SCREWS AND CONNECTORS FOR WOOD - EN

Page 1

SCREWS AND CONNECTORS FOR WOOD CARPENTRY, STRUCTURES AND OUTDOOR


CONTENTS

CARPENTRY

STRUCTURES

GEOMETRY..............................................12

STRUCTURAL CONNECTORS............ 128

RESEARCH & DEVELOPMENT.............13

SCREWS STRESSED AXIALLY.......... 130

DUCTILITY.............................................. 14

STRUCTURAL REINFORCEMENT..... 132

LVL AND HARDWOOD.......................... 16

HTS.......................................................... 18

VGZ........................................................134

SHS.......................................................... 22

VGZ EVO FRAME................................ 158

SHS AISI410........................................... 23

VGZ EVO.............................................. 166

HBS.......................................................... 24

VGZ HARDWOOD.............................. 172

HBS EVO................................................44

VGS........................................................ 182

HBS COIL...............................................50

VGU.......................................................196

HBS SOFTWOOD................................. 52

RTR........................................................202

HBS SOFTWOOD BULK...................... 56

DGZ...................................................... 206

HBS HARDWOOD................................58

SBD ....................................................... 214

TBS..........................................................64

CTC.......................................................222

TBS EVO................................................. 82

SKR - SKS.............................................232

XYLOFON WASHER.............................88 HBS PLATE.............................................90 HBS PLATE EVO....................................96 LBS.........................................................100 LBA........................................................104 KOP.......................................................108 DRS........................................................ 114 DRT........................................................ 116 MBS....................................................... 118 DWS.......................................................120 DWS COIL............................................ 121 THERMOWASHER.............................. 122 ISULFIX.................................................. 123

from page

9

from page

125


TIMBER-METAL

COMPLEMENTARY PRODUCTS

KKT COLOR A4 | AISI316..................256

SBS - SPP............................................ 340

A 10 M...................................................356

KKT A4 | AISI316................................ 260

SBS A2 | AISI304.................................342

A 18 M BL.............................................356

KKT COLOR.........................................264

SBN - SBN A2 | AISI304................... 344

KMR 3373............................................. 357

KKZ A2 | AISI304.................................268

WBAZ................................................... 346

KMR 3372............................................. 357

KWP A2 | AISI305...............................270

TBS EVO.............................................. 348

KMR 3338.............................................358

KKA AISI410......................................... 272

MTS A2 | AISI304................................349

KMR 3352.............................................358

KKA COLOR......................................... 274

MCS A2 | AISI304...............................350

IMPULS.................................................359

OUTDOOR WOOD SPECIES...................................244 SELECTION OF THE FASTENING Environment........................................246 Screwing..............................................248 Decorative head finish......................250 CORROSION.........................................252 C4 EVO COATING ................................254 MATERIALS AND COATINGS.............255

B 13 B....................................................359

EWS....................................................... 276 KKF AISI410......................................... 280 SCI A4 | AISI316...................................284 SCI A2 | AISI305..................................286 SCA A2 | AISI304............................... 290 HBS PLATE EVO..................................292 HBS EVO..............................................293 TBS EVO...............................................294

from page

337

BIT........................................................ 360 SBD INSTALLATION DEVICE........... 361 D 38 RLE...............................................362 SET........................................................363 DRIVER BIT HOLDERS......................363 TWIST DRILL BITS............................. 364 HSS WOOD DRILL BIT......................366

VGZ EVO..............................................295

JIG VGZ................................................367

FLAT | FLIP...........................................296

JIG VGU................................................367

TVM...................................................... 300 GAP...................................................... 304 TERRALOCK....................................... 308 GROUND COVER............................... 312 NAG....................................................... 313 GRANULO............................................ 314 TERRA BAND UV................................ 316 PROFID................................................. 317 JFA......................................................... 318 SUPPORT.............................................322 ALU TERRACE.....................................328 STAR......................................................334 SHIM......................................................335

from page

241

from page

353


QUALITY CONTROL PRODUCTION PHASES CONTROLS Rothoblaas designs, tests, manufactures, certifies and markets its products under its own name and brand. The manufacturing process is systematically checked during each phase (FPC), the whole procedure strictly monitored and controlled to ensure compliance and quality at each stage.

01

RAW MATERIAL

HEAD MOULDING

NOTCHING THE TIP

Steel wire enters the plant after being inspected and the wire coils are carefully washed

Multiple gold presses to engrave name and length of the screw

Precise notch, set back from the self-perforating tip

A

02

03

04

05

B

CUTTING TO LENGTH

ROLLING

The steel wire is inserted in the all-in-one machine

Creation of the cutter and the thread down to the tip

QUALITY OF THE STEEL With the steel annealing and tempering process, Rothoblaas screws obtain the perfect balance between resistance (f yk = 1000 N/mm2) and ductility (excellent possibility of bending), thanks to high-level engineering know-how.

TRACEABILITY During the production process each screw is assigned an identifying code (batch number) which guarantees the traceability of raw materials before the product is placed on the market.

4 | QUALITY CONTROL


CE - ETA - DoP As manufacturer, Rothoblaas is responsible for its products covered by ETA. These products must be provided with CE marking, normally on the label, which ensures legal validity and must show the following information:

1. Identification of the producer 2. ETA number 3. Declaration of performance 1 ------------------------Rotho Blaas 2 ------------------------ETA 11/0030 3 ------------------------DoP: HBS_DoP_110030

06

CD

07

(www.rothoblaas.com)

PACKAGING AND LABELLING

QUALITY CHECK AT ROTHOBLAAS

A mechanized line providing packaging and labelling

The FPC procedure continues with a second stage of geometric and mechanical checks carried out at Rothoblaas

E

HEAT TREATMENT/ GALVANIZING AND WAXING Special furnace hardening process with controlled temperature evolution and zinc plated in an electrolytic tank followed by anti-friction waxing

08

09

10

F

STORAGE Acceptance of the incoming goods and sampling by the Quality Check Laboratory

SELLING AND TRACEABILITY With the batch number and the selling order it is possible to track all the manufacturing phases: the customer can be sure to obtain a certified quality product

CONTROLS A. Verification, check and registration of the incoming raw materials B. Geometric inspection according to regulated tolerances and calibration C. Mechanical check: ultimate resistance to torsion, tension and bending angle D. Check on coating thickness and salt spray sample tests E. Inspection of package and label F. Application test

QUALITY CONTROL | 5


COMPLETE RANGE COUNTERSUNK WITH RIBS HBS, HBS COIL, HBS EVO, HBS S, HBS S BULK, VGS, SCI A2/A4, SBS, SPP

FLANGE TBS , TBS MAX, TBS EVO

THREAD

HEAD

“THE IDEAL COMBINATION”

ASYMMETRIC “UMBRELLA” HBS , HBS COIL , HBS EVO , HBS P, HBS P EVO, TBS, TBS EVO, SCI A2/A4

COUNTERSUNK SMOOTH

SYMMETRICAL COARSE THREAD

HTS, DRS, DRT, SKS, SCA A2, SBS A2, SBN, SBN A2

HBS S, HBS S BULK, VGZ, VGZ EVO, VGS, SCA A2

COUNTERSUNK 60°

SYMMETRICAL FINE THREAD

SHS, SHS AISI410, HBS H

HBS H, HTS, SHS, SHS AISI410, LBS, DWS, DWS COIL, KKF AISI410, MCS A2, VGZ H

ROUND

DOUBLE

LBS

DGZ, CTC, SBD, KKT A4 COLOR, KKT A4, KKT COLOR, KKZ A2, KWP A2, KKA AISI410

HEXAGONAL

TRILOBULAR

KOP, SKR, VGS Ø13, MTS A2

KKT A4 COLOR, KKT A4, KKT COLOR

CONE-SHAPED

QUADLOBULAR

KKT A4 COLOR, KKT A4, KKT COLOR

EWS A2, EWS AISI410

PAN HEAD

FINE, FOR METAL

HBS P, HBS P EVO, KKF AISI410

KKA AISI 410, KKA COLOR, SBS, SPP, SBS A2, SBN, SBN A2

CONVEX

STANDARD FOR WOOD

EWS A2, EWS AISI410, MCS A2

KOP, RTR, MTS A2

CYLINDRICAL

SPACER

VGZ, VGZ EVO, VGZ H, DGZ, CTC, MBS, SBD, KKZ A2, KWP A2, KKA AISI410, KKA COLOR

DRS, DRT

BUGLE

HI-LOW (CONCRETE)

DWS, DWS COIL

MBS, SKR, SKS

6 | COMPLETE RANGE


HBS (L ≤ 50 mm), HBS COIL (L ≤ 50 mm), HTS, LBS, DRS, DRT, DWS, DWS COIL, KWP A2, SCA A2, MCS A2

SHARP SAW HBS S, HBS S BULK

SHARP SAW NIBS VGS Ø13

SHARP 1 CUT HBS (L > 50 mm), HBS COIL (L > 50 mm), HBS EVO, HBS P, HBS P EVO, TBS, TBS EVO, VGZ, VGZ EVO, VGS, DGZ, CTC, SHS, SHS AISI410, KKT A4 COLOR , KKT A4, EWS A2, EWS AISI410, KKF AISI410, SCI A2/A4

MATERIALS AND COATINGS

TIP

SHARP

carbon steel + zinc plated HTS, SHS, HBS, HBS COIL, HBS S, HBS S BULK, TBS, HBS H, HBS P, LBS, KOP, DRS, DRT, MBS, VGZ, VGZ H, VGS, RTR, DGZ, SBD, CTC, SKR, SKS, SBS, SPP, SBN

carbon steel + color coating KKT COLOR, KKA COLOR

carbon steel + C4 EVO coating HBS EVO, TBS EVO, HBS P EVO, VGZ EVO, SKR EVO, SKS EVO

SHARP 2 CUT KKT COLOR

AISI410 martensitic stainless steel KKF AISI410, EWS AISI410, KKA AISI410, SHS AISI410

HARD WOOD (DECKING) KKZ A2

A2 stainless steel (AISI304 | AISI305) HARD WOOD (SOLID) HBS H, VGZ H

ALUMINIUM (DECKING) KKA AISI410, KKA COLOR

SCI A2, SCA A2, EWS A2, KKZ A2, KWP A2, SBS A2, SBN A2, MCS A2, MTS A2, WBAZ

A4 stainless steel (AISI316) KKT A4 COLOR, KKT A4, SCI A4

METAL (WITH FINS) SBS, SBS A2, SPP

bi-metal stainless steel + carbon steel SBS A2

METAL (WITHOUT FINS) SBD, SBN, SBN A2

phosphate steel STANDARD FOR WOOD

DWS, DWS COIL

MBS, KOP, MTS A2

CONCRETE

EPDM/PP/PU

SKR, SKS

XYLOFON WASHER, WBAZ, THERMOWASHER, ISULFIX

COMPLETE RANGE | 7



CARPENTRY


CARPENTRY


CARPENTRY

HTS

KOP

FULLY THREADED COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . 18

COACH SCREW DIN571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

SHS

DRS

SMALL HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

TIMBER-TO-TIMBER SPACER SCREW. . . . . . . . . . . . . . . . . . . . . . . 114

SHS AISI410

DRT

SMALL HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

WOOD/BRICKWORK SPACER SCREW. . . . . . . . . . . . . . . . . . . . . . . 116

HBS

MBS

COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

SELF-TAPPING SCREW WITH CYLINDRICAL HEAD FOR MASONRY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

HBS EVO COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

HBS COIL HBS BOUND SCREWS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

HBS SOFTWOOD COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

HBS SOFTWOOD BULK COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

HBS HARDWOOD

DWS DRYWALL SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

DWS COIL DWS COLLATED PLASTERBOARD SCREW . . . . . . . . . . . . . . . . . . . 121

THERMOWASHER WASHER TO FASTEN INSULATION TO WOOD. . . . . . . . . . . . . . . 122

ISULFIX ANCHOR FOR FASTENING INSULATION TO BRICKWORK. . . . . 123

COUNTERSUNK SCREW FOR HARDWOODS. . . . . . . . . . . . . . . . . 58

TBS FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

TBS EVO FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

XYLOFON WASHER SEPARATING WASHER FOR WOOD SCREWS. . . . . . . . . . . . . . . . . 88

HBS PLATE PAN HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

HBS PLATE EVO PAN HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

LBS ROUND HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . 100

LBA HIGH BOND NAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

CARPENTRY | 11


GEOMETRY THE DETAIL THAT MAKES THE DIFFERENCE

Every detail of the screw geometry is analysed and developed to increase strength and application performance. TIP

1, SELF-PERFORATING TIP The self-perforating tip, enhanced with exclusive geometries for particular types of wood (LVL, hardwood, etc.), with corkscrew thread running all the way to the tip, guaranteeing a fast, high-performance initial grip.

2. NOTCH

NOTCH

The notch makes it possible to tear the fibres during insertion, thus preventing the risk of splitting or cracking the wood. The setback position of the notch is essential to guarantee excellent grip and perforation of the tip.

3. THREAD With carefully designed geometries, the thread allows fast, secure screwing, in particular the thread pitch is related to screw diameter and length. Coarse-pitch threads are well suited to medium/long screws as they make screwing faster; on the other hand, fine-pitch threads are ideal for small screws which require great care and precision during screwing.

THREAD SPACING

4, CUTTER The geometry of the cutter is carefully studied to widen the wood grain and move away the shavings created as the screw progresses. The cutter creates the space for the passage of the shank and limits screw overheating.

CUTTER

5. SHANK The shank is covered by special surface waxing which considerably reduces friction and torsional stress during screwing.

WAXING

6. UNDERHEAD The ribs are very sharp and able to cut through the shavings coming out of the hole, following perforation of the wood.

7. HEAD

RIBS

Head geometry defines screw resistance to penetration.

FLANGE HEAD

1

3 5

7

2 4

6 12 | GEOMETRY | CARPENTRY


RESEARCH & DEVELOPMENT CONSTANT EVOLVING KNOW-HOW

Extensive testing campaigns — conducted in our in-house laboratories on softwood, hardwood and LVL — have resulted in the development of products suitable for every type of wood, keeping the focus on three key parameters: FAST GRIP It is obtained with a sharp tip, initial coarse thread and a regular conical profile in the first section;

EASE OF PROGRESS It is the ability of the screw to penetrate the wood with reduced effort and is obtained with an initial slow thread (double or reverse) and irregular geometry that facilitates the removal of shavings;

FAST INSERTION To allow for fast insertion, the notch must be setback with respect to the end of the tip and is fundamental for screws longer than 50 mm, to avoid splitting during insertion and to maintain an acceptable level of wood damage.

CARPENTRY | RESEARCH & DEVELOPMENT | 13


DUCTILITY FASTENERS SEISMIC PERFORMANCE EXPERIMENTAL TESTS FprEN 14592 (2018) introduces three performance classes for cylindrical shank fasteners used in seismic areas; these take the form of three classes of ductility ("low cycle ductility classes for fasteners used in seismic areas"). The three classes are indicated as S1 (low ductility), S2 (medium ductility) and S3 (high ductility). A fastener is classified in one of the above classes according to the results of specific monotonic and cyclic bending tests conducted on the threaded portion of the fastener. This seismic classification is essential as it helps designers prevent brittle fractures caused by a sudden failure of the metal fastener. The objective of the standard is to verify that, based on the seismic class and choice of fastener, at the end of the third cycle, the residual moment Mres is at least equal to 80% of the average yield moment My determined with monotonic testing.

TEST PROTOCOL USED IN CYCLIC TESTS

αu

Tubular guide

αc

Loading device

Mandrel

Support

Rotation

Fastener

Time

0

2d 16d

Test set-up diagram (static diagram: three-point bending).

-αc 1st cycle

2nd cycle

3rd cycle

determination of the residual bending moment capacity

MOMENT-ROTATION CURVE RESULTING FROM A CYCLIC TEST

Mres

Bending moment

Kel

Mmax M(1st) M(2nd) M(3rd)

-αc

0 Rotation [°]

14 | DUCTILITY | CARPENTRY

αc α + 20°

αu

Test configuration.


EXPERIMENTAL TESTING

TBS Ø8x160 mm 60

Moment [kNmm]

α = 10.50°

α + 20°

40 My

20 Tests of TBS 8x160 Bilinear schematization 0

α

0

15

30

45

Rotation [°]

Deformed screw at the end of a cyclic test.

60

All screws tested showed excellent mechanical properties under monotonic conditions, thus meeting the ductility requirement outlined in EN 14592.

20 0 -20 -40

In addition, all screws succeeded in completing three load cycles, achieving the highest seismic performance class for 8 and 10 mm diameter screws. The full scientific report on the experimental testing is available at Rothoblaas.

α = 10.50° Seismic class: S3

40 Moment [kNmm]

An extensive testing campaign was therefore conducted on more than 500 Rothoblaas fasteners, with diameters ranging from 6 mm to 10 mm and lengths between 100 mm and 300 mm.

Tests of TBS 8x160 Bilinear schematization

-60 -30

-15

0 15 Rotation [°]

30

45

HBS Ø10x300 mm 80

Moment [kNmm]

α = 8.98°

α + 20°

60 My 40

20 Tests of HBS 10x300 Bilinear schematization 0

0

α

15

30

45

Rotation [°] 80

B

H H

B

S

X X

S

X X

HBS

TBS

Moment [kNmm]

60

α = 8.98° Seismic class: S3

40 20 0 -20 -40 Tests of HBS 10x300 Bilinear schematization

-60 -80 -30

-15

0 15 Rotation [°]

30

45

CARPENTRY | DUCTILITY | 15


LVL AND HARDWOOD HIGH DENSITY WOODS

Chestnut, oak, cypress, beech, eucalyptus, bamboo and many other exotic woods are increasingly being used in construction. In addition to these, elements in Microllam速 lumber, called LVL (Laminated Veneer Lumber), are also used. These are continuous elements, obtained from thin layers of different species of wood (fir, pine, beech) just a few millimetres thick, overlapped and glued together. Microllam速 sheets can be produced with longitudinal grains or crossed grains depending on the structural use of the element.

MICROLLAM速 LUMBER

The resulting elements offer absolute dimensional stability and high mechanical performance for a wide range of applications (beams, joists, pillars, walls, floors, curved elements, etc.). Rothoblaas has conducted extensive testing to analyse the performance of cylindrical shank fasteners on LVL elements, considering several parameters:

MICROLLAM速 LUMBER WITH CROSS-GRAIN VENEER

1. Different types of wood and their densities 2. Presence/absence of pre-drill holes 3. Fully/partially threaded fasteners 4. LVL panels with one/two-way grain 5. Application of fasteners on the side/narrow surface

thickness surface

thickness between 21-90 cm

widths up to 2,50 m

lengths up to 18,00 m

cover surface front surface

The test results obtained proved useful as they provided detailed verification of minimum applicable distances and analysed the different screwing forces according to installation and geometry of the fastener used.

16 | LVL AND HARDWOOD | CARPENTRY


According to the European Technical Assessment ETA-11/0030, Rothoblaas screws can be used for structural connections when panels or LVL elements are employed. With the aim of categorising the performance of partially threaded screws and fully threaded connectors in applications using LVL elements, Rothoblaas has conducted in-depth research at accredited external laboratories (Eurofins Expert Services Oy, Espoo, Finland). Specifically, tests were conducted on the following aspects: • THREAD WITHDRAWAL RESISTANCE (in edgewise and flatwise connections) • HEAD PULL-THROUGH RESISTANCE • REDUCED MINIMUM DISTANCES • STIFFNESS OF CONNECTIONS The full scientific report on the experimental testing is available at Rothoblaas.

t b

t

l

b l

b

t l

b t l

CARPENTRY | LVL AND HARDWOOD | 17


HTS

BIT INCLUDED

FULLY THREADED COUNTERSUNK SCREW TOTAL THREAD The thread is 80% the length of the screw and the smooth part under head guarantees maximum coupling efficiency with fibre board panels.

FINE THREAD A fine thread is ideal for utmost screwing precision, even on MDF panels. The Torx slot ensures stability and security.

CHROMIUM (VI) FREE Total absence of hexavalent chromium. Compliance with the strictest regulations governing chemical substances (SVHC). REACH information available.

CHARACTERISTICS FOCUS

fibre board screw

HEAD

countersunk without under-head ribs

DIAMETER

from 3,0 mm to 5,0 mm

LENGTH

from 12 mm to 80 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE • wood based panels • fibre board and MDF panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL Service classes 1 and 2.

18 | HTS | CARPENTRY

EN 14592


GEOMETRY AND MECHANICAL CHARACTERISTICS ds d2 d1

90°

X X

T

S

H

dk

b

t1 L Nominal diameter Head diameter Tip diameter Shank diameter Head thickness Pre-drilling hole diameter Characteristic yield moment Characteristic withdrawal resistance parameter Associated density Characteristic head pull-through parameter

d1 dk d2 dS t1 dV My,k

[mm] [mm] [mm] [mm] [mm] [mm] [Nmm]

3 6,00 2,00 2,20 2,20 2,0 2168

3,5 7,00 2,20 2,45 2,40 2,0 2676

4 8,00 2,50 2,75 2,70 2,5 3752

4,5 8,80 2,80 3,20 2,80 3,0 5813

5 9,70 3,20 3,65 2,80 3,5 8801

fax,k

[N/mm2]

18,5

17,9

17,1

17,0

15,5

ρa

[kg/m ]

350

350

350

350

350

fhead,k

[N/mm ]

26,0

25,1

24,1

23,1

22,5

Associated density

ρa

[kg/m3]

350

350

350

350

350

Characteristic tensile strength

f tens,k

[kN]

4,2

4,5

5,5

7,8

11,0

3

2

CODES AND DIMENSIONS d1

CODE

[mm]

3 TX 10

3,5 TX 15

4 TX 20

HTS312 HTS316 HTS320 HTS325 HTS330 HTS3516 HTS3520 HTS3525 HTS3530 HTS3535 HTS3540 HTS3550 HTS420 HTS425 HTS430 HTS435

L

b

[mm]

[mm]

12 16 20 25 30 16 20 25 30 35 40 50 20 25 30 35

6 10 14 19 24 10 14 19 24 27 32 42 14 19 24 27

pcs

d1

CODE

[mm] 1000 1000 1000 1000 1000 1000 1000 1000 500 500 500 400 1000 1000 500 500

4 TX 20

4,5 TX 20

5 TX 25

HTS440 HTS445 HTS450 HTS4530 HTS4535 HTS4540 HTS4545 HTS4550 HTS530 HTS535 HTS540 HTS545 HTS550 HTS560 HTS570 HTS580

L

b

[mm]

[mm]

40 45 50 30 35 40 45 50 30 35 40 45 50 60 70 80

32 37 42 24 27 32 37 42 24 27 32 37 42 50 60 70

pcs 500 400 400 500 500 400 400 200 500 400 200 200 200 200 100 100

CHIPBOARD The total thread and countersunk head geometry are ideal for fastening metal hinges when building furniture. Ideal for use with single bit (included in the package), easily exchanged in the driver bit holder. The self-perforating unnotched tip increases the initial grip of the screw.

CARPENTRY | HTS | 19


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES 3,0

3,5

4

4,5

15

18

20

23

SCREWS INSERTED WITH PRE-DRILLING HOLES 5

a1

[mm]

a2

[mm]

3∙d

9

11

12

14

a3,t

[mm]

12∙d

36

42

48

54

a3,c

[mm]

7∙d

21

25

28

32

7∙d

35

a4,t

[mm]

3∙d

9

11

12

14

3∙d

15

a4,c

[mm]

3∙d

9

11

12

14

3∙d

15

3∙d

5∙d

5∙d

3,5

4

4,5

3,5

4

4,5

5

14

16

18

4∙d

20

25

4∙d

12

3∙d

15

4∙d

12

14

16

18

4∙d

20

12∙d

60

7∙d

21

25

28

32

7∙d

35

7∙d

21

25

28

32

7∙d

35

5∙d

15

18

20

23

7∙d

35

9

11

12

14

3∙d

15

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 3,0

3,0

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

5

3,0

3,5

4

4,5

5

a1

[mm]

10∙d

30

35

40

45

12∙d

60

5∙d

15

18

20

23

5∙d

25

a2

[mm]

5∙d

15

18

20

23

5∙d

25

5∙d

15

18

20

23

5∙d

25

35

40

45

10∙d

50

a3,t

[mm]

15∙d

45

53

60

68

15∙d

75

10∙d

30

a3,c

[mm]

10∙d

30

35

40

45

10∙d

50

10∙d

30

35

40

45

10∙d

50

a4,t

[mm]

5∙d

15

18

20

23

5∙d

25

7∙d

21

25

28

32

10∙d

50

a4,c

[mm]

5∙d

15

18

20

23

5∙d

25

5∙d

15

18

20

23

5∙d

25

d = nominal screw diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: • The minimum distances are in accordance with EN 1995:2014, considering a wood characteristic density of ρ k ≤ 420 kg/m3. • The minimum spacing for all steel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,7.

20 | HTS | CARPENTRY

• The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85.


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

timber-to-timber

panel-timber (1)

TENSION

thin steel-timber plate (2)

thick steel-timber plate (3)

Splate

thread withdrawal(4)

head pull-through (5)

A L

b

d1

RV,k

RV,k

RV,k

RV,k

RV,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

[kN]

[kN]

[kN]

12 16 20 25 30 16 20 25 30 35 40 50 20 25 30 35 40 45 50 30 35 40 45 50 30 35 40 45 50 60 70 80

6 10 14 19 24 10 14 19 24 27 32 42 14 19 24 27 32 37 42 24 27 32 37 42 24 27 32 37 42 50 60 70

7 12 4 9 14 19 29 1 6 11 16 21 26 3 8 13 18 23 0 5 10 15 20 30 40 50

0,11 0,38 0,61 0,53 0,77 0,82 0,89 0,38 0,71 0,96 1,02 1,08 0,21 0,56 0,90 1,15 1,21 0,76 1,14 1,39 1,52 1,65 1,65

0,36 0,60 0,84 1,14 1,44 0,68 0,95 1,29 1,62 1,83 2,17 2,84 1,03 1,40 1,77 1,99 2,36 2,73 3,09 1,98 2,22 2,63 3,05 3,46 2,01 2,26 2,68 3,10 3,52 4,19 5,03 5,87

1,01 1,01 1,01 1,01 1,01 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,66 1,66 1,66 1,66 1,66 1,66 1,66 1,93 1,93 1,93 1,93 1,93 2,28 2,28 2,28 2,28 2,28 2,28 2,28 2,28

The characteristic shear resistances are calculated considering an OSB or particle board panel with a thickness SPAN and characteristic density of ρk = 500 kg/m3.

(1)

(2)

The shear resistance characteristics are calculated considering the case of a thin plate (SPLATE ≤ 0,5 d1). The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1).

(3)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

(4)

(5)

The axial resistance to head pull-through, with and without a washer, was calculated using wood elements.

In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

SPLATE = 3,5 mm SPLATE = 4 mm SPLATE = 4,5 mm

SPLATE = 1,75 mm SPLATE = 2 mm SPLATE = 2,25 mm

SPAN = 12 mm

NOTES:

0,23 0,32 0,41 0,52 0,62 0,33 0,43 0,55 0,66 0,78 0,90 1,13 0,46 0,59 0,72 0,85 0,97 1,10 1,23 0,77 0,91 1,05 1,19 1,33 0,84 0,99 1,14 1,30 1,45 1,75 2,06 2,36

SPLATE = 5 mm

5

0,77 0,97 0,99 0,99 1,18 1,18 1,18 1,43 1,47 1,59 1,72 1,75 1,75 1,75

SPLATE = 2,5 mm

4,5

SPAN = 15 mm

4

SPAN = 9 mm

3,5

SPAN = 12 mm

3

0,76 0,83 0,92 0,92 0,92 0,99 0,99 0,99 0,99 1,31 1,40 1,40 1,46 1,46 1,46 1,46 1,46

SPLATE = 3 mm

A [mm]

SPLATE = 1,5 mm

b [mm]

SPAN = 12 mm

L [mm]

SPAN = 9 mm

d1 [mm]

0,49 0,66 0,77 0,92 1,08 0,73 0,85 1,01 1,19 1,34 1,45 1,62 0,98 1,15 1,33 1,49 1,69 1,81 1,90 1,53 1,69 1,90 2,12 2,33 1,75 1,90 2,12 2,34 2,57 2,93 3,14 3,35

GENERAL PRINCIPLES: • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

The coefficients γm and kmod should be taken according to the current regulations used for the calculation.

• F or the calculation process a timber characteristic density ρ k = 385 kg/m3 has been considered. • The values have been calculated considering a minimum tip penetration depth of 6d1. • Sizing and verification of the wooden elements, panels and steel plates must be done separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained.

CARPENTRY | HTS | 21


SHS

BIT INCLUDED

SMALL HEAD SCREW INVISIBLE HEAD Hidden 60° head for easy insertion in small spaces without creating openings in the wood.

FASTENING ON TONGUE AND GROOVE BOARDS Ideal for use in joints to secure beads or small elements.

GEOMETRY

CODES AND DIMENSIONS d1

CODE

[mm]

3,5 TX 10

dK

L

b

A

A

pcs

[mm]

[mm]

[mm]

[mm]

SHS3530

5,75

30

20

10

500

SHS3540

5,75

40

26

14

500

SHS3550

5,75

50

34

16

500

SHS3560

5,75

60

40

20

500

dk

d1

60° b L

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE The smaller head and high-performing thread guarantee perfect insertion of the screws in small thicknesses, avoiding splitting.

22 | SHS | CARPENTRY


SHS AISI410

BIT INCLUDED

SMALL HEAD SCREW INVISIBLE HEAD The smaller head and high performing thread guarantee perfect insertion of the screw in small thicknesses. Ideal for exterior applications.

AISI410 Martensitic stainless steel with an excellent balance between mechanical resistance and corrosion resistance.

GEOMETRY CODES AND DIMENSIONS d1

CODE

dK

L

b

A

[mm]

[mm]

[mm]

[mm]

SHS3540AS

5,75

40

26

14

500

SHS3550AS

5,75

50

34

16

500

SHS3560AS

5,75

60

40

20

500

[mm] 3,5 TX 10

A pcs dk

d1

60° b L

MATERIAL AISI410 martensitic stainless steel.

FIELDS OF USE Ideal for exterior use, thanks to the stainless steel.

CARPENTRY | SHS AISI410 | 23


HBS

BIT INCLUDED

COUNTERSUNK SCREW SUPERIOR STRENGTH Steel with superb yield and failure strength (f y,k = 1000 N/mm2). Very high torsional strength ftor,k for safer screwing.

STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°). Asymmetric “umbrella” threading for better wood pull-through.

DUCTILITY Bending angle 20° greater than standard, certified according to ETA 11/0030, Cyclical SEISMIC-REV tests according to EN 12512. Seismic performance tested according to EN 14592.

CHROMIUM (VI) FREE Total absence of hexavalent chromium. Compliance with the strictest regulations governing chemical substances (SVHC). REACH information available.

PROPERTIES FOCUS

extremely complete range

HEAD

countersunk with under-head ribs

DIAMETER

from 3,5 mm to 12,0 mm

LENGTH

from 30 mm to 600 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE • wood based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.

24 | HBS | CARPENTRY

ETA 11/0030


CLT Values also tested, certified and calculated for CLT. Calculation tables and dimensioning software (MyProject) for CLT available in the catalogue and online.

LVL Values also tested, certified and calculated for CLT and high density woods such as MicrollamÂŽ LVL.

CARPENTRY | HBS | 25


Valley jack rafter joint with HBS screws, diameter 8 mm.

Fastening CLT walls with 6 mm diameter HBS screws.

GEOMETRY AND MECHANICAL CHARACTERISTICS

B

S

H

dk

X X

A

d2 d1

90° t1

ds

b L

Nominal diameter

d1

[mm]

3,5

4

4,5

5

6

8

10

12

Head diameter

dK

[mm]

7,00

8,00

9,00

10,00

12,00

14,50

18,25

20,75

Tip diameter

d2

[mm]

2,25

2,55

2,80

3,40

3,95

5,40

6,40

6,80

Shank diameter

dS

[mm]

2,45

2,75

3,15

3,65

4,30

5,80

7,00

8,00

Head thickness

t1

[mm]

2,20

2,80

2,80

3,10

4,50

4,50

5,80

7,20

Pre-drilling hole diameter

dv

[mm]

2,0

2,5

3,0

3,0

4,0

5,0

6,0

7,0

Characteristic yield moment

My,k

[Nmm]

2143

3033

4119

5417

9494

20057

35830

47966

fax,k

[N/mm2]

11,7

11,7

11,7

11,7

11,7

11,7

11,7

11,7

fhead,k

[N/mm2]

10,5

10,5

10,5

10,5

10,5

10,5

10,5

10,5

f tens,k

[kN]

3,8

5,0

6,4

7,9

11,3

20,1

31,4

33,9

Characteristic withdrawal-resistance parameter Characteristic head-pull-through parameter Characteristic tensile strength

26 | HBS | CARPENTRY


CODES AND DIMENSIONS d1

CODE

[mm] 3,5 TX 15

4 TX 20

4,5 TX 20

5 TX 25

6 TX 30

HBS3540 HBS3545 HBS3550 HBS430 HBS435 HBS440 HBS445 HBS450 HBS460 HBS470 HBS480 HBS4540 HBS4545 HBS4550 HBS4560 HBS4570 HBS4580 HBS540 HBS545 HBS550 HBS560 HBS570 HBS580 HBS590 HBS5100 HBS5120 HBS640 HBS650 HBS660 HBS670 HBS680 HBS690 HBS6100 HBS6110 HBS6120 HBS6130 HBS6140 HBS6150 HBS6160 HBS6180 HBS6200 HBS6220 HBS6240 HBS6260 HBS6280 HBS6300

L

b

A

pcs

[mm]

[mm]

[mm]

40 45 50 30 35 40 45 50 60 70 80 40 45 50 60 70 80 40 45 50 60 70 80 90 100 120 40 50 60 70 80 90 100 110 120 130 140 150 160 180 200 220 240 260 280 300

18 24 24 18 18 24 30 30 35 40 40 24 30 30 35 40 40 24 24 24 30 35 40 45 50 60 35 35 30 40 40 50 50 60 60 60 75 75 75 75 75 75 75 75 75 75

22 21 26 12 17 16 15 20 25 30 40 16 15 20 25 30 40 16 21 26 30 35 40 45 50 60 8 15 30 30 40 40 50 50 60 70 65 75 85 105 125 145 165 185 205 225

500 400 400 500 500 500 400 400 200 200 200 400 400 200 200 200 200 200 200 200 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

D1

D2

h

pcs

d1

CODE

[mm]

8 TX 40

10 TX 40

12 TX 50

HBS880 HBS8100 HBS8120 HBS8140 HBS8160 HBS8180 HBS8200 HBS8220 HBS8240 HBS8260 HBS8280 HBS8300 HBS8320 HBS8340 HBS8360 HBS8380 HBS8400 HBS8440 HBS8480 HBS8520 HBS1080 HBS10100 HBS10120 HBS10140 HBS10160 HBS10180 HBS10200 HBS10220 HBS10240 HBS10260 HBS10280 HBS10300 HBS10320 HBS10340 HBS10360 HBS10380 HBS10400 HBS12120 HBS12160 HBS12200 HBS12240 HBS12280 HBS12320 HBS12360 HBS12400 HBS12440 HBS12480 HBS12520 HBS12560 HBS12600

L

b

A

[mm]

[mm]

[mm]

80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 120 160 200 240 280 320 360 400 440 480 520 560 600

52 52 60 60 80 80 80 80 80 80 80 100 100 100 100 100 100 100 100 100 52 52 60 60 80 80 80 80 80 80 80 100 100 100 100 100 100 80 80 80 80 80 120 120 120 120 120 120 120 120

28 48 60 80 80 100 120 140 160 180 200 200 220 240 260 280 300 340 380 420 28 48 60 80 80 100 120 140 160 180 200 200 220 240 260 280 300 40 80 120 160 200 200 240 280 320 360 400 440 480

pcs 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 25 25 25 25 25 25 25 25 25 25 25 25 25

HUS TURNED WASHER dHBS

CODE

[mm]

[mm]

[mm]

[mm]

6

HUS6

7,5

20,0

4,0

100

8

HUS8

8,5

25,0

5,0

50

10

HUS10

11

32,0

6,0

50

12

HUS12

14,0

37,0

7,5

25

D2 D 1

h dHBS

CARPENTRY | HBS | 27


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES 3,5

4

4,5

18

20

23

SCREWS INSERTED WITH PRE-DRILLING HOLES

5

6

8

10

12

25

30

40

50

60

4∙d

3,5

4

4,5

14

16

18

5

6

8

10

12

4∙d

20

24

32

40

48

a1

[mm]

5∙d

a2

[mm]

3∙d

11

12

14

3∙d

15

18

24

30

36

4∙d

14

16

18

4∙d

20

24

32

40

48

a3,t

[mm] 12∙d

42

48

54

12∙d

60

72

96

120

144

7∙d

25

28

32

7∙d

35

42

56

70

84

a3,c

[mm]

7∙d

25

28

32

7∙d

35

42

56

70

84

7∙d

25

28

32

7∙d

35

42

56

70

84

a4,t

[mm]

3∙d

11

12

14

3∙d

15

18

24

30

36

5∙d

18

20

23

7∙d

35

42

56

70

84

a4,c

[mm]

3∙d

11

12

14

3∙d

15

18

24

30

36

3∙d

11

12

14

3∙d

15

18

24

30

36

5∙d

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 3,5

4

4,5

5

6

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

8

10

12

3,5

4

4,5

5

6

8

10

12

a1

[mm] 10∙d

35

40

45

12∙d

60

72

96

120

144

5∙d

18

20

23

5∙d

25

30

40

50

60

a2

[mm]

5∙d

18

20

23

5∙d

25

30

40

50

60

5∙d

18

20

23

5∙d

25

30

40

50

60

35

40

45

10∙d

50

60

80

100

120

a3,t

[mm] 15∙d

53

60

68

15∙d

75

90

120

150

180 10∙d

a3,c

[mm] 10∙d

35

40

45

10∙d

50

60

80

100

120 10∙d

35

40

45

10∙d

50

60

80

100

120

a4,t

[mm]

5∙d

18

20

23

5∙d

25

30

40

50

60

7∙d

25

28

32

10∙d

50

60

80

100

120

a4,c

[mm]

5∙d

18

20

23

5∙d

25

30

40

50

60

5∙d

18

20

23

5∙d

25

30

40

50

60

d = nominal screw diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: • The minimum distances are compliant with EN 1995:2014, according to ETA-11/0030, considering a wood characteristic density of ρ k ≤ 420 kg/m3 and calculation diameter of d = nominal screw diameter. • The minimum spacing for all steel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,7.

28 | HBS | CARPENTRY

• The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1,5.


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

timber-to-timber

panel-timber (1)

TENSION

thin steel-timber plate (2)

thick steel-timber plate (3)

Splate

thread withdrawal(4)

head pull-through (5)

Rhead,k

A L b d1

A

RV,k

RV,k

RV,k

RV,k

Rax,k

[mm]

[kN]

[kN]

[kN]

[kN]

[kN]

[kN]

40 45 50 30 35 40 45 50 60 70 80 40 45 50 60 70 80 40 45 50 60 70 80 90 100 120

18 24 24 16 16 24 24 24 30 35 40 24 30 30 35 40 40 24 24 24 30 35 40 45 50 50

22 21 26 14 19 16 21 26 30 35 40 16 15 20 25 30 40 16 21 26 30 35 40 45 50 70

0,73 0,79 0,79 0,70 0,79 0,83 0,94 1,00 1,00 1,00 1,00 0,98 0,96 1,06 1,19 1,22 1,22 1,12 1,19 1,29 1,46 1,46 1,46 1,46 1,46 1,46

0,80 1,06 1,06 0,81 0,81 1,21 1,21 1,21 1,52 1,77 2,02 1,36 1,70 1,70 1,99 2,27 2,27 1,52 1,52 1,52 1,89 2,21 2,53 2,84 3,16 3,16

0,56 0,56 0,56 0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,92 0,92 0,92 0,92 0,92 0,92 1,13 1,13 1,13 1,13 1,13 1,13 1,13 1,13 1,13

SPLATE ≤ 4 mm SPLATE ≤ 4,5 mm

SPLATE ≤ 2 mm SPLATE ≤ 2,3 mm

SPAN = 12 mm

0,85 0,92 0,92 0,93 1,02 1,12 1,12 1,12 1,20 1,26 1,32 1,33 1,42 1,42 1,49 1,56 1,56 1,46 1,56 1,56 1,65 1,73 1,81 1,89 1,97 1,97

SPLATE ≤ 5 mm

5

SPLATE ≤ 2,5 mm

4,5

SPAN = 15 mm

4

SPAN = 15 mm

3,5

0,72 0,72 0,72 0,76 0,84 0,84 0,84 0,84 0,84 0,84 0,84 1,06 1,06 1,06 1,06 1,06 1,06 1,16 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20

SPLATE ≤ 3,5 mm

b [mm]

SPLATE ≤ 1,8 mm

L [mm]

SPAN = 12 mm

d1 [mm]

1,13 1,19 1,19 1,26 1,36 1,46 1,46 1,46 1,53 1,60 1,66 1,75 1,83 1,83 1,90 1,97 1,97 2,00 2,05 2,05 2,14 2,22 2,30 2,38 2,46 2,46

NOTES: (1)

The characteristic shear resistances are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN.

(2)

The shear resistance characteristics are calculated considering the case of a thin plate (SPLATE ≤ 0,5 d1).

(3)

The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1).

(4)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

(5)

The axial resistance to head pull-through, with and without a washer, was calculated using wood elements.

In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

CARPENTRY | HBS | 29


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

timber-to-timber

TENSION

timber-to-timber thin steel-timber thick steel-timber with washer plate (1) plate (2) legno-legno con rondella

thread withdrawal(3)

Splate

head head pull-through pull-through (4) with washer (4)

A L b

RV,k [kN] 0,89 1,66 1,94 2,23 2,42 2,61 2,61 2,80 2,80 2,80 2,80 2,80 2,80 2,80 2,80 2,80 2,80 2,80 2,80 2,80 3,31 3,99 4,19 4,19 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,45 4,33 4,92 5,77 5,77 6,40 6,40 6,40 6,40 6,40 6,40 6,40 6,77 6,77 6,77 6,77 6,77 6,77

30 | HBS | CARPENTRY

RV,k

RV,k

[kN] 1,64 2,08 2,24 2,42 2,42 2,61 2,61 2,80 2,80 2,80 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,99 3,99 4,19 4,19 4,70 4,70 4,70 4,70 4,70 4,70 4,70 5,20 5,20 5,20 5,20 5,20 5,20 5,20 5,20 5,20 4,75 5,51 5,77 5,77 6,40 6,40 6,40 6,40 6,40 6,40 6,40 7,03 7,03 7,03 7,03 7,03 7,03

[kN] 2,60 2,98 2,93 3,12 3,12 3,30 3,30 3,49 3,49 3,49 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 5,10 5,10 5,30 5,30 5,81 5,81 5,81 5,81 5,81 5,81 5,81 6,31 6,31 6,31 6,31 6,31 6,31 6,31 6,31 6,31 6,94 7,12 7,37 7,37 8,00 8,00 8,00 8,00 8,00 8,00 8,00 8,63 8,63 8,63 8,63 8,63 8,63

SPLATE ≤ 6 mm

RV,k [kN] 0,89 1,53 1,78 1,88 2,07 2,07 2,07 2,07 2,07 2,07 2,07 2,07 2,07 2,07 2,07 2,07 2,07 2,07 2,07 2,07 2,59 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,63 4,22 4,82 4,82 4,82 4,82 4,82 4,82 4,82 4,82 4,82 4,82 4,82 4,82 4,82 4,82 4,82

SPLATE ≤ 8 mm

A [mm] 8 15 30 30 40 40 50 50 60 70 65 75 85 105 125 145 165 185 205 225 28 48 60 80 80 100 120 140 160 180 200 200 220 240 260 280 300 340 380 420 28 48 60 80 80 100 120 140 160 180 200 200 220 240 260 280 300

SPLATE ≤ 10 mm

b [mm] 35 35 30 40 40 50 50 60 60 60 75 75 75 75 75 75 75 75 75 75 52 52 60 60 80 80 80 80 80 80 80 100 100 100 100 100 100 100 100 100 52 52 60 60 80 80 80 80 80 80 80 100 100 100 100 100 100

SPLATE ≤ 4 mm

L

S PLATE ≤ 5 mm

d1

[mm] [mm] 40 50 60 70 80 90 100 110 120 130 6 140 150 160 180 200 220 240 260 280 300 80 100 120 140 160 180 200 220 240 260 8 280 300 320 340 360 380 400 440 480 520 80 100 120 140 160 180 200 220 240 10 260 280 300 320 340 360 380 400

S PLATE ≤ 3 mm

d1

Rax,k

Rhead,k

Rhead,k

[kN] 2,65 2,65 2,27 3,03 3,03 3,79 3,79 4,55 4,55 4,55 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,25 5,25 6,06 6,06 8,08 8,08 8,08 8,08 8,08 8,08 8,08 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 6,57 6,57 7,58 7,58 10,10 10,10 10,10 10,10 10,10 10,10 10,10 12,63 12,63 12,63 12,63 12,63 12,63

[kN] 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77

[kN] 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 4,53 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 11,60 11,60 11,60 11,60 11,60 11,60 11,60 11,60 11,60 11,60 11,60 11,60 11,60 11,60 11,60 11,60 11,60


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

timber-to-timber

TENSION

timber-to-timber thin steel-timber thick steel-timber with washer plate (1) plate (2) legno-legno con rondella

thread withdrawal(3)

Splate

head head pull-through pull-through (4) with washer (4)

A L b d1

b

A

RV,k

RV,k

RV,k

RV,k

[mm] 80 80 80 80 80 120 120 120 120 120 120 120 120

[mm] 40 80 120 160 200 200 240 280 320 360 400 440 480

[kN] 4,87 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00

[kN] 6,68 7,81 7,81 7,81 7,81 8,65 8,65 8,65 8,65 8,65 8,65 8,65 8,65

[kN]

[kN] 9,78 9,78 9,78 9,78 9,78 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,30

NOTES:

7,81 7,81 7,81 7,81 7,81 9,32 9,32 9,32 9,32 9,32 9,32 9,32 9,32

SPLATE ≤ 12 mm

L

SPLATE ≤ 6 mm

d1

[mm] [mm] 120 160 200 240 280 320 360 12 400 440 480 520 560 600

Rax,k

Rhead,k

Rhead,k

[kN] 12,12 12,12 12,12 12,12 12,12 18,18 18,18 18,18 18,18 18,18 18,18 18,18 18,18

[kN] 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88

[kN] 15,51 15,51 15,51 15,51 15,51 15,51 15,51 15,51 15,51 15,51 15,51 15,51 15,51

GENERAL PRINCIPLES:

The shear resistance characteristics are calculated considering the case of a thin plate (SPLATE ≤ 0,5 d1).

• C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1).

• Design values can be obtained from characteristic values as follows:

(1)

(2)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

(3)

Rd =

Rk kmod γm

The axial resistance to head pull-through, with and without a washer, was calculated using wood elements.

The coefficients γm and kmod should be taken according to the current regulations used for the calculation.

In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

• F or the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030.

(4)

• F or the calculation process a timber characteristic density ρ k = 385 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Sizing and verification of the wooden elements, panels and steel plates must be done separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

CARPENTRY | HBS | 31


MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

lateral face (1)

narrow face (2)

6

8

10

12

24

32

40

48

20

25

48

60

48

60

48

60

20

25

a1

[mm]

4∙d

a2

[mm]

2,5∙d

15

a3,t

[mm]

6∙d

36

a3,c

[mm]

6∙d

36

a4,t

[mm]

6∙d

36

a4,c

[mm]

2,5∙d

15

6

8

10

12

10∙d

60

80

100

120

30

4∙d

24

32

40

48

72

12∙d

72

96

120

144

72

7∙d

42

56

70

84

72

6∙d

36

48

60

72

30

3∙d

18

24

30

36

d = nominal screw diameter

a4,c

a4,t α

F

F

α

α

F α a3,c

a3,t

a2 a2

a2

a1

a1

a3,c a4,c

F

a3,t

F

a4,c

tCLT

a3,c a4,c a4,t

F

tCLT

NOTES: The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.

32 | HBS | CARPENTRY

(1)

Minimum CLT thickness tmin = 10∙d

(2)

Minimum CLT thickness tmin = 10∙d and minimum screw penetration depth tpen = 10∙d


MINIMUM DISTANCES FOR SHEAR LOADS | LVL

a1 a2 a3,t a3,c a4,t a4,c

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITHOUT PRE-DRILLING HOLES (1)

SCREWS INSERTED WITHOUT PRE-DRILLING HOLES (1)

[mm] [mm] [mm] [mm] [mm] [mm]

12∙d 5∙d 15∙d 10∙d 5∙d 5∙d

5 60 25 75 50 25 25

6 72 30 90 60 30 30

8 96 40 120 80 40 40

10 120 50 150 100 50 50

5∙d 5∙d 10∙d 10∙d 10∙d 5∙d

SCREWS INSERTED WITH PRE-DRILLING HOLES a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm]

5∙d 3∙d 12∙d 7∙d 3∙d 3∙d

5 25 15 60 35 15 15

6 30 18 72 42 18 18

8 40 24 96 56 24 24

5 25 25 50 50 50 25

6 30 30 60 60 60 30

8 40 40 80 80 80 40

10 50 50 100 100 100 50

SCREWS INSERTED WITH PRE-DRILLING HOLES

10 50 30 120 70 30 30

4∙d 4∙d 7∙d 7∙d 7∙d 3∙d

5 20 20 35 35 35 15

6 24 24 42 42 42 18

8 32 32 56 56 56 24

10 40 40 70 70 70 30

d = nominal screw diameter

a4,c

a4,t α

a2

F

F α a1

F

α

a3,t

α

a2 a2 F a1

a3,c

NOTES: (1)

Minimum distances are obtained from experimental tests carried out at Eurofins Expert Services Oy, Espoo, Finland (Report EUFI29-19000819-T1/T2).

• Minimum distances in accordance with EN 1995:2014. • The minimum distances are applicable when using both parallel and cross grain LVL. • The minimum distances without pre-drilling hole are valid for minimum thickness of LVL elements tmin:

where: t1 is the thickness in mm of the LVL element in a connection with 2 wooden elements. For connections with 3 or more elements, t 1 represents the thickness of the most external LVL; t2 is the thickness in mm of the central element in a connection with 3 or more elements.

t1 ≥ 8,4d -9 t2 ≥

11,4d 75

CARPENTRY | HBS | 33


STATIC VALUES | CLT SHEAR CLT - CLT lateral face

geometry

panel - CLT (1) lateral face

CLT - panel - CLT (1) lateral face

t

A L b d1

d1

L

b

A

RV,k

RV,k

RV,k

t

RV,k

t

RV,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[kN]

[mm]

[kN]

[mm]

[kN] -

8

0,80

1,33

1,38

-

-

-

35

15

1,44

1,46

1,53

-

-

-

-

60

30

30

1,63

1,46

1,53

-

-

-

-

70

40

30

1,74

1,46

1,53

30

1,71

30

2,19

80

40

40

1,97

1,46

1,53

35

1,71

35

2,19

1,46

1,53

40

1,71

40

2,19

1,97

1,46

1,53

45

1,71

45

2,19

110

60

50

1,97

1,46

1,53

50

1,71

50

2,19

120

60

60

1,97

1,46

1,53

130

60

70

1,97

140

75

65

1,97

150

75

75

1,97

160

75

85

1,97

1,46 1,46 1,46 1,46

1,53 1,53

55

1,71

60

1,71

65

1,71

70

1,71

1,53

75

1,53

SPAN = 15 mm

1,97

50

SPAN = 12 mm

40

50

SPAN = 15 mm

50

SPAN = 12 mm

90 100

55

2,19

60

2,19

65

2,19

70

2,19

1,71

75

2,19

180

75

105

1,97

1,46

1,53

85

1,71

85

2,19

200

75

125

1,97

1,46

1,53

95

1,71

95

2,19

220

75

145

1,97

1,46

1,53

105

1,71

105

2,19

240

75

165

1,97

1,46

1,53

115

1,71

115

2,19

260

75

185

1,97

1,46

1,53

125

1,71

125

2,19

280

75

205

1,97

1,46

1,53

135

1,71

135

2,19

300

75

225

1,97

1,46

1,53

145

1,71

145

2,19

80

52

28

2,42

2,23

2,30

-

-

-

18,00

100

52

48

3,04

2,23

2,30

45

2,39

40

2,92

120

60

60

3,11

2,23

2,30

55

2,39

50

2,92

140

60

80

3,11

2,23

2,30

65

2,39

60

2,92

160

80

80

3,11

2,23

2,30

75

2,39

70

2,92 2,92

100

3,11

2,23

2,30

85

2,39

80

80

120

3,11

2,23

2,30

95

2,39

90

2,92

220

80

140

3,11

2,23

2,30

105

2,39

100

2,92

240

80

160

3,11

260

80

180

3,11

2,23 2,23

280

80

200

3,11

300

100

200

3,11

2,23

320

100

220

3,11

2,23

340

100

240

3,11

360

100

260

3,11

2,30 2,30

2,39 2,39

135

2,39

145

2,39

2,30

155

2,23

2,30

2,23

2,30

2,23

2,30

115 125

2,30

SPAN = 18 mm

80

SPAN = 15 mm

180 200

SPAN = 18 mm

8

35

50

SPAN = 15 mm

6

40

110

2,92

120

2,92

130

2,92

140

2,92

2,39

150

2,92

165

2,39

160

2,92

175

2,39

170

2,92

380

100

280

3,11

2,23

2,30

185

2,39

180

2,92

400

100

300

3,11

2,23

2,30

195

2,39

190

2,92

440

100

340

3,11

2,23

2,30

215

2,39

210

2,92

480

100

380

3,11

2,23

2,30

235

2,39

230

2,92

520

100

420

3,11

2,23

2,30

255

2,39

250

2,92

34 | HBS | CARPENTRY


CHARACTERISTIC VALUES EN 1995:2014 SHEAR CLT - timber lateral face

TENSION timber - CLT lateral face

thread withdrawal lateral face (2)

thread withdrawal narrow face (3)

head pull-through (4)

head pull-through with washer (4)

RV,k

RV,k

Rax,k

Rax,k

Rhead,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

[kN]

[kN]

0,80

0,89

2,46

-

1,51

4,20

1,46

1,50

2,46

-

1,51

4,20

1,69

1,72

2,11

-

1,51

4,20

1,77

1,85

2,81

-

1,51

4,20

2,00

2,03

2,81

-

1,51

4,20

2,00

2,03

3,51

-

1,51

4,20

2,00

2,03

3,51

-

1,51

4,20

2,00

2,03

4,21

-

1,51

4,20

2,00

2,03

4,21

-

1,51

4,20

2,00

2,03

4,21

-

1,51

4,20

2,00

2,03

5,27

-

1,51

4,20

2,00

2,03

5,27

-

1,51

4,20

2,00

2,03

5,27

-

1,51

4,20

2,00

2,03

5,27

-

1,51

4,20

2,00

2,03

5,27

-

1,51

4,20

2,00

2,03

5,27

-

1,51

4,20

2,00

2,03

5,27

-

1,51

4,20

2,00

2,03

5,27

-

1,51

4,20

2,00

2,03

5,27

-

1,51

4,20

2,00

2,03

5,27

-

1,51

4,20

2,45

2,55

4,87

3,70

2,21

6,56

3,08

3,21

4,87

3,70

2,21

6,56

3,17

3,21

5,62

4,21

2,21

6,56

3,17

3,21

5,62

4,21

2,21

6,56

3,17

3,21

7,49

5,45

2,21

6,56

3,17

3,21

7,49

5,45

2,21

6,56

3,17

3,21

7,49

5,45

2,21

6,56

3,17

3,21

7,49

5,45

2,21

6,56

3,17

3,21

7,49

5,45

2,21

6,56

3,17

3,21

7,49

5,45

2,21

6,56

3,17

3,21

7,49

5,45

2,21

6,56

3,17

3,21

9,36

6,66

2,21

6,56

3,17

3,21

9,36

6,66

2,21

6,56

3,17

3,21

9,36

6,66

2,21

6,56

3,17

3,21

9,36

6,66

2,21

6,56

3,17

3,21

9,36

6,66

2,21

6,56

3,17

3,21

9,36

6,66

2,21

6,56

3,17

3,21

9,36

6,66

2,21

6,56

3,17

3,21

9,36

6,66

2,21

6,56

3,17

3,21

9,36

6,66

2,21

6,56

CARPENTRY | HBS | 35


STATIC VALUES | CLT SHEAR CLT - CLT lateral face

geometry

panel - CLT (1) lateral face

CLT - panel - CLT (1) lateral face

t

A L b d1

d1

L

b

A

RV,k

RV,k

RV,k

t

RV,k

t

RV,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[kN]

[mm]

[kN]

[mm]

[kN]

28

3,40

3,12

3,31

-

-

-

22,00

48

3,86

3,12

3,31

40

3,12

-

22,00 3,89

3,12

3,31

50

3,12

50

4,49

3,12

3,31

60

3,12

60

3,89

160

80

80

4,57

3,12

3,31

70

3,12

70

3,89

180

80

100

4,57

3,12

3,31

80

3,12

80

3,89

200

80

120

4,57

3,12

3,31

220

80

140

4,57

3,12 3,12

3,31

3,12 3,12

80

160

4,57

80

180

4,57

280

80

200

4,57

300

100

200

4,57

3,12

3,31

140

3,12

140

3,89

320

100

220

4,57

3,12

3,31

150

3,12

150

3,89

3,12

3,31

110

3,12 3,12

130

3,12

3,89 3,89

240

3,31

120

90 100

260

3,12

3,31

90 100

SPAN = 22 mm

4,45

80

SPAN = 18 mm

60

60

SPAN = 22 mm

60

SPAN = 18 mm

120 140

110

3,89

120

3,89

130

3,89

340

100

240

4,57

3,12

3,31

160

3,12

160

3,89

360

100

260

4,57

3,12

3,31

170

3,12

170

3,89

380

100

280

4,57

3,12

3,31

180

3,12

180

3,89

400

100

300

4,57

3,12

3,31

190

3,12

190

3,89

120

80

40

4,54

-

-

-

-

-

-

160

80

80

5,68

-

-

-

-

-

-

120

5,68

-

-

-

-

-

-

80

160

5,68

-

-

-

-

-

-

280

80

200

5,68

-

-

-

-

-

-

320

120

200

5,68

-

-

-

-

-

-

360

120

240

5,68

-

-

-

-

-

-

400

120

280

5,68

-

-

-

-

-

-

440

120

320

5,68

-

-

-

-

-

-

480

120

360

5,68

-

-

-

-

-

-

-

80

240

-

200

-

12

52 52

-

10

80 100

520

120

400

5,68

-

-

-

-

-

-

560

120

440

5,68

-

-

-

-

-

-

600

120

480

5,68

-

-

-

-

-

-

NOTES: (1)

The characteristic shear resistances are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN.

(2)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

(3)

The axial thread withdrawal resistance is valid for minimum thickness of the element of tmin = 10∙d1 and minimum screw pull-through depth tpen = 10∙d1.

(4)

The axial resistance to head pull-through, with and without a washer, was calculated using wood elements.

36 | HBS | CARPENTRY

In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.


CHARACTERISTIC VALUES EN 1995:2014 SHEAR CLT - timber lateral face

TENSION timber - CLT lateral face

thread withdrawal lateral face (2)

thread withdrawal narrow face (3)

head pull-through (4)

head pull-through with washer (4)

RV,k

RV,k

Rax,k

Rax,k

Rhead,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

[kN]

[kN]

3,46

3,57

6,08

4,42

3,50

10,75

4,02

4,06

6,08

4,42

3,50

10,75

4,55

4,62

7,02

5,03

3,50

10,75

4,65

4,62

7,02

5,03

3,50

10,75

4,65

4,72

9,36

6,51

3,50

10,75

4,65

4,72

9,36

6,51

3,50

10,75

4,65

4,72

9,36

6,51

3,50

10,75

4,65

4,72

9,36

6,51

3,50

10,75

4,65

4,72

9,36

6,51

3,50

10,75

4,65

4,72

9,36

6,51

3,50

10,75

4,65

4,72

9,36

6,51

3,50

10,75

4,65

4,72

11,70

7,96

3,50

10,75

4,65

4,72

11,70

7,96

3,50

10,75

4,65

4,72

11,70

7,96

3,50

10,75

4,65

4,72

11,70

7,96

3,50

10,75

4,65

4,72

11,70

7,96

3,50

10,75

4,65

4,72

11,70

7,96

3,50

10,75

4,60

4,80

11,23

7,54

4,52

14,37

5,79

5,88

11,23

7,54

4,52

14,37

5,79

5,88

11,23

7,54

4,52

14,37

5,79

5,88

11,23

7,54

4,52

14,37

5,79

5,88

11,23

7,54

4,52

14,37

5,79

5,88

16,85

10,86

4,52

14,37

5,79

5,88

16,85

10,86

4,52

14,37

5,79

5,88

16,85

10,86

4,52

14,37

5,79

5,88

16,85

10,86

4,52

14,37

5,79

5,88

16,85

10,86

4,52

14,37

5,79

5,88

16,85

10,86

4,52

14,37

5,79

5,88

16,85

10,86

4,52

14,37

5,79

5,88

16,85

10,86

4,52

14,37

GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard and national specification ÖNORM EN 1995 - Annex K in accordance with ETA-11/0030.

• Values were calculated considering the threaded part as being completely inserted into the wood.

• Design values can be obtained from characteristic values as follows:

• Sizing and verification of the wooden elements, panels and steel plates must be done separately.

R k Rd = k mod γm The coefficients γm and kmod should be taken according to the current regulations used for the calculation. • F or the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030.

• The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained. • The shear resistance characteristics are calculated considering a minimum fixing length of 4 d1.

• For the calculation process a timber density ρk = 350 kg/m3 has been considered.

CARPENTRY | HBS | 37


STATIC VALUES | LVL SHEAR geometry

LVL - LVL

LVL - LVL - LVL

LVL - timber

timber - LVL

t2 A L b d1

t1

d1

L

b

A

RV,k

t1

t2

RV,k

RV,k

RV,k

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

40

24

16

1,53

-

-

-

1,30

1,12

45

24

21

1,67

-

-

-

1,41

1,21

5

6

50

24

26

1,78

-

-

-

1,47

1,33

60

30

30

1,94

20,00

20,00

2,43

1,74

1,43

70

35

35

1,94

20,00

30,00

3,53

1,83

1,47

80

40

40

1,94

25,00

30,00

3,64

1,83

1,47

90

45

45

1,94

30,00

30,00

3,64

1,83

1,47

100

50

50

1,94

35,00

30,00

3,64

1,83

1,47

120

60

60

1,94

40,00

40,00

3,88

1,83

1,47

40

35

5

0,69

-

-

-

0,69

0,50

50

35

15

2,03

-

-

-

1,94

1,51

60

30

30

2,43

25,00

10,00

1,38

2,12

1,82

70

40

30

2,52

25,00

20,00

2,76

2,41

1,82

80

40

40

2,61

30,00

20,00

2,76

2,46

2,09

90

50

40

2,61

30,00

30,00

4,14

2,46

2,09

100

50

50

2,61

30,00

40,00

5,15

2,46

2,09

110

60

50

2,61

30,00

50,00

5,15

2,46

2,09

120

60

60

2,61

40,00

40,00

5,23

2,46

2,09

130

60

70

2,61

40,00

50,00

5,23

2,46

2,09

140

75

65

2,61

40,00

60,00

5,23

2,46

2,09

150

75

75

2,61

40,00

70,00

5,23

2,46

2,09

160

75

85

2,61

40,00

80,00

5,23

2,46

2,09

180

75

105

2,61

60,00

60,00

5,23

2,46

2,09

200

75

125

2,61

60,00

80,00

5,23

2,46

2,09

220

75

145

2,61

60,00

100,00

5,23

2,46

2,09

240

75

165

2,61

80,00

80,00

5,23

2,46

2,09

260

75

185

2,61

80,00

100,00

5,23

2,46

2,09

280

75

205

2,61

80,00

120,00

5,23

2,46

2,09

300

75

225

2,61

100,00

100,00

5,23

2,46

2,09

NOTES: The axial thread withdrawal resistance Rax,90,flat,k was calculated considering a 90° angle between the grain and the connector and for a fixing length of b in applications with both parallel and cross grain LVL.

(1)

(2)

The axial thread withdrawal resistance Rax,90,edge,k was calculated considering a 90° angle between the grain and the connector and for a fixing length of b in applications with parallel grain LVL.

38 | HBS | CARPENTRY

(3)

The axial resistance to head pull-through Rhead,k, with and without a washer, was calculated using parallel or cross grain LVL elements with tmin thickness.


CHARACTERISTIC VALUES EN 1995:2014 TENSION thread withdrawal edge (2)

head pull-through flat (3)

head pull-through with washer flat (3)

Rax,k

Rax,k

Rhead,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

thread withdrawal flat (1)

2,14

1,62

2,48

-

2,14

1,62

2,48

-

2,14

1,62

2,48

-

2,67

2,03

2,48

-

3,12

2,36

2,48

-

3,56

2,70

2,48

-

4,01

3,04

2,48

-

4,45

3,38

2,48

-

5,34

4,05

2,48

-

3,34

2,69

3,01

8,36

3,34

2,69

3,01

8,36

2,86

2,30

3,01

8,36

3,82

3,07

3,01

8,36

3,82

3,07

3,01

8,36

4,77

3,84

3,01

8,36

4,77

3,84

3,01

8,36

5,72

4,61

3,01

8,36

5,72

4,61

3,01

8,36

5,72

4,61

3,01

8,36

7,16

5,76

3,01

8,36

7,16

5,76

3,01

8,36

7,16

5,76

3,01

8,36

7,16

5,76

3,01

8,36

7,16

5,76

3,01

8,36

7,16

5,76

3,01

8,36

7,16

5,76

3,01

8,36

7,16

5,76

3,01

8,36

7,16

5,76

3,01

8,36

7,16

5,76

3,01

8,36

GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• F or the calculation process a LVL density of ρ k = 480 kg/m3 and timber density of 350 kg/m3 have been considered.

• Design values can be obtained from characteristic values as follows:

• Values were calculated considering the threaded part as being completely inserted into the wood.

