Innovative Technologien bewegen Europa

Page 1

Innovative Technologien bewegen Europa INNOVATIVE TECHNOLOGIES MOVE EUROPE Ein Schul-Wettbewerb von Science on Stage Deutschland e.V. und der Lenord, Bauer & Co. GmbH


2 INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

3

Innovative Technologien bewegen Europa INNOVATIVE TECHNOLOGIES MOVE EUROPE

Ein Schul-Wettbewerb von Science on Stage Deutschland e.V. und der Lenord, Bauer & Co. GmbH


4 INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

INHALT

5

Teil 1 06 07 08

( ( (

Grußwort

12 14 18 20 22 24

( ( ( ( ( (

Leitfaden zur Umsetzung des Projekts

Vorworte Innovative Technologien bewegen Europa [08] Projekt [08] Hintergrund [09] Ziele [09] Förderung von Schlüsselkompetenzen [10] Prinzipieller Projektablauf [11] Projektpartner

Ablauf und Korrespondenz Ablauf der Veranstaltungen Teilnehmer- und Pressestimmen Erfolge und Nachhaltigkeit Siegerarbeiten

Teil 2 30 31

( (

Teilnehmerliste Projektbeschreibungen der Teilnehmer


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

GRUSSWORT

6

Ich freue mich sehr, dass Lenord & Bauer als nordrhein-westfälisches Unternehmen gemeinsam mit Science on Stage diesen internationalen Wettbewerb ausschreibt. Und das bereits zum vierten Mal. Der Wettbewerb „Innovative Technologien bewegen Europa“ richtet sich an Schülerinnen und Schüler der Sekundarstufe II. Gemeinsam mit Unternehmen sollen sie spannende Aufgaben aus Technik und Naturwissenschaften lösen. Ziel ist es, auf diese Weise einen Beitrag für den praxisnahen und lebendigen naturwissenschaftlichen Unterricht zu leisten, bei Jugendlichen Neugier und Lust auf Technik zu wecken und ihnen den engen Kontakt zu technologisch orientierten Unternehmen zu ermöglichen. Ein gutes Konzept, denn schon heute fehlen viele tausend Fachkräfte in den Ingenieurberufen. Und nur wenn wir bereits Schülerinnen und Schüler anschaulich zeigen, wie spannend Naturwissenschaften und Technik sind und welche hervorragenden Berufschancen ihnen innovative Unternehmen bieten, können wir daran nachhaltig etwas ändern. Ich finde es daher sehr gut, dass ein mittelständisches und international aufgestelltes Unternehmen einen solchen europaweiten Wettbewerb auf die Beine stellt. Schon im letzten Jahr konnte ich mich davon überzeugen, dass der Wettbewerb bei den Jugendlichen hervorragend ankommt. Es war beeindruckend, mit welcher Freude und Kreativität die einzelnen Gruppen an die Aufgaben herangegangen sind und mit welcher Kompetenz sie ihre Arbeitsergebnisse vorgestellt haben. Ich kann daher nur sagen: Mitmachen lohnt sich!

Das scheint sich auch bereits herumgesprochen zu haben. In den vergangenen drei Jahren hat sich die Zahl der Teilnehmerteams aus Schulen und Unternehmen in Deutschland und den angrenzenden Ländern bereits verdoppelt – ein tolles Ergebnis. In diesem Jahr haben sich die Träger des Wettbewerbes vor­ genommen, die Zahl der Bewerber weiter zu erhöhen. Gerne er­­mun­tere ich alle Gymnasien und Gesamtschulen in NordrheinWestfalen, aber auch in den anderen europäischen Regionen, sich zu beteiligen. Der Wettbewerb ist ein hervorragendes Beispiel für unternehmerisches Engagement zur Förderung des naturwissenschaftlichtechnischen Nachwuchses. Dem gleichen Ziel hat sich in NordrheinWestfalen die Landesinitiative Zukunft durch Innovation.NRW verschrieben. Wir wollen mit anspruchsvollen, dauerhaften Angeboten möglichst viele Schülerinnen und Schüler für ein ingenieur- und naturwissenschaftliches Studium begeistern. Dafür bringt die von meinem Haus getragene Initiative in den Regionen Schulen, Hochschulen, Wirtschaft und Politik zusammen. Schon heute erreichen die ZdI-Partner mit ihren Angeboten über 100  000 Schülerinnen und Schüler im Jahr. Bis zum Jahr 2010 werden wir landesweit 25 ZdI-Zentren gründen, die für eine Region oder eine Stadt Technikunterricht mit modernsten Mitteln anbieten. Die kreativen Wettbewerbslösungen von „Inno­ vative Technologien bewegen Europa“ können für diesen Unterricht sicher anregende Impulse geben. Ich wünsche daher den Trägern und allen teilnehmenden Teams viel Vergnügen, Kreativität und Erfolg!

Prof. Dr. Andreas Pinkwart Minister für Innovation, Wissenschaft, Forschung und Technologie Nordrhein-Westfalen Stellvertretender Ministerpräsident Nordrhein-Westfalen


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

VORWORTE

7 Als wir im Jahre 2005 das Engagement für den tech­­nischen Nachwuchs verstärken wollten, kamen wir in Kontakt mit Science on Stage Deutsch­land e.V. Damals spürten wir, dass der Fachkräf­ temangel in Deutschland problematisch wird und kurzfristig unser Unternehmen und die restliche Wirtschaft treffen wird. Noch bevor die Öffentlichkeit durch die Medien auf das Problem des Fachkräftemangels in­­tensiv hingewiesen wurde, konzipierten wir mit Science on Stage Deutschland den gemeinsamen Wett­­be­ werb „Innovative Technologien bewegen Europa“. Die anfängliche Herausforderung bestand darin, den Kontakt zu Schulen zu finden und ausreichend Lehrer für diesen Wettbewerb zu gewinnen. Gestartet haben wir im ersten Durchlauf mit einigen wenigen Teilnehmern. Heute übersteigen die An­mel­ dun­gen bei weitem die mögliche Teilnehmerzahl. Drei erfolgreich durchgeführte Wettbewerbe haben dazu beigetragen, dass wir zahlreiche Schüler in ih­rer Entscheidung unter-

stützen konnten, einen tech­­nischen Beruf zu wählen. Auch die öffentliche Wahrnehmung des Problems Fachkräftemangel konnte durch unseren Wettbewerb gesteigert werden, denn die Fach­ ­presse hat dieses Thema dankenswerter Weise gerne aufgenommen. Doch haben wir noch lange nicht erreicht, was nötig ist, um den Fach­­kräftemangel abzuschwächen. Diese Broschüre dient dazu, weitere Unternehmen zu motivieren, gleiche oder ähnliche Engagements zu initiieren und mitzuhelfen, mehr junge Menschen für technisch-naturwissenschaftliche Berufswege zu interessieren. Ich hoffe, der Leser aus dem un­­ter­ ­­­­­nehmerischen Umfeld findet in dieser Broschüre ausreichend An­ reize, sich ebenfalls für den technischen Nachwuchs zu engagie­ren. Für einen Erfah­­rungsaustausch stehe ich auch gerne per­sönlich zur Verfügung.

Hans-Georg Wilk Geschäftsführer der Lenord, Bauer & Co. GmbH

) Opportunities for young talents! Europa wächst zusammen und bewegt sich auch in Fragen der Bildung. Am Ende der Ausbildung erwarten wir alle eine kluge Jugend, fit für Europa, vor allem in den wichtigen natur­wissen­ schaftlich-techni­schen Feldern. Internationale Studien zei­­gen aber gerade hier Defizite auf. Was kann man tun? Seit dem Jahr 2000 fördert Science on Stage Deutschland e.V. im europäischen Rahmen Entwicklung und Austausch innovativer Lehrkonzepte und Methoden und gestaltet den Transfer in die pädagogische Praxis. Der Blick über den nationalen Tellerrand, die Einsicht in ‚good practice’, ungewohnte Perspektiven und überraschende Lösungen sind geeignet, Problemlagen des eige­ nen Bildungssystems zu entschärfen. Unter den außerschulischen Bildungsangeboten zur Förderung des naturwis­sen­schaftlich-technischen Un­ ­­ter­richts neh­­men Koo­­pe­­rationen mit Un­­ ternehmen der Wirtschaft und Industrie eine prominente Stellung ein, denn sie verbinden das in den Schulen nur theo­ retisch erarbeitbare Modell einer moder­ ­nen In­­dustriegesellschaft mit aktueller Lebenswirklichkeit.

Um in der Bildung außergewöhnliche Vorhaben zu verwirklichen braucht man außergewöhnliche Partner. Das Unterneh­men Lenord + Bauer zeigte keinerlei Berührungsängste mit dem schu­­­li­­schen Alltag und brachte sich bei dem gemeinsam gestalte­ ­ten europäischen Wettbewerb „Innovative Technologien bewegen Europa“ mit großem Einfühlungsvermögen und außerordent­ lichem, erfolgssicherndem Engagement ein. Die nun seit über drei Jahren währende Kooperation hat wunderbare Gelegenheiten geschaffen, europäische und deutsche Schülerinnen und Schüler Tatkraft und Erfindungsreichtum sprühen und präsentieren zu lassen. Auf diese Weise ist ein Wettbewerb entstanden, der Ler­­nen­ ­­de, Lehrende, Politik und Wirtschaft gleichermaßen begeistert. Diese Publikation dokumentiert die anspruchsvollen Aufgaben und überraschenden Lösungen der jungen Entwicklergruppen. Sie soll zur Nachahmung anregen, mit praktischen Ideen zur Qua­­­litätsentwicklung in der naturwissenschaftlich-tech­­nischen Bildung unserer Jugend beizutragen. Gestalten Sie mit uns „more opportunities for young talents“!

Dr. Wolfgang Welz Vorstand Science on Stage Deutschland e.V.


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

Innovative Technologien bewegen Europa

8 ) Projekt

) Hintergrund

Gemeinsam mit Science on Stage Deutschland e.V. (SonSD) lädt das Unternehmen Lenord, Bauer & Co. GmbH bereits seit 2005 jedes Jahr zum Schul-Wettbewerb „Innovative Technologien bewegen Europa“ ein. Teams bestehend aus zwei Lehrkräften und vier bis sechs Schülerinnen und Schülern stellen dabei ihr Können im Bereich der Naturwissenschaften und Technik unter Beweis, indem sie an Projekten tüfteln, die auch im Unterricht eingesetzt werden können. Angelehnt an das Unternehmensprofil sind die Themen vielfältig und reichen vom Modell eines Rasterkraftmikroskops und elektronischen Hampelmann im ersten Durchgang, über Bewegung, Energie und Chaos im folgenden Jahr, bis hin zur Bionik im Jahr 2008. Unterstützt werden die jungen Tüftler im laufenden Wettbewerb mit dem Know-how der Entwicklungsingenieure und mit technischen Baueinheiten von Lenord + Bauer.

Laut dem Institut der deutschen Wirtschaft fehlten allein im April 2008 etwa 70.000 Ingenieure. Durch die sich ändernde Demografie und das mangelnde Interesse an technischen Berufen wird sich dieses Problem in den nächsten Jahren weiter verschärfen. Ein Problem, das auch das Unternehmen Lenord + Bauer bereits spürt: nicht nur der Mangel an Bewerbern macht sich bemerkbar, auch mangelnde Qualität ist immer öfter festzustellen. Doch dass es auch anders geht, zeigt die Initiative „Innovative Technologien bewegen Europa“. Mit reizvollen, kniffligen Projekten im Bereich der Technik und durch den Kontakt zu einem erfolgreichen Unternehmen wer­ den Schülerinnen und Schüler für die Naturwissenschaften begeistert und erhalten einen Einblick in die Praxis und das spätere Berufsleben.

So können die Teams jederzeit auf die Betreuung durch die Ingenieure zählen und sich bei fachlichen Fragen an sie wenden. Für die pädagogische Organisation des Wettbewerbs und die Koordination der Teams sorgt der Verein Science on Stage Deutschland e.V.

A bbil d ungen 01 Teilnehmer der Auftakt-

veranstaltung im Dezember 2006 02 Schüler des Gymnasium Remigianum Borken mit ihrem Modell eines Rasterkraftmikroskops 03 Prof. Dr. Pinkwart bestaunt das Projekt des Landrat-Lucas-Gymnasiums.

