,0 mm diameter.
332 | ALU TERRACE | OUTDOOR
Connect the aluminium profiles with KKAN screws (diameter: 4,0 mm) and place 2 aluminium profiles end to end.
04
Do this on both sides to maximize stability.
MAXIMUM DISTANCE BETWEEN SUPPORTS (a) ALU TERRACE 30 ALU TERRACE 30 SUPPORT
a
i
i
= joists spacing
a
a = distance between supports i
OPERATING LOAD
i [m]
[kN/m2]
0,4
0,45
0,5
0,55
0,6
0,7
0,8
0,9
1,0
2,0
0,77
0,74
0,71
0,69
0,67
0,64
0,61
0,59
0,57
3,0
0,67
0,65
0,62
0,60
0,59
0,56
0,53
0,51
0,49
4,0
0,61
0,59
0,57
0,55
0,53
0,51
0,48
0,47
0,45
5,0
0,57
0,54
0,53
0,51
0,49
0,47
0,45
0,43
0,42
ALU TERRACE 50 ALU TERRACE 50 SUPPORT
a
i
i
= joists spacing
a
a = distance between supports i
OPERATING LOAD
i [m]
[kN/m2]
0,4
0,45
0,5
0,55
0,6
0,7
0,8
0,9
1,0
2,0
1,70
1,64
1,58
1,53
1,49
1,41
1,35
1,30
1,25
3,0
1,49
1,43
1,38
1,34
1,30
1,23
1,18
1,14
1,10
4,0
1,35
1,30
1,25
1,22
1,18
1,12
1,07
1,03
1,00
5,0
1,25
1,21
1,16
1,13
1,10
1,04
1,00
0,96
0,92
NOTES: • Example with deformation L/300; • Useful load according to EN 1991-1-1:
The calculation was performed with a static diagram on a simple support span and considering a uniformly distributed load.
- Category A areas = 2,0 ÷ 4,0 kN /m²; - Areas susceptible to category C2 crowding = 3,0 ÷ 4,0 kN/m²; - Areas susceptible to category C3 crowding = 3,0 ÷ 5,0 kN/m²;
OUTDOOR | ALU TERRACE | 333
STAR STAR FOR DISTANCES
CODES AND DIMENSIONS CODE
thickness
STAR
from 4 to 8
pcs
[mm] 1
CRAB MINI PATIO CLAMP
CODES AND DIMENSIONS CODE
opening [mm]
[kg]
CRABMINI
263 - 415
max. 200
334 | STAR | CRAB MINI | OUTDOOR
compression
pcs 1
SHIM LEVELLING WEDGES
CODES AND DIMENSIONS CODE
colour
LxPxs
pcs
SHBLUE
blue
100 x 22 x 1
500
SHBLACK
black
100 x 22 x 2
500
red
100 x 22 x 3
500
SHWHITE
white
100 x 22 x 4
500
SHYELLOW
yellow
100 x 22 x 5
500
[mm]
SHRED
Also available in the LARGE version.
BROAD COUNTERBORE CUTTER FOR KKT, KKZ, KKA
CODES AND DIMENSIONS Øbit
Øcounterbore
[mm]
[mm]
BROAD1
4
6,5
41
75
1
BROAD2
6
9,5
105
150
1
CODE
cutter
Lbit
TL
[mm]
[mm]
pcs
OUTDOOR | SHIM | BROAD | 335
TIMBER-TO-METAL
TIMBER-TO-METAL
TIMBER-TO-METAL
SBS - SPP SELF-DRILLING TIMBER-TO-METAL SCREW . . . . . . . . . . . . . . . . 340
SBS A2 | AISI304 SELF-DRILLING TIMBER-TO-METAL SCREW . . . . . . . . . . . . . . . . 342
SBN - SBN A2 | AISI304 SELF-DRILLING METAL SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
WBAZ STAINLESS STEEL WASHER WITH SEALING GASKET. . . . . . . . . . 346
TBS EVO FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
MTS A2 | AISI304 SCREWS FOR SHEET METAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
MCS A2 | AISI304 SCREW WITH WASHER FOR SHEET METAL. . . . . . . . . . . . . . . . . . 350
TIMBER-TO-METAL | 339
SBS - SPP
BIT INCLUDED
SELF-DRILLING TIMBER-TO-METAL SCREW TIMBER-TO-METAL TIP Special self-perforating tip with bleeder geometry for excellent drilling capacity both in aluminium (thickness: up to 10 mm) and steel (thickness: up to 8 mm).
CUTTING FINS The fins protect the screw thread during penetration into the wood. They guarantee maximum threading efficiency in metal and perfect adhesion between the thickness of the wood and the metal.
WIDE RANGE The SPP version, with partially thread, is ideal for fastening sandwich panels, even thick ones, to steel. Very sharp under-head ribs for a perfect surface finish on the wooden element.