R k Rd = k mod γm T he coefficients γm and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030 and experimental tests carried out at Eurofins Expert Services Oy, Espoo, Finland (Report EUFI29-19000819-T1/T2).

• Sizing and verification of the wooden elements, panels and steel plates must be done separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained.

CARPENTRY | HBS | 39


STATIC VALUES | LVL SHEAR geometry

LVL - LVL

LVL - LVL - LVL

LVL - timber

timber - LVL

t2 A L b d1

t1

d1

L

b

A

RV,k

t1

t2

RV,k

RV,k

RV,k

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

8

10

80

52

28

3,30

32,00

16,00

2,70

3,15

2,53

100

52

48

3,95

40,00

20,00

3,37

3,71

3,17

120

60

60

3,95

40,00

40,00

6,75

3,71

3,30

140

60

80

3,95

40,00

60,00

7,91

3,71

3,30

160

80

80

3,95

40,00

80,00

7,91

3,71

3,30

180

80

100

3,95

60,00

60,00

7,91

3,71

3,30

200

80

120

3,95

60,00

80,00

7,91

3,71

3,30

220

80

140

3,95

60,00

100,00

7,91

3,71

3,30

240

80

160

3,95

80,00

80,00

7,91

3,71

3,30

260

80

180

3,95

80,00

100,00

7,91

3,71

3,30

280

80

200

3,95

80,00

120,00

7,91

3,71

3,30

300

100

200

3,95

100,00

100,00

7,91

3,71

3,30

320

100

220

3,95

100,00

120,00

7,91

3,71

3,30

340

100

240

3,95

100,00

140,00

7,91

3,71

3,30

360

100

260

3,95

120,00

120,00

7,91

3,71

3,30

380

100

280

3,95

120,00

140,00

7,91

3,71

3,30

400

100

300

3,95

120,00

160,00

7,91

3,71

3,30

440

100

340

3,95

140,00

160,00

7,91

3,71

3,30

480

100

380

3,95

140,00

200,00

7,91

3,71

3,30

520

100

420

3,95

140,00

240,00

7,91

3,71

3,30

80

52

28

4,62

-

-

-

4,32

3,57

100

52

48

5,57

40,00

20,00

3,95

4,99

4,20

120

60

60

5,84

40,00

40,00

7,89

5,33

4,69

140

60

80

5,84

40,00

60,00

11,37

5,33

4,85

160

80

80

5,84

40,00

80,00

11,37

5,49

4,85

180

80

100

5,84

60,00

60,00

11,68

5,49

4,85

200

80

120

5,84

60,00

80,00

11,68

5,49

4,85

220

80

140

5,84

60,00

100,00

11,68

5,49

4,85

240

80

160

5,84

80,00

80,00

11,68

5,49

4,85

260

80

180

5,84

80,00

100,00

11,68

5,49

4,85

280

80

200

5,84

80,00

120,00

11,68

5,49

4,85

300

100

200

5,84

100,00

100,00

11,68

5,49

4,85

320

100

220

5,84

100,00

120,00

11,68

5,49

4,85

340

100

240

5,84

100,00

140,00

11,68

5,49

4,85

360

100

260

5,84

120,00

120,00

11,68

5,49

4,85

380

100

280

5,84

120,00

140,00

11,68

5,49

4,85

400

100

300

5,84

120,00

160,00

11,68

5,49

4,85

40 | HBS | CARPENTRY


CHARACTERISTIC VALUES EN 1995:2014 TENSION thread withdrawal flat (1)

thread withdrawal edge (2)

head pull-through flat (3)

head pull-through with washer flat (3)

Rax,k

Rax,k

Rhead,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

5,78

5,20

3,85

11,44

5,78

5,20

3,85

11,44

6,67

6,00

3,85

11,44

6,67

6,00

3,85

11,44

8,90

8,00

3,85

11,44

8,90

8,00

3,85

11,44

8,90

8,00

3,85

11,44

8,90

8,00

3,85

11,44

8,90

8,00

3,85

11,44

8,90

8,00

3,85

11,44

8,90

8,00

3,85

11,44

11,12

10,00

3,85

11,44

11,12

10,00

3,85

11,44

11,12

10,00

3,85

11,44

11,12

10,00

3,85

11,44

11,12

10,00

3,85

11,44

11,12

10,00

3,85

11,44

11,12

10,00

3,85

11,44

11,12

10,00

3,85

11,44

11,12

10,00

3,85

11,44

7,07

6,86

6,06

18,64

7,07

6,86

6,06

18,64

8,16

7,92

6,06

18,64

8,16

7,92

6,06

18,64

10,88

10,56

6,06

18,64

10,88

10,56

6,06

18,64

10,88

10,56

6,06

18,64

10,88

10,56

6,06

18,64

10,88

10,56

6,06

18,64

10,88

10,56

6,06

18,64

10,88

10,56

6,06

18,64

13,60

13,20

6,06

18,64

13,60

13,20

6,06

18,64

13,60

13,20

6,06

18,64

13,60

13,20

6,06

18,64

13,60

13,20

6,06

18,64

13,60

13,20

6,06

18,64

CARPENTRY | HBS | 41


CALCULATION EXAMPLES: VALLEY JACK RAFTER JOINT

CONNECTION TIMBER-TO-TIMBER / SINGLE SHEAR 1

ELEMENT 1

ELEMENT 2

B1 = 120 mm

B2 = 160 mm

H1 = 160 mm

1

H2 = 240 mm

2

Slope 30% (16,7°)

Slope 21% (12,0°)

Glulam GL24h

Glulam GL24h

PROJECT DATA

SCREW SELECTION

CONNECTION GEOMETRY

Fv,Rd = 7,17 kN

HBS = 10x180 mm

t1 = 60 mm

Service class = 1

Pre-drilling hole = no

α1 = 73,3° (90° - 16,7°)

Washer = no

t2 = 120 mm

Load duration = short

(fixing length in element 2)

α2 = 78,0° (90° - 12,0°)

SHEAR RESISTANCE CALCULATION (EN 1995:2014 and ETA-11/0030) My,k Rax,Rk Rax,Rk/4

d1 = 10,0 mm fh,1,k = 15,82 N/mm2 fh,2,k = 15,82 N/mm2 β = 1,00

= 35830 Nmm = min {resistance to thread withdrawal; resistance to head pull-through} = min {Rax,Rk ; Rhead,Rk} = 3,77 kN = 0,94 kN (cable effect)

fh,1,k t1 d

(a) = 9,49 kN

fh,2,k t2 d fh,1,k t1 d 1+β Rv,Rk = min

1,05

β + 2β2

fh,1,k t1 d 2+β

f t d 1,05 h,1,k 2 1 + 2β 1,15

t t 1+ 2 + 2 t1 t1

2β (1 + β)

2β (1 + β) +

2

+ β3

t2 t1

2

t -β 1+ 2 t1

R + ax,Rk 4

4β (2 + β) My,RK R - β + ax,Rk 4 fh,1,k d t12

4β (1 + 2β ) My,RK R 2β (1 + β) + - β + ax,Rk 4 fh,1,k d t22

(b) = 18,99 kN (c) = 7,39 kN (d) = 4,87 kN

2

2My,RK fh,1,k d +

Rax,Rk 4

(e) = 7,90 kN (f) = 4,82 kN

Rv,Rk = 4,82 kN

Rd =

Rk kmod γm

EN 1995:2014 kmod = 0,9 γm = 1,3 Rv,Rd = 3,33 kN

Italy - NTC 2018 kmod = 0,9 γm = 1,5 Rv,Rd = 2,89 kN

Minimum number of screws Fv,Rd / Rv,Rd = 2,15

Minimum number of screws Fv,Rd / Rv,Rd = 2,48

3 screws are hypothesized nef,SHEAR nef,TENSION

3 (screws perpendicular to the grain) 30,9 = 2,69

Recalculating the shear resistance, for the cable effect, a tensile strength for the individual screws is assumed at: Rax,Rk = 3,74 · 2,69 / 3 = 3,38 kN (head pull-through) Rax,Rk /4 = 0,85 kN (cable effect) Individual screw shear resistance: Rv,Rk = 4,71 kN

Rv,Rd ≥ Fv,Rd

42 | HBS | CARPENTRY

EN 1995:2014 Rv,Rd = 3,33 kN

Italy - NTC 2018 Rv,Rd = 2,89 kN

Connection shear resistance: Rv,Rd = 3,33 x 3 = 9,99 kN > 7,17 kN OK

Connection shear resistance: Rv,Rd = 2,89 x 3 = 8,67 kN > 7,17 kN OK

2


CALCULATION EXAMPLES: VALLEY JACK RAFTER JOINT WITH MYPROJECT

CONNECTION TIMBER-TO-TIMBER / SINGLE SHEAR ELEMENT 1

1

B1 = 120 mm H1 = 160 mm

2

ELEMENT 2 B2 = 160 mm 1

2

H2 = 240 mm

Slope 30% (16,7°)

Slope 21% (12,0°)

Glulam GL24h

Glulam GL24h

PROJECT DATA

SCREW SELECTION

CONNECTION GEOMETRY

Fv,Rd = 7,17 kN

HBS = 10x180 mm

t1 = 60 mm

Service class = 1

Pre-drilling hole = no

α1 = 73,3° (90° - 16,7°)

Washer = no

t2 = 120 mm

Load duration = short

(fixing length in element 2)

α2 = 78,0° (90° - 12,0°)

SHEAR RESISTANCE CALCULATION WITH MYPROJECT SOFTWARE (EN 1995:2014 and ETA-11/0030)

CALCULATION REPORT

CARPENTRY | HBS | 43


HBS EVO

BIT INCLUDED

COATING

ETA 11/0030

COUNTERSUNK SCREW C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.

AGGRESSIVE WOODS Ideal for applications with woods containing tannin or treated with impregnating agents or other chemical processes.

STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°). Asymmetric “umbrella” threading for better wood pull-through.

SUPERIOR STRENGTH Steel with superb yield and failure strength (f y,k = 1000 N/mm2). Very high torsional strength ftor,k for safer screwing.

CHARACTERISTICS FOCUS

corrosiveness class C4

HEAD

countersunk with under-head ribs

DIAMETER

from 5,0 mm to 8,0 mm

LENGTH

from 80 mm to 320 mm

MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.

FIELDS OF USE • wood based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.

44 | HBS EVO | CARPENTRY


SERVICE CLASS 3 Certified for use in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions. Ideal for fastening timber framed panels and lattice beams (Rafter, Truss).

OAK FRAME Values also tested, certified and calculated for high density woods. Ideal for fastening aggressive woods containing tannin, such as chestnut and oak.

CARPENTRY | HBS EVO | 45


Fastening sill beams in frame structures.

Fastening outdoor fencing.

GEOMETRY AND MECHANICAL CHARACTERISTICS

B

S

H

dk

X X

A

d2 d1

90° ds

t1

b L

Nominal diameter

d1

[mm]

5

6

8

Head diameter

dk

[mm]

10,00

12,00

14,50

Tip diameter

d2

[mm]

3,40

3,95

5,40

Shank diameter

ds

[mm]

3,65

4,30

5,80

Head thickness

t1

[mm]

3,10

4,50

4,50

Pre-drilling hole diameter

dv

[mm]

3,0

4,0

5,0

Characteristic yield moment

My,k

[Nmm]

5417

9494

20057

Characteristic withdrawal-resistance parameter Characteristic head-pull-through parameter

fax,k

[N/mm2]

11,7

11,7

11,7

fhead,k

[N/mm2]

10,5

10,5

10,5

Characteristic tensile strength

f tens,k

[kN]

7,9

11,3

20,1

46 | HBS EVO | CARPENTRY


CODES AND DIMENSIONS d1

CODE

[mm] 5 TX 25

6 TX 30

L

b

A

pcs

d1

CODE

[mm]

L

b

A [mm]

pcs

[mm]

[mm]

[mm]

[mm]

[mm]

HBSEVO580

80

40

40

100

HBSEVO8100

100

52

48

100

HBSEVO590

90

45

45

100

HBSEVO8120

120

60

60

100

HBSEVO5100

100

50

50

100

HBSEVO8140

140

60

80

100

HBSEVO680

80

40

40

100

HBSEVO8160

160

80

80

100

HBSEVO8180

180

80

100

100

HBSEVO8200

200

80

120

100

HBSEVO6100

100

50

50

100

HBSEVO6120

120

60

60

100

HBSEVO6140

140

75

65

100

HBSEVO8220

220

80

140

100

HBSEVO6160

160

75

85

100

HBSEVO8240

240

80

160

100

HBSEVO6180

180

75

105

100

HBSEVO8280

280

80

200

100

HBSEVO6200

200

75

125

100

HBSEVO8320

320

100

220

100

8 TX 40

MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm]

5∙d 3∙d 12∙d 7∙d 3∙d 3∙d

5 25 15 60 35 15 15

6 30 18 72 42 18 18

SCREWS INSERTED WITH PRE-DRILLING HOLES

8 40 24 96 56 24 24

4∙d 4∙d 7∙d 7∙d 7∙d 3∙d

SCREWS INSERTED WITH PRE-DRILLING HOLES a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm]

12∙d 5∙d 15∙d 10∙d 5∙d 5∙d

5 60 25 75 50 25 25

6 72 30 90 60 30 30

5 20 20 35 35 35 15

6 24 24 42 42 42 18

8 32 32 56 56 56 24

SCREWS INSERTED WITH PRE-DRILLING HOLES

8 96 40 120 80 40 40

5∙d 5∙d 10∙d 10∙d 10∙d 5∙d

5 25 25 50 50 50 25

6 30 30 60 60 60 30

8 40 40 80 80 80 40

d = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: • The minimum distances are in accordance with the EN 1995:2014 standard, according to ETA-11/0030, considering a wood characteristic density of ρ k ≤ 420 kg/m3. • In the case of joints with elements in Douglas fir, the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1,5.

• The minimum spacing for all steel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85.

CARPENTRY | HBS EVO | 47


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

timber-to-timber

panel-timber (1)

TENSION

thin steel-timber plate (2)

thick steel-timber plate (3)

Splate

thread withdrawal(4)

head pull-through (5)

A L b d1

A

RV,k

RV,k

RV,k

RV,k

Rax,k

Rhead,k

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

[kN]

[kN]

80

40

40

1,54

2,42

2,71

1,21

90

45

45

1,54

2,51

3,05

1,21

50

50

1,54

40

40

2,18

1,68

1,23 1,68

(2)

2,59

3,38

1,21

2,55

3,27

3,25

1,75

2,76

3,48

4,06

1,75

3,68

4,87

1,75

3,99

6,09

1,75

3,99

6,09

1,75

3,99

6,09

1,75

2,18 2,18

140

75

65

2,18

160

75

85

2,18

180

75

105

2,18

200

75

125

2,18

1,68

3,26

3,99

6,09

1,75

100

52

48

3,44

2,50

4,21

5,37

5,63

2,55

1,68 1,68 1,68 1,68

2,96 3,26 3,26 3,26

SPLATE ≤ 6 mm

50 60

SPLATE ≤ 3 mm

50 60

60

60

3,44

2,50

4,42

5,58

6,50

2,55

60

80

3,44

2,50

4,42

5,58

6,50

2,55

160

80

80

3,44

180

80

100

3,44

200

80

120

3,44

220

80

140

3,44

240

80

160

3,44

280

80

200

320

100

220

2,50 2,50 2,50 2,50

4,96 4,96 4,96 4,96

SPLATE ≥ 8 mm

120 140

6,12

8,66

2,55

6,12

8,66

2,55

6,12

8,66

2,55

6,12

8,66

2,55

6,12

8,66

2,55

2,50

4,96

3,44

2,50

4,96

6,12

8,66

2,55

3,44

2,50

5,51

6,67

10,83

2,55

The characteristic shear resistances are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN.

The shear resistance characteristics are calculated considering the case of a thin plate (SPLATE ≤ 0,5 d1). The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1).

(3)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

(4)

(5)

2,08

120

NOTES: (1)

1,91 2,00

100

SPLATE ≤ 4 mm

8

1,23

80

SPAN = 18 mm

6

1,23

100

SPAN = 22 mm

5

SPLATE ≤ 5 mm

b

[mm]

SPLATE ≤ 2,5 mm

L

[mm]

SPAN = 15 mm

d1

The axial resistance to head pull-through, with and without a washer, was calculated using wood elements.

In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

GENERAL PRINCIPLES: • C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

The coefficients γm and kmod should be taken according to the current regulations used for the calculation. • F or the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030. • F or the calculation process a timber density ρ k = 420 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Sizing and verification of the wooden elements, panels and steel plates must be done separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

48 | HBS EVO | CARPENTRY



HBS COIL

ETA 11/0030

HBS BOUND SCREWS QUICK, IN SERIES USE Quick and precise installation. Fast and safe execution thanks to the special binding.

HBS 6,0 mm Also available in a diameter of 6.0 mm, ideal for quick wall-to-wall fastening in CLT structures.

CHARACTERISTICS FOCUS

HBS bound screw

HEAD

countersunk with under-head ribs

DIAMETER

from 4,0 mm to 6,0 mm

LENGTH

from 30 mm to 80 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE • wood based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.

50 | HBS COIL | CARPENTRY


GEOMETRY

B

S

H

dk

X X

A

d2 d1

90° ds

t1

b L

Nominal diameter

d1

[mm]

4

4,5

5

6

Head diameter

dk

[mm]

8,00

9,00

10,00

12,00

Tip diameter

d2

[mm]

2,55

2,80

3,40

3,95

Shank diameter

ds

[mm]

2,75

3,15

3,65

4,30

Head thickness

t1

[mm]

2,80

2,80

3,10

4,50

Pre-drilling hole diameter

dv

[mm]

2,5

3,0

3,0

4,0

CODES AND DIMENSIONS d1

CODE

L

b

A

[mm]

[mm]

[mm]

HZB430

30

16

14

3000

HZB435

35

16

21

2000

HZB440

40

24

16

2000

HZB445

45

24

21

2000

HZB450

50

24

26

1500

HZB4550

50

24

26

1500

HZB4555

55

30

25

1500

[mm]

4 TX 20

4,5 TX 20

5 TX 25

6 TX 30

TOOLS pcs

HZB540

40

20

20

1500

HZB545

45

24

21

1500

HZB550

50

24

26

1250

HZB560

60

30

30

1250

HZB565

65

35

30

1250

HZB570

70

35

35

625

HZB580

80

40

40

625

HZB670

70

40

30

625

HZB680

80

40

40

625

HH3372

CODE

HH3338

description

lengths

pcs

[mm] HH3373

automatic loader for cordless screwdriver A 18 M BL

25-50

1

HH3372

automatic loader for cordless screwdriver A 18 M BL

40-80

1

HH3352

powered screwdriver

25-50

1

HH3338

powered screwdriver

40-80

1

NOTE: further information on page 356-358 .

SPEED AND QUALITY The excellent mechanical and geometric performance of the HBS screw is ideal for fast, serial assembly in the bound version.

CARPENTRY | HBS COIL | 51


HBS SOFTWOOD

EN 14592

COUNTERSUNK SCREW HBS S Special self-perforating tip with serrated thread (SAW tip) that cuts the timber fibres, facilitating initial grip and subsequent penetration.

LONGER THREAD Greater thread length (60%) to ensure superb joint closure and great versatility.

CHROMIUM (VI) FREE Total absence of hexavalent chromium. Compliance with the strictest regulations governing chemical substances (SVHC). REACH information available.

CHARACTERISTICS FOCUS

long thread

HEAD

countersunk with under-head ribs

DIAMETER

from 5,0 mm to 8,0 mm

LENGTH

from 50 mm to 400 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE • wood based panels • fibre board and MDF panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL Service classes 1 and 2.

52 | HBS SOFTWOOD | CARPENTRY


GEOMETRY AND MECHANICAL CHARACTERISTICS A

H

d2 d1

90°

X

BS

X X

S

dk

ds

t1

b L

Nominal diameter Head diameter Tip diameter Shank diameter Head thickness Pre-drilling hole diameter Characteristic yield moment Characteristic withdrawal-resistance parameter

d1 dk d2 ds t1 dv My,k

[mm] [mm] [mm] [mm] [mm] [mm] [Nmm]

5 10,00 3,40 3,65 3,10 3,0 6912,39

6 12,00 3,95 4,30 4,50 4,0 10672,63

8 14,50 5,40 5,80 4,50 5,0 22219,41

fax,k

[N/mm2]

13,9

14,7

14,7

Associated density

ρa

[kg/m3]

350

350

350

Characteristic head-pull-through parameter

fhead,k

[kN]

18,9

15,0

15,3

Associated density

ρa

[kg/m3]

350

350

350

Characteristic tensile strength

f tens,k

[kN]

10,5

13,5

19,6

CODES AND DIMENSIONS d1

CODE

[mm] 5 TX 25

6 TX 30

HBSS550 HBSS560 HBSS570 HBSS580 HBSS5100 HBSS680 HBSS6100 HBSS6120 HBSS6140 HBSS6160 HBSS6180 HBSS6200 HBSS6220 HBSS6240 HBSS6260 HBSS6280 HBSS6300

L

b

A

[mm] 50 60 70 80 100 80 100 120 140 160 180 200 220 240 260 280 300

[mm] 30 35 40 50 60 50 60 75 80 90 100 100 100 100 100 100 100

[mm] 20 25 30 30 40 30 40 45 60 70 80 100 120 140 160 180 200

pcs

d1

CODE

[mm] 200 200 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100

8 TX 40

HBSS8120 HBSS8140 HBSS8160 HBSS8180 HBSS8200 HBSS8220 HBSS8240 HBSS8260 HBSS8280 HBSS8300 HBSS8320 HBSS8340 HBSS8360 HBSS8380 HBSS8400

L

b

A

pcs

[mm] 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

[mm] 80 80 90 90 100 100 100 100 100 100 100 100 100 100 100

[mm] 40 60 70 80 100 120 140 160 180 200 220 240 260 280 300

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

TIMBER ROOF The screws’ fast initial grip makes it possible to create secure structural connections in all assembly conditions.

CARPENTRY | HBS SOFTWOOD | 53


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES 5

6

8

25

30

40

SCREWS INSERTED WITH PRE-DRILLING HOLES 5

6

8

4∙d

20

24

32

a1

[mm]

5∙d

a2

[mm]

3∙d

15

18

24

4∙d

20

24

32

a3,t

[mm]

12∙d

60

72

96

7∙d

35

42

56

a3,c

[mm]

7∙d

35

42

56

7∙d

35

42

56

a4,t

[mm]

3∙d

15

18

24

7∙d

35

42

56

a4,c

[mm]

3∙d

15

18

24

3∙d

15

18

24

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5

6

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

8

5

6

8

a1

[mm]

12∙d

60

72

96

5∙d

25

30

40

a2

[mm]

5∙d

25

30

40

5∙d

25

30

40

a3,t

[mm]

15∙d

75

90

120

10∙d

50

60

80

a3,c

[mm]

10∙d

50

60

80

10∙d

50

60

80

a4,t

[mm]

5∙d

25

30

40

10∙d

50

60

80

a4,c

[mm]

5∙d

25

30

40

5∙d

25

30

40

d = nominal screw diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: • The minimum distances are in accordance with EN 1995:2014, considering a wood characteristic density of ρ k ≤ 420 kg/m3. • T he minimum spacing for all steel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,7.

54 | HBS SOFTWOOD | CARPENTRY

• The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85.


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

timber-to-timber

panel-timber (1)

TENSION

thin steel-timber plate (2)

thick steel-timber plate (3)

Splate

thread withdrawal(4)

head pull-through (5)

Rhead,k

A L b d1

A

RV,k

RV,k

RV,k

RV,k

Rax,k

[mm]

[kN]

[kN]

[kN]

[kN]

[kN]

[kN]

50 60 70 80 100 80 100 120 140 160 180 200 220 240 260 280 300 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

30 35 40 50 60 50 60 75 80 90 100 100 100 100 100 100 100 80 80 90 90 100 100 100 100 100 100 100 100 100 100 100

20 25 30 30 40 30 40 45 60 70 80 100 120 140 160 180 200 40 60 70 90 100 120 140 160 180 200 220 240 260 280 300

1,35 1,46 1,56 1,56 1,71 1,84 2,08 2,16 2,16 2,16 2,16 2,16 2,16 2,16 2,16 2,16 2,16 2,92 3,39 3,39 3,39 3,39 3,39 3,39 3,39 3,39 3,39 3,39 3,39 3,39 3,39 3,39

2,25 2,63 3,00 3,75 4,50 4,76 5,71 7,14 7,62 8,57 9,52 9,52 9,52 9,52 9,52 9,52 9,52 10,15 10,15 11,42 11,42 12,69 12,69 12,69 12,69 12,69 12,69 12,69 12,69 12,69 12,69 12,69

2,04 2,04 2,04 2,04 2,04 2,33 2,33 2,33 2,33 2,33 2,33 2,33 2,33 2,33 2,33 2,33 2,33 3,47 3,47 3,47 3,47 3,47 3,47 3,47 3,47 3,47 3,47 3,47 3,47 3,47 3,47 3,47

NOTES: (1)

(2)

The shear characteristic resistances are calculated considering an OSB panel or particle board with a SPAN thickness and timber density of ρ k = 500 kg/m3.

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

(5)

The axial resistance to head pull-through, with and without a washer, was calculated using wood elements.

In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

SPLATE = 6 mm

• Characteristic values comply with the EN 1995:2014. • Design values can be obtained from characteristic values as follows:

Rd =

(3)

(4)

2,23 2,35 2,44 2,63 2,82 3,41 3,65 4,01 4,13 4,37 4,45 4,45 4,45 4,45 4,45 4,45 4,45 6,10 6,10 6,42 6,42 6,74 6,74 6,74 6,74 6,74 6,74 6,74 6,74 6,74 6,74 6,74

GENERAL PRINCIPLES:

The shear resistance characteristics are calculated considering the case of a thin plate (SPLATE ≤ 0,5 d1). The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1).

1,48 1,80 1,95 2,13 2,32 2,70 3,00 3,15 3,15 3,15 3,15 3,15 3,15 3,15 3,15 3,15 3,15 5,01 5,04 5,04 5,04 5,04 5,04 5,04 5,04 5,04 5,04 5,04 5,04 5,04 5,04 5,04

SPLATE = 8 mm

SPLATE = 3 mm SPLATE = 4 mm

8

SPAN = 18 mm

6

SPAN = 18 mm

5

1,57 1,68 1,68 1,68 1,68 1,97 1,97 1,97 1,97 1,97 1,97 1,97 1,97 1,97 1,97 1,97 1,97 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65 2,65

SPLATE = 5 mm

b [mm]

SPLATE = 2,5 mm

L [mm]

SPAN = 18 mm

d1 [mm]

Rk kmod γm

The coefficients γm and kmod should be taken according to the current regulations used for the calculation.

• F or the calculation process a timber density ρ k = 385 kg/m3 has been considered. • Sizing and verification of the wooden elements, panels and steel plates must be done separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained.

CARPENTRY | HBS SOFTWOOD | 55


HBS SOFTWOOD BULK

EN 14592

COUNTERSUNK SCREW HBS S BULK Large package (BULK) for mass and serial use in factory or construction yard. Special self-perforating tip with serrated thread (SAW tip).

LONGER THREAD Greater thread length (60%) to ensure superb joint closure and great versatility.

CHROMIUM (VI) FREE Total absence of hexavalent chromium. Compliance with the strictest regulations governing chemical substances (SVHC). REACH information available.

CHARACTERISTICS FOCUS

maxi package

HEAD

countersunk with under-head ribs

DIAMETER

5,0 and 6,0 mm

LENGTH

from 60 mm to 160 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE • wood based panels • fibre board and MDF panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL Service classes 1 and 2.

56 | HBS SOFTWOOD BULK | CARPENTRY


GEOMETRY AND MECHANICAL CHARACTERISTICS A

H

d2 d1

90°

X

BS

X X

S

dk

ds

t1

b L

Nominal diameter Head diameter Tip diameter Shank diameter Head thickness Pre-drilling hole diameter Characteristic yield moment Characteristic withdrawal-resistance parameter

d1 dk d2 ds t1 dv My,k

[mm] [mm] [mm] [mm] [mm] [mm] [Nmm]

5 10,00 3,40 3,65 3,10 3,0 6912,39

6 12,00 3,95 4,30 4,50 4,0 10672,63

fax,k

[N/mm2]

13,9

14,7

Associated density

ρa

[kg/m3]

350

350

Characteristic head-pull-through parameter

fhead,k

[kN]

18,9

15,0

Associated density

ρa

[kg/m3]

350

350

Characteristic tensile strength

f tens,k

[kN]

10,5

13,5

L

b

A

[mm]

[mm]

[mm]

60

35

25

2500

HBSSBULK570

70

40

30

2000

HBSSBULK580

80

50

30

1800

HBSSBULK5100

100

60

40

1000

CODES AND DIMENSIONS d1

CODE

[mm] HBSSBULK560 5 TX 25

pcs

d1

CODE

[mm] HBSSBULK6100 6 TX 30

L

b

A

pcs

[mm]

[mm]

[mm]

100

60

40

800

HBSSBULK6120

120

75

45

600

HBSSBULK6140

140

80

60

600

HBSSBULK6160

160

90

70

500

TIMBER FRAME Ideal for serial fastening of factory-framed panels. Packaging in large quantities prevents material wastes and speeds up production.

CARPENTRY | HBS SOFTWOOD BULK | 57


HBS HARDWOOD

BIT INCLUDED

ETA 11/0030

COUNTERSUNK SCREW FOR HARDWOODS HARDWOOD CERTIFICATION Special tip with diamond geometry and notched, serrated thread. ETA 11/0030 certification for use with high density timber without any predrill. Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°).

LARGER DIAMETER Inner tip diameter increased to ensure tightening in the highest density woods. Excellent twisting moment values. HBS H Ø6 mm, comparable to a diameter of 7 mm; HBS H Ø8 mm, comparable to a diameter of 9 mm.

60° COUNTERSUNK HEAD Concealed head, 60°, for effective, minimally invasive insertion, even in high density woods.

CHARACTERISTICS FOCUS

screw for hardwoods

HEAD

60° taper with under-head ribs

DIAMETER

7,0 and 9,0 mm

LENGTH

from 80 mm to 240 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE • wood based panels • solid timber and glulam • CLT, LVL • high density woods • beech, cypress, eucalyptus, bamboo Service classes 1 and 2.

58 | HBS HARDWOOD | CARPENTRY


GEOMETRY AND MECHANICAL CHARACTERISTICS

H

BS

dk

X X

A

d2 d1

60° ds

H

t1

b L

Nominal diameter eq.

d1 eq.

[mm]

7

9

Nominal diameter

d1

[mm]

6

8

Head diameter

dk

[mm]

12,00

14,50

Tip diameter

d2

[mm]

4,50

5,90

Shank diameter

ds

[mm]

4,80

6,30

Pre-drilling hole diameter

dv

[mm]

4,0

6,0

Characteristic yield moment

My,k

[Nmm]

18987,4

40115,0

Characteristic withdrawal-resistance parameter

fax,k,90°

[N/mm2]

46,0

46,0

fax,k,0°

[N/mm2]

20,0

20,0

Associated density

ρa

[kg/m3]

730

730

Characteristic head-pull-through parameter

fhead,k

[N/mm2]

50,0

50,0

Associated density

ρa

[kg/m3]

730

730

Characteristic tensile strength

f tens,k

[kN]

18,0

32,1

Mechanical parameters from experimental tests obtained from "Test Report No. 196104" of Karlsruher Institut für Technologie (KIT).

CODES AND DIMENSIONS d1 eq.

CODE

[mm]

7 TX 30

d1

L

b

A

[mm]

[mm]

[mm]

[mm]

HBSH780

6

80

50

30

HBSH7100

6

100

60

HBSH7120

6

120

70

pcs

d1 eq.

CODE

[mm]

d1

L

b

A

pcs

[mm]

[mm]

[mm]

[mm]

100

HBSH9120

8

120

70

50

100

40

100

HBSH9140

8

140

80

60

100

50

100

HBSH9160

8

160

90

70

100

HBSH7140

6

140

80

60

100

HBSH7160

6

160

90

70

100

d1 eq. = nominal diameter equivalent to a screw with the same ds

9 TX 40

HBSH9180

8

180

100

80

100

HBSH9200

8

200

100

100

100

HBSH9220

8

220

100

120

100

HBSH9240

8

240

100

140

100

NOTES: upon request, EVO version is available.

BEECH LVL Values also tested, certified and calculated for high density woods such as beechwood Microllam® LVL. Certified for use without pre-drilling, for densities of up to 780 kg/m3. Also tested on structural woods such as beech, cypress, eucalyptus, bamboo.

CARPENTRY | HBS HARDWOOD | 59


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES d1 eq. d1

SCREWS INSERTED WITH PRE-DRILLING HOLES

7

9

7

9

6

8

6

8

a1

[mm]

5∙d1

30

40

4∙d1

24

32

a2

[mm]

3∙d1

18

24

4∙d1

24

32

a3,t

[mm]

12∙d1

72

96

7∙d1

42

56

a3,c

[mm]

7∙d1

42

56

7∙d1

42

56

a4,t

[mm]

3∙d1

18

24

5∙d1

42

56

a4,c

[mm]

3∙d1

18

24

3∙d1

18

24

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

d1 eq.

7

9

7

9

d1

6

8

6

8

90

120

42

56

a1

[mm]

a2

[mm]

7∙d1

42

56

7∙d1

42

56

a3,t

[mm]

20∙d1

120

160

15∙d1

90

120

a3,c

[mm]

15∙d1

90

120

15∙d1

90

120

a4,t

[mm]

7∙d1

42

56

12∙d1

72

96

a4,c

[mm]

7∙d1

42

56

7∙d1

42

56

15∙d1

7∙d1

d1 = nominal screw diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: • The minimum distances are compliant with EN 1995:2014 - Table 8.2, considering a wood characteristic density of ρ k > 420 kg/m3 and calculation diameter of d = nominal screw diameter. • For high density wood applications (ρk > 500 kg/m3 ) please refer to ETA11/0030. • The minimum spacing for all steel-to-timber connections (a1, a2) can be

60 | HBS HARDWOOD | CARPENTRY

multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85. Full technical data is available in the website www.rothoblaas.com.


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

timber-to-timber

panel-timber (1)

TENSION

thin steel-timber plate (2)

thick steel-timber plate (3)

thread withdrawal(4)

head pull-through (5)

Splate

Splate A L b d1

A

RV,k

RV,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

6,74

11,00

5,74

7,29

13,20

5,74

7,84

15,40

5,74

7,97

17,60

5,74

6

80

50

30

3,70

6

100

60

40

4,12

6

120

70

50

4,25

6

140

80

60

4,25

1,71 1,71 1,71 1,71

5,64 5,64

6

160

90

70

4,25

7,97

19,81

5,74

8

120

70

50

6,27

2,39

8,97

11,43

20,54

8,38

8

140

80

60

6,62

2,39

9,06

11,43

23,47

8,38

8

160

90

70

6,62

8

180

100

80

6,62

8

200

100

100

6,62

8

220

100

120

6,62

8

240

100

140

6,62

1,71

4,87 5,64

2,39 2,39 2,39 2,39

5,64

9,06 9,06 9,06 9,06

2,39

NOTES: (1)

The characteristic shear resistances are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN.

(2)

The shear resistance characteristics are calculated considering the case of a thin plate (SPLATE ≤ 0,5 d1). The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1).

9,06

11,43

26,41

8,38

11,43

29,34

8,38

11,43

29,34

8,38

11,43

29,34

8,38

11,43

29,34

8,38

GENERAL PRINCIPLES: • C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

Rd =

(3)

Rk kmod γm

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

The coefficients γm and kmod should be taken according to the current regulations used for the calculation.

The axial resistance to head pull-through was calculated using wood elements.

• F or the mechanical strength values and the geometry of the screws, reference was made to"Test Report No. 196104" of Karlsruher Institut für Technologie (KIT).

(4)

(5)

SPLATE ≤ 8 mm

9

RV,k [kN]

SPLATE ≤ 4 mm

7

RV,k [kN]

SPLATE ≤ 6 mm

b

SPLATE ≤ 3 mm

L

SPAN = 12 mm

d1

[mm] [mm] [mm] [mm] [mm]

SPAN = 15 mm

d1 eq.

In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

• For the calculation process a timber characteristic density ρ k = 550 kg/m3 has been considered. • V alues were calculated considering the threaded part as being completely inserted into the wood. • S izing and verification of the wooden elements, panels and steel plates must be done separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained.

CARPENTRY | HBS HARDWOOD | 61


MINIMUM DISTANCES FOR SHEAR LOADS | LVL

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE d1 eq. d1

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

7

9

7

9

6

8

6

8

a1

[mm]

15∙d1

90

120

7∙d1

42

56

a2

[mm]

7∙d1

42

56

7∙d1

42

56

a3,t

[mm]

20∙d1

120

160

15∙d1

90

120

a3,c

[mm]

15∙d1

90

120

15∙d1

90

120

a4,t

[mm]

7∙d1

42

56

12∙d1

72

96

a4,c

[mm]

7∙d1

42

56

7∙d1

42

56

SCREWS INSERTED WITH PRE-DRILLING HOLES

SCREWS INSERTED WITH PRE-DRILLING HOLES

d1 eq.

7

9

7

9

d1

6

8

6

8

30

40

4∙d1

24

32

a1

[mm]

a2

[mm]

3∙d1

18

24

4∙d1

24

32

a3,t

[mm]

12∙d1

72

96

7∙d1

42

56

a3,c

[mm]

7∙d1

42

56

7∙d1

42

56

a4,t

[mm]

3∙d1

18

24

5∙d1

42

56

a4,c

[mm]

3∙d1

18

24

3∙d1

18

24

5∙d1

d1 = nominal screw diameter

a4,c

a4,t α

a2

F

F α a1

F

α

a3,t

α

a3,c

a2 a2 F a1

NOTES: • The minimum distances are compliant with EN 1995:2014 - Table 8.2 considering a wood characteristic density of ρ k > 420 kg/m3 and calculation diameter of d = nominal screw diameter.

• For high density wood applications (ρ k > 500 kg/m3 ) please refer to ETA-11/0030. • In the case of steel-timber joints, the minimum spacings (a1, a2) can be multiplied by a coefficient of 0,7.

62 | HBS HARDWOOD | CARPENTRY

• In the case of panel-timber joints, the minimum spacings (a1, a2) can be multiplied by a coefficient of 0,85. Full technical data is available in the website www.rothoblaas.com.


STATIC VALUES | LVL

CHARACTERISTIC VALUES EN 1995:2014 SHEAR LVL - LVL α = 0° - 0°

geometry

thin steel-LVL plate (1)

thick steel-LVL plate (2)

A L b d1

RV,k [kN]

RV,k [kN]

RV,k [kN]

RV,k [kN]

RV,k [kN]

RV,k [kN]

50

8

5,92

4,62

60

15

5,92

5,05

6

120

70

50

5,92

5,05

6

140

80

60

5,92

5,05

6

160

90

70

5,92

5,05

8

120

70

50

9,47

7,85

8

140

80

60

9,47

7,85

8

160

90

70

9,47

7,85

8

180

100

80

9,47

7,85

8

200

100

100

9,47

7,85

8

220

100

120

9,47

7,85

8

240

100

140

9,47

7,85

4,12 4,12 4,12 4,12 4,12 6,84 6,84 6,84 6,84 6,84 6,84

2,82 3,25 3,25 3,25 3,25 5,22

6,84

5,22 5,22 5,22 5,22 5,22 5,22

9,27 9,96 10,07 10,07 10,07 14,69 14,69 14,69 14,69 14,69 14,69

8,04 8,73 8,84 8,84 8,84 12,40

SPLATE = 8 mm

80 100

SPLATE ≤ 8 mm

6 6

SPLATE = 6 mm

without pre-drilling hole

SPLATE ≤ 6 mm

with pre-drilling hole

SPLATE = 3 mm

without pre-drilling hole

SPLATE = 4 mm

9

with pre-drilling hole

SPLATE ≤ 3 mm

7

without pre-drilling hole

SPLATE ≤ 4 mm

d1 eq. d1 L b A [mm] [mm] [mm] [mm] [mm]

with pre-drilling hole

14,69

12,40 12,40 12,40 12,40 12,40 12,40

TENSION geometry

thread withdrawal

head pull-through (4)

(3)

A L b d1

d1 eq. d1 L b A [mm] [mm] [mm] [mm] [mm]

7

9

Rax,k [kN]

Rhead,k [kN]

6

80

50

8

13,80

7,20

6

100

60

15

16,56

7,20

6

120

70

50

19,32

7,20

6

140

80

60

22,08

7,20

6

160

90

70

24,84

7,20

8

120

70

50

25,76

10,51 10,51

8

140

80

60

29,44

8

160

90

70

33,12

10,51

8

180

100

80

36,80

10,51

8

200

100

100

36,80

10,51

8

220

100

120

36,80

10,51

8

240

100

140

36,80

10,51

NOTES: The shear resistance characteristics are calculated considering the case of a thin

(1)

plate (SPLATE ≤ 0,5 d1). (2)

The shear resistance characteristics are calculated considering the case of a thick

GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

plate (SPLATE ≥ d1).

Rd =

The axial thread withdrawal resistance was calculated considering a 90° angle

(3)

between the grain and the connector and for a fixing length of b. (4)

The axial resistance to head pull-through was calculated using wood elements.

In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

Rk kmod γm

T he coefficients γm and kmod should be taken according to the current regulations used for the calculation.

• For the mechanical strength values and the geometry of the screws, reference was made to "Test Report No. 196104" of Karlsruher Institut für Technologie (KIT). • For the calculation process a timber characteristic density ρ k = 730 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Sizing and verification of the wooden elements, panels and steel plates must be done separately.

CARPENTRY | HBS HARDWOOD | 63


TBS

BIT INCLUDED

FLANGE HEAD SCREW INTEGRATED WASHER The flange head serves as washer and ensures high tensile strength. Ideal in the presence of wind or variations in timber dimensions.

STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°). Asymmetric “umbrella” threading for better wood pull-through.

SUPERIOR STRENGTH Steel with superb yield and failure strength (f y,k = 1000 N/mm2). Very high torsional strength ftor,k for safer screwing.

DUCTILITY Bending angle 20° greater than standard, certified according to ETA 11/0030, Cyclical SEISMIC-REV tests according to EN 12512. Seismic performance tested according to EN 14592.

CHARACTERISTICS FOCUS

screw with built-in washer

HEAD

flange

DIAMETER

from 6,0 mm to 10,0 mm

LENGTH

from 40 mm to 520 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE • wood based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.

64 | TBS | CARPENTRY

ETA 11/0030


SECONDARY BEAMS Ideal for fastening joists to sill beams to achieve high wind uplift resistance. The flange head guarantees excellent tensile strength which means the use of additional lateral fastening systems can be avoided.

I-JOIST Values also tested, certified and calculated for CLT and high density woods such as MicrollamÂŽ LVL.

CARPENTRY | TBS | 65


Fastening SIP panels with 8 mm diameter TBS screws.

Fastening CLT walls with 8 mm diameter TBS screws.

GEOMETRY AND MECHANICAL CHARACTERISTICS A

dk

dd2k d1 ds

b

dk

Ă˜6-8

L

Ă˜ 10

Nominal diameter

d1

[mm]

6

8

8 MAX

10

Head diameter

dk

[mm]

15,50

19,00

24,50

25,00

Tip diameter

d2

[mm]

3,95

5,40

5,40

6,40

Shank diameter

ds

[mm]

4,30

5,80

5,80

7,00

Pre-drilling hole diameter

dv

[mm]

4,0

5,0

5,0

6,0

Characteristic yield moment

My,k

[Nmm]

9493,7

20057,5

20057,5

35829,6

Characteristic withdrawal-resistance parameter Characteristic head-pull-through parameter

fax,k

[N/mm2]

11,7

11,7

11,7

11,7

fhead,k

[N/mm2]

10,5

10,5

16,0 (*)

10,5

Characteristic tensile strength

f tens,k

[kN]

11,3

20,1

20,1

31,4

(*) Mechanical parameters obtained from experimental tests.

66 | TBS | CARPENTRY


CODES AND DIMENSIONS d1

dk

[mm]

[mm]

CODE

L

b

A

[mm]

[mm]

[mm]

60

40

20

TBS670

70

40

TBS680

80

50

TBS690

90

50

TBS6100

100

TBS6120

8 TX40

15.5

19

d1

dk

[mm]

[mm]

CODE

L

b

A

[mm]

[mm]

[mm]

pcs

100

52

48

50

100

TBS10100

30

100

TBS10120

120

60

60

50

30

100

TBS10140

140

60

80

50

40

100

TBS10160

160

80

80

50

60

40

100

TBS10180

180

80

100

50

120

75

45

100

TBS10200

200

100

100

50

TBS6140

140

75

65

100

TBS10220

220

100

120

50

TBS6160

160

75

85

100

TBS10240

240

100

140

50

TBS6180

180

75

105

100

TBS10260

260

100

160

50

TBS6200

200

75

125

100

TBS10280

280

100

180

50

TBS6220

220

100

120

100

TBS10300

300

100

200

50

TBS6240

240

100

140

100

TBS10320

320

120

200

50

TBS6260

260

100

160

100

TBS10340

340

120

220

50

TBS6280

280

100

180

100

TBS10360

360

120

240

50

TBS6300

300

100

200

100

TBS10380

380

120

260

50

TBS840

40

32

8

100

TBS10400

400

120

280

50

TBS860

60

52

10

100

TBS10440

440

120

320

50

TBS880

80

52

28

50

TBS10480

480

120

360

50

TBS8100

100

52

48

50

TBS10520

520

120

400

50

TBS8120

120

80

40

50

TBS8140

140

80

60

50

TBS8160

160

100

60

50

TBS8180

180

100

80

50

TBS8200

pcs

200

100

100

50

TBS8220

220

100

120

50

TBS8240

240

100

140

50

TBS8260

260

100

160

50

TBS8280

280

100

180

50

TBS8300

300

100

200

50

TBS8320

320

100

220

50

TBS8340

340

100

240

50

TBS8360

360

100

260

50

TBS8380

380

100

280

50

TBS8400

400

100

300

50

TBS8440

440

100

340

50

TBS8480

480

100

380

50

TBS8520

520

100

420

50

TBS660

6 TX30

pcs

10 TX 50

25

TBS MAX d1

dk

[mm]

[mm]

8 TX 40

24,5

CODE

L

b

A

[mm]

[mm]

[mm]

TBSMAX8200

200

120

80

50

TBSMAX8220

220

120

100

50

TBSMAX8240

240

120

120

50

TBS MAX FOR RIB TIMBER With its increased thread (120 mm) and enlarged head (24,5 mm), the TBS MAX guarantees excellent grip and superb joint closure. Ideal to produce ribbed floors (Rippendecke), optimising the number of fastenings. The enlarged head guarantees excellent joint tightening, making the use of presses unnecessary when gluing wooden elements together.

CARPENTRY | TBS | 67


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES

SCREWS INSERTED WITH PRE-DRILLING HOLES

6

8

8 MAX

10

30

40

40

50

4∙d

6

8

8 MAX

10

24

32

32

40

a1

[mm]

a2

[mm]

3∙d

18

24

24

30

4∙d

24

32

32

40

a3,t

[mm]

12∙d

72

96

96

120

7∙d

42

56

56

70

a3,c

[mm]

7∙d

42

56

56

70

7∙d

42

56

56

70

a4,t

[mm]

3∙d

18

24

24

30

7∙d

42

56

56

70

a4,c

[mm]

3∙d

18

24

24

30

3∙d

18

24

24

30

5∙d

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 6

8

8 MAX

10

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 6

8

8 MAX

10

a1

[mm]

12∙d

72

96

96

120

5∙d

30

40

40

50

a2

[mm]

5∙d

30

40

40

50

5∙d

30

40

40

50

a3,t

[mm]

15∙d

90

120

120

150

10∙d

60

80

80

100

a3,c

[mm]

10∙d

60

80

80

100

10∙d

60

80

80

100

a4,t

[mm]

5∙d

30

40

40

50

10∙d

60

80

80

100

a4,c

[mm]

5∙d

30

40

40

50

5∙d

30

40

40

50

d = nominal screw diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: • The minimum distances are compliant with EN 1995:2014, according to ETA-11/0030, considering a wood characteristic density of ρ k ≤ 385 kg/m3 and calculation diameter of d = nominal screw diameter. • The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85.

68 | TBS | CARPENTRY

• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1,5.


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

TENSION

timber-to-timber

panel-timber (1)

thread withdrawal (2)

head pull-through

RV,k

RV,k

Rax,k

Rhead,k

[kN]

A L b d1

b

A

[mm]

[mm]

[mm]

[mm]

[kN]

60 70 80 90 100 120 140 160 180 200 220 240 260 280 300 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 200 220 240

40 40 50 50 60 75 75 75 75 75 100 100 100 100 100 32 52 52 80 80 80 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 120 120 120

20 30 30 40 40 45 65 85 105 125 120 140 160 180 200 8 8 28 20 40 60 60 80 100 120 140 160 180 200 220 240 260 280 300 340 380 420 80 100 120

1,89 2,15 2,15 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 1,08 1,08 3,02 2,71 3,41 3,70 3,70 3,70 3,70 3,70 3,70 3,70 3,70 3,70 3,70 3,70 3,70 3,70 3,70 3,70 3,70 3,70 5,27 5,27 5,27

6

8

8 MAX

1,11 1,68 2,14 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,03 3,22 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 5,44 5,44 5,44

SPAN = 50 mm

L

SPAN = 65 mm

d1

[kN]

[kN]

3,03 3,03 3,79 3,79 4,55 5,68 5,68 5,68 5,68 5,68 7,58 7,58 7,58 7,58 7,58 3,23 5,25 5,25 8,08 8,08 8,08 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 12,12 12,12 12,12

2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 10,36 10,36 10,36

NOTES: (1)

The shear characteristic resistances are calculated considering an OSB panel or particle board with a SPAN thickness and timber density of ρ k = 500 kg/m3.

(2)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

CARPENTRY | TBS | 69


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

TENSION

timber-to-timber

panel-timber (1)

thread withdrawal (2)

head pull-through

RV,k

RV,k

Rax,k

Rhead,k

[kN]

A L b

d1

L

b

A

[mm]

[mm]

[mm]

[mm]

[kN]

10

100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520

52 60 60 80 80 100 100 100 100 100 100 120 120 120 120 120 120 120 120

48 60 80 80 100 100 120 140 160 180 200 200 220 240 260 280 320 360 400

4,92 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64

SPAN = 80 mm

d1

3,16 4,47 5,84 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85 5,85

[kN]

[kN]

6,57 7,58 7,58 10,10 10,10 12,63 12,63 12,63 12,63 12,63 12,63 15,15 15,15 15,15 15,15 15,15 15,15 15,15 15,15

7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08

NOTES: (1)

The shear characteristic resistances are calculated considering an OSB panel or particle board with a SPAN thickness.

(2)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

• For the calculation process a timber density ρ k = 380 kg/m3 has been considered. Characteristic resistances can also be considered as valid for larger densities, for the purposes of safety. • V alues were calculated considering the threaded part as being completely inserted into the wood.

GENERAL PRINCIPLES:

• S izing and verification of the wooden elements, panels and steel plates must be done separately.

• C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained.

• Design values can be obtained from characteristic values as follows:

R k Rd = k mod γm The coefficients γm and kmod should be taken according to the current regulations used for the calculation.

• F or the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030.

70 | TBS | CARPENTRY

• For different calculation configurations, the MyProject software is available (www.rothoblaas.com). • The characteristic resistances were calculated using solid timber or glulam. In the case of joints with CLT elements, the resistance values may be different and should be calculated on the basis of the characteristics of the panel and the connection configuration.


CALCULATION EXAMPLE: RAFTER - PURLIN JOINT WITH MYPROJECT

CONNECTION TIMBER-TO-TIMBER / SINGLE SHEAR

1

ELEMENT 1

1

B1 = 120 mm

2

ELEMENT 2 B2 = 200 mm

H1 = 160 mm

H2 = 240 mm

Slope 30% (16,7°)

Slope 0% (0°)

Glulam GL24h

2

Glulam GL24h

PROJECT DATA

SCREW SELECTION

CONNECTION GEOMETRY

Fv,Rd = 1,89 kN

TBS = 8x260 mm

t1 = 160 mm

Service class = 1

Pre-drilling hole = no

α1 = 0° t2 = 100 mm

Load duration = short

(fixing length in element 2)

α2 = 90°

SHEAR RESISTANCE CALCULATION WITH MYPROJECT SOFTWARE (EN 1995:2014 and ETA-11/0030) d1

= 8,0 mm

My,k

= 20057,5 Nmm

fh,1,k = 16,92 N/mm2

Rax,Rk

= min {resistance to thread withdrawal; resistance to head pull-through} = min {Rax,Rk ; Rhead,Rk} = 4,09 kN

fh,2,k = 16,92 N/mm2

Rax,Rk/4 = 1,02 kN (cable effect)

β

= 1,00

Rv,Rk = 3,70 kN

k R Rv,Rd = v,Rk mod γm

EN 1995:2014 kmod = 0,9 γm = 1,3 Rv,Rd = 2,56 kN > 1,89 kN OK

Italy - NTC 2018 kmod = 0,9 γm = 1,5 Rv,Rd = 2,22 kN > 1,89 kN OK

CARPENTRY | TBS | 71


MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

lateral face (1)

narrow face (2)

6

8

10

24

32

40

6

8

10

10∙d

60

80

100

25

4∙d

24

32

40

60

12∙d

72

96

120

a1

[mm]

4∙d

a2

[mm]

2,5∙d

15

20

a3,t

[mm]

6∙d

36

48

a3,c

[mm]

6∙d

36

48

60

7∙d

42

56

70

a4,t

[mm]

6∙d

36

48

60

6∙d

36

48

60

a4,c

[mm]

2,5∙d

15

20

25

3∙d

18

24

30

d = nominal screw diameter

a4,c

a4,t α

F

F

α

α

F α a3,c

a3,t

a2 a2

a2

a1

a1

a3,c a4,c

F

a3,t

F

a4,c

tCLT

a3,c a4,c a4,t

F

tCLT

NOTES: The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.

72 | TBS | CARPENTRY

(1)

Minimum CLT thickness tmin = 10∙d

(2)

Minimum CLT thickness tmin = 10∙d and minimum screw penetration depth tpen = 10∙d


MINIMUM DISTANCES FOR SHEAR LOADS | LVL

a1 a2 a3,t a3,c a4,t a4,c

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITHOUT PRE-DRILLING HOLES (1)

SCREWS INSERTED WITHOUT PRE-DRILLING HOLES (1)

[mm] [mm] [mm] [mm] [mm] [mm]

12∙d 5∙d 15∙d 10∙d 5∙d 5∙d

6

8

10

72 30 90 60 30 30

96 40 120 80 40 40

120 50 150 100 50 50

5∙d 5∙d 10∙d 10∙d 10∙d 5∙d

SCREWS INSERTED WITH PRE-DRILLING HOLES a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm]

5∙d 3∙d 12∙d 7∙d 3∙d 3∙d

6

8

10

30 18 72 42 18 18

40 24 96 56 24 24

50 30 120 70 30 30

6

8

10

30 30 60 60 60 30

40 40 80 80 80 40

50 50 100 100 100 50

SCREWS INSERTED WITH PRE-DRILLING HOLES 4∙d 4∙d 7∙d 7∙d 7∙d 3∙d

6

8

10

24 24 42 42 42 18

32 32 56 56 56 24

40 40 70 70 70 30

d = nominal screw diameter

a4,c

a4,t α

a2

F

F α a1

F

α

a3,t

α

a2 a2 F a1

a3,c

NOTES: (1)

Minimum distances are obtained from experimental tests carried out at Eurofins Expert Services Oy, Espoo, Finland (Report EUFI29-19000819-T1/T2).

• Minimum distances in accordance with EN 1995:2014. • The minimum distances are applicable when using both parallel and cross grain LVL. • The minimum distances without pre-drilling hole are valid for minimum thickness of LVL elements tmin:

where: t1 is the thickness in mm of the LVL element in a connection with 2 wooden elements. For connections with 3 or more elements, t 1 represents the thickness of the most external LVL; t2 is the thickness in mm of the central element in a connection with 3 or more elements.

t1 ≥ 8,4d -9 t2 ≥

11,4d 75

CARPENTRY | TBS | 73


STATIC VALUES | CLT SHEAR CLT - CLT lateral face

geometry

panel - CLT (1) lateral face

CLT - panel - CLT (1) lateral face

t

A L b d1

d1

L

b

A

RV,k

RV,k

RV,k

t

RV,k

t

RV,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[kN]

[mm]

[kN]

[mm]

[kN]

0,80

1,66

1,73

-

-

-

-

30

2,00

1,66

1,73

30

1,71

30

2,19

80

50

30

2,00

1,66

1,73

35

1,71

35

2,19

1,66

1,73

40

1,71

40

2,19

1,66

1,73

45

1,71

45

2,19

1,66

1,73

120

75

45

2,22

140

75

65

2,22

160

75

85

2,22

180

75

105

2,22

200

75

125

2,22

1,66 1,66 1,66 1,66

1,73 1,73 1,73 1,73

55

1,71

65

1,71

75

1,71

85

1,71

95

1,71

SPAN = 15 mm

2,22 2,22

SPAN = 12 mm

40 40

SPAN = 15 mm

50 60

SPAN = 12 mm

90 100

55

2,19

65

2,19

75

2,19

85

2,19

95

2,19

220

100

120

2,22

1,66

1,73

105

1,71

105

2,19

240

100

140

2,22

1,66

1,73

115

1,71

115

2,19

260

100

160

2,22

1,66

1,73

125

1,71

125

2,19

280

100

180

2,22

1,66

1,73

135

1,71

135

2,19

300

100

200

2,22

1,66

1,73

145

1,71

145

2,19

0,98

1,91

1,99

-

-

-

-

0,98

2,39

2,62

-

-

-

-

80

52

28

2,81

2,39

2,62

-

-

-

-

100

80

20

2,46

2,39

2,62

45

2,39

40

2,92

120

80

40

3,16

2,39

2,62

55

2,39

50

2,92

140

80

60

3,50

2,39

2,62

65

2,39

60

2,92

160

100

60

3,50

2,39

2,62

75

2,39

70

2,92

180

100

80

3,50

2,39

2,62

85

2,39

80

2,92

200

100

100

3,50

2,39

2,62

95

2,39

90

2,92

220

100

120

3,50

2,39

2,62

105

2,39

100

2,92

140

3,50

160

3,50

280

100

180

3,50

300

100

200

3,50

2,39

2,62

145

2,39

140

2,92

320

100

220

3,50

2,39

2,62

155

2,39

150

2,92

340

100

240

3,50

2,39

2,62

165

2,39

160

2,92

360

100

260

3,50

2,39

2,62

175

2,39

170

2,92

380

100

280

3,50

2,39

2,62

185

2,39

180

2,92

400

100

300

3,50

2,39

2,62

195

2,39

190

2,92

440

100

340

3,50

2,39

2,62

215

2,39

210

2,92

480

100

380

3,50

2,39

2,62

235

2,39

230

2,92

520

100

420

3,50

2,39

2,62

255

2,39

250

2,92

2,39

2,92

120

80

4,96

220

120

100

4,96

240

120

120

4,96

74 | TBS | CARPENTRY

2,39 2,39

2,39 2,39

2,62 2,62 2,62

2,92 2,92

115

2,39

125

2,39

135

2,39

95

2,39

105

2,39

115

2,39

SPAN = 18 mm

100 100

SPAN = 15 mm

240 260

200

2,39

SPAN = 18 mm

8 8

SPAN = 15 mm

32 52

SPAN = 18 mm

40 60

SPAN = 18 mm

8 MAX

8

40

SPAN = 15 mm

8

40

70

SPAN = 15 mm

6

60

110

2,92

120

2,92

130

2,92

90

2,92

100

2,92

110

2,92


CHARACTERISTIC VALUES EN 1995:2014 SHEAR CLT - timber lateral face

TENSION timber - CLT lateral face

thread withdrawal lateral face (2)

thread withdrawal narrow face (3)

head pull-through (4)

RV,k

RV,k

Rax,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

[kN]

0,80

0,89

2,81

-

2,52

2,02

2,13

2,81

-

2,52

2,02

2,13

3,51

-

2,52

2,26

2,31

3,51

-

2,52

2,26

2,31

4,21

-

2,52

2,26

2,31

5,27

-

2,52

2,26

2,31

5,27

-

2,52

2,26

2,31

5,27

-

2,52

2,26

2,31

5,27

-

2,52

2,26

2,31

5,27

-

2,52

2,26

2,31

7,02

-

2,52

2,26

2,31

7,02

-

2,52

2,26

2,31

7,02

-

2,52

2,26

2,31

7,02

-

2,52

2,26

2,31

7,02

-

2,52

0,98

1,08

3,00

2,39

3,79

0,98

1,08

4,87

3,70

3,79

2,85

2,98

4,87

3,70

3,79

2,46

2,71

7,49

5,45

3,79

3,20

3,37

7,49

5,45

3,79

3,56

3,64

7,49

5,45

3,79

3,56

3,64

9,36

6,66

3,79

3,56

3,64

9,36

6,66

3,79

3,56

3,64

9,36

6,66

3,79

3,56

3,64

9,36

6,66

3,79

3,56

3,64

9,36

6,66

3,79

3,56

3,64

9,36

6,66

3,79

3,56

3,64

9,36

6,66

3,79

3,56

3,64

9,36

6,66

3,79

3,56

3,64

9,36

6,66

3,79

3,56

3,64

9,36

6,66

3,79

3,56

3,64

9,36

6,66

3,79

3,56

3,64

9,36

6,66

3,79

3,56

3,64

9,36

6,66

3,79

3,56

3,64

9,36

6,66

3,79

3,56

3,64

9,36

6,66

3,79

3,56

3,64

9,36

6,66

3,79

5,02

5,21

11,23

7,85

9,60

5,02

5,21

11,23

7,85

9,60

5,02

5,21

11,23

7,85

9,60

CARPENTRY | TBS | 75


STATIC VALUES | CLT SHEAR CLT - CLT lateral face

geometry

panel - CLT (1) lateral face

CLT - panel - CLT (1) lateral face

t

A L b d1

d1

L

b

A

RV,k

RV,k

RV,k

t

RV,k

t

RV,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[kN]

[mm]

[kN]

[mm]

[kN]

52

48

4,50

3,12

3,89

-

-

120

60

60

5,22

3,12

3,89

40

3,12

50

3,89

140

60

80

5,26

3,12

3,89

50

3,12

60

3,89

5,33

3,12

3,89

60

3,12

70

3,89

100

5,33

3,12

3,89

70

3,12

80

3,89

200

100

100

5,33

3,12

3,89

80

3,12

90

3,89

220

100

120

5,33

3,12

3,89

90

3,12

100

3,89

240

100

140

5,33

3,12

3,89

100

3,12

110

3,89

260

100

160

5,33

280

100

180

5,33

300

100

200

5,33

320

120

200

5,33

340

120

220

5,33

3,12 3,12 3,12 3,12 3,12

3,89

110

3,12

120

3,12

130

3,12

140

3,12

3,89

150

3,12

3,89 3,89 3,89

SPAN = 22 mm

80

80

SPAN = 18 mm

80

SPAN = 22 mm

160 180

SPAN = 18 mm

10

100

120

3,89

130

3,89

140

3,89

150

3,89

160

3,89

360

120

240

5,33

3,12

3,89

160

3,12

170

3,89

380

120

260

5,33

3,12

3,89

170

3,12

180

3,89

400

120

280

5,33

3,12

3,89

180

3,12

190

3,89

440

120

320

5,33

3,12

3,89

190

3,12

210

3,89

480

120

360

5,33

3,12

3,89

210

3,12

230

3,89

520

120

400

5,33

3,12

3,89

230

3,12

250

3,89

NOTES: (1)

The characteristic shear resistances are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN.

(2)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

(3)

The axial thread withdrawal resistance is valid for minimum thickness of the element of tmin = 10∙d1 and minimum screw pull-through depth tpen = 10∙d1.

(4)

The axial resistance to head pull-through, with and without a washer, was calculated using wood elements.

76 | TBS | CARPENTRY

In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.


CHARACTERISTIC VALUES EN 1995:2014 SHEAR CLT - timber lateral face

TENSION timber - CLT lateral face

thread withdrawal lateral face (2)

thread withdrawal narrow face (3)

head pull-through (4)

RV,k

RV,k

Rax,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

[kN]

4,72

4,64

6,08

4,42

6,56

5,32

5,43

7,02

5,03

6,56

5,42

5,43

7,02

5,03

6,56

5,42

5,55

9,36

6,51

6,56

5,42

5,55

9,36

6,51

6,56

5,42

5,55

11,70

7,96

6,56

5,42

5,55

11,70

7,96

6,56

5,42

5,55

11,70

7,96

6,56

5,42

5,55

11,70

7,96

6,56

5,42

5,55

11,70

7,96

6,56

5,42

5,55

11,70

7,96

6,56

5,42

5,55

14,04

9,38

6,56

5,42

5,55

14,04

9,38

6,56

5,42

5,55

14,04

9,38

6,56

5,42

5,55

14,04

9,38

6,56

5,42

5,55

14,04

9,38

6,56

5,42

5,55

14,04

9,38

6,56

5,42

5,55

14,04

9,38

6,56

5,42

5,55

14,04

9,38

6,56

GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard and national specification ÖNORM EN 1995 - Annex K in accordance with ETA-11/0030.

• Values were calculated considering the threaded part as being completely inserted into the wood.

• Design values can be obtained from characteristic values as follows:

• Sizing and verification of the wooden elements, panels and steel plates must be done separately.

R k Rd = k mod γm The coefficients γm and kmod should be taken according to the current regulations used for the calculation. • F or the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030.

• The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained. • The shear resistance characteristics are calculated considering a minimum fixing length of 4 d1.

• F or the calculation process a timber characteristic density ρ k = 350 kg/m3 has been considered.