01


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

9 ) Ziele

) Förderung von Schlüsselkompetenzen

(( Zusammenführung von Ingenieuren und Schü­ ­­lerinnen und Schülern zu praxisnahen Einblicken in die Naturwissenschaften und Technik (( europaweite Zusammenarbeit von Schulen (( länderübergreifender Erfahrungsaustausch über Konzepte und Methoden des naturwissenschaftlichen Unterrichts (( kurzfristig: Gestaltung kreativer Lösungen tech­ nischer Probleme (( langfristig: Förderung des Ingenieur- und Fachkräftenachwuchses

Das Projekt fördert Schlüsselkompetenzen, die junge Talente im Europa von heute brauchen: (( Kreativität: Die Schülerinnen und Schüler entwickeln selbstständig Lösungsansätze und funktionstüchtige Modelle zu konkreten Problemen in technischen Themenfeldern. (( Kommunikations- und Verhandlungskompetenz: Die Schülerinnen und Schüler verhandeln selbst mit dem Industriepartner, Teilnehmern und Organisatoren. (( Präsentationskompetenz / Fremdsprachen: Die Schülerinnen und Schüler präsentieren und be­­werben ihre Projektlösungen vor allen Teilnehmern und der Öffentlichkeit in englischer Sprache. (( Kooperationskompetenz: Im Erfahrungsaustausch über verschiedene Alters- und Interes­ sengruppen hinweg, teilweise klassenübergreifend, widmen sich die Mitglieder der Teams den verschiedenen Teilaufgaben und koordinieren das Projekt.

02

03


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

) Innovative Technologien bewegen Europa

10 A bbil d ungen 04+05 Das Team des Landrat-

Lucas-Gymnasiums und sein Rasterkraftmikroskop

04

) Prinzipieller Projektablauf I Vorbereitung: September – Dezember (( Anfang September: Anschreiben an die Schulen (( Bis Anfang Oktober: verbindliche Anmeldung (( Anfang Dezember: Auftaktveranstaltung, Vorstellen der Projektvorhaben

III Präsentation: April / Mai (( Abschlussveranstaltung: Präsentation der Ergebnisse Prämierung der herausragendsten Projekte durch die Jury

II Umsetzung: Januar – April / Mai (( Umsetzung der Projektvorhaben in den Schulen und Projektgruppen (( nach Bedarf Zusammenarbeit mit Lenord + Bauer (( Dokumentation der Zwischenstände

IV Nachbereitung (( Veröffentlichung der Projekte und Ergebnisse im Internet (( Fortsetzung der Zusammenarbeit zwischen Teilnehmern und Projektpartnern

05


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

11 ) Die Projektpartner Lenord, Bauer & Co. GmbH: Lenord + Bauer ist ein mittelständisches Unternehmen der Automatisierungstechnik. Als international tätiger Spezialist im Bereich der Automatisierungstechnik entwickelt Lenord + Bauer mit 195 hochqualifizierten Mitarbeitern innovative Systeme für die Automatisierung von industriellen Bewegungsabläufen. Innerhalb relevanter Segmente, etwa im Maschinenbau, in der Schienenverkehrstechnik und der Wind­energietechnik, konzentriert sich Lenord + Bauer auf kundenspezifische Systemlösungen. Der Kom­ ­­petenzbereich umfasst insbesondere die Ent­­ wick­lung und Produktion robuster Sensoren und hochwertiger, intelligenter Steuerungen.

Björn Schlüter

Ansprechpartner: Stefanie Schlunk (Geschäftsführung) Vorsitzender: Prof. Otto Lührs Science on Stage Deutschland e.V. Poststraße 4/5 | 10178 Berlin Tel.: +49 30    400067-40 | info@science-on-stage.de

Seit Jahren beschäftigt sich Lenord + Bauer mit dem Nachwuchsproblem: erhöhte Auftrags­ eingangs­­zahlen und neue Produktentwicklungen fordern das Unternehmen. Die vorhandene Anzahl der qualifizierten Arbeitskräfte reicht jedoch bei weitem nicht aus, um die Nachfrage nach qualifizierten Ingenieuren zu sättigen. Stefanie Schlunk

Ansprechpartner: Björn Schlüter (Leiter Unternehmenskommunikation) Lenord, Bauer & Co. GmbH Dohlenstraße 32 | D-46145 Oberhausen Tel.: +49 208 9963-315 | bschlueter@lenord.de

Science on Stage Deutschland e.V. Seit dem Jahr 2000 zunächst als Organisationskomitee, seit 2003 als gemeinnütziger Verein, arbeitet Science on Stage Deutschland e.V. (SonSD) im europäischen Rahmen für die Förderung der naturwissenschaftlichen Bildung. Eine zentrale Aufgabe von SonSD ist die Vernetzung europäischer und deutscher Lehrkräfte. Die Entwicklung und Verbreitung guter Unterrichtskonzepte und Experimente („good practice“) soll den Unterricht qualitativ verbessern und mehr junge Menschen für naturwissenschaftlich-technische Berufsfelder gewinnen. SonSD fördert innovative Ideen und engagierte Lehrkräfte mit ungewöhnlichen Konzepten und lädt sie zu nationalen Lehrerfortbildungen und europäischen Aktivitäten ein.

Weitere Informationen zu „Innovative Technologien bewegen Europa“ und den Projektpartnern finden Sie im Internet unter: www.lenord.de www.schule-bewegt.de www.science-on-stage.de


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

Leitfaden zur Umsetzung des Projekts

12 ) Notwendig sind

) Hinweise für das Unternehmen

(( Ein Unternehmen, möglichst mit Vertriebs­ partnern oder Tochtergesellschaften im be­ nach­barten europäischen Ausland. (( Schulen in der Umgebung, in der Bundesrepublik und im europäischen Ausland. (( Ein Kooperationspartner oder ein Koordinationslehrer, der die pädagogische Gesamtkoordination (hier Science on Stage Deutschland) innehat. (( Ein Kooperationsteam (Pädagogen und Ingenieure) für die Entwicklung kreativer authentischer Aufgabenstellungen für die Schulteams.

Aufgaben: (( Beratung der Projektgruppen (( Technische Unterstützung der Teams durch Material und Wissenstransfer von den Ingenieu­ ren und Mitarbeitern des Unternehmens (( Begleitung und Durchführung der Auftakt- und Abschlussveranstaltung (( Eine Person des Unternehmens ist als Ansprech­ partner für die Teams erreichbar. (( Öffentlichkeitsarbeit für das Projekt

A bbil d ungen 06 Ein Ingenieur von

Lenord + Bauer erklärt technische Grundlagen. 07 Die Teilnehmer im Austausch mit dem Unternehmen 08 Schüler aus Lemgo mit ihrer „Wasserrakete“

Kosten: (Erfahrungswerte auf der Basis von 7 teilnehmen­ ­den Schulen, 56 Schülern und 10 Lehrern) (( Auftakt- und Abschlussveranstaltung: ca. 7.000 € (( Technischer Support für die Schulen: 2.500 € (( Kleine Anerkennungen (z.B. Buch) für die Teams bei der Abschlusspräsentation: 1.000 € (( Arbeitszeit der Mitarbeiter für die Betreuung der Teams: fiktiv 2.000 € (( Öffentlichkeits-/Pressearbeit: 15.000 € (bei Beauftragung einer Agentur) (( Übernahme der Reisekosten für die Schüler (( Gesamt etwa 27.500 € Nutzen: (( Kontakt zu potentiellen Nachwuchs­inge­ nieu­­ren/-mitarbeitern (( Lokaler und regionaler Imagegewinn (( Aufmerksamkeit für das Unternehmen in der Öffentlichkeit (Presse- und Berichterstattung!)

06


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

13 ) Hinweise für die Schulen 1 Team: (( 2 Lehrer (möglichst aus verschiedenen Fächern) sowie mindestens 4 Schülerinnen und Schüler Aufgaben: (( Mit den Schülerinnen und Schülern kreative Unterrichtsprojekte entwickeln, die die Schülerinnen und Schüler in englischer Sprache vorstellen (( Koordination der Schülerteams (( Präsentation der Teams und der Projekte bei der Auftakt- und Abschlussveranstaltung (jeweils an einem Schultag) Nutzen: (( Technischer Support und Know-how durch das Unternehmen (( Knüpfen von hilfreichen Kontakten zu Industrie und Wirtschaft (( Der Austausch mit Kolleginnen und Kollegen aus anderen Ländern (( Die Gelegenheit, innovative Projekte zu entwickeln, die in der Schule wiederholt und fortgesetzt werden können (( Ein „Schub“ in der pädagogischen und fachlichen Entwicklung des naturwissenschaftlichtechnischen Unterrichts (und darüber hinaus!)

07

08


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

Ablauf und Korrespondenz Am Beispiel von Innovative Technologien bewegen Europa III

14 )A ugust / September – Einladung an Schulen und Lehrer zur Teilnahme

) Einladung und Informationen zur Eröffnungsveranstaltung

» Dear Science Teachers,

» Dear participants in “Innovative Technologies Move Europe III”,

Following the success of the project “Innovative Technologies Move Europe II” (see also http:// www.schule-bewegt.de), we are pleased to be able to announce the continuation of this teacher/student project during the school year 2007/2008. Together with Science on Stage Deutschland e.V., the company Lenord, Bauer & Co GmbH cordially invites teachers in the natural sciences to participate. «

Our kick-off meeting on the 7th of December at 3 pm is approaching and we are looking forward to meeting you at the enterprise of Lenord, Bauer & Co. GmbH, Dohlenstrasse 32 in 46145 Oberhau­sen. For the instruction “how to get there” please visit www.lenord.de. If the foreign participants need help to get from the station to the company, please contact us. I would like to remind you to send us your 3 ­power point slides (see attachment) for the presentation until next Monday, the 3rd of December, so we are able to put the 13 presentations together in one. Presentation: Each team should present the own project plan in max. 5 minutes / 3 power point slides in English. The teams will present in the following order: […] After the presentations you will have time to visit the company, to get to know each other and to enjoy the small buffet. If you have any further questions, please do not hesitate to contact us. You will find all project information also on our homepage www.scienceon-stage.de or www.schule-bewegt.de. We are looking forward to your project plan and hope you enjoy the realisation of the biomimetic topic you have chosen. Best wishes, Science on Stage Deutschland e.V. «

A bbil d ungen 09 Das Gymnasium

Remigianum Borken präsentiert „Herbie“. 10 Schüler aus Oberhausen bei der Abschlussveranstaltung 2008

09


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

15 ) Dezember – Zwischenstand

) Januar - Bitte um Zwischenbericht

» Dear participants in “Innovative Technologies Move Europe III”,

» Dear participants in “Innovative Technologies Move Europe III”,

Thank you all for coming to our kick-off meeting on the 7th of December in Oberhausen. We enjoyed your presentations a lot and are already looking forward to seeing your final results on 11th of April 2008.

This is just to remind you to send us your short interim report (max. ½ page) about your project, e.g. what you have done so far, how you cooperate with the engineers of Lenord + Bauer, what are your next steps etc. (guideline: see attachment) until 25th of February 2008.

Below you will find the next steps until our final meeting: January-April 08: Implementation of the project plan; Lenord + Bauer provide any cooperative support that may be required (material, knowhow); exchange of information between teams via e-mail. 1. April 08: Deadline for project description: word file – see attachment – and 3 ppt-slides for the final presentation. 11. April 08, 3 pm: Presentation of the results in English by the students in Oberhausen. Once again we would like to encourage you to contact the engineers of Lenord + Bauer via e-mail. You will find the addresses below… «

If you have any further questions, please do not hesitate to contact us. Best wishes, Science on Stage Deutschland e.V. «

10


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

) A blauf und Korrespondenz Am Beispiel von Innovative Technologien BEWEGEN EUROPA III

16 ) Februar - Einladung Abschlussveranstaltung

)B itte um Abschlussbericht und Information über weiteren Verlauf

» Dear participants in “Innovative Technologies Move Europe III”,

» Dear participants in “Innovative Technologies Move Europe III”,

In August 2007 we invited you to participate in our teacher-student-projects “Innovative Technologies move Europe III”. You and twelve other groups from North Rhine-Westphalia and groups from Belgium, the Netherlands, the United Kingdom and Czech Republic worked on projects such as “Crawler”, “Jumper” and “Flyer”.

I hope you had a good start in 2008 and your Biomimetics project plans are progressing. Below we send you further information about our final meeting, taking place on Friday, 11th of April, at 2 pm in Oberhausen. Due to the large number of teams we had to change the start of the meeting to 2 pm; we hope this is fine with you.

Today we invite you to present your results at the concluding event on April 11th, 2008 at the Rhei­ nische Industrie Museum in Oberhausen. ... «

Next steps: Until 25th of February 2008: Please send us a short interim report (max. ½ page) about your project, e.g. what you have done so far, how you cooperate with the engineers of Lenord + Bauer, what are your next steps etc. (guideline interim report: see attachment). April 1st 2008: Deadline for project description: Word file and 3 Powerpoint slides for the final presentation (see attachments). April 11th 2008, 2 pm: Presentation of the results in English by the students in Oberhausen.