CHARACTERISTICS FOCUS
self-perforating tip with protective fins
HEAD
countersunk with under-head ribs
DIAMETER
from 4,2 to 6,3 mm
LENGTH
from 32 to 240 mm
MATERIAL Galvanized carbon steel.
FIELDS OF USE Direct fastening, without pre-drill, of wooden elements to steel (maximum thickness 8,0 mm) or aluminium (maximum thickness 10,0 mm) substructures.
340 | SBS - SPP | TIMBER-TO-METAL
GEOMETRY A
A
dk
d2 d1 t1
b
s
SP P
SB S
s dk
d2 d1
Lp
t1
b
L
Lp
L
SBS
SPP SBS
SPP
Nominal diameter
d1
[mm]
4,2
4,8
5,5
6,3
6,3
Head diameter
dK
[mm]
8,00
9,25
10,50
12,00
12,50
Tip diameter
d2
[mm]
3,30
3,50
4,15
4,85
4,85
Head thickness
t1
[mm]
3,50
4,20
4,80
5,30
5,30
Tip length
Lp
[mm]
10,0
10,5
11,5
15,0
20,0
INSTALLATION 01
02
03
Recommended screwing: ≈ 1000 - 1500 rpm (steel plate) ≈ 600 - 1000 rpm (aluminium plate)
CODES AND DIMENSIONS SBS d1
SPP CODE
[mm] SBS4232 4,2 TX 20 SBS4238 SBS4838 4,8 TX 25 SBS4845 SBS5545 5,5 TX 30 SBS5550 SBS6360 SBS6370 6,3 TX 30 SBS6385 SBS63100
L
b
A
s1
s2
[mm]
[mm]
[mm]
[mm]
[mm]
32 38 38 45 45 50 60 70 85 100
19 25 23 30 29 34 40 50 65 80
17 23 21 28 26 31 36 46 61 76
1÷3 1÷3 2÷4 2÷4 3÷5 3÷5 4÷6 4÷6 4÷6 4÷6
2÷4 2÷4 3÷5 3÷5 4÷6 4÷6 6÷8 6÷8 6÷8 6÷8
pcs 500 500 200 200 200 200 100 100 100 100
d1
CODE
L
b
A
s1
s2
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
SPP63125 SPP63145 SPP63165 6,3 SPP63180 TX 30 SPP63200 SPP63220 SPP63240
125 145 165 180 200 220 240
60 60 60 60 60 60 60
96 116 136 151 171 191 211
6÷8 6÷8 6÷8 6÷8 6÷8 6÷8 6÷8
8÷10 8÷10 8÷10 8÷10 8÷10 8÷10 8÷10
pcs 100 100 100 100 100 100 100
s1 thickness, steel plate S235/St37 s2 thickness, aluminium plate
SIP PANELS The SPP version is ideal for fastening SIP panels and sandwich panels thanks to the complete range of lengths (up to 240 mm).
TIMBER-TO-METAL | SBS - SPP | 341
SBS A2 | AISI304
A2
BIT INCLUDED
AISI 304
SELF-DRILLING TIMBER-TO-METAL SCREW BIMETAL SCREW The head and body are made of A2 | AISI304 stainless steel, thus providing high resistant to corrosion. The tip is made of carbon steel for excellent drilling performance.
TIMBER-TO-METAL TIP Special self-perforating tip with bleeder geometry for excellent drilling capacity both in aluminium and steel. The fins protect the screw thread during penetration into the wood.
STAINLESS STEEL The A2 | AISI304 stainless steel head and body make it ideal for outdoor applications. Very sharp under-head ribs for a perfect surface finish on the wooden element.
CHARACTERISTICS FOCUS
self-perforating tip with protective fins
HEAD
countersunk with under-head ribs
DIAMETER
from 4,8 to 6,3 mm
LENGTH
from 45 to 120 mm
MATERIAL A2 | AISI304 stainless steel.
FIELDS OF USE Use in aggressive outdoor environments. Suitable for service classes 1-2-3. Direct fastening, without pre-drill, of wooden elements to steel (maximum thickness 6,0 mm) or aluminium (maximum thickness 8,0 mm) substructures.
342 | SBS A2 | AISI304 | TIMBER-TO-METAL
GEOMETRY A
s d2 d1
dk b
t1
Lp L
Nominal diameter
d1
[mm]
4,8
5,5
6,3
Head diameter
dK
[mm]
9,25
10,50
10,50 4,80
Tip diameter
d2
[mm]
3,50
4,15
Head thickness
t1
[mm]
4,25
4,85
4,50
Tip length
Lp
[mm]
10,25
10,00
12,00
INSTALLATION 01
02
03
Recommended screwing: ≈ 1000 - 1500 rpm (steel plate) ≈ 600 - 1000 rpm (aluminium plate)
CODES AND DIMENSIONS d1
CODE
[mm] 4,8 SBSA24845 TX 25 5,5 SBSA25555 TX 25
L
b
A
s1
s2
[mm]
[mm]
[mm]
[mm]
[mm]
45 55
31 39
30 37
1 ÷3 2 ÷5
2 ÷3 3 ÷5
pcs
d1
CODE
[mm] SBSA26370
L
b
A
s1
s2
[mm]
[mm]
[mm]
[mm]
[mm]
70
53
49
3 ÷6
4 ÷8
100
103
99
3 ÷6
4 ÷8
100
200
6,3 TX 30 SBSA263120 120
200
s1 thickness, steel plate S235/St37 s2 thickness, aluminium plate
pcs
OUTDOOR ENVIRONMENT The A2 | AISI304 stainless steel makes it ideal for use outdoors or in aggressive environments.