CARPENTRY | TBS | 77


STATIC VALUES | LVL SHEAR geometry

LVL - LVL

LVL - LVL

LVL - timber

timber - LVL

t2 A L b d1

t1

d1

L

b

A

RV,k

t1

t2

RV,k

RV,k

RV,k

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

60

40

20

2,37

25

10

1,38

2,22

1,84

70

40

30

2,72

25

20

2,76

2,56

2,07

80

50

30

2,96

30

20

2,76

2,79

2,07

6

8

8 MAX

90

50

40

3,05

30

30

4,14

2,84

2,34

100

60

40

3,12

30

40

5,15

2,96

2,34

120

75

45

3,12

40

40

5,52

2,96

2,34

140

75

65

3,12

40

60

5,63

2,96

2,34

160

75

85

3,12

40

80

5,63

2,96

2,34

180

75

105

3,12

60

60

6,23

2,96

2,34

200

75

125

3,12

60

80

6,23

2,96

2,34

220

100

120

3,12

60

100

6,23

2,96

2,34

240

100

140

3,12

80

80

6,23

2,96

2,34

260

100

160

3,12

80

100

6,23

2,96

2,34

280

100

180

3,12

80

120

6,23

2,96

2,34

300

100

200

3,12

100

100

6,23

2,96

2,34

40

32

8

1,35

-

-

-

1,35

0,98

60

52

8

1,35

-

-

-

1,35

0,98

80

52

28

3,78

32

16

2,70

3,75

2,93

100

80

20

3,37

40

20

3,37

3,37

2,46

120

80

40

4,51

40

40

6,75

4,34

3,28

140

80

60

4,64

40

60

8,21

4,40

3,70

160

100

60

4,64

40

80

8,21

4,40

3,70

180

100

80

4,64

60

60

9,29

4,40

3,70

200

100

100

4,64

60

80

9,29

4,40

3,70

220

100

120

4,64

60

100

9,29

4,40

3,70

240

100

140

4,64

80

80

9,29

4,40

3,70

260

100

160

4,64

80

100

9,29

4,40

3,70

280

100

180

4,64

80

120

9,29

4,40

3,70

300

100

200

4,64

100

100

9,29

4,40

3,70

320

100

220

4,64

100

120

9,29

4,40

3,70

340

100

240

4,64

100

140

9,29

4,40

3,70

360

100

260

4,64

120

120

9,29

4,40

3,70

380

100

280

4,64

120

140

9,29

4,40

3,70

400

100

300

4,64

120

160

9,29

4,40

3,70

440

100

340

4,64

140

160

9,29

4,40

3,70

480

100

380

4,64

140

200

9,29

4,40

3,70

520

100

420

4,64

140

240

9,29

4,40

3,70

200

120

80

5,74

60

80

9,32

5,49

5,15

220

120

100

5,74

60

100

9,32

5,49

5,15

240

120

120

5,74

80

80

10,43

5,49

5,15

78 | TBS | CARPENTRY


CHARACTERISTIC VALUES EN 1995:2014 TENSION thread withdrawal edge (2)

head pull-through flat (3)

Rax,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

thread withdrawal flat (1)

3,82

3,07

5,02

3,82

3,07

5,02

4,77

3,84

5,02

4,77

3,84

5,02

5,72

4,61

5,02

7,16

5,76

5,02

7,16

5,76

5,02

7,16

5,76

5,02

7,16

5,76

5,02

7,16

5,76

5,02

9,54

7,68

5,02

9,54

7,68

5,02

9,54

7,68

5,02

9,54

7,68

5,02

9,54

7,68

5,02

3,56

3,20

6,61

5,78

5,20

6,61

5,78

5,20

6,61

8,90

8,00

6,61

8,90

8,00

6,61

8,90

8,00

6,61

11,12

10,00

6,61

11,12

10,00

6,61

11,12

10,00

6,61

11,12

10,00

6,61

11,12

10,00

6,61

11,12

10,00

6,61

11,12

10,00

6,61

11,12

10,00

6,61

11,12

10,00

6,61

11,12

10,00

6,61

11,12

10,00

6,61

11,12

10,00

6,61

11,12

10,00

6,61

11,12

10,00

6,61

11,12

10,00

6,61

11,12

10,00

6,61

13,34

12,00

10,98

13,34

12,00

10,98

13,34

12,00

10,98

CARPENTRY | TBS | 79


STATIC VALUES | LVL SHEAR geometry

LVL - LVL

LVL - LVL

LVL - timber

timber - LVL

t2 A L b d1

t1

d1

L

b

A

RV,k

t1

t2

RV,k

RV,k

RV,k

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

10

100

52

48

5,82

40

20

3,95

5,44

4,96

120

60

60

6,36

40

40

7,89

6,07

5,45

140

60

80

6,36

40

60

11,37

6,07

5,61

160

80

80

7,04

40

80

11,37

6,81

5,61

180

80

100

7,04

60

60

11,84

6,81

5,61

200

100

100

7,17

60

80

12,73

6,81

5,61

220

100

120

7,17

60

100

12,73

6,81

5,61

240

100

140

7,17

80

80

14,09

6,81

5,61

260

100

160

7,17

80

100

14,09

6,81

5,61

280

100

180

7,17

80

120

14,09

6,81

5,61

300

100

200

7,17

100

100

14,34

6,81

5,61

320

120

200

7,17

100

120

14,34

6,81

5,61

340

120

220

7,17

100

140

14,34

6,81

5,61

360

120

240

7,17

120

120

14,34

6,81

5,61

380

120

260

7,17

120

140

14,34

6,81

5,61

400

120

280

7,17

120

160

14,34

6,81

5,61

440

120

320

7,17

140

160

14,34

6,81

5,61

480

120

360

7,17

140

200

14,34

6,81

5,61

520

120

400

7,17

160

200

14,34

6,81

5,61

NOTES: (1)

(2)

The axial thread withdrawal resistance Rax,90,flat,k was calculated considering a 90° angle between the grain and the connector and for a fixing length of b in applications with both parallel and cross grain LVL.

The axial thread withdrawal resistance Rax,90,edge,k was calculated considering a 90° angle between the grain and the connector and for a fixing length of b in applications with parallel grain LVL.

80 | TBS | CARPENTRY

(3)

The axial resistance to head pull-through Rhead,k, with and without a washer, was calculated using parallel or cross grain LVL elements with tmin thickness.


CHARACTERISTIC VALUES EN 1995:2014 TENSION thread withdrawal flat (1)

thread withdrawal edge (2)

head pull-through flat (3)

Rax,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

7,07

6,86

11,38

8,16

7,92

11,38

8,16

7,92

11,38

10,88

10,56

11,38

10,88

10,56

11,38

13,60

13,20

11,38

13,60

13,20

11,38

13,60

13,20

11,38

13,60

13,20

11,38

13,60

13,20

11,38

13,60

13,20

11,38

16,32

15,84

11,38

16,32

15,84

11,38

16,32

15,84

11,38

16,32

15,84

11,38

16,32

15,84

11,38

16,32

15,84

11,38

16,32

15,84

11,38

16,32

15,84

11,38

GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• F or the calculation process a LVL density of ρ k = 480 kg/m3 and timber density of 350 kg/m3 have been considered.

• Design values can be obtained from characteristic values as follows:

• Values were calculated considering the threaded part as being completely inserted into the wood.

R k Rd = k mod γm The coefficients γm and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030 and experimental tests carried out at Eurofins Expert Services Oy, Espoo, Finland (Report EUFI29-19000819-T1/T2).

• Sizing and verification of the wooden elements, panels and steel plates must be done separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained.

CARPENTRY | TBS | 81


TBS EVO

BIT INCLUDED

COATING

ETA 11/0030

FLANGE HEAD SCREW C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.

AGGRESSIVE WOODS Ideal for applications with woods containing tannin or treated with impregnating agents and other chemical processes.

INTEGRATED WASHER The flange head serves as washer and ensures high tensile strength. Ideal in the presence of wind or variations in timber dimensions.

STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°). Asymmetric “umbrella” threading for better wood pull-through.

CHARACTERISTICS FOCUS

corrosiveness class C4

HEAD

flange

DIAMETER

6,0 and 8,0 mm

LENGTH

from 60 mm to 240 mm

MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.

FIELDS OF USE • wood based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.

82 | TBS EVO | CARPENTRY


OUTDOOR WALKWAYS Ideal for the construction of outdoor structures such as walkways and arcades. Values also certified for screw insertion parallel to the grain. Ideal for fastening aggressive woods containing tannin, such as chestnut and oak.

SIP PANELS Values also tested, certified and calculated for CLT and high density woods such as MicrollamÂŽ LVL. Suitable for fastening SIP and sandwich panels.

CARPENTRY | TBS EVO | 83


Fastening Wood Trusses outdoors.

Fastening of 3-layer, multi-ply beams with plasterboard coating.

GEOMETRY AND MECHANICAL CHARACTERISTICS A

dk

d2 d1 ds

b L

Nominal diameter

d1

[mm]

6

8

Head diameter

dk

[mm]

15,50

19,00

Tip diameter

d2

[mm]

3,95

5,40

Shank diameter

ds

[mm]

4,30

5,80

Pre-drilling hole diameter

dv

[mm]

Characteristic yield moment

My,k

[Nmm]

fax,k

Characteristic withdrawal-resistance parameter Characteristic head-pull-through parameter Characteristic tensile strength

84 | TBS EVO | CARPENTRY

4,0

5,0

9493,7

20057,5

[N/mm2]

11,7

11,7

fhead,k

[N/mm2]

10,5

10,5

f tens,k

[kN]

11,3

20,1


CODES AND DIMENSIONS d1

CODE

L

b

A

[mm]

[mm]

[mm]

TBSEVO660

60

40

20

100

TBSEVO8100

100

52

48

50

TBSEVO680

80

50

30

100

TBSEVO8120

120

80

40

50

[mm]

6 TX 30

pcs

d1

CODE

[mm]

L

b

A

[mm]

[mm]

[mm]

pcs

TBSEVO6100

100

60

40

100

TBSEVO8140

140

80

60

50

TBSEVO6120

120

75

45

100

TBSEVO8160

160

100

60

50

TBSEVO6140

140

75

65

100

TBSEVO8180

180

100

80

50

TBSEVO6160

160

75

85

100

TBSEVO8200

200

100

100

50

TBSEVO6180

180

75

105

100

TBSEVO8220

220

100

120

50

TBSEVO6200

200

75

125

100

TBSEVO8240

240

100

140

50

screw

D2

H

D1

pcs

[mm]

[mm]

[mm]

[mm]

6,0 - 6,5

25

15

6,5

8 TX 40

WBAZ WASHER D1 CODE H WBAZ25A2

100

D2

INSTALLATION

A

TBS EVO + WBAZ ØxL 6 x 60 6 x 80 6 x 100 6 x 120 6 x 140 6 x 160 6 x 180 6 x 200

A

Correct tightening

Excessive tightening

Insufficient tightening

fastening package [mm] min. 0 - max. 40 min. 10 - max. 60 min. 30 - max. 80 min. 50 - max. 100 min. 70 - max. 120 min. 90 - max. 140 min. 110 - max. 160 min. 130 - max. 180

Tightening off axis

NOTES: The thickness of the washer after installation is approximately 8 - 9mm.

FASTENING METAL SHEET Can be installed on sheets up to 0,7 mm thick without pre-drilling. TBS EVO Ø6 mm, ideal when used in combination with washer WBAZ. For outdoor use (service class 3).

CARPENTRY | TBS EVO | 85


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES

SCREWS INSERTED WITH PRE-DRILLING HOLES

6

8

30

40

4∙d

6

8

24

32

a1

[mm]

a2

[mm]

3∙d

18

24

4∙d

24

32

a3,t

[mm]

12∙d

72

96

7∙d

42

56

a3,c

[mm]

7∙d

42

56

7∙d

42

56

a4,t

[mm]

3∙d

18

24

7∙d

42

56

a4,c

[mm]

3∙d

18

24

3∙d

18

24

5∙d

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 6

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

8

6

8

a1

[mm]

12∙d

72

96

5∙d

30

40

a2

[mm]

5∙d

30

40

5∙d

30

40

a3,t

[mm]

15∙d

90

120

10∙d

60

80

a3,c

[mm]

10∙d

60

80

10∙d

60

80

a4,t

[mm]

5∙d

30

40

10∙d

60

80

a4,c

[mm]

5∙d

30

40

5∙d

30

40

d = nominal screw diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: • The minimum distances are compliant with EN 1995:2014, according to ETA-11/0030, considering a wood characteristic density of ρ k ≤ 420 kg/m3 and calculation diameter of d = nominal screw diameter. • The minimum spacing for all steel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85.

86 | TBS EVO | CARPENTRY

• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1,5.


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

timber-to-timber

TENSION panel-timber (1)

thread withdrawal (2)

head pull-through

A L b d1

L

b

A

RV,k

RV,k

Rax,k

Rhead,k

[mm]

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

60

40

20

2,02

1,21

3,25

2,92

8

50

30

2,31

60

40

2,47

2,27

4,06

2,92

2,54

4,87

2,92

2,54

6,09

2,92

2,54

6,09

2,92

120

75

45

2,47

140

75

65

2,47

160

75

85

2,47

2,54

6,09

2,92

180

75

105

2,47

2,54

6,09

2,92

200

75

125

2,47

2,54

6,09

2,92

100

80

20

2,95

3,41

8,66

4,39

3,96

8,66

4,39

3,96

8,66

4,39

3,96

10,83

4,39

3,96

10,83

4,39

3,96

10,83

4,39

120

80

40

3,66

140

80

60

3,90

160

100

60

3,90

SPAN = 65 mm

6

80 100

SPAN = 50 mm

d1 [mm]

180

100

80

3,90

200

100

100

3,90

220

100

120

3,90

3,96

10,83

4,39

240

100

140

3,90

3,96

10,83

4,39

NOTES: (1)

he shear characteristic resistances are calculated considering a particle T board with a SPAN thickness.

• F or the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030.

(2)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

• For the calculation process a timber characteristic density ρ k = 420 kg/m3 has been considered.

GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

• V alues were calculated considering the threaded part as being completely inserted into the wood. • Sizing and verification of the wooden elements and panels must be done separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained.

The coefficients γm and kmod should be taken according to the current regulations used for the calculation.

CARPENTRY | TBS EVO | 87


XYLOFON WASHER SEPARATING WASHER FOR WOOD SCREWS SOUNDPROOFING The separating washer acts as separator between the metallic and structural elements, reducing the transmission of vibrations.

TESTED VALUES Polyurethane compound tested acoustically and mechanically.

CODES AND DIMENSIONS XYLOFON WASHER CODE XYLW803811

dSCREW Ø8 - Ø10

dext

dint

h

[mm]

[mm]

[mm]

pcs

38

11

6,0

50

pcs

ULS 440 - WASHER CODE ULS11343

dSCREW Ø8 - Ø10

dext

dint

h

[mm]

[mm]

[mm]

34

11

3,0

200

MATERIAL AND DURABILITY Polyurethane compound (80 shore). Product free of VOCs and harmful substances. High chemical stability and deformation free in time.

FIELDS OF USE Mechanical separation of timber-to-timber shear joints made with screws.

88 | XYLOFON WASHER | CARPENTRY


EXPERIMENTAL INVESTIGATION LOAD-BEARING CAPACITY AND STIFFNESS OF CONNECTIONS BETWEEN CLT PANELS MADE WITH HBS PARTIALLY THREAD SCREWS AND XYLOFON WASHERS

TEST [ T-T ] (CLT - CLT)

F

Through experimental testing and analytical approaches, the mechanical and deformation performance of connections between CLT panels — made with 8x280 HBS screws installed with/without XYLOFON WASHER separating washers — was analysed with and without the use of resilient, intermediate XYLOFON35 decoupling profiles.

force application pre-tensioning

8x280/8 0

1000 135

7 x HBS

/3s

CLT 90

plain bearing 80 70

90

60

300

Fmean [kN]

50 40 30

TEST [ T-X ] (CLT - XYLOFON35 - CLT)

20

T-T 0kN T-X 0kN T-X-W 0kN

10

T-T 30kN T-X 30kN T-X-W 30kN

0 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

F XYLOFON35

Displacement [mm] Graphic representation of the experimental data for the various test configurations.

SERIES

T-T T-X T-X-W

Fmean(1)

FR,k

pre-tens. (2)

Kser

Ku

[kN]

[kN]

[kN]

[N/mm]

[N/mm]

52,9

44,0

0

30252

3524

61,4

52,4

30

42383

4090

54,4

40,1

0

7114

3629

70,9

60,5

30

9540

4726

65,0

48,3

0

6286

4330

76,2

63,4

30

7997

5080

Average value for 3 tests. (2) Preload forces of 30 kN were applied to simulate the operating load. (1)

TEST [ T-X-W ] (CLT - XYLOFON35 + XYLOFON WASHER - CLT)

F XYLOFON35

ER

N WASH

XYLOFO

The experimental test results show that fastener load-bearing capacity is affected by the presence of the resilient XYLOFON35 profile (T-X series), recording a reduction of about 9% in FR,k. However, adding the XYLOFON WASHER (T-X-W series) separating washers recorded a 10% increase in FR,k due to the increase in the axial strength of the connection (cable effect). In terms of deformation, the presence of the decoupling layer implies a reduction in slip modulus Kser. The viscous and damping component of XYLOFON combined with the reduced thickness achieves acoustic benefits, limiting the repercussions on the static performance.

+ +

METAL WASHER XYLOFON WASHER HBS Ø8

=

• The full scientific report on the experimental testing is available at Rothoblaas. • Experimental testing conducted in collaboration with Technische Versuchs und Forschungsanstalt (TVFA), Innsbruck.

CARPENTRY | XYLOFON WASHER | 89


HBS PLATE

BIT INCLUDED

PAN HEAD SCREW FOR PLATES HBS P Designed for steel-to-timber joints: the head has a shoulder and the thickness is increased for completely safe, reliable fastening plates to the timber.

PLATE FASTENING The under-head shoulder achieves an interlocking effect with the circular hole in the plate, thus guaranteeing excellent static performance.

LONGER THREAD Increased thread length for excellent shear strength and tensile strength in steel-to-timber joints. Values higher than normal.

CHARACTERISTICS FOCUS

steel-to-timber joints

HEAD

shoulder for plate

DIAMETER

from 8,0 mm to 12,0 mm

LENGTH

from 80 mm to 200 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE • wood based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.

90 | HBS PLATE | CARPENTRY

ETA 11/0030


MULTISTOREY Ideal for steel-to-timber joints with large customized plates, designed for multi-story wooden buildings.

TITAN Values also tested, certified and calculated for fastening standard Rothoblaas plates.

CARPENTRY | HBS PLATE | 91


Steel-to-timber shear joint

Mixed steel-to-timber structural joint

GEOMETRY AND MECHANICAL CHARACTERISTICS

BS

P

H

dk

X X

Ap

d2 d1

duk ds

t1

b L

Nominal diameter

d1

[mm]

8

10

12

Head diameter

dk

[mm]

14,50

18,25

20,75

Tip diameter

d2

[mm]

5,40

6,40

6,80

Shank diameter

ds

[mm]

5,80

7,00

8,00

Head thickness

t1

[mm]

3,40

4,35

5,00

Underhead diameter

duk

[mm]

10,00

12,00

14,00

Pre-drilling hole diameter

dv

[mm]

5,0

6,0

6,5

My,k

[Nmm]

20057

35830

47966

fax,k

[N/mm2]

11,7

11,7

11,7

fhead,k

[N/mm2]

10,5

10,5

10,5

f tens,k

[kN]

20,1

31,4

33,9

Characteristic yield moment Characteristic withdrawal-resistance parameter Characteristic head-pull-through parameter Characteristic tensile strength

92 | HBS PLATE | CARPENTRY


CODES AND DIMENSIONS d1

CODE

L

b

Ap

[mm]

[mm]

[mm]

HBSP880

80

55

1,0 ÷ 15,0

100

HBSP12120

HBSP8100

100

75

1,0 ÷ 15,0

100

HBSP12140

[mm]

8 TX 40

10 TX 40

pcs

d1

CODE

[mm]

12 TX 50

L

b

Ap

[mm]

[mm]

[mm]

pcs

120

90

1,0 ÷ 20,0

25

140

110

1,0 ÷ 20,0

25

HBSP8120

120

95

1,0 ÷ 15,0

100

HBSP12160

160

120

1,0 ÷ 30,0

25

HBSP8140

140

110

1,0 ÷ 20,0

100

HBSP12180

180

140

1,0 ÷ 30,0

25

HBSP8160

160

130

1,0 ÷ 20,0

100

HBSP12200

200

160

1,0 ÷ 30,0

25

HBSP10100

100

75

1,0 ÷ 15,0

50

HBSP10120

120

95

1,0 ÷ 15,0

50

HBSP10140

140

110

1,0 ÷ 20,0

50

HBSP10160

160

130

1,0 ÷ 20,0

50

HBSP10180

180

150

1,0 ÷ 20,0

50

MINIMUM DISTANCES FOR SHEAR LOADS Splate

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES

SCREWS INSERTED WITH PRE-DRILLING HOLES

a1

[mm]

5∙d ∙ 0,7

8

10

12

28

35

42

4∙d ∙ 0,7

8

10

12

22

28

34

a2

[mm]

3∙d ∙ 0,7

17

21

25

4∙d ∙ 0,7

22

28

34

a3,t

[mm]

12∙d

96

120

144

7∙d

56

70

84

a3,c

[mm]

7∙d

56

70

84

7∙d

56

70

84

a4,t

[mm]

3∙d

24

30

36

7∙d

56

70

84

a4,c

[mm]

3∙d

24

30

36

3∙d

24

30

36

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

8

10

12

67

84

101

5∙d ∙ 0,7

8

10

12

28

35

42

a1

[mm]

12∙d ∙ 0,7

a2

[mm]

5∙d ∙ 0,7

28

35

42

5∙d ∙ 0,7

28

35

42

a3,t

[mm]

15∙d

120

150

180

10∙d

80

100

120

a3,c

[mm]

10∙d

80

100

120

10∙d

80

100

120

a4,t

[mm]

5∙d

40

50

60

10∙d

80

100

120

a4,c

[mm]

5∙d

40

50

60

5∙d

40

50

60

d = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

F

a4,t

a4,c

a3,c

NOTES: • The minimum distances are compliant with EN 1995:2014, according to ETA-11/0030, considering a wood characteristic density of ρ k ≤ 420 kg/m3 and calculation diameter of d = nominal screw diameter.

• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1,5.

CARPENTRY | HBS PLATE | 93


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR thick steel-timber plate (2)

thin steel-timber plate (1)

geometry

TENSION (3)

Splate

thread withdrawal(4)

steel tension

Splate

L b d1

b

RV,k

RV,k

Rax,k

Rtens,k

[mm]

[kN]

[kN]

[kN]

[kN]

80

55

100

75

130 75

120

95

140

110

160

130

180

150

120

90

140

110

160

120

180

140

200

160

5,08 5,36 5,36 6,01 6,87 7,34 7,74 7,74 8,18 8,94 9,32 9,55 9,55

SPLATE ≥ 10 mm

160 100

4,57

SPLATE ≥ 12 mm

12

95 110

SPLATE ≤ 5 mm

10

120 140

SPLATE ≤ 6 mm

8

4,07

SPLATE ≥ 8 mm

L [mm]

SPLATE ≤ 4 mm

d1 [mm]

NOTES:

5,56 7,58

6,19

9,60

6,57

11,11

7,07

13,13

7,84

9,47

8,48

12,00

8,95

13,89

9,58

16,42

10,21

18,94

10,16

13,64

10,92

16,67

11,30

18,18

12,06

21,21

12,81

24,24

20,10

31,40

33,90

GENERAL PRINCIPLES:

The shear resistance characteristics are calculated considering the case of a thin plate (SPLATE ≤ 0,5 d1).

• C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1).

• Design values can be obtained from characteristic values as follows:

(1)

(2)

The tensile design strength of the connector is the lower between the woodside design strength (Rax,d) and the steel-side design strength (Rtens,d).

(3)

Rax,d = min

Rax,k kmod γm Rtens,k γm2

Rd =

Rk kmod γm

The coefficients γm and kmod should be taken according to the current regulations used for the calculation.

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

(4)

5,18 5,68

In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

• For the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρ k = 385 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Sizing and verification of the wooden elements, panels and steel plates must be done separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

94 | HBS PLATE | CARPENTRY



HBS PLATE EVO

BIT INCLUDED

COATING

ETA 11/0030

PAN HEAD SCREW HBS P EVO Designed for outdoor steel-to-timber joints: the thickness of the shoulder screw is increased for completely safe, reliable fastening plates to the timber. The small sizes (5,0 and 6,0 mm) are also ideal for timber-to-timber joints.

C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.

AGGRESSIVE WOODS Ideal for applications with woods containing tannin or treated with impregnating agents or other chemical processes.

CHARACTERISTICS FOCUS

corrosiveness class C4

HEAD

shoulder for plate

DIAMETER

from 5,0 mm to 10,0 mm

LENGTH

from 40 mm to 180 mm

MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.

FIELDS OF USE • wood based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.

96 | HBS PLATE EVO | CARPENTRY


GEOMETRY AND MECHANICAL CHARACTERISTICS Ap

At tk

H

t1

duk

ds

dk

P

BS

BS

d2 d1

X X

P

H

dk

d2 d1

X X

tk

duk

t1

b

ds

b L

L HBS P EVO - 5,0 | 6,0 mm

HBS P EVO - 8,0 | 10,0 mm

Nominal diameter

d1

[mm]

5

6

8

10

Head diameter

dk

Tip diameter

d2

[mm]

9,65

12,00

14,50

18,25

[mm]

3,40

3,95

5,40

6,40

Shank diameter

ds

[mm]

3,65

4,30

5,80

7,00

Head thickness

t1

[mm]

4,50

5,00

4,60

5,65

Washer thickness

tk

[mm]

1,00

1,50

3,40

4,35

Underhead diameter

duk

[mm]

6,0

8,0

10,00

12,00

Pre-drilling hole diameter

dv

[mm]

3,0

4,0

5,0

6,0

Characteristic yield moment

My,k

[Nmm]

5417,2

9493,7

20057,5

35829,6

fax,k

[N/mm ]

11,7

11,7

11,7

11,7

fhead,k

[N/mm2]

10,5

10,5

10,5

10,5

f tens,k

[kN]

7,9

11,3

20,1

31,4

At

Ap

Characteristic withdrawal-resistance parameter Characteristic head-pull-through parameter Characteristic tensile strength

2

CODES AND DIMENSIONS d1

CODE

[mm] 5 TX 25 6 TX 30 8 TX 40

L

b

[mm] [mm] [mm] HBSPEVO550 HBSPEVO560 HBSPEVO570 HBSPEVO580 HBSPEVO680 HBSPEVO690 HBSPEVO840 HBSPEVO860 HBSPEVO880 HBSPEVO8100

50 60 70 80 80 90 40 60 80 100

30 35 40 50 50 55 32 52 55 75

20 25 30 30 30 35 -

pcs

[mm] 1,0 ÷ 10,0 1,0 ÷ 10,0 1,0 ÷ 10,0 1,0 ÷ 10,0 1,0 ÷ 10,0 1,0 ÷ 10,0 1,0 ÷ 15,0 1,0 ÷ 15,0 1,0 ÷ 15,0 1,0 ÷ 15,0

d1

CODE

[mm] 200 200 100 100 100 100 100 100 100 100

8 TX 40

10 TX 40

HBSPEVO8120 HBSPEVO8140 HBSPEVO8160 HBSPEVO1060 HBSPEVO1080 HBSPEVO10100 HBSPEVO10120 HBSPEVO10140 HBSPEVO10160 HBSPEVO10180

L

b

Ap

[mm]

[mm]

[mm]

120 140 160 60 80 100 120 140 160 180

95 110 130 52 60 75 95 110 130 150

1,0 ÷ 15,0 1,0 ÷ 20,0 1,0 ÷ 20,0 1,0 ÷ 15,0 1,0 ÷ 15,0 1,0 ÷ 15,0 1,0 ÷ 15,0 1,0 ÷ 20,0 1,0 ÷ 20,0 1,0 ÷ 20,0

pcs 100 100 100 50 50 50 50 50 50 50

TYP R Ideal for fastening standard Rothoblaas plates in outdoor environments. The 5 mm diameter version is ideal for fastening patio deck planks.

CARPENTRY | HBS PLATE EVO | 97


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES

SCREWS INSERTED WITH PRE-DRILLING HOLES

5

6

8

10

25

30

40

50

5

6

8

10

4∙d

20

24

32

40

a1

[mm]

a2

[mm]

3∙d

15

18

24

30

4∙d

20

24

32

40

a3,t

[mm]

12∙d

60

72

96

120

7∙d

35

42

56

70

a3,c

[mm]

7∙d

35

42

56

70

7∙d

35

42

56

70

a4,t

[mm]

3∙d

15

18

24

30

7∙d

35

42

56

70

a4,c

[mm]

3∙d

15

18

24

30

3∙d

15

18

24

30

5∙d

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5

6

8

10

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5

6

8

10

a1

[mm]

12∙d

60

72

96

120

5∙d

25

30

40

50

a2

[mm]

5∙d

25

30

40

50

5∙d

25

30

40

50

0

10∙d

50

60

80

100

a3,t

[mm]

15∙d

75

90

120

a3,c

[mm]

10∙d

50

60

80

150

10∙d

50

60

80

100

a4,t

[mm]

5∙d

25

30

40

100

10∙d

50

60

80

100

a4,c

[mm]

5∙d

25

30

40

50

5∙d

25

30

40

50

d = nominal screw diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: • Minimum distances are in accordance with EN 1995:2014 as per ETA11/0030 considering a wood characteristic density of ρ k ≤ 420 kg/m3. • In the case of joints with elements in Douglas fir, the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1,5. • The minimum spacing for all steel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,7.

98 | HBS PLATE EVO | CARPENTRY

• The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85.


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

timber-to-timber

TENSION thin steel-timber thick steel-timber plate (2) plate (3)

panel-timber (1)

Splate

thread withdrawal(4)

head pull-through (5)

Splate

A L b d1

b

A

RV,k

RV,k

RV,k

RV,k

RV,k

Rax,k

Rhead,k

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

[kN]

[kN]

[kN]

2,25

2,03

1,13

2,34

2,37

1,13

1,06

30

1,52

50

30

1,52

80

30

50

2,02

90

35

55

2,18

6

1,51 1,51

1,12 1,12 1,12 1,59 1,59

1,74 1,83 1,91 2,08 2,35 2,45

2,42

2,71

1,13

2,59

3,38

1,13

3,07

2,44

1,75

3,17

2,84

1,75

32

8

1,18

-

-

2,13

3,66

3,47

2,55

60

52

8

1,18

-

-

3,31

5,12

5,63

2,55

2,32

2,39

4,29

25

2,67

75

25

2,67

120

95

25

2,67

140

110

30

2,83

2,32

2,39

5,60

160

130

30

2,83

2,32

2,39

5,60

2,32 2,32

2,39 2,39

SPLATE = 4 mm

55

SPAN = 18 mm

80 100

4,83 5,37

SPLATE = 8 mm

40

5,45

5,96

2,55

5,99

8,12

2,55

6,53

10,29

2,55

6,94

11,91

2,55

7,48

14,08

2,55

8

1,38

-

-

3,80

6,31

7,04

4,05

20

3,45

2,55

3,06

5,18

7,74

8,12

4,05

100

75

25

3,45

2,55

3,06

6,56

8,26

10,15

4,05

120

95

25

3,77

8,93

12,86

4,05

140

110

30

3,91

9,44

14,89

4,05

160

130

30

3,91

2,55

3,06

8,09

10,12

17,60

4,05

180

150

30

3,91

2,55

3,06

8,09

10,80

20,31

4,05

2,55 2,55

NOTES:

3,06 3,06

7,26 7,77

SPLATE = 10 mm

52 60

SPLATE = 5 mm

60 80

SPAN = 18 mm

10

1,06

SPAN = 15 mm

8

1,06

SPAN = 15 mm

40

SPAN = 12 mm

70 80

1,12

SPLATE = 6 mm

1,06

1,43

SPLATE = 3 mm

1,29

25

SPAN = 12 mm

20

35

SPAN = 9 mm

30

SPAN = 15 mm

5

50 60

SPLATE = 5,0 mm

L [mm]

SPLATE = 2,5 mm

d1 [mm]

GENERAL PRINCIPLES:

(1)

The characteristic shear resistances are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN.

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

(2)

The shear resistance characteristics are calculated considering the case of a thin plate (SPLATE ≤ 0,5 d1).

(3)

The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1).

(4)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

The coefficients γm and kmod should be taken according to the current regulations used for the calculation.

(5)

The axial resistance to head pull-through, with and without a washer, was calculated using wood elements.

• For the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030.

In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

• For the calculation process a timber characteristic density ρ k = 420 kg/m3 has been considered.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

• Values were calculated considering the threaded part as being completely inserted into the wood. • Sizing and verification of the wooden elements, panels and steel plates must be done separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

CARPENTRY | HBS PLATE EVO | 99


LBS

BIT INCLUDED

ROUND HEAD SCREW FOR PLATES SCREW FOR PERFORATED PLATES Cylindrical shoulder designed for fastening metal elements. Achieves an interlocking effect with the hole in the plate, thus guaranteeing excellent static performance.

STATICS Can be calculated according to Eurocode 5 under thick plate timber-tosteel connections, even with thin metal elements. Excellent shear strength values.

DUCTILITY Bending angle 20° greater than standard, certified according to ETA 11/0030, Cyclical SEISMIC-REV tests according to EN 12512.

CHARACTERISTICS FOCUS

screw for perforated plates

HEAD

round with cylindrical underhead

DIAMETER

5,0 | 7,0 mm

LENGTH

from 25 mm to 100 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE • wood based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.

100 | LBS | CARPENTRY

ETA 11/0030


GEOMETRY AND MECHANICAL CHARACTERISTICS duk d2 d1

dk b L

t1

Nominal diameter

d1

[mm]

5

7

Head diameter

dk

Tip diameter

d2

[mm]

7,80

11,00

[mm]

3,00

4,40

Underhead diameter

duk

[mm]

4,90

7,00

Head thickness

t1

[mm]

2,40

3,50

Pre-drilling hole diameter

dv

[mm]

3,0

4,0

Characteristic yield moment

My,k

[Nmm]

5417

14174

fax,k

[N/mm ]

11,7

11,7

fhead,k

[N/mm2]

10,5

10,5

f tens,k

[kN]

7,9

19,2

Characteristic withdrawal-resistance parameter Characteristic head-pull-through parameter Characteristic tensile strength

2

Mechanical parameters of LBS Ă˜7 screw obtained from experimental tests.

CODES AND DIMENSIONS d1

CODE

[mm]

5 TX 20

L

b

[mm]

[mm]

pcs

d1

CODE

L

b

[mm]

[mm]

LBS760

60

55

100

LBS780

80

75

100

LBS7100

100

95

100

[mm]

LBS525

25

21

500

LBS540

40

36

500

LBS550

50

46

200

LBS560

60

56

200

LBS570

70

66

200

7 TX 30

pcs

ALUMAXI Values also tested, certified and calculated for fastening standard Rothoblaas plates. The 7 mm diameter version is ideal for joining the ALUMAXI concealed beam hanger.

CARPENTRY | LBS | 101


MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TIMBER

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES

SCREWS INSERTED WITH PRE-DRILLING HOLES

5

7

18

25

4∙d ∙ 0,7

5

7

14

20

a1

[mm]

5∙d ∙ 0,7

a2

[mm]

3∙d ∙ 0,7

11

15

4∙d ∙ 0,7

14

20

a3,t

[mm]

12∙d

60

84

7∙d

35

49

a3,c

[mm]

7∙d

35

49

7∙d

35

49

a4,t

[mm]

3∙d

15

21

7∙d

35

49

a4,c

[mm]

3∙d

15

21

3∙d

15

21

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5

7

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5

7

a1

[mm]

12∙d ∙ 0,7

42

59

5∙d ∙ 0,7

18

25

a2

[mm]

5∙d ∙ 0,7

18

25

5∙d ∙ 0,7

18

25

a3,t

[mm]

15∙d

75

105

10∙d

50

70

a3,c

[mm]

10∙d

50

70

10∙d

50

70

a4,t

[mm]

5∙d

25

35

10∙d

50

70

a4,c

[mm]

5∙d

25

35

5∙d

25

35

d = nominal screw diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: • The minimum distances are compliant with EN 1995:2014, according to ETA, considering a wood characteristic density of ρ k ≤ 420 kg/m3 and calculation diameter of d = nominal nail diameter.

102 | LBS | CARPENTRY

• In the case of timber-to-timber joints, the minimum spacing (a 1 , a 2) can be multiplied by a coefficient of 1,5.


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 STEEL-TO-TIMBER SHEAR (1)

geometry

steel-timber Splate

L

b

d1

d1

L

b

Rv,k [kN]

[mm]

[mm]

[mm]

SPLATE=1,5 mm

SPLATE=2 mm

SPLATE=2,5 mm

SPLATE=3 mm

SPLATE=4 mm

SPLATE=5 mm

SPLATE=6 mm

5

25 40 50 60 70

21 36 46 56 66

0,92 1,50 1,88 2,07 2,22

0,90 1,48 1,87 2,07 2,22

0,88 1,46 1,85 2,07 2,22

1,00 1,60 1,94 2,16 2,32

1,24 1,90 2,14 2,36 2,52

1,48 2,18 2,37 2,54 2,70

1,44 2,13 2,37 2,52 2,68

SPLATE=2 mm

SPLATE=3 mm

SPLATE=4 mm

SPLATE=5 mm

SPLATE=6 mm

SPLATE=7 mm

SPLATE=8 mm

7

60 80 100

56 76 96

2,86 3,83 4,27

2,81 3,80 4,27

2,98 3,89 4,40

3,37 4,13 4,63

3,78 4,38 4,86

4,21 4,65 5,10

4,18 4,63 5,07

TIMBER-TO-TIMBER SHEAR

TENSION

timber-to-timber

thread withdrawal (2)

geometry

A L

b

d1

d1

L

b

A

Rv,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

25 40 50 60 70 60 80 100

21 36 44 56 66 56 76 96

15 20 25 30 25 35 45

1,01 1,11 1,24 1,35 1,91 2,25 2,49

1,33 2,27 2,78 3,54 4,17 4,95 6,72 8,49

5

7

Rax,k

NOTES: (1)

(2)

The characteristic shear resistances are evaluated for plates with thickness = SPLATE, considering the case of thin plate (SPLATE ≤ 0,5 d1), intermediate plate (0,5 d1 < SPLATE < d1) o thick plate (SPLATE ≥ d1). he axial thread withdrawal resistance was calculated considering a 90° T angle between the grain and the connector and for a fixing length of b.

GENERAL PRINCIPLES: • C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

Rd =

The coefficients γm and kmod should be taken according to the current regulations used for the calculation. • F or the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030 and to "Test Report No. 186121" of Karlsruher Institut für Technologie (KIT). • For the calculation process a timber density ρ k = 385 kg/m3 has been considered. • D imensioning and verification of timber elements and steel plates must be carried out separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained.

Rk kmod γm

CARPENTRY | LBS | 103


LBA HIGH BOND NAIL ANKER NAIL Threaded annular ring nail for improved pull-out strength.

CE MARKING Nails with CE marking, in accordance with ETA for fastening metallic plates to timber structures.

STAINLESS STEEL Also available in A4 | AISI316 stainless steel.

CHARACTERISTICS FOCUS

threaded, annular ring nail

HEAD

flat

DIAMETER

4,0 | 6,0 mm

LENGTH

from 40 mm to 100 mm

MATERIAL Carbon steel with bright zinc plated or stainless steel A4,

FIELDS OF USE • wood based panels • fibre board and MDF panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL Service classes 1 and 2.

104 | LBA | CARPENTRY


GEOMETRY AND MECHANICAL CHARACTERISTICS d1 de

dk b

t1

Nominal diameter

L

d1

[mm]

4

6

Head diameter

dk

[mm]

8,00

12,00

Underhead diameter

de

[mm]

4,40

6,65

Head thickness

t1

[mm]

1,40

2,00

Pre-drilling hole diameter

dv

[mm]

Characteristic yield moment

My,k

[Nmm]

Characteristic withdrawal-resistance parameter

fax,k

Characteristic tensile strength

f tens,k

3,0

4,5

6500

19000

[N/mm2]

7,5

7,5

[kN]

6,9

11,4

CODES AND DIMENSIONS LBA d1

LBAI A4 | AISI316 CODE

[mm]

4

6

LBA440 LBA450 LBA460 LBA475 LBA4100 LBA660 LBA680 LBA6100

L

b

[mm]

[mm]

40 50 60 75 100 60 80 100

30 40 50 60 80 50 70 80

pcs

d1

250 250 250 250 250 250 250 250

4

4-6

50

40

250

L

pcs

LBAI450

d1

CODE

[mm] L

pcs

4 34°

[mm] HH20006080 HH20006085 HH20006090

trigger

pcs

CODE

[mm] HH3731

b [mm]

40 50 60

2000 2000 2000

0116 ANKER RIVETER 34°

3731 PALMAR RIVETER d NAIL

L [mm]

ANKER COIL NAIL - K34°

d

CODE

CODE

[mm]

d NAIL

trigger

pcs

single

1

[mm] single

1

ATEU0116

4

WHT Values also tested, certified and calculated for fastening standard Rothoblaas plates. Using a handheld riveter speeds up installation.

CARPENTRY | LBA | 105


MINIMUM DISTANCES FOR NAILS SUBJECT TO SHEAR | STEEL-TO-TIMBER

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

NAILS INSERTED WITH PRE-DRILLING HOLES 4 a1

[mm]

5∙d ∙ 0,7

a2

[mm]

a3,t

[mm]

a3,c

NAILS INSERTED WITH PRE-DRILLING HOLES

6

14

5∙d ∙ 0,7

3∙d ∙ 0,7

8

12∙d

48

[mm]

7∙d

a4,t

[mm]

3∙d

a4,c

[mm]

3∙d

4

21

4∙d ∙ 0,7

3∙d ∙ 0,7

13

12∙d

72

28

7∙d

42

12

3∙d

18

12

3∙d

18

3∙d

NAILS INSERTED WITHOUT PRE-DRILLING HOLE 4

6

11

4∙d ∙ 0,7

4∙d ∙ 0,7

11

4∙d ∙ 0,7

17

7∙d

28

7∙d

42

7∙d

28

7∙d

42

5∙d

20

7∙d

42

12

3∙d

18

17

NAILS INSERTED WITHOUT PRE-DRILLING HOLE

6

4

6

a1

[mm]

10∙d ∙ 0,7

28

12∙d ∙ 0,7

50

5∙d ∙ 0,7

14

5∙d ∙ 0,7

21

a2

[mm]

5∙d ∙ 0,7

14

5∙d ∙ 0,7

21

5∙d ∙ 0,7

14

5∙d ∙ 0,7

21

a3,t

[mm]

15∙d

60

15∙d

90

10∙d

40

10∙d

60

a3,c

[mm]

10∙d

40

10∙d

60

10∙d

40

10∙d

60

a4,t

[mm]

5∙d

20

5∙d

30

7∙d

28

10∙d

60

a4,c

[mm]

5∙d

20

5∙d

30

5∙d

20

5∙d

30

d = nominal nail diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F a3,t

NOTES: • The minimum distances are compliant with EN 1995:2014, according to ETA, considering a wood characteristic density of ρ k ≤ 420 kg/m3 and calculation diameter of d = nominal nail diameter.

106 | LBA | CARPENTRY

F α

α a3,c

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014

STEEL-TO-TIMBER SHEAR

TENSION

steel-timber

thread withdrawal

geometry

Splate L b

d1

[mm]

[kN]

[kN]

40 50 60 75 100 60 80 100

30 40 50 60 80 50 70 80

4

6

2,05 2,34 2,50 2,66 2,99 2,59 3,47 4,30

2,03 2,34 2,50 2,66 2,99 2,57 3,45 4,30

2,02 2,34 2,50 2,66 2,99 3,43 4,23 4,79

2,00 2,34 2,50 2,66 2,99 4,29 5,03 5,28

1,98 2,34 2,50 2,66 2,99 4,25 5,03 5,28

1,95 2,34 2,50 2,66 2,99 4,21 5,03 5,28

SPLATE = 6 mm

[mm]

SPLATE = 5 mm

[mm]

SPLATE = 4 mm

Rax,k (2)

SPLATE = 3 mm

Rv,k (1)

SPLATE = 2,5 mm

b

SPLATE = 2 mm

L

SPLATE = 1,5 mm

d1

1,92 2,34 2,50 2,66 2,99 4,17 5,03 5,28

0,97 1,30 1,62 1,94 2,59 2,43 3,40 3,89

STEEL-TO-LVL SHEAR

TENSION

steel-LVL

thread withdrawal

geometry

Splate L b

d1

[mm]

[kN]

[kN]

40 50 60 75 100 60 80 100

30 40 50 60 80 50 70 80

4

6

2,47 2,66 2,86 3,05 3,43 3,23 4,33 4,95

2,45 2,66 2,86 3,05 3,43 3,20 4,30 4,95

2,43 2,66 2,86 3,05 3,43 4,17 5,01 5,50

NOTES: (1)

(2)

The characteristic shear-strength value for LBA Ø4 nails has been evaluated assuming a plate thickness = SPLATE , always considering the case of thick plate according to ETA (SPLATE ≥ 1,5 mm). The characteristic shear-strength value for LBA Ø6 screws has been evaluated assuming a plate thickness = SPLATE , and considering the thin (SPLATE ≤ 2,0 mm), and thick-plate case scenarios (2,0 < SPLATE < 3,0 mm) according to ETA (SPLATE ≥ 3,0 mm). The axial thread-withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

2,41 2,66 2,86 3,05 3,43 5,17 5,75 6,04

2,38 2,66 2,86 3,05 3,43 5,12 5,75 6,04

2,34 2,66 2,86 3,05 3,43 5,07 5,75 6,04

SPLATE = 6 mm

[mm]

SPLATE = 5 mm

[mm]

SPLATE = 4 mm

Rax,k (2)

SPLATE = 3 mm

Rv,k (1)

SPLATE = 2,5 mm

b

SPLATE = 2 mm

L

SPLATE = 1,5 mm

d1

2,31 2,66 2,86 3,05 3,43 5,02 5,75 6,04

1,16 1,54 1,93 2,32 3,09 2,90 4,06 4,63

GENERAL PRINCIPLES: • C haracteristic values are consistent with EN 1995:2014 and in accordance with ETA. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

The coefficients γm and kmod should be taken according to the current regulations used for the calculation. • F or the calculation process, a timber density of ρk = 385 kg/m3 and LVL density of ρ k = 480 kg/m3 have been considered. • Dimensioning and verification of timber elements and steel plates must be carried out separately. • The shear characteristic resistances are calculated for nails inserted without pre-drilling holes. In the case of nails inserted with pre-drilling holes, greater resistance values can be obtained.

CARPENTRY | LBA | 107


KOP

EN 14592

COACH SCREW DIN571 CE MARKING Screws with the CE mark, in accordance with EN 14592.

HEXAGONAL HEAD Appropriate for use on plates in steel-timber applications, thanks to its hexagonal head.

OUTDOOR VERSION Also available in stainless steel A2 | AISI304 for outdoor use (service class 3).

CHARACTERISTICS FOCUS

coach screw with CE marking

HEAD

hexagonal

DIAMETER

from 8,0 mm to 16,0 mm

LENGTH

from 50 mm to 400 mm

MATERIAL Available in carbon steel with bright zinc plated and in stainless steel A2.

FIELDS OF USE • wood based panels • fibre board and MDF panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL Service classes 1 and 2.

108 | KOP | CARPENTRY


GEOMETRY AND MECHANICAL CHARACTERISTICS A

SW

d2 d1 ds

b

k

L

Nominal diameter

d1

[mm]

8

10

12

16

Wrench size

SW

[mm]

13

17

19

24

Tip diameter

d2

[mm]

5,60

7,00

9,00

12,00

Shank diameter

dS

[mm]

8,00

10,00

12,00

16,00

Diameter pre-drilling hole - smooth part

dv1

[mm]

8,0

10,0

12,0

16,0

Diameter pre-drilling hole - threaded part

dv2

[mm]

5,5

7,0

8,5

11,0

Thread length

b

[mm]

Characteristic yield moment

My,k

[Nmm]

16900

32200

65700

138000

Characteristic withdrawal-resistance parameter

fax,k

[N/mm ]

12,9

10,6

10,2

10,0

≥ 0,6 L

2

Associated density

ρa

[kg/m3]

400

400

440

360

Characteristic head-pull-through parameter

fhead,k

[N/mm2]

22,8

19,8

16,4

16,5

Associated density

ρa

[kg/m ]

440

420

430

430

Characteristic tensile strength

f tens,k

[kN]

15,7

23,6

37,3

75,3

3

CODES AND DIMENSIONS d1

CODE

[mm]

8 SW 13

10 SW 17

12 SW 19

L

pcs

[mm] KOP850 KOP860 KOP870 KOP880 KOP8100 KOP8120 KOP8140 KOP8160 KOP8180 KOP8200 KOP1050 KOP1060 KOP1080 KOP10100 KOP10120 KOP10140 KOP10150 KOP10160 KOP10180 KOP10200 KOP10220 KOP10240 KOP10260 KOP10280 KOP10300 KOP1250 KOP1260 KOP1270 KOP1280 KOP1290 KOP12100 KOP12120 KOP12140

50 60 70 80 100 120 140 160 180 200 50 60 80 100 120 140 150 160 180 200 220 240 260 280 300 50 60 70 80 90 100 120 140

100 100 100 100 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 25 25 25 25

d1

CODE

L

[mm]

[mm]

KOP12150 KOP12160 KOP12180 KOP12200 KOP12220 KOP12240 KOP12260 12 SW 19 KOP12280 KOP12300 KOP12320 KOP12340 KOP12360 KOP12380 KOP12400 KOP1680 KOP16100 KOP16120 KOP16140 KOP16150 KOP16160 KOP16180 KOP16200 KOP16220 16 SW 24 KOP16240 KOP16260 KOP16280 KOP16300 KOP16320 KOP16340 KOP16360 KOP16380 KOP16400

150 160 180 200 220 240 260 280 300 320 340 360 380 400 80 100 120 140 150 160 180 200 220 240 260 280 300 320 340 360 380 400

pcs 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

CARPENTRY | KOP | 109


A2 | AISI304 VERSION CODES AND DIMENSIONS d1

CODE

L

[mm]

pcs

d1

[mm] AI571850

8 SW 13

10 SW 17

CODE

L

[mm]

50

AI571860

60

100

AI571880

80

100

[mm] AI57112100

100 12 SW 19

pcs

100

25

AI57112120

120

25

AI57112140

140

25

AI5718100

100

50

AI57112160

160

25

AI5718120

120

50

AI57112180

180

25

AI5711050

50

50

AI5711060

60

50

AI5711080

80

50

AI57110100

100

50

AI57110120

120

50

AI57110140

140

50

AI57110160

160

50

AI57110180

180

50

AI57110200

200

50

The stainless steel screws have not been granted the CE mark.

MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES 8

10

12

16

SCREWS INSERTED WITH PRE-DRILLING HOLES 8

10

12

16

a1

[mm]

5∙d

40

50

60

80

4∙d

32

40

48

64

a2

[mm]

4∙d

32

40

48

64

4∙d

32

40

48

64

a3,t

[mm]

7∙d (min. 80 mm)

80

80

84

112

7∙d (min. 80 mm)

80

80

84

112

a3,c

[mm]

4∙d

32

40

48

64

7∙d

56

70

84

112

a4,t

[mm]

3∙d

24

30

36

48

4∙d

32

40

48

64

a4,c

[mm]

3∙d

24

30

36

48

3∙d

24

30

36

48

d = nominal nail diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: • Minimum distances in accordance with EN 1995:2014. • For KOP screws with a diameter of d > 6 mm, a pre-drill is required as per EN 1995:2014: -- pre-drill hole for smooth part of the shank, dimensions matching that of the shank itself, depth equal to the length of the shank.

110 | KOP | CARPENTRY

-- pre-drill hole for the threaded portion, equal to approximately 70% of the shank diameter.


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR timber-to-timber α = 0° (1)

geometry

timber-to-timber α = 90° (2)

TENSION

thin steel-timber plate (3)

thick steel-timber plate (4)

Splate

A

thread withdrawal(5)

head pull-through (6)

Splate

L b d1

d1

L

b(7)

A

RV,k

RV,k

RV,k

RV,k

Rax,k

Rhead,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

[kN]

[kN]

50

30

20

2,96

2,23

2,64

3,75

2,78

3,54

60

36

24

3,28

2,68

3,22

4,38

3,34

3,54

2,87

3,51

4,56

3,90

3,54

3,78

3,01

3,65

4,70

4,45

3,54

100

60

40

3,96

3,32

4,98

5,56

3,54

120

72

48

3,96

3,42

5,25

6,68

3,54

140

84

56

3,96

3,42

5,53

7,79

3,54

3,93 4,20 4,48

SPLATE ≥ 8 mm

3,55

32

SPLATE ≤ 4 mm

28

160

96

64

3,96

3,42

4,76

5,81

8,90

3,54

180

108

72

3,96

3,42

5,04

6,09

10,02

3,54

200

120

80

3,96

3,42

5,07

6,37

11,13

3,54

50

30

20

3,48

2,56

3,10

4,65

2,86

5,45

60

36

24

4,18

3,07

3,79

5,30

3,43

5,45

80

48

32

5,01

4,01

4,97

6,56

4,57

5,45

100

60

40

5,78

4,56

5,26

6,84

5,72

5,45

120

72

48

6,05

4,92

5,54

7,13

6,86

5,45

5,83

140

84

56

6,05

5,19

150

90

60

6,05

5,19

160

96

64

6,05

5,19

180

108

72

6,05

5,19

200

120

80

6,05

5,19

220

132

88

6,05

5,19

240

144

96

6,05

5,19

5,97 6,12 6,40

SPLATE ≥ 10 mm

10

42 48

SPLATE ≤ 5 mm

8

70 80

7,42

8,00

5,45

7,56

8,57

5,45

7,70

9,14

5,45

7,99

10,29

5,45

8,27

11,43

5,45

6,97

8,56

12,57

5,45

7,26

8,85

13,72

5,45

6,69

260

156

104

6,05

5,19

7,54

9,13

14,86

5,45

280

168

112

6,05

5,19

7,66

9,42

16,00

5,45

300

180

120

6,05

5,19

7,66

9,70

17,15

5,45

NOTES: The characteristic shear resistance values are calculated using an angle α between the strength and the grain of 0°.

(1)

(2)

The characteristic shear resistance values are calculated using an angle α between the strength and the grain of 90°.

(3)

The shear resistance characteristics are calculated considering the case of a thin plate (SPLATE ≤ 0,5 d1).

(4)

The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1).

(5)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

(6)

The axial resistance to head pull-through was calculated using wood elements. In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

(7)

During calculation, a thread length of b = 0,6 L is used, with the exception of the measures (*).

CARPENTRY | KOP | 111


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR timber-to-timber α = 0° (1)

geometry

timber-to-timber α = 90° (2)

TENSION

thin steel-timber plate (3)

thick steel-timber plate (4)

Splate

A

thread withdrawal(5)

head pull-through (6)

Splate

L b d1

d1

L

b(7)

A

RV,k

RV,k

RV,k

RV,k

Rax,k

Rhead,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

[kN]

[kN]

50

30

20

4,01

2,89

3,49

6,10

3,06

5,54

60

36

24

4,81

3,46

4,28

6,67

3,67

5,54

70

42

28

5,61

4,04

5,07

7,36

4,28

5,54

80

48

32

6,42

4,62

5,86

8,12

4,89

5,54

54

36

6,92

5,19

6,66

8,94

5,50

5,54

60

40

7,20

5,63

7,40

9,78

6,12

5,54

120

72

48

7,82

6,02

7,70

10,13

7,34

5,54

84

56

8,50

6,41

8,01

10,44

8,56

5,54

150

90

60

8,64

6,62

8,16

10,59

9,17

5,54

160

96

64

8,64

6,84

180

108

72

8,64

7,25

8,31

200

120

80

8,64

7,25

220

132

88

8,64

7,25

240

144

96

8,64

7,25

9,54

260

156

104

8,64

7,25

9,84

8,62 8,92 9,23

SPLATE ≥ 12 mm

140

SPLATE ≤ 6 mm

12

90 100

10,74

9,78

5,54

11,05

11,01

5,54

11,36

12,23

5,54

11,66

13,45

5,54

11,97

14,68

5,54

12,27

15,90

5,54

280

168

112

8,64

7,25

10,15

12,58

17,12

5,54

300

180

120

8,64

7,25

10,45

12,88

18,35

5,54

320

192

128

8,64

7,25

10,76

13,19

19,57

5,54

340

195 *

145

8,64

7,25

10,84

13,27

19,88

5,54

360

195 *

165

8,64

7,25

10,84

13,27

19,88

5,54

380

195 *

185

8,64

7,25

10,84

13,27

19,88

5,54

400

195 *

205

8,64

7,25

10,84

13,27

19,88

5,54

NOTES: The characteristic shear resistance values are calculated using an angle α between the strength and the grain of 0°.

(1)

(2)

The characteristic shear resistance values are calculated using an angle α between the strength and the grain of 90°.

(3)

The shear resistance characteristics are calculated considering the case of a thin plate (SPLATE ≤ 0,5 d1).

(4)

The shear resistance characteristics are calculated considering the case of a thick plate (SPLATE ≥ d1).

(5)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

112 | KOP | CARPENTRY

(6)

The axial resistance to head pull-through was calculated using wood elements. In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

(7)

During calculation, a thread length of b = 0,6 L is used, with the exception of the measures (*).


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR timber-to-timber α = 0° (1)

geometry

timber-to-timber α = 90° (2)

TENSION

thin steel-timber plate (3)

thick steel-timber plate (4)

Splate

A

thread withdrawal(5)

head pull-through (6)

Splate

L b d1

d1

L

b(7)

A

RV,k

RV,k

RV,k

RV,k

Rax,k

Rhead,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

[kN]

[kN]

48

32

8,49

6,03

6,99

11,17

7,51

8,89

60

40

10,48

7,42

8,93

13,02

9,39

8,89

72

48

11,43

8,46

10,87

15,10

11,26

8,89

84

56

12,18

9,28

12,70

16,59

13,14

8,89

150

90

60

12,58

9,50

12,93

16,83

14,08

8,89

160

96

64

12,99

9,72

13,16

17,06

15,02

8,89

180

108

72

13,86

10,20

13,63

17,53

16,89

8,89

200

120

80

14,09

10,72

220

132

88

14,09

11,26

240

144

96

14,09

11,63

260

156

104

14,09

11,63

14,10 14,57 15,04 15,51

SPLATE ≥ 16 mm

120 140

SPLATE ≤ 8 mm

16

80 100

18,00

18,77

8,89

18,47

20,65

8,89

18,94

22,53

8,89

19,41

24,40

8,89

280

168

112

14,09

11,63

15,98

19,88

26,28

8,89

300

180

120

14,09

11,63

16,45

20,35

28,16

8,89

320

192

128

14,09

11,63

16,92

20,82

30,04

8,89

340

204

136

14,09

11,63

17,39

21,29

31,91

8,89

360

205 *

155

14,09

11,63

17,43

21,33

32,07

8,89

380

205 *

175

14,09

11,63

17,43

21,33

32,07

8,89

400

205 *

195

14,09

11,63

17,43

21,33

32,07

8,89

NOTES: The characteristic shear resistance values are calculated using an angle α between the strength and the grain of 0°.

(1)

(2)

he characteristic shear resistance values are calculated using an angle α T between the strength and the grain of 90°.

(3)

he shear resistance characteristics are calculated considering the case of T a thin plate (SPLATE ≤ 0,5 d1).

(4)

he shear resistance characteristics are calculated considering the case of T a thick plate (SPLATE ≥ d1).

(5)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

(6)

he axial resistance to head pull-through was calculated using wood eleT ments. In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

(7)

uring calculation, a thread length of b = 0,6 L is used, with the exception D of the measures (*).

GENERAL PRINCIPLES: • Characteristic values according to EN 1995:2014. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

The coefficients γm and kmod should be taken according to the current regulations used for the calculation.

• For the calculation process a timber density ρ k = 350 kg/m3 has been considered. • V alues were calculated considering the minimum threaded part as being completely inserted into the wood. • D imensioning and verification of timber elements and steel plates must be carried out separately. • The characteristic shear resistance values are calculated for screws inserted with pre-drilling holes.

CARPENTRY | KOP | 113


DRS TIMBER-TO-TIMBER SPACER SCREW DOUBLE THREAD, DIFFERENTIATED Underhead thread with specially designed geometry to create and regulate a space between the fastenable thicknesses.

VENTILATED FACADES The differentiated double thread is ideal for regulating the position of the battens on the facade and to create proper verticality. Ideal for levelling panelling, battens, ceilings and paving.

CODES AND DIMENSIONS d1

CODE

L

b

[mm]

[mm]

DRS680S

80

44

100

[mm]

6 TX 30

pcs

DRS6100S

100

56

100

DRS6120S

120

66

100

DRS6145S

145

66

100

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE Thanks to the possibility to create a distance between pieces of wood, it is possible to create versatile fastenings quickly and safely, without the need for any interposed element.

114 | DRS | CARPENTRY


GEOMETRY d3

ds d2 d1

dk b

b1 L Nominal diameter

d1

[mm]

6

Head diameter

dk

[mm]

12,00

Tip diameter

d2

[mm]

3,90

Shank diameter

ds

[mm]

4,35

Underhead thread diameter

d3

[mm]

6,80

Length head + rings

b1

[mm]

21,0

INSTALLATION Select the screw length so that the thread is completely inserted in the wood support.

01

Position the DRS screw.

02

Attach the batten, screwing in the screw so that the head is flush with the wood.

03

Loosen the screw based on the desired distance.

04

Adjust the other screws in a similar manner to level the structure.

CARPENTRY | DRS | 115


DRT WOOD/BRICKWORK SPACER SCREW DOUBLE THREAD, DIFFERENTIATED Underhead thread with specially designed geometry to create and regulate a space between the fastenable thicknesses.

FASTENING TO BRICKWORK Underhead thread with a greater diameter to allow fastening to brickwork through the addition of a plastic screw anchor.

CODES AND DIMENSIONS NDK GL NYLON SCREW ANCHOR d1

CODE

[mm] 6 TX 30

L

b

[mm]

[mm]

pcs

DRT680

80

50

100

DRT6100

100

60

100

DRT6120

120

70

100

CODE

d0

L

[mm]

[mm]

8

40

NDKG840

pcs 100

For fastening on concrete or brickwork, use of the NDK GL nylon screw anchor is recommended.

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE The differentiated double thread is ideal for adjusting the position of wood elements on brickwork supports (using the plastic screw anchor) and to create the proper verticality. Ideal for levelling panels on walls, paving and ceilings.

116 | DRT | CARPENTRY


GEOMETRY d3

ds d2 d1

dk b

b1 L Nominal diameter

d1

[mm]

6

Head diameter

dk

[mm]

12,50

Tip diameter

d2

[mm]

3,90

Shank diameter

ds

[mm]

4,35

Underhead thread diameter

d3

[mm]

9,90

Diameter of concrete/brickwork opening

dv

[mm]

8,0

Length head + rings

b1

[mm]

22,0

INSTALLATION Select the screw length so that the thread is completely inserted in the concrete/brickwork support.

01

Drill the elements with a dV= 8,0 mm diameter.

05

Loosen the screw based on the desired distance.

02

Place the NDK GL nylon screw anchor inside the support.

03

Position the DRT screw.

04

Attach the batten, screwing in the screw so that the head is flush with the wood.

06

Adjust the other screws in a similar manner to level the structure.

CARPENTRY | DRT | 117


MBS SELF-TAPPING SCREW WITH CYLINDRICAL HEAD FOR MASONRY HI-LOW THREADING Appropriate for direct fastening on compact and semi-solid materials: natural stone, concrete, solid bricks and hollow bricks.

WOOD FRAMES Thanks to the cylindrical head, it is ideal for fastening wood frames directly to brickwork supports.

CODES AND DIMENSIONS d1

CODE

[mm]

pcs

[mm] MBS7572

7,5 TX 30

L 72

100

MBS7592

92

100

MBS75112

112

100

MBS75132

132

100

MBS75152

152

100

MBS75182

182

100

GEOMETRY

d1

dk L

Available also with countersunk flat head: suitable for of PVC and aluminum profile fastening.

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE The HI-LOW thread allows for safe fastening even near the edges of the support, thanks to the reduced tension induced on the material, ideal for frames.

118 | MBS | CARPENTRY


WITHDRAWAL RESISTANCE - RECOMMENDED VALUES

TYPE OF SUPPORT

h nom,min

N

[mm]

[kN]

concrete

30

1,07

concrete block

40

-

40

0,40

80

2,50

hollow brick

60

0,30

lightweight concrete

80

-

solid brick

The recommended withdrawal values are obtained considering a safety coefficient of 3.

INSTALLATION PARAMETERS Nominal diameter Head diameter Diameter of pre-drilling hole concrete/brickwork Hole diameter in the element to be fastened

d1 dk

[mm] [mm]

7,5 8

d0

[mm]

6,0

df

[mm]

6,2

INSTALLATION d0 hnom df

diameter of pre-drilling hole concrete/brickwork nominal anchoring depth hole diameter in the element to be fastened

df

hnom

do

01

02

03

CARPENTRY | MBS | 119


DWS DRYWALL SCREW OPTIMISED GEOMETRY Bugle head and phosphate-coated steel; ideal for fastening sheets of drywall.

FULLY FINE THREADED Fully fine threaded screw, ideal for fastening on sheet metal supports.

CODES AND DIMENSIONS d1

CODE

[mm]

L

4,2 PH 2

pcs

GEOMETRY

[mm] FE620001

3,5 PH 2

description

25

FE620005

35

FE620010

45

FE620015

55

FE620020

65

1000 sheet metal substructure

1000 d1

1000 1000

sheet metal substructure

L

1000

MATERIAL Phosphate-coated carbon steel.

FIELDS OF USE Ideal for quickly and safely creating thermal and noise insulation.

120 | DWS | CARPENTRY


DWS COIL DWS COLLATED PLASTERBOARD SCREW OPTIMISED GEOMETRY Fully threaded screw with bugle head and phosphate-coated steel; ideal for fastening sheets of drywall and plaster fibre.

COLLATED VERSION Bound in plastic for quick, precise mass use.

CODES AND DIMENSIONS d1

CODE

[mm]

3.9 PH 2 3.9 PH 2

description

pcs

[mm] HH10600404

3.9 PH 2

L 30

HH10600405

35

HH10600406

45

HH10600401

30

HH10600402

35

HH10600403

45

HH10600397

30

HH10600398

35

10000 timber substructure

GEOMETRY

10000 10000 10000

sheet-metal substructure max 0,75 mm

10000

d1

10000 fermacell

L

10000 10000

MATERIAL Phosphate-coated carbon steel.