A bbil d ungen 11 Vorführung der “Elektro-

nischen Hampelmänner“ von Schülern aus Mönchengladbach im Mai 2006.

Competition Criteria: Please keep in mind the competition criteria. In all three cases (crawling, jumping, flying) the technical entity should be as small as possible! The “crawler” (task I) and “jumper” (task II) should incorporate their own means of propulsion and should energise themselves and move by absorbing external heat energy or incident light. The judges will assess the idea/creativity, functio­ nality, elegance of solution, presentation, appli­ca­ ­bility to classroom teaching, practical orien­tation and the teamwork.

11


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

17 ) Mai – Nachbearbeitung

Draft final meeting: Starting at 12 pm: Time for setting up 2 pm: Opening Slide presentations of the teams: one person per team will be on stage presenting the 3 Powerpoint slides and explaining the project. […] The presentations will be organised in two sessions (1st session: 7 teams; 2nd session: 6 teams […] We will send you the order of presentations in March 2008. […] Arrival – Accommodation: Teams from Belgium, the Netherlands, UK and the Czech Republic, please send your arrival and departure times and the number of your team members to Mr. Schlueter. He will book the hotel for you. Further information: You will find further information, e.g. the talk “Biomimetics” by Jürgen Bertling (next week) from the kick-off-meeting, on www.schule-bewegt.de and www.science-on-stage.de. Once again we would like to encourage you to contact the engineers of Lenord + Bauer via e-mail (see addresses below). If you need any materials please get in touch with Mr. Schlueter (bschlueter@lenord.de). If you have any further questions, please do not hesitate to contact us. We wish you a successful and enjoyable continuation of your projects! Science on Stage Deutschland e.V. «

» Dear participants in “Innovative Technologies Move Europe III”, On behalf of Lenord + Bauer and Science on Stage Deutschland e.V. I would like to thank you very much for your presentations on Friday, 11th of April 2008 in Oberhausen. We were impressed about the quality of your projects, the way you presented the results on stage, the enthusiasm and the teamwork. We hope that your “Biomimetics-project” was for each of your team members an enrichment concerning your personal knowledge, your science classes, the possibilities how to cooperate with a company in a school related context and the European exchange. We will upload your project descriptions and some pictures on our webpages www.scienceon-stage.de and www.schule-bewegt.de. This way other students and teachers can be inspired from your ideas. As it was already mentioned at the final meeting, we will also summarise the project results of our European competitions “Innovative Technologies Move Europe I, II and III” in a small booklet. Therefore we will contact you again in the next weeks. Once again we would like to encourage you to continue your work and to stay in touch with Science on Stage Deutschland (e.g. Science on Stage-Festival 2008) and with Lenord + Bauer (work experience etc.). Thank you all for your participation and best wishes, Science on Stage Deutschland e.V. «


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

Ablauf der Veranstaltungen

18

                                                                           

  


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

19

    

  



       4.      





                     

 







 

    



    

    


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

Teilnehmer- und Pressestimmen

20 „Dear Lenord + Bauer, Thank you for the opportunity you gave us, we are very grateful. The experience was fantastic; and has helped us in many ways possible. During the time of the Innovative Technologies Move Europe III Project we found out many interesting facts; and it expanded our knowledge of engineering as a whole. We enjoyed the final presen­ tation the most as every one was there from the last presentation and also telling everyone about our robot and how we made it. […] We also had a great time having dinner with the Lenord + Bauer associates, which we enjoyed, and was good to get to know the associates and learn more about the project and the sponsors. Thanks again!” Rick’s Robotic Rangers St Georges R.C High School, UK Sophie, Zeta, Emma, Shannen, Tom and Ashleigh „Wir haben viel Freizeit in das Projekt investiert“, erzählt Sebastian Goderbauer, „aber es hat sich gelohnt!“ „Die Diskussion der Schüler mit ‚gestandenen‘ Ingenieuren – auf Augenhöhe – ist immer wieder ein Höhepunkt des Ganzen“, so Günter Niehues (Lehrer am Gymnasium Remigianum Borken).

» Wir haben viel Freizeit in das Projekt investiert, aber es hat sich gelohnt!«

„Die Schüler präsentieren hier Ideen, die so pfiffig sind, dass sie auch aus unserer Entwicklungsabteilung stammen könnten.“ Hans-Georg Wilk, kaufmännischer Geschäftsführer von Lenord + Bauer. „Durch den fächerübergreifenden Ansatz mit Technik, Physik und Informatik haben alle Beteiligten – Schüler, Lehrer und Schule – eine Menge gelernt und interessante Einblicke bekommen“, so der Physiklehrer Uwe Brinkmann. Wolfgang Brockerhoff (Jury Mitglied) von der ­Universität Duisburg-Essen in der WAZ vom 17.05.2007: „Das ist klasse, was die jungen Leute da gebaut haben. Solche Geräte verwenden wir auch in der Forschung“, erklärt er beim Anblick eines Rasterkraftmikroskops.

» Ich hatte vorher noch nicht soviel Erfahrung mit Technik, aber es ist klasse« A bbil d ungen 12 Schüler zu Besuch bei

Lenord + Bauer 13 Prof. Dr. Pinkwart mit einem belgischen Teilnehmer

„Wir hatten jeden Tag neue Ideen, die wir oft am nächsten Morgen direkt wieder verworfen haben“, erinnert sich Anna Lena Müller. „Bei so einem Pro­ jekt gibt es natürlich auch Rückschläge, doch die haben die Schüler vor allem durch ihr Teamwork weggesteckt“, lobt Lehrer Gerber sein ForschungsTeam in der Rheinischen Post im Mai 2006. Schüler gegenüber dem WDR (08.05.2008): „Aus den einfachen Dingen des Alltags so etwas kompliziertes zu machen und das alles selbst zu entwerfen, das macht viel Spaß“, sagt der 16-jährige Mark von der Heinrich-Böll-Gesamtschule. „Ich hatte vorher noch nicht soviel Erfahrung mit Technik, aber es ist klasse“ so die 16-jährige Carmen.

12


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

21

» The experience was fantastic; and has helped us in many ways possible. (...) it expanded our knowledge of engineering as a whole.« „Das ist echt schwierig, wenn man keine Anleitung hat“, sagt Phillip, 14 Jahre alt. „Aber das ist ja auch das Gute daran. Man kann es immer wieder neu versuchen und über kleine Fortschritte freut man sich auch.“ „Im normalen Unterricht macht man nur, was einem vorgegeben wird. Hier muss man sich das alles selbst erarbeiten“, erklärt Daniel seine Begeisterung für die Schul-Arbeit in der Freizeit. „Der Wettbewerb von Lenord + Bauer und Science on Stage braucht den Vergleich mit ,Jugend forscht’ nicht zu scheuen, denn technologisch bewegt er sich auf einem ähnlich hohen Niveau. Die Tatsache, dass die Schüler sich mit einer vorgegebenen Fragestellung auseinandersetzen müssen, macht diesen Wettbewerb fast noch anspruchsvoller und thematisch vielseitiger“, so Ministeriumsvertreter Peter Langel.

) Pressestimmen Der Westen, 11.04.2008: „ … Wir hätten nicht gedacht, dass es so kompliziert wird“, sagt Max. Trotzdem: Sie hätten Riesenspaß gehabt. „Wir sind jetzt richtig heiß“ sagt Matthias. Mehr kann ein Unternehmen, das den Nachwuchs fördern will, sich nicht wünschen.“ Westfälische Nachrichten, 16.04.2008: „Das Ziel, den Nachwuchs zu fördern und junge Menschen für technisch-naturwissenschaftliche Berufe zu interessieren, haben die Macher erreicht. „Das

13

Projekt hat sehr viel Spaß gemacht und es hat mich in meiner Entscheidung für eine Laufbahn im naturwissenschaftlichen oder technischen Bereich bestärkt“, erklärt Olaf Minte vom Borkener Siegerteam.“ Wirtschaftsnachrichten Region Nordrhein, 11.06.2007: „Bei der Abschlussveranstaltung des Wissenschafts­ wettbewerbs überzeugen die Schülerteams durch ausgereifte Technik und Originalität. Eine elektronische Fliegenfalle als Zündungsmechanismus, Bestandteile alter Fahrräder für eine Energie erzeugende Treppe oder eine Computermaus als Schwingungsmesser. Dies sind nur einige Beispie­ le der Kreativität der Schüler auf der Abschlussveranstaltung des internationalen Schüler-Wettbewerbs „Innovative Technologien bewegen Europa“. […] Entsprechend begeistert zeigt sich auch Professor Dr. Andreas Pinkwart, NRW-Minister für Innovation, Wissenschaft, Forschung und Tech­ nologie: „Der Reiz dieses Wettbewerbs liegt darin, dass sich die Schüler mit Naturwissenschaft und Technik beschäftigen. Und wenn sie dann auch noch solche Ergebnisse erzielen, wie wir sie hier sehen – so vermittelbar! – dann ist das die Voraussetzung dafür, dass wir als Land der klugen Köpfe eine Zukunft haben. Das ist genau das was wir wollen.“ …“

» Und wenn sie dann auch noch solche Ergebnisse erzielen, (...) dann ist das die Voraussetzung dafür, dass wir als Land der klugen Köpfe eine Zukunft haben.«

» Das Ziel den Nachwuchs zu fördern und junge Menschen für technisch-naturwissenschaftliche Berufe zu interessieren, haben die Macher erreicht.«


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

Erfolge und Nachhaltigkeit

22 ) Erfolge

Projekt aus Oberhausen bei. Ich bedanke mich bei den Preisträgern für ihr Engagement.“

(( Seit 2005 findet das Projekt „Innovative Technologien bewegen Europa“ jedes Jahr sehr erfolgreich statt und erfreut sich großem Interesse bei den Teilnehmern, so dass aufgrund der hohen Anmeldezahlen leider nicht alle Teams berücksichtigt werden konnten. (( Ein Team des Landrat-Lucas-Gymnasiums in Leverkusen hat nach dem ersten Durchgang von „Innovative Technologien bewegen Europa“ (2005/2006) seine Arbeit „Modell eines Raster­ ­kraftmikroskops“ bei „Jugend forscht“ fortge­ setzt und wurde auf Bundesebene 2007 mit dem Sonderpreis in der Kategorie „Physik“ geehrt.

A bbil d ungen 14 Schüler des Landrat-

Lucas-Gymnasiums als Preisträger bei Jugend forscht (Quelle: Stiftung Jugend forscht e.V.) 15 Verleihung des Sonderpreises „Zukunft durch Innovation.NRW“ 16 Die Gewinner des Wettbewerbs 2007/2008 – das Gymnasium Remigianum mit „Herbie“

(( Das Projekt „Innovative Technologien bewegen Europa“ wurde am 03.12.2007 mit dem Sonder­preis der Initiative „Zukunft durch Innovation. NRW“ ausgezeichnet und Ende ­November 2007 im Landtag NRW gewürdigt. Dazu Dr. Michael Stückradt, Staatssekretär im Innovationsministerium: „Wenn wir die Zahl der Absolventen in den Ingenieur- und Natur­ wissenschaften steigern wollen, müssen wir früh das Interesse bei Kindern und Jugend­ lichen wecken. Dazu trägt das ausgezeichnete

14

(( Der ehemalige Schüler des Remigianum Borken Tobias Finke nahm zweimal am Wettbewerb teil und hatte dabei Gelegenheit das Unternehmen Lenord + Bauer genauer kennen zu lernen. Schließlich bewarb er sich dort erfolgreich für eine Ingenieurausbildung in Kom­bi­ nation mit einem Maschinen­baustudium.

) “ Innovative TechnologieN BEWEGEN Europa I, II, III”: Ein Rückblick von Günter Niehues (Gymnasium Remigianum Borken) Im Spätsommer 2005 war es endlich soweit: auf dem Lehrerworkshop von SonSD in Bad Honnef 2004 hatte ich bereits von dem bevorstehenden Wettbewerb gehört. Laut Vorankündigung erschien er mir aus folgenden Gründen interessant: (( Die Aufgaben beinhalteten mehrere natur- und ingenieurwissenschaftliche Aspekte. Die Lösun­ gen konnten die Schüler auf unterschiedlichen Niveaus erstellen - deshalb war eine Lösung mit ziemlicher Sicherheit machbar.