TIMBER-TO-METAL | SBS A2 | AISI304 | 343
SBN - SBN A2 | AISI304
A2
AISI 304
SELF-DRILLING METAL SCREW TIP FOR METAL Special self-perforating tip for iron and steel in thicknesses ranging from 0,7 mm to 5,25 mm. Ideal for fastening overlapping sections of metal and sheet metal.
FINE THREAD Fine thread ideal for precise fastening on sheet metal or for metal-to-metal or timber-to-metal couplings.
STAINLESS STEEL Also available in a bimetal version with head and body in A2 | AISI304 stainless steel and tip in carbon steel. Ideal for outdoor fastening of clips on aluminium supports.
CHARACTERISTICS FOCUS
self-perforating bit with protective fins
HEAD
countersunk with under-head ribs
DIAMETER
from 3,5 to 5,5 mm
LENGTH
from 25 to 50 mm
MATERIAL Galvanized carbon steel or stainless steel A2 | AISI304.
FIELDS OF USE Direct fastening, without pre-drill, of metal structural elements to metal substructures (maximum thickness: 5,25 mm).
344 | SBN - SBN A2 | AISI304 | TIMBER-TO-METAL
GEOMETRY A
s d1
dk b L
t1
Lp
Nominal diameter
d1
[mm]
3,5
3,9
4,2
4,8
5,5
Head diameter
dK
[mm]
6,90
7,50
8,20
9,50
10,80
Head thickness
t1
[mm]
2,60
2,80
3,05
3,55
3,95
Tip length
Lp
[mm]
5,00
4,70
5,40
6,40
7,20
CODES AND DIMENSIONS SBN A2 | AISI304
SBN d1
CODE
L
b
A
s
[mm]
[mm]
[mm]
[mm]
3,5 SBN3525 TX 15
25
16
16
0.7 ÷ 2.25
500
3,9 SBN3932 TX 15
35
27
26
0.7 ÷ 2.40
200
4,2 SBN4238 TX 20
38
30
29
1.75 ÷ 3.00
200
4,8 SBN4845 TX 25
45
34
32
1.75 ÷ 4.40
200
5,5 SBN5550 TX 25
50
38
34
1.75 ÷ 5.25
200
[mm]
pcs
d1
CODE
L
b
A
s
[mm]
[mm]
[mm]
[mm]
3,5 SBNA23525 TX 15
25
16
18
0.7 ÷ 2.25
1000
3,9 SBNA23932 TX 15
32
24
25
0.7 ÷ 2.40
1000
[mm]
pcs
SBN A2 | AISI304 Ideal for outdoor fastening to standard Rothoblaas aluminium clips.
TIMBER-TO-METAL | SBN - SBN A2 | AISI304 | 345
WBAZ STAINLESS STEEL WASHER WITH SEALING GASKET WATERPROOF Perfect watertight closure and excellent sealing thanks to the EPDM sealing gasket.
RESISTANT TO UV RAYS Excellent resistance to UV rays. Ideal for outdoor use thanks to the adaptability of the EPDM gasket and washer in stainless steel A2 | AISI304.
VERSATILITY Ideal for use on sheets (thickness: up to 0,7 mm) in combination with TBS EVO Ø6 screws, that can be installed without pre-drill, or with MTS A2 | AISI304 screws, installed with pre-drill.
CHARACTERISTICS FOCUS
water-tightness and UV strength
GASKET
EPDM
SCREWS DIAMETER
from 6,0 to 6,5 mm
FASTENING
TBS EVO, MTS A2 | AISI304
MATERIAL A2 | AISI304 stainless steel.
FIELDS OF USE Watertight and UV-resistant fastening of metal sheets to wooden substructures using TBS EVO or MTS screws.
346 | WBAZ | TIMBER-TO-METAL
CODES AND DIMENSIONS D1 CODE
screw
D2
H
D1
[mm]
[mm]
[mm]
[mm]
6,0 - 6,5
25
15
6,5
H WBAZ25A2
pcs 100
D2
INSTALLATION TBS EVO + WBAZ ØxL
A
A
6 x 60
min. 0 - max. 40
6 x 80
min. 10 - max. 60
6 x 100
min. 30 - max. 80
6 x 120
min. 50 - max. 100
6 x 140
min. 70 - max. 120
6 x 160
min. 90 - max. 140
6 x 180
min. 110 - max. 160
6 x 200
min. 130 - max. 180
MTS A2 + WBAZ ØxL
Correct tightening
Excessive tightening
fastening package [mm]
fastening package [mm]
6 x 80
min. 10 - max. 60
6 x 100
min. 30 - max. 80
6 x 120
min. 50 - max. 100
Insufficient tightening
Tightening off axis
NOTES: The thickness of the washer after installation is approximately 8-9 mm.