FIELDS OF USE Ideal for fastening sheets of drywall or plaster fibre to sheet metal substructures (maximum 0,75 mm).

CARPENTRY | DWS COIL | 121


THERMOWASHER

ETA 11/0030

WASHER TO FASTEN INSULATION TO WOOD CERTIFIED Washer with the CE marking, in accordance with ETA 11/0030, To be used with HBS screws, Ø6 and Ø8, length depending on thickness of the insulation to be fixed. Ideal for any type of insulation.

ANTI-THERMAL BRIDGE Incorporated hole cover to avoid thermal bridges. Large cable spaces for proper plaster adhesion. Has a system that prevents the screw from pulling out.

CODES AND DIMENSIONS CODE THERMO65

dSCREW

axbxc

[mm]

[mm]

6/8

65 x 4 x 20

pcs 700

MATERIAL Propylene (PP) system.

FIELDS OF USE The Ø65 propylene washer is compatible with Ø6 and Ø8 screws; it is suitable for any type of insulation and any type of fixture thickness.

122 | THERMOWASHER | CARPENTRY


ISULFIX

ETA

ANCHOR FOR FASTENING INSULATION TO BRICKWORK CERTIFICATE Anchor with the CE mark in accordance with ETA, with certified resistance values. Double expansion with preassembled steel nails allows for fast versatile fastening on concrete and brickwork.

DOUBLE EXPANSION Ø8 PVC double expansion anchor with preassembled steel nails, for fastening to concrete and brickwork. Can be used, with an additional washer, on particularly soft insulating materials.

CODES AND DIMENSIONS CODE

L

dHOLE

dHEAD

A

[mm]

[mm]

[mm]

[mm] 80

250

8

60

120

150

160

100

ISULFIX8110

110

ISULFIX8150

150

ISULFIX8190

190

CODE

dHEAD

pcs

description

pcs

additional washer for soft insulation

250

[mm] ISULFIX90

90

A= maximum fastening thickness

MATERIAL PVC system with carbon steel nail.

FIELDS OF USE Anchor available in various measurements for different insulation thicknesses; can be used with an additional washer for use with soft insulation; method of use and certified laying possibilities indicated in the relative ETA document.

CARPENTRY | ISULFIX | 123



STRUCTURES


STRUCTURES


STRUCTURES

VGZ FULL THREADED SCREW WITH CYLINDRICAL HEAD. . . . . . . . . 134

VGZ EVO FRAME MINI FULL THREADED SCREW WITH CYLINDRICAL HEAD. . . . 158

VGZ EVO FULL THREADED SCREW WITH CYLINDRICAL HEAD. . . . . . . . . 166

VGZ HARDWOOD FULLY THREADED SCREW FOR HARDWOODS . . . . . . . . . . . . . . . 172

VGS FULLY THREADED SCREW WITH COUNTERSUNK OR HEXAGONAL HEAD. . . . . . . . . . . . . . 182

VGU 45° WASHER FOR VGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

RTR STRUCTURAL REINFORCEMENT SYSTEM . . . . . . . . . . . . . . . . . . 202

DGZ DOUBLE THREADED SCREW FOR INSULATION . . . . . . . . . . . . . 206

SBD SELF-DRILLING DOWEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

CTC CONNECTOR FOR TIMBER-CONCRETE FLOORS. . . . . . . . . . . . 222

SKR - SKS CONCRETE SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

STRUCTURES | 127


STRUCTURAL CONNECTORS STRENGTH AND STIFFNESS

STRENGTH Partially thread screw Concentration of stresses in the localised area in the direction of the load. Resistance connected to the bearing stress of the walls of the hole in the wood and the bending of the screw.

SCREWS FOR SHEAR LOADS

H

B

S

X X

RESISTANCE PROPORTIONAL TO THE DIAMETER

Total thread connectors Stress distributed along the entire threaded surface. High resistance connected to the wood cylinder affected by tangential stresses.

CONNECTORS STRESSED AXIALLY

RESISTANCE PROPORTIONAL TO THE THREADED LENGTH

APPLICATION EXAMPLE CONNECTION WITH HBS PARTIALLY THREAD SCREWS

more screws and more deformation

128 | STRUCTURAL CONNECTORS | STRUCTURES

CONNECTION WITH VGZ TOTAL THREAD CONNECTORS

fewer connectors and less deformation


A new approach for modern screws, conceived as connectors able to guarantee excellent static performance, taking advantage of the axial capacity.

RIGIDITY Partially thread screw RIGIDITY

F F

DUCTILITY • screws for shear loads

s

• high slip • low rigidity • high ductility

Total thread connectors

F RIGIDITY

F

DUCTILITY • connectors stressed axially

s

• limited slip • high rigidity

EXPERIMENTAL BEHAVIOUR The rigidity of the connection is conventionally identified by the slope of the elastic portions of the monotonic load-slip curve. The graph refers to shear tests to control displacement for HBS screws under lateral stress (shear) and crossed VGZ screws stressed axially.

F - load [kN]

• reduced ductility

kSER VGZ kSER HBS

A

A

B

B

s - slip [mm]

STRUCTURES | STRUCTURAL CONNECTORS | 129


SCREWS STRESSED AXIALLY TENSILE AND COMPRESSION STRENGTH The strength is proportional to the length of the thread and thus high performance can be achieved with smaller diameters.

DETERMINING RESISTANCE To verify the resistance of screws stressed axially, the determining value is the lower between:

STEEL tension / head separation, instability

THREAD withdrawal

HEAD pull-through

resistance 100%

strength 30-100% function of thread L

resistance 10%

For total thread connectors, the resistance to head pull-through (binding in the case of partial thread screws) is considered unimportant and, instead, the high resistance to thread withdrawal is considered, which is expressed both for tensile and compression stress.

APPLICATION EXAMPLE TIMBER-TO-TIMBER SHEAR CONNECTION

Connection with VGZ total thread connectors

Fc

Ft

Ft

Fc

130 | SCREWS STRESSED AXIALLY | STRUCTURES

Connection with HBS partially thread screws

Fc =0

Ft

Ft


JOINTS WITH DIFFERENT TYPES OF CONNECTORS "When a connection includes different types of connectors or connector types with different rigidities, it is recommended that the compatibility of these types be verified [EN 1995:2014]." In practice, this means that it is not allowed to use different fastening systems to transfer a single stress (e.g. F shear). The global resistance is not the sum of the individual resistances.

APPLICATION EXAMPLE Transfer of shear force F through connectors stressed axially

SOLUTION A 2 crossed connectors

BREAKDOWN OF THE FORCES

RESULT R = F

F

F 1 screw under tension

R

+

1 compressed screw

SOLUTION B 2 parallel connectors

BREAKDOWN OF THE FORCES

RESULT R = F

F

F 2 screws under tension

+

R/2 + R/2 = R*

* to be added to any contribution from friction

direct contact: wood compressed

STRUCTURES | SCREWS STRESSED AXIALLY | 131


STRUCTURAL REINFORCEMENT RESPONSE TO STRESS

Wood is an anisotropic material. Therefore, it has different mechanical characteristics depending on the direction of the grain and the stress.

The anisotropy of the material derives from its cellular organisation: wood consists of layers of fibres welded to each other by lignin and can be compared to extremely thin straws, known as tracheids. The physical structure determines the mechanical characteristics of the wood: • great resistance and rigidity for stresses in the direction of the axis of the fibres; • reduced efficiency for stresses perpendicular to the direction of the fibres, in particular for tensile stresses.

01 | 02

In the context of reinforcements, the main mono-axial stresses to which wood may be subjected are:

01 | 02 TENSION PERPENDICULAR TO THE FIBRES 03 COMPRESSION PERPENDICULAR TO THE FIBRES

03

04 LONGITUDINAL SHEAR

04

132 | STRUCTURAL REINFORCEMENT | STRUCTURES


01

FAILURE

REINFORCEMENT

REINFORCEMENT FOR TENSION PERPENDICULAR TO THE FIBRES - NOTCH

Resistance influenced above all by cracks, knots, resin channels. Markedly fragile behaviour.

02

FAILURE

REINFORCEMENT

REINFORCEMENT FOR TENSION PERPENDICULAR TO THE FIBRES - HANGING LOAD

Failure can occur in the case in which the load applied affects a height limited by the main beam (a/h ≤ 0,7). Markedly fragile behaviour.

03

FAILURE

REINFORCEMENT

REINFORCEMENT FOR COMPRESSION PERPENDICULARTO THE FIBRES - RESTING

Crushing and severing of the fibres in the area where the forces are introduced (e.g. supports). Sufficiently ductile behaviour.

04

FAILURE

REINFORCEMENT

REINFORCEMENT FOR LONGITUDINAL SHEAR

Collapse near the neutral axis, mutual sliding of the two parts of the section. Beam subject to flexion: tense area or support area. Markedly fragile behaviour.

STRUCTURES | STRUCTURAL REINFORCEMENT | 133


VGZ

BIT INCLUDED

FULL THREADED SCREW WITH CYLINDRICAL HEAD TENSION Deep thread and high resistance steel (f y,k = 1000 N/mm2) for excellent tensile performance. Very broad range of measurements.

STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°). Reduced minimum distances.

CYLINDRICAL HEAD Ideal for concealed joints, timber couplings and structural reinforcements. Guarantees fire protection and earthquake suitability. Cyclical SEISMIC-REV tests according to EN 12512.

CHROMIUM (VI) FREE Total absence of hexavalent chromium. Compliance with the strictest regulations governing chemical substances (SVHC). REACH information available.

CHARACTERISTICS FOCUS

45° connections, reinforcements and couplings

HEAD

cylindrical, countersunk

DIAMETER

5,3 | 5,6 | 7,0 | 9,0 | 11,0 mm

LENGTH

from 80 mm to 600 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE • wood based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.

134 | VGZ | STRUCTURES

ETA 11/0030


STRUCTURAL RESTORATION Ideal for coupling beams in structural renovations and new works. Can also be used parallel to the grain thanks to the special approval.

CLT, LVL Values also tested, certified and calculated for CLT and high density woods such as MicrollamÂŽ LVL.

STRUCTURES | VGZ | 135


Very high stiffness in side-by-side joining of CLT floors. Application with double inclination at 45°, perfect for building using the JIG VGZ template.

Reinforcement orthogonal to grain for hanging load due to joining of main-secondary beams.

GEOMETRY AND MECHANICAL CHARACTERISTICS

X

d2 d1

X

X V

G

Z

dk

b L Nominal diameter

d1

[mm]

5,3

5,6

7

9

11

Head diameter

dk

[mm]

8,00

8,00

9,50

11,50

13,50

Tip diameter

d2

[mm]

3,60

3,80

4,60

5,90

6,60

Shank diameter

ds

[mm]

3,95

4,15

5,00

6,50

7,70

Pre-drilling hole diameter

dv

[mm]

3,5

3,5

4,0

5,0

6,0

My,k

[Nmm]

6876

7935

14174

27244

45905

fax,k

[N/mm2]

11,7

11,7

11,7

11,7

11,7

f tens,k

[kN]

11,0

12,3

15,4

25,4

38,0

f y,k

[kN]

1000,0

1000,0

1000,0

1000,0

1000,0

Characteristic yield moment Characteristic withdrawal-resistance parameter Characteristic tensile strength Characteristic yield strength

Mechanical parameters of VGZ Ø5,3 and Ø5,6 screw obtained from experimental tests.

136 | VGZ | STRUCTURES


CODES AND DIMENSIONS d1

CODE

[mm] VGZ580 5.3 VGZ5100 TX 25 VGZ5120 5.6 VGZ5140 TX 25 VGZ5160

L

b

pcs

d1

CODE

[mm]

[mm]

80

70

50

VGZ9160

100

90

50

VGZ9180

120

110

50

VGZ9200

140

130

50

VGZ9220

[mm]

L

b

pcs

[mm]

[mm]

160

150

25

180

170

25

200

190

25

220

210

25

160

150

50

VGZ9240

240

230

25

VGZ780

80

70

25

VGZ9260

260

250

25

VGZ7100

100

90

25

VGZ9280

280

270

25

VGZ7120

120

110

25

VGZ9300

290

25

VGZ7140

140

130

25

9 TX 40 VGZ9320

300 320

310

25

VGZ7160

160

150

25

VGZ9340

340

330

25

VGZ7180

180

170

25

VGZ9360

360

350

25

VGZ7200

7 TX 30 VGZ7220

200

190

25

VGZ9380

380

370

25

220

210

25

VGZ9400

400

390

25

VGZ7240

240

230

25

VGZ9440

440

430

25

VGZ7260

260

250

25

VGZ9480

480

470

25

VGZ7280

280

270

25

VGZ9520

520

510

25

VGZ7300

300

290

25

VGZ11250

250

240

25

VGZ7340

340

330

25

VGZ11300

300

290

25

VGZ7380

380

370

25

VGZ11350

350

340

25

VGZ11400 11 TX 50 VGZ11450

400

390

25

450

440

25

VGZ11500

500

490

25

VGZ11550

550

540

25

VGZ11600

600

590

25

JIG VGZ 45째 TEMPLATE

CODE JIGVGZ45

description

pcs

steel template for VGZ screws at 45째

1

JIG VGZ 45째 TEMPLATE Installation at 45째 using the JIG VGZ steel template.

STRUCTURES | VGZ | 137


EFFECTIVE THREAD USED IN CALCULATION 10

Sg

Tol.

Sg

b =

10

L - 10 mm

represents the entire length of the threaded part

Sg = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm

b L

The timber-to-timber withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.

MINIMUM DISTANCES FOR SHEAR LOADS (1)

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES 5.3

5.6

7

9

SCREWS INSERTED WITH PRE-DRILLING HOLES

11

a1

[mm]

5∙d

27

28

35

45

55

a2

[mm]

3∙d

16

17

21

27

33

5.3

5.6

7

9

11

4∙d

21

22

28

36

44

4∙d

21

22

28

36

44

a3,t

[mm]

12∙d

64

67

84

108

132

7∙d

37

39

49

63

77

a3,c

[mm]

7∙d

37

39

49

63

77

7∙d

37

39

49

63

77

a4,t

[mm]

3∙d

16

17

21

27

33

7∙d

37

39

49

63

77

a4,c

[mm]

3∙d

16

17

21

27

33

3∙d

16

17

21

27

33

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5.3

5.6

7

9

11

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5.3

5.6

7

9

11

a1

[mm]

12∙d

64

67

84

108

132

5∙d

27

28

35

45

55

a2

[mm]

5∙d

27

28

35

45

55

5∙d

27

28

35

45

55

a3,t

[mm]

15∙d

80

84

105

135

165

10∙d

53

56

70

90

110

a3,c

[mm]

10∙d

53

56

70

90

110

10∙d

53

56

70

90

110

a4,t

[mm]

5∙d

27

28

35

45

55

10∙d

53

56

70

90

110

a4,c

[mm]

5∙d

27

28

35

45

55

5∙d

27

28

35

45

55

d = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: The minimum distances are in accordance with EN 1995:2014 considering a wood characteristic density of ρ k ≤ 420 kg/m3.

(1)

• The minimum spacing for all steel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,7.

138 | VGZ | STRUCTURES

• The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85.


MINIMUM DISTANCES FOR AXIAL STRESSES (2)

SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE 5.3

5.6

7

9

11

5∙d

27

28

35

45

55

[mm]

5∙d

27

28

35

45

55

[mm]

2,5∙d

13

14

18

23

28

a1,CG

[mm]

8∙d

42

45

56

72

88

a2,CG

[mm]

3∙d

16

17

21

27

33

aCROSS

[mm]

1,5∙d

8

8

11

14

17

a1

[mm]

a2 a2,LIM

(3)

SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG a2,CG

a2,CG a2 a2,CG

a2

a2,CG

a2,CG a1,CG

1

a1

a

a2,CG a1,CG

a1,CG

a2,CG a1,CG

plan

front

SCREWS INSERTED WITH α 90° ANGLE WITH RESPECT TO THE GRAIN

plan

front

CROSS SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG

45°

a2 a2,CG

a2,CG a1,CG

aCROSS a2,CG

a1 a1,CG

plan

a1

front

plan

front

NOTES: (2)

The minimum distances for connectors stressed axially are independent of the insertion angle of the connector and the angle of the force with respect to the grain, in accordance with ETA-11/0030.

(3)

The axial distance a2 can be reduced down to 2,5 d1 if for each connector a “joint surface” a1 a2 = 25 d12 is maintained.

STRUCTURES | VGZ | 139


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 TENSION (1)

geometry

total thread withdrawal (2)

partial thread withdrawal (2)

steel tension

estrazione estrazione filetto filetto parziale parziale

L

Sg

A

Sg

A

A

d1

timber d1

L

b

Amin

[mm]

[mm]

[mm]

80

70

5.3

5.6

7

9

timber

steel

Rax,k

Rtens,k

[mm]

[kN]

[kN]

45

1,67

Rax,k

Sg

Amin

[mm]

[kN]

[mm]

90

4,68

25

100

90

110

6,02

35

55

2,34

120

110

130

7,36

45

65

3,01

140

130

150

9,19

55

75

3,89

160

150

170

10,61

65

85

4,60

80

70

90

6,19

25

45

2,21

100

90

110

7,96

35

55

3,09

120

110

130

9,72

45

65

3,98

140

130

150

11,49

55

75

4,86

160

150

170

13,26

65

85

5,75

180

170

190

15,03

75

95

6,63

200

190

210

16,79

85

105

7,51

220

210

230

18,56

95

115

8,40

240

230

250

20,33

105

125

9,28

260

250

270

22,10

115

135

10,16

280

270

290

23,87

125

145

11,05

300

290

310

25,63

135

155

11,93

340

330

350

29,17

155

175

13,70

380

370

390

32,70

175

195

15,47

160

150

170

17,05

65

85

7,39

180

170

190

19,32

75

95

8,52

200

190

210

21,59

85

105

9,66

220

210

230

23,87

95

115

10,80

240

230

250

26,14

105

125

11,93

260

250

270

28,41

115

135

13,07

280

270

290

30,68

125

145

14,21

300

290

310

32,96

135

155

15,34

320

310

330

35,23

145

165

16,48

340

330

350

37,50

155

175

17,61

360

350

370

39,78

165

185

18,75

380

370

390

42,05

175

195

19,89

400

390

410

44,32

185

205

21,02

440

430

450

48,87

205

225

23,30

480

470

490

53,41

225

245

25,57

520

510

530

57,96

245

265

27,84

140 | VGZ | STRUCTURES

11,00

12,30

15,40

25,40


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 TENSION

geometry

total thread withdrawal (2)

partial thread withdrawal (2)

steel tension

estrazione estrazione filetto filetto parziale parziale

L

Sg

A

Sg

A

A

d1

timber d1

L

b

Amin

[mm]

[mm]

[mm]

250

240

11

timber

steel

Rax,k

Rtens,k

[mm]

[kN]

[kN]

130

15,28

Rax,k

Sg

Amin

[mm]

[kN]

[mm]

260

33,34

110

300

290

310

40,28

135

155

18,75

350

340

360

47,22

160

180

22,22

400

390

410

54,17

185

205

25,70

450

440

460

61,11

210

230

29,17

500

490

510

68,06

235

255

32,64

550

540

560

75,00

260

280

36,11

600

590

610

81,95

285

305

39,59

38,00

NOTES: (1)

The connector design resistance is the lowest between the wood side design resistance (Rax,d) and the steel side resistance (Rtens,d).

Rax,d = min

Rax,k kmod γm Rtens,k γm2

(2)

The axial resistance of the thread to withdrawal was calculated considering a 90° angle between the fibres and the connector and for a effective thread length of b or Sg. For intermediate values of Sg it is possible to linearly interpolate.

STRUCTURES | VGZ | 141


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014

geometry

SHEAR

SLIDING

timber-to-timber

timber-to-timber (3)

A

Sg

A

S

Sg

g

estrazione filetto parziale

45°

A

S

g

L B

d1

d1

L

Sg

Amin

RV,k

Amin

Bmin

Rv,k

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[mm]

[kN]

80

25

40

1,57

30

50

1,08

5.3

100

35

50

1,94

40

55

1,51

5.6

7

9

120

45

60

2,11

45

60

1,94

140

55

70

2,46

50

70

2,50

160

65

80

2,64

60

75

2,95

80

25

40

2,16

30

50

1,42

100

35

50

2,68

40

55

1,99

120

45

60

3,14

45

60

2,56

140

55

70

3,37

55

70

3,13

160

65

80

3,59

60

75

3,69

180

75

90

3,81

65

85

4,26

200

85

100

4,03

75

90

4,83

220

95

110

4,25

80

100

5,40

240

105

120

4,30

90

105

5,97

260

115

130

4,30

95

110

6,53

280

125

140

4,30

100

120

7,10

300

135

150

4,30

110

125

7,67

340

155

170

4,30

125

140

8,81

380

175

190

4,30

140

155

9,94

160

65

80

5,10

60

75

4,75

180

75

90

5,39

70

85

5,48

200

85

100

5,67

75

90

6,21

220

95

110

5,95

80

100

6,94

240

105

120

6,24

90

105

7,67

260

115

130

6,51

95

110

8,40

280

125

140

6,51

105

120

9,13

300

135

150

6,51

110

125

9,86

320

145

160

6,51

115

135

10,59

340

155

170

6,51

125

140

11,32

360

165

180

6,51

130

145

12,05

380

175

190

6,51

140

155

12,78

400

185

200

6,51

145

160

13,51

440

205

220

6,51

160

175

14,98

480

225

240

6,51

175

190

16,44

520

245

260

6,51

190

205

17,90

142 | VGZ | STRUCTURES


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014

geometry

SHEAR

SLIDING

timber-to-timber

timber-to-timber (3)

A

Sg

A

S

Sg

g

estrazione filetto parziale

45°

A

S

g

L B

d1

d1

L

Sg

Amin

RV,k

Amin

Bmin

Rv,k

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[mm]

[kN]

11

250

110

125

8,35

95

110

9,82

300

135

150

9,06

115

125

12,05

350

160

175

9,06

130

145

14,29

400

185

200

9,06

150

160

16,52

450

210

225

9,06

165

180

18,75

500

235

250

9,06

185

195

20,98

550

260

275

9,06

200

215

23,21

600

285

300

9,06

220

230

25,45

NOTES: (3)

The axial resistance of the thread withdrawal was calculated considering a 45° angle between the fibres and the connector and for an effective thread length of Sg.

• For the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρ k = 385 kg/m3 has been considered.

GENERAL PRINCIPLES:

• Dimensioning and verification of the timber elements must be carried out separately.

• C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

• The withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.

The coefficients γm and kmod should be taken according to the current regulations used for the calculation.

STRUCTURES | VGZ | 143


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014

SHEAR CONNECTION WITH CROSSED CONNECTORS RIGHT-ANGLE JOINT - MAIN BEAM / SECONDARY BEAM d1

L

Sg HT(1)

Sg NT (1)

BHT min

HHT min = hNT min

bNT min

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

5.3

120

140

30

45

60

65

60

65

120

130

5.6 160

160

180

200

220

240

65

45

65

85

95

105

65

85

85

85

95

105

75

75

80

90

95

100

130

160

160

160

170

185

7 260

280

300

340

380

115

125

135

155

175

144 | VGZ | STRUCTURES

115

125

135

155

175

110

115

125

140

150

200

215

230

255

285

no. pairs

R1 V,k (2)

R2 V,k (2)

m (3) [mm]

[kN]

[kN]

withdrawal (4)

instability

40

1

2,8

8,2

66

2

5,3

15,2

93

3

7,6

21,9

42

1

4,5

9,1

70

2

8,4

17,0

98

3

12,1

24,5

42

1

5,9

9,1

70

2

11,0

17,0

98

3

15,9

24,5

53

1

5,6

13,6

88

2

10,5

25,4

123

3

15,1

36,5

53

1

8,1

13,6

88

2

15,2

25,4

123

3

21,8

36,5

53

1

9,7

13,6

88

2

18,0

25,4

123

3

26,0

36,5

53

1

10,8

13,6

88

2

20,1

25,4

123

3

29,0

36,5

53

1

11,9

13,6

88

2

22,3

25,4

123

3

32,1

36,5

53

1

13,1

13,6

88

2

24,4

25,4

123

3

35,1

36,5

53

1

14,2

13,6

88

2

26,5

25,4

123

3

38,2

36,5

53

1

15,3

13,6

88

2

28,6

25,4

123

3

41,2

36,5

53

1

17,6

13,6

88

2

32,9

25,4

123

3

47,3

36,5

53

1

19,9

13,6

88

2

37,1

25,4

123

3

53,5

36,5

56

59

59

74

74

74

81

88

95

102

109

124

138


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014

SHEAR CONNECTION WITH CROSSED CONNECTORS RIGHT-ANGLE JOINT - MAIN BEAM / SECONDARY BEAM d1

L

Sg HT(1)

Sg NT (1)

BHT min

HHT min = hNT min

bNT min

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

200

220

240

260

280

300

320

55

75

95

115

125

135

145

115

115

115

115

125

135

145

90

95

100

110

115

125

130

200

200

200

200

215

230

245

9 340

360

380

400

440

480

520

155

165

175

185

205

225

245

155

165

175

185

205

225

245

140

145

150

160

175

185

200

260

270

285

300

330

355

385

no. pairs

R1 V,k (2)

R2 V,k (2)

m (3) [mm]

[kN]

[kN]

withdrawal (4)

instability

8,8

22,8

68

1

113

2

16,5

42,6

158

3

23,8

61,3

68

1

12,1

22,8

113

2

22,5

42,6

158

3

32,4

61,3

68

1

15,3

22,8

113

2

28,5

42,6

158

3

41,0

61,3

68

1

16,8

22,8

113

2

31,4

42,6

158

3

45,2

61,3

68

1

18,3

22,8

113

2

34,1

42,6

158

3

49,1

61,3

68

1

19,7

22,8

113

2

36,8

42,6

158

3

53,0

61,3

68

1

21,2

22,8

113

2

39,5

42,6

158

3

56,9

61,3

68

1

22,6

22,8

113

2

42,3

42,6

158

3

60,9

61,3

68

1

24,1

22,8

113

2

45,0

42,6

158

3

64,8

61,3

68

1

25,6

22,8

113

2

47,7

42,6

158

3

68,7

61,3

68

1

27,0

22,8

113

2

50,4

42,6

158

3

72,7

61,3

68

1

30,0

22,8

113

2

55,9

42,6

158

3

80,5

61,3

68

1

32,9

22,8

113

2

61,3

42,6

158

3

88,4

61,3

68

1

35,8

22,8

113

2

66,8

42,6

158

3

96,2

61,3

96

96

96

96

103

110

117

124

131

138

145

160

174

188

NOTES: The values given are calculated considering a distance a1CG ≥ 5d. In some cases the asymmetrical installation of connectors is needed (Sg HT ≠ Sg NT ).

(3)

The compression design strength of the connector is the lower between the withdrawal-side design strength (R1V,d) and the instability design strength (R2V,d).

(4)

(1)

(2)

kmod RV,d = min

The assembly height (m) applies in the event of symmetrical installation of the flush connectors (Sg HT = Sg NT ) above the elements. The thread axial resistance to withdrawal has been evaluated considering an effective thread length equal to Sg. The connectors must be inserted at 45° with respect to the shear plane.

R1V,k kmod γm R2V,k γm1

STRUCTURES | VGZ | 145


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014

SHEAR CONNECTION WITH CROSSED CONNECTORS RIGHT-ANGLE JOINT - MAIN BEAM / SECONDARY BEAM d1

L

Sg HT(1)

Sg NT (1)

BHT min

HHT min = hNT min

bNT min

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[mm]

225

(*)

250

275(*)

300

325(*)

350

50

75

100

125

148

160

145

145

145

145

148

160

95

105

115

125

130

140

245

245

245

245

250

265

11 375(*)

400

450

500

550

600

173

185

210

235

260

285

173

185

210

235

260

285

150

160

175

195

210

230

285

300

335

370

405

445

no. pairs

R1 V,k (2)

R2 V,k (2)

m (3) [mm]

[kN]

[kN]

withdrawal (4)

instability

9,8

29,1

83

1

138

2

18,3

54,2

193

3

26,4

78,1

83

1

14,7

29,1

138

2

27,5

54,2

193

3

39,6

78,1

83

1

19,6

29,1

138

2

36,7

54,2

193

3

52,8

78,1

83

1

24,6

29,1

138

2

45,8

54,2

193

3

66,0

78,1

83

1

26,3

29,1

138

2

49,2

54,2

193

3

70,8

78,1

83

1

28,6

29,1

138

2

53,3

54,2

193

3

76,8

78,1

83

1

30,8

29,1

138

2

57,5

54,2

193

3

82,8

78,1

83

1

33,0

29,1

138

2

61,6

54,2

193

3

88,8

78,1

83

1

37,5

29,1

138

2

70,0

54,2

193

3

100,8

78,1

83

1

42,0

29,1

138

2

78,3

54,2

193

3

112,8

78,1

83

1

46,4

29,1

138

2

86,6

54,2

193

3

124,8

78,1

83

1

50,9

29,1

138

2

95,0

54,2

193

3

136,8

78,1

118

118

118

118

120

129

137

146

164

182

199

217

NOTE: (*) VGS connectors, see page. 182.

NOTES:

GENERAL PRINCIPLES:

The values given are calculated considering a distance a1CG ≥ 5d. In some cases the asymmetrical laying of connectors is needed Sg HT ≠ Sg NT ).

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

The compression design strength of the connector is the lower between the withdrawal-side design strength (R1V,d) and the instability design strength (R2V,d).

• For the calculation process a timber characteristic density ρ k = 385 kg/m3 has been considered.

(1)

(2)

kmod RV,d = min

R1V,k kmod γm R2V,k γm1

The assembly height (m) applies in the event of symmetrical installation of the flush connectors (Sg HT = Sg NT ) above the elements.

(3)

The thread axial resistance to withdrawal has been evaluated considering an effective thread length equal to Sg. The connectors must be inserted at 45° with respect to the shear plane.

(4)

146 | VGZ | STRUCTURES

• Dimensioning and verification of the timber elements must be carried out separately. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).


MINIMUM DISTANCES FOR CROSS SCREWS SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE 5,3

5,6

7

9

11

16

17

21

27

33

a2,CG

[mm]

aCROSS

[mm]

8

8

11

14

17

e

[mm]

19

20

25

32

39

5.3

5.6

7

9

11

dv (pre-drill)

[mm]

3,5

3,5

4,0

5,0

6.0

Recommended pre-drilling hole for connectors Ø11 L ≥ 400 mm

SHEAR CONNECTION WITH CROSSED CONNECTORS - 1 PAIR m N T

m

90°

S

g

45°

HT

a2,CG

S

g

hNT

HHT

aCROSS

bNT

a2,CG

90° BHT

BHT section

plan

SHEAR CONNECTION WITH CROSSED CONNECTORS - 2 OR MORE PAIRS m

m N

T

90° a2,CG

HT

S

g

45°

aCROSS

S

g

hNT

HHT

e

bNT

aCROSS a2,CG

90° BHT

BHT section

plan

STRUCTURES | VGZ | 147


CALCULATION EXAMPLE: MAIN/SECONDARY BEAM CONNECTION WITH VGZ CROSS SCREWS

For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

CALCULATION REPORT

148 | VGZ | STRUCTURES


MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

lateral face (1)

narrow face (2)

7

9

11

4∙d

28

36

44

2,5∙d

18

23

28

6∙d

42

54

6∙d

42

54

[mm]

6∙d

42

[mm]

2,5∙d

18

a1

[mm]

a2

[mm]

a3,t

[mm]

a3,c

[mm]

a4,t a4,c

7

9

11

10∙d

70

90

110

4∙d

28

36

44

66

12∙d

84

108

132

66

7∙d

49

63

77

54

66

6∙d

42

54

66

23

28

3∙d

21

27

33

d = nominal screw diameter

a4,c

a4,t α

F

F

α

α

F α a3,c

a3,t

a2 a2

a2

a1

a1

a3,c a4,c

F

a3,t

F

a4,c

tCLT

a3,c a4,c a4,t

F

tCLT

NOTES: The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.

(1)

Minimum CLT thickness tmin = 10∙d

(2)

Minimum CLT thickness tmin = 10∙d and minimum screw penetration depth tpen = 10∙d

STRUCTURES | VGZ | 149


MINIMUM DISTANCES FOR SHEAR LOADS | LVL

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES 5.3

5.6

7

9

SCREWS INSERTED WITH PRE-DRILLING HOLES

11

5.3

5.6

7

9

11

a1

[mm]

5∙d

27

28

35

45

55

4∙d

21

22

28

36

44

a2

[mm]

3∙d

16

17

21

27

33

4∙d

21

22

28

36

44

a3,t

[mm]

12∙d

64

67

84

108

132

7∙d

37

39

49

63

77

a3,c

[mm]

7∙d

37

39

49

63

77

7∙d

37

39

49

63

77

a4,t

[mm]

3∙d

16

17

21

27

33

7∙d

37

39

49

63

77

a4,c

[mm]

3∙d

16

17

21

27

33

3∙d

16

17

21

27

33

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE a1

[mm]

15∙d

5.3

5.6

7

9

11

80

84

105

135

165

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 7∙d

5.3

5.6

7

9

11

37

39

49

63

77

a2

[mm]

7∙d

37

39

49

63

77

7∙d

37

39

49

63

77

a3,t

[mm]

20∙d

106

112

140

180

220

15∙d

80

84

105

135

165

a3,c

[mm]

15∙d

80

84

105

135

165

15∙d

80

84

105

135

165

a4,t

[mm]

7∙d

37

39

49

63

77

12∙d

64

67

84

108

132

a4,c

[mm]

7∙d

37

39

49

63

77

7∙d

37

39

49

63

77

d = nominal screw diameter

a4,c

a4,t α

a2

F

F α a1

F

α

a3,t

α

a3,c

a2 a2 F a1

NOTES: (1)

The minimum distances are in accordance with EN 1995:2014 considering a wood characteristic density of ρ k ≤ 500 kg/m3.

• The minimum spacing for all steel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,7.

150 | VGZ | STRUCTURES

• The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85.


MINIMUM DISTANCES FOR AXIAL STRESSES | LVL

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

wide face

edge face(1)

7

9

5∙d

35

45

5∙d

35

45

[mm]

8∙d

56

[mm]

3∙d

21

a1

[mm]

a2

[mm]

a1,CG a2,CG

7

9

10∙d

70

70

5∙d

35

35

72

12∙d

84

108

27

3∙d

21

27

d = nominal screw diameter

SCREWS INSERTED WITH α 90° ANGLE WITH RESPECT TO THE GRAIN (wide face)

SCREWS INSERTED WITH α 90° ANGLE WITH RESPECT TO THE GRAIN (edge face)

a2,CG

a2,CG a2 a2,CG a1,CG

a1,CG

a1

a1

a1,CG

plan a1,CG

a1

a1

a1,CG

plan

a1

a1

a1,CG

front

b

SCREWS INSERTED WITH α ANGLE WITH RESPECT TO THE GRAIN (wide face) l a2,CG

front

a2,CG

1

a

a2 a1,CG

a1,CG

plan

front

NOTES: (1)

Minimum distances are obtained from experimental tests carried out at Eurofins Expert Services Oy, Espoo, Finland (Report EUFI29-19000819-T1/T2).

• The minimum distances for wide face connections are applicable when using LVL with parallel grain.

• The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

STRUCTURES | VGZ | 151


STATIC VALUES | CLT TENSION (1) total thread withdrawal (2) lateral face

geometry

total thread withdrawal (3) narrow face

L

Sg

partial thread withdrawal (2) lateral face

Sg

A

Sg

A

steel tension

A d1

d1 [mm]

7

9

11

L [mm]

b [mm]

Amin [mm]

timber Rax,k [kN]

Sg [mm]

timber Rax,k [kN]

Sg [mm]

Amin [mm]

timber Rax,k [kN] 2,05

80

70

90

5,73

70

4,34

25

45,00

100

90

110

7,37

90

5,44

35

55,00

2,87

120

110

130

9,01

110

6,52

45

65,00

3,69

140

130

150

10,65

130

7,58

55

75,00

4,50

160

150

170

12,29

150

8,62

65

85,00

5,32

180

170

190

13,92

170

9,65

75

95,00

6,14

200

190

210

15,56

190

10,67

85

105,00

6,96

220

210

230

17,20

210

11,67

95

115,00

7,78 8,60

240

230

250

18,84

230

12,67

105

125,00

260

250

270

20,48

250

13,65

115

135,00

9,42

280

270

290

22,11

270

14,63

125

145,00

10,24

300

290

310

23,75

290

15,61

135

155,00

11,06

340

330

350

27,03

330

17,53

155

175,00

12,69

380

370

390

30,30

370

19,43

175

195,00

14,33

160

150

170

15,80

150

10,54

65

85,00

6,84

180

170

190

17,90

170

11,80

75

95,00

7,90

200

190

210

20,01

190

13,04

85

105,00

8,95

220

210

230

22,11

210

14,27

95

115,00

10,00

240

230

250

24,22

230

15,49

105

125,00

11,06

260

250

270

26,33

250

16,69

115

135,00

12,11

280

270

290

28,43

270

17,89

125

145,00

13,16

300

290

310

30,54

290

19,08

135

155,00

14,22

320

310

330

32,64

310

20,26

145

165,00

15,27

340

330

350

34,75

330

21,43

155

175,00

16,32

360

350

370

36,86

350

22,60

165

185,00

17,37

380

370

390

38,96

370

23,76

175

195,00

18,43

400

390

410

41,07

390

24,91

185

205,00

19,48

440

430

450

45,28

430

27,20

205

225,00

21,59

480

470

490

49,49

470

29,47

225

245,00

23,69

520

510

530

53,70

510

31,71

245

265,00

25,80

250

240

260

30,89

240

18,89

110

130,00

14,16

300

290

310

37,32

290

22,40

135

155,00

17,37

350

340

360

43,76

340

25,85

160

180,00

20,59

400

390

410

50,19

390

29,25

185

205,00

23,81

450

440

460

56,63

440

32,60

210

230,00

27,03

500

490

510

63,06

490

35,92

235

255,00

30,24

550

540

560

69,50

540

39,20

260

280,00

33,46

600

590

610

75,93

590

42,45

285

305,00

36,68

steel Rtens,k [kN]

15,40

25,40

38,00

NOTES: (1)

The connector design resistance is the lowest between the wood side design resistance (Rax,d) and the steel side resistance (Rtens,d).

Rax,d = min

Rax,k kmod γm Rtens,k γm2

The axial resistance of the thread to withdrawal was calculated considering a 90° angle between the fibres and the connector and for a effective thread length of b or Sg. For intermediate values of Sg it is possible to linearly interpolate.

(2)

152 | VGZ | STRUCTURES

(3)

The axial thread withdrawal resistance is valid for minimum thickness of the element of tmin = 10∙d and minimum screw pull-through depth tpen = 10∙d.

(4)

The axial resistance of the thread withdrawal was calculated considering always a 45° angle between the fibres and the connector and for an effective thread length of Sg as it is impossible to define in advance the thickness and orientation of each layer.

Greater resistance values can be obtained considering the fibres orientation of each layer of the panel. (5)

See notes at page 146.


CHARACTERISTIC VALUES EN 1995:2014 SHEAR

SLIDING(4)

CLT - CLT

Sg

CLT - CLT

CLT - CLT(5)

Sg1

A

Sg Sg2

Sg

Sg

Sg [mm]

Amin [mm]

RV,k [kN]

Sg [mm]

Amin [mm]

Bmin [mm]

RV,k [kN]

Sg1 [mm]

Sg2 [mm]

R1 V,k (1)

R2 V,k (1)

withdrawal(4)

instability

13,3

[kN]

[kN]

25

40

2,02

25

30

50,0

1,3

25

25

2,6

35

50

2,49

35

40

55,0

1,8

35

35

3,7

13,3

45

60

2,97

45

45

60,0

2,4

45

45

4,7

13,3

55

70

3,18

55

55

70,0

2,9

55

55

5,8

13,3

65

80

3,38

65

60

75

3,42

65

65

6,8

13,3 13,3

75

90

3,59

75

65

85

3,95

75

75

7,9

85

100

3,79

85

75

90

4,48

85

85

9,0

13,3

95

110

3,99

95

80

100

5,00

95

95

10,0

13,3

105

120

4,10

105

90

105

5,53

105

105

11,1

13,3

115

130

4,10

115

95

110

6,05

115

115

12,1

13,3

125

140

4,10

125

100

120

6,58

125

125

13,2

13,3

135

150

4,10

135

110

125

7,11

135

135

14,2

13,3

155

170

4,10

155

125

140

8,16

155

155

16,3

13,3

175

190

4,10

175

140

155

9,21

175

175

18,4

13,3

65

80

4,81

65

60

75,0

4,4

65

65

8,8

22,4

75

90

5,08

75

70

85,0

5,1

75

75

10,2

22,4

85

100

5,34

85

75

90

5,75

85

85

11,5

22,4

95

110

5,60

95

80

100

6,43

95

95

12,9

22,4

105

120

5,87

105

90

105

7,11

105

105

14,2

22,4

115

130

6,13

115

95

110

7,78

115

115

15,6

22,4

125

140

6,21

125

105

120

8,46

125

125

16,9

22,4

135

150

6,21

135

110

125

9,14

135

135

18,3

22,4

145

160

6,21

145

115

135

9,81

145

145

19,6

22,4

155

170

6,21

155

125

140

10,49

155

155

21,0

22,4

165

180

6,21

165

130

145

11,17

165

165

22,3

22,4

175

190

6,21

175

140

155

11,85

175

175

23,7

22,4

185

200

6,21

185

145

160

12,52

185

185

25,0

22,4

205

220

6,21

205

160

175

13,88

205

205

27,8

22,4

225

240

6,21

225

175

190

15,23

225

225

30,5

22,4

245

260

6,21

245

190

205

16,58

245

245

33,2

22,4

110

125

7,86

110

95

110

9,10

110

110

18,2

28,5

135

150

8,64

135

115

125

11,17

135

135

22,3

28,5

160

175

8,64

160

130

145

13,24

160

160

26,5

28,5 28,5

185

200

8,64

185

150

160

15,31

185

185

30,6

210

225

8,64

210

165

180

17,37

210

210

34,7

28,5

235

250

8,64

235

185

195

19,44

235

235

38,9

28,5

260

275

8,64

260

200

215

21,51

260

260

43,0

28,5

285

300

8,64

285

220

230

23,58

285

285

47,2

28,5

GENERAL PRINCIPLES: • C haracteristic values comply with the EN 1995:2014 standard and national specification ÖNORM EN 1995 - Annex K in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

he coefficients γm and kmod should be taken according to the current regulations T used for the calculation. • For the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030.

• A timber density of ρ k = 350 kg/m3 was considered for the calculation process. • Dimensioning and verification of the timber elements must be carried out separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained. • The withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane. • The withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.

STRUCTURES | VGZ | 153


STATIC VALUES | LVL SLIDING(5) LVL - LVL flat

geometry

Sg

45° L

Sg

d1

d1 [mm]

7

9

L [mm] 80 100 120 140 160 180 200 220 240 260 280 300 340 380 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520

Sg [mm] 25 35 45 55 65 75 85 95 105 115 125 135 155 175 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245

Amin [mm] 30 40 45 55 60 65 75 80 90 95 100 110 125 140 60 70 75 80 90 95 105 110 115 125 130 140 145 160 175 190

LVL RV,k [kN] 1,62 2,27 2,92 3,56 4,21 4,86 5,51 6,16 6,80 7,45 8,10 8,75 10,04 11,34 5,11 5,90 6,69 7,47 8,26 9,05 9,84 10,62 11,41 12,20 12,98 13,77 14,56 16,13 17,70 19,28

Bmin [mm] 50 55 60 70 75 85 90 100 105 110 120 125 140 155 75 85 90 100 105 110 120 125 135 140 145 155 160 175 190 205

steel Rtens,k 45° (6)

[kN]

10,89

17,96

NOTES: The connector design resistance is the lowest between the wood side design resistance (Rax,d) and the steel side resistance (Rtens,d).

(1)

Rax,d = min (2)

(4)

The minimum pull-through depth of tip Sg MIN = 100 mm for VGZ Ø7 connectors and Sg MIN = 120 mm for VGZ Ø9 connectors.

(5)

The design sliding resistance of the joint is either the timber-side design resistance (RV,d) or the steel design resistance (Rtens,d 45°), whichever is lower.

Rax,k kmod γm Rtens,k γm2

The axial thread withdrawal resistance Rax,90,flat,k was calculated considering a 90° angle between the grain and the connector and for a fixing length of b in applications with both parallel and cross grain LVL.

The axial thread withdrawal resistance Rax,90,edge,k was calculated considering a 90° angle between the grain and the connector and for a fixing length of b in applications with parallel grain LVL.

(3)

154 | VGZ | STRUCTURES

RV,d = min (6)

RV,k kmod γm Rtens,k 45° γm2

The connector tensile strength was calculated considering a 45° angle between the fibres and the connector.


CHARACTERISTIC VALUES EN 1995:2014 TENSION (1) total thread withdrawal (2) flat

partial thread withdrawal (2) flat

Sg

A

Sg

A

thread withdrawal (3) edge

Sg

A

b [mm] 70 90 110 130 150 170 190 210 230 250 270 290 330 370 150 170 190 210 230 250 270 290 310 330 350 370 390 430 470 510

Amin [mm] 90 110 130 150 170 190 210 230 250 270 290 310 350 390 170 190 210 230 250 270 290 310 330 350 370 390 410 450 490 530

LVL Rax,k [kN] 7,06 9,07 11,09 13,10 15,12 17,14 19,15 21,17 23,18 25,20 27,22 29,23 33,26 37,30 18,36 20,81 23,26 25,70 28,15 30,60 33,05 35,50 37,94 40,39 42,84 45,29 47,74 52,63 57,53 62,42

Sg [mm] 25 35 45 55 65 75 85 95 105 115 125 135 155 175 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245

Amin [mm] 45 55 65 75 85 95 105 115 125 135 145 155 175 195 85 95 105 115 125 135 145 155 165 175 185 195 205 225 245 265

steel tension

LVL Rax,k [kN] 2,52 3,53 4,54 5,54 6,55 7,56 8,57 9,58 10,58 11,59 12,60 13,61 15,62 17,64 7,96 9,18 10,40 11,63 12,85 14,08 15,30 16,52 17,75 18,97 20,20 21,42 22,64 25,09 27,54 29,99

Sg (4) [mm] 110 130 150 170 190 210 230 250 270 290 330 370 150 170 190 210 230 250 270 290 310 330 350 370 390 430 470 510

tmin

[mm] 45 45 45 45 45 45 45 45 45 45 45 45 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57

LVL Rax,k [kN] 9,86 11,65 13,44 15,23 17,02 18,82 20,61 22,40 24,19 25,98 29,57 33,15 19,58 22,19 24,80 27,41 30,02 32,63 35,24 37,85 40,46 43,07 45,68 48,29 50,90 56,12 61,34 66,56

steel Rtens,k [kN]

15,40

25,4

GENERAL PRINCIPLES: • C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• For the calculation process a timber characteristic density ρ k = 480 kg/m3 has been considered.

• LVL mechanical withdrawal-resistance parameters are obtained from experimental tests carried out at Eurofins Expert Services Oy, Espoo, Finland (Report EUFI29-19000819-T1/T2).

• Dimensioning and verification of the timber elements must be carried out separately.

• Design values can be obtained from characteristic values as follows:

Rd =

• The withdrawal and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.

Rk kmod γm

The coefficients γm and kmod should be taken according to the current regulations used for the calculation. • For the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030.

STRUCTURES | VGZ | 155


CALCULATION EXAMPLES: REINFORCEMENT OF NOTCHED BEAM WITH TRACTION PERPENDICULAR B-B

PROJECT DATA B = 200 mm

Wood GL24h (ρk = 385 kg/m3)

H = 400 mm

Fv,Rd = 29,5 kN

Hef = 200 mm

Service class = 1

Hi = H - Hef = 200

Load duration = medium

ia = 0 (notch slope)

La = 150 mm

A-A a2,c a2

B

a2,c B-B Hef

A-A

X

Sg sup

H Sg inf

H-Hef Fv,Rd La

a1,c

SHEAR STRESS VERIFICATION - BEAM WITHOUT REINFORCEMENT - Section A-A (EN 1995:2014) : τd ≤ kv ∙ fv,d

τd =

1,5 Fv,Rd B Hef

α=

La 2

x=

α=

Hef H

x = τ d

1 kV = min

kn

1,1 iα1,5 1+ H

α (1-α) + 0,8 x H

h

= 1,65 N/mm2

x

= 75 mm

α

= 0,5

kn

= 6,50 (GL24h)

k v

= 0,47

fv,k

= 3,50 N/mm2

1 -α2 α

EN 1995:2014

Italy - NTC 2018

kmod = 0,9

kmod = 0,9

γm = 1,25

γm = 1,45

fv,d = 2,52 N/mm2 k v ∙ fv,d = 1,18 N/mm2

fv,d = 2,17 N/mm2 k v ∙ fv,d = 1,02 N/mm2

τd ≤ k v ∙ fv,d

1,65 > 1,18 N/mm2

τd ≤ k v ∙ fv,d

1,65 > 1,02 N/mm2

verification not passed

verification not passed

REQUIRES REINFORCEMENT

REQUIRES REINFORCEMENT

SHEAR STRESS VERIFICATION - Section B-B (EN 1995:2014) : τd ≤ fv,d

τd =

1,5 Fv,Rd B Hef

α=

EN 1995:2014

τ d

= 1,65 N/mm2

Italy - NTC 2018

τd ≤ fv,d

1,65 < 2,52 N/mm2

τd ≤ fv,d

1,65 < 2,17 N/mm2

verification passed

verification passed

REINFORCEMENT Section A-A - CALCULATION OF TRACTION STRESS PERPENDICULAR TO THE FIBRES (DIN 1052:2008)

Ft,90,d = 1,3 Fv,Rd [ 3 (1-α)2 - 2 (1-α)3]

Ft,90,d = 19,18 kN

REINFORCEMENT CONNECTOR SELECTION VGZ 9 x 360 mm

To optimise the resistance, the connector is placed with the centre of gravity in correspondence

Sg sup = 165 mm

with the possible crack line.

Sg inf = 165 mm

156 | VGZ | STRUCTURES


CONNECTOR TENSILE STRENGTH CALCULATION (EN 1995:2014 and ETA-11/0030)

Rax,α,Rk kmod γm Rtens,k γm2

Rax,Rd = min

Rax,α,Rx =

nef 11,7 d1 Sg

ρk

1,2 cos2α + sin2α

350

Rax,90°,Rk = 18,75 kN

0,8

Rtens,k = 25,40 kN

The tensile strength of the connectors calculated here is shown in the table on p.140 The minimum distances for placement of the connectors are found in the table on p.139 EN 1995:2014

Italy - NTC 2018

kmod = 0,9

kmod = 0,9

γm = 1,3

γm = 1,5

γm2 = 1,25

γm2 = 1,25

Rax,90°Rd = 12,98 kN

Rax,90°Rd = 11,25 kN

Rtens,d = 20,32 kN

Rki,d = 20,32 kN

Rax,Rd = 12,98 kN

Rax,Rd = 11,25 kN

MINIMUM NUMBER OF CONNECTORS Ft,90,d / Rax,Rd = 1,48

Ft,90,d / Rax,Rd = 1,70

2 connectors are hypothesized nef,ax 20,9 = 1,87

FASTENER RESISTANCE TO PERPENDICULAR TENSION Rax,Rd = 1,87 ∙ 12,98 = 24,27 kN

>

19,18 kN OK

Rax,Rd = 1,87 ∙ 11,25 = 21,04 kN

>

19,18 kN OK

For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

EXAMPLE OF JOINTS THAT REQUIRE VERIFICATION OF PERPENDICULAR TENSION AND POSSIBLE REINFORCEMENT

ia=0

ia>0

STRUCTURES | VGZ | 157


VGZ EVO FRAME

BIT INCLUDED

COATING

ETA 11/0030

MINI FULL THREADED SCREW WITH CYLINDRICAL HEAD TIMBER FRAME Ideal for joining small timber elements such as the crossbeams and uprights of light frame structures. Reduced minimum distances.

STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°). Safety certified by numerous tests carried out for any direction of insertion.

LUMBER The cylindrical head is ideal for concealed joints. Deep thread and high resistance steel (f y,k = 1000 N/mm2) for excellent tensile performance.

C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.

CHARACTERISTICS FOCUS

fastener for narrow sections

HEAD

cylindrical, countersunk

DIAMETER

5,3 | 5,6 mm

LENGTH

from 80 mm to 160 mm

MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.

FIELDS OF USE • wood based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.

158 | VGZ EVO FRAME | STRUCTURES


TRUSS, RAFTER Ideal for fastening elements with small cross-sections. Certified for application parallel to the grain and with reduced minimum distances. Certified for outdoor use (Service class 3).

TIMBER STUD Values also tested, certified and calculated for CLT and high density woods such as MicrollamÂŽ LVL. Ideal for fastening I-Joist beams.

STRUCTURES | VGZ EVO FRAME | 159


Fastening the crossbeams of light frame structures.

Fastening the uprights of light frame structures.

GEOMETRY AND MECHANICAL CHARACTERISTICS

X

d2 d1

X

X V

G

Z

dk

b L

Nominal diameter

d1

[mm]

5,3

5,6

Head diameter

dk

[mm]

8,00

8,00

Tip diameter

d2

[mm]

3,60

3,80

Shank diameter

ds

[mm]

3,95

4,15

Pre-drilling hole diameter

dv

[mm]

3,5

3,5

Characteristic yield moment

My,k

[Nmm]

6303,3

7273,5

Characteristic withdrawal-resistance parameter

fax,k

[N/mm2]

11,7

11,7

Characteristic tensile strength

f tens,k

[kN]

8,80

9,90

Characteristic yield strength

f y,k

[kN]

1000

1000

160 | VGZ EVO FRAME | STRUCTURES


CODES AND DIMENSIONS d1

CODE

[mm] VGZEVO580 5,3 VGZEVO5100 TX 25 VGZEVO5120 VGZEVO5140

5,6 TX 25 VGZEVO5160

L

b

pcs

[mm]

[mm]

80

70

50

100

90

50

120

110

50

140

130

50

160

150

50

MINIMUM DISTANCES FOR SHEAR LOADS (1)

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES

SCREWS INSERTED WITH PRE-DRILLING HOLES

5.3

5.6

27

28

4∙d

5.3

5.6

21

22

a1

[mm]

a2

[mm]

3∙d

16

17

4∙d

21

22

a3,t

[mm]

12∙d

64

67

7∙d

37

39

a3,c

[mm]

7∙d

37

39

7∙d

37

39

a4,t

[mm]

3∙d

16

17

7∙d

37

39

a4,c

[mm]

3∙d

16

17

3∙d

16

17

5∙d

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5.3

5.6

64

67

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5.3

5.6

27

28

a1

[mm]

a2

[mm]

5∙d

27

28

5∙d

27

28

a3,t

[mm]

15∙d

80

84

10∙d

53

56

a3,c

[mm]

10∙d

53

56

10∙d

53

56

a4,t

[mm]

5∙d

27

28

10∙d

53

56

a4,c

[mm]

5∙d

27

28

5∙d

27

28

12∙d

5∙d

d = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: The minimum distances are in accordance with EN 1995:2014 considering a wood characteristic density of ρ k ≤ 420 kg/m3.

(1)

• The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85.

• The minimum spacing for all steel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,7.

STRUCTURES | VGZ EVO FRAME | 161


EFFECTIVE THREAD USED IN CALCULATION 10

Sg

Tol.

Sg

10

b =

L - 10 mm

represents the entire length of the threaded part

Sg = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm

b L

The timber-to-timber withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.

MINIMUM DISTANCES FOR AXIAL STRESSES (2)

SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE a1

[mm]

a2

[mm]

a2,LIM(3) [mm] a1,CG

[mm]

a2,CG

[mm]

aCROSS [mm]

5.3

5.6

5∙d

27

28

5∙d

27

28

2,5∙d

13

14

8∙d

42

45

3∙d

16

17

1,5∙d

8

8

d = nominal screw diameter SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG a2,CG

a2,CG a2 a2,CG

a2

a2,CG

a2,CG a1,CG

1

a1

a

a2,CG a1,CG

a1,CG

a2,CG a1,CG

plan

front

plan

front

SCREWS INSERTED WITH α 90° ANGLE WITH RESPECT TO THE GRAIN a2,CG a2 a2,CG a1,CG

a1 a1,CG

plan

a1

front

NOTES: (2)

The minimum distances for connectors stressed axially are independent of the insertion angle of the connector and the angle of the force with respect to the grain, in accordance with ETA-11/0030.

162 | VGZ EVO FRAME | STRUCTURES

(3)

The axial distance a2 can be reduced down to 2,5 d1 if for each connector a “joint surface” a1 a2 = 25 d12 is maintained.


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 TENSION (1)

geometry

total thread withdrawal (2)

partial thread withdrawal (2)

steel tension

estrazione estrazione filetto filetto parziale parziale

L

Sg

A

Sg

A

A

d1

timber d1

L

b

Amin

[mm]

[mm]

[mm]

80 100 120 140 160

70 90 110 130 150

5,3 5,6

timber

steel

Rax,k

Rtens,k

[mm]

[kN]

[kN]

45 55 65 75 85

1,79 2,51 3,23 4,17 4,93

Rax,k

Sg

Amin

[mm]

[kN]

[mm]

90 110 130 150 170

5,02 6,46 7,89 9,86 11,37

25 35 45 55 65

geometry

8,80 9,90

SHEAR

SLIDING

timber-to-timber

timber-to-timber (3)

A

Sg

A

S

Sg

g

estrazione filetto parziale

45°

A

S

g

L B

d1

d1

L

Sg

Amin

[mm]

[mm]

[mm]

80 100 120 140 160

25 35 45 55 65

5,3 5,6

RV,k

Amin

Bmin

Rv,k

[mm]

[kN]

[mm]

[mm]

[kN]

40 50 60 70 80

1,67 1,99 2,17 2,53 2,72

30 40 45 50 60

50 55 60 70 75

1,15 1,61 2,08 2,68 3,17

NOTES: (1)

The connector design resistance is the lowest between the wood side design resistance (Rax,d) and the steel side resistance (Rtens,d).

Rax,d = min

GENERAL PRINCIPLES:

Rax,k kmod γm Rtens,k γm2

The axial resistance of the thread to withdrawal was calculated considering a 90° angle between the fibres and the connector and for a effective thread length of b or Sg. For intermediate values of Sg it is possible to linearly interpolate. (2)

(3)

The axial resistance of the thread withdrawal was calculated considering a 45° angle between the fibres and the connector and for an effective thread length of Sg.

• C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

The coefficients γm and kmod should be taken according to the current regulations used for the calculation. • For the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρ k = 385 kg/m3 has been considered. • Dimensioning and verification of the timber elements must be carried out separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained. • The withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.

STRUCTURES | VGZ EVO FRAME | 163


CEILING-TO-WALL JOINTS: STRESSES ALONG THE AXIS

Roofing beams

04

05

06

Framed wall crossbeam

Framed panel platform beam

Framed wall upright

01

03

02

04 01

01

Foundation plate

04

04 Joining of crossbeammain rafter with inclined connector

Joining of upright platform beam with single inclined connector

02

02

05 Joining of upright platform beam with double inclined connector

2x

Joining of crossbeammain rafter with double inclined connector inserted from side

03

03

06

2x

Joining of upright platform beam with double crossed connectors

164 | VGZ EVO FRAME | STRUCTURES

Joining of crossbeamprinciple rafter with double inclined connector inserted from front


CEILING-TO-WALL JOINTS: OFF AXIS STRESSES

Roofing beams

Framed wall crossbeam

07

10

Framed panel platform beam

11

Framed wall upright

08

Floor with I-Joist beams

Framed wall crossbeam 09

07

07

10 Joining of uprightcrossbeam with single inclined connector

Joining of uprightcrossbeam with single inclined connector

08

08

11 Joining of crossbeam-sill plate with single inclined connector

Joining of crossbeammain rafter with double vertical connector

09 Joining of uprightcrossbeam with single inclined connector

STRUCTURES | VGZ EVO FRAME | 165


VGZ EVO

BIT INCLUDED

COATING

ETA 11/0030

FULL THREADED SCREW WITH CYLINDRICAL HEAD C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.

AGGRESSIVE WOODS Ideal for applications with woods containing tannin or treated with impregnating agents or other chemical processes.

TENSION Deep thread and high resistance steel (f y,k = 1000 N/mm2) for excellent tensile performance.

STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°). Reduced minimum distances.

CHARACTERISTICS FOCUS

corrosiveness class C4

HEAD

cylindrical, countersunk

DIAMETER

5,3 | 5,6 | 7,0 | 9,0 mm

LENGTH

from 80 mm to 360 mm

MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.

FIELDS OF USE • wood based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.

166 | VGZ EVO | STRUCTURES


OAK FRAME Ideal for the construction of outdoor structures and for fastening aggressive woods containing tannin, such as chestnut and oak. Values also certified for inserting the screw parallel to the grain

TIMBER FRAME Values also tested, certified and calculated for CLT and high density woods such as MicrollamÂŽ LVL.

STRUCTURES | VGZ EVO | 167


Fastening Wood Trusses outdoors.

Restoration of existing wooden floor using glulam beams and VGZ connectors.

GEOMETRY AND MECHANICAL CHARACTERISTICS

X

d2 d1

X

X V

G

Z

dk

b L

Nominal diameter

d1

[mm]

5,3

5,6

7

9

Head diameter

dk

[mm]

8,00

Tip diameter

d2

[mm]

3,60

8,00

9,50

11,50

3,80

4,60

5,90

Shank diameter

ds

[mm]

3,95

4,15

5,00

6,50

Pre-drilling hole diameter

dv

[mm]

3,5

3,5

4,0

5,0

6303,3

7273,5

14174,2

27244,1

11,7

11,7

11,7

11,7

Characteristic yield moment

My,k

[Nmm]

Characteristic withdrawal-resistance parameter

fax,k

[N/mm2]

Characteristic tensile strength

f tens,k

[kN]

8,80

9,90

15,4

25,4

Characteristic yield strength

f y,k

[kN]

1000

1000

1000

1000

168 | VGZ EVO | STRUCTURES


CODES AND DIMENSIONS d1

CODE

L

b

[mm]

[mm]

80

70

50

100

90

50

120

110

50

5.6 VGZEVO5140 TX 25 VGZEVO5160

140

130

160

VGZEVO7140

140

VGZEVO7180 7 VGZEVO7220 TX 30 VGZEVO7260 VGZEVO7300

[mm] VGZEVO580 5.3 VGZEVO5100 TX 25 VGZEVO5120

pcs

d1

CODE

L

b

[mm]

[mm]

VGZEVO9200

200

190

25

240

230

25

280

270

25

50

VGZEVO9240 9 VGZEVO9280 TX 40 VGZEVO9320

320

310

25

150

50

VGZEVO9360

360

350

25

130

25

180

170

25

220

210

25

260

250

25

300

290

25

[mm]

MINIMUM DISTANCES FOR SHEAR LOADS (1)

For the table Minimum distances for axial stresses, see page 139

Load-to-grain angle α = 0°

a1 a2 a3,t a3,c a4,t a4,c

a1 a2 a3,t a3,c a4,t a4,c

pcs

Load-to-grain angle α = 90°

[mm] [mm] [mm] [mm] [mm] [mm]

SCREWS INSERTED WITH PRE-DRILLING HOLES 5.3 5.6 7 9 5∙d 27 28 35 45 3∙d 16 17 21 27 12∙d 64 67 84 108 7∙d 37 39 49 63 3∙d 16 17 21 27 3∙d 16 17 21 27

SCREWS INSERTED WITH PRE-DRILLING HOLES 5.3 5.6 7 9 4∙d 21 22 28 36 4∙d 21 22 28 36 7∙d 37 39 49 63 7∙d 37 39 49 63 7∙d 37 39 49 63 3∙d 16 17 21 27

[mm] [mm] [mm] [mm] [mm] [mm]

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5.3 5.6 7 9 12∙d 64 67 84 108 5∙d 27 28 35 45 15∙d 80 84 105 135 10∙d 53 56 70 90 5∙d 27 28 35 45 5∙d 27 28 35 45

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 5.3 5.6 7 9 5∙d 27 28 35 45 5∙d 27 28 35 45 10∙d 53 56 70 90 10∙d 53 56 70 90 10∙d 53 56 70 90 5∙d 27 28 35 45

d = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: The minimum distances are in accordance with EN 1995:2014 considering a wood characteristic density of ρ k ≤ 420 kg/m3.

(1)

• The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85.

• The minimum spacing for all steel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,7.

STRUCTURES | VGZ EVO | 169


EFFECTIVE THREAD USED IN CALCULATION 10

Sg

Tol.

Sg

b =

10

L - 10 mm

represents the entire length of the threaded part

Sg = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm

b L

The timber-to-timber withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.

STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 TENSION (1)

geometry

total thread withdrawal (2)

partial thread withdrawal (2)

steel tension

estrazione estrazione filetto filetto parziale parziale

L

Sg

A

Sg

A

A

d1

timber

steel

d1

L

b

Amin

timber Rax,k

Sg

Amin

Rax,k

Rtens,k

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[mm]

[kN]

[kN]

80

70

90

5,02

25

45

1,79

5,3

100

90

110

6,46

35

55

2,51

5,6

7

9

120

110

130

7,89

45

65

3,23

140

130

150

9,86

55

75

4,17

160

150

170

11,37

65

85

4,93

140

130

150

12,32

55

75

5,21

180

170

190

16,11

75

95

7,11

220

210

230

19,90

95

115

9,00

260

250

270

23,69

115

135

10,90

300

290

310

27,48

135

155

12,79

200

190

210

23,15

85

105

10,36

240

230

250

28,02

105

125

12,79

280

270

290

32,90

125

145

15,23

320

310

330

37,77

145

165

17,67

360

350

370

42,64

165

185

20,10

8,80

9,90

15,40

25,40

NOTES: (1)

The connector design resistance is the lowest between the wood side design resistance (Rax,d) and the steel side resistance (Rtens,d).