15


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

23 (( Die Projekte konnten nur als Team vollendet werden. Die komplexe Problemstellung und die Tatsache, dass die Aufgabenstellung nicht aus dem Unterricht direkt gelöst werden konnte, verlangte die Mitarbeit von Schülern mit unterschiedlichen Fähigkeiten. Anders als im Standardunterricht kannte auch der beteiligte Lehrer im Vorhinein keine Lösung. Einige Schüler der 12. und 13. Jahrgangsstufe zeigten Interesse - am Ende arbeiteten 11 Schüler in der Gruppe mit. Beim ersten Treffen entschie­ den sich die Schüler, ein Modell eines Rasterkraftmikroskopes herzustellen. Gemeinsam entschieden wir uns für die folgende Vorgehensweise: (( Wir errichteten autonome Teilgruppen (ohne Lehrer): Mechanik, Elektronik, Software. (( 14-tägig - in der Endphase wöchentlich – fand ein Plenum statt: Probleme und Lösungen wurden vorgestellt und diskutiert, Schnittstellen festgelegt. Als Lehrer war ich für Anregungen und Nachfragen zuständig – vor allem aber für die finanziellen Bedingungen, außerdem ab und zu als Türöffner bei Firmen und Institutionen. Im Dezember fuhren wir zum Treffen nach Oberhausen. Die Schüler konnten erste Erfahrungen sammeln, eine Präsentation vor fremdem Publikum in englischer Sprache zu gestalten. Im Nachhinein bewerteten die Schüler vor allem die vielen Diskussionen mit den Mitarbeiten von Lenord + Bauer als äußerst interessant und hilfreich. Trotz Abitur wurden die Gruppen fertig und wir konnten unsere Lösung vorstellen. Der Lohn der Arbeit: ein zweiter Platz und viel Lob von den Mitarbeitern von Lenord + Bauer bei der Präsentation. Sechs Abiturienten aus der Gruppe verließen die Schule, um zu studieren. Die verbliebenen fünf Gruppenmitglieder fragten mich schon zu Schuljahresbeginn: „Was ist un-

16

ser nächstes Problem?”. Erneut konnten Schüler der neuen 12. Jahrgangsstufe gewonnen werden. Auch der Physik-LK-Lehrer, Herr Bertram, beteiligte sich. Wir Lehrer fungierten wieder als Anreger, Türöffner und Finanzmanager. Die Schüler entschieden sich zum Bau eines Fahrzeugs, das mit einem Liter Wasser fahren kann. Wir begannen erneut: Teilgruppen bilden, Plenum zunächst 14-tägig, im Endspurt dann wöchentlich... Im Laufe des Jahres bürgerte sich der Name „SonSD-AG“ für unsere Gruppe ein. Die erfreulichen Erfahrungen des ersten Jahres wiederholten sich, die Schüler arbeiteten mit großem Eifer. Bei der abschließenden Präsentation erreichte ihre Lösung den ersten Platz. Im nächsten Schuljahr war die „SonSD-AG“ ein Selbstläufer. Zur Lehrergruppe gesellte sich noch ein weiterer Kollege, Herr Herdering. Aber auch zu dritt veränderte sich unsere Funktion nicht. Die Schüler und eine Schülerin entschieden sich zur Entwicklung eines Käfermodells. Die Erfahrungen und Ergebnisse des letzten Jahres konnten mit einem erneuten ersten Preis wiederholt werden. In allen drei Gruppen haben die Schüler nicht nur vieles aus unterschiedlichen Gebieten kennengelernt. Sie haben etwas konstruiert, das sie – zu Recht – stolz präsentieren konnten. Außerdem haben sie über einen Zeitraum von etwa einem halben Jahr erfolgreiche Teamarbeit erfahren können. Der Entschluss eine natur- oder ingenieurwissenschaftliche Ausbildung einzugehen, ist durch die Mitarbeit in diesen Gruppen zumindest bestärkt worden. Für die nächsten Jahre hoffe ich, dass die Wettbewerbe „Innovative Technologien bewegen ­Europa I, II, III“ noch viele Nachfolger finden. Deshalb besteht an meiner Schule die „SonSDAG“ weiter!


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

Siegerarbeiten

24 ) 2005/2006

) 2007/2008

1. Platz: (( Rasterkraftmikroskop des Landrat-LucasGymnasium aus Leverkusen

Sieger der Kategorie „Crawler“ (( „Herbie“ des Gymnasiums Remigianum aus Borken

2. Platz: (( Rasterkraftmikroskop des Gymnasium Remigianum aus Borken und (( Rasterkraftmikroskop des MathematischNaturwissenschaftlichen-Gymnasiums aus Mönchengladbach

Sieger der Kategorie „Jumper“ (( „Frosch“ der Gesamtschule Weierheide aus Oberhausen Sieger der Kategorie „Flyer“ (( „Flieger“ des Bonhoeffer Colleges aus Enschede (Niederlande)

) 2006/2007 Sieger der Kategorie „Chaos“ (( Chaotisches Wasserrad des EngelbertKaempfer-Gymnasiums aus Lemgo und (( Chaotisches Pendel des Gymnázium Christiana Dopplera aus Prag (Tschechien) Sieger der Kategorie „Energie“ (( 1. Platz und Gesamtsieg: „Energieliefernde Treppe“ des Koninklijk Atheneum aus Wetteren (Belgien) (( 2. Platz: „Alternative Energie durch den Seebeck-Effekt“ des Engelbert-KaempferGymnasiums aus Lemgo

18 A bbil d ungen 17 Die „Energieliefernde

Treppe“ des Koninklijk Atheneum 18 Schülerinnen aus Lemgo und ihr „Chaotisches Wasserrad 19 Das Team aus Prag präsentiert ein „Chaotisches Pendel“.

17

19


INNOVATIVE TECHNOLOGIEN BEWEGEN EUROPA

25 ) Kurzbeschreibungen: Rasterkraftmikroskop des Landrat-Lucas-Gymnasium aus Leverkusen: Das extrem kostengünstige Modell aus alten Festplatten, zusammengelöteten, elektrischen Platten und einem x-y-Schreiber tastet die Oberfläche einer Münze ab und stellt diese vergrößert und äußerst detailreich auf dem Monitor dar. Chaotisches Wasserrad des Engelbert-KaempferGymnasiums aus Lemgo: Ein Wasserrad bestehend aus einer Fahrradfelge und daran befestigten kleinen durchlöcherten Was­ serschalen. Da das Wasser immer wieder aus den Schalen herausläuft ist die Bewegung des Rades chaotisch und die Drehrichtung nicht vorhersagbar. Chaotisches Pendel des Gymnázium Christiana Dopplera aus Prag: Eine gut nachvollziehbare Darstellung des Themas Chaos: Ein Tennisball befestigt an einer Metallfeder, die wiederum an einem bewegten Zahnrad hängt und so die Bewegung des Pendels chaotisch macht. „Energieliefernde Treppe“ des Koninklijk Atheneum aus Wetteren: Energiegewinnung durch Treppensteigen macht diese Erfindung möglich. Durch Fahrradketten werden bewegliche Stufen mit einem Generator verbunden und erzeugen so beim Betreten der Stufen Strom.

20 A bbil d ungen 20 Der „Frosch“ der

Gesamtschule Weierheide 21 Die Jury berät sich.

„Herbie“ des Gymnasiums Remigianum: Der sechsbeinige Roboter-Käfer „Herbie“ kann in alle Richtungen krabbeln und erkennt durch Sensoren Hindernisse, die er so gezielt umgeht. Die dazu notwendige Energie stellen Solarzellen bereit. „Frosch“ der Gesamtschule Weierheide aus Ober­ hausen: Mit Hilfe eines Motors und Solarzellen hüpft das Modell ähnlich einem Frosch. Kernstück bildet dabei ein Zahnradgetriebe aus fünf Zahnrädern, welches dem Frosch die nötige Sprungkraft verleiht. „Flieger“ des Bonhoeffer Colleges aus Enschede: Wie ein Vogel soll dieses Modell fliegen. Dazu treibt ein Motor eine Achse mit Kurbeln an, die schließlich die Flügel auf und ab bewegen. Ein sehr gutes Konzept, auch wenn das Problem Motorgewicht – Flügelgröße noch nicht ganz gelöst werden konnte.

„Alternative Energie durch den Seebeck-Effekt“ des Engelbert-Kaempfer-Gymnasiums: Zwischen zwei Punkten eines elektrischen Leiters, die verschiedene Temperaturen haben, entsteht eine elektrische Spannung. Dieser sogenannte Seebeck-Effekt wurde bei diesem Modell ausgenutzt, indem Drähte um eine kalte und eine heiße Quelle gespannt wurden.

21



PART 2: PROJECT DESCRIPTIONS

PROJECT DESCRIPTIONS

Projektbeschreibungen

2

TEIL PROJEKTBESCHREIBUNGEN

Teil 2

Innovative Technologien bewegen Europa INNOVATIVE TECHNOLOGIES MOVE EUROPE


28 Innovative Technologies move Europe


Innovative Technologies move Europe

CONTENTS PART 2

29

30

(

List of participants

31

(

PROJECT DESCRIPTIONS OF THE TEAMS

31

(

Coriolis force acting upon the rotating chair

32

(

Automated store

33

(

The Lorenz Waterwheel

The electronic jumping jack

34

(

The electronic jumping jack

Model of an atomic force microscope

35

(

Model of an atomic force microscope

36

(

Model of an atomic force microscope

37

(

Model of an atomic power microscope

38

(

The Carbide Car

39

(

The Soda Car

40

(

Hot-Water-Rocket-Car

ENERGY

41

(

Staircase power

CHAOS

42

(

The chaotic gambling table

43

(

Elastic pendulum

44

(

A chaotic water wheel

45

(

A scarab beetle

46

(

Herbie, a brainy beetle robot

47

(

A Small Ant Like a Robot

48

(

Construction of a Scorpion

49

(

Water strider

50

(

Jumping robot

51

(

Solar frog

52

(

7th generation of “SSU007”

53

(

Flying Object

54

(

Something that flies

ANYTHING YOU CAN MOVE WITH A WHEEL

MOVEMENT

Something that crawls

Something that jumps

Something that flies


Innovative Technologies move Europe

PARTICIPATING SCHOOLS

30 ) 2005/2006:

) 2007/2008

(( Mathematisch-Naturwissenschaftliches Gymnasium Mönchengladbach (( Engelbert-Kaempfer-Gymnasium Lemgo (( Gymnasium Remigianum Borken (( Gymnàzium Bernarda Bolzana o.p.s. Praha, Czech Republic (( Koninklijk Atheneüm Campus Noordlaan Wetteren, Belgium (( Bonhoeffer College Enschede, Netherlands

(( Heinrich-Böll-Gesamtschule Oberhausen (2 Teams) (( Gesamtschule Weierheide Oberhausen (( Engelbert-Kämpfer-Gymnasium Oberhausen (( Gymnasium Remigianum Borken (( Gymnasium Haus Overbach, Jülich (( Käthe-Kollwitz-Gymnasium, Wesseling (( JuniorAkademie NRW II (( Hardenberg-Gymnasium Fürth (( St George‘s RC High Manchester, United Kingdom (( Koninklijk Atheneum Campus Noordlaan Wetteren, Belgium (( Bonhoeffer College Loc. Bruggertstraat Enschede, Netherlands (( Gymnázium Bernarda Bolzana o.p.s. Praha, Czech Republic

) 2006/2007 (( (( (( (( (( ((

Sophie-Scholl-Gymnasium Oberhausen Gesamtschule Osterfeld Oberhausen Engelbert-Kaempfer-Gymnasium Lemgo Gymnasium Remigianum Borken Landrat Lucas Gymnasium Leverkusen Bonhoeffer College Loc. Bruggertstraat Enschede, Netherlands (( Gymnázium Christiana Dopplera Czech Republic Praha, Czech Republic (( Vrij Technisch Instituut Sint-Laurentius Lokeren, Belgium (( Koninklijk Atheneüm Campus Nordlaan Wetteren, Belgium


Anything you can move with a wheel

Coriolis force acting upon the rotating chair

Innovative Technologies move Europe

1

31 ) Abstract:

) Project description:

The gun shoots at a target on a rotating chair, followed by two cameras (rotating and non-rotating). The interpretation points towards the Coriolis force.

When a gun shoots at a target (both being fastened to the chair), the bullet does not hit the centre of the target while the chair is rotating. From the inertial frame of the Earth: target shifts while the bullet is moving towards it. From the rotating frame: the bullet is subject to the Coriolis force. The entire experiment is followed by two cameras [from the Earth and from the chair]. There are of course other experiments which could be done on the rotating chair, for example using a pendulum, etc.

) What is innovative about your project? Kinematic explanation of an effect known from geography (trade wind). Cooperative style of the students’ work.

)W hat can other teachers implement from your project in their classes? Cooperative style of the students’ work.