FAUX ROOFING TILE Can also be used on sandwich panels, corrugated panels and faux roofing tiles.
TIMBER-TO-METAL | WBAZ | 347
TBS EVO
1002
CERTIFIED
C4 COATING
BIT INCLUDED
COATING
ETA-11/0030
FLANGE HEAD SCREW EVO C4 COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.
SELF-DRILLING FOR SHEET METAL Direct fastening on sheet metal (thickness: up to 0,7 mm) without requiring any pre-drill. Ideal in combination with WBAZ washer.
CODES AND DIMENSIONS d1
CODE
[mm] TBSEVO660
6 TX 30
L
b
A
[mm]
[mm]
[mm]
pcs
60
40
20
100
TBSEVO680
80
50
30
100
TBSEVO6100
100
60
40
100
TBSEVO6120
120
75
45
100
TBSEVO6140
140
75
65
100
TBSEVO6160
160
75
85
100
TBSEVO6180
180
75
105
100
TBSEVO6200
200
75
125
100
GEOMETRY
A
A
NOTE: codes, techniques and further information on page 84.
MATERIAL Carbon steel with bright zinc plated.
FIELDS OF USE Can be installed on sheets up to 0,7 mm thick without pre-drilling. Suitable for service classes 1-2-3. Ideal in coupling with WBAZ washer.
348 | TBS EVO | TIMBER-TO-METAL
MTS A2 | AISI304
A2
AISI 304
SCREWS FOR SHEET METAL HEXAGONAL HEAD Ideal for use in combination with WBAZ washers to achieve water-tight fastening to sheet metal; requires a pre-drill. The hexagonal head facilitates any subsequent removal.
STAINLESS STEEL The A2 | AISI304 stainless steel ensures high resistance to corrosion and excellent durability, even in very aggressive environments.
GEOMETRY
CODES AND DIMENSIONS d1
CODE
SW
[mm] 6 SW 8
dUK dUK
L
b
A
[mm]
[mm]
[mm]
[mm]
pcs A
MTS680
SW 8
12,5
80
58
20÷40
100
MTS6100
SW 8
12,5
100
58
40÷60
100
MTS6120
SW 8
12,5
120
58
60÷80
100
SW A
MATERIAL A2 | AISI304 stainless steel.
FIELDS OF USE Can be used outdoors in aggressive environments. Suitable for service classes 1-2-3. Ideal in coupling with WBAZ washer.
TIMBER-TO-METAL | MTS A2 | AISI304 | 349
MCS A2 | AISI304
A2
AISI 304
SCREW WITH WASHER FOR SHEET METAL INTEGRATED WASHER A2 | AISI304 stainless steel screw with integrated A2 | AISI304 stainless steel washer and EPDM gasket.
STAINLESS STEEL The A2 | AISI304 stainless steel ensures high resistance to corrosion. Also available in various colours: copper or chocolate brown.
TORX BIT Convex head with Torx slot for secure fastening of sheet metal on wood or plaster. Ideal for fastening gutters to wood and corrugated sheet metal.
CHARACTERISTICS FOCUS
washer with integrated EPDM gasket
WASHER
A2 | AISI304 stainless steel
GASKET
EPDM
DIAMETER
4,5 mm
LENGTH
from 25 to 120 mm
MATERIAL A2 | AISI304 stainless steel.
FIELDS OF USE Can be used outdoors in aggressive environments. Suitable for service classes 1-2-3. Fastening metal structural elements to wooden substructures.
350 | MCS A2 | AISI304 | TIMBER-TO-METAL
GEOMETRY
D
d1
dk L
Nominal diameter
d1
[mm]
4,5
Head diameter
dK
[mm]
8,30
Diameter of washer
D
[mm]
20,00
CODES AND DIMENSIONS MCS A2: stainless steel d1
MCS CU: copper finish CODE
[mm]
4,5 TX 20
L
pcs
[mm]
L
pcs
[mm]
MCS4525A2
25
200
MCS4525CU
25
200
35
200
MCS4535CU
35
200
MCS4545A2
45
200
MCS4545CU
45
200
MCS4560A2
60
200
MCS4560CU
60
200
MCS4580A2
80
200
MCS4580CU
80
200
MCS45100A2
100
200
MCS45100CU
100
100
MCS45120A2
120
200
MCS45120CU
120
200
L
pcs
CODE
[mm] 4,5 TX 20
CODE
MCS4535A2
MCS M: RAL 8017 - chocolate brown d1
d1 [mm]
4,5 TX 20
MCS B: RAL 9002 - light grey L
pcs
[mm]
d1
CODE
[mm]
MCS4525A2M
25
200
MCS4535A2M
35
200
MCS4545A2M
45
200
4,5 TX 20
[mm] MCS4525A2B
25
200
MCS4535A2B
35
200
MCS4545A2B
45
200
PERGOLAS Ideal for fastening corrugated sheet metal on the wooden pergolas and outdoor structures.