Rax,d = min

Rax,k kmod γm Rtens,k γm2

170 | VGZ EVO | STRUCTURES

(2)

The axial resistance of the thread to withdrawal was calculated considering a 90° angle between the fibres and the connector and for a effective thread length of b or Sg. For intermediate values of Sg it is possible to linearly interpolate.


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014

geometry

SHEAR

SLIDING

timber-to-timber

timber-to-timber (3)

A

Sg

A

S

Sg

g

estrazione filetto parziale

45°

A

S

g

L B

d1

d1

L

Sg

Amin

RV,k

Amin

Bmin

Rv,k

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[mm]

[kN]

80

25

40

1,67

30

50

1,15

5,3

100

35

50

1,99

40

55

1,61

5,6

7

9

120

45

60

2,17

45

60

2,08

140

55

70

2,53

50

70

2,68

160

65

80

2,72

60

75

3,17

140

55

70

3,55

55

70

3,35

180

75

90

4,02

65

85

4,57

220

95

110

4,49

80

100

5,79

260

115

130

4,49

95

110

7,01

300

135

150

4,49

110

125

8,22

200

85

100

5,99

75

90

6,66

240

105

120

6,60

90

105

8,22

280

125

140

6,80

105

120

9,79

320

145

160

6,80

115

135

11,36

360

165

180

6,80

130

145

12,92

NOTES: (3)

The axial resistance of the thread withdrawal was calculated considering a 45° angle between the fibres and the connector and for an effective thread length of Sg.

• For the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρ k = 385 kg/m3 has been considered.

GENERAL PRINCIPLES:

• Dimensioning and verification of the timber elements must be carried out separately.

• C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

• The withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.

The coefficients γm and kmod should be taken according to the current regulations used for the calculation.

STRUCTURES | VGZ EVO | 171


VGZ HARDWOOD

BIT INCLUDED

ETA 11/0030

FULLY THREADED SCREW FOR HARDWOODS HARDWOOD CERTIFICATION Special tip with diamond geometry and notched, serrated thread. ETA 11/0030 certification for use with high density timber without any predrill. Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°).

TENSION Deep thread and high resistance steel (f y,k = 1000 N/mm2) for excellent tensile performance. Inner tip diameter increased to ensure tightening in the highest density woods. Excellent twisting moment values.

CYLINDRICAL HEAD Ideal for concealed joints, timber couplings and structural reinforcements. Guarantees fire protection and earthquake suitability.

CHARACTERISTICS FOCUS

screw for hardwoods

HEAD

cylindrical, countersunk

DIAMETER

7,0 | 9,0 mm

LENGTH

from 140 mm to 320 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE • wood based panels • Solid timber and glulam • CLT, LVL • high density woods • beech, cypress, eucalyptus, bamboo Service classes 1 and 2.

172 | VGZ HARDWOOD | STRUCTURES


GEOMETRY AND MECHANICAL CHARACTERISTICS

ds X X

G

Z

V

H

d2 d1

X

dk

b L Nominal diameter eq.

d1 eq.

[mm]

7

9

Nominal diameter

d1

[mm]

6

8

Head diameter

dk

[mm]

9,50

11,50

Tip diameter

d2

[mm]

4,50

5,90

Shank diameter

ds

[mm]

4,80

6,30

Pre-drilling hole diameter

dv

[mm]

4,0

6,0

Characteristic yield moment

My,k

[Nmm]

18987,4

40115,0

Characteristic withdrawal-resistance parameter

fax,k,90°

[N/mm ]

46,0

46,0

fax,k,0°

[N/mm2]

20,0

20,0

2

Associated density

ρa

[kg/m ]

730

730

Characteristic head-pull-through parameter

fhead,k

[N/mm ]

50,0

50,0

Associated density

ρa

[kg/m3]

730

730

Characteristic tensile strength

f tens,k

[kN]

18,0

32,1

3

2

Mechanical parameters from experimental tests obtained from "Test Report No. 196104" of Karlsruher Institut für Technologie (KIT).

CODES AND DIMENSIONS d1 eq.

CODE

[mm]

7 TX 30

d1

L

b

[mm]

[mm]

[mm]

pcs

d1 eq.

CODE

[mm]

d1

L

b

[mm]

[mm]

[mm]

pcs

VGZH7140

6

140

130

25

VGZH9200

8

200

190

25

VGZH7180

6

180

170

25

VGZH9240

8

240

230

25

VGZH7220

6

220

210

25

VGZH9280

8

280

270

25

VGZH7260

6

260

250

25

VGZH9320

8

320

310

25

9 TX 40

d1 eq. = nominal diameter equivalent to a screw with the same ds

NOTES: upon request, EVO version is available.

BEECH LVL Values also tested, certified and calculated for high density woods such as beechwood Microllam® LVL. Certified for use without pre-drilling, for densities of up to 780 kg/m3. Also tested on structural woods such as chestnut, oak, cypress, eucalyptus, bamboo

STRUCTURES | VGZ HARDWOOD | 173


EFFECTIVE THREAD USED IN CALCULATION 10

Sg

Tol.

Sg

10

b =

L - 10 mm

represents the entire length of the threaded part

Sg = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm

b L

The timber-to-timber withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.

MINIMUM DISTANCES FOR SHEAR LOADS (1)

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES

SCREWS INSERTED WITH PRE-DRILLING HOLES

d1 eq.

7

9

7

9

d1 a1

6

8

6

8

[mm]

5∙d1

30

40

4∙d1

24

32

a2

[mm]

3∙d1

18

24

4∙d1

24

32

a3,t

[mm]

12∙d1

72

96

7∙d1

42

56

a3,c

[mm]

7∙d1

42

56

7∙d1

42

56

a4,t

[mm]

3∙d1

18

24

7∙d1

42

56

a4,c

[mm]

3∙d1

18

24

3∙d1

18

24

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

d1 eq.

7

9

7

d1 a1

6

8

6

8

[mm]

90

120

42

56

a2

[mm]

7∙d1

42

56

7∙d1

42

56

a3,t

[mm]

20∙d1

120

160

15∙d1

90

120

a3,c

[mm]

15∙d1

90

120

15∙d1

90

120

a4,t

[mm]

7∙d1

42

56

12∙d1

72

96

a4,c

[mm]

7∙d1

42

56

7∙d1

42

56

15∙d1

7∙d1

9

d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: • The minimum distances are compliant with EN 1995:2014 - Table 8.2 considering a wood characteristic density of ρ k > 420 kg/m3 and calculation diameter of d = nominal screw diameter. • For high density wood applications (ρ k > 500 kg/m3 ) please refer to ETA11/0030.

174 | VGZ HARDWOOD | STRUCTURES

• The minimum spacing for all steel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85. Full technical data is available in the website www.rothoblaas.com.


MINIMUM DISTANCES FOR AXIAL STRESSES (1)

SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE d1 eq.

7

9

6

8

a1

[mm]

5∙d1

30

40

a2

[mm]

5∙d1

30

40

d1

a2,LIM(2) [mm]

2,5∙d1

15

20

8∙d1

48

64

[mm]

3∙d1

18

24

[mm]

1,5∙d1

9

12

a1,CG

[mm]

a2,CG aCROSS

d1 = nominal screw diameter

SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG a2,CG

a2,CG a2 a2,CG

a2

a2,CG

a2,CG a1,CG

1

a1

a

a2,CG a1,CG

a1,CG

a2,CG a1,CG

plan

front

SCREWS INSERTED WITH α 90° ANGLE WITH RESPECT TO THE GRAIN

plan

front

CROSS SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG

45°

a2 a2,CG

a2,CG a1,CG

aCROSS a2,CG

a1 a1,CG

plan

a1

front

plan

front

NOTES: (1)

The minimum distances for connectors stressed axially are independent of the insertion angle of the connector and the angle of the force with respect to the grain, in accordance with ETA-11/0030.

(2)

The axial distance a2 can be reduced down to 2,5 d1 if for each connector a “joint surface” a1 a2 = 25 d12 is maintained.

STRUCTURES | VGZ HARDWOOD | 175


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 TENSION (1)

geometry

total thread withdrawal (2)

partial thread withdrawal (2)

steel tension

estrazione estrazione filetto filetto parziale parziale

L

Sg

A

Sg

A

A

d1

d1 eq. [mm]

d1 [mm] 6 6 6 6 8 8 8 8

7

9

L [mm] 140 180 220 260 200 240 280 320

b [mm] 130 170 210 250 190 230 270 310

timber Rax,k [kN] 28,61 37,41 46,21 55,01 55,75 67,49 79,22 90,96

Amin [mm] 150 190 230 270 210 250 290 330

geometry

Sg [mm] 55 75 95 115 85 105 125 145

timber Rax,k [kN] 12,10 16,50 20,91 25,31 24,94 30,81 36,68 42,54

Amin [mm] 75 95 115 135 105 125 145 165

SHEAR

SLIDING

timber-to-timber

timber-to-timber (3)

steel Rtens,k [kN] 17,00

20,10

A

Sg

A

S

Sg

g

estrazione filetto parziale

45°

A

S

g

L B

d1

d1 eq. [mm] 7

9

d1 [mm] 6 6 6 6 8 8 8 8

L [mm] 140 180 220 260 200 240 280 320

Sg [mm] 55 75 95 115 85 105 125 145

Amin [mm] 70 90 110 130 100 120 140 160

NOTES: (1)

The connector design resistance is the lowest between the wood side design resistance (Rax,d) and the steel side resistance (Rtens,d).

Rax,d = min (2)

(3)

The axial resistance of the thread to withdrawal was calculated considering a 90° angle between the fibres and the connector and for a effective thread length of b or Sg. For intermediate values of Sg it is possible to linearly interpolate.

The design sliding resistance of the joint is either the timber-side design resistance (RV,d) or the steel design resistance (Rtens,d 45°), whichever is lower.

RV,d = min

Rax,k kmod γm Rtens,k γm2

RV,k kmod γm Rtens,k 45° γm2

RV,k [kN] 5,64 5,64 5,64 5,64 9,06 9,06 9,06 9,06

Amin [mm] 55 70 80 95 75 90 105 120

Bmin [mm] 70 85 100 110 90 105 120 135

Rv,k [kN] 7,78 10,61 12,02 12,02 14,21 14,21 14,21 14,21

steel Rtens,k 45° [kN] 12,02

14,21

GENERAL PRINCIPLES: • C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

T he coefficients γm and kmod should be taken according to the current regulations used for the calculation. • For the mechanical strength values and the geometry of the screws, reference was made to "Test Report No. 196104" of Karlsruher Institut für Technologie (KIT). • A timber density of ρ k = 550 kg/m3 was considered for the calculation process. • Dimensioning and verification of the timber elements must be carried out separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained. • The withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained.

176 | VGZ HARDWOOD | STRUCTURES


MINIMUM DISTANCES FOR CROSS SCREWS SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE d1 eq.

7

9

d1

6

8

a2,CG

[mm]

3∙d1

18

24

aCROSS

[mm]

1,5∙d1

8

12

e

[mm]

3,5∙d1

21

28

d1 = nominal screw diameter

d1 eq.

7

d1 dv (pre-drill)

[mm]

9

6

8

4,0

6,0

Pre-drilling hole required for connectors Ø11 ≥ 400 mm

SHEAR CONNECTION WITH CROSSED CONNECTORS - 1 PAIR m 90°

N

T

m

S

g

45°

HT

a2,CG

S

g

hNT

HHT

aCROSS

bNT

a2,CG

90° BHT

BHT section

plan

SHEAR CONNECTION WITH CROSSED CONNECTORS - 2 OR MORE PAIRS m

m

N

T

90° a2,CG

HT

S

g

45°

aCROSS

S

g

hNT

HHT

e

bNT

aCROSS a2,CG

90° BHT

BHT section

plan

STRUCTURES | VGZ HARDWOOD | 177


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014

SHEAR CONNECTION WITH CROSSED CONNECTORS RIGHT-ANGLE JOINT - MAIN BEAM / SECONDARY BEAM d1 eq.

d1

L

[mm] [mm] [mm]

6

6

Sg HT(1)

Sg NT (1)

BHT min

HHT min = hNT min

bNT min

[mm]

[mm]

[kN]

[mm]

[mm]

140

180

40

75

70

75

65

80

110

140

7 6

6

6

8

220

260

200

240

95

115

75

105

95

115

95

105

95

110

90

100

170

195

155

185

9 8

8

280

320

125

145

125

145

115

130

210

240

NOTES: (1)

The values given are calculated considering a fastener distance arrangement of a1,CG ≥ 5d. In some cases the asymmetrical laying of connectors is needed Sg HT ≠ Sg NT ).

(2)

The compression design strength of the connector is the lower between the withdrawal-side design strength (R1V,d) and the instability design strength (R2V,d).

RV,d = min

R1V,k kmod γm R2V,k γm1 R3V,k γm2

The assembly height (m) applies in the event of symmetrical installation of the flush connectors (Sg HT = Sg NT ) above the elements.

(3)

The thread axial resistance to withdrawal has been evaluated considering an effective thread length equal to Sg. The connectors must be inserted at 45° with respect to the shear plane.

(4)

178 | VGZ HARDWOOD | STRUCTURES

no. pairs

R1 V,k (1)

R2 V,k (2)

R3 V,k (2)

m (3) [mm]

[kN]

[kN]

[kN]

withdrawal (4)

instability

tension

45

1

12,4

14,0

24,0

75

2

23,2

26,1

44,9

105

3

33,5

37,7

64,6

45

1

23,3

14,0

24,0

75

2

43,6

26,1

44,9

105

3

62,7

37,7

64,6

45

1

26,9

14,0

24,0

75

2

50,2

26,1

44,9

105

3

72,2

37,7

64,6

45

1

32,5

14,0

24,0

75

2

60,7

26,1

44,9

105

3

87,5

37,7

64,6

60

1

31,1

45,5

28,4

100

2

58,1

85,0

53,0

140

3

83,6

122,4

76,4

60

1

39,6

45,5

28,4

100

2

73,9

85,0

53,0

140

3

106,5

122,4

76,4

60

1

47,2

45,5

28,4

100

2

88,0

85,0

53,0

140

3

126,7

122,4

76,4

60

1

54,7

45,5

28,4

100

2

102,1

85,0

53,0

140

3

147,0

122,4

76,4

60

64

78

92

78

85

99

113

GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • For the mechanical strength values and the geometry of the screws, reference was made to "Test Report No. 196104" of Karlsruher Institut für Technologie (KIT). • For the calculation process a timber characteristic density ρ k = 555 kg/m3 has been considered. • Dimensioning and verification of the timber elements must be carried out separately.


MINIMUM DISTANCES FOR SHEAR LOADS | LVL

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES d1 eq. d1

SCREWS INSERTED WITH PRE-DRILLING HOLES

7

9

7

9

6

8

6

8 32

a1

[mm]

5∙d1

30

40

4∙d1

24

a2

[mm]

3∙d1

18

24

4∙d1

24

32

a3,t

[mm]

12∙d1

72

96

7∙d1

42

56

a3,c

[mm]

7∙d1

42

56

7∙d1

42

56

a4,t

[mm]

3∙d1

18

24

7∙d1

42

56

a4,c

[mm]

3∙d1

18

24

3∙d1

18

24

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE d1 eq. d1

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

7

9

7

9

6

8

6

8

a1

[mm]

15∙d1

90

40

7∙d1

42

56

a2

[mm]

7∙d1

42

24

7∙d1

42

56

a3,t

[mm]

20∙d1

120

96

15∙d1

90

120

a3,c

[mm]

15∙d1

90

56

15∙d1

90

120

a4,t

[mm]

7∙d1

42

24

12∙d1

72

96

a4,c

[mm]

7∙d1

42

24

7∙d1

42

56

d1 = nominal screw diameter

a4,c

a4,t α

a2

F

F α a1

F

α

a3,t

α

a3,c

a2 a2 F a1

NOTES: • The minimum distances are compliant with EN 1995:2014 - Table 8.2 considering a wood characteristic density of ρ k > 420 kg/m3 and calculation diameter of d = nominal screw diameter. • For high density wood applications (ρ k > 500 kg/m3 ) please refer to ETA11/0030.

• The minimum spacing for all steel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85. Full technical data is available in the website www.rothoblaas.com.

STRUCTURES | VGZ HARDWOOD | 179


MINIMUM DISTANCES FOR AXIAL STRESSES (1) | LVL

SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE d1 eq.

7

9

d1

6

8

5∙d1

30

40

5∙d1 2,5∙d1

30 15

40 20

8∙d1

48

64

3∙d1

18

24

1,5∙d1

9

12

a1 [mm] a2 [mm] a2,LIM(2) [mm] a1,CG [mm] a2,CG

[mm]

aCROSS [mm]

d1 = nominal screw diameter

a2,CG

a2

a2

a1,CG

a2,CG

a1

a1

plan

1

a2,CG

a2,CG a1,CG

SCREWS INSERTED WITH α ANGLE WITH RESPECT TO THE GRAIN (wide face)

a

SCREWS INSERTED WITH α 90° ANGLE WITH RESPECT TO THE GRAIN (wide face)

a1,CG

a1,CG

front

plan

front

NOTES: (1)

The minimum distances for connectors stressed axially are independent of the insertion angle of the connector and the angle of the force with respect to the grain, in accordance with ETA-11/0030.

180 | VGZ HARDWOOD | STRUCTURES

(2)

The axial distance a2 can be reduced down to 2,5 d1 if for each connector a “joint surface” a1 a2 = 25 d12 is maintained.


STATIC VALUES | LVL

CHARACTERISTIC VALUES EN 1995:2014 TENSION (1) total thread withdrawal flat

geometry

partial thread withdrawal (2) flat

(2)

L A

Sg

A

Sg

A

steel tension

d1

LVL

steel

d1 eq.

d1

L

b

Amin

Rax,k

LVL Sg

Amin

Rax,k

Rtens,k

[mm]

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[mm]

[kN]

[kN]

6 6 6 6 8 8 8 8

140 180 220 260 200 240 280 320

130 170 210 250 190 230 270 310

150 190 230 270 210 250 290 330

35,88 46,92 57,96 69,00 69,92 84,64 99,36 114,08

55 75 95 115 85 105 125 145

75 95 115 135 105 125 145 165

15,18 20,70 26,22 31,74 31,28 38,64 46,00 53,36

7

9

17,00

20,1

SLIDING(3) geometry

LVL - LVL

Sg

45° L

Sg d1

LVL

steel

Rax,k

Rtens,k 45° (4) [kN]

d1 eq.

d1

L

Sg

Amin

Bmin

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[kN]

6 6 6 6 8 8 8 8

140 180 220 260 200 240 280 320

55 75 95 115 85 105 125 145

55 65 80 95 75 90 105 115

70 85 100 110 90 105 120 135

9,76 13,31 16,85 20,40 20,11 24,84 29,57 34,30

7

9

NOTES: (1)

The connector design resistance is the lowest between the wood side design resistance (Rax,d) and the steel side resistance (Rtens,d).

Rax,d = min

Rax,k kmod γm Rtens,k γm2

(2)

The axial thread withdrawal resistance Rax,90,k was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

(3)

The design sliding resistance of the joint is either the timber-side design resistance (RV,d) or the steel design resistance (Rtens,d 45°), whichever is lower.

RV,d = min (4)

RV,k kmod γm Rtens,k 45° γm2

12,02

14,21

GENERAL PRINCIPLES: • C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

T he coefficients γm and kmod should be taken according to the current regulations used for the calculation. • For the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030. • A timber density of ρ k = 730 kg/m3 was considered for the calculation process. • Dimensioning and verification of the timber elements must be carried out separately. • The withdrawal and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.

The connector tensile strength was calculated considering a 45° angle between the fibres and the connector.

STRUCTURES | VGZ HARDWOOD | 181


VGS

BIT INCLUDED

FULLY THREADED SCREW WITH COUNTERSUNK OR HEXAGONAL HEAD TENSION Deep thread and high resistance steel (f y,k = 1000 N/mm2) for excellent tensile performance. Approved for structural applications subject to stresses in any direction vs. the grain (α = 0° - 90°).

COUNTERSUNK OR HEXAGONAL HEAD Countersunk head up to L = 600 mm, ideal for use on plates or for concealed reinforcements. Hexagonal head L > 600 mm to facilitate gripping with screwdriver.

CHROMIUM (VI) FREE Total absence of hexavalent chromium. Compliance with the strictest regulations governing chemical substances (SVHC). REACH information available.

9,0 | 11,0 | 13,0 mm L ≤ 600 mm

13,0 mm L > 600 mm

CHARACTERISTICS FOCUS

45° connections, lifting and reinforcements

HEAD

countersunk with ribs for L ≤ 600 mm hexagonal for L > 600 mm

DIAMETER

9,0 | 11,0 | 13,0 mm

LENGTH

from 100 mm to 1200 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE • wood based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.

182 | VGS | STRUCTURES

ETA 11/0030


TENSILE STRENGTH Ideal for joints requiring high tensile or sliding strength. Can be used on steel plates in combination with the VGU washer.

TITAN V Values also tested, certified and calculated for fastening standard Rothoblaas plates.

STRUCTURES | VGS | 183


Reinforcement perpendicular to the grain of a large glulam beam.

System for lifting and transport using WASP hook and VGS screw.

GEOMETRY AND MECHANICAL CHARACTERISTICS t1 S V

d2 d1

X

G

X

X

dk

90°

ds

b L

45°

Nominal diameter

d1

[mm]

9

11

Head diameter

dk

[mm]

16,00

19,30

Tip diameter

d2

[mm]

5,90

6,60

Shank diameter

ds

[mm]

6,50

7,70

Head thickness

t1

[mm]

6,50

8,20

Pre-drilling hole diameter (*)

dv

[mm]

5,0

6,0

Characteristic yield moment

My,k

[Nmm]

27244,1

45905,4

Characteristic withdrawal-resistance parameter

fax,k

[N/mm ]

11,7

11,7

Characteristic tensile strength

f tens,k

[kN]

25,4

38,0

Characteristic yield strength

f y,k

[N/mm ]

1000

1000

(*) Recommended pre-drilling hole for connectors with L ≥ 400 mm

184 | VGS | STRUCTURES

2

2


t1

V

G V

X

d2 d1

X

ds

duk

b

ds

SW

L

45°

X

X

S

G

X

X

dk

90°

S

t1

d1

[mm]

13 [L ≤ 600 mm]

Head diameter

dk

[mm]

22,00

-

Wrench size

SW

-

SW 19

Nominal diameter

13 [L > 600 mm]

Tip diameter

d2

[mm]

8,00

8,00

Shank diameter

ds

[mm]

9,60

9,60

Head thickness

t1

[mm]

9,40

7,50

Underhead diameter

duk

[mm]

-

Pre-drilling hole diameter (*)

dv

[mm]

15,0 7,0

Characteristic yield moment

My,k

[Nmm]

Characteristic withdrawal-resistance parameter

fax,k

[N/mm ]

11,7

Characteristic tensile strength

f tens,k

[kN]

53,0

Characteristic yield strength

f y,k

[N/mm ]

94500,5 2

1000

2

(*) Recommended pre-drilling hole for connectors with L ≥ 400 mm Mechanical parameters of VGS Ø13 screw obtained from experimental tests.

CODES AND DIMENSIONS d1

CODE

[mm] VGS9100

L

b

[mm]

[mm]

pcs

100

90

25

d1

CODE

[mm] VGS11400

L

b

[mm]

[mm]

pcs

400

390

25

VGS9120

120

110

25

VGS11450

450

440

25

VGS9140

140

130

25

VGS11500

500

490

25

VGS9160

160

150

25

550

540

25 25

VGS9180

180

170

25

11 VGS11550 TX 50 VGS11600

600

590

VGS9200

200

190

25

VGS11700

700

690

25

VGS9220

220

210

25

VGS11800

800

790

25

VGS9240

240

230

25

VGS13100 (NO RIBS)

100

90

25

VGS9260

260

250

25

VGS13150 (NO RIBS)

150

140

25

25

VGS13200 (NO RIBS)

200

190

25

9 VGS9280 TX 40 VGS9300

280

270

300

290

25

VGS9320

320

310

VGS9340

340

300

290

25

25

13 VGS13300 TX 50 VGS13400

400

390

25

330

25

VGS13500

500

490

25 25

VGS9360

360

350

25

VGS13600

600

590

VGS9380

380

370

25

VGS13700

700

690

25

VGS9400

400

390

25

VGS13800

800

790

25

VGS9440

440

430

25

25

VGS9480

480

470

25

VGS9520

520

510

VGS11100

100

VGS11125

125

VGS11150

150

140

25

VGS11175

175

165

25

VGS11200

200

190

25

VGS11225

11 TX 50 VGS11250

225

215

25

250

240

25

VGS11275

275

265

25

VGS11300

300

290

25

900

890

1000

990

25

25

13 VGS13900 SW 19 TX 50 VGS131000 VGS131100

1100

1090

25

90

25

VGS131200

1200

1190

25

115

25

VGS11325

325

315

25

VGS11350

350

340

25

VGS11375

375

365

25

VGU WASHER CODE

screw

pcs

[mm] VGU945

VGS Ø9

25

VGU1145

VGS Ø11

25

VGU1345

VGS Ø13

25

max. capacity

pcs

WASP HOOK CODE

[kg] WASP

1300

2

STRUCTURES | VGS | 185


EFFECTIVE THREAD USED IN CALCULATION 10

Sg

Tol.

Sg

b =

10

L - 10 mm

represents the entire length of the threaded part

Sg = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm

b L

The timber-to-timber withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.

MINIMUM DISTANCES FOR SHEAR LOADS (1)

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES 9

11

13

a1

[mm]

5∙d

45

55

65

a2

[mm]

3∙d

27

33

39

SCREWS INSERTED WITH PRE-DRILLING HOLES 9

11

13

4∙d

36

44

52

4∙d

36

44

52

a3,t

[mm]

12∙d

108

132

156

7∙d

63

77

91

a3,c

[mm]

7∙d

63

77

91

7∙d

63

77

91

a4,t

[mm]

3∙d

27

33

39

7∙d

63

77

91

a4,c

[mm]

3∙d

27

33

39

3∙d

27

33

39

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 9

11

13

a1

[mm]

12∙d

108

132

156

a2

[mm]

5∙d

45

55

65

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 9

11

13

5∙d

45

55

65

5∙d

45

55

65

a3,t

[mm]

15∙d

135

165

195

10∙d

90

110

130

a3,c

[mm]

10∙d

90

110

130

10∙d

90

110

130

a4,t

[mm]

5∙d

45

55

65

10∙d

90

110

130

a4,c

[mm]

5∙d

45

55

65

5∙d

45

55

65

d = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: Minimum distances are in accordance with EN 1995:2014 as per ETA11/0030 considering a wood characteristic density of ρ k ≤ 420 kg/m3.

(1)

• The minimum spacing for all steel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,7.

186 | VGS | STRUCTURES

• The minimum spacing for all panel-to-timber connections (a1, a2) can be multiplied by a coefficient of 0,85.


MINIMUM DISTANCES FOR AXIAL STRESSES (2)

SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE 9

11

13

5∙d

45

55

65

[mm]

5∙d

45

55

65

[mm]

2,5∙d

23

28

33

a1,CG

[mm]

8∙d

72

88

104

a2,CG

[mm]

3∙d

27

33

39

aCROSS

[mm]

1,5∙d

14

17

20

a1

[mm]

a2 a2,LIM

(3)

d = nominal screw diameter

SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG a2,CG

a2,CG a2 a2,CG

a2

a2,CG

a2,CG a1,CG

1

a1

a

a2,CG a1,CG

a1,CG

a2,CG a1,CG

plan

front

SCREWS INSERTED WITH α 90° ANGLE WITH RESPECT TO THE GRAIN

plan

front

CROSS SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG 45°

a2 a2,CG

a2,CG a1,CG

aCROSS a2,CG

a1 a1,CG

plan

a1

front

plan

front

NOTES: (2)

The minimum distances for connectors stressed axially are independent of the insertion angle of the connector and the angle of the force with respect to the grain, in accordance with ETA-11/0030.

(3)

The axial distance a2 can be reduced down to 2,5 d1 if for each connector a “joint surface” a1 a2 = 25 d12 is maintained.

STRUCTURES | VGS | 187


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 TENSION (1) / COMPRESSION (2)

geometry

total thread withdrawal (3)

steel tension

instability

timber

steel

steel

Rax,k

Rtens,k

Rki,k

[kN]

[kN]

25,40

17,25

38,00

21,93

partial thread withdrawal (3) estrazione estrazionefiletto filettoparziale parziale

L

Sg

A

Sg

A

A

d1

timber d1

L

b

Amin

[mm]

[mm]

[mm]

100

90

9

11

Rax,k

Sg

Amin

[mm]

[kN]

[mm]

[mm]

[kN]

110

10,23

35

55

3,98

120

110

130

12,50

45

65

5,11

140

130

150

14,77

55

75

6,25

160

150

170

17,05

65

85

7,39

180

170

190

19,32

75

95

8,52

200

190

210

21,59

85

105

9,66

220

210

230

23,87

95

115

10,80

240

230

250

26,14

105

125

11,93

260

250

270

28,41

115

135

13,07

280

270

290

30,68

125

145

14,21

300

290

310

32,96

135

155

15,34

320

310

330

35,23

145

165

16,48

340

330

350

37,50

155

175

17,61

360

350

370

39,78

165

185

18,75

380

370

390

42,05

175

195

19,89

400

390

410

44,32

185

205

21,02

440

430

450

48,87

205

225

23,30

480

470

490

53,41

225

245

25,57

520

510

530

57,96

245

265

27,84

100

90

110

12,50

35

55

4,86

125

115

135

15,97

48

68

6,60

150

140

160

19,45

60

80

8,33

175

165

185

22,92

73

93

10,07

200

190

210

26,39

85

105

11,81

225

215

235

29,86

98

118

13,54

250

240

260

33,34

110

130

15,28

275

265

285

36,81

123

143

17,01

300

290

310

40,28

135

155

18,75

325

315

335

43,75

148

168

20,49

350

340

360

47,22

160

180

22,22

375

365

385

50,70

173

193

23,96

400

390

410

54,17

185

205

25,70

450

440

460

61,11

210

230

29,17

500

490

510

68,06

235

255

32,64

550

540

560

75,00

260

280

36,11

600

590

610

81,95

285

305

39,59

700

690

710

95,84

335

355

46,53

800

790

810

109,73

385

405

53,48

188 | VGS | STRUCTURES


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 TENSION (1) / COMPRESSION (2)

geometry

total thread withdrawal (3)

steel tension

instability

timber

steel

steel

Rax,k

Rtens,k

Rki,k

[kN]

[kN]

53,00

32,69

partial thread withdrawal (3) estrazione estrazionefiletto filettoparziale parziale

L

Sg

A

Sg

A

A

d1

timber d1

L

b

Amin

[mm]

[mm]

[mm]

100

90

13

Rax,k

Sg

Amin

[mm]

[kN]

[mm]

[mm]

[kN]

110

14,77

35

55

5,75

150

140

160

22,98

60

80

9,85

200

190

210

31,19

85

105

13,95

300

290

310

47,60

135

155

22,16

400

390

410

64,02

185

205

30,37

500

490

510

80,43

235

255

38,58

600

590

610

96,85

285

305

46,78

700

690

710

113,26

335

355

54,99

800

790

810

129,68

385

405

63,20

900

890

910

146,09

435

455

71,41

1000

990

1010

162,51

485

505

79,61

1100

1090

1110

178,92

535

555

87,82

1200

1190

1210

195,34

585

605

96,03

NOTES: The tensile design strength of the connector is the lower between the wood-side design strength (Rax,d) and the steel-side design strength (Rtens,d).

(1)

Rax,d = min (2)

The compression design strength of the connector is the lower between the wood-side design strength (Rax,d) and the instability design strength (Rki,k).

Rax,d = min

Rax,k kmod γm Rtens,k γm2

The axial resistance of the thread to withdrawal was calculated considering a 90° angle between the fibres and the connector and for a effective thread length of b or Sg. For intermediate values of Sg it is possible to linearly interpolate.

(3)

Rax,k kmod γm Rki,k γm1

STRUCTURES | VGS | 189


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

SLIDING(4)

timber-to-timber

timber-to-timber

steel-timber (5)

A

Sg

A

S

Sg

g

estrazione filetto parziale

45°

A

45°

S

g

S

g

L

Amin

B

d1

timber d1

L

Sg

Amin

[mm]

[mm]

[mm]

100

35

9

11

RV,k

Amin

Bmin

[mm]

[kN]

[mm]

50

3,54

40

timber

steel

RV,k

Rtens,k 45° (6)

[mm]

[kN]

[kN]

75

5,84

Rv,k

Sg

Amin

[mm]

[kN]

[mm]

55

2,56

80

120

45

60

4,19

50

60

3,29

100

90

7,31

140

55

70

4,82

55

70

4,02

120

105

8,77

160

65

80

5,10

60

75

4,75

140

120

10,23

180

75

90

5,39

70

85

5,48

160

135

11,69

200

85

100

5,67

75

90

6,21

180

145

13,15

220

95

110

5,95

85

100

6,94

200

160

14,61

240

105

120

6,24

90

105

7,67

220

175

16,07

260

115

130

6,51

100

110

8,40

240

190

17,53

280

125

140

6,51

105

120

9,13

260

205

18,99

300

135

150

6,51

110

125

9,86

280

220

20,45

320

145

160

6,51

120

135

10,59

300

230

21,92

340

155

170

6,51

125

140

11,32

320

245

23,38

360

165

180

6,51

135

145

12,05

340

260

24,84

380

175

190

6,51

140

155

12,78

360

275

26,30

400

185

200

6,51

145

160

13,51

380

290

27,76

440

205

220

6,51

160

175

14,98

420

315

30,68

480

225

240

6,51

175

190

16,44

460

345

33,60

520

245

260

6,51

190

205

17,90

500

375

36,53

100

35

50

4,27

40

55

3,13

80

75

7,14

125

48

63

5,40

50

65

4,24

105

95

9,38

150

60

75

6,40

60

75

5,36

130

110

11,61

175

73

88

7,05

70

80

6,47

155

130

13,84

200

85

100

7,48

80

90

7,59

180

145

16,07

225

98

113

7,92

85

100

8,71

205

165

18,30

250

110

125

8,35

95

110

9,82

230

185

20,54

275

123

138

8,79

105

115

10,94

255

200

22,77

300

135

150

9,06

115

125

12,05

280

220

25,00

325

148

163

9,06

120

135

13,17

305

235

27,23

350

160

175

9,06

130

145

14,29

330

255

29,46

375

173

188

9,06

140

155

15,40

355

270

31,70

400

185

200

9,06

150

160

16,52

380

290

33,93

450

210

225

9,06

165

180

18,75

430

325

38,39

500

235

250

9,06

185

195

20,98

480

360

42,86

550

260

275

9,06

200

215

23,21

530

395

47,32

600

285

300

9,06

220

230

25,45

580

430

51,79

700

335

350

9,06

255

265

29,91

680

500

60,71

800

385

400

9,06

290

305

34,38

780

570

69,64

190 | VGS | STRUCTURES

17,96

26,87


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

SLIDING(4)

timber-to-timber

timber-to-timber

steel-timber (5)

A

Sg

A

S

Sg

g

estrazione filetto parziale

45°

A

45°

S

g

S

g

L

Amin

B

d1

timber d1

L

Sg

Amin

[mm]

[mm]

[mm]

100

35

150

60

75

7,83

200

85

100

10,26

13

RV,k

Amin

Bmin

[mm]

[kN]

[mm]

50

4,87

45

[mm]

[kN]

[kN]

75

8,44

[mm]

[kN]

[mm]

55

3,69

80

60

75

6,33

130

110

13,72

80

90

8,97

180

145

18,99

300

135

150

12,43

115

125

14,25

280

220

29,55

400

185

200

13,79

150

160

19,52

380

290

40,10

500

235

250

13,79

185

195

24,80

480

360

50,65

600

285

300

13,79

220

230

30,07

580

430

61,20

700

335

350

13,79

255

265

35,35

680

500

71,75

800

385

400

13,79

290

305

40,63

780

570

82,31

900

435

450

13,79

325

340

45,90

880

640

92,86

1000

485

500

13,79

360

375

51,18

980

715

103,41

1100

535

550

13,79

395

410

56,45

1080

785

113,96

1200

585

600

13,79

430

445

61,73

1180

855

124,51

The axial resistance of the thread withdrawal was calculated considering a 45° angle between the fibres and the connector and for an effective thread length of Sg.

(5)

The design sliding resistance of the joint is either the timber-side design resistance (RV,d) or the steel design resistance (Rtens,d 45°), whichever is lower.

RV,k kmod γm Rtens,k 45° γm2

To properly create the joint, the head of the connector must be completely inserted in the steel plate. (6)

Rtens,k 45° (6)

Amin

(4)

steel

RV,k

Sg

NOTES:

RV,d = min

timber

Rv,k

The connector tensile strength was calculated considering a 45° angle between the fibres and the connector.

37,48

GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

The coefficients γm and kmod should be taken according to the current regulations used for the calculation. • For the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030 and to "Test Report No. 196112" of Karlsruher Institut für Technologie (KIT). • For the calculation process a timber characteristic density ρ k = 385 kg/m3 has been considered. • Dimensioning and verification of timber elements and steel plates must be carried out separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained. • The timber-to-timber withdrawal, shear and sliding values were calculated considering the centre of gravity of the connector placed in correspondence with the shear plane.

STRUCTURES | VGS | 191


TIMBER-TO-TIMBER APPLICATION RECOMMENDED INSERTION MOMENT: Mins VGS Ø9 Mins = 20 Nm Mins = 30 Nm

VGS Ø11 L ≥ 400 mm

Mins = 40 Nm

NO IMPACT

VGS Ø13 Mins = 50 Nm

V

G

Mins S

VGS Ø11 L < 400 mm

X

X

X

X

X

X

G

G

X

S

X

S

V

X

X

X

V

X

X

STEEL-TO-TIMBER APPLICATION

G

G

X

S

X

S

V X

X

X

V X

G

G

X

S

X

S

V

X

X

X

V

X

G

G

X

S

X

S

V X

X

X

V X

G

G

X

S

X

S

V

X

X

X

V

X

G

G

X

S

X

S

V

V X

X

X

X

X

X

G

V

X

X

X

X

X

S

S

V

G

V

X

X

X

X

X

X

G

V

X

X

X

X

X

S

S

V

G

V

X

X

X

X

X

X

G

V

X

X

X

X

X

G

V

Avoid accidental stress during installation.

A. SHAPED PLATE WITH COUNTERSUNK HOLES

B. VGU WASHER

X

X

V

S

S

45°

G

G

X

V X

X

V

X S

S

G

X

X

X

G

V

G

V X

X

G

X

V

G

X

V

X

G

V X

X

X

V

X

G V

G

V

V X

V

V

X

X

G

V

X

G V

G

V

V

G

G X

V

G

G

G

X

S

S

X

X

G X

X

G

G

X

G

V

V

G V

S

S

X

S

X

S

V

X

X

V X

G

G

S

S

X

X

S

X

X

X

S

X

X

X

X

S

S

S

X

X

S

S

X

S

45°

G

X

V

X X

X

G

X

X

X

X

X

X

X

X

X

G

X

X

X

X

S

X

S

X

X

X

X

S

X

S

α

α

X

S

X

S

X

X

S

S

X

X X

X

X

X

X

V

G

S

S

Avoid dimensional changes to the metal.

X

V

G

S

S

X

V

G

V

G

S

S

X

X

G

V

G

S

S

X

X

X

V

Avoid bending.

V

Respect the 45° insertion angle.

A. SHAPED PLATE

Avoid bending.

B. WASHERS V

G

S

Respect the insertion angle (e.g. adopting a template).

X

V

X

G

S

X

X

X

S

G

X

X

V

X

G

S

X

V

X

X

Countersunk hole.

192 | VGS | STRUCTURES

Cylindrical hole.

Flared washer.

VGU washer.

X


APPLICATION EXAMPLES

TAPERED BEAMS apex tension reinforcement perpendicular to grain

HANGING LOAD tension reinforcement perpendicular to grain

front

section

NOTCH tension reinforcement perpendicular to grain

front

section

SUPPORT compression reinforcement perpendicular to grain

plan

plan

section

section

STRUCTURES | VGS | 193


CALCULATION EXAMPLES: REINFORCEMENT OF BEAM WITH COMPRESSION PERPENDICULAR TO THE FIBRES PROJECT DATA a2,c

B = 200 mm

Fv,Rd = 98,3 kN

H = 520 mm

Fc,90,Rd = 98,3 kN

a = 25 mm

Service class = 1

La = 200 mm

a2

B

a2,c

Load duration = medium

a1,c

Wood GL24h (ρk = 385 kg/m ) 3

a1

Fv,Rd

H

Fc,90,Rd a

La

SHEAR VERIFICATION OF SUPPORT (EN 1995:2014) : τd ≤ fv,d

τd =

1,5 Fv,Rd B H

τ d

= 1,42 N/mm2

fv,k = 3,50 N/mm2

EN 1995:2014 kmod = 0,8 γm = 1,25 fv,d = 2,24 N/mm2

Italy - NTC 2018 kmod = 0,8 γm = 1,45 fv,d = 1,93 N/mm2

τd ≤ f v,d

1,42 < 2,24 N/mm2

τd ≤ f v,d

1,42 < 1,93 N/mm2

verification passed

verification passed

PERPENDICULAR COMPRESSION VERIFICATION OF SUPPORT - BEAM WITHOUT REINFORCEMENT (EN 1995:/2014) : σc,90,d ≤ kc,90∙ fc,90,d

B H lef,1 = La + a + 30 σc,90,d =

Fv,Rd B lef,1

lef,1 = 255 mm2 σc,90,d= 1,93 N/mm2 kc,90 = 1,00 fc,90,d = 2,50 N/mm2

EN 1995:2014 kmod = 0,8 γm = 1,25 fv,d = 1,60 N/mm2

Italy - NTC 2018 kmod = 0,8 γm = 1,45 fv,d = 1,38 N/mm2

σc,90,d ≤ kc,90 ∙ fc,90,d

1,93 < 1,60 N/mm2

σc,90,d ≤ kc,90 ∙ fc,90,d

1,93 < 1,38 N/mm2

verification not passed

verification not passed

REQUIRES REINFORCEMENT

REQUIRES REINFORCEMENT

194 | VGS | STRUCTURES


PERPENDICULAR COMPRESSION VERIFICATION OF SUPPORT - BEAM WITH REINFORCEMENT (EN 1995:2014 and ETA-11/0030) : Fc,90,Rd ≤ Rc,90,Rd

Rc,90,Rd = min

kc,90 B lef,1 fc,90d + n Rax,Rd B lef,2 fc,90d

REINFORCEMENT CONNECTOR SELECTION VGS 9 x 360 mm

n0 = 2

L = 360 mm

n90 = 2

b = 350 mm

n = n0 ∙ n90 = 4

lef,2 = L + (n₀ -1) a₁ + min (a1,CG ;L)

lef,2 = 500 mm

The minimum distances for placement of the connectors are found in the table on p.187

Rax,α,Rk kmod γm Rax,Rd = min Rki,k Rki,d = γm1 Rax,d =

Rax,90°,Rk = 39,78 kN Rki,k = 17,25 kN

The compression resistance of the connectors calculated here is shown in the table on p.188 EN 1995:2014

Italy - NTC 2018

kmod = 0,8

kmod = 0,8

γm = 1,3

γm = 1,5

γm1 = 1,00

γm1 = 1,05

Rax,90°,Rd = 24,48 kN

Rax,90°,Rd = 21,22 kN

Rki,d = 17,25 kN

Rki,d = 16,43 kN

Rax,Rd = 17,25 kN

Rax,Rd = 17,25 kN

Rc,90,Rd = min

kc,90 B lef,1 fc,90d + n Rax,Rd B lef,2 fc,90d

Rc,90,Rd= 177,60 kN

Rc,90,Rd= 153,10 kN

Fc,90,Rd ≤ Rc,90,Rd

98,3 < 177,6 kN

Fc,90,Rd ≤ Rc,90,Rd

98,3 < 153,10 kN

verification passed

verification passed

For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

STRUCTURES | VGS | 195


VGU

ETA 11/0030

45° WASHER FOR VGS SAFETY The VGU washer makes possible to install VGS screws at a 45° angle on steel plates. Washer marked CE as per ETA 11/0030,

STRENGTH Using the VGU washer with VGS screws inclined at a 45° angle on steel plates restores the sliding strength.

PRACTICALITY The ergonomic shape ensures a firm, precise grip during installation. Three versions of washer, compatible with VGS Ø9, Ø11 and Ø13 mm, for plates of variable thickness.

CHARACTERISTICS FOCUS

45° steel-to-timber joints

PLATE THICKNESS

from 3,0 mm to 20,0 mm

PLATE HOLES

slotted

WASHER HOLE

9,0 | 11,0 | 13,0 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE • wood based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.

196 | VGU | STRUCTURES


GEOMETRY LF

D2 D1

H

BF

h L

SPLATE

VGU945

VGU1145

VGU1345

VGS screw diameter

Washer d1

[mm]

9,0

11,0

13,0

Pre-drilling hole diameter

dv

[mm]

5,0

6,0

8,0

Internal diameter

D1

[mm]

9,7

11,8

14,0

External diameter

D2

[mm]

19,0

23,0

27,4

Base length

L

[mm]

31,8

38,8

45,8

Base heigth

h

[mm]

3,0

3,6

4,3

Global heigth

H

[mm]

Slotted-hole length

LF

[mm]

Slotted-hole width

BF

[mm]

Steel plate thickness

SPLATE

[mm]

23,0

28,0

33,0

min, 33,0 max, 34,0 min, 14,0 max, 15,0 min, 3,0 max, 12,0*

min, 41,0 max, 42,0 min, 17,0 max, 18,0 min, 4,0 max, 15,0*

min, 49,0 max, 50,0 min, 20,0 max, 21,0 min, 5,0 max, 15,0*

(*) For thicker plates it is necessary to realize a countersink in the lower part of the steel plate. For VGS screw lengths L > 300 mm, a Ø5 pre-drill is recommended.

CODES AND DIMENSIONS VGU WASHER CODE

JIG VGU TEMPLATE screw

dv

[mm]

[mm]

pcs

CODE

washer

dh

[mm]

dv

pcs

VGU945

VGS Ø9

5

25

JIGVGU945

VGU945

5.5

5

1

VGU1145

VGS Ø11

6

25

JIGVGU1145

VGU1145

6.5

6

1

VGU1345

VGS Ø13

8

25

JIGVGU1345

VGU1345

8.5

8

1

HSS WOOD DRILL BIT CODE

dh

[mm] [mm]

LOCKING RING FOR HSS BITS

dv

LT

LE

[mm]

[mm]

[mm]

pcs

F1599105

5

150

100

1

F1599106

6

150

100

1

F1599108

8

150

100

1

CODE LE LT

dv

dint

dext

[mm]

[mm]

[mm]

pcs

F2108005

5

5

10

10

F2108006

6

6

12

10

F2108008

8

8

16

10

dint dext

HELPS WITH INSTALLATION The JIG VGU template makes it easy to prepare a 45° angle pre-drill, thus facilitating subsequent tightening of the VGS screws inside the washer. A pre-drill length of at least 20 mm is recommended.

STRUCTURES | VGU | 197


STATIC VALUES - STEEL-TO-TIMBER JOINT SLIDING RESISTANCE RV Fv

Splate

45째

S

g

Amin

S

Amin

g

45째

L

Fv

Splate

Fv

Fv d1

steel-timber thin plate characteristic values(1) screw

steel-timber thick plate characteristic values (1)

timber

steel

timber

steel

d1

L

Sg

Amin

RV,k

Rtens,k 45째 (2)

Sg

Amin

RV,k

Rtens,k 45째 (2)

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

100

80

75

65

75

4,75

100

90

7,31

85

90

6,21

120

105

8,77

105

105

7,67

160

140

120

10,23

125

120

9,13

180

160

135

11,69

145

135

10,59

145

13,15

165

145

12,05

200

160

14,61

185

160

13,51

240

220

175

16,07

205

175

14,98

260

240

190

280

260

205

300

280

220

320

300

230

17,53 18,99

17,96

225

190

245

205

20,45

265

220

21,92

285

230

SPLATE = 12 mm

180

220

SPLATE = 3 mm

200

17,90 19,36

320

245

23,38

305

245

22,28

340

260

24,84

325

260

23,74

380

360

275

26,30

345

275

25,20

400

380

290

27,76

365

290

26,66

440

420

315

30,68

405

315

29,59

480

460

345

33,60

445

345

32,51

520

500

375

36,53

485

375

35,43

100

80

75

7,14

65

75

5,80

125

105

95

9,38

90

95

8,04

150

130

110

11,61

115

110

10,27

175

155

130

13,84

140

130

12,50

200

180

145

16,07

165

145

14,73

225

205

165

18,30

190

165

16,96

250

230

185

20,54

215

185

19,20

275

255

200

22,77

240

200

21,43

300

280

220

265

220

325

305

235

290

235

350

330

255

375

355

270

400

380

290

27,23

26,87

29,46

315

255

31,70

340

270

33,93

365

290

23,66 25,89 28,13 30,36 32,59

450

430

325

38,39

415

325

37,05

500

480

360

42,86

465

360

41,52

550

530

395

47,32

515

395

45,98

600

580

430

51,79

565

430

50,45

700

680

500

60,71

665

500

59,38

800

780

570

69,64

765

570

68,30

198 | VGU | STRUCTURES

17,96

20,82

360

25,00

[kN]

16,44

340

SPLATE = 15 mm

11

120 140

SPLATE = 4 mm

9

5,84

26,87


STATIC VALUES - STEEL-TO-TIMBER JOINT SLIDING RESISTANCE RV Fv

Splate

45°

S

g

Amin

S

Amin

g

45°

L

Fv

Splate

Fv

Fv d1

steel-timber thin plate characteristic values(1) timber

steel

timber

steel

d1

L

Sg

Amin

RV,k

Rtens,k 45° (2)

Sg

Amin

RV,k

Rtens,k 45° (2)

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

100

65

65

6,86

55

60

150

115

100

12,13

105

95

200

165

135

17,41

155

130

300

265

205

400

365

280

500

465

350

600

565

420

27,96

37,48

255

200

38,51

355

270

49,07

455

340

59,62

555

410

NOTES: (1)

11,08 16,36 26,91

37,48

37,46 48,01 58,56

GENERAL PRINCIPLES:

he design shear strength of the joint is the minimum among the timber T design shear strength (RV,d) and the steel design shear strength (Rtens,d 45°).

RV,d = min

5,80 SPLATE = 15 mm

13

SPLATE = 5 mm

screw

steel-timber thick plate characteristic values (1)

RV,k kmod γm Rtens,k 45° γm2

For the correct realization of the joint, the fastener head should be fully embedded into the VGU washer.

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • F or the calculation process a timber characteristic density ρ k = 385 kg/m3 has been considered. • Dimensioning and verification of timber elements and steel plates must be carried out separately. • The fastener pull-out strength has been evaluated by considering a 45° angle to the grain and an effective length of the threaded part equal to Sg.

For intermediate values of SPLATE linear interpolation is allowed. (2)

The connector tensile strength was calculated considering a 45° angle between the fibres and the connector.

STRUCTURES | VGU | 199


INSTALLATION WITHOUT PRE-DRILL L

LF

Place the steel plate on the wood and set the VGU washers in the slots provided.

02

NO IMPACT

V

S

G

01 X

X

X

V

S

G

45° X

X

X

Position the screw and respect the 45° angle of insertion.

Screw down with a NON-PULSED screw gun, stopping at about 1 cm from the washer.

03

04 X

X

S X

S X

S

G

X

V

mm

S

X

X

S X

G

V

S X

V

G

X

X

S X

V

S

G

X

X X

V

G

X

X

S X

X

X

Perform the operation for all washers.

G

G

510

X

X

X

G

G

G

X

200 | VGU | STRUCTURES

V

X

V

V

X S

X

X

X

X

V

G

V

X

V

Complete screwing using a torque wrench, applying the correct maximum insertion moment.

X S

X

Mins


INSTALLATION WITH THE AID OF A PRE-DRILL TEMPLATE

The pre-drill template makes it possible to prepare a 45° angle pre-drill to facilitate screwing.

01

02

Place the VGU washer in the slot provided and use the JIG-VGU template of the correct diameter.

Using the template, prepare a pre-drill using a special bit (at least 20 mm).

04

NO IMPACT

V

S

G

03 X

X

X

V

S

G

45° X

X

X

Position the screw and respect the 45° angle of insertion.

Screw down with a NON-PULSED screw gun, stopping at about 1 cm from the washer.

05

06 X

X

S X

m

S X

S

V

X

G

S

G

X

X

X

G

G

V

X

V

G

V

X S

X

X

X

X

G

V

X

V

X

X

X

S

X

V

S

G

V

G

510 m

X S

X

Mins

X

V

G

X

X

S X

V

S

G

X

X X

V

G

X

X

S X

X

X

Complete screwing using a torque wrench, applying the correct maximum insertion moment.

Perform the operation for all washers.

STRUCTURES | VGU | 201


RTR

ETA 11/0030

STRUCTURAL REINFORCEMENT SYSTEM CERTIFICATION Structural reinforcement bar with wood thread, CE certified according to ETA 11/0030,

RAPID DRY SYSTEM Large reinforcement bar (diameter: 16 mm and 20 mm) with wood thread that does not require resin or adhesives.

STRUCTURAL REINFORCEMENT High tensile strength steel (f y,k = 800 N/mm2), ideal for structural reinforcements.

CHARACTERISTICS FOCUS

perpendicular stress reinforcement

ADAPTOR

attachment bushing

DIAMETER

16,0 | 20,0 mm

LENGTH

2200 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE • wood based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.

202 | RTR | STRUCTURES


GEOMETRY AND MECHANICAL CHARACTERISTICS

d2 d1

L

Nominal diameter

16

20

d1

[mm]

Tip diameter

d2

[mm]

12,0

15,0

Pre-drilling hole diameter

dv

[mm]

13,0

16,0

My,k

[Nmm]

200000

350000

fax,k

[N/mm2]

9,0

9,0

f tens,k

[kN]

100,0

145,0

Characteristic yield moment Characteristic withdrawal-resistance parameter Characteristic tensile strength

CODES AND DIMENSIONS d1

CODE

[mm]

L

dHOLE

pcs

[mm]

[mm]

16

RTR162200

2200

13

10

20

RTR202200

2200

16

5

TOOLS CODE

description

1, DUD38RLE

drill

1

2. DUVSKU

safety clutch

1

3. DUD38SH

screw handle

1

4, ATCS2010

sleeve adaptor Ø16-20

1

5. ATCS007

sleeve Ø16

1

6. ATCS008

sleeve Ø20

1

Further information on page 362

pcs

2. 3. 4. 5. 1.

6.

USE AS RTR SCREWDRIVER For 16 and 20 mm structural reinforcement bars.

LARGE SPANS The length of the bars allows for fast and secure reinforcements on any size beam. Ideal for factory installations.

STRUCTURES | RTR | 203


MINIMUM DISTANCES FOR AXIAL STRESSES

a2,CG a2 a2,CG a1,CG

a1

a1,CG

a1

SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE 16

20

5∙d

80

100

5∙d

80

100

[mm]

10∙d

160

200

[mm]

4∙d

64

80

a1

[mm]

a2

[mm]

a1,CG a2,CG

d = nominal screw diameter

MINIMUM DISTANCES FOR SHEAR LOADS (1)

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES a1

[mm]

a2

[mm]

3∙d

a3,t

[mm]

12∙d

a3,c

[mm]

7∙d

a4,t

[mm]

3∙d

a4,c

[mm]

3∙d

5∙d

SCREWS INSERTED WITH PRE-DRILLING HOLES

16

20

80

100

4∙d

16

20

64

80

48

60

4∙d

64

80

192

240

7∙d

112

140

112

140

7∙d

112

140

48

60

7∙d

112

140

48

60

3∙d

48

60

d = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F a3,t

NOTES: Minimum distances are in accordance with EN 1995:2014 as per ETA-11/0030 considering a wood characteristic density of ρ k ≤ 420 kg/m3.

(1)

204 | RTR | STRUCTURES

F α

α a3,c

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 TENSION(1)

geometry

thread withdrawal(2)

SHEAR steel tension

timber-to-timber

≥ Sg

Sg

Sg

Sg

d1

timber

steel

Rax,k

Rtens,k

[mm]

[kN]

[kN]

100

15,5

18,9 22,8

d1

Sg

[mm]

16

20

200

31,1 46,6

400

62,2

500

77,7

30,0

600

93,2

30,0

(2)

100,0

26,6 30,0

100

19,4

25,8

200

38,9

31,3

300

58,3

36,2

400

77,7

145,0

41,1

500

97,1

600

116,6

43,2

700

136,0

43,2

800

155,4

43,2

43,2

GENERAL PRINCIPLES:

The connector design resistance is the lowest between the wood side design resistance (Rax,d) and the steel side resistance (Rtens,d).

Rax,d = min

[kN]

300

NOTES: (1)

RV,k

Rax,k kmod γm Rtens,k γm2

The axial resistance of the thread to withdrawal was calculated considering a 90° angle between the fibres and the connector and for a effective thread length of b or Sg. For intermediate values of Sg it is possible to linearly interpolate.

• C haracteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

The coefficients γm and kmod should be taken according to the current regulations used for the calculation. • For the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρ k = 385 kg/m3 has been considered. • Dimensioning and verification of the timber elements must be carried out separately.

STRUCTURES | RTR | 205


DGZ

BIT INCLUDED

DOUBLE THREADED SCREW FOR INSULATION CONTINUOUS INSULATION Allows continuous, uninterrupted fastening of roof insulation package. Prevents thermal bridges in compliance with energy saving regulations.

CERTIFICATION Connector for hard, soft and façade insulation, CE certified according to ETA 11/0030, Available in two diameters (7 and 9 mm) to optimize the number of fasteners.

MYPROJECT Free MyProject software for customized fastening calculation, accompanied by a calculation report.

CYLINDRICAL HEAD Cylindrical head countersunk in the joist. Also certified in versions with flange head (DGT) and countersunk head (DGS).

CHARACTERISTICS FOCUS

insulation package fasteners

HEAD

cylindrical, countersunk

DIAMETER

7,0 | 9,0 mm

LENGTH

from 220 mm to 520 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE • wood based panels • solid timber • glulam (Glued Laminated Timber) • CLT, LVL • high density woods Service classes 1 and 2.

206 | DGZ | STRUCTURES

ETA 11/0030


THERMAL BRIDGES Thanks to the double thread, the roof insulation package can be fixed to the supporting structure without any interruptions, thus preventing thermal bridges. Certification specific for fastening on both hard and soft insulation.

VENTILATED FAÇADES Also tested, certified and calculated on façade joists and with high density woods such as Microllam® LVL.

STRUCTURES | DGZ | 207


Fastening of hard insulation on a flat roof.

Ideal for fastening hard insulation, even of great thickness.

GEOMETRY AND MECHANICAL CHARACTERISTICS

X

d2 d1

X

X

D G

Z

dk

ds

60

100 L

Nominal diameter

d1

[mm]

7

9

Head diameter

dk

[mm]

9,5

11,5

Tip diameter

d2

[mm]

4,60

5,90

Shank diameter

ds

[mm]

5,00

6,50

My,k

[Nmm]

14174

27244

fax,k

[N/mm2]

11,7

11,7

f tens,k

[kN]

15,4

25,4

Characteristic yield moment Characteristic withdrawal-resistance parameter Characteristic tensile strength

208 | DGZ | STRUCTURES


CODES AND DIMENSIONS d1

CODE

L

[mm]

pcs

d1

[mm]

CODE

L

[mm]

pcs

[mm]

DGZ7220

220

50

DGZ9240

240

50

DGZ7260

7 DGZ7300 TX 30 DGZ7340

260

50

DGZ9280

280

50

300

50

DGZ9320

320

50

340

50

360

50

DGZ7380

380

50

DGZ9360 9 TX 40 DGZ9400

400

50

DGZ9440

440

50

DGZ9480

480

50

DGZ9520

520

50

NOTES: upon request, EVO version is available.

SCREW SELECTION MINIMUM SCREW LENGTH DGZ Ø7

s = 30 A B DGZ at 60° DGZ at 90°

s = 40 A B DGZ at 60° DGZ at 90°

batten thickness* [mm] s = 50 A B DGZ at 60° DGZ at 90°

[mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

60

220

220

220

220

220

220

220

220

260

220

insulation + wooden planking thickness

s = 60 A B DGZ at 60° DGZ at 90°

s = 80 A B DGZ at 60° DGZ at 90°

80

220

220

220

220

220

220

260

220

260

220

100

220

220

260

220

260

220

260

220

300

260

120

260

220

260

220

260

260

300

260

300

260

140

260

260

300

260

300

260

300

260

340

300

160

300

260

300

260

340

300

340

300

340

300

180

340

300

340

300

340

300

340

300

380

340

200

340

300

340

300

380

340

380

340

-

340

220

380

340

380

340

380

340

380

340

-

380

240

380

340

380

340

-

380

-

380

-

380

260

-

380

-

380

-

380

-

380

-

-

280

-

380

-

380

-

-

-

-

-

-

* Minimum batten thicknesses: DGZ Ø7 mm: base/height = 50/30 mm

MINIMUM SCREW LENGTH DGZ Ø9

insulation + wooden planking thickness [mm]

s = 30 A B DGZ at 60° DGZ at 90°

s = 40 A B DGZ at 60° DGZ at 90°

batten thickness* [mm] s = 50 A B DGZ at 60° DGZ at 90°

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

s = 60 A B DGZ at 60° DGZ at 90°

s = 80 A B DGZ at 60° DGZ at 90°

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

60

-

-

240

240

240

240

240

240

240

240

80

-

-

240

240

240

240

240

240

280

240

100

-

-

240

240

240

240

280

240

280

240

120

-

-

280

240

280

240

280

240

320

280

140

-

-

280

240

320

280

320

280

320

280 320

160

-

-

320

280

320

280

320

280

360

180

-

-

320

280

360

320

360

320

400

320

200

-

-

360

320

360

320

400

320

400

360

220

-

-

400

320

400

360

400

360

440

360

240

-

-

400

360

400

360

440

360

440

400

260

-

-

440

360

440

400

440

400

480

400

280

-

-

440

400

480

400

480

400

480

440

300

-

-

480

400

480

400

480

440

520

440

320

-

-

520

440

520

440

520

480

520

480

340

-

-

520

480

520

480

-

-

-

-

* Minimum batten thicknesses: DGZ Ø9 mm: base/height = 60/40 mm

NOTE: Check that the screw tip does not stick out from the rafter.

STRUCTURES | DGZ | 209


FASTENINGS FOR CONTINUOUS INSULATION

Installation of a continuous layer of insulation guarantees excellent energy performance, eliminating thermal bridges. Efficacy is limited by the proper use of appropriate fastening systems, calculated correctly.

CRUSHING OF THE INSULATION

Crushing of the insulation (for very heavy loads) leads to a reduction in the ventilation chamber. As a result, aeration in the hollow space, and thus its efficacy, is reduced. Additionally, it is possible that the insulating power of the package is diminished, with the thickness being reduced after the crushing. To prevent this problem, it is necessary to verify that the compression resistance of the insulation σ (10%) is sufficient to resist the stresses in question. Alternatively, it is possible to place screws tilted in the two directions so that the load is entirely transferred by the connectors and does not deform the layer of insulation in any way.

SLIP OF THE INSULATION AND THE COATING

F F

The load applied to the structure has a component parallel to the layer/façade which leads, if not restrained (for example through “type A” screws), to a possible shift in the external layers, causing probable damage to the cover surface and the insulating power. Clear thermal, aesthetic and waterproofing problems then result.

THERMAL BRIDGES

it is important that the insulation be continuous, without breaks or cracks, to optimise performance and minimise thermal bridges. Thermal bridges due to over frequent anchoring or those placed erroneously are also to be avoided.

210 | DGZ | STRUCTURES


COVER SOFT INSULATION Low compression resistance (σ (10%) < 50 kPa - EN 826)

N

• the insulation does not support the load component perpendicular to the layer (N);

F A

• screws are subject to tensile (A) and compression (B) stresses; • for very high negative wind pressure loads, additional screws are inserted (C);

B A

• adequate batten thickness makes it possible to optimise the number of fastenings.

B C

HARD INSULATION High compression resistance (σ(10%) ≥ 50 kPa - EN 826)

N

• the insulation supports the load component perpendicular to the layer (N);

F

A A

• the screws are subject only to tensile stress (A); • for very high negative wind pressure loads, additional screws are inserted (C); • adequate batten thickness makes it possible to optimise the number of fastenings.

A C

FAÇADE

F A C ±N A

• the screws must support both positive and negative wind pressure loads (±N) and vertical forces (F); • installation: one screw in tension(A) and one perpendicular to the façade (C), tense or compressed as a function of N, or screws inclined in the 2 directions; • the screws (C) must support both the positive and negative wind pressure loads (±N) and are alternatively subjected to compression and tensile stresses.

C

STRUCTURES | DGZ | 211


POSSIBLE CONFIGURATIONS

A A

60° A

90°

60° 90°

B

A

60° A

90°

A

A

A

90° B A 60°

A B

B

RIGID ROOF INSULATION σ(10%) ≥ 50 kPa (EN826)

SOFT ROOF INSULATION σ(10%) < 50 kPa (EN826)

B

FACADE INSULATION

NOTE: The number and placement of the fastenings depends on the geometry of the surfaces, the type of insulation and the loads acting on them.

MINIMUM DISTANCES FOR AXIAL STRESSES (1)

a2,CG 1

a

a2 a2,CG a1,CG

a1,CG

SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE 7

9

a1

[mm]

5∙d

35

45

a2

[mm]

5∙d

35

45

a1,CG

[mm]

10∙d

70

90

a2,CG

[mm]

3∙d

21

27

d = nominal screw diameter

NOTES: (1)

he minimum distances for connectors stressed axially are independent of T the insertion angle of the connector and the angle of the force with respect to the grain, in accordance with ETA-11/0030.