Team: Gymnázium Bernarda Bolzana, Prague, Czech Republic Participants: Teachers: Daniel Lessner, Doc. Jan Obdržálek Students: Lenka Hobziková, Petr Lessner, Daniel Suchan, Jonáš Veselka Age group: 18 years Used material in this project: Rotating office chair (50 €), air gun (50 €), cardboard and other material, professional help (50 €)

01

02

03

F I GURE S 01-03 Shooting at a rotating chair


Innovative Technologies move Europe

2

Anything you can move with a wheel

Automated store

32 Team: Koninklijk Atheneüm, Wetteren, Belgium Participants: Teachers: Luc D’hooge, Koen Sergeant Students: Tom De Pauw, Alex Macharis, Gregory Van Den Broecke, Jonas Vermassen Age group: 18 years Used material in this project: Parts from an old washing machine, motors from an automated display, sensors, PLC

) Abstract: We determine with some sensors which material (iron, zinc, copper, wood, …) passes the sensors on a transport belt and display this information and a description of each material.

) What is innovative about your project? The link between kinematics and automation and the integration of different technologies and motions.

)W hat can other teachers implement from your project in their classes? The principles of determining a particular kind of material by means of sensors (analogue and digital) even without the motors, PLC…

) Project description: Basically, we let a block of a specific material pass an analogue inductive sensor and measure the output of that sensor. You will get a different value for different physical materials such as metals (copper, iron, zinc …) - so one can get a better insight into the physical differences between different materials (atomic structure …). However, we want to automate the whole process. Therefore, we use 4 cartridges or “mini storerooms”, containing 5 or 6 blocks of a specific material each (to reduce the weight, use a wooden block and stick a lamina (a couple of millimetres) of the specific material on the block). Through 4 push-buttons (we even used a barcode reader system to choose), you select one of those

4 cartridges – the “mini storerooms”. Slowly, using a pneumatic cylinder, we push the chosen block out of the cartridge onto a turntable (made with the parts of an old washing machine). At a specific point, the turntable stops and – again using a pneumatic cylinder - we pull the chosen block onto a conveyor belt (made with a recycled DC motor – a roller and a self constructed rubber belt. We obtained these parts from an old motorised publicity panel). The block is then moved a couple of sensors – the most important one is an analogue inductive sensor with a voltage output 0–10V DC. According to the material that passes, you will achieve a different output voltage on that sensor. Thus, you can determine what kind of material passed the sensor. In order to start and stop the measuring processes, we used some additional photo sensors. The PLC evaluates the result and then places a wooden plate with a 4-sided cube on it. Each side of the cube describes 1 of the 4 materials in the cartridges or “mini-storerooms”: the atomic representation, application field of that material … The wooden plate with the cube is moved forward (by using tube motors) onto a fork that can move up and turn 90 degrees by means of pneumatic cylinders. This fork will lift and turn, lift and turn … until the cube is oriented so that the originally chosen material is displayed at the front in the beginning: Atomic info, applications of the material in industrial and domestic environments … Once this orientation is done, the plate with the cube is sent to the “home” position by reversing the turning direction of the tube motors. Subsequently, a beeper alert indicates that the “process” is finished and that you can read the “leaflet” with the description of the chosen material. The sound is also the signal that you can choose another material and start the whole cycle again. To complete the project, we also built a didactical panel with LED’s, showing all movements of the different parts and motors.


Anything you can move with a wheel

The Lorenz Waterwheel

Innovative Technologies move Europe

3

33 ) Abstract:

) Project description:

The aim is to make a Lorenz Waterwheel and 足represent the data in an artistic way. After all, it was already hard enough to construct the wheel and to obtain data.

The Lorenz Waterwheel is a wheel with a number of cups attached. Water can flow into the cups at the top and leave at the bottom. If a tap is opened above the wheel, water will pour into the top cup, causing the wheel to start turning. If the water flows in such a way that all the water has left the cup before the cup itself has reached the lowest point of the wheel, the wheel will keep turning evenly. However, if the incoming amount of water is increased, the wheel will show a more interesting behaviour: it will alternatively turn to the left or to the right, or even display chaotic behaviour. Chaotic behaviour often coexists with a so-called strange attractor, which more or less summarises the behaviour of this system. More often than not, this strange attractor has a beautiful, irregular shape and is a work of art in itself. We are going to try and make this chaotic work of art tangible.

) What is innovative about your project? Teaching chaos is not common in high-school physics.

)W hat can other teachers implement from your project in their classes? The waterwheel is an interesting object for introducing chaos. It is almost an attractor itself.

Team: Bonhoeffer College, Enschede, the Netherlands Participants: Teachers: Benno Berendsen, Hans van der Maten Students: Geertje Hofstee, Lauren Weijers, Joris van der Meer, Ivo Meerwijk Age group: 16-17 years Used material in this project: Wood, water, plastic cups, iron wire, a bicycle wheel


Innovative Technologies move Europe

4

the electronic jumping jack

The electronic jumping jack

34 Team: Mathematisch-Naturwissen­ schaftliches Gymnasium, Mönchengladbach, Germany

) Abstract:

Participants: Teachers: Eberhard Eube, Christoph Pohlmann Students: Marius Kreuder, Julia Roschu, Raphael Voßkämper, Benjamin Zingsem

) What is innovative about your project?

Age group: 15-17 years

The project connects many aspects of information technology, physics and mathematics. Different computer bus systems are standard applications in technical systems.

Used material in this project: PC, I²C-bus interface, LEDs, wood, wires

We build LED figures, showing different positions and effects by controlling these LEDs with a computer.

The pupils were working in teams. They had to build the hardware and to program the computer application.

)W hat can other teachers implement from your project in their classes?

) Project description: The basic idea of our project is the controllable LED figure that was given as an example. We’re going to construct about 14 figures with our MIP-class, (mathematics, computer science, physics) so this

project will be handled as teamwork. When the figures will have been built, they will be connected to a computer and they will be controllable by a self-programmed Visual Basic application. For this project, we are going to use an I²C-bus system with eight (or more) programmable outputs (12V 300mA) in order to transmit the movement of the figure from the computer to the individual figures. The figures will not be as simple as shown in the example and we will certainly try to construct them in a more complex way than shown in the example. We want to demonstrate their functions and different ways to control them, for example by choosing already programmed movements, creating own movements by using the control buttons of our program or by clicking on a hardwarebased switch on a board. In some cases, we used motors or stepper motors (normally used in printers) in order to move the models in two different ways: by visual effects and/or physical movements.


Model of an atomic force microscope

Model of an atomic force microscope

Innovative Technologies move Europe

5

35 ) Abstract: We’ve built a working model of a capacitive atomic force microscope that can scan and display the topography of objects such as coins with sufficient detail.

) What is innovative about your project? Contrary to the popular method of using a flexible probe and a laser, we utilized a purpose-built capa­ citor and our own software to achieve precise scans.

)W hat can other teachers implement from your project in their classes? It isn’t necessary to follow the most common procedure, as one’s own ideas and creativity can also lead to success, as our project shows.

) Project description: Our task was to design and build a working model of an atomic force microscope (AFM). For that purpose, we have chosen the more uncommon method of detecting differences in the height of a test sample by changing the clearance between the platters of a capacitor, therefore changing its capa­ city. The resulting fluctuations in voltage can be measured through a computer’s printer port, and be converted into a 3-D image through our own software that was programmed with Delphi. At first, we started out with a simple layout, using an old t-y-plotter as our basic setup, powered by thread rods and multiphase motors from old HDDs, using a self- made capacitor as a probe. Half of the multiple platters were secured to the unit, while the others were free to move vertically within certain limits, interconnected by an aluminium rod with a fine tip. When moving across the surface of the sample, the differences in height encountered by the reading head were converted into differences in voltage, which can then be evaluated. Our first demonstration included plotting the change in voltage with a t-y-plotter, so that for example the pillars of the Brandenburg Gate could be recog­ nized, as the height differences on the surface of the coin could be visualized through fluctuations

in voltage. This basic concept was very successful at the presentation in Oberhausen, with Dr. Landua’s final remark being “The capacitor made the difference”, which sums everything up pretty well. Encouraged by this success, the equipment was revised, with a new base, formerly designed for a CNC-cutter, a refined probe with a smaller and therefore more precise tip – developed with the help of the University of Cologne – new electronics for the now specialized multiphase motors, and an improved software, which was not only able to control the movements of the probe across the sample, but could also render the topography of the probe with great precision and in real time. This project will also be shown to the public at next year’s Science on Stage Festival in Grenoble, and was also able to make it to the nationwide competition Jugend forscht, a proof of how far creati­ vity and determination can develop such a project.

Team: Landrat-Lucas-Gymnasium, Leverkusen, Germany Participants: Teachers: Klaus Gerber Students: Anna Lena Müller, Karoline Selbach, Soma Salamon, Max Giljohann, Artur Strebel Age group: 18-20 years Used material in this project: Old t-y-plotter, HDDs, capacitor


Innovative Technologies move Europe

6

Model of an atomic force microscope

Model of an atomic force microscope

36

Team: Mathematisch-Naturwissenschaftliches Gymnasium, Mönchengladbach, Germany

) Abstract: We built a model of an atomic-force microscope, which scanned the surface of a coin to show the picture on a PC-monitor.

) What is innovative about your project? Participants: Teachers: Eberhard Eube, Christoph Pohlmann Students: Jonny Duong, Henning Höfig, Christoph Hollenbeck, Marc Mühmel Age group: 17-19 years

The pupils had to build the mechanics, to construct an interface which controlled the stepper motors and the PSD and to program the software.

)W hat can other teachers implement from your project in their classes? The model shows modern science in practise and can be applied in physics, chemistry and biology.

) Project description: Used material in this project: PC, Interface, recycled printer and scanner, position-sensitive photodiode.

All components of the atomic-force microscope are fixed on a single board. A sample can be fixed on the coordinate-table. One axis consists of tracks which are fixed at the edges of the board. This axis is driven by the stepper motor and thin cables of a recycled scanner. Between both tracks, one part of a matrix printer

is installed. This axis also moves into the rightangled direction driven by a stepper motor, so that an area can be scanned. At the reused matrix printer, the printing-operator is missing and a coin or another sample can be fixed there. Above the sample, a sensor is installed. The tip of the sensor is brought into close proximity with the sample surface until a contact with the target is established. The light of a laser pointer is reflected by a little mirror on this sensor and goes to the position-sensitive photodiode. The data stating the position of the sample and how deeply the sensor has to move down are registered by a computer. The electronic system is connected with the parallel port of the computer. Four lines of this port are used to control the stepper motors. The other lines are connected with the electronic system of the PSD. With the motor of the scanner, we can realize steps of about 0.0084cm and with the motor of the matrix printer, we can achieve appro­ ximately 0.028cm, so we are able to build up pictures of high precision in the macroscopic sphere, but we cannot realize pictures of molecules or ­atoms. We don’t intend to gauge electric or magnetic forces between the sample and the tip of the sensor. For steering these devices, we have programmed a special software, which controls the scanning and also the translation of data from the sensor into a three-dimensional image using OpenGL. It is programmed with the language Visual Basic and consists of several classes handling the main tasks of the software: steering of all external circuitry, calculation of measuring points, graphic-class dealing with OpenGL, graphic-class for all objects to be drawn and main-class for the user interface and scanning.


Model of an atomic force microscope

Model of an atomic power microscope

Innovative Technologies move Europe

7

37 ) Abstract: We build a scanner with a scalable surface of about 50cm x 50cm x 2.5cm (X-Y-Z). The resolution: ­better than 0.01mm. Scanning results shown on PC in 3D.

) What is innovative about your project? The scanner is searching the object to scan it auto­ matically onto the surface of the scanner, using of 2 laser beam photo sensors (sender/receiver-type).

)W hat can other teachers implement from your project in their classes? The principles of steering and controlling stepper motors, moving via spindles, measuring heights via an analogue optical sensor.

) Project description: The scanning mechanism is basically a question of moving a sensor element that measures the height in an X- and Y direction. To measure the height, we chose a sensor LG10 from Banner which gave us a resolution of 10 micrometres with a maximum window (total height of the object to scan) of a couple of centimetres. Moving this sensor over the object to scan it was a matter of finding mechanisms which could be steered and controlled to “slice” the object for the scan. We used spindles (the Rapid Guide Screw from Kerk) directly controlled by stepper motors. That way we got a scanning resolution as fine as the smallest assured movement of the spindle-

stepper combination of 0.01mm. Of course we needed such a spindle for the X-axis and for the Y-axis – but to get a more stable mechanical construction for the movement of the sensor that measures the height (Z–axis), we deci­ ded to use 2 parallel spindles for the X–axis and mounted the Y-axis, which moves the height sensor type Banner LG10 on top. As an extra feature, we wanted the scanner to search automatically where the object is on the scanner surface (50 x 50cm) using 2 sender/receiver photo sensors with a laser beam (QS186LE from Banner). The first laser sensor was moved over the whole X-axis once to find the start- and ending points of the object to scan and then the second sensor is doing the same along the Y-axis to find the lower and upper “borders” of the object. Thus, we got a kind of window “framing” the object – then the scanner started moving the LG10 sensor up and down in the direction of the Y-axis, sending the measured Z-values (+ the X- and Y-value) through the RS232 port of the controller (PLC L&B GEL8230) to the COM port of a PC where X-Y and Z-values a stored in a file - which was then converted into a 3-D graphic image of the scanned object. After each “scan-slice”, the X-axis moved 0.01mm and Y moved up and down again to get a new series of Z-values (height of the object). To complete the project, we also built a didactical panel with LEDs that shows all movements of the scanner.