TIMBER-TO-METAL | MCS A2 | AISI304 | 351
COMPLEMENTARY PRODUCTS
COMPLEMENTARY PRODUCTS
COMPLEMENTARY PRODUCTS A 10 M CORDLESS DRILL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
A 18 M BL CORDLESS DRILL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
KMR 3373 AUTOMATIC LOADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
KMR 3372 AUTOMATIC LOADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
KMR 3338 SCREWDRIVER WITH AUTOMATIC LOADER. . . . . . . . . . . . . . . . . 358
KMR 3352 SCREWDRIVER WITH AUTOMATIC LOADER. . . . . . . . . . . . . . . . . 358
IMPULS PULSE SCREW GUN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
B 13 B POWERED SCREWDRIVER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
BIT TORX BITS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
JIG ALU STA DRILLING TEMPLATE FOR ALUMIDI AND ALUMAXI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
JIG ALU SBD MARKING TEMPLATE FOR ALUMIDI AND ALUMINI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
D 38 RLE 4-SPEED CORDLESS SCREWDRIVER. . . . . . . . . . . . . . . . . . . . . . . 362
DRILL STOP COUNTERBORE CUTTER WITH DEPTH STOP. . . . . . . . . . . . . . . 363
BIT STOP DRIVER BIT HOLDER WITH END STOP . . . . . . . . . . . . . . . . . . . . . 363
LEWIS DRILL BITS FOR DEEP DRILLING IN SOFT AND EUROPEAN HARDWOODS. . . . . . . . . . . . . . . . . . . . . . . . . . . 364
SNAIL HSS TWIST DRILL BITS FOR HARDWOOD, MELAMINE-FACED BOARDS AND OTHER MATERIALS. . . . . . . . 366
JIG VGZ 45° TEMPLATE FOR 45° SCREWS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
JIG VGU TEMPLATE FOR VGU WASHER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
COMPLEMENTARY PRODUCTS | 355
A 10 M CORDLESS DRILL • • • • •
Soft / hard torque: 17/34 Nm Nominal minimum 1st gear: 0 - 360 (1/min) Nominal minimum 2nd gear: 0 - 1400 (1/min) Nominal tension: 10,8 V Weight: 0.8 kg
CODES AND DIMENSIONS CODE
description
pcs
MA919901
MIDIMAX IN T-MAX
1
MA919902
MAXIMAX IN T-MAX
1
A 18 M BL CORDLESS DRILL • • • • •
Soft / hard torque: 44/90 Nm Nominal minimum 1st gear: 0 - 600 (1/min) Nominal minimum 2nd gear: 0 - 2050 (1/min) Nominal tension: 18 V Weight: 1.7 kg
CODES AND DIMENSIONS CODE
description
MA91A001
MIDIMAX IN T-MAX
1
MA91A040
MAXIMAX IN T-MAX
1
356 | A 10 M | A 18 M BL | COMPLEMENTARY PRODUCTS
pcs
KMR 3373 AUTOMATIC LOADER • Screw length: 25 - 50 mm • Screw diameter: 3.5 - 4.2 mm • Compatible with A 18 M BL
CODES AND DIMENSIONS CODE
description
pcs
HH3373
loader for cordless screwdriver
1
HH14411591
1 metre extension
1
KMR 3372 AUTOMATIC LOADER • Screw length: 40 - 80 mm • Screw diameter: 4.5 - 5 mm • Compatible with A 18 M BL
CODES AND DIMENSIONS CODE
description
pcs
HH3372
loader for cordless screwdriver
1
HH14411591
1 metre extension
1
COMPLEMENTARY PRODUCTS | KMR 3373 | KMR 3372 | 357
KMR 3338 SCREWDRIVER WITH AUTOMATIC LOADER • • • •
Screw length: 40 - 80 mm Screw diameter: 4.5 - 5 mm Performance: 0 - 2850/750 (1/min/W) Weight: 2.9 kg
CODES AND DIMENSIONS CODE
description
pcs
HH3338
automatic screwdriver
1
HH14411591
1 metre extension
1
KMR 3352 SCREWDRIVER WITH AUTOMATIC LOADER • • • •
Screw length: 25 - 50 mm Screw diameter: 3.5 - 4.2 mm Performance: 0 - 2850/750 (1/min/W) Weight: 2.2 kg
CODES AND DIMENSIONS CODE
description
HH3352
automatic screwdriver
1
HH14411591
1 metre extension
1
358 | KMR 3338 | KMR 3352 | COMPLEMENTARY PRODUCTS
pcs
IMPULS PULSE SCREW GUN • • • • • •
Torque: 50 - 140 - 205 Nm Loadless speed: 0 - 2300 rpm Battery capacity - Li-ion: 3.0 Ah Nominal tension: 18 V Weight: 1.35 kg Connection: 1/2" (inches)
CODES AND DIMENSIONS CODE
description