212 | DGZ | STRUCTURES


CALCULATION EXAMPLE: FASTENING OF CONTINUOUS INSULATION WITH DGZ

PROJECT DATA Roof loads Permanent load

gk

0,45 kN/m2

Snow load

s

1,70 kN/m2

Positive wind pressure

we

0,30 kN/m2

Negative wind pressure

we

-0,30 kN/m2

z

8,00 m

Building length

L

11,50 m

Building width

B

8,00 m

Layer slope

α

30% = 16,7°

Ridge piece position

L1

5,00 m

Ridge piece height Building dimensions

Roof geometry

INSULATION PACKAGE FIGURES b t x ht

120 x 160 mm

Wooden planking

S1

20,00 mm

Tile support battens

eb

0,33 m

Insulation layer

S2

160,00 mm

Wood grain (soft)

b L x hL

60 x 40 mm

C24 Commercial length

Rafters

Battens

GL24h spacing

i

0,70 m

σ(10%)

0,03 N/mm2

LL

4,00 m

CONNECTOR SELECTION - OPTION 1 - DGZ Ø7

CONNECTOR SELECTION - OPTION 2 - DGZ Ø9

Screw under tension

7 x 300 mm

60° angle: 126 piece

Screw under tension

9 x 320 mm

60° angle: 108 piece

Compressed screw

7 x 300 mm

60° angle: 126 piece

Compressed screw

9 x 320 mm

60° angle: 108 piece

Perpendicular screw

7 x 260 mm

90° angle: 72 piece

Perpendicular screw

9 x 280 mm

90° angle: 36 piece

Connector placement diagram.

Roof batten calculation.

STRUCTURES | DGZ | 213


SBD

BIT INCLUDED

EN 14592

SELF-DRILLING DOWEL STEEL AND ALUMINUM Special self-perforating timber-metal tip geometry that reduces the possibility of breakage. The cylindrical countersunk head ensures an optimal appearance and meets fire-resistance requisites.

INCREASED DIAMETER The diameter of 7,5 mm ensures a shear resistance of over 15 % and enables optimisation of the number of fasteners.

DOUBLE THREAD The thread up against the tip (b1) facilitates screwing. The increased length of the under head thread (b2) makes for fast, accurate closure.

CHARACTERISTICS FOCUS

self-drilling, timber-metal-timber

HEAD

cylindrical, countersunk

DIAMETER

7,5 mm

LENGTH

from 55 mm to 235 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE Self-drilling system for concealed timber-steel joints. Can be used with screw guns running at 600-1500 rpm with: • steel S235 ≤ 10,0 mm • steel S275 ≤ 8.0 mm • steel S355 ≤ 6.0 mm • Alumini, Alumidi and Alumaxi brackets Service classes 1 and 2.

214 | SBD | STRUCTURES


KNEE BEAM Ideal for joining head beams and making continuous beams, restoring shear forces and momentum. The small dowel diameter guarantees joints that offer high stiffness.

MOMENT RESISTING JOINT Also certified, tested and calculated for fastening standard Rothoblaas plates such as the TYP X pillar-holder.

STRUCTURES | SBD | 215


Fastening of Rothoblaas pillar-holder with internal knife plate F70,

Rigid ”knee“ joint with double internal plate (LVL).

GEOMETRY AND MECHANICAL CHARACTERISTICS S d1

dk b2

b1

Lp

L

Nominal diameter

d1

[mm]

7,5

Head diameter

dk

[mm]

11,0

Tip length

Lp

[mm]

19,0

Effective length

Leff

[mm]

L - 8,0

Characteristic yield moment

My,k

[Nmm]

42000

216 | SBD | STRUCTURES


CODES AND DIMENSIONS d1

CODE

[mm]

PLATES THICKNESS

L

b2

b1

pcs

max. thickness

max. thickness

plate

[mm]

[mm]

[mm]

single plate

double plate

SBD7555

55

10

-

50

[mm]

[mm]

[mm]

SBD7575

75

10

15

50

S235 steel

10,0

8,0

SBD7595

95

20

15

50

S275 steel

8,0

6,0

SBD75115

115

20

15

50

S355 steel

6,0

5,0

SBD75135

7,5 TX 40 SBD75155

135

20

15

50

ALUMINI

6,0

-

155

20

15

50

ALUMIDI

6,0

-

SBD75175

175

40

15

50

ALUMAXI

10,0

-

SBD75195

195

40

15

50

SBD75215

215

40

15

50

SBD75235

235

40

15

50

Timber - metal plate - timber shear joint Recommended pressure: ≈ 40 kg Recommended screwing: ≈ 1000 - 1500 rpm (steel plate) ≈ 600 - 1000 rpm (aluminium plate)

MINIMUM DISTANCES FOR CONNECTORS SUBJECTED TO SHEAR STRESS (1)

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

7,5 a1

[mm]

5∙d

7,5 3∙d

38

23

a2

[mm]

3∙d

23

3∙d

23

a3,t

[mm]

max (7∙d; 80)

80

max (7∙d; 80)

80

a3,c

[mm]

max (3,5∙d; 40)

40

max (3,5∙d; 40)

40

a4,t

[mm]

3∙d

23

4∙d

30

a4,c

[mm]

3∙d

23

3∙d

23

d = nominal screw diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: (1)

Minimum distances in accordance with EN 1995:2014.

STRUCTURES | SBD | 217


TIMBER-TO-STEEL STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014

SHEAR RV,k

1 INTERNAL PLATE (2 shear planes) - DOWEL HEAD INSTALLATION DEPTH 0 mm FASTENING

SBD [mm]

7,5x75

7,5x95 7,5x115 7,5x135 7,5x155 7,5x175 7,5x195 7,5x215 7,5x235

B

[mm]

60

80

100

120

140

160

180

200

220

240

Head insertion depth

p

[mm]

0

0

0

0

0

0

0

0

0

0

Exterior wood

ta

[mm]

27

37

47

57

67

77

87

97

107

117

6,96

8,67

9,50

10,62

11,91

12,83

13,30 13,30 13,30

13,30

30°

6,42

8,10

8,79

9,75

10,87

11,93

12,55

12,59

12,59

12,59

45°

5,98

7,64

8,21

9,04

10,02

11,10

11,74

11,99

11,99

11,99

load-to-grain angle

Beam width

t ta

7,5x55

RV,k [kN]

ta B

60°

5,61

7,26

7,72

8,45

9,32

10,29

11,05

11,46

11,46

11,46

90°

5,29

6,81

7,31

7,95

8,73

9,60

10,45

10,93

11,00

11,00

1 INTERNAL PLATE (2 shear planes) - DOWEL HEAD INSTALLATION DEPTH 15 mm FASTENING

7,5x75

7,5x95 7,5x115 7,5x135 7,5x155 7,5x175 7,5x195 7,5x215 7,5x235

B

[mm]

80

100

120

140

160

180

200

220

240

-

Head insertion depth

p

[mm]

15

15

15

15

15

15

15

15

15

-

Exterior wood

ta

[mm]

22

32

42

52

62

72

82

92

102

-

7,88

8,57

9,45

10,59

11,89

13,18

13,30 13,30 13,30

30°

7,26

8,01

8,74

9,72

10,85

12,07

12,59

12,59

12,59

-

45°

6,63

7,56

8,16

9,01

10,00

11,09

11,99

11,99

11,99

-

60°

6,06

7,17

7,68

8,42

9,30

10,27

11,30

11,46

11,46

-

90°

5,58

6,85

7,27

7,92

8,71

9,59

10,52

11,00

11,00

-

t ta

7,5x55

Beam width

RV,k [kN]

ta B

load-to-grain angle

p

SBD [mm]

CORRECTIVE COEFFICIENT kF FOR DIFFERENT DENSITIES ρk Strength class

C24

GL22h

C30

C40 / GL32c

GL28h

D24

D30

ρ k [kg/m3]

350

370

380

400

425

485

530

kF

1,00

1,03

1,05

1,08

1,11

1,20

1,27

For different densities ρ k the wood-side design resistance is calculated as: R ' V,d = R V,d · kF .

EFFECTIVE NUMBER OF DOWELS nef FOR α = 0° a1 [mm]

nef

SBD no.

40

50

60

70

80

90

100

120

140

2

1,49

1,58

1,65

1,72

1,78

1,83

1,88

1,97

2,00

3

,15

2,27

2,38

2,47

2,56

2,63

2,70

2,83

2,94

4

2,79

2,95

3,08

3,21

3,31

3,41

3,50

3,67

3,81

5

3,41

3,60

3,77

3,92

4,05

4,17

4,28

4,48

4,66

6

4,01

4,24

4,44

4,62

4,77

4,92

5,05

5,28

5,49

7

4,61

4,88

5,10

5,30

5,48

5,65

5,80

6,07

6,31

In the case of multiple dowels placed parallel to the fibres, the effective number must be taken into account: R ' V,d = R V,d · kF .

218 | SBD | STRUCTURES

-


TIMBER-TO-STEEL STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014

SHEAR RV,k

2 INTERNAL PLATES (4 shear planes) - DOWEL HEAD INSTALLATION DEPTH 0 mm FASTENING

7,5x75

7,5x95 7,5x115 7,5x135 7,5x155 7,5x175 7,5x195 7,5x215 7,5x235

B

[mm]

-

-

-

-

140

160

180

200

220

240

Head insertion depth

p

[mm]

-

-

-

-

0

0

0

0

0

0

Exterior wood

ta

[mm]

-

-

-

-

37

42

48

56

66

74

Interior wood

ti

[mm]

t ti

7,5x55

Beam width

ta

B

RV,k [kN]

load-to-grain angle

t ta

SBD [mm]

-

-

-

-

54

64

72

76

76

80

-

-

-

-

19,42

21,40 22,90 23,80 25,08 25,93

30°

-

-

-

-

17,74

19,67

21,13

22,24 23,35 24,30

45°

-

-

-

-

16,38

18,23

19,54 20,66 21,63

60°

-

-

-

-

15,24

16,91

18,21

19,20 20,06 21,24

90°

-

-

-

-

14,16

15,79

17,09

17,97

18,74

22,76 19,80

2 INTERNAL PLATES (4 shear planes) - DOWEL HEAD INSTALLATION DEPTH 10 mm FASTENING

t ta

7,5x75

7,5x95 7,5x115 7,5x135 7,5x155 7,5x175 7,5x195 7,5x215 7,5x235

Beam width

B

[mm]

-

-

-

140

160

180

200

220

240

-

p

[mm]

-

-

-

10

10

10

10

10

10

-

Exterior wood

ta

[mm]

-

-

-

27

32

38

46

56

64

-

Interior wood

ti

[mm]

54

64

t ti

7,5x55

Head insertion depth

ta

B

RV,k [kN]

load-to-grain angle

p

SBD [mm]

-

-

-

72

76

76

80

-

-

-

-

17,72

20,49 22,03 22,70 23,80 24,81

-

30°

-

-

-

16,06

18,71

20,41

-

21,30 22,24

23,11

45°

-

-

-

14,71

17,23

18,94

19,85 20,66 21,70

-

60°

-

-

-

13,59

15,88

17,71

18,50

19,20 20,30

-

90°

-

-

-

12,65

14,74

16,67

17,36

17,97

-

18,96

GENERAL PRINCIPLES: • Characteristic values according to EN 1995:2014. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

• The values provided are calculated using 5 mm thick plates, a 6 mm thick milled cut in the timber and a single SBD dowel. • F or the calculation process a timber characteristic density ρ k = 350 kg/m3 has been considered. • Sizing and verification of the wooden elements and metal plates must be done separately.

The coefficients γm and kmod should be taken according to the current reguRV,k for the calculation. lations used

STRUCTURES | SBD | 219


MINIMUM FASTENING DISTANCES ON ALUMINI AND ALUMIDI BRACKETS SECONDARY BEAM - TIMBER

a3,t a4,c

as

a4,t

self-drilling dowel SBD Ø 7,5

Dowel - dowel

a2

[mm] ≥ 3 d

≥ 23 ≥ 30

Dowel - beam extrados

a4,t

[mm] ≥ 4 d

a2

Dowel - beam intrados

a4,c

[mm] ≥ 3 d

≥ 23

as

Dowel – beam end

a3,t

[mm] ≥ {7 d; 80}

≥ 80

Dowel – bracket edge

as

[mm] ≥ 1,2 df (1)

≥ 10

a4,c (1)

Timber-to-timber joint.

hole diameter

ALUMINI MAIN BEAM - TIMBER

screw HBS P EVO Ø5

First connector - beam extrados

a4,c

[mm] ≥ 5 d

≥ 25

ALUMIDI MAIN BEAM - TIMBER First connector - beam extrados

INSTALLATION

01

[mm] ≥ 5 d

screw LBS Ø5

≥ 20

≥ 25

Video available on our YouTube channel

02

05

a4,c

nail LBA Ø4

06

03

04

07

GENERAL PRINCIPLES: • The characteristic values comply with the EN 1995:2014 standard in accordance with ETA-09/0361 and for the ALUMIDI bracket are assessed using the Rothoblaas experimental method. • For timber-to-timber joints, design values are obtained from the following characteristic values:

R k Rd = k mod γm RV,k 220 | SBD | STRUCTURES

The coefficients γm and kmod should be taken according to the current regulations used for the calculation. • Resistance values for the fastening system are valid for the calculation examples shown in the table. • For the calculation process a timber characteristic density ρ k = 385 kg/m3 has been considered.


STATIC VALUES - CONCEALED ALU BRACKET ALUMINI - TIMBER-TO-TIMBER JOINT ALUMINI FV

bNT

H hNT

ALUMINI

(1)

CODE

H

bNT

hNT

H

secondary beam

main beam

characteristic values

dowels SBD Ø7,5 (1)

screw HBS P EVO Ø5

EN 1995:2014 RV,k

[mm]

[mm]

[mm]

[mm]

[pcs Ø x L]

[pcs]

[kN]

ALUMINI65

65

60

90

2 - Ø7,5 x 55

7

2,3

ALUMINI95

95

60

120

3 - Ø7,5 x 55

11

5,7

ALUMINI125

125

60

150

4 - Ø7,5 x 55

15

10,4

ALUMINI155

155

60

180

5 - Ø7,5 x 55

19

16,3

ALUMINI185

185

60

210

6 - Ø7,5 x 55

23

23,2

Use of SBD dowels longer than those in the table is allowed, without affecting the overall resistance of the connection (failure on main-beam side). In this case, the

minimum dimensions of the wood elements must be reassessed

ALUMIDI - TIMBER/TIMBER CONNECTION ALUMIDI WITHOUT HOLES - TOTAL NAILING FV

bNT

hNT

H

H

fastening through nails ALUMIDI

*

fastening through screws

secondary beam

main beam

characteristic values

main beam

characteristic values

CODE

H

bNT

hNT

dowels SBD Ø7,5

nails LBA Ø4 x 60

EN 1995:2014 RV,k

screws LBS Ø5 x 60

EN 1995:2014 RV,k

[mm]

[mm]

ALUMIDI120

120

ALUMIDI160

160

ALUMIDI200

200

ALUMIDI240

240

ALUMIDI2200

280 *

ALUMIDI2200

320 *

ALUMIDI2200

360 *

ALUMIDI2200

400 *

[pcs Ø x L] 2 - Ø7,5 x 75 3 - Ø7,5 x 115 3 - Ø7,5 x 75 4 - Ø7,5 x 115 4 - Ø7,5 x 95 5 - Ø7,5 x 115 5 - Ø7,5 x 95 6 - Ø7,5 x 115 7 - Ø7,5 x 115 8 - Ø7,5 x 135 8 - Ø7,5 x 135 9 - Ø7,5 x 155 9 - Ø7,5 x 155 10 - Ø7,5 x 175 10 - Ø7,5 x 155 11 - Ø7,5 x 175 11 - Ø7,5 x 155 12 - Ø7,5 x 175

[kN] 8,23 10,01 15,04 18,38 24,81 27,44 34,78 38,27 49,79 54,61 64,92 69,38 79,94 84,86 94,22 98,80 105,23 114,12

[pcs]

80

[mm] 120 120 160 160 200 200 240 240 280 280 320 320 360 360 400 400 440 440

[pcs]

ALUMIDI80

[mm] 80 120 80 120 100 120 100 120 120 140 140 160 160 180 160 180 160 180

[kN] 10,12 12,35 18,84 22,92 29,40 34,78 38,28 46,24 58,48 64,98 73,63 84,96 90,80 102,44 101,68 116,93 112,82 134,19

14 22 30 38 46 54 62 70 78

14 22 30 38 46 54 62 70 78

Dimension obtainable from ALUMIDI2200

STRUCTURES | SBD | 221


CTC

BIT INCLUDED

ETA 19/0244

CONNECTOR FOR TIMBER-CONCRETE FLOORS CERTIFICATION Timber-to-concrete fastener with specific CE certification according to ETA 19/0244, Tested and calculated with parallel and crossed arrangement of 45° and 30° connectors, with and without wooden planking.

RAPID DRY SYSTEM Approved system, self-drilling, reversible, fast and minimally invasive. Optimum static and noise performances, both for new projects and structural restoration.

COMPLETE RANGE Self-perforating tip with notch and countersunk cylindrical head. Available in two diameters (7 and 9 mm) and two lengths (160 and 240 mm) to optimize the number of fasteners.

INSTALLATION INDICATOR During installation, the under head counter-thread serves as “correct installation” indicator and increases the fastener tightness inside the concrete.

CHARACTERISTICS FOCUS

CE marking, timber-concrete

HEAD

cylindrical, countersunk

DIAMETER

7,0 | 9,0 mm

LENGTH

160 | 240 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE Screw connection system for timber-to-concrete floors, approved for: • wood based panels • solid timber and glulam • CLT, LVL • high density woods Service classes 1 and 2.

222 | CTC | STRUCTURES


TIMBER-TO-CONCRETE Ideal for composite floors and for renovation of existing floors. Stiffness values also calculated in the presence of vapour barrier sheet or soundproofing layer.

STRUCTURAL RESTORATION Values also tested, certified and calculated for high density woods. Certification specific for application in timber-concrete structures.

STRUCTURES | CTC | 223


Composite timber-concrete floors on CLT panel with 45° connectors arranged in a single row.

Composite timber-concrete floors with 30° connectors arranged in a double row.

GEOMETRY AND MECHANICAL CHARACTERISTICS C X

X

C T

C

d 2 d1

X

dk

ds

b1

b2 L

Nominal diameter

d1

[mm]

7

9

Head diameter

dk

[mm]

9,50

11,50

Tip diameter

d2

[mm]

4,60

5,90

Shank diameter

ds

[mm]

5,00

6,50

Pre-drilling hole diameter

dv

[mm]

Characteristic yield moment

My,k

[Nmm]

4,0

5,0

20000

38000 11,3

Characteristic withdrawal-resistance parameter

fax,k

[N/mm2]

11,3

Associated density

ρa

[kg/m3]

350

350

Characteristic tensile strength

f tens,k

[kN]

20,0

30,0

Fax,concrete, Rk

[kN]

10,0

10,0

Fax,concrete, Rk

[kN]

15,0

15,0

µ

[-]

0,25

0,25

Crossed connectors at a 45° angle, with soundproofing layer(1) Withdrawal-resistance characteristic concrete

Parallel connectors at a 45° angle, with soundproofing layer(1) Parallel connectors at a 30° angle, with soundproofing layer(1) Parallel connectors at a 45° angle, without soundproofing layer

Coefficient of friction (1)

Resilient underscreed foil, in bitumen and polyester felt, like SILENT FLOOR.

GENERAL PRINCIPLES: • The design shear strength of each crossed connector is the minimum between the timber design shear strength (Rax,d), the concrete design shear strength (Rax,concrete,d) and the steel design shear strength (Rtens,d):

Fax,α,Rd Rv,Rd = (cos α + µ sin α) min

ftens,d Fax,concrete,Rd

224 | CTC | STRUCTURES

The friction component µ can be considered only in arrangement with inclined screws (30° e 45°) and without the soundproofing layer. • For the mechanical strength values and the geometry of the screws, reference was made to ETA-19/0244,


CODES AND DIMENSIONS d1

CODE

[mm] CTC7160 7 TX 30 CTC7240

L

b1

b2

[mm]

[mm]

[mm]

pcs

160

40

110

100

240

40

190

100

d1

CODE

[mm]

L

b1

b2

[mm]

[mm]

[mm]

160

40

110

100

240

40

190

100

CTC9160 9 TX 40 CTC9240

pcs

SLIP MODULUS Kser connector arrangement with soundproofing layer (1)

Kser [N/mm] CTC Ø7

connector arrangement without soundproofing layer (1)

Kser [N/mm]

CTC Ø9

45°

CTC Ø7

CTC Ø9

48 lef

60 lef

80 lef

80 lef

70 lef

100 lef

45°

16 lef

lef

22 lef lef

45° parallels

45° parallels 30°

30°

48 lef

lef

48 lef

lef

30° parallels 45°

30° parallels 45°

45°

70 lef

45°

100 lef

lef

lef

45° crossed

45° crossed

Resilient underscreed foil, in bitumen and polyester felt, like SILENT FLOOR. The Kser slip modulus is to be considered as relating to a single inclined connector or a pair of crossed connectors subject to a parallel force at the slip surface. Ief = depth of CTC connector penetration into timber element, in millimetres.

(1)

MINIMUM DISTANCES FOR AXIAL STRESSES (1) 45°/30°

a1,CG

45°

a1

dc

dc

db

db

a2,CG

a2

a2,CG

parallel arrangement

a1

[mm]

≥ a1,CG

≥ a2,CG

≥ a1

crossed arrangement

7

9

130∙sin(α)

130∙sin(α)

a2

[mm]

35

45

a1,CG

[mm]

85

85

a2,CG

[mm]

32

37

aCROSS [mm]

11

14

≥a2,CG ≥aCROSS

dc = thickness of concrete slab (50 mm ≤ dc ≤ 0,7 db) db = height of wooden beam (db ≥ 100 mm)

NOTES: (1)

he minimum distances for connectors stressed axially are compliant with T ETA-19/0244,

STRUCTURES | CTC | 225


STATIC VALUES

CALCULATION STANDARD NTC 2018 - UNI EN 1995:2014

PRELIMINARY SIZING OF CTC CONNECTORS FOR TIMBER- CONCRETE FLOORS CALCULATION EXAMPLE

LOADS

distance between joists = 660 mm

own weight (gk1) = timber beam + wooden planking + concrete slab

concrete slab thickness C20/25 = 50 mm

permanent non-structural load (gk2) = 2 kN/m2

strain limit

variable overload (qk) = 2 kN/m2

wist = ℓ/400

wnet,fin = ℓ/250

CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm

3

3,5

4

span [m] 4,5

8

10

20

30

beam section BxH [mm]

120 x 160

45° 120 x 200

140 x 200

Installation at a 45° angle, without soundproofing layer. 140 x 240

no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2

5

5.5

6

-

-

-

-

-

7x160

7x240

7x240

7x240

500/500

250/500

160/400

220/440

4,0

4,3

7,6

10,1

10

12

20

30

7x160

7x240

7x240

7x240

300/500

250/500

160/320

130/260

4,3

4,5

6,7

9,1

10

20

30

34

7x240

7x240

7x240

7x240

300/500

180/360

130/260

110/220

3,8

6,7

9,1

9,4

-

-

-

-

-

-

-

12

20

30

36

7x240

7x240

7x240

7x240

300/500

200/400

150/300

120/240

4,0

6,1

8,3

9,1

5

5.5

6

-

-

-

-

-

CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm

3

3,5

4

span [m] 4,5

10

14

38

30

beam section BxH [mm]

120 x 160

45° 120 x 200

140 x 200

Installation at a 45° angle, with soundproofing layer. 140 x 240

no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2

7x160

7x240

7x240

7x240

300/500

180/500

100/100

220/440

5,1

6,1

14,4

10,1

8

12

24

56

7x160

7x240

7x240

7x240

500/500

250/500

120/240

160/160 (1)

3,5

4,5

8,1

17,0

10

22

54

90

7x240

7x240

7x240

7x240

300/500

200/200

3,8

7,4

-

-

-

-

-

-

150/200 (1) 150/200 (2) 16,4

-

24,8

8

16

34

64

7x240

7x240

7x240

7x240

500/500

300/500

140/200

150/200 (1)

2,7

4,8

9,4

16,2

5

5.5

6

-

-

-

CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm

3

3,5

4

span [m] 4,5

16

20

40

48

beam section BxH [mm]

120 x 160

45°

45° 120 x 200

140 x 200

Crossed installation at a 45° angle, with soundproofing layer. 140 x 240

226 | CTC | STRUCTURES

no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2

7x160

7x240

7x240

7x240

500/500

250/500

160/320

120/400

8,1

8,7

15,2

16,2

16

24

40

48

60

7x240

7x240

7x240

7x240

7x240

400/500

250/500

180/400

150/400

120/400

6,9

9,1

13,5

14,5

16,5

20

28

48

60

88

7x240

7x240

7x240

7x240

7x240

280/500

200/500

150/400

120/400

100/200

7,6

9,4

14,5

16,5

22,2

24

40

52

64

7x240

7x240

7x240

7x240

300/500

200/500

150/400

120/400

8,1

12,1

14,3

16,2

-

-

-

-

-

-

-


STATIC VALUES

CALCULATION STANDARD NTC 2018 - UNI EN 1995:2014 CONNECTOR CTC Ø9 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm

3

3,5

4

span [m] 4,5

8

10

16

24

beam section BxH [mm]

120 x 160

45° 120 x 200

140 x 200

Installation at a 45° angle, without soundproofing layer.

140 x 240

no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2

5

5.5

6

-

-

-

9x160

9x240

9x240

9x240

450/500

250/500

150/500

120/300

4,0

4,3

6,1

8,1

8

12

20

24

34

9x240

9x240

9x240

9x240

9x240

450/500

250/500

180/400

140/400

110/250

3,5

4,5

6,7

7,3

9,4

10

14

22

34

46

9x240

9x240

9x240

9x240

9x240

300/500

200/500

160/500

120/300

180/350

3,8

4,7

6,7

9,4

11,6

12

20

24

32

9x240

9x240

9x240

9x240

300/500

200/500

160/500

120/400

4,0

6,1

6,6

8,1

span [m] 4,5

5

5.5

6

-

-

-

-

-

-

-

-

-

-

-

-

-

CONNECTOR CTC Ø9 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm

beam section BxH [mm]

120 x 160

45° 120 x 200

140 x 200

Installation at a 45° angle, with soundproofing layer. 140 x 240

no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2

3

3,5

4

8

10

30

9x160

9x240

9x240

500/500

250/500

100/200

4,0

4,3

11,4

-

-

-

8

10

24

60

9x240

9x240

9x240

9x240

400/500

280/500

130/300

140/160

3,5

3,8

8,1

18,2

-

-

10

40

52

66

9x240

9x240

9x240

9x240

300/500

200/200

160/200

200/300

3,8

13,5

15,8

18,2

12

22

36

68

9x240

9x240

9x240

9x240

300/500

180/400

210/420

140/200

4,0

6,7

9,9

17,2

span [m] 4,5

5

5.5

6

-

-

-

-

-

-

-

-

CONNECTOR CTC Ø9 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm

beam section BxH [mm]

120 x 160

45°

45° 120 x 200

140 x 200

Crossed installation at a 45° angle, with soundproofing layer.

140 x 240

no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2

3

3,5

4

16

24

40

9x160

9x160

9x160

500/500

250/500

150/300

8,1

10,4

15,2

-

-

-

16

24

40

52

9x160

9x160

9x160

9x240

400/400

250/500

180/360

130/300

6,9

9,1

13,5

15,8

24

40

60

68

9x160

9x160

9x240

9x240

250/500

180/360

130/260

120/240

9,1

13,5

18,2

18,7

32

48

60

72

9x160

9x240

9x240

9x240

300/500

150/300

140/280

120/240

10,8

14,5

16,5

18,2

-

-

-

-

NOTES: (1)

Connectors placed in two rows.

(2)

Connectors placed in three rows.

For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

STRUCTURES | CTC | 227


STATIC VALUES

CALCULATION STANDARD EN 1995:2014

PRELIMINARY SIZING OF VB CONNECTORS FOR TIMBER- CONCRETE FLOORS CALCULATION EXAMPLE

LOADS

distance between joists = 660 mm

own weight (gk1) = timber beam + wooden planking + concrete slab

concrete slab thickness C20/25 = 50 mm

permanent non-structural load (gk2) = 2 kN/m2

strain limit

variable overload (qk) = 2 kN/m2

wist = ℓ/400

wnet,fin = ℓ/250

CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm

3

3,5

4

span [m] 4,5

8

10

18

24

beam section BxH [mm]

120 x 160

45° 120 x 200

140 x 200

Installation at a 45° angle, without soundproofing layer.

140 x 240

no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2

5

5.5

6

-

-

-

-

-

7x160

7x240

7x240

7x240

500/500

250/500

200/400

120/240

4,0

4,3

6,8

8,1

8

10

18

24

7x160

7x240

7x240

7x240

500/500

300/500

200/400

140/280

3,5

3,8

6,1

7,3

10

12

22

32

7x240

7x240

7x240

7x240

400/500

250/500

180/360

130/260

3,8

4,0

6,7

8,8

-

-

-

-

-

-

-

10

16

22

30

7x240

7x240

7x240

7x240

400/500

300/500

200/400

150/300

3,4

4,8

6,1

7,6

span [m] 4,5

5

5.5

6

-

-

-

-

-

-

CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm

beam section BxH [mm]

120 x 160

45° 120 x 200

140 x 200

Installation at a 45° angle, with soundproofing layer. 140 x 240

no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2

3

3,5

4

8

10

38

7x160

7x240

7x240

500/500

250/500

100/100

4,0

4,3

14,4

-

-

-

8

10

24

54

7x160

7x240

7x240

7x240

500/500

300/500

120/240

150/200 (1)

3,5

3,8

8,1

16,4

8

22

46

90

7x240

7x240

7x240

7x240

500/500

150/300

3,0

7,4

-

-

-

150/300 (1) 150/200 (2) 13,9

-

24,8

8

14

34

60

7x240

7x240

7x240

7x240

500/500

400/500

140/200

150/250 (1)

2,7

4,2

9,4

15,2

5

5.5

6

-

-

-

CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm

3

3,5

4

span [m] 4,5

16

20

36

44

beam section BxH [mm]

120 x 160

45°

45° 120 x 200

140 x 200

Crossed installation at a 45° angle, with soundproofing layer. 140 x 240

228 | CTC | STRUCTURES

no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2

7x160

7x240

7x240

7x240

500/500

250/500

200/400

150/300

8,1

8,7

13,6

14,8

16

20

36

48

52

7x240

7x240

7x240

7x240

7x240

500/500

300/500

200/400

150/300

150/350

6,9

7,6

12,1

14,5

14,3

20

24

44

52

84

7x240

7x240

7x240

7x240

7x240

280/500

250/500

180/360

150/400

110/200

7,6

8,1

13,3

14,3

21,2

20

36

44

60

7x240

7x240

7x240

7x240

400/500

250/500

200/400

150/300

6,7

10,9

12,1

15,2

-

-

-

-

-

-

-


STATIC VALUES

CALCULATION STANDARD EN 1995:2014 CONNECTOR CTC Ø9 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm

3

3,5

4

span [m] 4,5

8

10

14

22

beam section BxH [mm]

120 x 160

45° 120 x 200

140 x 200

Installation at a 45° angle, without soundproofing layer.

140 x 240

no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2

5

5.5

6

-

-

-

9x160

9x240

9x240

9x240

500/500

250/500

200/500

150/300

4,0

4,3

5,3

7,4

8

10

18

22

30

9x240

9x240

9x240

9x240

9x240

500/500

300/500

200/400

160/400

130/300

3,5

3,8

6,1

6,7

8,3

10

12

22

30

46

9x240

9x240

9x240

9x240

9x240

400/500

250/500

180/400

150/300

180/350 (2)

3,8

4,0

6,7

8,3

11,6

10

16

22

30

9x240

9x240

9x240

9x240

400/500

300/500

200/400

150/300

3,4

4,8

6,1

7,6

span [m] 4,5

5

5.5

6

-

-

-

-

-

-

-

-

-

-

-

-

-

CONNECTOR CTC Ø9 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm

beam section BxH [mm]

120 x 160

45° 120 x 200

140 x 200

Installation at a 45° angle, with soundproofing layer. 140 x 240

no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2

3

3,5

4

8

10

26

9x160

9x240

9x240

500/500

300/500

120/200

4,0

4,3

9,8

-

-

-

8

10

22

38

9x240

9x240

9x240

9x240

500/500

300/500

150/300

100/140

3,5

3,8

7,4

11,5

-

-

10

18

34

64

9x240

9x240

9x240

9x240

300/500

200/400

3,8

6,1

10,3

8

20

30

48

9x240

9x240

9x240

9x240

500/500

200/400

150/300

100/150

2,7

6,1

8,3

12,1

span [m] 4,5

5

5.5

6

-

-

-

-

-

-

-

200/400 (2) 210/300 (2)

-

17,6

CONNECTOR CTC Ø9 - Glulam GL 24h (EN 14080:2013) Plank thickness t s = 21 mm

beam section BxH [mm]

120 x 160

45°

45° 120 x 200

140 x 200

Crossed installation at a 45° angle, with soundproofing layer. 140 x 240

no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2 no. pairs per beam CTC pitch [mm] no. connectors/m2

3

3,5

4

16

24

36

9x160

9x160

9x160

500/500

250/500

200/300

8,1

10,4

13,6

-

-

-

16

20

36

48

9x160

9x160

9x160

9x160

500/500

300/500

250/500

150/500

6,9

7,6

12,1

14,5

20

36

48

60

9x160

9x240

9x240

9x240

300/500

200/400

150/300

140/300

7,6

12,1

14,5

16,5

24

40

52

60

9x240

9x240

9x240

9x240

500/500

200/400

150/400

150/300

8,1

12,1

14,3

15,2

-

-

-

-

NOTES: (1)

Connectors placed in two rows.

(2)

Connectors placed in three rows.

For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

STRUCTURES | CTC | 229


CALCULATION EXAMPLES: MIXED TIMBER-CONCRETE FLOOR

PROJECT DATA

BEAMS

CONNECTORS - CTC Ø9 x 240

B = 120 mm

Diameter

9 mm

H = 160 mm

Length

240 mm

i = 650 mm

Connector arrangement

inclined at 45°

L = 4,0 m

Distribution

L/4-L/2

Wood GL24h (EN 14081:2013) COMPOSITE FLOOR LOAD CONDITIONS

s = 50 mm Concrete C25/30

Permanent structural load (G1)

1,50 kN/m2

Permanent non-structural load (G2)

2,50 kN/m2

t = 21 mm

Variable load (Q) Category A: residential environment

2,00 kN/m2

C20 Plank (EN 14081:2013)

Variable load duration

medium

INTERMEDIATE LAYER

i s t H

B

L/4

L/2

L/4

L

CALCULATION WITH MYPROJECT SOFTWARE (EN 1995:2014 and ETA-19/0244)

RESULTS Number of connectors

22 CTC Ø9x240

Incidence of connectors

8 connectors/m

230 | CTC | STRUCTURES

2

Min spacing (L/4)

180 mm

Max spacing (L/2)

370 mm


For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

CALCULATION REPORT

STRUCTURES | CTC | 231


SKR - SKS

COATING

ETA

CONCRETE SCREW RAPID DRY SYSTEM Fast and easy operation. The special threading requires a small predrill and guarantees fastening on concrete without creating expansion stresses in the concrete. Reduced minimum distances.

SKR - SKS EVO For some sizes, a version is available with special surface treatment to improve corrosion resistance of the externally exposed head.

CERTIFICATION The version with CE marking is certified for applications on cracked and uncracked concrete and in the C2 seismic performance category.

SKR

SKS

SKR CE

SKS CE

CHARACTERISTICS FOCUS

screw for concrete

HEAD

hexagonal and countersunk

DIAMETER

from 7,5 mm to 16,0 mm

LENGTH

from 60 mm to 400 mm

MATERIAL Carbon steel with bright zinc plated. Versions in carbon steel with C4 EVO coating.

FIELDS OF USE Fastening of timber or steel elements to concrete supports. Service classes 1 and 2.

232 | SKR - SKS | STRUCTURES


SOLE PLATE Ideal for fastening timber sole plates to concrete slabs. Installation is very rapid as single pre-drill can be made for both wood and concrete.

PLATE Ideal for fastening Rothoblaas plates. TITAN joint with SKR (diameter: 12 mm).

STRUCTURES | SKR - SKS | 233


SKR - SKS GEOMETRY Tinst

Tinst SW

tfix

dk tfix

df

L

hef

d1

hmin

hnom

df

L h1

hef

d1

hmin

d0

hnom

h1

d0

SKR

SKS

LEGEND d1 t fix h1 hnom hef

d0

external diameter of anchor maximum fastening thickness

df SW T inst L

minimum hole depth nominal anchoring depth effective anchor depth

hole diameter in the concrete support maximum hole diameter in the element to be fastened wrench size tightening torque anchor length

CODES AND DIMENSIONS SKR - SKS SKR hexagonal head d1

CODE

[mm] 7,5 SW 13

10 SW 16

12 SW 18

L

tfix

h1,min

hnom

d0

df timber

df steel

Tinst [Nm]

pcs

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

SKR7560

60

10

60

50

6

8

8-10

15

50

SKR7580

80

30

60

50

6

8

8-10

15

50

SKR75100

100

20

90

80

6

8

8-10

15

50

SKR1080

80

30

65

50

8

10

10-12

25

50

SKR10100

100

20

95

80

8

10

10-12

25

25

SKR10120

120

40

95

80

8

10

10-12

25

25

SKR10140

140

60

95

80

8

10

10-12

25

25

SKR10160

160

80

95

80

8

10

10-12

25

25

SKR12100

100

20

100

80

10

12

12-14

50

25

SKR12120

120

40

100

80

10

12

12-14

50

25

SKR12140

140

60

100

80

10

12

12-14

50

25

SKR12160

160

80

100

80

10

12

12-14

50

25

SKR12200

200

120

100

80

10

12

12-14

50

25

SKR12240

240

160

100

80

10

12

12-14

50

25

SKR12280

280

200

100

80

10

12

12-14

50

25

SKR12320

320

240

100

80

10

12

12-14

50

25

SKR12400

400

320

100

80

10

12

12-14

50

25

pcs

SKS countersunk head d1

CODE

[mm]

7,5 TX 40

L

tfix

h1,min

hnom

d0

df timber

df steel

Tinst

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[Nm]

SKS7560

60

10

60

50

6

8

-

-

50

SKS7580

80

30

60

50

6

8

-

-

50

SKS75100

100

20

90

80

6

8

-

-

50

SKS75120

120

40

90

80

6

8

-

-

50

SKS75140

140

60

90

80

6

8

-

-

50

SKS75160

160

80

90

80

6

8

-

-

50

234 | SKR - SKS | STRUCTURES


CODES AND DIMENSIONS SKR EVO - SKS EVO SKR EVO d1

COATING

CODE

L

tfix

h1,min

hnom

d0

df timber

df steel

Tinst

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[Nm]

SKREVO7560

60

10

60

50

6

8

8-10

15

50

SKREVO1080

80

30

65

50

8

10

10-12

25

50

SKREVO12100

100

20

100

80

10

12

12-14

50

25

L

tfix

h1,min

hnom

d0

df timber

df steel

Tinst

pcs

[mm] 7,5 SW 13 10 SW 16 12 SW 18

pcs

SKS EVO d1

CODE

[mm] 7,5 TX 40

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[Nm]

SKSEVO7580

80

30

60

50

6

8

-

-

50

SKSEVO75100

100

20

90

80

6

8

-

-

50

SKSEVO75120

120

40

90

80

6

8

-

-

50

MINIMUM DISTANCES SKR - SKS c

s

s c hmin SPACING AND DISTANCES FOR TENSILE LOADS SKR

SKS

Ø7,5

Ø10

Ø12

Ø7,5

Minimum spacing

smin,N

[mm]

50

60

65

50

Minimum edge distance

cmin,N

[mm]

50

60

65

50

Minimum thickness of concrete support

hmin

[mm]

100

110

130

100

Critical spacing

scr,N

[mm]

100

150

180

100

Critical edge distance

ccr,N

[mm]

50

70

80

50

SPACING AND DISTANCES FOR SHEAR LOADS SKR

SKS

Ø7,5

Ø10

Ø12

Ø7,5

Minimum spacing

smin,V

[mm]

50

60

70

50

Minimum edge distance

cmin,V

[mm]

50

60

70

50

Minimum thickness of concrete support

hmin

[mm]

100

110

130

100

Critical spacing

scr,V

[mm]

140

200

240

140

Critical edge distance

ccr,V

[mm]

70

110

130

70

For spacing and distances smaller than the critical ones, strength values have to be reduced depending on the installation parameters.

STRUCTURES | SKR - SKS | 235


SKR CE / SKS CE GEOMETRY ETA

Tinst

Tinst SW

tfix

dk tfix

df

L

hef

d1

hmin

hnom

df

L h1

hef

d1

hmin

d0

hnom

h1

d0

SKR

SKS

LEGEND d1 t fix h1 hnom hef

d0

external diameter of anchor maximum fastening thickness

df SW T inst L

minimum hole depth nominal anchoring depth effective anchor depth

hole diameter in the concrete support maximum hole diameter in the element to be fastened wrench size tightening torque anchor length

CODES AND DIMENSIONS SKR CE - SKS CE SKR CE hexagonal head with mock washer d1

CODE

[mm]

L

tfix

h1,min

hnom

hef

d0

df

Tinst

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[Nm]

pcs

100

40

75

60

48

6

9

20

50 50

8 SW 10

SKR8100CE

10 SW 13

SKR1080CE

80

10

85

70

56

8

12

50

SKR10100CE

100

30

85

70

56

8

12

50

25

SKR10120CE

120

50

85

70

56

8

12

50

25

SKR12110CE

110

30

100

80

64

10

14

80

25

SKR12150CE

150

70

100

80

64

10

14

80

25

SKR12210CE

210

130

100

80

64

10

14

80

20

12 SW 15

16 SW 21

SKR12250CE

250

170

100

80

64

10

14

80

15

SKR12290CE

290

210

100

80

64

10

14

80

15

SKR16130CE

130

20

140

110

85

14

18

160

10

L

tfix

h1,min

hnom

hef

d0

df

Tinst

pcs

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[Nm]

SKS75100CE

100

40

75

60

48

6

9

20

50

SKS10100CE

100

30

85

70

56

8

12

50

50

SKS CE countersunk flat head d1

CODE

[mm] 8 TX 30 10 TX 40

236 | SKR - SKS | STRUCTURES


MINIMUM DISTANCES SKR CE - SKS CE c

s

s c hmin SPACING AND DISTANCES SKR CE - SKS CE Ø8

Ø10

Ø12

Ø16

Minimum spacing

smin

[mm]

45

50

60

80

Minimum edge distance

cmin

[mm]

45

50

60

80

Minimum thickness of concrete support

hmin

[mm]

100

110

130

170

Critical spacing Critical edge distance

scr,N (1)

[mm]

144

168

192

255

scr,sp (2)

[mm]

160

175

195

255

ccr,N (1)

[mm]

72

84

96

128

ccr,sp (2)

[mm]

80

85

95

130

For spacing and distances smaller than the critical ones, strength values have to be reduced depending on the installation parameters.

NOTES: (1)

Concrete cone failure mode.

(2)

Splitting failure mode.

INSTALLATION 01

02

03

03

SKR

Drill a hole in rotary percussion mode.

04

Clean the hole.

SKS

Position the object to be fixed and install the screw with a pulse screw gun.

04

05

05

Tinst

SKR

SKS

SKR

Make certain that the screw head is in complete contact with the object to be fixed.

Check tightening torque Tinst.

Tinst

SKS

STRUCTURES | SKR - SKS | 237


SKR CE - SKS CE STATIC VALUES

CHARACTERISTIC VALUES ETA

Valid for a single anchor in thickened C20/25 grade concrete with a thin reinforcing layer when spacing and edge-distance are not limiting parameters. UNCRACKED CONCRETE TENSION (1)

SKR CE

SKS CE

d1

NRk,p

[mm]

[KN]

SHEAR(2) γMp

VRk,s

γMs

[kN]

[mm]

8

16

2,1

9,4

1,5

10

20

1,8

20,1

1,5

12

25

2,1

32,4

1,5

16

40

2,1

56,9

1,5

8

16

2,1

9,4

1,5

10

20

1,8

20,1

1,5

CRACKED CONCRETE TENSION (1)

SKR CE

SKS CE

SHEAR VRk,s/Rk,cp

γMs,Mc

[kN]

[mm]

2,1

9,4 (2)

1,5

7,5

1,8

15,1 (3)

1,5

12

9

2,1

32,4

(2)

1,5

16

16

2,1

56,4 (3)

1,5

8

4

2,1

9,4

10

7,5

1,8

20,1 (2)

d1

NRk,p

[mm]

[KN]

8

4

10

γMp

(2)

1,5 1,5

incremental factor for NRk,p (4) C30/37 Ψc

1,22

C40/50

1,41

C50/60

1,58

NOTES: (1)

Pull-out failure mode.

(2)

Steel failure mode (VRk,s).

(3)

Pry-out failure mode (VRk,cp).

(4)

Tensile-strength increment factor (excluding steel failure).

GENERAL PRINCIPLES: • The characteristic values are calculated according to ETA and refer to the concrete values. The strength of the timber-side anchor system must be checked separately.

γ

mc • Design values can be obtained from characteristic values as follows:

Rd =

Rk γm

Coefficients γm are listed in the table in accordance with the failure characteristics and product certificates.

• For the calculation of anchors with reduced spacing, or too close to the edge, please refer to ETA. Similarly, in case of fastening on concrete-supports with a better-grade, limited thickness or a thick reinforcing layer please see ETA. • When designing anchors under seismic load please refer to the ETA referral document and information in the EOTA Technical Report 045. • For the calculation of anchors subjected to fire refer to the ETA and the Technical Report 020,

238 | SKR - SKS | STRUCTURES




OUTDOOR


OUTDOOR


OUTDOOR

KKT COLOR A4 | AISI316

TERRA BAND UV

CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 256

BUTYL ADHESIVE TAPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

KKT A4 | AISI316

PROFID

CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 260

SPACER PROFILE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

KKT COLOR

JFA

CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 264

ADJUSTABLE SUPPORT FOR TERRACES. . . . . . . . . . . . . . . . . . . . 318

KKZ A2 | AISI304

SUPPORT

COUNTERSUNK CYLINDRICAL HEAD SCREW. . . . . . . . . . . . . . . 268

ADJUSTABLE SUPPORT FOR TERRACES. . . . . . . . . . . . . . . . . . . . 322

KWP A2 | AISI305

ALU TERRACE

CYLINDRICAL HEAD SCREW FOR WPC BOARDS . . . . . . . . . . . . 270

ALUMINIUM PROFILE FOR PATIOS. . . . . . . . . . . . . . . . . . . . . . . . . 328

KKA AISI410

STAR

SELF-DRILLING SCREW TIMBER-TO-TIMBER | TIMBER-TO-AL. . . . . . . . . . . . . . . . . . . . . . 272

STAR FOR DISTANCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

KKA COLOR

PATIO CLAMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

SELF-DRILLING SCREW FOR ALUMINIUM. . . . . . . . . . . . . . . . . . . 274

EWS CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 276

KKF AISI410

CRAB MINI SHIM LEVELLING WEDGES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

BROAD COUNTERBORE CUTTER FOR KKT, KKZ, KKA . . . . . . . . . . . . . . . 335

PAN HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

SCI A4 | AISI316 COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

SCI A2 | AISI305 COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

SCA A2 | AISI304 COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

HBS PLATE EVO PAN HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . . . . 292

HBS EVO COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

TBS EVO OUTDOOR SCREW, FLANGE HEAD. . . . . . . . . . . . . . . . . . . . . . . . 294

VGZ EVO FULL THREADED SCREW WITH CYLINDRICAL HEAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

FLAT | FLIP CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

TVM CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

GAP CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

TERRALOCK CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

GROUND COVER ANTI-VEGETATION TARP FOR SUBSTRATES. . . . . . . . . . . . . . . . . 312

NAG LEVELING PAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

GRANULO GRANULAR RUBBER SUBSTRATE. . . . . . . . . . . . . . . . . . . . . . . . . . 314

OUTDOOR | 243


WOOD SPECIES ORIGIN AND DENSITY

nu

500

ss

L ar

Fagu s

ue

ne P i tr is es y lv

Q

550

rc us

650 750

pe

O tr a a k ea

850 950 1050

ix d L a r e c ch idu a

1150

APPROXIMATE DENSITY [Kg/m3]

Pi

ED EAT TR ATe HE ru c S p b ies a ea Pi c

450

Bee s y lv a c h ti c a

1

Ash Fraxinus excelsior

4

6

5

2 3

7

THE

RM

ATED EGN Pi n e is e s tr s y lv s u Pi n

PR A L IM

D

Wo o

dP

l as

ti c

Co W mp P C o si te

ET AC

E AT L Y

244 | WOOD SPECIES | OUTDOOR


Pin Pi n e us syl

ve

s tr

is

There is an appropriate timber cladding for each environment: the variety of wood species makes it possible to perfectly meet the design and aesthetic requirements.

4

APPROXIMATE DENSITY 300-550 [kg/m3]

4

350

5

400

r da s Ce e d r u C 6

450 500

4

550

h L a rc x L ari

1

4

6

co O te co a r te ub a ra M il 2 i ci a Iro exc ko els a 5

Okoumé Aucoumea klaineana

5

ch l ar a a n iric e ri si b S i b r ix La ne pi a y i at re d te s ra on u M Pi n

O

ce S p ru a b ie s a e c Pi

Do u P se g l a s udo fir t su ga

600

2

650 700

3

750 800

me

APPROXIMATE DENSITY 550-800 [kg/m3]

nzi

e si i

Enta n

drop Sapele hr c y li n a g m a dricu m 4

A sh ea tr e sp a Quercu p

eto Tc

n

4

ak Te is d n ra ag

a

5

ga i l i n ch i i B rri de di

3 4

1

3

APPROXIMATE DENSITY 800-1000 [kg/m3]

850 900 950 1000

6

7 3 7

s p tu a ly ptu s c Eu a ly c Eu

i n ia

Di

co r

yn

ia

N

l uc

ea

6

It a M e ub a zila uru s it M au I n e rb ba ts a ia u bi ju ga

us erc

k Oa a e a e tr

Ba g u s r a lo ia n cu en s si s

Qu

4

Bla p se c k l o c u do u aca st ci a

Beech Quercus petraea

5

Ro b

3

Po xy to

5

pt er

ai ng i g a n ga ela a M e lag nm

lo

Di

y x Cu m o d ar or u at a

1

Ip Tabeb e uia

6 3 2

a n d ub a Massar ntata ra bide Manilka

1050

2

Wengé Millettia laur en

tii

B an S h o gkira i re a gla uca 6 Ba m Ba b m oo bu se ae 6

6 3

a Garap leiocarpa ia Apule

1100 1150 1200 1250

APPROXIMATE DENSITY > 1000 [kg/m3]

1300 1350

3 2

This list is not intended to be exhaustive, but merely to provide some indications regarding the most common types of wood.

OUTDOOR | WOOD SPECIES | 245


SELECTION OF THE FASTENING ENVIRONMENT

austenitic stainless steel A4

APPLICATION

KKT A4 KKT A4 color COLOR

KKT A4

KKT A4

SCI A4

SCI A4

austenitic stainless steel A2

KKZ A2

KKZ A2

KWP A2

EWS A2

KWP A2 EWS A2

SCI A2

SCI A2

martensitic stainless steel AISI 410

SCA A2

SCA A2

horizontal cladding (e.g. patio) vertical cladding (e.g. faรงade)

CORROSION CLASS ENVIRONMENTAL (EN 12944) C1 indoor environments C2 rural areas C3 urban and industrial environments C4 industrial and coastal areas C5 areas with aggressive atmospheres

ENVIRONMENT SERVICE CLASS Service class 1 Service class 2 Service class 3 NOTES: * Coating equivalent to Fe/Zn 25c WOOD USE CLASS Use class 1 Use class 2 Use class 3 Use class 4 Use class 5

LEGEND:

use allowed use not allowed but possible with specific precautions use not recommended

246 | SELECTION OF THE FASTENING | OUTDOOR

SBS A2

SBS A2

KKA AISI KKF AISI EWS AISI SHS AISI KKA KKF EWS SHS 410 410 410 410 AISI 410 AISI 410 AISI 410 AISI 410


The work is inserted in a context which cannot be ignored and with which it interacts: understanding the location and use of the timber cladding is fundamental for selecting appropriate fastenings that guarantee performance over time.

carbon steel with C4 EVO coating

carbon steel with organic coating

EN 1995-1-1 ENVIRONMENT SERVICE CLASSES CLASS 1: temperature 20°C / 65% humidity u ≈ 12% all internal rooms CLASS 2: temperature 20°C / 55% humidity u ≈ 18% elements protected from direct exposure to weather CLASS 3: climate more humid than class 2 humidity u > 20% “wet” elements

HBS P HBS P EVO EVO

HBS HBS EVO EVO

TBS TBS EVO EVO

VGZ VGZ EVO EVO

KKT COLOR

KKT color

KKA KKA color COLOR

EN 335 WOOD USE CLASSES CLASS 1 Where the wood is inside a building, not exposed to weather.

CLASS 2 Where the wood is protected and not exposed to weather, but where high ambient humidity may occur.

CLASS 3 Where the wood-based material is not in direct contact with the ground and is exposed to weather.

*

*

CLASS 4 Where the wood is in direct contact with the ground and fresh water.

CLASS 5 Where the wood is permanently or regularly immersed in salt water.

OUTDOOR | SELECTION OF THE FASTENING | 247


SELECTION OF THE FASTENING SCREWING WOODS 400

500

600

700

800

A4 | AISI 316

kg/m3

KKT SCI

A2 | AISI304 - AISI305

KKZ KWP EWS SCI

EWS KKF

KKT

LEGEND:

without pre-drilling hole with pre-drilling hole

248 | SELECTION OF THE FASTENING | OUTDOOR

ITAUBA

TEAK

OAK IROKO

SIBERIAN LARCH

ASH, HEAT-TREATED

LARCH

HBS P EVO

PINE, HEAT-TREATED

CARBON STEEL

AISI410

SCA

PRE-DRILLING HOLES DIAMETER: Ø SCREW

[mm]

3,5

4,0

4,5

5,0

6,0

8,0

Ø

[mm]

2

2

3

3

4

5

PRE-DRILLING HOLE


TESTING CAMPAIGN ON WOODS OF DIFFERENT SPECIES AND DENSITIES

WPC

WPC 1000

1000

BAMBOO, HEAT-TREATED

1200

MASSARANDUBA

1100

IPE

1000

MELAGANGAI

BANGKIRAI

900

1100

1200

WPC 1200

WOODS 800

NOTES: • Screw connections made with 5 x 50 mm screws on substructures of different densities.

• The bars on the graph indicate the limit for correct screw operation in terms of tightening integrity and effectiveness; using a higher density substructure or choosing a longer thread may have a positive effect on fastener performance.

OUTDOOR | SELECTION OF THE FASTENING | 249


SELECTION OF THE FASTENING DECORATIVE HEAD FINISH

WOODS 400

500

600

700

800

A4 | AISI 316

kg/m3

KKT SCI

A2 | AISI304 - AISI305

KKZ KWP EWS SCI

EWS KKF

KKT

LEGEND:

excellent finish good finish counterbore cutter recommended

250 | SELECTION OF THE FASTENING | OUTDOOR

ITAUBA

TEAK

IROKO

OAK

SIBERIAN LARCH (1)

ASH, HEAT-TREATED (2)

LARCH

HBS P EVO

PINE, HEAT-TREATED

CARBON STEEL

AISI410

SCA


TESTING CAMPAIGN ON WOODS OF DIFFERENT SPECIES AND DENSITIES

WPC 1100

WPC 1000

1000

BAMBOO, HEAT-TREATED

1200

MASSARANDUBA (1)

1100

IPE (1)

MELAGANGAI

BANGKIRAI (1)

1000

1200

WPC 1200

WOODS 900

NOTES: Screwing operations performed without a counterbore cutter and with predrill, as outlined in the previous graph.

(1)

Knurled planking surface.

(2)

Possible brittle fractures due to material heat treatment.

OUTDOOR | SELECTION OF THE FASTENING | 251


CORROSION TYPES AND TRIGGERING FACTORS The corrosion phenomenon involves an electrochemical interaction between a metal and its environment and can lead to degradation of the material and its properties. Although associated with material degradation, corrosion is not in itself negative. In some cases, for example, it enables metals to form a patina to protect them from further corrosion. This is the case with stainless steel or COR-TEN steel.

GENERALISED CORROSION This is the corrosion that affects most metal surfaces exposed to an aggressive environment. A distinction must be made between uniform and uneven generalised corrosion: in the first case, penetration is the same over the entire surface while, in the second, the profile may be more or less regular.

LOCALISED CORROSION - PITTING Pitting corrosion occurs with extremely localised attacks, called pits; from the surface, such pitting penetrates the thickness of the metal very quickly. Pit sizes range from a few tens of microns to a few millimetres; they are triggered and propagate at individual points, leaving most of the metal surface exposed to the environment unaltered.

LOCALISED - CREVICE CORROSION In general, the presence of crevices or surface parts not openly exposed to the environment is always an aggravating factor for corrosion; the expression "crevice corrosion" highlights the contribution the geometric component — in the form of crevices or, more generally, of shielded areas — makes to corrosion. Corrosion is caused in cracks — those interstices that allow the aggressive environment to enter and yet are so narrow as to render negligible any diffusive, convective motion between the inside and outside. Openings ranging from a few hundredths to a few tenths of a millimetre prove critical.

252 | CORROSION | OUTDOOR

In the analysis of corrosion, as for any chemical reaction, the speed of the reaction must also be taken into account. In fact, it is not only important to understand whether or not there may be corrosion, but also how long it takes for it to produce significant degradation of the material.


ADDITIONAL POSSIBLE CORROSION FACTORS

GALVANIC COUPLING

Nickel-Chrome_Mo Alloys Titanium, Silver, Graphite Graphite, Gold, Platinum

Nickel copper alloys

Bronzes, copper-nickel

Copper

Brasses, nickel silvers

Nickel

Lead, tin and alloys

Stainless steels

Cast iron

Steel-carbon

Cadmium

Aluminium & alloys

Zinc & alloys

Corroding Metal

Magnesium & alloys

Contact Metal

This occurs when metals of different nobility are placed into contact with one another and are both immersed in an electrolyte.

HUMIDITY IN THE WOOD

Magnesium & alloys Zinc & alloys Aluminium & alloys Cadmium Steel-carbon Cast iron Stainless steels

PH OF THE WOOD

Lead, tin and alloys Nickel Brasses, nickel silvers Copper Bronzes, copper-nickel Nickel copper alloys Nickel-Chrome_Mo Alloys Titanium, Silver, Graphite Graphite, Gold, Platinum

PROTECTIVE TREATMENTS

FIREPROOFING OR FLAME-RETARDANT TREATMENTS

To achieve effective corrosion protection, careful design of connection and construction details is essential. Careful consideration must be given to environmental conditions such as humidity, temperature, exposure of the wood, marine air pollution, the presence of chemicals and the type of wood. It is generally impossible to determine — in advance and beyond a shadow of a doubt — where the corrosion will take place and (in some cases) by what mechanism, as it is a statistical phenomenon.

USE OF FERTILIZERS, DETERGENTS, THAWING SALTS OR FUNGICIDES

In order to find the best solution to protect the connectors from corrosion, the ideal approach involves the following steps: 1. Analysis of the working environment and environmental conditions; 2. Analysis of the most likely or predominant phenomenon; 3. Selection of the best material taking into account the two previous points; 4. Periodic monitoring.

INSTALLATION GEOMETRY

OUTDOOR | CORROSION | 253


C4 EVO COATING Is a multilayer coating composed of: • An external functional layer of epoxy matrix with aluminium flakes of around 15-20 μm, which gives the coating optimum resistance to mechanical and thermal stresses. The aluminium flakes also serve, when required, as sacrificial cathodes for the metal base of the screw. • A central binding layer for the external functional layer. • A internal layer of around 4 μm zinc microns which acts as an additional layer of corrosion resistance.

EXPERIMENTAL TESTING OF SCREWS CORROSION PERFORMANCE Rothoblaas has conducted numerous experimental tests to evaluate the performance of its connectors under a wide range of exposure conditions and to estimate their resistance to corrosion. Since there is no single test capable of determining the medium-to-long term corrosion resistance of a metal fastener installed in timber elements, reference was made to the following test protocols so as to characterise corrosion performance using different approaches and test methods.

TEST PROTOCOLS: SALT SPRAY

UNI EN ISO 9227:2012 Corrosion tests in artificial atmospheres Salt spray tests HBS EVO

HBS P EVO

TBS EVO

VGZ EVO

SULPHURIC OXIDE EXPOSURE

UNI EN ISO 6988:1998 Metallic and other non-organic coatings Sulfur dioxide test with general condensation of moisture.

CONTINUOUS CONDENSATION

Aluminium Organic matrix

C4 EVO COATING

COATING

Cohesion layer

PROHESION

SALT SPRAY

SCREW BODY

Zn - Zinc Fe - Carbon Steel

UNI EN ISO 6270-2:2005 Paints and varnishes - Determination of resistance to humidity. Part 2: Procedure for exposing test specimens in condensation-water atmospheres.

ASTM G85-A5:2011 Standard Practice for Modified Salt Spray (Fog) Testing Annex A5, dilute electrolyte cyclic fog dry test

CYCLING TESTING

UNI EN ISO 9227:2012

UNI EN ISO 11997-1:2006 Paints and varnishes - Determination of resistance to cyclic corrosion conditions Part 1: Wet (salt fog)/dry/ humidity + ASTM B571:2013 Standard Practice for Qualitative Adhesion Testing of Metallic Coatings

t = 0h

254 | C4 EVO COATING | OUTDOOR

t = 1440h


MATERIALS AND COATINGS

KKT A4 AISI 316 (A4)

KKT A4 color

SCI A4

CORROSION RESISTANCE

THE RIGHT FASTENER FOR EVERY APPLICATION

KWP AISI 305 (A2) SCI A2

AUSTENITIC

EWS A2 SCA A2 AISI 304 (A2) KKZ A2 KKZ BRONZE A2

STAINLESS STEEL

AISI 304 (A2) and carbon steel (tip)

SBS

KKF AISI 410 EWS AISI 410

MARTENSITIC

AISI 410 KKA AISI 410 SHS AISI 410

HBS EVO

C4 EVO ANTI-CORROSION COATING

HBS P EVO TBS EVO

CARBON STEEL

ORGANIC ANTI-CORROSION COATING

KKT

KKAN

ZINC PLATED

HBS

MECHANICAL STRENGTH

VGZ EVO

OUTDOOR | MATERIALS AND COATINGS | 255


KKT COLOR A4 | AISI316

BIT INCLUDED

EN 14592

CONE-SHAPED CONCEALED HEAD SCREW COLOURED HEAD Version in A4 | AISI316 stainless steel with brown, grey or black coloured head. Excellent camouflaging with wood. Ideal for very aggressive environments and for chemically treated woods (acetylation).

COUNTER THREAD The inverse (left-hand) under-head thread guarantees excellent grip. Small conical head to ensure it is hidden in the wood.

TRIANGULAR BODY The three-lobed thread makes it possible to cut the wood grain during screwing. Exceptional wood penetration.

CHARACTERISTICS FOCUS

excellent grip

HEAD

conical, coloured countersunk

DIAMETER

5,0 mm

LENGTH

from 40 mm to 70 mm

MATERIAL A4 | AISI316 austenitic stainless steel with coloured organic coating.

FIELDS OF USE Outdoor use in highly aggressive environments. Wooden boards with density of < 550 kg/m3 (without pre-drill) and < 880 kg/m3 (with predrill). WPC boards (with pre-drill). Suitable for service classes 1-2-3.

256 | KKT COLOR A4 | AISI316 | OUTDOOR


GEOMETRY AND MECHANICAL CHARACTERISTICS A

d2 d1

dk ds

b L

Nominal diameter

d1

[mm]

5,10

Head diameter

dk

[mm]

6,75

Tip diameter

d2

[mm]

3,40

Shank diameter

ds

[mm]

4,05

Pre-drilling hole diameter*

dv

[mm]

3,0 - 4,0

My,k

[Nmm]

fax,k

[N/mm2]

11,7

fhead,k

[N/mm2]

16,5

f tens,k

[kN]

Notched tip

single

Characteristic yield moment Characteristic withdrawal-resistance parameter Characteristic head-pull-through parameter Characteristic tensile strength

5417,2

7,9

* For high density materials, pre-bored holes are recommended based on the wood species.

CODES AND DIMENSIONS d1

CODE

[mm] KKT540A4M 5 TX 20

d1

b

A

[mm]

[mm]

pcs

43

25

16

200

d1

CODE

L

b

A

[mm]

[mm]

[mm]

KKT550A4N

53

35

18

200

KKT560A4N

60

40

22

200

[mm]

KKT550A4M

53

35

18

200

KKT560A4M

60

40

22

200

KKT570A4M

70

50

27

100

CODE

L

b

A

pcs

[mm] 5 TX 20

L [mm]

[mm]

[mm]

[mm]

KKT550A4G

53

35

18

200

KKT560A4G

60

40

22

200

5 TX 20

pcs

CARBONIZED WOOD Ideal for fastening wooden planks with a burnt effect. Can also be used with acetylate-treated woods.

OUTDOOR | KKT COLOR A4 | AISI316 | 257


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE (1)

SCREWS INSERTED WITH PRE-DRILLING HOLE (1)

5

5

a1

[mm]

5∙d

25

4∙d

20

a2

[mm]

3∙d

15

4∙d

20

a3,t

[mm]

12∙d

60

7∙d

35

a3,c

[mm]

7∙d

35

7∙d

35

a4,t

[mm]

3∙d

15

7∙d

35

a4,c

[mm]

3∙d

15

3∙d

15

SCREWS INSERTED WITHOUT PRE-DRILLING HOLES (2) 5 a1

[mm]

8∙d

40

a2

[mm]

4∙d

20

a3,t

[mm]

12∙d

60

a3,c

[mm]

5∙d

25

a4,t

[mm]

5∙d

25

a4,c

[mm]

4∙d

20

d = nominal screw diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

(1)

(2)

The minimum distances are in accordance with ETA-11/0030 considering wood elements with a minimum width of 12 ·d and a minimum thickness of 4 · d.

In the case in which these conditions are not respected, please see the KKF screw for the minimum distances.

258 | KKT COLOR A4 | AISI316 | OUTDOOR

In the case of Douglas fir elements (Pseudotsuga menziesii), the minimum distances parallel to the grain (a1, a3,t, a3,c) must be multiplied by a coefficient of 1,5.