Team: Koninklijk Atheneüm, Wetteren, Belgium Participants: Teachers : Luc D’hooge, Koen Sergeant Students : Wesley De Clerq, Thomas De Geest, Kevin Leys, Haïko De Koster, Walid Soussou Age group: 18 years Used material in this project: Stepper motors, spindles, laser sensors, electronic circuits


Innovative Technologies move Europe

8

movement

The Carbide Car

38 Team: Bonhoeffer College, Enschede, the Netherlands Participants: Teachers: Benno Berendsen, Hans van der Maten Students: Sissy Chen, Gijsbert ter Horst, Niels de Winter Age group: 16-17 years Used material in this project: PVC-pipe, carbide, water, in-line wheels, wood, tin can

) Abstract: Water and carbide make an explosive gas. In an inventive system, the forming of the gas is controlled. The explosions are used to drive the car.

) What is innovative about your project? The forming of the explosive gas is controlled in an elegant, mechanical way

)W hat can other teachers implement from your project in their classes? The laws of gases are demonstrated in an explosive way, which is always an eye-catching start of a new subject.

) Project description: We built a car with a reaction space on it. We applied carbide and let it react with the water we added. This way, an explosive gas develops, which makes our car shoot forward when we fire it up. It’s like a little rocket. This shouldn’t be dangerous as long as there aren’t people standing too closely to the experiment.


Innovative Technologies move Europe

9

MOVEMENT

The Soda Car

39 ) Abstract: Water mixed with acid and soda causes a reaction in which gas occurs. The high pressure of this gas causes the car to move.

) What is innovative about your project? The mechanism to prevent the water/acid mixture to make contact with the soda too early is a nice thought.

)W hat can other teachers implement from your project in their classes? The pressure laws are combined with chemistry.

) Project description: We have built a cart with a plastic bottle with a capacity of 1.5 liters on top of it. The cart is made of a piece of wood which is bolted onto 4 wheels. On top of the wood, we made a sort of wooden bar which supports the bottle. The bottle is attached at a slight slant, so the contents of the bottle can easily escape once the pressure in the bottle is gone.

A sandwich bag is placed into the bottle containing half a litre of water with 20% acetic acid dissolved in it. This bag is tightly knotted so the liquid cannot leak. Then sodium hydrogen carbonate is put into the bottle. This part can be prepared in advance. To get a reaction, a cork with a knitting needle 足attached to it is put in the opening of the bottle, so that the bottle is airtight. With the knitting needle, cuts can be made in the sandwich bag, so that the liquid is mixed with the sodium hydrogen carbonate. These substances trigger a chemical 足reaction, whereby a big amount of carbon dioxide is released, which causes pressure. When this pressure is high enough, the cork is catapulted out of the bottle against the wall. Because the wall cannot move, the cart shoots away. This movement is very fast in one direction, which is opposite to the direction of the cork. When the cork is released, a lot of the mixture also escapes from the bottle, at first very quickly and eventually very slowly, which is due to gravity.

Team: Bonhoeffer College, Enschede, the Netherlands Participants: Teachers: Benno Berendsen, Hans van der Maten Students: Fenneke Nieuwenhuis, Gertjan Stokkers, Raymon Leusink, Thijs ter Mors Age group: 16-17 years Used material in this project: PET-bottle, wood, wheels


Innovative Technologies move Europe

10

MOVEMENT

Hot-Water-Rocket-Car

40 Team: Gymnasium Remigianum, Borken, Germany Participants: Teachers: Günter Niehues, Rudolf Bertram Students: Tobias Bonhoff, Tobias Finke, Michael Goderbauer, Sebastian Goderbauer, Johannes Hopenau, Olaf Minte, Henrik Wilming, Jan Wetter, Jürgen Schmelting, Stefan Schulze-Schwering Age group: 17-19 years Used material in this project: We used a specially con­ structed tank, a heating element and a temperature sensor for the drive, a ­microcontroler, a servo ­­­ and electronic components for the steering as well as wheels and carbon bars to built the car‘s body.

) Abstract:

) Project description:

We invented a car using the principals of a rocket. One litre of water is heated in the tank and supplies the energie for driving. The car stays on its track by following a line on the ground.

We are building a car that uses the principles of a rocket to drive forward. To achieve our goal, we are going to install a tank at the back of our selfconstructed car body. After the required one litre of water is filled into the tank, it will be closed and inside we are going to build up some pressure. When a certain level of pressure is reached, we are going to open a small outlet at the back of the tank. Due to the differences in pressure bet­ ween the outside and the inside of the tank, the water will shoot out at the back of the car at a very high speed. According to Newton’s Second Law, the water going in one direction will now in turn accelerate the car in the other direction and it will move forward. Basically, one could say that our car is a rocket on wheels. To steer our car, we are going to use a black line that will be painted on the ground. Sensors mounted at the bottom of our car will detect this line and a built-in microcontroller will steer our automobile so that it stays on track.

) What is innovative about your project? The automatically steering realised by sensors and a microcontroler and the use of one litre of heated water for the movement are innovative.

)W hat can other teachers implement from your project in their classes? Working at this project teached us very much because we invented and constructed something technical in a creative way and without any special help.


Innovative Technologies move Europe

11

ENERGY

Staircase power

41 ) Abstract: By walking on and off a staircase, the tiles you step on will create a movement which is used to make the DC motor/generator spin, producing electricity.

) What is innovative about your project? The principle of using the energy produced by walking on a staircase and transform it into electricity.

)W hat can other teachers implement from your project in their classes? They can take the basic idea and use 1 or 2 tiles so they need less parts and less time to make the construction

) Project description: Wind- and solar energy are “hot” items in many countries, since global warming forces us to take more care about the globe we live on. Trying to be original in producing electrical energy – besides solar power or wind power – it is not that obvious but … we found a basic idea. Seeing all those people using staircases daily (at the railway station, the metro), the idea grew to produce energy when going up a staircase. All those people walking on the steps would produce their own energy for lights in the place, for some music, and so on. …

So we started brainstorming how to use the basic idea of all that potential energy of people using a stair­case and to transform this into electrical power. A first drawing was born and then we were off: Some steps, a couple of springs, some parts of an old bicycle and an old DC motor or generator. This way, the linear movement of the moving step is transformed into a rotational movement for a generator. That was our basic idea … but how to bring this to life by using parts of an old bicycle (pedal mechanics and chain wheel) … there was some welding and measuring to be done... – then we could start mounting the first chain wheels to see if we could get these spinning when going on a step . … Adding a fly wheel brought more stability in the output together with a buffer capacitor which stores the energy - so even if the movement stops for a short while, we still have stored some electricity. The idea came up to make the fly wheel heavier so it keeps on turning for a while. We used concrete for that purpose. A converter takes us up to line voltage 230V. We can obtain peak voltages of +/- 43V with a current capacity of several amps before the converter to line level. This means a potential somewhere between 100 and 200 Watts at line level.

Team: Koninklijk Atheneüm, Wetteren, Belgium Participants: Teachers: Luc D’hooge, Bob Van den Kerkhove Students: Alex Macharis, Nico De Smedt, Jan Caestecker Age group: 18-20 years Used material in this project: Most of the parts used in this project are from old bicycles, iron for the construction, the frame and a DC motor to produce the electrical energy


Innovative Technologies move Europe

12

CHAOS

The chaotic gambling table

42 Team: Sophie-Scholl-Gymnasium, Oberhausen, Germany Participants: Teachers: Werner Heinke, Reinhard Wokรถck Students: Dennis Kaczmarek, Marcel Soltysik Age group: 17 years Used material in this project: Magnets (magnetic balls and other magnets), some plastic for the tube, wood (the whole gambling table)

) Abstract: A magnetic ball will be diffracted by other magnets and placed chaotically under our gambling table.

) What is innovative about your project? Everybody can build such a gambling table, so it is not expensive and too complicated. Furthermore, there are only a few methods to show chaotic processes caused by magnets.

)W hat can other teachers implement from your project in their classes? This project could be introduced as something like a project thesis for pupils and students, as it is both fun and a very cheap and easy method to show chaotic movements caused by magnets.

) Project description: Some magnets are placed under a rectangular plate made of wood, which is divided into four equal parts. Now a magnetic ball will be put in a track/tube, which leads to our gambling table. With several tries it should be possible to observe that this ball reaches one of the four fields chaotically and therefore incalculably.


Innovative Technologies move Europe

13

CHAOS

Elastic pendulum

43 ) Abstract: We constructed an elastic pendulum whose motion is chaotic. We proved this by measuring the detected position of the pendulum in time.

) What is innovative about your project? Students from our team organised the meetings and worked mostly on their own in their free time, supported with the necessary equipment by our school.

)W hat can other teachers implement from your project in their classes? The method of pendulum position detection is really useful in many physics experiments.

) Project description: Considering it’s not so difficult to make something chaotic, but much harder to prove it really is chaos, we decided to work out as simple a device as possible. After we had spent some time searching for such a device, we chose the elastic pendulum. This pendulum differs from a standard pendulum in one way: it’s not suspended by a string but by an elastic spring. The pendulum motion then consists of swinging and vibrating. During the transition between the movements, the motion of the pendulum is unstable and very sensitive to the slightest initial deviation of conditions. Right here, we expected to see the chaos. To become aware of what to expect, we created a computer simulation of our pendulum in the program Interactive Physics. We found that the swinging and the vibrations alternate very regularly. Now, we could proceed to the construction itself. Facing some construction problems like instability of the pendulum support, we constructed our pendulum. We observed its motion and, as expected, it consisted of vibrations and swinging. We needed to detect its precise position, though. Firstly, we tried sonar detection, but it turned out to be inaccurate and it wasn’t clear whether the pendulum or the spring were detected. That’s why we decided in favour of another method. We re-

corded the motion of the pendulum by using a camera. Then, we used a computer program VIANA to analyse this video recording. This program works on the colour position detection principle. The colour of our pendulum (yellow tennis ball) was in strong contrast to the blue background, so that we got very accurate results. We measured the displacement of the pendulum in horizontal direction, which means swinging, and vertical direction, which means vibrations. Unfortunately, they alternated absolutely regularly, exactly as in the computer model. So we needed to make our unstable pendulum chaotic. To do this, we decided to suspend our pendulum on a wheel rotated by a motor. This wheel applies an external force acting periodically. If the frequency of this force is slightly different from the pendulum frequency, the interference between them should result in chaotic pendulum motion. We observed the pendulum and in actual fact the swinging and vibrations alternated very irregularly. We recorded the motion of the pendulum with the camera and obtained what we wanted by analysing the recording: Proof that it really is chaos what we are watching.

Team: Gymnázium Christiana Dopplera, Prague, Czech Republic Participants: Teachers: Mgr. Šteˇpánka Jirošová, Doc. Jan Obdržálek Students: Pavel Malý, Petr Hedvábný, Michal Hakl, Jan Vorˇíšek, Pavel Obdržálek Age group: 13-17 years Used material in this project: Merkur kit, motor, spring, tennis ball, camera


Innovative Technologies move Europe

14

CHAOS

A chaotic water wheel

44 Team: Engelbert-KaempferGymnasium Lemgo, Lemgo, Germany Participants: Teachers: Gerd Eiffler Students: Annalena Stuewe, Franziska Ebert

) Abstract:

) What is innovative about your project?

We built a chaotic water wheel. It was impossible to say after how many turns the wheel would change its direction

We built it in our free time and we didn’t know anything about chaos.

)W hat can other teachers implement from your project in their classes? It is a simple example to show a complicated physical phenomenon. It is useful to apply it in physics.