PANIMP18
pulse screw gun
pcs 1
B 13 B POWERED SCREWDRIVER • • • • • •
Rated power consumption: 760 W Screw without pre-drill: 11 x 400 mm screws Torque: 120 Nm Weight: 2.8 kg Neck Ø: 43 mm Rpm under load in 1st, 2nd speed: 170 - 1320 U/min
CODES AND DIMENSIONS CODE
description
DUB13B
powered screwdriver
pcs 1
COMPLEMENTARY PRODUCTS | IMPULS | B 13 B | 359
BIT TORX BITS CODES AND DIMENSIONS BITS C 6.3 L
CODE
bit
colour
geometry
pcs
TX1025
TX 10
yellow
10
TX1525
TX 15
white
10
TX2025
TX 20
orange
10
TX2525
TX 25
red
10
TX3025
TX 30
purple
10
TX4025
TX 40
blue
10
TX5025
TX 50
green
10
TX1550
TX 15
white
5
TX2050
TX 20
orange
5
TX2550
TX 25
red
5
TX3050
TX 30
purple
5
TX4050
TX 40
blue
5
TX5050
TX 50
green
5
TX1575
TX 15
white
5
TX2075
TX 20
orange
5
TX2575
TX 25
red
5
bit
colour
TXE3050
TX 30
purple
5
TXE4050
TX 40
blue
5
bit
colour
[mm]
25
50
75
BITS L
6.3
CODE
geometry
pcs
[mm] 50
LONG BITS L
CODE
geometry
pcs
[mm] 150
TX25150
TX 25
red
1
200
TX30200
TX 30
purple
1
350
TX30350
TX 30
purple
1
150
TX40150
TX 40
blue
1
200
TX40200
TX 40
blue
1
350
TX40350
TX 40
blue
1
520
TX40520
TX 40
blue
1
150
TX50150
TX 50
green
1
DRIVER BIT HOLDER CODE TXHOLD
description 60 mm - magnetic
360 | BIT | COMPLEMENTARY PRODUCTS
geometry
pcs 5
JIG ALU STA DRILLING TEMPLATE FOR ALUMIDI AND ALUMAXI • Position, drill, done! With the drilling template you can drill holes for the dowels easily, quickly and precisely • With the JIG ALU template it is also possible to drill holes for the ALUMIDI and ALUMAXI brackets
CODES AND DIMENSIONS CODE JIGALUSTA
B
L
s
[mm]
[mm]
[mm]
164
298
3
pcs 1
JIG ALU SBD MARKING TEMPLATE FOR ALUMIDI AND ALUMINI • Template for marking of the position of the holes for SBD dowels • Using SBD self-drilling dowels the connection is almost completely concealed
CODES AND DIMENSIONS CODE JIGALUSBD
B
L
[mm]
[mm]
110
280
pcs 1
COMPLEMENTARY PRODUCTS | JIG ALU STA | JIG ALU SBD | 361
D 38 RLE 4-SPEED CORDLESS SCREWDRIVER • Rated power consumption: 2000 W • Drilling Ø on: • steel with solid drill bit: up to 32 mm • wood with solid drill bit: up to 130 mm • polypropylene with LS hole cutter: up to 600 mm • Rpm under load in 1st, 2nd, 3rd and 4th speed: 120 - 210 - 380 - 650 U/min • Weight: 8.6 kg • Mandrel connection: conical MK 3
CODES AND DIMENSIONS CODE
description
DUD38RLE
4-speed screwdriver
pcs 1
ACCESSORIES FRICTION
SCREW HANDLE
• Tightening torque 200 Nm • Square connection 1/2”
CODE DUVSKU
MANDREL
• Increased safety
pcs 1
ADAPTER 1
CODE DUD38SH
• Opening 1-13 mm
pcs 1
ADAPTER 2
• For MK3
CODE
ATRE2019
pcs 1
CODE ATCS2010
362 | D 38 RLE | COMPLEMENTARY PRODUCTS
1
SLEEVES
• For sleeve
• For RTR
CODE CODE
pcs
ATRE2014
Ø
pcs
pcs
ATCS007
16 mm
1
1
ATCS008
20 mm
1
DRILL STOP COUNTERBORE CUTTER WITH DEPTH STOP • Particularly indicated for build terraces • The depth stop with rotating support, is fixed element in working, leaving no traces on the material
CODES AND DIMENSIONS CODE
Ø tip
Ø counterbore cutter
[mm]
[mm]
pcs
F3577040
4
12
1
F3577050
5
12
1
F3577060
6
12
1
F3577504
set 4, 5, 6
12
1
BIT STOP DRIVER BIT HOLDER WITH END STOP • With O-ring to prevent wood damage at end of travel • The internal device automatically stops the driver bit holder when it reaches the preset depth
CODES AND DIMENSIONS CODE AT4030
Ø tip
Ø counterbore cutter
[mm]
[mm]
adjustable depth
5
pcs 1
COMPLEMENTARY PRODUCTS | DRILL STOP | BIT STOP | 363
LEWIS DRILL BITS FOR DEEP DRILLING IN SOFT AND EUROPEAN HARDWOODS • In alloy tool steel • With round-section twist flute, threaded tip, very high quality main cutting edge and roughing tooth • Version with independent head and hex shank (starting from Ø8 mm)