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR timber-to-timber without pre-drilling hole

geometry

TENSION timber-to-timber with pre-drilling hole

thread withdrawal(1)

head pull-through including upper thread withdrawal (2)

legno-legno con preforo A L b d1

d1

L

b

A

[mm] [mm] [mm] [mm]

5

RV,k

RV,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

43

25

16

1,13

1,46

1,69

0,87

53

35

18

1,17

1,54

2,37

0,87

60

40

22

1,28

1,72

2,71

0,87

70

50

27

1,42

1,75

3,38

0,87

NOTES: (1)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

(2)

The axial resistance to head pull-through was calculated using wood elements also considering the underhead thread.

GENERAL PRINCIPLES: • Characteristic values according to EN 1995:2014. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

The coefficients γm and kmod should be taken according to the current regulations used for the calculation. • For the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρ k = 420 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Dimensioning and verification of the timber elements must be carried out separately.

OUTDOOR | KKT COLOR A4 | AISI316 | 259


KKT A4 | AISI316

BIT INCLUDED

EN 14592

CONE-SHAPED CONCEALED HEAD SCREW AGGRESSIVE ENVIRONMENTS Version in A4 | AISI316 stainless steel, ideal for very aggressive environments and for chemically treated woods (acetylation). KKT X version with short length and long bit for use with clips.

COUNTER THREAD The inverse (left-hand) under-head thread guarantees excellent grip. Small conical head to ensure it is hidden in the wood.

TRIANGULAR BODY The three-lobed thread makes it possible to cut the wood grain during screwing. Exceptional wood penetration.

CHARACTERISTICS FOCUS

excellent grip

HEAD

conical, countersunk

DIAMETER

5,0 mm

LENGTH

from 20 mm to 80 mm

MATERIAL A4 | AISI316 austenitic stainless steel.

FIELDS OF USE Outdoor use in highly aggressive environments. Wooden boards with density of < 550 kg/m3 (without pre-drill) and < 880 kg/m3 (with pre-drill). WPC boards (with pre-drill). Suitable for service classes 1-2-3.

260 | KKT A4 | AISI316 | OUTDOOR


GEOMETRY AND MECHANICAL CHARACTERISTICS A

ds d2 d1

d2 d1 dk

dk ds

b L

b L

KKT

KKTX

Nominal diameter

d1

[mm]

Head diameter

dk

[mm]

5,25 6,75

Tip diameter

d2

[mm]

3,40

Shank diameter

ds

[mm]

4,05

Pre-drilling hole diameter*

dv

[mm]

3,0 - 4,0

Notched tip

single

Characteristic yield moment Characteristic withdrawal-resistance parameter Characteristic head-pull-through parameter Characteristic tensile strength

My,k

[Nmm]

fax,k

[N/mm2]

11,7

fhead,k

[N/mm2]

16,5

f tens,k

[kN]

5417,2

7,9

* For high density materials, pre-bored holes are recommended based on the wood species.

CODES AND DIMENSIONS KKT A4 | AISI316 d1

CODE

L

b

A

[mm]

[mm]

[mm]

KKT540A4

43

25

16

200

KKT550A4

53

35

18

200

KKT560A4

60

40

22

200

KKT570A4

70

50

27

100

KKT580A4

80

53

35

100

[mm]

5 TX 20

KKT X A4 | AISI316 pcs

d1

CODE

L

b

A

[mm]

[mm]

[mm]

KKTX520A4

20

16

4

200

KKTX525A4

25

21

4

200

[mm]

5 TX 20

pcs

KKTX530A4

30

26

4

200

KKTX540A4

40

36

4

200

Total threaded screw

LONG BIT INCLUDED code TX2050

KKT X Ideal for fastening standard Rothoblaas clips (TVM, TERRALOCK) in outdoor environments. Long bit included in each package.

OUTDOOR | KKT A4 | AISI316 | 261


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE (1)

SCREWS INSERTED WITH PRE-DRILLING HOLE (1)

5

6

5∙d

25

30

4∙d

20

24

3∙d

15

18

4∙d

20

24

[mm]

12∙d

60

72

7∙d

35

42

a3,c

[mm]

7∙d

35

42

7∙d

35

42

a4,t

[mm]

3∙d

15

18

7∙d

35

42

a4,c

[mm]

3∙d

15

18

3∙d

15

18

a1

[mm]

a2

[mm]

a3,t

5

6

SCREWS INSERTED WITHOUT PRE-DRILLING HOLES (2) a1

[mm]

a2

[mm]

5

6

8∙d

40

48

4∙d

20

24

a3,t

[mm]

12∙d

60

72

a3,c

[mm]

5∙d

25

30

a4,t

[mm]

5∙d

25

30

a4,c

[mm]

4∙d

20

24

d = nominal screw diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

(1)

(2)

The minimum distances are in accordance with ETA-11/0030 considering wood elements with a minimum width of 12 ·d and a minimum thickness of 4 · d.

In the case in which these conditions are not respected, please see the KKF screw for the minimum distances.

262 | KKT A4 | AISI316 | OUTDOOR

In the case of Douglas fir elements (Pseudotsuga menziesii), the minimum distances parallel to the grain (a1, a3,t, a3,c) must be multiplied by a coefficient of 1,5.


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014

KKT

SHEAR timber-to-timber without pre-drilling hole

geometry

TENSION timber-to-timber with pre-drilling hole

thread withdrawal(1)

head pull-through including upper thread withdrawal (2)

legno-legno con preforo A L b d1

d1

L

b

A

[mm] [mm] [mm] [mm]

5

RV,k

RV,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

43

25

16

1,13

1,46

1,69

0,87

53

35

18

1,17

1,54

2,37

0,87

60

40

22

1,28

1,72

2,71

0,87

70

50

27

1,42

1,75

3,38

0,87

80

53

35

1,45

1,75

3,59

0,87

KKTX

SHEAR

SHEAR

geometry

intermediate steel-timber plate (3)

thread withdrawal(1)

Splate

L b

d1

d1

RV,k

Rax,k

[kN]

[kN]

5

L

b

20(4)

24

3

25

30

3

30

35

3

40

40

3

SPLATE = 3,0 mm

SPLATE

[mm] [mm] [mm] [mm]

0,87

1,08

1,08

1,42

1,30

1,76

1,73

2,44

NOTES: The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

(1)

(2)

The axial resistance to head pull-through was calculated using wood elements also considering the underhead thread.

The shear resistance characteristics are calculated considering the case of an intermediate plate (0,5 d1 ≤ SPLATE ≤ d1).

(3)

This screw has not been granted the CE marking.

(4)

GENERAL PRINCIPLES: • Characteristic values according to EN 1995:2014. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

The coefficients γm and kmod should be taken according to the current regulations used for the calculation. • For the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρ k = 420 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Dimensioning and verification of timber elements and steel plates must be carried out separately. • The KKT A4 screws with double thread are mainly used for timber-to-timber joints. • The KKT X total thread screws are mainly used for steel plates (e.g. TERRALOCK patio system).

OUTDOOR | KKT A4 | AISI316 | 263


KKT COLOR

BIT INCLUDED

EN 14592

CONE-SHAPED CONCEALED HEAD SCREW COLOURED COATING Carbon steel version with coloured anti-rust coating (brown, grey, green, sand and black) for outdoor use in service class 3.

COUNTER THREAD The inverse (left-hand) under-head thread guarantees excellent grip. Small conical head to ensure it is hidden in the wood.

TRIANGULAR BODY The three-lobed thread makes it possible to cut the wood grain during screwing. Exceptional wood penetration.

CHARACTERISTICS FOCUS

complete range of colours

HEAD

conical, countersunk

DIAMETER

5,0 | 6,0 mm

LENGTH

from 40 mm to 120 mm

MATERIAL Carbon steel with coloured organic anti-rust coating.

FIELDS OF USE Outdoor use. Wooden boards with density of < 780 kg/m3 (without pre-drill) and < 880 kg/m3 (with pre-drill). WPC boards (with pre-drill). Suitable for service classes 1-2-3.

264 | KKT COLOR | OUTDOOR


GEOMETRY AND MECHANICAL CHARACTERISTICS A

d2 d1

dk ds

b L

Nominal diameter

d1

[mm]

5,10

Head diameter

dk

[mm]

6,75

7,75

Tip diameter

d2

[mm]

3,40

3,90

Shank diameter

ds

[mm]

4,05

4,40

Pre-drilling hole diameter*

dv

[mm]

3,0 - 4,0

4,0 - 5,0

double

double

My,k

[Nmm]

5417,2

9493,7

fax,k

[N/mm2]

11,7

11,7

fhead,k

[N/mm2]

16,5

16,5

f tens,k

[kN]

7,9

11,3

Notched tip Characteristic yield moment Characteristic withdrawal-resistance parameter Characteristic head-pull-through parameter Characteristic tensile strength

6,00

* For high density materials, pre-bored holes are recommended based on the wood species.

CODES AND DIMENSIONS d1 [mm]

5 TX 20

6 TX 25

d1 [mm]

5 TX 20

CODE KKTM540 KKTM550 KKTM560 KKTM570 KKTM580 KKTM660 KKTM680 KKTM6100 KKTM6120 CODE KKTG540 KKTG550 KKTG560 KKTG570 KKTG580

L [mm] 43 53 60 70 80 60 80 100 120

b [mm] 25 35 40 50 53 40 50 50 60

A [mm] 16 18 22 27 35 20 30 50 60

L [mm] 43 53 60 70 80

b [mm] 25 35 40 50 53

A [mm] 16 18 22 27 35

pcs

d1 [mm]

200 200 200 100 100 100 100 100 100

5 TX 20

d1 [mm] 5 TX 20

pcs

d1 [mm]

200 200 200 100 100

5 TX 20 (1)

CODE KKTV540 KKTV550 KKTV560 KKTV570 KKTV580 CODE KKTS550 KKTS560 KKTS570 CODE KKTN540(1) KKTN550 KKTN560

L [mm] 40 53 60 70 80

b [mm] 24 35 40 50 45

A [mm] 16 18 22 27 35

L [mm] 53 60 70

b [mm] 35 40 50

A [mm] 18 22 27

L [mm] 40 53 60

b [mm] 36 35 40

A [mm] 16 18 22

pcs 200 200 200 100 100 pcs 200 200 100 pcs 200 200 200

total threaded screw.

KKT N Ideal for fastening standard Rothoblaas clips (TVM, TERRALOCK) in outdoor environments. Bit included in each package.

OUTDOOR | KKT COLOR | 265


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE (1)

SCREWS INSERTED WITH PRE-DRILLING HOLE (1)

5

6

25

30

5

6

4∙d

20

24

a1

[mm]

a2

[mm]

3∙d

15

18

4∙d

20

24

a3,t

[mm]

12∙d

60

72

7∙d

35

42

a3,c

[mm]

7∙d

35

42

7∙d

35

42

a4,t

[mm]

3∙d

15

18

7∙d

35

42

a4,c

[mm]

3∙d

15

18

3∙d

15

18

5∙d

SCREWS INSERTED WITHOUT PRE-DRILLING HOLES (2) 5

6

a1

[mm]

8∙d

40

48

a2

[mm]

4∙d

20

24

a3,t

[mm]

12∙d

60

72

a3,c

[mm]

5∙d

25

30

a4,t

[mm]

5∙d

25

30

a4,c

[mm]

4∙d

20

24

d = nominal screw diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

(1)

(2)

The minimum distances are in accordance with ETA-11/0030 considering wood elements with a minimum width of 12 ·d and a minimum thickness of 4 · d.

In the case in which these conditions are not respected, please see the KKF screw for the minimum distances.

266 | KKT COLOR | OUTDOOR

In the case of Douglas fir elements (Pseudotsuga menziesii), the minimum distances parallel to the grain (a1, a3,t, a3,c) must be multiplied by a coefficient of 1,5.


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014

KKT

SHEAR timber-to-timber without pre-drilling hole

geometry

TENSION timber-to-timber with pre-drilling hole legno-legno con preforo

thread withdrawal(1)

head pull-through including upper thread withdrawal (2)

A L b d1

d1

L

b

A

[mm] [mm] [mm] [mm]

5

6

RV,k

RV,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

43

25

16

1,13

1,46

1,69

0,87

53

35

18

1,17

1,54

2,37

0,87

60

40

22

1,28

1,72

2,71

0,87

70

50

27

1,42

1,75

3,38

0,87

80

53

35

1,45

1,75

3,59

0,87

60

40

20

1,57

2,11

3,41

1,15

80

50

30

1,87

2,50

4,06

1,15

100

50

50

2,03

2,50

4,06

1,15

120

60

60

2,03

2,50

4,87

1,15

KKT N

SHEAR

TENSION

geometry

intermediate steel-timber plate (3)

thread withdrawal(1)

RV,k

Rax,k

Splate

L b

d1

d1

L

b

SPLATE

[mm] [mm] [mm] [mm] 5

40

36

3

[kN] SPLATE = 3,0 mm

[kN] 1,73

2,44

NOTES: The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

• For the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030.

(2)

The axial resistance to head pull-through was calculated using wood elements also considering the underhead thread.

• For the calculation process a timber characteristic density ρ k = 420 kg/m3 has been considered.

(3)

The shear resistance characteristics are calculated considering the case of an intermediate plate (0,5 d1 ≤ SPLATE ≤ d1).

• Values were calculated considering the threaded part as being completely inserted into the wood.

(1)

GENERAL PRINCIPLES: • Characteristic values according to EN 1995:2014. • Design values can be obtained from characteristic values as follows:

R k Rd = k mod γm

• Dimensioning and verification of timber elements and steel plates must be carried out separately. • The KKT screws with double thread are mainly used for timber-to-timber joints. • The KKT total thread screws are mainly used for steel plates (e.g. FLAT patio system).

The coefficients γm and kmod should be taken according to the current regulations used for the calculation.

OUTDOOR | KKT COLOR | 267


KKZ A2 | AISI304

BIT INCLUDED

EN 14592

COUNTERSUNK CYLINDRICAL HEAD SCREW HARD WOODS Special tip with sword-shaped geometry specially designed to efficiently drill very high density woods without pre-drill (with pre-drill, over 1000 kg/m3).

DOUBLE THREAD The larger diameter right-hand under-head thread ensures an effective grip, guaranteeing good coupling of the wooden elements. Concealed head.

BURNISHED VERSION Available in a version in antique-burnished stainless steel, ideal to guarantee superb camouflaging in the wood.

CHARACTERISTICS FOCUS

exceptional hardwood perforation

HEAD

cylindrical, countersunk

DIAMETER

5,0 mm

LENGTH

from 50 mm to 70 mm

MATERIAL A2 | AISI304 austenitic stainless steel.

FIELDS OF USE Outdoor use in highly aggressive environments.Wooden boards with density of < 780 kg/m3 (without pre-drill) and < 1240 kg/m3 (with pre-drill). WPC boards (with pre-drill). Suitable for service classes 1-2-3.

268 | KKZ A2 | AISI304 | OUTDOOR


GEOMETRY A ds d2 d1

dk t1

b1

b2 L

Nominal diameter

d1

[mm]

5

Head diameter

dK

[mm]

6,80

Tip diameter

d2

[mm]

3,50

Shank diameter

dS

[mm]

4,35

Head thickness

t1

[mm]

3,10

Pre-drilling hole diameter

dV

[mm]

3,50

CODES AND DIMENSIONS KKZ A2 | AISI304 d1

CODE

[mm] 5 TX 25

KKZ BRONZE A2 | AISI304 L

b1

b2

A

pcs

[mm] [mm] [mm] [mm]

d1

CODE

L

[mm]

KKZ550

50

22

11

28

200

KKZ560

60

27

11

33

200

KKZ570

70

32

11

38

100

5 TX 25

b1

b2

A

pcs

[mm] [mm] [mm] [mm] KKZB550

50

22

11

28

200

KKZB560

60

27

11

33

200

HARD WOOD Also tested on very high density woods, such as IPE, massaranduba or bamboo Microllam® (over 1000 kg/m3).

OUTDOOR | KKZ A2 | AISI304 | 269


KWP A2 | AISI305

BIT INCLUDED

CYLINDRICAL HEAD SCREW FOR WPC BOARDS WPC BOARDS Special geometry specifically designed for fastening WPC (Wood Plastic Composite) boards to a wood or WPC substructure, even without pre-drilling.

TRIPLE THREAD The combination of the two under-head threads causes removal of the WPC fibres. Exceptional penetration into the WPC, even without pre-drilling.

VOLCANO EFFECT Removal of plastic fibres from the WPC guarantees an excellent board finish. Small conical head ensures that it will be concealed in the WPC.

CHARACTERISTICS FOCUS

removal of shavings from WPC boards

HEAD

cylindrical, countersunk

DIAMETER

5,0 mm

LENGTH

from 60 mm to 70 mm

MATERIAL A2 | AISI305 austenitic stainless steel.

FIELDS OF USE Outdoor use in highly aggressive environments. WPC boards (without pre-drill). Wooden boards with density of < 780 kg/m3 (without pre-drill) and < 880 kg/m3 (with pre-drill). Suitable for service classes 1-2-3.

270 | KWP A2 | AISI305 | OUTDOOR


GEOMETRY A d3 d2 d1

dk t1

b3

b2

b1 L

Nominal diameter

d1

[mm]

5

Head diameter

dk

[mm]

6,75 3,30

Tip diameter

d2

[mm]

Shank diameter

ds

[mm]

2,30

Pre-drilling hole diameter

dv

[mm]

3,00

CODES AND DIMENSIONS d1

CODE

[mm] 5 TX 20

L

b1

b2

b3

A

pcs

[mm]

[mm]

[mm]

[mm]

[mm]

KWP560

60

36

15

6.5

25

200

KWP570

70

46

15

6.5

25

100

WOOD PLASTIC COMPOSITE (WPC) Ideal for fastening WPC boards, both solid and perforated, even without pre-drilling.

OUTDOOR | KWP A2 | AISI305 | 271


KKA AISI410

BIT INCLUDED

SELF-DRILLING SCREW TIMBER-TO-TIMBER | TIMBER-TO-ALUMINIUM TIMBER-TO-ALUMINIUM Self-perforating timber-to-metal tip with special bleeder geometry. Ideal for fastening timber or WPC boards to aluminium substructures.

TIMBER-TO-TIMBER Also ideal for fastening timber or WPC boards to thin wooden substructures, they, too, made with wooden boards. AISI410 stainless steel.

METAL-TO-ALUMINIUM Short version ideal for fastening clips, plates and angle brackets to aluminium substructures. Can be used to fix aluminium-aluminium overlaps.

CHARACTERISTICS FOCUS

self-drilling, timber-aluminium

HEAD

cylindrical, countersunk

DIAMETER

4,0 | 5,0 mm

LENGTH

from 20 mm to 50 mm

MATERIAL AISI410 martensitic stainless steel.

FIELDS OF USE Outdoor use. Wooden boards with density of < 880 kg/m3 on aluminium with a thickness of < 3.2 mm (without pre-drill). Suitable for service classes 1-2-3.

272 | KKA AISI410 | OUTDOOR


GEOMETRY s

A

ds

b2

b1

d2 d1

dk

d2 d1

dk

s1=s2

t1

s1=s2

t1

Lp

b1 L

Lp

L KKA Ø5

KKA Ø4

Nominal diameter

d1

[mm]

4

5

Head diameter

dk

[mm]

6,30

6,80

Tip diameter

d2

[mm]

2,80

3,50

Shank diameter

ds

[mm]

3,50

3,80

Head thickness

t1

[mm]

3,10

3,35

Tip length

Lp

[mm]

5,50

6,50

CODES AND DIMENSIONS d1

CODE

[mm] 4 KKA420 TX 20

L

b1

b2

A

s1=s2

pcs

[mm] [mm] [mm] [mm] [mm] 20

11,4

-

-

1÷2,5

d1

CODE

[mm] 200

L

b1

b2

A

s1=s2

pcs

[mm] [mm] [mm] [mm] [mm] KKA540

5 TX 25 KKA550

40

15,5

11

29

2÷3

100

50

20,5

11

39

2÷3

100

s1 thickness, steel plate S235/St37 s2 thickness, aluminium plate

ALU TERRACE Ideal for fastening timber or WPC boards, clips or angle brackets to aluminium substructures.

OUTDOOR | KKA AISI410 | 273


KKA COLOR

BIT INCLUDED

SELF-DRILLING SCREW FOR ALUMINIUM ALUMINIUM Self-perforating tip with special bleeder geometry. Ideal for fastening clips to aluminium substructures.

COLOURED COATING Black anti-rust coating for outdoor use in service class 3. Concealed effect on dark substructures and clips.

METAL-TO-ALUMINIUM Short version ideal for fastening clips, plates and angle brackets to steel or aluminium substructures. Can be used to fix metal-metal overlaps.

CHARACTERISTICS FOCUS

self-drilling aluminium

HEAD

cylindrical, countersunk

DIAMETER

4,0 and 5,0 mm

LENGTH

from 20 mm to 40 mm

MATERIAL Carbon steel with coloured organic anti-rust coating.

FIELDS OF USE Outdoor use. Aluminium thickness < 3.2 mm (without pre-drill). Suitable for service classes 1-2-3.

274 | KKA COLOR | OUTDOOR


GEOMETRY s

A

d2 d1

dk b

s1=s2

t1

s1=s2

t1

d2 d1

dk b1 L

Lp

L KKAN Ø4x30 - KKAN Ø4x40

Lp

KKAN Ø4x20

Nominal diameter

d1

[mm]

4

5

Head diameter

dk

[mm]

6,30

6,80

Tip diameter

d2

[mm]

2,80

3,50

Head thickness

t1

[mm]

3,10

3,35

Tip length

Lp

[mm]

5,50

6,50

CODES AND DIMENSIONS d1

CODE

[mm]

L

b

A

s1=s2

pcs

[mm]

[mm]

[mm]

[mm]

KKAN420

20

10

-

2÷3

4 KKAN430 TX 20 KKAN440

30

20

22

2÷3

200

40

30

32

2÷3

200

40

29

29

2÷3

200

5 KKAN540 TX 25

200

s1 thickness, steel plate S235/St37 s2 thickness, aluminium plate

TVM COLOR Ideal for fastening standard Rothoblaas clips (TVMN) on aluminium. Long bit included in each package.

OUTDOOR | KKA COLOR | 275


EWS

BIT INCLUDED

EN 14592

CONE-SHAPED CONCEALED HEAD SCREW CONVEX HEAD Countersunk teardrop shaped head with curved surface for a pleasant look and firm grip with the bit.

ROBUST BODY The increased shank diameter with high torsional strength for a strong, safe screwing even in high density woods.

STAINLESS STEEL AISI410 E A2 | AISI305 EWS AISI410 can be used, without pre-drill, in woods having a maximum density of 880 kg/m3. EWS A2 | AISI305 can be used, without pre-drill, in woods having a maximum density of 550 kg/m3.

CHARACTERISTICS FOCUS

increased diameter for hardwoods

HEAD

convex with ribs

DIAMETER

5,0 mm

LENGTH

from 50 mm to 80 mm

MATERIAL Austenitic stainless steel A2 | AISI305 and martensitic stainless steel AISI410,

FIELDS OF USE Outdoor use. WPC boards (with pre-drill). EWS A2 | AISI305: wooden boards with density of < 550 kg/m3 (without pre-drill) and < 880 kg/m3 (with pre-drill). EWS AISI410: wooden boards with density of < 880 kg/m3 (without pre-drill). Suitable for service classes 1-2-3.

276 | EWS | OUTDOOR


GEOMETRY AND MECHANICAL CHARACTERISTICS A

d2 d1

dk ds

t1

b L

EWS AISI410

EWS A2 | AISI305

Nominal diameter

d1

[mm]

5,3

5,3

Head diameter

dk

[mm]

8,00

8,00

Tip diameter

d2

[mm]

3,90

3,90

Shank diameter

ds

[mm]

4,10

4,10

Head thickness

t1

[mm]

3,65

3,65

Pre-drilling hole diameter

dv

[mm]

3,50

3,50

Characteristic yield moment

My,k

[Nmm]

14278

9691

Characteristic withdrawal-resistance parameter

fax,k

[N/mm2]

16,46

16,62

Associated density

ρa

[kg/m ]

350

320

fhead,k

[N/mm2]

21,05

21,44

ρa

[kg/m3]

350

350

f tens,k

[kN]

13,74

7,35

Characteristic head-pull-through parameter Associated density Characteristic tensile strength

3

CODES AND DIMENSIONS EWS AISI410 d1

CODE

[mm] EWS550 5 TX 25

EWS A2 | AISI305 L

b

A

[mm]

[mm]

[mm]

50

30

20

pcs

d1

CODE

[mm] 200

EWS560

60

36

24

200

EWS570

70

42

28

100

EWS580

80

48

32

100

5 TX 25

L

b

A

pcs

[mm]

[mm]

[mm]

EWSA2550

50

30

20

200

EWSA2560

60

36

24

200

EWSA2570

70

42

28

100

TECHNICAL DOCUMENTATION Values available for compliance with national unified technical documents for outdoor wooden decking.

OUTDOOR | EWS | 277


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES

SCREWS INSERTED WITH PRE-DRILLING HOLES

5 a1

[mm]

a2

[mm]

a3,t

[mm]

a3,c

[mm]

a4,t

[mm]

a4,c

[mm]

3∙d

5∙d

5

25

4∙d

20

3∙d

15

4∙d

20

12∙d

60

7∙d

35

7∙d

35

7∙d

35

3∙d

15

7∙d

35

15

3∙d

15

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

5

5

a1

[mm]

12∙d

60

5∙d

25

a2

[mm]

5∙d

25

5∙d

25

a3,t

[mm]

15∙d

75

10∙d

50

a3,c

[mm]

10∙d

50

10∙d

50

a4,t

[mm]

5∙d

25

10∙d

50

a4,c

[mm]

5∙d

25

5∙d

25

d = nominal screw diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F a3,t

NOTES: • The minimum distances are in accordance with EN 1995:2014 considering a wood characteristic density of ρ k ≤ 420 kg/m3.

278 | EWS | OUTDOOR

F α

α a3,c

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014

EWS

SHEAR

TENSION

geometry

timber-to-timber

thread withdrawal (1)

head pull-through (2)

Rax,k

Rhead,k

A L b d1

d1

L

b

A

[mm] [mm] [mm] [mm]

5

without pre-drilling hole

with pre-drilling hole

RV,k

RV,k

[kN]

[kN]

[kN]

[kN]

50

30

20

1,38

1,84

2,86

1,56

60

36

30

1,54

2,07

3,43

1,56

70

42

40

1,75

2,27

4,00

1,56

80

48

50

1,81

2,27

4,57

1,56

EWS A2

SHEAR

TENSION

geometry

timber-to-timber

thread withdrawal (1)

head pull-through (2)

Rax,k

Rhead,k

A L b d1

d1

L

b

A

[mm] [mm] [mm] [mm] 5

without pre-drilling hole

with pre-drilling hole

RV,k

RV,k

[kN]

[kN]

[kN]

[kN]

50

30

20

1,39

1,80

2,88

1,59

60

36

30

1,55

2,08

3,46

1,59

70

42

40

1,68

2,14

4,04

1,59

NOTES:

GENERAL PRINCIPLES:

(1)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

(2)

The axial resistance to head pull-through, with and without a washer, was calculated using wood elements. In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

The coefficients γm and kmod should be taken according to the current regulations used for the calculation. • For the calculation process a timber characteristic density ρ k = 420 kg/m3 has been considered. • Values were calculated considering the threaded part as being completely inserted into the wood. • Dimensioning and verification of the timber elements must be carried out separately.

OUTDOOR | EWS | 279


KKF AISI410

BIT INCLUDED

ETA 11/0030

PAN HEAD SCREW PAN HEAD The flat under-head accompanies absorption of the shavings, preventing the wood from cracking and thus ensuring excellent surface finish.

LONGER THREAD

Special asymmetric “umbrella” thread with increased length (60%) for higher grip. Fine thread for the utmost precision when tightening is complete.

AISI410 Martensitic stainless steel with an excellent balance between mechanical resistance and corrosion resistance. Can be inserted without requiring a pre-drill.

CHARACTERISTICS FOCUS

excellent versatility of use

HEAD

pan head

DIAMETER

from 4,0 mm to 6,0 mm

LENGTH

from 20 mm to 120 mm

MATERIAL AISI410 martensitic stainless steel.

FIELDS OF USE Outdoor use. Wooden boards with density < 780 kg/m3 (without pre-drill). WPC boards (with pre-drill). Suitable for service classes 1-2-3.

280 | KKF AISI410 | OUTDOOR


GEOMETRY AND MECHANICAL CHARACTERISTICS

dk

d2 d1

X X

KK F

A

ds

t1

b L

Nominal diameter

d1

[mm]

4

4,5

5

6

Head diameter

dk

[mm]

7,80

8,80

8,80

11,80

Tip diameter

d2

[mm]

2,60

3,05

3,25

4,05

Shank diameter

ds

[mm]

2,90

3,35

3,60

4,30

Head thickness

t1

[mm]

5,00

5,00

6,00

7,00

Pre-drilling hole diameter

dv

[mm]

2,5

3,0

3,0

4,0

My,k

[Nmm]

3032,6

4119,1

5417,2

9493,7

fax,k

[N/mm2]

11,7

11,7

11,7

11,7

fhead,k

[N/mm2]

16,5

16,5

16,5

16,5

f tens,k

[kN]

5,0

6,4

7,9

11,3

Characteristic yield moment Characteristic withdrawal-resistance parameter Characteristic head-pull-through parameter Characteristic tensile strength

CODES AND DIMENSIONS d1

CODE

[mm]

4 TX 20

4,5 TX 20

L

b

A

[mm]

[mm]

[mm]

pcs

d1

CODE

[mm]

L

b

A

[mm]

[mm]

[mm]

pcs

KKF430

30

18

12

500

KKF540

40

24

16

200

KKF435

35

20

15

500

KKF550

50

30

20

200

KKF440

40

24

16

500

KKF445

45

30

15

200

5 TX 25

KKF560

60

35

25

200

KKF570

70

40

30

200

KKF450

50

30

20

200

KKF580

80

50

30

100

KKF4520

20

15

5

200

KKF590

90

55

35

100

KKF4540

40

24

16

200

KKF5100

100

60

40

100

KKF4545

45

30

15

200

KKF680

80

50

30

100

KKF6100

100

60

40

100

KKF6120

120

75

45

100

KKF4550

50

30

20

200

KKF4560

60

35

25

200

KKF4570

70

40

30

200

6 TX 30

TERRALOCK PP Ideal for fastening standard Rothoblaas clips in outdoor environments. Long bit included in each package.

OUTDOOR | KKF AISI410 | 281


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE (1)

SCREWS INSERTED WITH PRE-DRILLING HOLE (1)

4

4,5

20

23

5

6

25

30

4∙d

15

18

4∙d

60

72

7∙d

4

4,5

5

6

16

18

4∙d

20

24

16

18

4∙d

20

24

28

32

7∙d

35

42

a1

[mm]

a2

[mm]

3∙d

12

14

3∙d

a3,t

[mm]

12∙d

48

54

12∙d

a3,c

[mm]

7∙d

28

32

7∙d

35

42

7∙d

28

32

7∙d

35

42

a4,t

[mm]

3∙d

12

14

3∙d

15

18

5∙d

20

23

7∙d

35

42

a4,c

[mm]

3∙d

12

14

3∙d

15

18

3∙d

12

14

3∙d

15

18

5∙d

5∙d

characteristic density: ρ k ≤ 420 kg/m3 SCREWS INSERTED WITHOUT PRE-DRILLING HOLES (2) 4

4,5

40

45

a1

[mm]

a2

[mm]

5∙d

20

a3,t

[mm]

15∙d

60

a3,c

[mm]

10∙d

40

a4,t

[mm]

5∙d

20

a4,c

[mm]

5∙d

20

10∙d

SCREWS INSERTED WITHOUT PRE-DRILLING HOLES (2)

5

6

12∙d

60

72

23

5∙d

25

30

5∙d

20

23

5∙d

25

30

68

15∙d

75

90

10∙d

40

45

10∙d

50

60

45

10∙d

50

60

10∙d

40

45

10∙d

50

60

23

5∙d

25

30

7∙d

28

32

10∙d

50

60

23

5∙d

25

30

5∙d

20

23

5∙d

25

30

5∙d

4

4,5

20

23

5∙d

5

6

25

30

characteristic density: 420 ≤ ρ k ≤ 500 kg/m3 SCREWS INSERTED WITHOUT PRE-DRILLING HOLES (3) 4

4,5

5

6

SCREWS INSERTED WITHOUT PRE-DRILLING HOLES (3) 4

4,5

5

6

a1

[mm]

15∙d

60

68

15∙d

75

90

7∙d

28

32

7∙d

35

42

a2

[mm]

7∙d

28

32

7∙d

35

42

7∙d

28

32

7∙d

35

42

a3,t

[mm]

20∙d

80

90

20∙d

100

120

15∙d

60

68

15∙d

75

90

a3,c

[mm]

15∙d

60

68

15∙d

75

90

15∙d

60

68

15∙d

75

90

a4,t

[mm]

7∙d

28

32

7∙d

35

42

9∙d

36

41

12∙d

60

72

a4,c

[mm]

7∙d

28

32

7∙d

35

42

7∙d

28

32

7∙d

35

42

d = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES: (1)

The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• In the case of OSB-timber joints, the minimum spacings (a1, a2) can be multiplied by a coefficient of 0,85.

(2)

The minimum distances are in accordance with EN 1995:2014, according to ETA-11/0030, considering a timber element mass density of ρk ≤ 420 kg/m3.

(3)

The minimum distances comply with EN 1995:2014, according to ETA11/0030, considering a timber element mass density of 420 ≤ ρ k ≤ 500 kg/m3.

• In the case of Douglas fir elements (Pseudotsuga menziesii), the minimum distances parallel to the grain (a1, a3,t, a3,c) must be multiplied by a coefficient of 1,5.

282 | KKF AISI410 | OUTDOOR


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

timber-to-timber

TENSION panel-timber (1)

thread withdrawal (2)

head pull-through (3)

A L b d1

L

b

A

4

4,5

5

6

RV,k

RV,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

30

18

12

0,83

0,81

0,97

35

20

15

0,94

0,90

1,08

40

24

16

0,98

0,94

1,30

45

30

15

0,96

0,94

1,62

50

30

20

1,08

0,94

1,62

20(4)

15

5

0,49

0,49

0,91

40

24

16

1,16

1,07

1,46

45

30

15

1,14

1,07

1,83

50

30

20

1,26

1,07

1,83

60

35

25

1,40

70

40

30

1,41

40

24

16

1,27

50

30

20

1,37

SPAN = 15 mm

d1

[mm] [mm] [mm] [mm]

1,07

2,13

1,07

2,44

1,17

1,62

1,17

2,03

60

35

25

1,51

1,17

2,37

70

40

30

1,60

1,17

2,71

80

50

30

1,60

1,17

3,38

90

55

35

1,60

1,17

3,72

100

60

40

1,60

1,17

4,06

80

50

30

2,25

1,57

4,06

100

60

40

2,41

1,57

4,87

120

75

45

2,41

1,57

6,09

1,16

1,48

1,48

2,66

NOTES: (1)

(2)

The shear characteristic resistances are calculated considering an OSB panel or particle board with a S PAN thickness.

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

• For the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030. • For the calculation process a timber characteristic density ρ k = 420 kg/m3 has been considered.

(3)

The axial resistance to head pull-through was calculated using wood elements.

• Values were calculated considering the threaded part as being completely inserted into the wood.

(4)

This screw has not been granted the CE marking.

• Sizing and verification of the wooden elements and panels must be done separately.

GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

The coefficients γm and kmod should be taken according to the current regulations used for the calculation.

OUTDOOR | KKF AISI410 | 283


SCI A4 | AISI316

BIT INCLUDED

COUNTERSUNK SCREW SPECIAL GEOMETRY Self-perforating tip with setback notch, asymmetric “umbrella” thread, elongated cutter and sharp under-head ribs.

SUPERIOR STRENGTH Geometric details provide the screw with greater torsional strength for more secure screwing.

A4 | AISI316 A4 | AISI316 austenitic stainless steel for high corrosion resistance. Ideal for seaside environments.

CHARACTERISTICS FOCUS

HBS geometry technology

HEAD

countersunk with ribs

DIAMETER

5,0 mm

LENGTH

from 50 mm to 100 mm

MATERIAL A4 | AISI316 austenitic stainless steel.

FIELDS OF USE Outdoor use in highly aggressive environments. Wooden boards with density of < 470 kg/m3 (without pre-drill) and < 620 kg/m3 (with pre-drill). Suitable for service classes 1-2-3.

284 | SCI A4 | AISI316 | OUTDOOR


GEOMETRY AND MECHANICAL CHARACTERISTICS

SC I

dk

X X

A

d2 d1

90° ds

t1

b L

Nominal diameter

d1

[mm]

5

Head diameter

dk

[mm]

10,00 3,40

Tip diameter

d2

[mm]

Shank diameter

ds

[mm]

3,70

Head thickness

t1

[mm]

4,65

Pre-drilling hole diameter

dv

[mm]

Characteristic yield moment

My,k

[Nmm]

Characteristic withdrawal-resistance parameter

fax,k

[N/mm2]

17,9

Associated density

ρa

[kg/m3]

440

Characteristic head-pull-through parameter

fhead,k

[N/mm2]

17,6

Associated density

ρa

[kg/m3]

440

Characteristic tensile strength

f tens,k

[kN]

4,3

3,0 3939,8

Mechanical parameters from experimental tests.

CODES AND DIMENSIONS d1

CODE

[mm]

5 TX 25

L

b

A

[mm]

[mm]

[mm]

pcs

SCI5050A4

50

24

26

200

SCI5060A4

60

30

30

200

SCI5070A4

70

35

35

100

SCI5080A4

80

40

40

100

SCI5090A4

90

45

45

100

SCI50100A4

100

50

50

100

TURNED WASHER SCB A4 | AISI316 dSCI

CODE

[mm]

D1

D2

h

pcs

[mm]

[mm]

[mm]

6

SCB6

7,5

20,0

4,0

100

8

SCB8

8,5

25,0

5,0

100

D 2 D1

h dSCI

MARINE ENVIRONMENTS Can be used in aggressive environments and in areas near the sea thanks to the A4 | AISI316 stainless steel.

OUTDOOR | SCI A4 | AISI316 | 285


SCI A2 | AISI305

BIT INCLUDED

EN 14592

COUNTERSUNK SCREW SPECIAL GEOMETRY Self-perforating tip with setback notch, asymmetric “umbrella” thread, elongated cutter and sharp under-head ribs.

SUPERIOR STRENGTH Geometric details provide the screw with greater torsional strength for more secure screwing. Very broad range of measurements.

A2 | AISI305 Austenitic stainless steel A2 | AISI305 for high corrosion resistance. Ideal for aggressive environments.

CHARACTERISTICS FOCUS

HBS geometry technology

HEAD

countersunk with ribs

DIAMETER

from 3,5 mm to 8,0 mm

LENGTH

from 25 mm to 320 mm

MATERIAL A2 | AISI305 austenitic stainless steel.

FIELDS OF USE Use in aggressive outdoor environments. Wooden boards with density of < 470 kg/m3 (without pre-drill) and < 620 kg/m3 (with predrill). Suitable for service classes 1-2-3.

286 | SCI A2 | AISI305 | OUTDOOR


GEOMETRY AND MECHANICAL CHARACTERISTICS

SC I

dk

X X

A

d2 d1

90° t1

ds

b L

Nominal diameter Head diameter Tip diameter Shank diameter

d1 dk d2 ds

[mm] [mm] [mm] [mm]

3,5 7,00 2,25 2,55

4 8,00 2,55 2,80

4,5 9,00 2,80 3,25

5 10,00 3,40 3,70

6 12,00 3,95 4,45

8 14,50 5,40 5,85

Head thickness

t1

[mm]

3,50

3,80

4,25

4,65

5,30

6,00

Pre-drilling hole diameter Characteristic yield moment Characteristic withdrawal-resistance parameter Associated density Characteristic head-pull-through parameter Associated density Characteristic tensile strength

dv My,k fax,k ρa fhead,k ρa f tens,k

[mm] [Nmm] [N/mm2] [kg/m3] [N/mm2] [kg/m3] [kN]

2,0 1260,0 19,1 440 16,0 380 2,21

2,5 1960,0 17,1 410 13,4 390 3,23

3,0 2770,0 17,2 410 18,0 440 4,40

3,0 4370,0 17,9 440 17,6 440 5,01

4,0 8220,0 11,6 420 12,0 440 6,81

5,0 17600,0 14,8 410 12,5 440 14,10

Mechanical parameters according to CE marking, in accordance with EN 14592.

CODES AND DIMENSIONS d1

CODE

CE

[mm] 3,5 TX 10

4 TX 20

4,5 TX 20

SCI3525 SCI3530 SCI3535 SCI3540 SCI4030 SCI4035 SCI4040 SCI4045 SCI4050 SCI4060 SCI4535 SCI4540 SCI4545 SCI4550 SCI4560 SCI4570 SCI4580

-----

• • • • • • • • • • • • •

L

b

A

[mm] 25 30 35 40 30 35 40 45 50 60 35 40 45 50 60 70 80

[mm] 18 18 18 18 18 18 24 30 30 35 24 24 30 30 35 40 40

[mm] 7 12 17 22 12 17 16 15 20 25 11 16 15 20 25 30 40

TURNED WASHER SCB A4 | AISI316 see page 285

pcs

d1

CODE

CE

L

b

A

pcs

• • • • • • • • • • • • • • • • • • • •

[mm] 40 45 50 60 70 80 90 100 60 80 100 120 140 160 120 160 200 240 280 320

[mm] 20 24 24 30 35 40 45 50 30 40 50 60 75 75 60 80 80 80 80 80

[mm] 20 21 26 30 35 40 45 50 30 40 50 60 65 85 60 80 120 160 200 240

200 200 200 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

[mm] 500 500 500 500 500 500 500 400 400 200 400 400 400 200 200 200 200

5 TX 25

6 TX 30

8 TX 40

SCI5040 SCI5045 SCI5050 SCI5060 SCI5070 SCI5080 SCI5090 SCI50100 SCI6060 SCI6080 SCI60100 SCI60120 SCI60140 SCI60160 SCI80120 SCI80160 SCI80200 SCI80240 SCI80280 SCI80320

MARINE ENVIRONMENTS Can be used in aggressive environments thanks to the A2 | AISI305 stainless steel.

OUTDOOR | SCI A2 | AISI305 | 287


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0°

Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLES 3,5

4

4,5

18

20

23

SCREWS INSERTED WITH PRE-DRILLING HOLES

5

6

8

25

30

40

4∙d

3,5

4

4,5

14

16

18

5

6

8

4∙d

20

24

32

a1

[mm]

a2

[mm]

3∙d

11

12

14

3∙d

15

18

24

4∙d

14

16

18

4∙d

20

24

32

a3,t

[mm]

12∙d

42

48

54

12∙d

60

72

96

7∙d

25

28

32

7∙d

35

42

56

a3,c

[mm]

7∙d

25

28

32

7∙d

35

42

56

7∙d

25

28

32

7∙d

35

42

56

a4,t

[mm]

3∙d

11

12

14

3∙d

15

18

24

5∙d

18

20

23

7∙d

35

42

56

a4,c

[mm]

3∙d

11

12

14

3∙d

15

18

24

3∙d

11

12

14

3∙d

15

18

24

5∙d

5∙d

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE 3,5

4

4,5

5

6

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE

8

3,5

4

4,5

5

6

8

a1

[mm]

10∙d

35

40

45

12∙d

60

72

96

5∙d

18

20

23

5∙d

25

30

40

a2

[mm]

5∙d

18

20

23

5∙d

25

30

40

5∙d

18

20

23

5∙d

25

30

40

a3,t

[mm]

15∙d

53

60

68

15∙d

75

90

120

10∙d

35

40

45

10∙d

50

60

80

a3,c

[mm]

10∙d

35

40

45

10∙d

50

60

80

10∙d

35

40

45

10∙d

50

60

80

a4,t

[mm]

5∙d

18

20

23

5∙d

25

30

40

7∙d

25

28

32

10∙d

50

60

80

a4,c

[mm]

5∙d

18

20

23

5∙d

25

30

40

5∙d

18

20

23

5∙d

25

30

40

d = nominal screw diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F a3,t

NOTES: • The minimum distances are compliant with EN 1995:2014, according to ETA-11/0030, considering a wood characteristic density of ρ k ≤ 420 kg/m3 and calculation diameter of d = nominal screw diameter.

288 | SCI A2 | AISI305 | OUTDOOR

F α

α a3,c

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c


STATIC VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

TENSION timber-to-timber legno-legno with washer

thread withdrawal (1)

head pull-through (2)

head pull-through with washer (2)

RV,k [kN]

RV,k [kN]

Rax,k [kN]

Rhead,k [kN]

Rhead,k [kN]

0,44 0,53 0,55 0,55 0,63 0,70 0,70 0,70 0,70 0,70 0,72 0,84 0,81 0,86 0,86 0,86 0,86 1,03 1,03 1,03 1,03 1,03 1,03 1,03 1,03 1,42 1,42 1,42 1,42 1,42 1,42 2,22 2,22 2,22 2,22 2,22 2,22

1,58 1,77 1,96 2,02 2,02 2,02 3,14 3,25 3,25 3,25 3,25 3,25

0,80 0,80 0,80 0,80 0,91 0,91 1,21 1,52 1,52 1,77 1,36 1,36 1,70 1,70 1,99 2,27 2,27 1,26 1,52 1,52 1,89 2,21 2,53 2,84 3,16 2,27 3,03 3,79 4,55 5,68 5,68 6,06 8,08 8,08 8,08 8,08 8,08

0,56 0,56 0,56 0,56 0,73 0,73 0,73 0,73 0,73 0,73 0,92 0,92 0,92 0,92 0,92 0,92 0,92 1,13 1,13 1,13 1,13 1,13 1,13 1,13 1,13 1,63 1,63 1,63 1,63 1,63 1,63 2,38 2,38 2,38 2,38 2,38 2,38

4,53 4,53 4,53 4,53 4,53 4,53 7,08 7,08 7,08 7,08 7,08 7,08

timber-to-timber

con rondella

A L b d1

d1 L b A [mm] [mm] [mm] [mm] 3,5

4

4,5

5

6

8

25 30 35 40 30 35 40 45 50 60 35 40 45 50 60 70 80 40 45 50 60 70 80 90 100 60 80 100 120 140 160 120 160 200 240 280 320

18 18 18 18 18 18 24 30 30 35 24 24 30 30 35 40 40 20 24 24 30 35 40 45 50 30 40 50 60 75 75 60 80 80 80 80 80

7 12 17 22 12 17 16 15 20 25 11 16 15 20 25 30 40 20 21 26 30 35 40 45 50 30 40 50 60 65 85 60 80 120 160 200 240

NOTES: (1)

The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

• For the mechanical strength values and the geometry of the screws, reference was made to ETA-11/0030.

(2)

The axial resistance to head pull-through, with and without a washer, was calculated using wood elements. In the case of steel-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

• For the calculation process a timber characteristic density ρ k = 385 kg/m3 has been considered.

GENERAL PRINCIPLES: • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• Values were calculated considering the threaded part as being completely inserted into the wood. • Dimensioning and verification of the timber elements must be carried out separately. • The shear characteristic resistances are calculated for screws inserted without pre-drilling holes. In the case of screws inserted with pre-drilling holes, greater resistance values can be obtained.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γm

The coefficients γm and kmod should be taken according to the current regulations used for the calculation.

OUTDOOR | SCI A2 | AISI305 | 289


SCA A2 | AISI304 COUNTERSUNK SCREW COST/PERFORMANCE Simple geometry, optimised to provide good performance at a low cost.

SMOOTH UNDER-HEAD Ideal for fastening stainless steel clips and hinges thanks to the smooth, countersunk head.

SIMPLE BOX Packaging optimised to reduce material wastes in the building site. Increased number of pieces for package.

CHARACTERISTICS FOCUS

use with stainless steel clips

HEAD

countersunk without ribs

DIAMETER

from 3,5 mm to 5,0 mm

LENGTH

from 25 mm to 70 mm

MATERIAL A2 | AISI304 austenitic stainless steel.

FIELDS OF USE Use in aggressive outdoor environments. Wooden boards with density of < 470 kg/m3 (without pre-drill) and < 570 kg/m3 (with predrill). Suitable for service classes 1-2-3.

290 | SCA A2 | AISI304 | OUTDOOR


GEOMETRY A

dk

d1 d1 ds

b L

Nominal diameter

d1

[mm]

3,5

4

4,5

5

Head diameter

dk

[mm]

6,80

8,00

9,00

10,00

Tip diameter

d2

[mm]

2,25

2,55

2,80

3,40

Shank diameter

ds

[mm]

2,50

2,75

3,15

3,65

Head thickness

t1

[mm]

3,50

3,80

4,25

4,65

Pre-drilling hole diameter

dv

[mm]

2,0

2,5

3,0

3,0

CODES AND DIMENSIONS d1

CODE

[mm]

L

b

A

[mm]

[mm]

[mm]

pcs

d1

L

b

A

[mm]

[mm]

[mm]

SCA4550

50

30

20

200

SCA4560

60

36

24

200

CODE

[mm]

3,5 TX 15

SCA3525

25

18

7

500

SCA3535

35

24

11

500

4 TX 20

SCA440

40

24

16

200

SCA450

50

30

20

200

4,5 TX 20 5 TX 25

pcs

SCA550

50

30

20

200

SCA560

60

36

24

200

SCA570

70

42

28

200

GAP Ideal for fastening standard Rothoblaas clips in outdoor environments.

OUTDOOR | SCA A2 | AISI304 | 291


HBS PLATE EVO

BIT INCLUDED

COATING

ETA 11/0030

PAN HEAD SCREW FOR PLATES C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227.

OUTDOOR ENVIRONMENT Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.

NOTE: codes, techniques and further information on page 96 .

GEOMETRY

HEAD

shoulder for plate

DIAMETER

from 5,0 mm to 10,0 mm

LENGTH

from 40 mm to 180 mm

P

BS

corrosiveness class C4

H

FOCUS

X X

CHARACTERISTICS

MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.

FIELDS OF USE • wood based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.

292 | HBS PLATE EVO | OUTDOOR


HBS EVO

BIT INCLUDED

COATING

ETA 11/0030

COUNTERSUNK SCREW C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227.

OUTDOOR ENVIRONMENT Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.

NOTE: codes, techniques and further information on page 44.

GEOMETRY

HEAD

countersunk with under-head ribs

DIAMETER

from 5,0 mm to 8,0 mm

LENGTH

from 80 mm to 320 mm

S

B

corrosiveness class C4

H

FOCUS

X X

CHARACTERISTICS

MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.

FIELDS OF USE • wood based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.

OUTDOOR | HBS EVO | 293


TBS EVO

BIT INCLUDED

COATING

ETA 11/0030

OUTDOOR SCREW, FLANGE HEAD C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227.

OUTDOOR ENVIRONMENT Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.

NOTE: codes, techniques and further information on page 82.

GEOMETRY

CHARACTERISTICS FOCUS

corrosiveness class C4

HEAD

flange

DIAMETER

6,0 and 8,0 mm

LENGTH

from 60 mm to 240 mm

MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.

FIELDS OF USE • wood based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.

294 | TBS EVO | OUTDOOR


VGZ EVO

BIT INCLUDED

COATING

ETA 11/0030

FULL THREADED SCREW WITH CYLINDRICAL HEAD C4 EVO COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227.

OUTDOOR ENVIRONMENT Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.

NOTE: codes, techniques and further information on page 166.

GEOMETRY

CHARACTERISTICS

from 80 mm to 360 mm

X

LENGTH

X

from 5,3 mm to 9,0 mm

G

cylindrical, countersunk

DIAMETER

Z

HEAD

V

corrosiveness class C4

X

FOCUS

MATERIAL Carbon steel, with a 20 μm coating, highly resistant to corrosion.

FIELDS OF USE • wood based panels • solid timber and glulam • CLT, LVL • high density woods • aggressive woods (containing tannin) • chemically treated woods Service classes 1, 2 and 3.

OUTDOOR | VGZ EVO | 295


FLAT | FLIP CONNECTOR FOR DECKING INVISIBLE Completely hidden. The version in aluminium with black coating guarantees an attractive result; the galvanized steel version offers good performance at low cost.

FAST INSTALLATION Fast, easy installation thanks to the single-screw fastening and the integrated spacer-tab for precise spacing. Ideal for application with the PROFID spacer.

SYMMETRICAL GROOVING Makes it possible to install deck planks regardless of the position of the grooving (symmetrical). Ribbed surface provides high mechanical strength.

CHARACTERISTICS FOCUS

extremely precise joints

CLADDING

black anti-rust coating | zinc plated

BOARDS

symmetrical grooving

JOINTS

7.0 mm

FASTENERS

KKTN540 , KKAN440

MATERIAL Aluminium with coloured organic coating and carbon steel with zinc plated.

FIELDS OF USE Outdoor use. Fastening timber or WPC boards on substructures in wood, WPC or aluminium. Suitable for service classes 1-2-3.

296 | FLAT | FLIP | OUTDOOR


GEOMETRY 2

4

2

8,5

45°

8,5

27

6

54

6

45°

8,5

6,3

27

27

4

8,5

6

54

6

6,3

27

27

B

27

B

s

s

P

P

CODES AND DIMENSIONS FLAT COLOR

FLIP

CODE

material

PxBxs

pcs

CODE

material

[mm] FLAT

black alluminum

64 x 27 x 4

200

KKTN540

FLIP

zinc-plated steel

64 x 27 x 4

200

KKA COLOR

fastening on wood and WPC for FLAT and FLIP

CODE

pcs

[mm]

KKT COLOR

d1 [mm] 5 TX 20

PxBxs

fastening on aluminium for FLAT and FLIP

L [mm]

pcs

40

200

d1

CODE

L

[mm] 4 TX 20 5 TX 25

pcs

[mm] KKAN420

20

200

KKAN430

30

200

KKAN440

40

200

KKAN540

40

200

WOOD PLASTIC COMPOSITE (WPC) Ideal for fastening WPC boards. Can also be used for fastening on aluminium using KKA COLOR screws (KKAN440).

OUTDOOR | FLAT | FLIP | 297


GROOVING GEOMETRY 7

7 SYMMETRICAL GROOVING

F

PROFID

H KKTN

F

PROFID

H

Min. thickness

F

4 mm

Min. recommended height H

H

free

KKTN

INSTALLATION 01

Position the PROFID spacer at the joist centerline. First board: fix it with suitable screws, left visible or hidden thanks to specific accessories.

03

Position the next board by inserting it into the FLAT/FLIP fastener.

05

Fix the fastener to the joist underneath by using the KKTN screw.

298 | FLAT | FLIP | OUTDOOR

02

Insert the FLAT/FLIP fastener into the groove cut so that the spacer tab adheres to the board.

04

Using the CRAB MINI clamp, tighten the two boards until the gap between them is 7 mm (see product page 334).

06

Repeat the operations for the remaining boards. Last board: repeat step 01,


CALCULATION EXAMPLE INCIDENCE ESTIMATE FORMULA PER m2 f L

1m2 / i / (L + f) = pcs of FLAT/FLIP a m2

= joists spacing L = board width f = gap width

i i

PRACTICAL EXAMPLE NUMBER OF BOARDS AND JOISTS AA== 66 m m

PATIO SURFACE S = A ∙ B = 6 m ∙ 4 m = 24 m2 WOODEN PLANKING L = 140 mm

140 mm 18 mm

s = 18 mm

BB==44mm

f = 7 mm JOISTS 60 mm

b = 60 mm h = 30 mm

30 mm

i= 0,6 m

0,6 0,6 m m

no. boards

= [B/(L+f)] + 1

= [4/(0,14+0,007)]+1= 28 boards

no. 4 m boards = 28 boards no. 2 m boards = 28 boards 28 boards 4 m

28 boards 2 m

no. joists = [A/i] + 1 = (6/0,6) +1 = 11 joists

SCREW SELECTION Head thickness

Sscrew head

Grooving thickness Grooving dimension

F H

PROFID thickness

SPROFID

Pull-through length

Lpen

f BOARD JOIST

F FLAT/FLIP PROFID

PROFID

2,8 mm (s-F)/2

4 mm 7 mm 8 mm

4∙d

20 mm

MINIMUM SCREW LENGTH H KKTN

= Sscrew head + F + H + SPROFID + Lpen = 2,8 + 4 + 7 + 8 + 20 = 41,8 mm CHOICE OF SCREW

KKTN550

FLAT / FLIP NUMBER CALCULATION QUANTITY FOR INCIDENCE FORMULA

QUANTITY FOR THE NUMBER OF INTERSECTIONS

I = S / i / (L + f) = pcs of FLAT/FLIP

I = no. boards with FLAT/FLIP no. joists = pcs of FLAT/FLIP

I = 24 m2 / 0,6 m / (0,14 m + 0,007 m) = 272 pcs FLAT/FLIP

no. boards with FLIP/FLAT = (Number of boards - 2) = (28 - 2) = 26 boards no. of joists = (A/i) + 1 = (6/0,6) + 1 = 11 joists

waste coefficient = 1,05 I = 272 ∙ 1,05 = 286 pcs FLAT/FLIP

no. intersections = I = 26 ∙ 11 = 286 pcs FLAT/FLIP

I = 286 pcs FLAT/FLIP

I = 286 pcs FLAT/FLIP

NUMBER OF FLAT/FLIP FASTENERS = 286 pcs

NUMBER OF SCREWS = no. FLAT/FLIP = 286 pcs KKTN550 OUTDOOR | FLAT | FLIP | 299


TVM CONNECTOR FOR DECKING FOUR VERSIONS Different sizes for applications on boards with different thickness and gaps of varying width. Black version for complete concealment.

DURABILITY The stainless steel ensures high corrosion-resistance. The micro-ventilation between the boards helps the durability of the wooden elements.

ASYMMETRIC GROOVING Ideal for boards with asymmetrical “female-female” groove cuts. Ribbing on the surface of the connector ensures excellent stability.

CHARACTERISTICS FOCUS

excellent grooving versatility

BOARDS

symmetrical grooving

JOINTS

from 7,0 mm to 9,0 mm

FASTENERS

KKTX520A4, KKA420, KKAN420

MATERIAL A2 | AISI304 austenitic stainless steel and aluminium with coloured organic coating.

FIELDS OF USE Use in aggressive outdoor environments. Fastening timber or WPC boards on substructures in wood, WPC or aluminium. Suitable for service classes 1-2-3.

300 | TVM | OUTDOOR


GEOMETRY TVM1

TVM2 10 3 6,8 9,8

1

TVM3 12

1

12

2,4 8,6 11

TVMN4 12

1

14

P

33

11

P

B

B

29,4

TVM3

14,4

17 30

22,5 9,8

2,4 12

14

22,5 31

15 1

2,4 8,6 11

23 9,6

P

36

13

P

B

B

CODES AND DIMENSIONS TVM A2 | AISI304

TVM COLOR

CODE

material

PxBxs

pcs

CODE TVMN4

material

PxBxs

black alluminum

23 x 36 x 2,5

[mm]

[mm]

TVM1

A2 | AISI304

22,5 x 31 x 3

200

TVM2

A2 | AISI304

22,5 x 33 x 2,5

200

TVM3

A2 | AISI304

30 x 29,4 x 2,5

200

d1

CODE

5 TX 20

fastening on wood and WPC for per TVM COLOR

L

pcs

KKTX520A4

20

200

KKTX525A4

25

200

KKTX530A4

30

200

KKTX540A4

40

200

CODE

[mm]

5 TX 20

L

pcs

[mm] KKTN540

40

200

L

pcs

KKA COLOR

fastening on aluminium for TVM COLOR

L

pcs

[mm] KKA420

CODE

[mm]

KKA AISI410

4 TX 20

d1

[mm]

fastening on aluminium for TVM A2 | AISI304

d1

200

KKT COLOR

KKT X

fastening on wood and WPC for TVM A2 | AISI304

[mm]

pcs

20

d1

CODE

[mm] 200

4 TX 20

[mm] KKAN420

20

200

KKA Can also be used for fastening on aluminium profiles using KKA AISI410 or KKA COLOR screws.

OUTDOOR | TVM | 301


GROOVING GEOMETRY 7

7 ASYMMETRICAL GROOVING

F

PROFID

H KKT

F H PROFID

KKT

Min. thickness

F

3 mm

Min recommended height TVM1

H

8 mm

Min recommended height TVM2

H

10 mm

Min recommended height TVM3

H

10 mm

Min recommended height TVMN

H

13 mm

INSTALLATION 01

Position the PROFID spacer at the joist centerline. First board: fix with suitable screws which are left visible.

03

Position the next board by inserting it into the TVM fastener.

05

Fix the fastener to the joist underneath by using the KKTX screw.

302 | TVM | OUTDOOR

02

Insert the TVM fastener into the groove cut so that the side fin adheres to the groove in the board.

04

Using the CRAB MINI clamp, tighten the two boards until the gap between them is 7 mm (see product page 334).

06

Repeat the operations for the remaining boards. Last board: repeat step 01,


CALCULATION EXAMPLE INCIDENCE ESTIMATE FORMULA PER m2 f L

1m2 / i / (L + f) = pcs of TVM at m2 i = joists spacing L i

f

= board width = gap width

PRACTICAL EXAMPLE NUMBER OF BOARDS AND JOISTS AA== 66 m m

PATIO SURFACE S = A ∙ B = 6 m ∙ 4 m = 24 m2 WOODEN PLANKING L = 140 mm

140 mm BB==44mm

21 mm

s = 21 mm f = 7 mm

JOISTS 60 mm

b = 60 mm h = 30 mm

30 mm

i= 0,6 m

0,6 0,6 m m

no. boards

= [B/(L+f)] + 1

= [4/(0,14+0,007)]+1= 28 boards

no. 4 m boards = 28 boards no. 2 m boards = 28 boards 28 boards 4 m

28 boards 2 m

no. joists = [A/i] + 1 = (6/0,6) +1 = 11 joists

SCREW SELECTION Head thickness

Sscrew head

Grooving thickness Grooving dimension

F H

PROFID thickness

SPROFID

Pull-through length

Lpen

f BOARD JOIST

F TVM PROFID

PROFID

2,8 mm (s-F)/2

4 mm 8 mm 8 mm

4∙d

20 mm

MINIMUM SCREW LENGTH H KKTX

= Sscrew head + H + SPROFID + Lpen = 2.8 + 8 + 8 + 20 = 38.8 mm CHOICE OF SCREW

KKTX540A4

TVM NUMBER CALCULATION QUANTITY FOR INCIDENCE FORMULA

QUANTITY FOR THE NUMBER OF INTERSECTIONS

I = S / i / (L + f) = pcs of TVM

I = no. boards with TVM no. joists = pcs of TVM

I = 24 m2 / 0,6 m / (0,14 m + 0,007 m) = 272 pcs TVM

no. boards with TVM = (Number of boards - 2) = (28 - 2) = 26 boards no. of joists = (A/i) + 1 = (6/0,6) + 1 = 11 joists

waste coefficient = 1,05 I = 272 ∙ 1,05 = 286 pcs TVM

no. intersections = I = 26 ∙ 11 = 286 pcs TVM

I = 286 pcs TVM

I = 286 pcs TVM

NUMBER OF TVM = 286 pcs

NUMBER OF SCREWS = 286 pcs KKTX540A4 OUTDOOR | TVM | 303


GAP CONNECTOR FOR DECKING TWO VERSIONS Available in A2 | AISI304 stainless steel for excellent corrosion strength (GAP3) or in carbon steel with bright zinc plated (GAP4) for good performance at a low cost.

NARROW JOINTS Ideal for making floors with narrow joints between boards (from 3,0 mm). Fastening is performed before the board is positioned.

WPC AND HARDWOODS Ideal for symmetrically grooved boards such as those in WPC or high-density wood.

CHARACTERISTICS FOCUS

narrow joints

BOARDS

symmetrical grooving

JOINTS

from 3,0 mm to 5,0 mm

FASTENERS

SCA3525, SBA3932

MATERIAL Austenitic stainless steel A2 | AISI304 and carbon steel with zinc plated.

FIELDS OF USE Outdoor use. Fastening timber or WPC boards on substructures in wood, WPC or aluminium. Suitable for service classes 1-2-3.

304 | GAP | OUTDOOR


GEOMETRY GAP 3 A2 | AISI304

GAP 4 11

16,5 4

1 9 1

9 11 19

12

16

12 16

16,5

18 40

18 16,5

12

4

23

7,5

1,5 8,3 11,3 1,5

7,5

11

32

42

11,3

42

s s P

P

B

B

CODES AND DIMENSIONS GAP 3 A2 | AISI304 CODE

GAP 4 material

PxBxs

pcs

CODE

material

[mm] GAP3

A2 | AISI304

40 x 32 x 11

200

[mm] 3,5 TX 15

L

pcs

SCA3525

25

500

SCA3535

35

500

[mm]

42 x 42 x 11

200

3,5 TX 15

L

pcs

[mm] HTS3525

25

1000

HTS3535

35

500

L

pcs

SBN

fastening on aluminium for GAP 4

L

pcs

25

d1

CODE

[mm]

[mm] SBNA23525

CODE

[mm]

fastening on aluminium for GAP 3

3,5 TX 15

d1

[mm]

CODE

zinc-plated steel

fastening on timber and WPC for GAP 4

SBN A2 | AISI304

d1

GAP4 HTS

fastening on timber and WPC for GAP 3

CODE

pcs

[mm]

SCA A2 | AISI304

d1

PxBxs

1000

3,5 TX 15

[mm] SBN3525

25

500

WOOD PLASTIC COMPOSITE (WPC) Ideal for fastening WPC boards. Can also be used for fastening on aluminium using SBN A2 | AISI304 screws.

OUTDOOR | GAP | 305


GAP 3 GROOVE GEOMETRY SYMMETRICAL GROOVING F

H

Min. thickness

F

2 mm

Min recommended height GAP 3

H

8 mm

SCA

GAP 3 INSTALLATION 01

First board: fix it with suitable screws, left visible or hidden thanks to specific accessories.

03

Fix the screw in the central hole.

05

Using the CRAB MINI clamp, tighten the two boards until the gap between them is 3 or 4 mm depending on aesthetic requirements (see product page 334).

306 | GAP | OUTDOOR

02

Insert the GAP3 fastener into the groove cut so that the clip’s central tab adheres to the groove in the board.

04

Position the next board by inserting it into the GAP3 fastener so that the two tabs adhere to the groove in the board.