) Project description: Age group: 15-16 years Used material in this project: Aquarium, wood, bicycle rim, pump, leaky cups, a drill, nuts, tubes, gutter, screws, soldering iron

After we had got most of the materials, we started to build the mount for the chaotic water wheel. We built it with wood around the aquarium. After we finished with this, we cleaned our wheel and worked on the cups (8). We built a holder for them, so that they could not slip while we worked on them. With a special drill we made holes in their bottoms, all in the same place and of the same size. Then we drilled two more little holes into each cup to clamp them onto the wheel. Subsequently, we also drilled holes into the wheel to clamp the cups onto the wheel. In order to fix the cups on the wheel, we used spokes we had taken from another wheel. We tucked the spokes into the holes of the wheel. On every spoke, we first clamped a pearl, after that a cup and then another pearl. As a consequence, the cups couldn’t rub against the wheel and were able to rotate much better than without the pearls. We organized an axis for the wheel and the wheel was fixed to the mount. After that, we adjusted a gutter (our gutter already had holes, if not, we would have made them) and clamped it on the top of the mount above the cups. Then we installed the pump, so that the water can flow from the aquarium up to the gutter and through the holes of the gutter it flows into the cups and then through the holes in the cups back into the aquarium. Finally, we worked on some little mistakes until everything worked as it should!


Innovative Technologies move Europe

15

Something that crawls

A scarab beetle

45 ) Abstract:

Team: Koninklijk Atheneüm, Wetteren, Belgium

We build a scarab beetle which can move forward and reverse. It is powered by solar energy. As a special function, it is controllable by a PLC.

Participants: Teachers: Luc D’hooge, Bob Van den Kerkhove Students: Stephanie Albers, Jonathan De Schaepmeester, Dimitri Delplace, Kenny De Paepe

) What is innovative about your project? The combination of simple electronics permitting to move the beetle. Cheap toggle switches are coupled with the automatic movement via high-tech CANBUS and PLC controller.

)W hat can other teachers implement from your project in their classes?

Age group: 18 years

The principles of steering and controlling cheap servo motors that can be used to create movements, combining 2 servos provides a cheap gripper to grip and move small objects …

) Project description: Let’s start with the actuator: the servo motor. You can find this kind of motor in almost every store that sells model construction parts (helicopters, airplanes, boats, cars, etc.). We used the Futaba S3010 which is more powerful than the basic servos because our beetle is heavy. These motors work on +/- 6V DC. They are PWM-steered (pulse wide modulation). So we need to create pulses. Searching the internet provides several solutions. We used the schematic found under the following link: http://www.uoguelph.ca/~antoon/gadgets/ servo3.htm We replaced the potentiometer P1 by 2 resistors 1.2k Ohm in series. Over each resistor, we put a toggle switch contact. By opening and closing those switches, you can force the servo motor to go to 3 different positions: left – middle – right position. For each leg we used 2 servos: 1 for the up-down movement of the leg and a second servo to move the leg forward-reverse. If you want to keep it cheap, just use this simple schematic for each servo and modify it as just described (replace P1 by 2 resistors + 2 toggle switches). You don’t need anything else to start moving the legs of the beetle.

We wanted to get onto a higher level: PLC control. So instead of the cheap toggle switches, we putted 2 small 24V DC relays that are controlled by the outputs of the PLC for each servo. The contacts of these relays replace the toggle switches – so by programming the sequence of the outputs of the PLC, we control the movements (the positioning) of each servo through the relay contacts. Additionally, to reduce the wiring PLC ( the beetle, we used CANBUS.

Used material in this project: Most important: Servo motors as used in model construction (airplanes, helicopters, boats etc.). Price: 10-15€ for a basic model (more powerful motors are more expensive). Some simple electronics such as the IC 555, some capacitors and resistors, switches.


Innovative Technologies move Europe

16

Something that crawls

Herbie, a brainy beetle robot

46 Team: Gymnasium Remigianum, Borken, Germany Participants: Teachers: Rudolf Bertram, Martin Herdering, Günter Niehues Students: Roman Bender, Tobias Bonhoff, Lars Deibel, Maren Evers, Sebastian Goderbauer, Rayan Guerdelli, Lars Langenhorst, Olaf Minte, Arne Peters, Jürgen Schmelting, Manuel Terliesner Age group: 16-19 years Used material in this project: We used an ultrasonic sensor SRF 10, a controllerboard RN-Control 1.4 Mega32, a solar panel, 13 mini servo motors, a storage battery 7.2V NiMH, polystyrene to model the legs, acrylic glass and diverse electronic components as well as cables.

) Abstract: We invented a device that autonomously crawls on six legs and is self-realigning through ultrasonic waves to avoid obstacles. It collects its ener­gy from solar light.

) What is innovative about your project? The totally independent and beetle-like movement of our robot including the recognition of obstacles and the regenerative energy supply are innovative.

)W hat can other teachers implement from your project in their classes? We learned very much in science while we worked at this project in a group, inventing and constructing something technical without the help of our teachers.

) Project description: We built a six-legged beetle robot which we called Herbie. His movement is similar to a real beetle’s movements and completely controlled by a microprocessor. We simulated the movement from nature with the robot. Thus, Herbie is able to crawl and turn around in a very small space. To realize the movement, we installed a microprocessor, further electronics and a special sensor scanning the environment on our self-constructed beetle body. For construction, we used different plastics to save weight.

We invented a special control program by ourselves, giving Herbie a brain and making him independent. Each of the six legs consists of two servo motors, features two degrees of freedom and is controlled separately by the processor. Therefore, Herbie is able to raise, rotate and drop each leg. The special crawling algorithm coordinates rising, rotating and dropping of the six legs to make Herbie able to crawl forwards, backwards and to rotate on the spot. The sensor emits ultrasonic waves and sends a signal to the processor that analyzes it. Thus, Herbie recognizes while crawling if an obstacle is in front of him and how far away it is. If the obstacle is rather near, Herbie stops crawling and checks his environment from left to right with the rotating sensor which is applied at the front. Then Herbie rotates on the spot to continue crawling in the direction where no obstacle has been noticed. To achieve a regenerative energy supply, we installed a solar panel on the beetle’s body. The solar panel is connected to the storage battery which can only be reloaded by solar energy. Consequently, Herbie is able to store the energy and to crawl for some time after charging. Furthermore, we used some coloured LEDs to be informed about the storage battery’s level. If the voltage reaches a critical level, a red LED is flashed and Herbie stops crawling to reload. Besides, we have the possibility to reload the storage battery with a battery charger.


Innovative Technologies move Europe

17

Something that crawls

A Small Ant Like a Robot

47 ) Abstract: A crawling robot based on an insect design. Power is absorbed from solar cells, a photo-voltaic array, buffered by a capacitor, to drive a small and efficient solar motor.

) What is innovative about your project? Solar power and an efficient motor. Small and effi­ cient robot. Crawling action deals with uneven surfaces.

)W hat can other teachers implement from your project in their classes? A project teaching pupils to work as part of a team. Each of them has to take responsibility for a diffe­ rent part of the project and work with the others to achieve success.

strong body / chassis which will hold a motor and solar panel, capable of supporting the triangulated walking mechanism. Once built, the skeletal body design has considerable structural strength, but individual components need careful handling as they have been reduced to minimal proportions to minimise mass. This design was nearly sufficient but ambient light often let us down. As an alternative to rechargeable cells, a 2 Farad (10V max working) super-capacitor now charges from the solar panels to a maximum of 3V and allows a running time of about 90 seconds. If running in dark conditions, alternative power sources can be used to charge the super-capacitor with energy.

Team: St. George’s RC High, Salford, United Kingdom Participants: Teachers: Philip Westcott, Rik Whittaker Students: Zeta Jhanji, Sophie Backhouse, Tom Hall, Emma Bentham Age group: 13-14 years Used material in this project: Plastics, solar cells, gears, switch

) Project description: Our introduction to this project involved research into: Robotics, electronics and insect movement (based on their skeletal structure). We looked at walking, flying, crawling, and jumping actions – and a helper from Salford University suggested we should consider mass and efficiency in design. Detailed research areas included: Smart memory alloys and the efficiency of various electric motors and solar cells in terms of current and voltages used and provided, and their ability to provide power to move a biomimetic robot. The use of heat as an energy source was attractive but difficult to control. Smart memory alloys provide considerable power for given changes in temperature, but we could not see how to get sufficient heat to be transferred quickly enough to be productive. Solar panels appeared a workable solution from our experiments measuring voltages and current, if the solar panels could provide sufficient energy when coupled with a small, lightweight, efficient electric motor to provide motive power. Developing our design, we now have a plastic prototype and using CAD, we can adjust the dimensions quickly and accurately, producing a light and

01

F I GURE S 01 Drawing of the parts done in

2d Design 02 Our Final Robot

02


Innovative Technologies move Europe

18

Something that crawls

Construction of a Scorpion

48 Team: Heinich-Böll-Gesamtschule, Oberhausen, Germany Participants: Teachers: Uwe Bugdoll Students: Arno Elspaß, Carmen Hennig, Tobias Hennig, Rafael Raake, Mark Sobania Age group: 15-16 years

) Abstract: Used material in this project: Solar cells, thread rod, plastics molding material, construction kits of gears, solar-powered engines, transistors, resistances, screws, Lego Mindstorm Nxt construction kit

Constructing and programming a scorpion with Lego Mindstorm. Copying the movement of a scorpion.

) What is innovative about your project? Constructing with Lego Mindstorm. Programming with Lego Mindstorm. Converting a circular motion to move our Scorpion’s legs.

)W hat can other teachers implement from your project in their classes? How to construct self-directed vehicles

) Project description: We were planning a project that could be done in class easily, effectively and cheaply. That’s why we decided to make our scorpion small and efficient and use a modular construction, which means that Sunny, our scorpion, can expand and adapt to future needs. During the first step, we were concentrating on the mechanical robust part of the work. We have already carried out simple electronics like controlling the scorpion’s eyes. Assembling SMD-components – as required by complex control systems – is very difficult given our technical means. So we concentrated on simple discrete circuits which make it possible to connect our engines directly to the so-

lar cells without using big interfaces. This can be done without damaging the electronics. Furthermore, the circuits can be easily connected to components of the Atmel Company (AVR Systems), which makes the whole system expandable for future projects. The Olimex Company sells exactly the kind of interfaces that we will need for future extensions. Installing these complex circuits will make programming of motion patterns possible. With these boards, you can make circuits that are directly compatible with the Nxt Mindstorm Gene­ ration by Lego Technology. Thus, existing models by students can be connected directly. Our scorpion works all right and can be carried out within the limits of a low school budget. It is ­powered by very thin, yet highly efficient solar cells. So even in dull weather, it is possible to set it in motion. The scorpion’s skin consists of thin plastic which is easy to shape. In order to meet the varied demands, we split our group into different teams that were responsible for different tasks. In this way, every student became a specialist in a certain field. One group was asked to look into and familiarize with the work of all the other groups. This way of organizing the project and our team’s excellent motivation have made it possible to build our product.


Innovative Technologies move Europe

19

Something that crawls

Water strider

49 ) Abstract: We wanted to build a robot that can walk over water and can produce its needed energy on its own. Our model was the water strider.

) What is innovative about your project? The robot is able to walk over water and doesn’t need energy from the outside.

)W hat can other teachers implement from your project in their classes? Teachers can use it to explain surface energy to the pupils. In biology, teachers can use the robot to show how a water strider walks over water and how it adapts to its environment.

) Project description: General facts about the water strider: The water strider is an insect that lives only in Europe. It can grow up to 10mm. The body is covered with little hairs which reject water. Water striders have six legs. The legs at the front are only used to catch prey. The legs in the middle transfer the strength for the movement and the hind legs control the direction.

Technical solution: We wanted to use a forward movement so we used many joints and toothed wheels. The engine is connected with a toothed wheel which is also connected with others to get the right speed. A brass pipe is connected with the last toothed wheel and with two other pipes. The middle legs are linked through these two other pipes, which you can see on the drawing below. Result of our project: The robot we built is able to stand and walk on water because of the surface energy. At first, we had many ideas how to build the robot, but at last we decided to apply the most useful idea. First we built the model you can see below. In this model, the middle legs are missing. The function of all six legs works in the same way as the water strider’s legs. The front legs are the only legs on our robot that do not move. The middle legs are the ones for moving our robot and the hind legs are for steering. Then we worked on the technical solution and decided which form the body and the feet should get. After we had developed the robot, we only needed to build it.

Team: Käthe-Kollwitz-Gymnasium, Wesseling, Germany Participants: Teachers: Sebastian Zacharias, Michael Funke Students: Anja Fischenich, Katharina Ahlers, Sebastian Messner, Patrick Klinik Age group: 14-16 years Used material in this project: hot glue gun, cutter, soldering iron, tools, toothed wheels, engines, polystyrene, brass pipe, lacquer


Innovative Technologies move Europe

20

Something that JUMPS

Jumping robot

50 Team: Gymnásium Bernarda Bolzana, Praha, Czech Republic

) Abstract:

Participants: Teachers: Lucie Ilucová, Doc. Jan Obdržálek Students: Kristýna Krbcová, Karolína Cihlárˇová, Zbyneˇk Šanda, Michal Tengler

) What is innovative about your project?