CODES AND DIMENSIONS CODE
Ø tip
Ø shank
TL
SL
[mm]
[mm]
[mm]
[mm]
pcs
F1410205
5
4,5
235
160
1
F1410206
6
5,5
235
160
1
F1410207
7
6,5
235
160
1
CODE
Ø tip
Ø shank
TL
SL
[mm]
[mm]
[mm]
[mm]
pcs
F1410305
5
4,5
320
255
1
F1410306
6
5,5
320
255
1
F1410307
7
6,5
320
255
1
8
7,8
320
255
1
F1410208
8
7,8
235
160
1
F1410308
F1410210
10
9,8
235
160
1
F1410309
9
8
320
255
1
F1410310
10
9,8
320
255
1
F1410312
12
11,8
320
255
1
F1410314
14
13
320
255
1
F1410316
16
13
320
255
1
F1410318
18
13
320
255
1
F1410320
20
13
320
255
1
F1410322
22
13
320
255
1
F1410324
24
13
320
255
1
F1410212
12
11,8
235
160
1
F1410214
14
13
235
160
1
F1410216
16
13
235
160
1
F1410218
18
13
235
160
1
F1410220
20
13
235
160
1
F1410222
22
13
235
160
1
F1410224
24
13
235
160
1
F1410228
28
13
235
160
1
F1410230
30
13
235
160
1
F1410232
32
13
235
160
F1410242
42
13
235
160
364 | LEWIS | COMPLEMENTARY PRODUCTS
F1410326
26
13
320
255
1
F1410328
28
13
320
255
1
1
F1410330
30
13
320
255
1
1
F1410332
32
13
320
255
1
CODE
Ø tip
Ø shank
TL
SL
[mm]
[mm]
[mm]
[mm]
pcs
CODE
Ø tip
Ø shank
TL
SL
[mm]
[mm]
[mm]
[mm]
pcs
F1410407
7
6,5
460
380
1
F1410014
14
13
1080
1010
1
F1410408
8
7,8
460
380
1
F1410016
16
13
1080
1010
1
F1410410
10
9,8
460
380
1
F1410018
18
13
1080
1010
1
F1410412
12
11,8
460
380
1
F1410020
20
13
1080
1010
1
F1410414
14
13
460
380
1
F1410022
22
13
1080
1010
1
F1410416
16
13
460
380
1
F1410024
24
13
1080
1010
1
F1410418
18
13
460
380
1
F1410026
26
13
1080
1010
1
F1410420
20
13
460
380
1
F1410028
28
13
1080
1010
1
F1410422
22
13
460
380
1
F1410030
30
13
1080
1010
1
F1410424
24
13
460
380
1
F1410032
32
13
1080
1010
1
F1410426
26
13
460
380
1
F1410134
34
13
1000
380
1
F1410428
28
13
460
380
1
F1410136
36
13
1000
380
1
F1410430
30
13
460
380
1
F1410138
38
13
1000
380
1
F1410432
32
13
460
380
1
F1410140
40
13
1000
380
1
F1410440
40
13
450
380
1
F1410145
45
13
1000
380
1
F1410450
50
13
450
380
1
F1410150
50
13
1000
380
1
F1410612
12
11,8
650
535
1
F1410614
14
13
650
535
1
F1410616
16
13
650
535
1
F1410618
18
13
650
535
1
TL
total length effective length spiral length
F1410620
20
13
650
535
1
EL
F1410622
22
13
650
535
1
SL
F1410624
24
13
650
535
1
F1410626
26
13
650
535
1
F1410628
28
13
650
535
1
F1410630
30
13
650
535
1
F1410632
32
13
650
535
1
TL
SL EL
LEWIS - SET
CODES AND DIMENSIONS CODE
Ø set
TL
SL
pcs
[mm]
[mm]
[mm]
F1410200
10, 12, 14, 16, 18, 20, 22, 24
235
160
1
F1410303
10, 12, 14, 16, 18, 20, 22, 24
320
255
1
F1410403
10, 12, 14, 16, 18, 20, 22, 24
460
380
1
COMPLEMENTARY PRODUCTS | LEWIS | 365
SNAIL HSS TWIST DRILL BITS FOR HARDWOOD, MELAMINE-FACED BOARDS AND OTHER MATERIALS • Very high quality polished drill bits, with 2 main cutting edges and 2 roughing teeth • Special twist with smoothed flute for improved chip evacuation • Ideal for free hand and stationary use
CODES AND DIMENSIONS CODE F1594020 F1594030 F1594040
Ø tip
Ø shank
TL
SL
[mm]
[mm]
[mm]
[mm]
2 3 4
2 3 4
49 60 75
22 33 43
pcs
CODE
Ø tip
Ø shank
TL
SL
pcs
[mm]
[mm]
[mm]
[mm]
1
F1599209
9
9
250
180
1
1
F1599210
10
10
250
180
1
1
F1599212
12
12
250
180
1
F1599214
14
13
250
180
1
F2108005
5
5
85
52
1
F2108006
6
6
92
57
1
F1599216
16
13
250
180
1
F1599405
5
5
400
300
1
F2108008
8
8
115
75
1
F1594090
9
9
125
81
1
F1599406
6
6
400
300
1
7
7
400
300
1
8
8
400
300
1 1
F1594100
10
10
130
87
1
F1599407
F1594110
11
11
140
94
1
F1599408
F1594120
12
12
150
114
1
F1599409
9
9
400
300
F1599205
5
5
250
180
1
F1599410
10
10
400
300
1
F1599412
12
12
400
300
1
F1599206
6
6
250
180
1
F1599207
7
7
250
180
1
F1599414
14
13
400
300
1
1
F1599416
16
13
400
300
1
F1599208
8
8
250
180
SNAIL HSS - SET
CODES AND DIMENSIONS CODE