06

Repeat the operations for the remaining boards. Last board: repeat step 01,


GAP 4 GROOVE GEOMETRY SYMMETRICAL GROOVING F

H

Min. thickness

F

2 mm

Min recommended height GAP 4

H

7 mm

HTS

GAP 4 INSTALLATION 01

First board: fix it with suitable screws, left visible or hidden thanks to specific accessories.

03

Secure the screw in the two available holes.

05

Using the CRAB MINI clamp, tighten the two boards until the gap between them is 3 or 4 mm depending on aesthetic requirements (see product page 334).

02

Insert the GAP4 fastener into the groove cut so that the clip’s central tabs adhere to the groove in the board.

04

Position the next board by inserting it into the GAP4 fastener so that the two tabs adhere to the groove in the board.

06

Repeat the operations for the remaining boards. Last board: repeat step 01,

OUTDOOR | GAP | 307


TERRALOCK CONNECTOR FOR DECKING INVISIBLE Completely concealed, guarantees a highly attractive result. Ideal for both terraces and faรงades. Available in metal and plastic.

VENTILATION The micro-ventilation under the boards prevents water stagnation, ensuring excellent durability. The larger bearing surface ensures that the substructure is not crushed.

INGENIOUS Assembly stop for an accurate and simple installation of the fastener. Slotted holes to follow movements of the wood. Allows replacement of individual boards.

CHARACTERISTICS FOCUS

extremely versatile joints and grooves

CLADDING

aluminium coating, grey, black

BOARDS

without grooving

JOINTS

from 2,0 mm to 10,0 mm

FASTENERS

KKTX520A4, KKAN430, KKF4520

MATERIAL Carbon steel, with coloured anti-rust coating, and brown polypropylene.

FIELDS OF USE Outdoor use. Fastening timber or WPC boards on substructures in wood, WPC or aluminium. Suitable for service classes 1-2-3.

308 | TERRALOCK | OUTDOOR


GEOMETRY TERRALOCK

TERRALOCK PP 5 8

5 8 60 45 15

180 165

20 5 20 20 15

3

5

15

5 10 5

5 20 15

85

5 8

5 8 60 45 15

85

5 10 5

180 165 20

10

5 20 20 15

5 10 5

5

85

20 15 20

board L min = 145 mm

s

s

P

B

5 10 5

board L min = 100 mm

board L min = 100 mm

P

5

85

board L min = 145 mm

s

15

P

B

s

P B

B

CODES AND DIMENSIONS TERRALOCK

TERRALOCK PP

CODE TER60ALU TER180ALU TER60ALUN TER180ALUN

material

PxBxs

pcs

CODE

zinc-plated steel zinc-plated steel zinc-plated steel, black zinc-plated steel, black

[mm] 60 x 20 x 8 180 x 20 x 8 60 x 20 x 8 180 x 20 x 8

100 50 100 50

TER60PPM TER180PPM

KKT A4 | AISI316 / KKT COLOR

5 TX 20

CODE KKTX520A4 KKTX525A4 KKTX530A4 KKTX540A4 KKTN540

L [mm] 20 25 30 40 40

4 TX 20

KKAN430

brown nylon brown nylon

[mm] 60 x 20 x 8 180 x 20 x 8

100 50

Upon request also available in A2 | AISI304 stainless steel for quantities over 20,000 pcs (code TER60A2 e TER180A2).

pcs

d1 [mm]

200 200 200 200 200

4,5 TX 20

CODE

L [mm]

pcs

KKF4520

20

200

KKF4540

40

200

L [mm]

pcs

25

1000

SBN A2 | AISI304

fastening on aluminium for TERRALOCK

CODE

pcs

fastening on wood and WPC for TERRALOCK PP

KKA COLOR

d1 [mm]

PxBxs

KKF AISI410

fastening on wood and WPC for TERRALOCK

d1 [mm]

material

fastening on aluminium for TERRALOCK PP

L [mm]

pcs

30

200

d1 [mm] 3,5 TX 15

CODE SBN3525

TERRALOCK PP Version in plastic, ideal for creating patios near aquatic environments. Durability in time guaranteed by microventilation under the boards. Totally concealed fastening.

OUTDOOR | TERRALOCK | 309


CONNECTOR SELECTION TERRALOCK 60

TERRALOCK PP 60

A. TERRALOCK fastener 60: 2 pcs B. top screws: 4 pcs C. bottom screws: 1 pc

A. fastener TERRALOCK PP 60: 2 pcs B. top screws: 4 pcs C. bottom screws: 1 pc

B

C

L

L

B

B C

A

B

S

A

B

H

S B

H

L

top screw type

C C

L

minimum board bottom screw type thickness

B

minimum joist height

C

top screw type

minimum board bottom screw type thickness

B

KKTX 5 x 20

S > 21 mm

KKT 5 x 40

H > 40 mm

KKTX 5 x 25

S > 26 mm

KKT 5 x 50

H > 50 mm

KKTX 5 x 30

S > 31 mm

KKT 5 x 60

H > 60 mm

C

KKF 4,5 x 20

S > 19 mm

KKF 4,5 x 40

TERRALOCK 180

TERRALOCK PP 180

A. TERRALOCK fastener 180: 1 pc B. top screws: 2 pcs C. bottom screws: 1 pc

A. fastener TERRALOCK PP 180: 1 pc B. top screws: 2 pcs C. bottom screws: 1 pc

L

C

B C

A

C

B

C

S

A

S H

H

L

top screw type

H > 38 mm

L

B B

minimum joist height

L

minimum board bottom screw type thickness

B

minimum joist height

top screw type

KKF 4,5 x 20

C

B

KKTX 5 x 20

S > 21 mm

KKT 5 x 40

H > 40 mm

KKTX 5 x 25

S > 26 mm

KKT 5 x 50

H > 50 mm

KKTX 5 x 30

S > 31 mm

KKT 5 x 60

H > 60 mm

310 | TERRALOCK | OUTDOOR

minimum board bottom screw type thickness

minimum joist height

C S > 19 mm

KKF 4,5 x 40

H > 38 mm


TERRALOCK 60 INSTALLATION 01

02

Position two TERRALOCK 60 fasteners per each fixing node.

03

04

Fix each fastener to the sub-structure by inserting a KKTX screw in one of the two slotted holes.

Turn the board over and slide it under the previously fastened board fixed to the sub-structure.

It is recommended to use STAR spacers inserted between the boards.

TERRALOCK 180 INSTALLATION 01

02

For each board arrange one fastener and fix it by means of two KKTX screws.

03

Turn the board over and slide it under the previously fastened board fixed to the sub-structure.

04

Fix each fastener to the sub-structure by inserting a KKTX screw in one of the two slotted holes.

It is recommended to use STAR spacers inserted between the boards.

CALCULATION EXAMPLE i = i = joist spacing|

L = board width

|

f = joint width

f

TERRALOCK 180

TERRALOCK 60

L

i = 0,60 m

|

L = 140 mm

i = 0,60 m

f = 7 mm

|

1m / 0,6 m / (0,14 m + 0,007 m) x 2 = 23 pcs /m 2

+ 46 pcs top screws type B / m

L = 140 mm

|

f = 7 mm

1m2 / i / (L + f) = pcs at m2

1m2 / i / (L + f) x 2 = pcs at m2

i

|

1m2/ 0,6 m / (0,14 m + 0,007 m)= 12 pcs /m2 + 24 pcs top screws type B / m2

2

+ 12 pcs bottom screws type C / m

2

2

+ 12 pcs bottom screws type C / m2

DECKS WITH COMPLEX GEOMETRIES Thanks to its special geometric configuration, the Terralock fastener allows to create decks with complex geometric layouts that will meet any aesthetic requirement. The two slotted holes and optimal positioning of the end stop allow for assembly on inclined substructures.

OUTDOOR | TERRALOCK | 311


GROUND COVER ANTI-VEGETATION TARP FOR SUBSTRATES PERMEABLE The anti-vegetation tarp prevents the growth of grasses and roots, protecting the patio substructure from the ground. Permeable to water, allowing it to flow off.

STRONG The polypropylene non-woven fabric (50 g/m2) effectively separates the patio substructure from the ground. Dimensions optimised for patios (1,6 m x 10 m).

CODES AND DIMENSIONS CODE COVER50

material

g/m2

NWF

50

HxL

A

[m]

[m2]

1,6 x 10

10

Tensile strength

MD/CD

95 / 55 N

Elongation

MD/CD

35 / 80 %

pcs 1

MATERIAL Non-woven fabric (NWF) in polypropylene (PP).

FIELDS OF USE Separates substructure from ground.

312 | GROUND COVER | OUTDOOR


NAG LEVELING PAD OVERLAPPABLE Available in 3 thicknesses (2.0, 3,0 and 5,0 mm), can also be overlapped to obtain different thicknesses and thus effectively level the patio substructure.

DURABILITY The EPDM material guarantees excellent durability, is not subject to sagging in time and does not suffer from exposure to sunlight.

GEOMETRY

CODES AND DIMENSIONS CODE

BxLxs

density

shore

pcs

[mm]

kg/m

NAG60602

60 x 60 x 2

1220

65

50

NAG60603

60 x 60 x 3

1220

65

30

NAG60605

60 x 60 x 5

1220

65

20

3

s L

B

Operating temperature -35°C | +90°C

MATERIAL EPDM, black.

FIELDS OF USE Substructure levelling.

OUTDOOR | NAG | 313


GRANULO GRANULAR RUBBER SUBSTRATE THREE FORMATS Available in sheet (GRANULOMAT 1,25 m x 10 m), roll (GRANULOROLL and GRANULO100) or pad (GRANULOPAD 8 x 8 cm). Extremely versatile thanks to the variety of formats.

GRAINY RUBBER Made of granules of recycled rubber thermal-bonded with polyurethane. Resistant to chemical interactions, maintains its characteristics in time and is 100% recyclable.

ANTI-VIBRATION The thermal-bonded rubber granules dampen vibrations, thus insulating the noise produced by footsteps. Also ideal as a wall barrier and resilient strip for acoustic separation.

CHARACTERISTICS FOCUS

water-permeability and vibration-dampening

THICKNESS

from 4,0 mm to 10,0 mm

DIMENSIONS

mat, roll, PAD

USE

substrate for substructures in wood, aluminium, WPC and PVC

MATERIAL Rubber granules thermo-bound with PU.

FIELDS OF USE Substrate for substructures in wood, aluminium, WPC and PVC. Outdoor use. Suitable for service classes 1-2-3.

314 | GRANULO | OUTDOOR


GEOMETRY

B

s L

s

B

s

B

B

GRANULO PAD

GRANULO ROLL -GRANULO 100

GRANULO MAT

TECHNICAL DATA PROPERTIES

standard

value

Hardness

-

50 shore A

Density

-

750 kg/m3

ISO 29052-1

66 MN/m3

ISO 12354-2

22,6 dB

ISO 12354-2

116,3 Hz

10% deformation

-

21 kPa

25% deformation

-

145 kPa

Elongation at failure

-

27 %

Thermal conductivity (λ)

UNI EN 12667

0,033 W/mK

Apparent dynamic stiffness s’t Theoretical estimate of the degree of footstep attenuation ∆L w System resonance frequency f0(1)

(1)

Compression deformation stress

(1)

The load considered is m’=125 kg/m2.

CODES AND DIMENSIONS CODE

s

B

L

[mm]

[mm]

[m]

GRANULOPAD

10

80

0,08

pcs 20

GRANULOROLL

8

80

6

1

GRANULO100

4

100

15

1

GRANULOMAT

6

1250

10

1

SOUNDPROOFING Ideal as a substrate for patio substructures. Permeable to water, ideal for outdoor use.

OUTDOOR | GRANULO | 315


TERRA BAND UV BUTYL ADHESIVE TAPE DECKS AND FACADES Ideal for protecting joists from water and UV rays. Can be used for both patios and faรงades, protecting and extending the life of the wooden joists.

PERMANENT UV STABILITY The black aluminized butyl-based compound guarantees unlimited resistance to UV radiation that can penetrate between the joints between patio and faรงade boards.

CODES AND DIMENSIONS CODE

s

B

L

pcs

[mm]

[mm]

[m]

TERRAUV75

0,8

75

10

1

TERRAUV100

0,8

100

10

1

TERRAUV200

0,8

200

10

1

s: thickness | B: base| L: length

MATERIAL Butyl-based compound coated with a black aluminium separating film.

FIELDS OF USE Protection against water and UV radiation.

316 | TERRA BAND UV | OUTDOOR


PROFID SPACER PROFILE VENTILATION The square EPDM profile must be applied over the joists. Creates micro-ventilation under the boards and thus prevents water stagnation and ensures excellent patio durability.

STRENGTH The EPDM guarantees excellent durability. With a density of over 1200 kg/m3, it guarantees high crushing resistance and is also ideal for high loads.

GEOMETRY CODES AND DIMENSIONS CODE PROFID

s

B

L

density

[mm]

[mm]

[m]

kg/m

8

8

40

1220

shore

pcs

65

8

3

L

s B

s: thickness | B: base| L: length

MATERIAL EPDM.

FIELDS OF USE Microventilation under the board.

OUTDOOR | PROFID | 317


JFA ADJUSTABLE SUPPORT FOR TERRACES LEVELLING The height-adjustable support can easily adapt to variations in substrate level. The rise also allows for ventilation under the joists.

DOUBLE REGULATION Can be adjusted both from below, with a SW 10 wrench, or from above, using a flat-tip screwdriver. Fast, convenient, versatile system.

SUPPORT The TPE plastic support base reduces the noise produced by footsteps. The ball-joint can adapt to uneven surfaces.

CHARACTERISTICS FOCUS

can be adjusted from above and below

HEIGHT

4,0 | 6,0 | 8,0 mm

DIMENSIONS

Ø 8 mm

USE

raising and levelling of the structure

MATERIAL Carbon steel with zinc plated and austenitic stainless steel A2 | AISI304,

FIELDS OF USE Raising and levelling of the substructure. Outdoor use. Suitable for service classes 1-2-3.

318 | JFA | OUTDOOR


GEOMETRY

16 L

H SW 10

40 404040

14

20

25 60

Ø8

252525 25

5757 5757

7777 7777

5757 5757

252525 25

252525 25

252525 25

TECHNICAL DATA CODE

JFA840

JFA860

JFA880

JFA860A2

carbon steel

carbon steel

carbon steel

A2 | AISI304

[mm]

8 x 40

8 x 60

8 x 80

8 x 40

[mm]

25 ≤ R ≤ 40

25 ≤ R ≤ 57

25 ≤ R ≤ 77

25 ≤ R ≤ 57

+/- 5°

+/- 5°

+/- 5°

+/- 5°

Material Screw Ø x L Assembly height

R

Angle Pre-drill for bush

[mm]

Adjustment nut

Ø 10

Ø 10

Ø 10

Ø 10

SW 10

SW 10

SW 10

SW 10

Total height

H

[mm]

51

71

91

71

Admissible capacity

Fadm

kN

0,8

0,8

0,8

0,8

material

screw Ø x L

CODES AND DIMENSIONS JFA CODE

JFA A2 | AISI304 material

screw Ø x L

pcs

CODE

[mm]

pcs

[mm]

JFA840

carbon steel

8 x 40

100

JFA860

carbon steel

8 x 60

100

JFA880

carbon steel

8 x 80

100

JFA860A2

stainless steel

8 x 60

100

STAINLESS STEEL Available also in A2 | AISI304 stainless steel to for particularly aggressive environments.

OUTDOOR | JFA | 319


JFA INSTALLATION WITH ADJUSTMENT FROM BELOW

01

Trace the joist midline, indicating the position of the holes and then pre-drill a 10 mm diameter hole.

02

03

The depth of the pre-drill depends on the assembly height R and must be at least 16 mm (bushing size).

04

Use a hammer to insert the bushing.

Screw the support into the bushing and turn the joist.

Detail of adjustment from below.

Follow the course of the ground by acting independently on the individual supports.

H 05

Place the joist on the substrate, parallel to the one previously laid.

06

Adjust the height of the support from the bottom using a 10 mm SW wrench.

JFA INSTALLATION WITH ADJUSTMENT FROM ABOVE

01

Trace the joist midline, indicating the position of the holes and then pre-drill a 10 mm diameter through hole.

02

03

We recommend a maximum of 60 cm between supports, to be checked according to depending on the load.

04

Use a hammer to insert the bushing.

Screw the support into the bushing and turn the joist.

Detail of adjustment from above.

Follow the course of the ground by acting independently on the individual supports.

H 05

Place the joist on the substrate, parallel to the one previously laid.

320 | JFA | OUTDOOR

06

Adjust the height of the support from above using a flat screwdriver.


CALCULATION EXAMPLE The number of supports per m2 is to be assessed according to the load magnitude and the joist spacing.

INCIDENCE OF SUPPORTS ON SURFACE (I): q = load [kN/m2]

I = q / Fadm = pcs of JFA at m2

Fadm = admissible JFA capacity [kN]

MAXIMUM DISTANCE BETWEEN SUPPORTS (a): a

amax, JFA

a=

min

with:

amax, JFA = 1 / pc / m2 / i

i

amax, joist

3

amax, joist

i = spacing between joists flim = instantaneous strain limit between supports E = material elastic modulus J = joist section inertia modulus

E ∙ J ∙384 flim ∙ 5 ∙ q ∙ i

PRACTICAL EXAMPLE PROJECT DATA A=6m

PATIO SURFACE S = A x B = 6 m x 4 m = 24 m2 JOISTS 50 mm

b = 50 mm h = 30 mm

B=4m

30 mm

i= 0,50 m

LOADS

0,50 m

Overload Category of use: category A (balconies) (EN 1991-1-1)

q

Admissible JFA support capacity

Fadm

Joist material

4,00 kN/m2

0,80 kN

C20 (EN 338:2016)

Limit for instantaneous deflection between supports

flim

Material elastic moment

E0,mean

Moment of joist section inertia

J

Maximum joist deflection

fmax

a / 400

9,5 kN/mm2

3

(b ∙ h ) / 12

112500 mm4

(5/384) ∙ (q ∙ i ∙ a4)/(E ∙ J)

-

JFA NUMBER CALCULATION NUMBER OF JFA SUPPORTS

INCIDENCE I = q / Fadm = pcs of JFA at m

n = I ∙ S ∙ waste coeff. = pcs of JFA

2

n = 5,00 pcs/m2 ∙ 24 m2 ∙ 1,05 = 126 pcs of JFA

I = 4,0 kN/m2 / 0,8 kN = 5,00 pcs/m2

waste coefficient = 1,05 CALCULATION OF MAXIMUM DISTANCE BETWEEN SUPPORTS JOIST FLEXURAL LIMIT

SUPPORT STRENGTH LIMIT 3

flim = fmax

therefore:

amax, joist

E ∙ J ∙384 400 ∙ 5 ∙ q ∙ i

3

amax, joist

a = min

9,5 ∙ 112500 ∙ 384

amax, JFA = 1 / n / i amax, JFA = 1 / 5,00 / 0,5 = 0,40 m

∙ 10-3 = 0,47 m

400 ∙ 5 ∙ (4,0 ∙ 10-6) ∙ 500 amax, JFA amax, joist

= min

0,40 m 0,47 m

= 0,40 m

maximum distance between JFA supports

OUTDOOR | JFA | 321


SUPPORT ADJUSTABLE SUPPORT FOR TERRACES THREE VERSIONS The Small version (SUP-S) can be raised by up to 37 mm, the Medium version (SUP-M) by up to 220 mm and the Large version (SUP-L) by up to 1020 mm. All versions are height adjustable.

STRENGTH

Sturdy system suitable for heavy loads. The Small (SUP-S) and Medium (SUP-M) versions can handle up to 400 kg. The Large version (SUP-L) can handle up to 800 kg.

COMBINABLE All versions can be combined with a special head to facilitate lateral fastening to the joist, which may be made of either wood or aluminium. A tile adapter is also available on request.

CHARACTERISTICS FOCUS

extreme versatility in levelling

HEIGHT

from 22 mm to 1020 mm

LOWER BASE

SUP-S Ø 150 mm SUP-M and SUP-L Ø 200 mm

STRENGTH

from 400 to 800 kg

MATERIAL Polypropylene (PP).

FIELDS OF USE Raising and levelling of the substructure. Outdoor use. Suitable for service classes 1-2-3.

322 | SUPPORT | OUTDOOR


DURABILITY UV-resistant and suitable also for aggressive environment conditions. Ideal for use in combination with ALU TERRACE.

ALU TERRACE Ideal for use in combination with ALU TERRACE, fixed laterally with KKA screws. System with excellent durability.

OUTDOOR | SUPPORT | 323


Fastening wooden joists on SUP-M support with head.

Patio made with ceramic tiles on SUP-M with special adapter.

ACCESSORY CODES AND DIMENSIONS HEAD FOR SUP-S CODE SUPSLHEAD1

EXTENSION FOR SUP-M Ø

Ø1

[mm]

[mm]

pcs

70

3 x 14

CODE

Ø

Ø1

SUPMEXT30

20

HEAD FOR SUP-M Ø

pcs

CODE

25

SUPLEXT100

[mm] SUPMHEAD1

Ø1

BxP [mm]

SUPMHEAD2 120 x 90

H

Ø1

SUPSLHEAD1

30

25

H

pcs H

B

P

3 x 14 25

SLOPE ADAPTER FOR SUP-M AND SUP-L

CODE Ø

Ø1

[mm]

[mm]

70

3 x 14

324 | SUPPORT | OUTDOOR

20

h

[mm] [mm] 30

100

pcs

HEAD FOR SUP-L CODE

H

[mm]

120

HEAD FOR SUP-M CODE

pcs

EXTENSION FOR SUP-L

Ø

CODE

H [mm]

pcs 20

Ø

pcs

[mm] Ø1

Ø

SUPCORRECT1 SUPCORRECT2

200 200

1% 2%

20 20

SUPCORRECT3

200

3%

20

Ø


CODES AND DIMENSIONS - SUP-S Ø H

CODE

Ø

H

pcs

[mm]

[mm]

SUPS2230

150

22 - 30

20

SUPS2840

150

28 - 40

20

Ø

H

pcs

[mm]

[mm]

CODES AND DIMENSIONS - SUP-M Ø

H

CODE SUPM3550

200

35 -50

25

SUPM5070

200

50 - 70

25

SUPM65100

200

65 - 100

25

SUPM95130

200

95 - 130

25

SUPM125160

200

125 - 160

25

SUPM155190

200

155 - 190

25

SUPM185220

200

185 - 220

25

CODES AND DIMENSIONS - SUP-L

+H

Ø

H

CODE

pcs

CODE

Ø

H

[mm]

[mm]

pcs

Ø

H

[mm]

[mm]

SUPL3550

200

35 - 50

20

SUPL415520

200

415 - 520

20

SUPL5075

200

50 - 75

20

SUPL515620

200

515 - 620

20

SUPL75120

200

75 - 120

20

SUPL615720

200

615 - 720

20

SUPL115220

200

115 - 220

20

SUPL715820

200

715 - 820

20

SUPL215320

200

215 - 320

20

SUPL815920

200

815 - 920

20

SUPL315420

200

315 - 420

20

SUPL9151020

200

915 - 1020

20

OUTDOOR | SUPPORT | 325


SUP-S INSTALLATION 01

02

03

Simply set the joist on the SUP-S or screw it to the SUP-S with 4,5 mm diameter KKF screws.

INSTALLATION OF SUP-S WITH SUPSLHEAD1 01

02

03

04

KF

K

KF

X

K

X

F

KK

X

F

KK

X

Place the head SUPSLHEAD1 on the SUP-S and fix the joist with 4,5 mm diameter KKF screws.

INSTALLATION OF SUP-M WITH SUPMHEAD2 01

02

03

04

KF

K

X

F

KK

X

F

KK

X

Place the head SUPMHEAD2 on the SUP-M and fix the joist laterally with 4,5 mm diameter KKF screws.

INSTALLATION OF SUP-M WITH SUPMHEAD1 03

04

K

Place the head SUPMHEAD1 on the SUP-M and fix the joist with KKF 4,5 mm diameter screws.

326 | SUPPORT | OUTDOOR

X

KF

K

X

02

KF

01


INSTALLATION OF SUP-L WITH SUPSLHEAD1 01

02

03

04

360°

H

F

KK

X

F

KK

X

Place the head SUPSLHEAD1 on the SUP-L, adjust the height of the base as needed and fix the joist laterally with 4,5 mm diameter KKF screws.

INSTALLATION OF SUP-L WITH SUPSLHEAD1 01

02

03

04

360°

F

KK

X

F

KK

X

H

Add the SUPLEXT100 extension to the SUP-L support and then position the SUPSLHEAD1 head. Adjust the height of the base as needed and fix the joist laterally with 4,5 mm diameter KKF screws.

CODES AND DIMENSIONS - FASTENING KKF AISI410 d1 [mm] KF

K

X F

KK

X

4,5 TX 20

CODE

L [mm]

pcs

KKF4520

20

200

KKF4540

40

200

KKF4545

45

200

KKF4550

50

200

KKF4560

60

200

KKF4570

70

200

OUTDOOR | SUPPORT | 327


ALU TERRACE ALUMINIUM PROFILE FOR PATIOS TWO VERSIONS ALUTERRA30 version for standard loads. ALUTERRA50 version, in black, for very high loads; can be used on both sides.

SUPPORT EVERY 1,10 m ALUTERRA50 designed with a very high inertia so that the SUPPORTS can be positioned every 1,10 m (along the profile midline), even with high loads (4,0 kN/m2).

DURABILITY The substructure made of aluminium profiles guarantees excellent patio durability. The drainage channel allows water to run off and generates effective micro-ventilation.

CHARACTERISTICS FOCUS

excellent durability and strength

SECTIONS

53 x 30 mm and 63 x 50 mm

THICKNESS

1,8 mm | 2,2 mm

MATERIAL Versions in aluminium and in anodized aluminium (class 15) in graphite black.

FIELDS OF USE Patio substructure. Outdoor use. Suitable for service classes 1-2-3.

328 | ALU TERRACE | OUTDOOR


DISTANCE 1,10 m With an inter-profile distance of 80 cm (load: 4,0 kN/m2), the SUPPORTS can be spaced 1,10 m apart and placed along the ALUTERRACE50 midline.

COMPLETE SYSTEM Ideal for use in combination with SUPPORT, fixed laterally with KKA screws. System with excellent durability.

OUTDOOR | ALU TERRACE | 329


Stabilization of ALUTERRA50 with stainless steel plates and KKA screws.

Aluminium substructure made with ALUTERRA30 and resting on GRANULO PAD

ACCESSORY CODES AND DIMENSIONS s s P

H

s M M

M P

P

LBVI15100 CODE LBVI15100

s H M

P

WHOI1540 material

s

M

P

H

[mm]

[mm]

[mm]

[mm]

FLIP pcs

A2 | AISI304

1,75

15

100

--

200

WHOI1540 A2 | AISI304

1,75

15

40

40

200

KKA AISI410

FLAT

CODE

material

pcs

FLAT

black alluminum

200

FLIP

zinc-plated steel

200

KKA COLOR d1

CODE

[mm] 4 TX 20 5 TX 25

L

pcs

[mm] KKA420

20

200

KKA540

40

100

KKA550

50

100

330 | ALU TERRACE | OUTDOOR

d1

CODE

[mm] 4 TX 20 5 TX 25

L

pcs

[mm] KKAN420

20

200

KKAN430

30

200

KKAN440

40

200

KKAN540

40

200


GEOMETRY

12 5

43

36 5

5 20,3 9,7

30

12

12 43

19 5

36

12

s

19

15,5 5020,3 H 30 15,5 9,7

P

53

15,5 50

MH

P

15,5

53 B

60

s

60

ALU TERRACE 30

B

ALU TERRACE 50

CODES AND DIMENSIONS CODE ALUTERRA30

s

B

P

H

[mm]

[mm]

[mm]

[mm]

1,8

53

2200

30

pcs 1

CODE ALUTERRA50

s

B

P

H

[mm]

[mm]

[mm]

[mm]

2,5

63

2200

50

pcs 1

NOTES: upon request, P= 3000 mm version is available.

EXAMPLE OF FASTENING WITH SCREWS AND ALUTERRA30 01

Place the ALU TERRACE on the SUP-S fit with head SUPSLHEAD1.

02

Fix the ALU TERRACE with 4,0 mm diameter KKAN.

03

Fix the wooden or WPC boards directly on the ALU TERRACE with 5,0 mm diameter KKA screws.

04

Repeat the operations for the remaining boards.

EXAMPLE OF FASTENING WITH CLIP AND ALUTERRA50 01

Place the ALU TERRACE on the SUP-S fit with head SUPSLHEAD1.

02

Fix the ALU TERRACE with 4,0 mm diameter KKAN.

03

Fix the boards using FLAT concealed clips and 4,0 mm diameter KKAN screws.

04

Repeat the operations for the remaining boards.

OUTDOOR | ALU TERRACE | 331


EXAMPLE PLACEMENT ON GRANULO PAD 01

02

Several ALUTERRA30 units can be connected lengthwise using stainless steel plates. Connection is optional.

03

Line up the ends of 2 aluminium profiles.

04

Place the LBVI15100 stainless steel plate on the aluminium profiles and fix with 4,0 x 20 KKA screws.

Do this on both sides to maximize stability.

EXAMPLE PLACEMENT ON SUPPORT 01

02

KF

K

KF

X

K

X

Several ALUTERRA50 units can be connected lengthwise using stainless steel plates. Connection is optional if the joint coincides with placement on the SUPPORT.

03

Place the LBVI15100 stainless steel plate on the lateral holes in the aluminium profiles and fix with 4,0 x 20 KKA screws or KKAN 4,0 mm diameter.

332 | ALU TERRACE | OUTDOOR

Connect the aluminium profiles with KKAN screws (diameter: 4,0 mm) and place 2 aluminium profiles end to end.

04

Do this on both sides to maximize stability.


MAXIMUM DISTANCE BETWEEN SUPPORTS (a) ALU TERRACE 30 ALU TERRACE 30 SUPPORT

i

i = joists spacing

a

a

a = distance between supports

i

OPERATING LOAD

i [m]

[kN/m2]

0,4

0,45

0,5

0,55

0,6

0,7

0,8

0,9

1,0

2.0

0,77

0,74

0,71

0,69

0,67

0,64

0,61

0,59

0,57

3,0

0,67

0,65

0,62

0,60

0,59

0,56

0,53

0,51

0,49

4,0

0,61

0,59

0,57

0,55

0,53

0,51

0,48

0,47

0,45

5,0

0,57

0,54

0,53

0,51

0,49

0,47

0,45

0,43

0,42

ALU TERRACE 50 ALU TERRACE 50 SUPPORT

i

i = joists spacing

a

a

a = distance between supports

i

OPERATING LOAD

i [m]

[kN/m2]

0,4

0,45

0,5

0,55

0,6

0,7

0,8

0,9

1,0

2.0

1,70

1,64

1,58

1,53

1,49

1,41

1,35

1,30

1,25

3,0

1,49

1,43

1,38

1,34

1,30

1,23

1,18

1,14

1,10

4,0

1,35

1,30

1,25

1,22

1,18

1,12

1,07

1,03

1,00

5,0

1,25

1,21

1,16

1,13

1,10

1,04

1,00

0,96

0,92

NOTES: • Example with deformation L/300; • Useful load according to EN 1991-1-1:

The calculation was performed with a static diagram on a simple support span and considering a uniformly distributed load.

-- Category A areas = 2,0 ÷ 4,0 kN /m²; -- Areas susceptible to category C2 crowding = 3,0 ÷ 4,0 kN/m²; -- Areas susceptible to category C3 crowding = 3,0 ÷ 5,0 kN/m²;

OUTDOOR | ALU TERRACE | 333


STAR STAR FOR DISTANCES

CODES AND DIMENSIONS CODE

thickness

STAR

from 4 to 8

pcs

[mm] 1

CRAB MINI PATIO CLAMP

CODES AND DIMENSIONS CODE

opening [mm]

[kg]

CRABMINI

263 - 415

max. 200

334 | STAR | CRAB MINI | OUTDOOR

compression

pcs 1


SHIM LEVELLING WEDGES

CODES AND DIMENSIONS CODE

colour

LxPxs

pcs

SHBLUE

blue

100 x 22 x 1

500

SHBLACK

black

100 x 22 x 2

500

red

100 x 22 x 3

500

SHWHITE

white

100 x 22 x 4

500

SHYELLOW

yellow

100 x 22 x 5

500

[mm]

SHRED

Also available in the LARGE version.

BROAD COUNTERBORE CUTTER FOR KKT, KKZ, KKA

CODES AND DIMENSIONS CODE

Øbit

Øcounterbore cutter

Lbit

LT

[mm]

[mm]

[mm]

[mm]

pcs

BROAD1

4

6.5

41

75

1

BROAD2

6

9.5

105

150

1

OUTDOOR | SHIM | BROAD | 335



TIMBER-METAL


TIMBER-METAL


TIMBER-METAL

SBS - SPP SELF-DRILLING TIMBER-METAL SCREW. . . . . . . . . . . . . . . . . . . . 340

SBS A2 | AISI304 SELF-DRILLING TIMBER-METAL SCREW. . . . . . . . . . . . . . . . . . . . 342

SBN - SBN A2 | AISI304 SELF-DRILLING METAL SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

WBAZ STAINLESS STEEL WASHER WITH SEALING GASKET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

TBS EVO FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

MTS A2 | AISI304 SCREW FOR METAL SHEET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

MCS A2 | AISI304 SCREW WITH WASHER FOR SHEET METAL . . . . . . . . . . . . . . . . . 350

TIMBER-METAL | 339


SBS - SPP

BIT INCLUDED

SELF-DRILLING TIMBER-METAL SCREW TIMBER-METAL TIP Special self-perforating tip with bleeder geometry for excellent drilling capacity both in aluminium (thickness: up to 10 mm) and steel (thickness: up to 8 mm).

CUTTING FINS The fins protect the screw thread during penetration into the wood. They guarantee maximum threading efficiency in metal and perfect adhesion between the thickness of the wood and the metal.

WIDE RANGE The SPP version, with partially thread, is ideal for fastening sandwich panels, even thick ones, to steel. Very sharp under-head ribs for a perfect surface finish on the wooden element.

CHARACTERISTICS FOCUS

self-perforating tip with protective fins

HEAD

countersunk with under-head ribs

DIAMETER

from 4,2 mm to 6,3 mm

LENGTH

from 32 mm to 240 mm

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE Direct fastening, without pre-drill, of wooden elements to steel (maximum thickness 8.0 mm) or aluminium (maximum thickness 10,0 mm) substructures.

340 | SBS - SPP | TIMBER-METAL


GEOMETRY A

d2 d1 t1

dk

d2 d1

Lp

b

s

SP P

SB S

dk

A

s

t1

Lp

b

L

L SBS

SPP

Nominal diameter

d1

[mm]

4,2

4,8

5,5

6,3

6,3

Head diameter

dk

[mm]

8,00

9,25

10,50

12,00

12,50

Tip diameter

d2

[mm]

3,30

3,50

4,15

4,85

4,85

Head thickness

t1

[mm]

3,50

4,20

4,80

5,30

5,30

Tip length

Lp

[mm]

10,0

10,5

11,5

15,0

20,0

INSTALLATION 01

02

03

Recommended screwing: ≈ 1000 - 1500 rpm (steel plate) ≈ 600 - 1000 rpm (aluminium plate)

CODES AND DIMENSIONS SBS d1

SPP CODE

[mm] SBS4232 4,2 TX 20 SBS4238 SBS4838 4,8 TX 25 SBS4845 SBS5545 5.5 TX 25 SBS5550 SBS6360 SBS6370 6.3 TX 30 SBS6385 SBS63100

L

b

A

s1

s2

[mm]

[mm]

[mm]

[mm]

[mm]

32 38 38 45 45 50 60 70 85 100

19 25 23 30 29 34 40 50 65 80

17 23 21 28 26 31 36 46 61 76

1÷3 1÷3 2÷4 2÷4 3÷5 3÷5 4÷6 4÷6 4÷6 4÷6

2÷4 2÷4 3÷5 3÷5 4÷6 4÷6 6÷8 6÷8 6÷8 6÷8

pcs 500 500 200 200 200 200 100 100 100 100

d1

CODE

L

b

A

s1

s2

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

SPP63125 SPP63145 SPP63165 6.3 SPP63180 TX 30 SPP63200 SPP63220 SPP63240

125 145 165 180 200 220 240

60 60 60 60 60 60 60

96 116 136 151 171 191 211

6÷8 6÷8 6÷8 6÷8 6÷8 6÷8 6÷8

8÷10 8÷10 8÷10 8÷10 8÷10 8÷10 8÷10

pcs 100 100 100 100 100 100 100

s1 thickness, steel plate S235/St37 s2 thickness, aluminium plate

SIP PANELS The SPP version is ideal for fastening SIP panels and sandwich panels thanks to the complete range of lengths (up to 240 mm).

TIMBER-METAL | SBS - SPP | 341


SBS A2 | AISI304

BIT INCLUDED

SELF-DRILLING TIMBER-METAL SCREW BIMETAL SCREW The head and body are made of A2 | AISI304 stainless steel, thus providing high resistant to corrosion. The tip is made of carbon steel for excellent drilling performance.

TIMBER-METAL TIP Special self-perforating tip with bleeder geometry for excellent drilling capacity both in aluminium and steel. The fins protect the screw thread during penetration into the wood.

STAINLESS STEEL The A2 | AISI304 stainless steel head and body make it ideal for outdoor applications. Very sharp under-head ribs for a perfect surface finish on the wooden element.

CHARACTERISTICS FOCUS

self-perforating tip with protective fins

HEAD

countersunk with under-head ribs

DIAMETER

from 4,8 mm to 6,3 mm

LENGTH

from 45 mm to 120 mm

MATERIAL A2 | AISI304 stainless steel.

FIELDS OF USE Use in aggressive outdoor environments. Suitable for service classes 1-2-3. Direct fastening, without pre-drill, of wooden elements to steel (maximum thickness 6.0 mm) or aluminium (maximum thickness 8.0 mm) substructures.

342 | SBS A2 | AISI304 | TIMBER-METAL


GEOMETRY A

s d2 d1

dk b

t1

Lp L

Nominal diameter

d1

[mm]

4,8

5,5

6,3

Head diameter

dk

[mm]

9,25

10,50

10,50 4,80

Tip diameter

d2

[mm]

3,50

4,15

Head thickness

t1

[mm]

4,00

4,85

4,50

Tip length

Lp

[mm]

10,25

10,00

12,00

INSTALLATION 01

02

03

Recommended screwing: ≈ 1000 - 1500 rpm (steel plate) ≈ 600 - 1000 rpm (aluminium plate)

CODES AND DIMENSIONS d1

CODE

[mm] 4,8 SBSA24845 TX 25 5.5 SBSA25555 TX 25

L

b

A

s1

s2

[mm]

[mm]

[mm]

[mm]

[mm]

45 55

31 39

30 37

1 ÷3 2 ÷5

2 ÷3 3 ÷5

pcs

d1

CODE

[mm] 200 200

SBSA26370

L

b

A

s1

s2

[mm]

[mm]

[mm]

[mm]

[mm]

70

53

49

3 ÷6

4 ÷8

100

103

99

3 ÷6

4 ÷8

100

6.3 TX 30 SBSA263120 120

pcs

s1 thickness, steel plate S235/St37 s2 thickness, aluminium plate

OUTDOOR ENVIRONMENT The A2 | AISI304 stainless steel makes it ideal for use outdoors or in aggressive environments.

TIMBER-METAL | SBS A2 | AISI304 | 343


SBN - SBN A2 | AISI304 SELF-DRILLING METAL SCREW TIP FOR METAL Special self-perforating tip for iron and steel in thicknesses ranging from 0,7 mm to 5,25 mm. Ideal for fastening overlapping sections of metal and sheet metal.

FINE THREAD Fine thread ideal for precise fastening on sheet metal or for metal-to-metal or timber-to-metal couplings.

STAINLESS STEEL Also available in a bimetal version with head and body in A2 | AISI304 stainless steel and tip in carbon steel. Ideal for outdoor fastening of clips on aluminium supports.

CHARACTERISTICS FOCUS

self-perforating bit with protective fins

HEAD

countersunk with under-head ribs

DIAMETER

from 3,5 mm to 5,5 mm

LENGTH

from 25 mm to 50 mm

MATERIAL Carbon steel with bright zinc plated or stainless steel A2 | AISI304,

FIELDS OF USE Direct fastening, without pre-drill, of metal structural elements to metal substructures (maximum thickness: 5.25 mm).

344 | SBN - SBN A2 | AISI304 | TIMBER-METAL


GEOMETRY A

s d1

dk b L

t1

Lp

Nominal diameter

d1

[mm]

3,5

3,9

4,2

4,8

5,5

Head diameter

dk

[mm]

6,90

7,50

8,20

9,50

10,80

Head thickness

t1

[mm]

2,60

2,80

3,05

3,55

3,95

Tip length

Lp

[mm]

5,00

4,70

5,40

6,40

7,20

CODES AND DIMENSIONS SBN A2 | AISI304

SBN d1

CODE

L

b

A

s

[mm]

[mm]

[mm]

[mm]

3,5 SBN3525 TX 15

25

16

16

0,7 ÷ 2.25

500

3.9 SBN3932 TX 15

35

27

26

0,7 ÷ 2.40

200

4,2 SBN4238 TX 20

38

30

29

1,75 ÷ 3,00

200

4,8 SBN4845 TX 25

45

34

32

1,75 ÷ 4,40

200

5.5 SBN5550 TX 25

50

38

34

1,75 ÷ 5.25

200

[mm]

pcs

d1

CODE

L

b

A

s

[mm]

[mm]

[mm]

[mm]

3,5 SBNA23525 TX 15

25

16

18

0,7 ÷ 2.25

1000

3.9 SBNA23932 TX 15

32

24

25

0,7 ÷ 2.40

1000

[mm]

pcs

SBN A2 | AISI304 Ideal for outdoor fastening to standard Rothoblaas aluminium clips.

TIMBER-METAL | SBN - SBN A2 | AISI304 | 345


WBAZ STAINLESS STEEL WASHER WITH SEALING GASKET WATERPROOF Perfect watertight closure and excellent sealing thanks to the EPDM sealing gasket.

RESISTANT TO UV RAYS Excellent resistance to UV rays. Ideal for outdoor use thanks to the adaptability of the EPDM gasket and washer in stainless steel A2 | AISI304,

VERSATILITY Ideal for use on sheets (thickness: up to 0,7 mm) in combination with TBS EVO Ø6 screws, that can be installed without pre-drill, or with MTS A2 | AISI304 screws, installed with pre-drill.

CHARACTERISTICS FOCUS

water-tightness and UV strength

GASKET

EPDM

SCREWS DIAMETER

from 6,0 mm to 6,5 mm

FASTENING

TBS EVO, MTS A2 | AISI304

MATERIAL A2 | AISI304 stainless steel.

FIELDS OF USE Watertight and UV-resistant fastening of metal sheets to wooden substructures using TBS EVO or MTS screws.

346 | WBAZ | TIMBER-METAL


CODES AND DIMENSIONS D1 CODE

screw

D2

H

D1

[mm]

[mm]

[mm]

[mm]

6,0 - 6,5

25

15

6,5

H WBAZ25A2

pcs 100

D2

INSTALLATION TBS EVO + WBAZ ØxL

A

A

A

Correct tightening

6 x 60

min. 0 - max. 40

6 x 80

min. 10 - max. 60

6 x 100

min. 30 - max. 80

6 x 120

min. 50 - max. 100

6 x 140

min. 70 - max. 120

6 x 160

min. 90 - max. 140

6 x 180

min. 110 - max. 160

6 x 200

min. 130 - max. 180

MTS A2 + WBAZ

A

ØxL

Excessive tightening

fastening package [mm]

fastening package [mm]

6 x 80

min. 10 - max. 60

6 x 100

min. 30 - max. 80

6 x 120

min. 50 - max. 100

Insufficient tightening

Tightening off axis

NOTES: The thickness of the washer after installation is approximately 8 - 9mm.

FAUX ROOFING TILE Can also be used on sandwich panels, corrugated panels and faux roofing tiles.

TIMBER-METAL | WBAZ | 347


TBS EVO

BIT INCLUDED

COATING

ETA 11/0030

FLANGE HEAD SCREW EVO C4 COATING 20 μm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.

SELF-DRILLING FOR SHEET METAL Direct fastening on sheet metal (thickness: up to 0,7 mm) without requiring any pre-drill. Ideal in combination with WBAZ washer.

CODES AND DIMENSIONS d1

CODE

[mm] TBSEVO660

6 TX 30

L

b

A

[mm]

[mm]

[mm]

pcs

60

40

20

100

TBSEVO680

80

50

30

100

TBSEVO6100

100

60

40

100

TBSEVO6120

120

75

45

100

TBSEVO6140

140

75

65

100

TBSEVO6160

160

75

85

100

TBSEVO6180

180

75

105

100

TBSEVO6200

200

75

125

100

GEOMETRY

A

A

NOTE: codes, techniques and further information on page 82.

MATERIAL Carbon steel with bright zinc plated.

FIELDS OF USE Can be installed on sheets up to 0,7 mm thick without pre-drilling. Suitable for service classes 1-2-3. Ideal in coupling with WBAZ washer.

348 | TBS EVO | TIMBER-METAL


MTS A2 | AISI304 SCREWS FOR SHEET METAL HEXAGONAL HEAD Ideal for use in combination with WBAZ washers to achieve water-tight fastening to sheet metal; requires a pre-drill. The hexagonal head facilitates any subsequent removal.

STAINLESS STEEL The A2 | AISI304 stainless steel ensures high resistance to corrosion and excellent durability, even in very aggressive environments.

GEOMETRY

CODES AND DIMENSIONS d1

CODE

6 SW 8

pcs A

dK

duK

L

b

A

[mm]

[mm]

[mm]

[mm]

[mm]

MTS680

8

12,5

80

58

20รท40

100

MTS6100

8

12,5

100

58

40รท60

100

MTS6120

8

12,5

120

58

60รท80

100

[mm]

A

MATERIAL A2 | AISI304 stainless steel.

FIELDS OF USE Can be used outdoors in aggressive environments. Suitable for service classes 1-2-3. Ideal in coupling with WBAZ washer.

TIMBER-METAL | MTS A2 | AISI304 | 349


MCS A2 | AISI304 SCREW WITH WASHER FOR SHEET METAL INTEGRATED WASHER A2 | AISI304 stainless steel screw with integrated A2 | AISI304 stainless steel washer and EPDM gasket.

STAINLESS STEEL The A2 | AISI304 stainless steel ensures high resistance to corrosion. Also available in various colours: copper or chocolate brown.

TORX BIT Convex head with Torx slot for secure fastening of sheet metal on wood or plaster. Ideal for fastening gutters to wood and corrugated sheet metal.

CHARACTERISTICS FOCUS

washer with integrated EPDM gasket

WASHER

A2 | AISI304 stainless steel

GASKET

EPDM

DIAMETER

4,5 mm

LENGTH

from 25 mm to 120 mm

MATERIAL A2 | AISI304 stainless steel.

FIELDS OF USE Can be used outdoors in aggressive environments. Suitable for service classes 1-2-3. Fastening metal structural elements to wooden substructures.

350 | MCS A2 | AISI304 | TIMBER-METAL


GEOMETRY

D

d1

dk L

Nominal diameter

d1

[mm]

4,5

Head diameter

dk

[mm]

8.30

Diameter of washer

D

[mm]

20,00

CODES AND DIMENSIONS MCS A2: stainless steel d1

MCS CU: copper finish CODE

[mm]

4,5 TX 20

L

pcs

[mm]

L

pcs

[mm]

MCS4525A2

25

200

MCS4525CU

25

200

35

200

MCS4535CU

35

200

MCS4545A2

45

200

MCS4545CU

45

200

MCS4560A2

60

200

MCS4560CU

60

200

MCS4580A2

80

200

MCS4580CU

80

200

MCS45100A2

100

200

MCS45100CU

100

200

MCS45120A2

120

200

MCS45120CU

120

200

L

pcs

CODE

[mm] 4,5 TX 20

CODE

MCS4535A2

MCS M: RAL 8017 - chocolate brown d1

d1 [mm]

4,5 TX 20

MCS B: RAL 9002 - light grey L

pcs

[mm]

d1

CODE

[mm]

MCS4525A2M

25

200

MCS4535A2M

35

200

MCS4545A2M

45

200

4,5 TX 20

[mm] MCS4525A2B

25

200

MCS4535A2B

35

200

MCS4545A2B

45

200

PERGOLAS Ideal for fastening corrugated sheet metal on the wooden pergolas and outdoor structures.

TIMBER-METAL | MCS A2 | AISI304 | 351



COMPLEMENTARY PRODUCTS


COMPLEMENTARY PRODUCTS


COMPLEMENTARY PRODUCTS A 10 M CORDLESS DRILL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

A 18 M BL CORDLESS DRILL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

KMR 3373 AUTOMATIC LOADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

KMR 3372 AUTOMATIC LOADER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

KMR 3338 SCREWDRIVER WITH AUTOMATIC LOADER. . . . . . . . . . . . . . . . . 358

KMR 3352 SCREWDRIVER WITH AUTOMATIC LOADER. . . . . . . . . . . . . . . . . 358

IMPULS PULSE SCREW GUN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

B 13 B POWERED SCREWDRIVER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

BIT TORX BITS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

SBD INSTALLATION DEVICE COLUMN SCREWING STATION FOR SBD SELF-DRILLING DOWELS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

D 38 RLE 4-SPEED CORDLESS SCREWDRIVER. . . . . . . . . . . . . . . . . . . . . . . 362

SET COUNTERBORE CUTTER WITH DEPTH STOP. . . . . . . . . . . . . . . 363

DRIVER BIT HOLDERS WITH END STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

TWIST DRILL BITS FOR DEEP DRILLING IN SOFT AND EUROPEAN HARDWOODS. . . . . . . . . . . . . . . . . . . . . . . . . . . 364

HSS WOOD DRILL BIT TWIST DRILL BITS FOR HARDWOOD, MELAMINE-FACED BOARDS AND OTHER MATERIALS. . . . . . . . 366

JIG VGZ TEMPLATE FOR 45° SCREWS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

JIG VGU TEMPLATE FOR VGU WASHER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

COMPLEMENTARY PRODUCTS | 355


A 10 M CORDLESS DRILL • • • • •

Soft / hard torque: 17/34 Nm Nominal minimum 1st gear: 0 - 360 (1/min) Nominal minimum 2nd gear: 0 - 1400 (1/min) Nominal tension: 10,8 V Weight: 0,8 kg

CODES AND DIMENSIONS CODE

description

pcs

MA919901

MIDIMAX IN T-MAX

1

MA919902

MAXIMAX IN T-MAX

1

A 18 M BL CORDLESS DRILL • • • • •

Soft / hard torque: 44/90 Nm Nominal minimum 1st gear: 0 - 600 (1/min) Nominal minimum 2nd gear: 0 - 2050 (1/min) Nominal tension: 18 V Weight: 1,7 kg

CODES AND DIMENSIONS CODE

description

MA91A001

MIDIMAX IN T-MAX

1

MA91A040

MAXIMAX IN T-MAX

1

356 | A 10 M | A 18 M BL | COMPLEMENTARY PRODUCTS

pcs


KMR 3373 AUTOMATIC LOADER • Screw length: 25 - 50 mm • Screw diameter: 3,5 - 4,2 mm • Compatible with A 18 M BL

CODES AND DIMENSIONS CODE

description

pcs

HH3373

loader for cordless screwdriver

1

HH14411591

1 metre extension

1

KMR 3372 AUTOMATIC LOADER • Screw length: 40 - 80 mm • Screw diameter: 4,5 - 5 mm • Compatible with A 18 M BL

CODES AND DIMENSIONS CODE

description

pcs

HH3372

loader for cordless screwdriver

1

HH14411591

1 metre extension

1

COMPLEMENTARY PRODUCTS | KMR 3373 | KMR 3372 | 357


KMR 3338 SCREWDRIVER WITH AUTOMATIC LOADER • • • •

Screw length: 40 - 80 mm Screw diameter: 4,5 - 5 mm Performance: 0 - 2850/750 (1/min/W) Weight: 2.9 kg

CODES AND DIMENSIONS CODE

description

pcs

HH3338

automatic screwdriver

1

HH14411591

1 metre extension

1

KMR 3352 SCREWDRIVER WITH AUTOMATIC LOADER • • • •

Screw length: 25 - 50 mm Screw diameter: 3,5 - 4,2 mm Performance: 0 - 2850/750 (1/min/W) Weight: 2.2 kg

CODES AND DIMENSIONS CODE

description

HH3352

automatic screwdriver

1

HH14411591

1 metre extension

1

358 | KMR 3338 | KMR 3352 | COMPLEMENTARY PRODUCTS

pcs


IMPULS PULSE SCREW GUN • • • • • •

Torque: 50 - 140 - 205 Nm Loadless speed: 0 - 2300 rpm Battery capacity - Li-ion: 3,0 Ah Nominal tension: 18 V Weight: 1,35 kg Connection: 1/2" (inches)

CODES AND DIMENSIONS CODE

description

PANIMP18

pulse screw gun

pcs 1

B 13 B POWERED SCREWDRIVER • • • • • •

Rated power consumption: 760 W Screw without pre-drill: 11 x 400 mm screws Torque: 120 Nm Weight: 2.8 kg Neck Ø: 43 mm Rpm under load in 1st, 2nd speed: 170 - 1320 U/min

CODES AND DIMENSIONS CODE

description

DUB13B

powered screwdriver

pcs 1

COMPLEMENTARY PRODUCTS | IMPULS | B 13 B | 359


BIT TORX BITS CODES AND DIMENSIONS BITS L

6.3

CODE

bit

colour

pcs

TX1025

TX 10

yellow

10

TX1525

TX 15

white

10

TX2025

TX 20

orange

10

TX2525

TX 25

red

10

TX3025

TX 30

purple

10

TX4025

TX 40

blue

10

TX5025

TX 50

green

10

TX1550

TX 15

white

5

TX2050

TX 20

orange

5

TX2550

TX 25

red

5

TX3050

TX 30

purple

5

TX4050

TX 40

blue

5

TX5050

TX 50

green

5

TX1575

TX 15

white

5

TX2075

TX 20

orange

5

TX2575

TX 25

red

5

bit

colour

pcs

TXE3050

TX 30

purple

5

TXE4050

TX 40

blue

5

bit

colour

pcs

geometry

[mm]

25

50

75

BITS L

6.3

CODE

geometry

[mm] 50

LONG BITS L

CODE

geometry

[mm] 150

TX25150

TX 25

red

1

200

TX30200

TX 30

purple

1

350

TX30350

TX 30

purple

1

150

TX40150

TX 40

blue

1

200

TX40200

TX 40

blue

1

350

TX40350

TX 40

blue

1

520

TX40520

TX 40

blue

1

150

TX50150

TX 50

green

1

DRIVER BIT HOLDER CODE TXHOLD

description

pcs

60 mm - magnetic

5

360 | BIT | COMPLEMENTARY PRODUCTS

geometry


SBD INSTALLATION DEVICE COLUMN SCREWING STATION FOR SBD SELF-DRILLING DOWELS FAST Works at the optimum speed for inserting SBD dowels.

PRECISE Guarantees perfect vertical/horizontal operation.

PRACTICAL Makes it possible to insert dowels properly, without any great effort.

• • • • • •

Rated power consumption: 1200 W Power output: 680 W Rpm under load: 0 - 520 U/min Machine weight (without column): 4,35 kg Total weight: 10,2 kg Cable length: 4 m

CODES AND DIMENSIONS CODE

description

SBDTOOL

SBD installation device

pcs 1

COMPLEMENTARY PRODUCTS | SBD INSTALLATION DEVICE | 361


D 38 RLE 4-SPEED CORDLESS SCREWDRIVER • Rated power consumption: 2000 W • Drilling Ø on: • steel with solid drill bit: up to 32 mm • wood with solid drill bit: up to 130 mm • polypropylene with LS hole cutter: up to 600 mm • Rpm under load in 1st, 2nd, 3rd and 4th speed: 120 - 210 - 380 - 650 U/min • Weight: 8.6 kg • Mandrel connection: conical MK 3

CODES AND DIMENSIONS CODE

description

DUD38RLE

4-speed screwdriver

pcs 1

ACCESSORIES FRICTION

SCREW HANDLE

• Tightening torque 200 Nm • Square connection 1/2”

CODE DUVSKU

MANDREL

• Increased safety

pcs 1

ADAPTER 1

CODE DUD38SH

• Opening 1-13 mm

pcs 1

ADAPTER 2

• For MK3

CODE

ATRE2019

pcs 1

CODE ATCS2010

362 | D 38 RLE | COMPLEMENTARY PRODUCTS

1

SLEEVES

• For sleeve

• For RTR

CODE CODE

pcs

ATRE2014

Ø

pcs

pcs

ATCS007

16 mm

1

1

ATCS008

20 mm

1


SET COUNTERBORE CUTTER WITH DEPTH STOP • Particularly indicated for build terraces • The depth stop with rotating support, is fixed element in working, leaving no traces on the material

CODES AND DIMENSIONS CODE F3577040

Ø tip

Ø counterbore cutter

[mm]

[mm]

4, 5, 6

12

pcs 1

DRIVER BIT HOLDERS WITH END STOP • With O-ring to prevent wood damage at end of travel • The internal device automatically stops the driver bit holder when it reaches the preset depth

CODES AND DIMENSIONS CODE AT4030

Ø tip

Ø counterbore cutter

[mm]

[mm]

adjustable depth

5

pcs 1

COMPLEMENTARY PRODUCTS | SET | DRIVER BIT HOLDERS | 363


TWIST DRILL BITS FOR DEEP DRILLING IN SOFT AND EUROPEAN HARDWOODS • In alloy tool steel • With round-section twist flute, threaded tip, very high quality main cutting edge and roughing tooth • Version with independent head and hex shank (starting from Ø 8 mm)

CODES AND DIMENSIONS CODE

Ø tip

Ø shank

LT

LE

pcs

[mm]

[mm]

[mm]

[mm]

F1410205

5

4,5

235

160

1

CODE

F1410314

Ø tip

Ø shank

LT

LE

pcs

[mm]

[mm]

[mm]

[mm]

14

13

320

255

1

F1410206

6

5,5

235

160

1

F1410316

16

13

320

255

1

F1410207

7

6,5

235

160

1

F1410318

18

13

320

255

1

F1410208

8

7,8

235

160

1

F1410320

20

13

320

255

1

F1410210

10

9,8

235

160

1

F1410322

22

13

320

255

1

F1410212

12

11,8

235

160

1

F1410324

24

13

320

255

1

F1410214

14

13

235

160

1

F1410326

26

13

320

255

1

F1410216

16

13

235

160

1

F1410328

28

13

320

255

1

F1410218

18

13

235

160

1

F1410330

30

13

320

255

1

F1410220

20

13

235

160

1

F1410332

32

13

320

255

1

F1410222

22

13

235

160

1

F1410407

7

6,5

460

380

1

F1410224

24

13

235

160

1

F1410408

8

7,8

460

380

1

F1410228

28

13

235

160

1

F1410410

10

9,8

460

380

1

F1410230

30

13

235

160

1

F1410412

12

11,8

460

380

1

F1410232

32

13

235

160

1

F1410414

14

13

460

380

1

F1410242

42

13

235

160

1

F1410416

16

13

460

380

1

F1410305

5

4,5

320

255

1

F1410418

18

13

460

380

1

F1410306

6

5,5

320

255

1

F1410420

20

13

460

380

1

F1410307

7

6,5

320

255

1

F1410422

22

13

460

380

1

F1410308

8

7,8

320

255

1

F1410312

12

11,8

320

255

1

F1410309

9

8

320

255

1

F1410314

14

13

320

255

1

F1410310

10

9,8

320

255

1

F1410316

16

13

320

255

1

F1410312

12

11,8

320

255

1

F1410318

18

13

320

255

1

364 | TWIST DRILL BITS | COMPLEMENTARY PRODUCTS


CODE

Ø tip

Ø shank

LT

LE

pcs

CODE

Ø tip

Ø shank

LT

LE

pcs

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

F1410320

20

13

320

255

1

F1410618

18

13

650

535

1

F1410322

22

13

320

255

1

F1410620

20

13

650

535

1

F1410324

24

13

320

255

1

F1410622

22

13

650

535

1

F1410326

26

13

320

255

1

F1410624

24

13

650

535

1

F1410328

28

13

320

255

1

F1410626

26

13

650

535

1

F1410330

30

13

320

255

1

F1410628

28

13

650

535

1

F1410332

32

13

320

255

1

F1410630

30

13

650

535

1

F1410407

7

6,5

460

380

1

F1410632

32

13

650

535

1

F1410408

8

7,8

460

380

1

F1410014

14

13

1.080

1.010

1

F1410410

10

9,8

460

380

1

F1410016

16

13

1.080

1.010

1

F1410412

12

11,8

460

380

1

F1410018

18

13

1.080

1.010

1

F1410414

14

13

460

380

1

F1410020

20

13

1.080

1.010

1

F1410416

16

13

460

380

1

F1410022

22

13

1.080

1.010

1

F1410418

18

13

460

380

1

F1410024

24

13

1.080

1.010

1

F1410420

20

13

460

380

1

F1410026

26

13

1.080

1.010

1

F1410422

22

13

460

380

1

F1410028

28

13

1.080

1.010

1

F1410424

24

13

460

380

1

F1410030

30

13

1.080

1.010

1

F1410426

26

13

460

380

1

F1410032

32

13

1.080

1.010

1

F1410428

28

13

460

380

1

F1410134

34

13

1.000

380

1

F1410430

30

13

460

380

1

F1410136

36

13

1.000

380

1

F1410432

32

13

460

380

1

F1410138

38

13

1.000

380

1

F1410440

40

13

450

380

1

F1410140

40

13

1.000

380

1

F1410450

50

13

450

380

1

F1410145

45

13

1.000

380

1

F1410150

50

13

1.000

380

1

F1410612

12

11,8

650

535

1

F1410614

14

13

650

535

1

F1410616

16

13

650

535

1

SET OF HELICOIDAL DRILL BITS

CODES AND DIMENSIONS CODE

Ø set

LT

LE

pcs

[mm]

[mm]

[mm]

F1410200

10, 12, 14, 16, 18, 20, 22, 24

235

160

1

F1410303

10, 12, 14, 16, 18, 20, 22, 24

320

255

1

F1410403

10, 12, 14, 16, 18, 20, 22, 24

460

380

1

COMPLEMENTARY PRODUCTS | TWIST DRILL BITS | 365


HSS WOOD DRILL BIT TWIST DRILL BITS FOR HARDWOOD, MELAMINE-FACED BOARDS AND OTHER MATERIALS • Very high quality polished drill bits, with 2 main cutting edges and 2 roughing teeth • Special twist with smoothed flute for improved chip evacuation • Ideal for free hand and stationary use

CODES AND DIMENSIONS CODE

Ø tip

Ø shank

LT

LE

pcs

CODE

Ø tip

Ø shank

LT

LE

pcs

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

F1594020

2

2

49

22

1

F1599209

9

9

250

180

1

F1594030

3

3

60

33

1

F1599210

10

10

250

180

1

F1594040

4

4

75

43

1

F1599212

12

12

250

180

1 1

F2108005

5

5

85

52

1

F1599214

14

13

250

180

F2108006

6

6

92

57

1

F1599216

16

13

250

180

1

F2108008

8

8

115

75

1

F1599405

5

5

400

300

1

F1594090

9

9

125

81

1

F1599406

6

6

400

300

1

F1594100

10

10

130

87

1

F1599407

7

7

400

300

1

F1594110

11

11

140

94

1

F1599408

8

8

400

300

1

F1594120

12

12

150

114

1

F1599409

9

9

400

300

1

F1599205

5

5

250

180

1

F1599410

10

10

400

300

1 1

F1599206

6

6

250

180

1

F1599412

12

12

400

300

F1599207

7

7

250

180

1

F1599414

14

13

400

300

1

F1599208

8

8

250

180

1

F1599416

16

13

400

300

1

SET OF HSS WOOD DRILL BITS CODES AND DIMENSIONS CODE

Ø set

pcs

[mm] F1594805

3, 4, 5, 6, 8

1

F1594510

3, 4, 5, 6, 8, 10, 12, 13, 14, 16

1

366 | HSS WOOD DRILL BIT | COMPLEMENTARY PRODUCTS


JIG VGZ TEMPLATE FOR 45° SCREWS • For diameters from 7 to 11 mm • Screw length indicators • Screws can be inserted in double 45° mitre cuts

CODES AND DIMENSIONS CODE JIGVGZ45

description

pcs

steel template for VGZ screws at 45°

1

NOTE: Further information on page 134

JIG VGU TEMPLATE FOR VGU WASHER • For diameters from 9 to 13 mm

CODES AND DIMENSIONS CODE

washer

dh

dv

[mm]

[mm]

[mm]

pcs

JIGVGU945

VGU945

5.5

5

1

JIGVGU1145

VGU1145

6.5

6

1

JIGVGU1345

VGU1345

8.5

8

1

NOTE: Further information on page 196

COMPLEMENTARY PRODUCTS | JIG VGZ | JIG VGU | 367


Packaged quantities may vary. No liability is assumed for any errors in printing, technical data or translations. Original text: Italian Any updates are available at www.rothoblaas.com Pictures partially completed with accessories not included. Images for illustration purposes only. This catalogue is the exclusive property of Rotho Blaas srl and may not be copied, reproduced or published, totally or in part, without prior written consent. All violations will be prosecuted according to law. The values provided must be verified by the designer in charge. All rights reserved. Copyright Š 2019 by Rothoblaas All renderings Š Rothoblaas


FASTENING AIRTIGHTNESS AND WATERPROOFING SOUNDPROOFING FALL PROTECTION TOOLS AND MACHINES

Via dell‘Adige N.2/1 | 39040, Cortaccia (BZ) | Italia Tel: +39 0471 81 84 00 | Fax: +39 0471 81 84 84 info@rothoblaas.com | www.rothoblaas.com

COD

Rotho Blaas Srl

01SCREWS1EN

04|19

Rothoblaas is the multinational Italian company that has made innovative technology its mission, making its way to the forefront for timber buildings and construction safety in just a few years. Thanks to its comprehensive product range and the technically-prepared and widespread sales network, the company promotes the transfer of its knowhow to the customers and aims to be a prominent and reliable partner for developing and innovating products and building methods. All of this contributes to a new culture of sustainable construction, focused on increasing comfortable living and reducing CO2 emissions.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.