Age group: 16-18 years

Magnetodynamic force acting upon a coil passed by a DC current in a strong magnetic field of an Nd-supermagnet moves the coil.

Way of using a coil as a propulsion unit. Cooperative style of the students’ work.

)W hat can other teachers implement from your project in their classes? Cooperative style of the students’ work. Mechanical movement caused by a very simple mechanism.

) Project description: Used material in this project: Supermagnet (Nd), Cuprextit, coil (made of copper wire 0,1mm), SMD diodes, rubber bands.

Our “bug” consists of a small printed circuit board (PCB) with SMD diodes on both sides and three legs forming a regular triangle sitting on the base. The main part of the base is a big PCB with a neodymium

magnet underneath. The base PCB has conducting strips, powered by an external source (12 V DC). With a proper configuration of the strips, the bug must land on a cathode with one leg and another leg on an anode (simple proof has been done by students). A set of diodes at the body of the bug will ensure the proper direction of the current flowing into a coil in the body of the “bug”, pushing it upwards. The coil is fastened by short cords to the legs of the bug; then the current passes through the coil for a certain time interval while the coil is moving upward until the cord is fully tight. Now the coil jumps up. When the coil is high enough and has a reasonable speed, the bottom PCB starts to be pulled and the current is broken. Both PCBs move upwards due to inertia and after a short time interval, they land back. Then the new connection is made and the whole loop repeats again. “Bugs” move up and down quite rapidly.

F I GURE S 01-02 When one leg is fixed in its

position, the other two legs can only move along the red circle – blue and green triangles are the extreme cases (when all legs are between the stripes and the robot is not functional). The yellow triangle demonstrates the normal case (when the robot is working).

01

02


Innovative Technologies move Europe

21

Something that jumps

Solar frog

51 ) Abstract: This frog runs with solar energy. Gears transform the fast engine movement into a slow but powerful rotation. The following mechanism pulls a spring, which makes the frog jump.

) What is innovative about your project? Combination of physics and technical lessons, containing the traditional physical (mechanics) and the technical aspects of how to use gears.

)W hat can other teachers implement from your project in their classes? How to use solar power for movements although it seemingly has only very little power.

) Project description: We were taking part in the competition “Innovative Technologies move Europe”. The task we chose was: To build something that jumps (an animal) by using regenerative energy. Very early into the project, the students decided to use solar cells due to the light weight of this power source. Yet the first trials involving solar cells and an adequate motor came up with very disappointing results. The fast revolving motor can be easily held up by the touch of a fingertip and cannot tense a spring sufficiently to trigger a leaping movement. Careful research resulted in two different approaches: 1. The mechanical solution A gear transmission with a very high gear reduction reverses the low rotary power and the high rotational speed at the motor shaft. Motor and gear transmission are in permanent operation. 2. The electro-mechanical solution A transformer increases the low voltage of the solar cells. A condenser is charged with the increased voltage. When fully charged, it conveys the stored energy to a “strong” motor. While loading up, the motor stalls. The motor runs joltingly. Considering all the factors (time!) and information from the field of model-making featuring similar

challenges, we have opted for the mechanical solution. Model Specification The solar cells have been custom-made from break­ age to fit this model and can generate a voltage of approximately 1.5 volt under our 500 watt headlamp at an 0.5 meter distance. However, they heat up during operation so they are fitted with a special adhesive. The motor is a low-cost standard unit. The heart of the model is the gear transmission (see illustration) consisting of five (twin) gears, two of which are identical and just loosely slid onto their respective shaft. This creates a high reduction gear despite its very small size. The required accuracy in drilling the holes for the shafts proved to be a disadvantage for our routine school business. Each distance had to be exactly 14.5mm, not allowing for the slightest deviation unless the transmission gets stuck or doesn’t work. The transmission output features a crank that operates the gripping mechanism of the spiral springs. The sudden release of tension triggers the frog’s leap.

Team: Gesamtschule Weierheide, Oberhausen, Germany Participants: Teachers: Uwe Brinkmann Students: Björn Hickel, Finn Friese, Daniel Heiderich, Philipp Kulse, Fabian Kristan Age group: 14-16 years Used material in this project: acrylic glass, solar cells, gears, springs, electric engine


Innovative Technologies move Europe

22

Something that jumps

7th generation of “SSU007”

52 Team: JuniorAcademy NRW 2007, different schools from North Rhine-Westphalia, Germany Participants: Teachers: Jacqueline Nagel, Sebastian Zacharias Students: Jan Niklas Fritz, Glenn Geidel, Benedikt Kolbinger, Jana Liebing, Marie Schützmann, Liyang Sheng Age group: 13-15 years Used material in this project: Balsa wood, Plexiglas, carbon-fibre reinforced plastic tubes; springs, shrinkable plastic tubing, different screws and nails, solar cells, wire, engine transmission unit, gear wheels, cutting board (made of synthetic material), threaded rods and some paraphernalia

) Abstract: Our model is built based on the biological aspects of a flea.

) What is innovative about your project? We tried to build our model barely using any ­special material, but using many things almost every­one has at home, e.g. a cutting board and in­vented a method how to transfer the jumping process of the flea into a machine (e.g. storing force).

)W hat can other teachers implement from your project in their classes? The way to store mechanical energy derived from a flea’s special method. What nature has invented perfectly and how human genius is able to imitate this in different ways with the resulting possibilities (ideal for biology or technology).

) Project description: After some drafts, a brainstorming and a lot of different conceptions and ideas, we restarted our

project SSU007 very late. We made our choice to build an energy-storing model based on a flea’s jumping mechanism. It is tiny, needs only little energy, jumps very infrequently and spends most of its time storing a huge mechanical potential internally in different ways which are explosively available afterwards. In the same way, we developed different propulsion units that are able to store energy in different ways, too. We installed a three-stage step-by-step power unit in our SSU007, using CRP-tubes which get strained by a tripleeccentric battery Because of the huge weight of the other used materials, we installed an additio­nal fourth level in the form of a metal spring. A pincerlike jumping leg - also copied from the physique of the flea thigh - directly emits part of the tension energies using pressure. Most of the other insects have tendons and pull with muscle power. We decided on a single-powered hind leg with a wide foot to transfer the main force by pushing and additional two-level animated and powered front legs. During the storing period, the back goes down and the front legs lift the front of our model to achieve an optimum jumping position. After the entire storing period, the jump is set free by the edge of the eccentric so that the relatively heavy construction (nearly 450g) is catapulted by the jumping leg. Precisely at that moment, a mechanism lifts the front legs a bit in order not to get caught by any scraggliness or obstacles on the surface at the bottom. It works surely with 6 solar power wafers and a craft-engine-gearing combination. After full storing, it is able to jump up to 18cm. It is quite noisy and it was our 7th trial, so it got its name “Silent service unit 007”- SSU007. – We are sure that everybody wants to possess one in the future. Perhaps it might walk the dog or actually replace it. Everything is possible. – Shortly before the presentation, some solar wafers were broken, we had no replacement and so we had to use a power supply. But it worked absolutely effectively and perfectly. We’re proud of SSU007 !!!


Innovative Technologies move Europe

23

Something that FLIES

Flying Object

53 ) Abstract: An object is constructed that flies like a bird. Origi­ nally designed to be propelled by a small motor, but finally propelled by a rubber band.

) What is innovative about your project? Although we did not succeed in making an actual ‘flying’ object, we made a design out of very ordinary things which can be upgraded to the flying object.

object starts horizontally, it will go forward, if the tail creates an angle – as shown below – the object will automatically follow that angle. With that idea in our mind, we started to think how we could realise the idea in an actual design. The first result was our prototype 1 which we showed in the first meeting. In the second design, we built an engine and a gear box. The problem was that the wings weren’t able to create enough force, because the wings were too small and we had too much friction.

)W hat can other teachers implement from your project in their classes? In constructing a flying object, very small changes in the design might have a great effect on the final result.

Participants: Teachers: Benno Berendsen Students: Marijn Siemons, Pim van Asperen, Joeri Bijleveld, Pieter Bas Cornel Age group: 15-16 years Used material in this project: Wood, paper, rubber band, iron wire

wings

) Project description: When we first saw the project, we decided that making a flying object would be by far the most challenging project, so we tried that. After a few weeks, we had made a design that almost flew, but no engine. We were lucky enough to find two small toy cars, including engines we could use. At first it worked, until we found out we needed bigger wings to actually make it fly. It turned out that we needed a bigger engine to make the bigger wings move fast enough, which would weigh too much for the bigger wings. It was a huge problem, and we have not found the solution yet. Although our design doesn’t actually fly, we believe that the idea behind it is a good one. There were some unexpected flaws in our planning, which prevented us from really trying everything to make it fly. We are pretty disappointed we didn’t succeed, but we are confident that we will be able to make it fly if we continue to work on it after the project. The idea behind the design is actually pretty simple. An engine makes an axis rotate. 2 cranks are attached to the axis. Those cranks make the wings go up and down. If the wings go up and down, they push the air back. If they create an angle, part of the force they produce will be directed downwards. But how does the object create that angle? If the

Team: Bonhoeffer College, Enschede, the Netherlands

tail

force

wing's movement

force


Innovative Technologies move Europe

24

Something that FLIES

FLIER

54 Team: Hardenberg-Gymnasium Fürth, Germany Participants: Teachers: Jürgen Klein Students: Boris Livertovsky, Quang Tran Age group: 14 years Used material in this project: Polystyrene, balsa wood, wire, electric motor with gear, gold caps, carbon fiber bars, thin plastic foil

) Abstract: We built a simple flier that imitates the wing beat of birds. We built one version with a rubber engine and tried to build another one powered by an electric motor.

) What is innovative about your project? We tried storing electric energy directly in the field by using gold caps.

)W hat can other teachers implement from your project in their classes? Energy density vs. power density of energy storage and how birds fly

) Project description: Part I: (Research) a) How birds fly The wings of birds do not work like stiff airplane wings. The wing of a bird produces lift by changing its shape while flapping. So the bird wing has to be flexible. There are several techniques to realise this wing twisting. The easiest way is so-called passive wing twisting, accomplished by using membrane wings. b) Mechanics for the wing beat The purpose of the mechanics is to convert the rotation of the motor into a periodic rising and lowering of the wings. The resulting motion should be as symmetrical for both wings as possible. We chose a very simple way: a staggered crank made from bent wire. We decreased deviation from the symmetrical movement with interactive geometry software by trying different values for parameters. Part II: (Flier with rubber engine) We then chose reasonable dimensions and started building our first flapping wing model. It is made of polystyrene, balsa wood, brass tube, steel wire and plastic foil. The total material cost is about 5 EUR. This model actually flies. Part III: (Flier with electric motor) We chose a geared motor and tried to operate it with gold caps as power supply. We found out that we need four gold caps (each 1F; 5,5V) to operate

it for about 30 seconds. Unfortunately, the weight of four gold caps is about the same as of a common 9V battery. Anyhow, the advantage of the capacitors as energy suppliers is that they can be recharged very quickly. Due to the weight of the motor (30g) and the ener­ gy supply, we increased the wing span of the “bird” to produce more lift, but until now it does not fly.


Innovative Technologies move Europe

55

Herausgeber: Science on Stage Deutschland e.V. Poststr. 4/5 10178 Berlin Gesamtkoordination und Redaktion: Dr. Wolfgang Welz, Vorstand Science on Stage Deutschland e.V. Stefanie Schlunk, Geschäftsführerin Science on Stage Deutschland e.V. Ines Hurrelbrink Science on Stage Deutschland e.V. Bilder: Falls nicht anders angegeben, liegen die Bildrechte bei den Autoren. Die Autoren haben die Bildrechte für die Verwendung in dieser Publikation nach bestem Wissen geprüft. Layout: weber. kreative dienstleistungen www.christianweber.info Textkorrektur: Angelika Welt www.angelika-welt.de Druck: druckpunkt Druckerei & Repro GmbH Berlin www.druckpunkt-berlin.de Finanzierung: Lenord, Bauer & Co. GmbH Arbeitgeberverband Gesamtmetall - THINK ING. Bestellungen: www.science-on-stage.de info@science-on-stage.de ISBN 978-3-9811195-5-8 (PDF-Version) 1. Auflage 2008 2.500 Exemplare © Science on Stage Deutschland e.V.


Innovative Technologien bewegen Europa INNOVATIVE TECHNOLOGIES MOVE EUROPE Ein Schul-Wettbewerb von Science on Stage Deutschland e.V. und der Lenord, Bauer & Co. GmbH


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.