Ø set
pcs
[mm] F1594805
3, 4, 5, 6, 8
1
F1594510
3, 4, 5, 6, 8, 10, 12, 13, 14, 16
1
366 | SNAIL HSS | COMPLEMENTARY PRODUCTS
JIG VGZ 45° TEMPLATE FOR 45° SCREWS • For diameters from 7 to 11 mm • Screw length indicators • Screws can be inserted in double 45° mitre cuts
CODES AND DIMENSIONS CODE JIGVGZ45
description
pcs
steel template for VGZ screws at 45°
1
For detailed information on the use of the template, please see the installation manual on our website (www.rothoblaas.com).
JIG VGU TEMPLATE FOR VGU WASHER • For diameters from 9 to 13 mm
CODES AND DIMENSIONS CODE
washer
dh
dV
[mm]
[mm]
[mm]
pcs
JIGVGU945
VGU945
5,5
5
1
JIGVGU1145
VGU1145
6,5
6
1
JIGVGU1345
VGU1345
8,5
8
1
NOTE:Further information on page 200.
COMPLEMENTARY PRODUCTS | JIG VGZ 45° | JIG VGU | 367
Rotho Blaas Srl does not guarantee the legal and/or design conformity of data and calculations, as Rotho Blass provides indicative tools such as technical-commercial service within the sales activity. Rotho Blaas Srl follows a policy of continuous development of its products, thereby reserving the right to modify their characteristics, technical specifications and other documentation without notice. The user or the designer are responsible to verify, at each use, the conformity of the data to the regulations in force and to the project. The ultimate responsibility for choosing the appropriate product for a specific application lies with the user/designer. The values resulting from "experimental investigations" are based on the actual test results and valid only for the test conditions specified. Rotho Blaas Srl does not guarantee and in no case can be held responsible for damages, losses and costs or other consequences, for any reason (warranty for defects, warranty for malfunction, product or legal responsibility, etc.) deriving from the use or inability to use the products for any purpose; from non-conforming use of the product; Rotho Blaas Srl is not liable in any way for any errors in printing and/or typing. In the event of differences between the contents of the catalogue versions in the various languages, the Italian text is binding and takes precedence with respect to the translations. Pictures are partially completed with accessories not included. Images are for illustration purposes only. Packaged quantities may vary. This catalogue is private property of Rotho Blaas Srl and may not be copied, reproduced or published, totally or in part, without prior written consent. All violations will be prosecuted according to law. The general purchase conditions of Rotho Blaas Srl are available on the website www.rothoblaas.com. All rights reserved. Copyright © 2020 by Rotho Blaas Srl All renderings © Rotho Blaas Srl
FASTENING AIRTIGHTNESS AND WATERPROOFING SOUNDPROOFING FALL PROTECTION TOOLS AND MACHINES
Via dell‘Adige N.2/1 | 39040, Cortaccia (BZ) | Italia Tel: +39 0471 81 84 00 | Fax: +39 0471 81 84 84 info@rothoblaas.com | www.rothoblaas.com
COD
Rotho Blaas Srl
01SCREWS2EN
10|20
Rothoblaas is the multinational Italian company that has made innovative technology its mission, making its way to the forefront for timber buildings and construction safety in just a few years. Thanks to its comprehensive product range and the technically-prepared and widespread sales network, the company promotes the transfer of its knowhow to the customers and aims to be a prominent and reliable partner for developing and innovating products and building methods. All of this contributes to a new culture of sustainable construction, focused on increasing comfortable living and reducing CO2 emissions.